WO2023216229A1 - 微流控芯片及其应用 - Google Patents

微流控芯片及其应用 Download PDF

Info

Publication number
WO2023216229A1
WO2023216229A1 PCT/CN2022/092667 CN2022092667W WO2023216229A1 WO 2023216229 A1 WO2023216229 A1 WO 2023216229A1 CN 2022092667 W CN2022092667 W CN 2022092667W WO 2023216229 A1 WO2023216229 A1 WO 2023216229A1
Authority
WO
WIPO (PCT)
Prior art keywords
microfluidic chip
droplets
channel
chip
layer
Prior art date
Application number
PCT/CN2022/092667
Other languages
English (en)
French (fr)
Inventor
杜学敏
王芳
刘美金
赵启龙
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2022/092667 priority Critical patent/WO2023216229A1/zh
Publication of WO2023216229A1 publication Critical patent/WO2023216229A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers

Definitions

  • This application relates to the field of microfluidic technology, and specifically to a microfluidic chip and its application.
  • Microfluidic technology is a technology that uses microtubules to control tiny fluids. It has been successfully used in fields such as biomedicine, organic synthesis, chemical analysis, and microreactors.
  • the droplets in the microfluidic chip have the characteristics of small size, fast flow rate and easy deformation.
  • the control methods for the droplets in the microfluidic chip include air pressure drive, centrifugal drive, electroosmosis drive and hot air drive.
  • the operation is complex, the droplet control accuracy is low, and the cost of the control equipment is high, which greatly limits the development and application of microfluidic technology. Therefore, it is necessary to provide a new microfluidic manipulation platform to simplify the droplet manipulation method and achieve flexible control of droplets.
  • this application provides a microfluidic chip that can drive droplets through light, simplify the control method of droplets, and can realize high-speed and remote movement of droplets, which is beneficial to microfluidics. Promotion and application of control technology.
  • microfluidic chip including:
  • the first chip channel layer includes a piezoelectric material, the first chip channel layer has a first droplet channel;
  • the microfluidic chip includes a second chip channel layer and a photoacoustic response layer disposed on the surface of the second chip channel layer, the photoacoustic response layer includes a piezoelectric material, and the second chip channel layer is close to the One side surface of the photoacoustic response layer has a channel structure, and the channel structure is combined with the photoacoustic response layer to form a second droplet channel; the piezoelectric coefficient of the piezoelectric material is greater than or equal to 1pC ⁇ N -1 .
  • the microfluidic chip of the present application includes a piezoelectric material.
  • the polarized piezoelectric material will undergo temperature changes when exposed to light, and subsequently generate an electric field gradient, or the polarized piezoelectric material will produce temperature changes and sound stimulation under sound stimulation. - Electrical conversion, resulting in an electric field gradient. Under the action of electrostatic force, the droplets will move with the movement of the light point or sound stimulation point; when the piezoelectric coefficient of the piezoelectric material is greater than or equal to 1pC ⁇ N -1 , Piezoelectric materials have good response to light and sound, ensuring that light or sound can effectively control droplet movement.
  • the microfluidic chip can be combined with a laser beam or an ultrasonic probe to control droplets, thereby simplifying the control method of droplets and achieving precise control of droplets.
  • the material of the first chip channel layer includes piezoelectric material.
  • the surface of the first droplet channel is covered with piezoelectric material.
  • the piezoelectric material includes one or more of organic piezoelectric materials and inorganic piezoelectric materials.
  • the piezoelectric coefficient d 33 of the organic piezoelectric material is greater than or equal to 10 pC ⁇ N -1 .
  • the piezoelectric coefficient d 33 of the inorganic piezoelectric material is greater than or equal to 30pC ⁇ N -1 .
  • the organic piezoelectric material includes polyvinylidene fluoride, polyvinylidene fluoride copolymer, polytetrafluoroethylene, nylon with an odd number of carbon atoms, polyacrylonitrile, polyimide, polyethylene vinylidene.
  • the polyvinylidene fluoride copolymer includes polyvinylidene fluoride-trifluoroethylene copolymer, polyvinylidene fluoride-tetrafluoroethylene copolymer, polyvinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene copolymer. and polyvinylidene fluoride-trifluoroethylene-chlorofluoroethylene copolymer.
  • the inorganic piezoelectric material includes lead titanate, barium titanate, potassium niobate, lithium niobate, lithium tantalate, bismuth titanate, bismuth layered perovskite structure ferroelectric, tungsten bronze iron
  • the electrolyte, bismuth ferrite, potassium dihydrogen phosphate, ammonium triglyceride sulfate, rhodium salt, perovskite-type organic metal halide ferroelectric and the above-mentioned doping compounds include lead titanate, barium titanate, potassium niobate, lithium niobate, lithium tantalate, bismuth titanate, bismuth layered perovskite structure ferroelectric, tungsten bronze iron
  • the electrolyte bismuth ferrite, potassium dihydrogen phosphate, ammonium triglyceride sulfate, rhodium salt, perovskite-type organic metal halide ferroelectric and
  • the piezoelectric material includes a pyroelectric material
  • the pyroelectric material includes one or more of organic pyroelectric materials and inorganic pyroelectric materials.
  • the pyroelectric coefficient of the organic pyroelectric material is greater than or equal to 10 ⁇ C ⁇ m -2 ⁇ K -1 .
  • the pyroelectric coefficient of the inorganic pyroelectric material is greater than or equal to 30 ⁇ C ⁇ m -2 ⁇ K -1 .
  • the first chip channel layer further includes photothermal material.
  • the photoacoustic response layer further includes photothermal material.
  • the photothermal conversion rate of the photothermal material is 0.1% to 99.99%.
  • the photothermal material includes one or more of metal photothermal nanomaterials, inorganic non-metal photothermal nanomaterials, and polymer photothermal materials.
  • the metal photothermal nanomaterials include one or more of gold nanomaterials and palladium nanomaterials.
  • the gold nanomaterials include one or more of gold nanorods, gold nanoshells, gold nanocages and hollow gold nanospheres
  • the palladium nanomaterials include palladium nanosheets, palladium nanoshells, palladium@ One or more of silver and palladium@silica.
  • the inorganic non-metallic photothermal nanomaterials include Fe 2 O 3 , CuO, MnO 2 , WO 3 , MXene, black phosphorus, copper sulfide, molybdenum sulfide, bismuth sulfide, antimony sulfide, gold sulfide, copper selenide, One or more of molybdenum selenide, bismuth selenide, antimony selenide, gold selenide, strontium ruthenate, carbon nanotubes, graphene, graphene oxide and carbon black.
  • the high molecular polymer material includes one or more of polydopamine, indocyanine green and polyaniline.
  • the mass ratio of the pyroelectric material to the photothermal material is greater than or equal to 1.
  • the first droplet channel is filled with lubricant.
  • the second droplet channel is filled with lubricant.
  • the lubricant includes vegetable oil, ethylene glycol, polyethylene glycol, perfluoropolyether, mineral oil, glycerol, paraffin, n-dodecane, n-dodecene, hexadecene, long-chain Lubricant, polyurethane, acrylic polyurethane, fluorine oil, vegetable seed oil, n-decanol, motor lubricant, kerosene, oleic acid, methyl oleate, ethyl oleate, fatty acid amide, stearic acid, stearamide, N , N-ethylene bisstearamide, oleic acid amide, butyl stearate, glyceryl trihydroxystearate, polyester, synthetic ester, carboxylic acid, silicate ester, phosphate ester, synthetic hydrocarbon oil, Ferrofluid, thermotropic liquid crystal, ionic liquid, iodoacetic acid, mannitol, eico
  • the thickness of the photoacoustic response layer is 1 ⁇ m-10 cm.
  • the material of the chip channel layer includes inorganic glass, transparent ceramics, transparent wood, organic glass, polyvinyl chloride, polystyrene, polycarbonate, polyethersulfone, polypropylene, polyamide, polyurethane, polyamide.
  • polyethylene terephthalate polyethylene terephthalate-1,4-cyclohexanedimethanol
  • styrene-acrylonitrile copolymer styrene-methyl methacrylate Copolymer
  • acrylonitrile-butadiene-styrene copolymer methyl methacrylate-butadiene-styrene copolymer
  • diallyl diglycol carbonate polymer polymethyl-1-pentene , one or more of polytetrafluoroethylene, polyvinylidene fluoride, transparent resin, epoxy resin, phenolic resin, unsaturated polyester resin, cellulose acetate, nitrocellulose and ethylene-vinyl acetate copolymer.
  • the second aspect of this application provides a method for controlling droplets, including:
  • the droplet channel of the microfluidic chip contains droplets
  • the light source is used to form an illumination site in the droplet channel
  • the droplets are directed towards The illumination point moves;
  • the method for controlling droplets includes: providing a sound source and a microfluidic chip as described in the first aspect, the droplet channel of the microfluidic chip contains droplets, and using the sound source to control the liquid in the liquid droplet channel.
  • the droplet channel forms a sound stimulation site towards which the droplets move.
  • the volume of the droplets is 1 nL to 100 ⁇ L.
  • the surface tension of the droplets is 10mN ⁇ m -1 to 100mN ⁇ m -1 .
  • the droplets include any one of water droplets, organic droplets, inorganic solution droplets, micro-nanoparticle suspension droplets, and biological tissue fluid droplets.
  • organic droplets include ethanol, acetone, chloroform, tetrahydrofuran, dimethyl sulfoxide, dimethylformamide, n-hexane, silicone oil, fluorine oil, sunflower oil, olive oil, n-hexadecane, and heptane , octane, acetic acid, toluene, diethyl ether, ethyl acetate, one or more of butanol, ethylene glycol, isopropyl alcohol and glycerin.
  • the inorganic solution droplets include one or more of sodium chloride, calcium chloride, copper sulfate, magnesium chloride, magnesium sulfate, sodium hydroxide, hydrochloric acid and potassium hydroxide.
  • the micro-nanoparticle suspension droplets include one or more of polystyrene beads, silica beads and gold particles.
  • the biological tissue fluid droplets include one or more of blood, serum, cell-containing tissue fluid and cell-containing culture fluid.
  • the wavelength of the light source is 150nm-4000nm.
  • the light intensity of the light source is 1mW-20000mW.
  • the sound source includes ultrasonic waves, and the ultrasonic power of the ultrasonic waves is 1W to 1000W.
  • the third aspect of the present application provides a method for preparing a microfluidic chip.
  • the preparation method includes:
  • a chip channel layer is provided, and the chip channel layer is combined with the photoacoustic response layer and packaged to obtain a microfluidic chip.
  • the preparation method includes: mixing a piezoelectric material and a solvent to obtain a mixed liquid, solidifying the mixed liquid to obtain a base layer containing a piezoelectric material, and performing polarization treatment on the base layer containing a piezoelectric material to obtain a third A chip channel layer is used to obtain a microfluidic chip.
  • the preparation method includes: providing a chip channel layer with a droplet channel, coating a piezoelectric material on the surface of the droplet channel, and performing polarization treatment on the piezoelectric material to obtain a microfluidic device. chip.
  • the polarization treatment includes one or more of irradiation treatment, electrical treatment, magnetic treatment, and external force treatment.
  • the external force treatment includes one or more of pressure, tension, flexural force and ultrasonic waves.
  • the preparation method further includes: infiltrating the droplet channels of the chip channel layer with lubricant to form a lubricating layer on the surface of the droplet channel.
  • the combination method of the chip channel layer and the photoacoustic response layer includes one or more of oxygen plasma surface treatment, chloroform bonding, and double-sided tape bonding.
  • the fourth aspect of this application provides the application of the microfluidic chip as described in the first aspect in biological detection and chemical detection of the microfluidic chip control system.
  • Figure 1 is a schematic structural diagram of a microfluidic chip provided by an embodiment of the present application.
  • Figure 2 is an exploded view of a microfluidic chip provided by an embodiment of the present application.
  • Figure 3 is an exploded view of a microfluidic chip provided by an embodiment of the present application.
  • Figure 4 is a schematic plan view of the second chip channel layer provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a microfluidic chip provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a microfluidic chip provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a microfluidic chip provided by an embodiment of the present application.
  • Droplet microfluidic chips are currently used in chemical reactions, synthesis of nanoparticles and biological materials, cell sorting and analysis, enzyme analysis, and drug screening.
  • the current droplet control methods are relatively complex and rely mostly on precise pump and valve operations.
  • the development of simple, efficient and accurate droplet control technology is the prerequisite and key for the widespread application of droplet microfluidic chips.
  • this application provides a microfluidic chip, which can generate an electric field gradient and trigger the movement of droplets under illumination. By setting the illumination position This can make the droplets move directionally and achieve flexible control of the droplets.
  • Figure 1 is a schematic structural diagram of a microfluidic chip provided by an embodiment of the present application.
  • the microfluidic chip includes a first chip channel layer 11, and the first chip channel layer has a first droplet channel.
  • a chip channel layer includes piezoelectric material.
  • the material of the first chip channel layer includes piezoelectric material.
  • the piezoelectric material covers the surface of the first droplet channel of the first chip channel layer.
  • Figure 2 is an exploded view of a microfluidic chip provided by an embodiment of the present application.
  • the microfluidic chip includes a second chip channel layer 20 and a photoacoustic response provided on the surface of the second chip channel layer 20.
  • Layer 10 the photoacoustic response layer includes piezoelectric material
  • the second chip channel layer 20 has a channel structure a on a side surface close to the photoacoustic response layer 10
  • the channel structure a is combined with the photoacoustic response layer 10 to form a second droplet channel, That is, the second droplet channel is composed of the chip channel layer and the photoacoustic response layer.
  • Figure 3 is an exploded view of a microfluidic chip provided by an embodiment of the present application.
  • the microfluidic chip includes a chip cover 30, a second chip channel layer 20, and a photoacoustic response layer 10 arranged in sequence.
  • the chip base plate 40 wherein the chip cover plate 30 is provided with A through holes and B through holes, the A through holes and the B through holes are connected with the channel structure of the second chip channel layer 20, that is, the A through holes and the B through holes are in The projection of the chip channel layer falls on the channel structure.
  • droplets or lubricants can be injected into the second chip channel layer 20 through the A through hole or the B through hole.
  • the microfluidic chip includes a piezoelectric material. After the piezoelectric material is polarized, the dipoles in the material are arranged in an orderly manner, causing the droplets in the droplet channel to separate positive and negative charges; for photoacoustic When the response layer or droplet channel is illuminated, the temperature of the piezoelectric material changes under the light, resulting in an electric field gradient, and the droplets move driven by electrostatic force; or the photoacoustic response layer or droplet channel is stimulated with sound At this time, the piezoelectric material produces temperature changes and acoustic-electrical conversion under sound stimulation, followed by an electric field gradient, and the liquid droplets move driven by electrostatic force.
  • the liquid droplets can be made to move by setting an illumination point or a sound stimulation point. Titration moves.
  • a laser pen is used to illuminate the droplet channel, and the droplets can move following the illumination point. The larger the wavelength of the light and the higher the intensity of the light, the faster the movement speed of the droplets.
  • an ultrasonic probe is used to approach the droplet channel, and the droplets can move following the sound stimulation site, and the greater the power of the ultrasonic wave, the faster the droplets move.
  • the method of polarizing the piezoelectric material includes one or more of irradiation treatment, electrical treatment, magnetic treatment and external force treatment.
  • the piezoelectric coefficient of the piezoelectric material is greater than or equal to 1 pC ⁇ N -1 , where the symbol of the piezoelectric coefficient is d 33 , that is, d 33 ⁇ 1 pC ⁇ N -1 .
  • the greater the piezoelectric coefficient of the piezoelectric material the greater the electrostatic force experienced by the droplets, and the faster the droplets move, which is more conducive to efficient control of the droplets.
  • the piezoelectric material includes one or more of organic piezoelectric materials and inorganic piezoelectric materials.
  • the piezoelectric coefficient of the organic piezoelectric material is greater than or equal to 10 pC ⁇ N -1 .
  • the thermal coefficient of the organic piezoelectric material is The discharge coefficient may specifically be, but is not limited to, 10pC ⁇ N -1 , 15pC ⁇ N -1 , 17pC ⁇ N -1 , 20pC ⁇ N -1 , 25pC ⁇ N -1 , 40pC ⁇ N -1 or 50pC ⁇ N -1 .
  • the piezoelectric coefficient of the inorganic piezoelectric material is greater than or equal to 30pC ⁇ N -1 .
  • the piezoelectric coefficient of the inorganic piezoelectric material can be, but is not limited to, 30pC ⁇ N -1 , 50pC ⁇ N -1 , 80pC ⁇ N -1 , 100pC ⁇ N -1 , 150pC ⁇ N -1 , 200pC ⁇ N -1 , 300pC ⁇ N -1 , 500pC ⁇ N -1 or 700pC ⁇ N -1 .
  • organic piezoelectric materials include polyvinylidene fluoride, polyvinylidene fluoride copolymer, polytetrafluoroethylene, nylon with an odd number of carbon atoms, polyacrylonitrile, polyimide, polyethylene vinylene One or more of dicyanodine, polyurea, polyphenylcyanoether, polyvinyl chloride, polyvinyl acetate, polypropylene, polyacrylamide, ferroelectric liquid crystal and the above copolymers.
  • the polyvinylidene fluoride copolymer includes polyvinylidene fluoride-trifluoroethylene copolymer, polyvinylidene fluoride-tetrafluoroethylene copolymer, polyvinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene copolymer One or more of polyvinylidene fluoride-trifluoroethylene-chlorofluoroethylene copolymers.
  • inorganic piezoelectric materials include lead titanate, barium titanate, potassium niobate, lithium niobate, lithium tantalate, bismuth titanate, bismuth layered perovskite structure ferroelectric, tungsten bronze type One or more of ferroelectrics, bismuth ferrite, potassium dihydrogen phosphate, ammonium triglyceride sulfate, rhodium salts, perovskite-type organic metal halide ferroelectrics and the above-mentioned doping compounds.
  • the particle size of the inorganic piezoelectric material is 1 nm-100 ⁇ m.
  • the particle size of the inorganic piezoelectric material may be, but is not limited to, 1 nm, 10 nm, 50 nm, 100 nm, 500 nm, 1 ⁇ m, 10 ⁇ m or 100 ⁇ m.
  • the piezoelectric material includes a pyroelectric material, and the pyroelectric coefficient of the pyroelectric material is greater than or equal to 1 ⁇ C ⁇ m -2 ⁇ K -1 , where the symbol of the pyroelectric coefficient is p, that is, p ⁇ 1 ⁇ C ⁇ m -2 ⁇ K -1 .
  • Pyroelectric materials will undergo temperature changes when exposed to light, resulting in an electric field gradient. The droplets move driven by electrostatic force. Therefore, the droplets can be moved directionally by setting the illumination position.
  • the pyroelectric material includes one or more of organic pyroelectric materials and inorganic pyroelectric materials, and the pyroelectric coefficient of the organic pyroelectric material is greater than or equal to 10 ⁇ C ⁇ m -2 ⁇ K -1 , the pyroelectric coefficient of the organic pyroelectric material can be, but is not limited to, 10 ⁇ C ⁇ m -2 ⁇ K -1 , 15 ⁇ C ⁇ m -2 ⁇ K -1 , 17 ⁇ C ⁇ m -2 ⁇ K -1 , 20 ⁇ C ⁇ m -2 ⁇ K -1 , 25 ⁇ C ⁇ m -2 ⁇ K -1 , 40 ⁇ C ⁇ m -2 ⁇ K -1 or 50 ⁇ C ⁇ m -2 ⁇ K -1 .
  • the pyroelectric coefficient of the inorganic pyroelectric material is greater than or equal to 30 ⁇ C ⁇ m -2 ⁇ K -1
  • the pyroelectric coefficient of the inorganic pyroelectric material can be, but is not limited to, 30 ⁇ C ⁇ m - 2 ⁇ K -1 , 50 ⁇ C ⁇ m -2 ⁇ K -1 , 80 ⁇ C ⁇ m -2 ⁇ K -1 , 100 ⁇ C ⁇ m -2 ⁇ K -1 , 150 ⁇ C ⁇ m -2 ⁇ K -1 , 200 ⁇ C ⁇ m - 2 ⁇ K -1 , 300 ⁇ C ⁇ m -2 ⁇ K -1 , 500 ⁇ C ⁇ m -2 ⁇ K -1 or 700 ⁇ C ⁇ m -2 ⁇ K -1 .
  • the microfluidic chip also includes a photothermal material.
  • the photothermal material can be in the first chip channel layer or in the photoacoustic response layer.
  • the pyroelectric material is located in the first chip channel. layer, the photothermal material is also located in the first chip channel layer, and when the pyroelectric material is located in the photoacoustic response layer, the photothermal material is also located in the photoacoustic response layer.
  • Adding photothermal materials to microfluidic chips can improve the efficiency of photothermal conversion, convert light energy into heat energy more efficiently, and stimulate pyroelectric materials to generate electric field gradients, thereby increasing the electric field intensity and enhancing the electrostatic force on droplets.
  • the photothermal conversion rate of the photothermal material is 0.1% to 99.99%.
  • the photothermal material includes one or more of metal photothermal nanomaterials, oxide photothermal nanomaterials, carbon nanomaterials, polymer materials and semiconductor nanomaterials.
  • the metal photothermal nanomaterials include one or more of gold nanomaterials and palladium nanomaterials.
  • gold nanomaterials include one or more of gold nanorods, gold nanoshells, gold nanocages and hollow gold nanospheres.
  • palladium nanomaterials include one or more of palladium nanosheets, palladium nanoshells, palladium@silver and palladium@silica, where palladium@silver represents silver-coated palladium core-shell nanometers.
  • Material, palladium@silica represents a core-shell nanomaterial of silica coating palladium.
  • the photoacoustic response layer includes polyvinylidene fluoride copolymer and polydopamine; in some embodiments, the photoacoustic response layer includes polyvinylidene fluoride copolymer and gold nanomaterials.
  • the mass ratio of the pyroelectric material to the photothermal material is 100:0 to 50:50 (excluding 100:0).
  • the mass ratio of the pyroelectric material to the photothermal material may be, but is not limited to, 100:1, 95:5, 90:10, 80:20, 75:25 or 70:30.
  • photothermal materials can achieve good cooperation with piezoelectric materials to ensure that light can effectively control droplets.
  • the chip channel layer is made of transparent material.
  • the material of the chip channel layer includes inorganic glass, transparent ceramics, transparent wood, organic glass, polyvinyl chloride, polystyrene, polycarbonate, polyethersulfone, polypropylene, polyamide, polyurethane, poly Imide, polyethylene terephthalate, polyethylene terephthalate-1,4-cyclohexanedimethanol ester, styrene-acrylonitrile copolymer, styrene-methyl methacrylate Ester copolymer, acrylonitrile-butadiene-styrene copolymer, methyl methacrylate-butadiene-styrene copolymer, diallyl diglycol carbonate polymer, polymethyl-1-pentane One or more of vinylene, polytetrafluoroethylene, polyvinylidene fluoride, transparent resin, epoxy resin, phenol
  • Figure 4 is a schematic plan view of the second chip channel layer provided by an embodiment of the present application.
  • the surface of the second chip channel layer 20 close to the photoacoustic response layer has a channel structure.
  • the channel structure is related to the photoacoustic response layer.
  • the response layers combine to form a closed channel, namely droplet channel 21.
  • the shape and position of the droplet channel can be set according to application needs, and are not limited here.
  • the channel structure of the chip channel layer is prepared by one or more methods including photolithography micro-machining, mechanical processing, laser cutting, template overlay, and 3D printing.
  • the droplet channel is filled with lubricant, where the lubricant can be completely filled or partially filled.
  • Full filling means that the lubricant fills the entire droplet channel
  • partial filling means that the lubricant fills the entire droplet channel.
  • the agent only forms a lubricating layer on the surface of the droplet channel.
  • Filling the droplet channel with lubricant can reduce the resistance of the droplet moving in the channel, thereby increasing the speed of the droplet movement.
  • filling the droplet channel with lubricant can also improve the biocompatibility of the droplet channel and ensure the stable progress of the reaction in the microfluidic chip.
  • FIG. 5 is a schematic structural diagram of a microfluidic chip provided by an embodiment of the present application.
  • lubricant forms a lubricating layer 22 on the surface of the droplet channel 21 .
  • the thickness of the lubricating layer is 1 nm-100 ⁇ m. Since the lubricating layer has a limited effect on increasing the liquid velocity, and the lubricating layer has poor stability and is not easily fixed in the droplet channel. In some embodiments of the present application, the lubricant completely fills the droplet channel, and the droplet channel is filled with lubricant.
  • FIG. 6 is a schematic structural diagram of a microfluidic chip provided by an embodiment of the present application.
  • the lubricant completely fills the droplet channel 21 of the microfluidic chip.
  • Figure 7 is a schematic structural diagram of a microfluidic chip provided by an embodiment of the present application.
  • the lubricant completely fills the droplet channel 21, and the droplets float in the lubricant.
  • the microfluidic chip is Illumination can cause the droplets to move toward the illuminated location.
  • lubricants include vegetable oil, ethylene glycol, polyethylene glycol, perfluoropolyether, mineral oil, glycerol, paraffin, n-dodecane, n-dodecene, hexadecene, long Chain lubricant, polyurethane, acrylic polyurethane, fluorine oil, vegetable seed oil, n-decanol, motor lubricant, kerosene, oleic acid, methyl oleate, ethyl oleate, fatty acid amide, stearic acid, stearamide, N,N-ethylene bisstearamide, oleic acid amide, butyl stearate, glyceryl trihydroxystearate, polyester, synthetic ester, carboxylic acid, silicate ester, phosphate ester, synthetic hydrocarbon oil , ferrofluid, thermotropic liquid crystal, ionic liquid, iodoacetic acid, mannito
  • the droplet microfluidic platform uses polarized piezoelectric materials to produce temperature changes under light, followed by electric field gradients, or polarized piezoelectric materials to produce temperature changes and acoustic-electricity under sound stimulation.
  • the conversion, and subsequent induction of an electric field gradient triggers the movement of droplets in the channels of the microfluidic chip.
  • the polarized piezoelectric material can quickly generate an electric field, triggering the rapid and long-distance movement of droplets.
  • the piezoelectric material has a wide response wavelength to light and requires a wide light energy density. Therefore, it can also be controlled by a portable laser pointer without the need for
  • the complex pump and valve structure greatly expands the application scope of the current droplet microfluidic platform and reduces the production cost and application difficulty of the droplet microfluidic platform.
  • the present application also provides a method for controlling droplets.
  • the method for controlling droplets includes: injecting droplets into the droplet channel of the microfluidic chip, irradiating the droplet channel to form an illumination site, The droplets move toward the illuminated location.
  • the droplet manipulation method includes: injecting droplets into the droplet channel of the microfluidic chip, using an ultrasonic probe to form a sound stimulation site in the droplet channel, and moving the droplets toward the sound stimulation site.
  • the microfluidic chip when the microfluidic chip is irradiated or stimulated by sound, the temperature at the illumination site or sound stimulation site is relatively high, the piezoelectric material generates a high-intensity central electric field, and the droplets are moved toward the stimulation site by electrostatic force. point. The closer the distance between the stimulation site and the droplet is, the faster the droplet will move.
  • the droplet By setting the movement trajectory of the light source or sound source, the droplet can move along the movement path of the light or sound, thereby Achieve contactless control of droplets.
  • the wavelength of the light source used to illuminate the microfluidic chip is 150nm-4000nm. In some embodiments of the present application, the wavelength of the light source used to illuminate the microfluidic chip is 500nm-980nm. In some embodiments of the present application, the illumination intensity of the light source is 1 mW-20000 mW. The illumination intensity of the light source may be, but is not limited to, 1 mW, 10 mW, 100 mW, 1000 mW, 5000 mW, 10000 mW or 20000 mW. In some embodiments of the present application, the sound source used for sound stimulation of the microfluidic chip is ultrasound, and the power of the ultrasound is 1W-1000W. The power of the ultrasound can be, but is not limited to, 1W, 10W, 30W, 100W, 200W, 500W. or 1000W.
  • the volume of the droplets in the droplet channel ranges from 1 nL to 100 ⁇ L.
  • the volume of the droplets can be, but is not limited to, 1 nL, 10 nL, 100 nL, 1 ⁇ L, 10 ⁇ L or 100 ⁇ L.
  • the above-mentioned volume of droplets is easy to control. Flexible and fast movement can be achieved under the action of microfluidic chip and light.
  • the surface tension of the droplets is 10mN ⁇ m -1 to 100mN ⁇ m -1 .
  • the droplets include any one of water droplets, organic droplets, inorganic solution droplets, micro-nanoparticle suspension droplets, and biological tissue fluid droplets, wherein the organic droplets can be organic solvent droplets. drop.
  • organic droplets include ethanol, acetone, chloroform, tetrahydrofuran, dimethyl sulfoxide, dimethylformamide, n-hexane, silicone oil, fluorine oil, sunflower oil, olive oil, n-hexadecane , one or more of heptane, octane, acetic acid, toluene, diethyl ether, ethyl acetate, butanol, ethylene glycol, isopropyl alcohol and glycerol; in the droplets of the inorganic solution, the solute of the inorganic solution Including one or more of sodium chloride, calcium chloride, copper sulfate, magnesium chloride, magnesium sulfate, sodium hydroxide, hydrochloric acid and potassium hydroxide; the micro-nanoparticles in the micro-nanoparticle suspension droplets include polystyrene One or more of beads, silica beads and gold particles
  • the droplet manipulation method provided by this application is suitable for a variety of droplets, and the manipulation device is simple and has excellent spatiotemporal resolution, which is beneficial to its use in digital light-controlled microfluidic systems, biological and chemical detection, molecular biology and analysis Applications in Chemistry.
  • This application also provides a method for preparing a microfluidic chip.
  • the method for preparing a microfluidic chip includes:
  • Step 100 Mix the piezoelectric material and the solvent to obtain a mixed liquid, solidify the mixed liquid to obtain a base layer containing the piezoelectric material, and perform polarization treatment on the base layer containing the piezoelectric material to obtain a photoacoustic response layer;
  • Step 200 Provide a chip channel layer, combine the chip channel layer with the photoacoustic response layer, and package them to obtain a microfluidic chip.
  • the piezoelectric material includes one or more of organic piezoelectric materials and inorganic piezoelectric materials.
  • the solvent includes ethylene glycol methyl ether, glacial acetic acid, dimethyl sulfoxide, N,N-dimethylformamide acetone, trimethyl phosphate, N,N-dimethylformamide, N , one or more of N-dimethylacetamide, propylene glycol, N-methylpyrrolidone, tetrahydrofuran, tetramethylurea, hexamethylphosphoric acid amide and hexafluoroisopropanol.
  • the mass concentration of the piezoelectric material in the mixed liquid is 1%-50%.
  • the mass concentration of the piezoelectric material may be, but is not limited to, 1%, 5%, 10%, 20%, 30%, 40% or 50%.
  • the curing of the mixed liquid includes: casting or spin-coating the mixed liquid on the substrate, drying and annealing to obtain a base layer containing piezoelectric material, and then polarizing the base layer containing piezoelectric material to obtain a photoacoustic response layer , wherein the substrate can be a planar substrate or a substrate with microstructures.
  • the mixed liquid also includes a photothermal material.
  • the photoacoustic response layer can be prepared by dispersing the piezoelectric material and the photothermal material in a solvent to obtain a mixed liquid, and then casting or spin coating the mixed liquid to obtain a mixture containing The base layer of piezoelectric material is then polarized to obtain the photoacoustic response layer.
  • a method of preparing a microfluidic chip includes:
  • Step 100 Press the piezoelectric material into a film, and then polarize it to obtain a photoacoustic response layer.
  • Step 200 Provide a chip channel layer, combine the chip channel layer with the photoacoustic response layer, and package them to obtain a microfluidic chip.
  • the polarization treatment includes one or more of irradiation treatment, electrical treatment, magnetic treatment, and external force treatment, wherein the external force treatment includes one or more of pressure, tensile force, flexural force, and ultrasonic wave.
  • the external force treatment includes one or more of pressure, tensile force, flexural force, and ultrasonic wave.
  • the surface of the chip channel layer has a channel structure.
  • the chip channel layer and the photoacoustic response layer are combined and encapsulated to obtain a droplet channel.
  • the channel structure can be processed by photolithography micromachining, mechanical processing, laser cutting, and templates. Prepared by one or more methods of molding and 3D printing. In some embodiments of the present application, one or more methods of oxygen plasma surface treatment, chloroform bonding, or double-sided tape bonding may be used to combine the chip channel layer and the photoacoustic response layer.
  • the preparation method of the microfluidic chip further includes: using lubricant to perfuse the droplet channel of the chip channel layer, and filling the droplet channel with the lubricant.
  • lubricants include perfluorinated oil, vegetable oil, vegetable seed oil, n-decanol, ethylene glycol, motor lubricating oil, kerosene, mineral oil, oleic acid, methyl oleate, ethyl oleate, One or more of ferromagnetic fluid, paraffin, thermotropic liquid crystal, ionic liquid, and silicone oil.
  • a method of preparing a microfluidic chip includes:
  • the piezoelectric material Mix the piezoelectric material and the solvent to obtain a mixed liquid. After solidifying the mixed liquid, a base layer containing the piezoelectric material is obtained. The base layer containing the piezoelectric material is polarized to obtain the first chip channel layer, which is a microfluidic chip. .
  • a method of preparing a microfluidic chip includes:
  • a chip channel layer is provided, the chip channel layer has a droplet channel, a piezoelectric material is coated on the surface of the droplet channel, and the piezoelectric material is polarized to obtain a microfluidic chip.
  • the preparation method of the microfluidic chip provided by this application is simple to operate, the process is controllable, and it is suitable for industrial production.
  • a microfluidic chip includes a chip channel layer and a photoacoustic response layer.
  • the pyroelectric material in the photoacoustic response layer is polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • the pyroelectric coefficient p of polyvinylidene fluoride is 20 ⁇ C ⁇ m - 2 ⁇ K -1 .
  • the above-mentioned microfluidic chip preparation method includes:
  • a microfluidic chip includes a chip channel layer and a photoacoustic response layer.
  • the pyroelectric material in the photoacoustic response layer is lead titanate.
  • the pyroelectric coefficient p of lead titanate is 100 ⁇ C ⁇ m -2 ⁇ K -1 .
  • the above-mentioned microfluidic chip preparation method includes:
  • DC high-voltage electricity treatment is used to achieve polarization, and a lead titanate film with a pyroelectric coefficient p of 100 ⁇ C ⁇ m -2 ⁇ K -1 is obtained.
  • the lead titanate film with a silicon substrate is cut to obtain an area of 20* 40mm lead titanate film with silicon substrate.
  • Double-sided tape is used to combine the lead titanate film with a silicon base and the chip channel layer.
  • the lead titanate film is sandwiched between the chip channel layer and the silicon base.
  • the channel structure and the lead titanate film form a droplet channel.
  • Vegetable oil was poured into the dripping channel to obtain a microfluidic chip.
  • a microfluidic chip includes a chip channel layer and a photoacoustic response layer.
  • the pyroelectric material in the photoacoustic response layer is barium titanate ceramic.
  • the pyroelectric coefficient p of the barium titanate ceramic is 50 ⁇ C ⁇ m -2 ⁇ K. -1 .
  • the above-mentioned microfluidic chip preparation method includes:
  • Double-sided tape is used to combine the barium titanate ceramic with the chip channel layer.
  • the channel structure and the barium titanate ceramic form a droplet channel.
  • n-decanol is poured into the droplet channel to obtain a microfluidic chip.
  • a microfluidic chip includes a chip channel layer and a photoacoustic response layer.
  • the pyroelectric material in the photoacoustic response layer includes a composite material of polyvinylidene fluoride and bismuth ferrite.
  • the pyroelectric coefficient p of the composite material is 1 ⁇ C ⁇ m -2 ⁇ K -1 .
  • the above-mentioned microfluidic chip preparation method includes:
  • photoacoustic response layer Dissolve 10wt% polyvinylidene fluoride in N,N-dimethylformamide, disperse 5wt% bismuth ferrite nanopowder in the polyvinylidene fluoride solution, and mix The solution is cast on a glass substrate, and after drying, the film is removed from the glass substrate.
  • the thickness of the polyvinylidene fluoride-bismuth ferrite composite film is 100 ⁇ m; the composite film is subjected to 20kV DC high-voltage corona treatment to achieve After polarization, a polyvinylidene fluoride-bismuth ferrite composite film with a pyroelectric coefficient p of 15 ⁇ C ⁇ m -2 ⁇ K -1 was obtained. The composite film was cut to obtain a photoacoustic response layer with an area of 15*35mm. .
  • a microfluidic chip includes a chip channel layer and a photoacoustic response layer.
  • the photoacoustic response layer includes pyroelectric material polyvinylidene fluoride and photothermal material gold nanorods.
  • the pyroelectric coefficient p of polyvinylidene fluoride is 15 ⁇ C ⁇ m -2 ⁇ K -1 .
  • the above-mentioned microfluidic chip preparation method includes:
  • a microfluidic chip includes a chip channel layer and a photoacoustic response layer.
  • the photoacoustic response layer includes a pyroelectric material polyvinylidene fluoride-trifluoroethylene copolymer (PVDF-TrFE), barium titanate and a photothermal material polydopamine.
  • PVDF-TrFE polyvinylidene fluoride-trifluoroethylene copolymer
  • barium titanate barium titanate
  • a photothermal material polydopamine the pyroelectric coefficient p of the pyroelectric material is 20 ⁇ C ⁇ m -2 ⁇ K -1 .
  • the above-mentioned microfluidic chip preparation method includes:
  • a microfluidic chip includes a chip channel layer and a photoacoustic response layer.
  • the photoacoustic response layer includes pyroelectric materials polyvinylidene fluoride-trifluoroethylene copolymer (PVDF-TrFE) and polyacrylonitrile.
  • PVDF-TrFE polyvinylidene fluoride-trifluoroethylene copolymer
  • the pyroelectric material The pyroelectric coefficient p is 15 ⁇ C ⁇ m -2 ⁇ K -1 .
  • the above-mentioned microfluidic chip preparation method includes:
  • Photoacoustic response layer Dissolve 10wt% PVDF-TrFE and 5wt% polyacrylonitrile in N,N-dimethylformamide, put the mixed solution into a container, and obtain a composite membrane through solvent replacement.
  • the thickness of the film is 100 ⁇ m; the composite film is subjected to 15kV DC high-voltage corona treatment to achieve polarization, and a PVDF-TrFE/polyacrylonitrile composite film with a pyroelectric coefficient p of 15 ⁇ C ⁇ m -2 ⁇ K -1 is obtained.
  • the composite film was cut to obtain a photoacoustic response layer with an area of 15*35mm.
  • a microfluidic chip includes a chip channel layer and a photoacoustic response layer.
  • the photoacoustic response layer includes pyroelectric materials lead titanate and bismuth ferrite.
  • the pyroelectric coefficient p of the pyroelectric material is 500 ⁇ C ⁇ m -2 ⁇ K -1 .
  • the above-mentioned microfluidic chip preparation method includes:
  • the thickness of the film is 500nm; the composite film is subjected to 5kV DC high voltage treatment to achieve polarization, and a lead titanate-bismuth ferrite composite film with a pyroelectric coefficient p of 500 ⁇ C ⁇ m -2 ⁇ K -1 is obtained.
  • the film was cut to obtain a photoacoustic response layer with an area of 15*35mm.
  • the lead titanate-bismuth ferrate composite film with a silicon base is bonded to the chip channel layer through double-sided tape.
  • the lead titanate-bismuth ferrite composite film is located between the silicon base and the chip channel layer, and the channel structure is
  • the lead titanate-bismuth ferrite composite film forms a droplet channel, and vegetable oil is poured into the droplet channel to obtain a microfluidic chip.
  • a microfluidic chip includes a chip channel layer.
  • the pyroelectric material in the chip channel layer is polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • the pyroelectric coefficient p of polyvinylidene fluoride is 20 ⁇ C ⁇ m -2 ⁇ K -1 .
  • the above-mentioned microfluidic chip preparation method includes:
  • the mold has a 1mm wide and 1mm high channel structure. After drying, remove the chip with channel structure from the mold.
  • Membrane perform corona polarization on the membrane, take a piece of glass with a length of 20mm, a width of 40mm, and a height of 2mm, bond it with the membrane with a channel structure to form a chip channel layer, and perfuse the droplet channel with perfluorinated oil to obtain a microfluidic chip .
  • a microfluidic chip includes a chip channel layer.
  • the pyroelectric material in the chip channel layer is barium titanate.
  • the pyroelectric coefficient p of barium titanate is 50 ⁇ C ⁇ m -2 ⁇ K -1 .
  • the above-mentioned microfluidic chip preparation method includes:
  • the barium titanate single crystal is used to obtain a 1mm wide and 1mm high channel structure by photolithography micromachining.
  • the glass is 20mm long, 40mm wide and 2mm high, and is used with the barium titanate single crystal to form a chip channel layer.
  • Perfluorinated oil was poured into the microfluidic chip to obtain a microfluidic chip.
  • a microfluidic chip includes a chip channel layer.
  • the chip channel layer includes pyroelectric material barium titanate powder and photothermal material polydopamine.
  • the pyroelectric coefficient p of the pyroelectric material is 20 ⁇ C ⁇ m -2 ⁇ K -1 .
  • a microfluidic chip includes a chip channel layer and a photoacoustic response layer.
  • the photoacoustic response layer includes piezoelectric material polyvinylidene fluoride, and the piezoelectric coefficient of polyvinylidene fluoride is 25pC ⁇ N -1 .
  • the above-mentioned microfluidic chip preparation method includes:
  • photoacoustic response layer Dissolve 10wt% PVDF in N,N-dimethylformamide, cast the solution on the surface of the glass substrate, remove the film from the glass substrate after drying, the thickness of the film is 100 ⁇ m; the film was subjected to 15kV DC high-voltage corona treatment to achieve polarization, and a polyvinylidene fluoride composite film with a piezoelectric coefficient of 25pC ⁇ N -1 was obtained. The film was cut to obtain a photoacoustic response with an area of 15*35mm. layer.
  • a microfluidic chip includes a chip channel layer.
  • the piezoelectric material in the chip channel layer is polyvinylidene fluoride (PVDF), and the piezoelectric coefficient of polyvinylidene fluoride is 25pC ⁇ N -1 .
  • the above-mentioned microfluidic chip preparation method includes:
  • the mold has a 1mm wide and 1mm high channel structure. After drying, remove the chip with channel structure from the mold.
  • Membrane perform corona polarization on the membrane, take a piece of glass with a length of 20mm, a width of 40mm, and a height of 2mm, bond it with the membrane with a channel structure to form a chip channel layer, and perfuse the droplet channel with perfluorinated oil to obtain a microfluidic chip .
  • a microfluidic chip includes a chip channel layer and a photoacoustic response layer.
  • the piezoelectric material in the photoacoustic response layer is barium titanate ceramic.
  • the piezoelectric coefficient p of the barium titanate ceramic is 50pC ⁇ N -1 .
  • the above-mentioned microfluidic chip preparation method includes:
  • Double-sided tape is used to combine the barium titanate ceramic with the chip channel layer.
  • the channel structure and the barium titanate ceramic form a droplet channel.
  • n-decanol is poured into the droplet channel to obtain a microfluidic chip.
  • a method for preparing a droplet microfluidic platform including:
  • PVDF-TrFE polyvinylidene fluoride-trifluoroethylene copolymer
  • N,N-dimethylformamide 10wt% polyvinylidene fluoride-trifluoroethylene copolymer
  • 5wt% polydopamine-coated barium titanate nanopowder was dispersed in PVDF- In the TrFE solution, cast the mixed solution on the glass substrate. After drying, remove the PVDF-TrFE/polydopamine@barium titanate composite film from the glass substrate. The thickness of the composite film is 100 ⁇ m. Cut the composite film to obtain 15*35mm size composite film.
  • a polyethersulfone board with a length of 20mm, a width of 40mm, and a height of 2mm Take a polyethersulfone board with a length of 20mm, a width of 40mm, and a height of 2mm, and use 3D printing method to obtain a 1mm wide and 1mm high channel structure to form the chip channel layer.
  • Take an unstructured polyethersulfone board of the same size sandwich the unpolarized composite membrane between the unstructured polyethersulfone board and the chip channel layer, use double-sided tape to bond each layer, and the channel structure is formed with the composite film.
  • the droplet channel is used to obtain the droplet microfluidic platform.
  • this application also provides effect examples.
  • Example 1 the liquid droplets in Example 1 are water droplets, the size of the water droplets is 1nL, the wavelength ⁇ of the light is 4000nm, and the laser pen with an illumination intensity of 2000mW irradiates the liquid droplet channel, and the liquid droplets are in the microfluidic chip.
  • the medium movement speed is 100mm/s. Please refer to Table 1 for the specific parameters of each example and comparative example experiment.
  • Embodiment 12 is water droplets, the size of the water droplets is 300nL, the power of the ultrasonic probe is 60W, the droplets in the channel are driven, and the droplets move in the acoustically controlled droplet microfluidic chip. The speed is 10mm/s. Please refer to Table 1 for the specific parameters of each example and comparative example experiment.
  • the movement speed of the droplets is much smaller than that of the droplets of Example 14.
  • the droplet microfluidic platform of Comparative Example 2 and the microfluidic platform of Example 14 The structure of the control chip is the same, but the difference is that the composite film in Comparative Example 2 is not polarized.
  • the composite film in Comparative Example 2 is not polarized, sound stimulation cannot generate an electric field gradient, that is, the droplet movement cannot be driven by electrostatic force.
  • the reason why the droplets in Comparative Example 2 can move is that the thermal effect generated by ultrasound drives the movement of the droplets. However, due to the large viscous resistance of the movement of the droplets, the driving force of the thermal effect is limited.
  • the droplets in Comparative Example 2 move very slowly and have a long distance. short. It can be seen from the experiments that the microfluidic chip of the present application can efficiently use light to drive droplets to achieve rapid movement of droplets, and this method is suitable for different types of droplets by adjusting the wavelength, illumination intensity and pressure of light.
  • the polarization intensity of the electrical material can change the movement speed of the droplets.

Landscapes

  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micromachines (AREA)

Abstract

本申请提供了一种微流控芯片及其应用,微流控芯片包括第一芯片通道层,第一芯片通道层包括压电材料,第一芯片通道层具有第一液滴通道;或微流控芯片包括第二芯片通道层和设置在第二芯片通道层表面的光声响应层,光声响应层包括压电材料,第二芯片通道层靠近光声响应层的一侧表面具有孔道结构,孔道结构与光声响应层结合形成第二液滴通道;压电材料的压电系数大于或等于1 pC·N -1。该微流控芯片可通过光照或声音驱动液滴,简化了液滴的操控方法,具有便携、长距离高速操纵液滴的优点。

Description

微流控芯片及其应用 技术领域
本申请涉及微流控技术领域,具体涉及一种微流控芯片及其应用。
背景技术
微流控技术是应用微管控制微小流体的技术,目前已成功应用在生物医学、有机合成、化学分析及微反应器等领域。微流控芯片内的液滴具有体积小、流速快和易变形的特点,目前,对微流控芯片内液滴的操控方式有气压驱动、离心驱动、电渗驱动和热气驱动,然而以上方法操作复杂,对液滴的控制精度较低,而且操控的设备的成本高,极大的限制了微流控技术的发展和应用。因此,有必要提供一种新的微流控操控平台,以简化液滴的操控方法并实现对液滴的灵活控制。
发明内容
为解决上述问题,本申请提供了一种微流控芯片,该微流控芯片可通过光驱动液滴,简化液滴的操控方法,并且能够实现液滴高速和远程的运动,有利于微流控技术的推广和应用。
具体地,本申请第一方面提供了一种微流控芯片,包括:
第一芯片通道层,所述第一芯片通道层包括压电材料,所述第一芯片通道层具有第一液滴通道;
或所述微流控芯片包括第二芯片通道层和设置在所述第二芯片通道层表面的光声响应层,所述光声响应层包括压电材料,所述第二芯片通道层靠近所述光声响应层的一侧表面具有孔道结构,所述孔道结构与所述光声响应层结合形成第二液滴通道;所述压电材料的压电系数大于或等于1pC·N -1
本申请的微流控芯片包括压电材料,经极化的压电材料在光照下会发生温变,随后产生电场梯度,或者经极化的压电材料在声音刺激下会产生温变和声-电转换,随之产生电场梯度,液滴在静电力作用下会随着光照位点或声音刺激位点的移动而发生运动;压电材料的压电系数大于或等于1pC·N -1时,压电材料对光照和声音具有良好的响应,从而保证光或声音可以有效地控制液滴运动。该微流控芯片可结合激光光束或超声探头实现对液滴的操控,从而简化液滴的操控方法,实现对液滴的精准操控。
可选的,所述第一芯片通道层的材料包括压电材料。
可选的,所述第一液滴通道的表面覆有压电材料。
可选的,所述压电材料包括有机压电材料和无机压电材料中的一种或多种。
可选的,有机压电材料的压电系数d 33大于或等于10pC·N -1
可选的,无机压电材料的压电系数d 33大于或等于30pC·N -1
可选的,所述有机压电材料包括聚偏氟乙烯、聚偏氟乙烯共聚物、聚四氟乙烯、碳原子数为奇数的尼龙、聚丙烯腈、聚酰亚胺、聚亚乙烯基二氰、聚脲、聚苯基氰基醚、聚氯乙烯、聚醋酸乙烯、聚丙烯、聚丙烯酰胺、铁电液晶中的一种或多种。
可选的,所述聚偏氟乙烯共聚物包括聚偏氟乙烯-三氟乙烯共聚物、聚偏氟乙烯-四氟乙烯共聚物、聚偏氟乙烯-三氟乙烯-三氟氯乙烯共聚物和聚偏氟乙烯-三氟乙烯-氯氟乙烯共聚物。
可选的,所述无机压电材料包括钛酸铅、钛酸钡、铌酸钾、铌酸锂、钽酸锂、钛酸铋、铋层状钙钛矿结构铁电体、钨青铜型铁电体、铁酸铋、磷酸二氢钾、硫酸三甘酸氨、罗息盐、钙钛矿型有机金属卤化物铁电体及上述的掺杂化合物中的一种或多种。
可选的,所述压电材料包括热释电材料,所述热释电材料包括有机热释电材料和无机热释电材料中的一种或多种。
可选的,有机热释电材料的热释电系数大于或等于10μC·m -2·K -1
可选的,无机热释电材料的热释电系数大于或等于30μC·m -2·K -1
可选的,所述第一芯片通道层还包括光热材料。
可选的,所述光声响应层还包括光热材料。
可选的,所述光热材料的光热转换率为0.1%~99.99%。
可选的,所述光热材料包括金属光热纳米材料、无机非金属光热纳米材料、高分子聚合物光热材料中的一种或多种。
可选的,所述金属光热纳米材料包括金纳米材料和钯纳米材料中的一种或多种。
可选的,所述金纳米材料包括金纳米棒、金纳米壳、金纳米笼和空心金纳米球中的一种或多种,所述钯纳米材料包括钯纳米片、钯纳米壳、钯@银和钯@二氧化硅中的一种或多种。
可选的,所述无机非金属光热纳米材料包括Fe 2O 3、CuO、MnO 2、WO 3、MXene、黑磷、硫化铜、硫化钼、硫化铋、硫化锑、硫化金硒化铜、硒化钼、硒化铋、硒化锑、硒化金、钌酸锶,碳纳米管、石墨烯、氧化石墨烯和炭黑中的一种或多种。
可选的,所述高分子聚合物材料包括聚多巴胺、吲哚菁绿和聚苯胺中的一种或多种。
可选的,所述热释电材料与所述光热材料的质量比大于或等于1。
可选的,所述第一液滴通道内填充有润滑剂。
可选的,所述第二液滴通道内填充有润滑剂。
可选的,所述润滑剂包括植物油、乙二醇、聚乙二醇、全氟聚醚、矿物油、丙三醇、石蜡、正十二烷、正十二烯、十六烯、长链润滑剂、聚氨酯、丙烯酸聚氨酯、氟油、蔬菜籽油、正癸醇、电动机润滑油、煤油、油酸、油酸甲酯、油酸乙酯、脂肪酸酰胺、硬脂酸、硬脂酰胺、N,N-亚乙基双硬脂酸酰胺、油酸酰胺、硬脂酸丁酯、甘油三羟基硬脂酸酯、聚酯、合成酯、羧酸、硅酸酯、磷酸酯、合成烃油、铁磁流体、热致液晶、离子液体、碘乙酸、甘露醇、二十碳五烯酸、褐藻胶、海藻酸、粘多糖、透明质酸、胶原蛋白、弹力蛋白、尿囊素、葡萄糖醛酸、甘醇酸、骨胶原、蘑菇液、大黄素、海带粘液、蜗牛粘液和硅油中的一种或多种。
可选的,所述光声响应层的厚度为1μm-10cm。
可选的,所述芯片通道层的材质包括无机玻璃、透明陶瓷、透明木材、有机玻璃、聚氯乙烯、聚苯乙烯、聚碳酸脂、聚醚砜、聚丙烯、聚酰胺、聚氨酯、聚酰亚胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯、苯乙烯-丙烯腈共聚物、苯乙烯-甲基丙烯酸甲酯共聚物、丙烯腈-丁二烯-苯乙烯共聚物、甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物、双烯丙基二甘醇碳酸酯聚合物、聚甲基-1-戊烯、聚四氟乙烯、聚偏氟乙烯、透明树脂、环氧树脂、酚醛树脂、不饱和聚酯树脂、醋酸纤维素、硝酸纤维素和乙烯-醋酸乙烯共聚物中的一种或多种。
本申请第二方面提供了一种液滴的操控方法,包括:
提供光源和如第一方面所述的微流控芯片,所述微流控芯片的液滴通道中含有液滴,利用所述光源在所述液滴通道形成光照位点,所述液滴向所述光照位点运动;
或所述液滴的操控方法包括:提供声源和如第一方面所述的微流控芯片,所述微流控芯片的液滴通道中含有液滴,利用所述声源在所述液滴通道形成声音刺激位点,所述液滴向所述声音刺激位点运动。
可选的,所述液滴的体积为1nL~100μL。
可选的,所述液滴的表面张力为10mN·m -1~100mN·m -1
可选的,所述液滴包括水滴、有机物液滴、无机物溶液液滴、微纳米颗粒悬浮液液滴、生物组织液液滴中的任意一种。
可选的,有机物液滴包括乙醇、丙酮、氯仿、四氢呋喃、二甲基亚砜、二甲基甲酰胺、正己烷、硅油、氟油、葵花籽油、橄榄油、正十六烷、庚烷、辛烷、乙酸、甲苯、乙醚、乙酸乙酯、丁醇、乙二醇、异丙醇和丙三醇中的一种或多种。
可选的,所述无机物溶液液滴包括氯化钠、氯化钙、硫酸铜、氯化镁、硫酸镁、氢氧化钠、盐酸和氢氧化钾中的一种或多种。
可选的,所述微纳米颗粒悬浮液液滴包括聚苯乙烯小球、二氧化硅小球和金颗粒中的一种或多种。
可选的,所述生物组织液液滴包括血液、血清、含细胞组织液和含细胞培养液中的一种或多种。
可选的,所述光源的波长为150nm-4000nm。
可选的,光源的光照强度为1mW-20000mW。
可选的,所述声源包括超声波,所述超声波的超声功率为1W~1000W。
本申请第三方面提供了一种微流控芯片的制备方法,所述制备方法包括:
将压电材料与溶剂混合后得到混合液,将所述混合液固化后得到含有压电材料的基层,对所述含有压电材料的基层进行极化处理,得到光声响应层;
提供芯片通道层,将所述芯片通道层与所述光声响应层结合并进行封装,得到微流控芯片。
或所述制备方法包括:将压电材料与溶剂混合后得到混合液,将所述混合液固化后得到含有压电材料的基层,对所述含有压电材料的基层进行极化处理,得到第一芯片通道层,即得到微流控芯片。
或所述制备方法包括:提供芯片通道层,所述芯片通道层具有液滴通道,在所述液滴 通道表面涂覆压电材料,对所述压电材料进行极化处理,得到微流控芯片。
可选的,所述极化处理包括辐照处理、电处理、磁处理、外力处理中的一种或多种。
可选的,所述外力处理包括压力、拉力、挠曲力和超声波中的一种或多种。
可选的,所述制备方法还包括:采用润滑剂浸润所述芯片通道层的液滴通道,在所述液滴通道表面形成润滑层。
可选的,所述芯片通道层和所述光声响应层的结合方式包括氧等离子体表面处理、氯仿粘接、双面胶粘接中的一种或多种。
本申请第四方面提供了如第一方面所述微流控芯片在微流控芯片控制系统生物检测和化学检测中的应用。
附图说明
图1为本申请一实施例提供的微流控芯片的结构示意图;
图2为本申请一实施例提供的微流控芯片的爆炸图;
图3为本申请一实施例提供的微流控芯片的爆炸图;
图4为本申请一实施例提供的第二芯片通道层的平面示意图;
图5为本申请一实施例提供的微流控芯片的结构示意图;
图6为本申请一实施例提供的微流控芯片的结构示意图;
图7为本申请一实施例提供的微流控芯片的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
液滴微流控芯片目前已应用在化学反应、纳米颗粒和生物材料的合成、细胞分选和分析、酶分析以及药物筛选等领域。目前现有的液滴操控方式相对复杂,多依赖精密的泵阀操作,发展简单高效且精确的液滴操控技术是液滴微流控芯片广泛应用的前提和关键。为实现简便且能够长距离高速度的操纵液滴,本申请提供了一种微流控芯片,该微流控芯片在光照下能够产生电场梯度并引发液滴的运动,通过设定光照位点即可使液滴发生定向移动,实现对液滴的灵活控制。
请参阅图1,图1为本申请一实施例提供的微流控芯片的结构示意图,其中,微流控芯片包括第一芯片通道层11,第一芯片通道层具有第一液滴通道,第一芯片通道层包括压电材料。本申请一些实施方式中,第一芯片通道层的材料包括压电材料。本申请一些实施方式中,压电材料覆在第一芯片通道层的第一液滴通道的表面。
请参阅图2,图2为本申请一实施例提供的微流控芯片的爆炸图,其中,微流控芯片包括第二芯片通道层20和设置在第二芯片通道层20表面的光声响应层10,光声响应层包 括压电材料,第二芯片通道层20靠近光声响应层10的一侧表面具有孔道结构a,孔道结构a与光声响应层10结合形成第二液滴通道,即第二液滴通道是由芯片通道层和光声响应层共同构成。请参阅图3,图3为本申请一实施例提供的微流控芯片的爆炸图,其中,微流控芯片包括依次设置的芯片盖板30、第二芯片通道层20、光声响应层10和芯片底板40,其中,芯片盖板30设有A通孔和B通孔,A通孔和B通孔与第二芯片通道层20的孔道结构相连通,即A通孔和B通孔在芯片通道层的投影落在孔道结构中,在微流控芯片的实际应用中,液滴或润滑剂可由A通孔或B通孔注入第二芯片通道层20中。
本申请实施方式中,微流控芯片包括压电材料,压电材料经极化后材料中的偶极子发生有序排列,使液滴通道中的液滴发生正负电荷分离;对光声响应层或液滴通道进行光照时,压电材料在光照下发生温变,随之产生电场梯度,液滴在静电力的驱动下进行运动;或者对光声响应层或液滴通道进行声音刺激时,压电材料在声音刺激下产生温变和声-电转换,随之产生电场梯度,液滴在静电力的驱动下进行运动,因此通过设置光照位点或声音刺激位点即可使液滴定向移动。本申请一些实施方式中,采用激光笔照射液滴通道,液滴可跟随光照位点进行移动,并且光的波长越大、光照强度越高,液滴的移动速度越快。本申请一些实施方式中,采用超声探头靠近液滴通道,液滴可跟随声音刺激位点进行移动,并且超声波的功率越大,液滴的移动速度越快。
本申请实施方式中,对压电材料进行极化处理的方式包括辐照处理、电处理、磁处理和外力处理中的一种或多种。本申请实施方式中,压电材料的压电系数大于或等于1pC·N -1,其中,压电系数的符号为d 33,即d 33≥1pC·N -1。压电材料的压电系数越大,则液滴受到的静电力越大,液滴的移动速度越快,越有利于高效地操控液滴。本申请实施方式中,压电材料包括有机压电材料和无机压电材料中的一种或多种,有机压电材料的压电系数大于或等于10pC·N -1,有机压电材料的热释电系数具体可以但不限于为10pC·N -1、15pC·N -1、17pC·N -1、20pC·N -1、25pC·N -1、40pC·N -1或50pC·N -1。本申请一些实施方式中,无机压电材料的压电系数大于或等于30pC·N -1,无机压电材料的压电系数具体可以但不限于为30pC·N -1、50pC·N -1、80pC·N -1、100pC·N -1、150pC·N -1、200pC·N -1、300pC·N -1、500pC·N -1或700pC·N -1
本申请一些实施方式中,有机压电材料包括聚偏氟乙烯、聚偏氟乙烯共聚物、聚四氟乙烯、碳原子数为奇数的尼龙、聚丙烯腈、聚酰亚胺、聚亚乙烯基二氰、聚脲、聚苯基氰基醚、聚氯乙烯、聚醋酸乙烯、聚丙烯、聚丙烯酰胺、铁电液晶及上述的共聚物中的一种或多种。本申请一些实施方式中,聚偏氟乙烯共聚物包括聚偏氟乙烯-三氟乙烯共聚物、聚偏氟乙烯-四氟乙烯共聚物、聚偏氟乙烯-三氟乙烯-三氟氯乙烯共聚物和聚偏氟乙烯-三氟乙烯-氯氟乙烯共聚物中的一种或多种。
本申请一些实施方式中,无机压电材料包括钛酸铅、钛酸钡、铌酸钾、铌酸锂、钽酸锂、钛酸铋、铋层状钙钛矿结构铁电体、钨青铜型铁电体、铁酸铋、磷酸二氢钾、硫酸三甘酸氨、罗息盐、钙钛矿型有机金属卤化物铁电体及上述的掺杂化合物中的一种或多种。本申请实施方式中,无机压电材料的粒径为1nm-100μm。无机压电材料的粒径具体可以但不限于为1nm、10nm、50nm、100nm、500nm、1μm、10μm或100μm。
本申请一些实施方式中,压电材料包括热释电材料,热释电材料的热释电系数大于等 于1μC·m -2·K -1,其中,热释电系数的符号为p,即p≥1μC·m -2·K -1。热释电材料在光照下会发生温变,随之产生电场梯度,液滴在静电力的驱动下进行运动,因此通过设置光照位点即可使液滴定向移动。本申请一些实施方式中,热释电材料包括有机热释电材料和无机热释电材料中的一种或多种,有机热释电材料的热释电系数大于或等于10μC·m -2·K -1,有机热释电材料的热释电系数具体可以但不限于为10μC·m -2·K -1、15μC·m -2·K -1、17μC·m -2·K -1、20μC·m -2·K -1、25μC·m -2·K -1、40μC·m -2·K -1或50μC·m -2·K -1。本申请一些实施方式中,无机热释电材料的热释电系数大于或等于30μC·m -2·K -1,无机热释电材料的热释电系数具体可以但不限于为30μC·m -2·K -1、50μC·m -2·K -1、80μC·m -2·K -1、100μC·m -2·K -1、150μC·m -2·K -1、200μC·m -2·K -1、300μC·m -2·K -1、500μC·m -2·K -1或700μC·m -2·K -1
本申请一些实施方式中,微流控芯片还包括光热材料,光热材料可以是在第一芯片通道层中,也可以是在光声响应层中,例如热释电材料位于第一芯片通道层时,光热材料也位于第一芯片通道层,热释电材料位于光声响应层时,光热材料也位于光声响应层。在微流控芯片中添加光热材料可以提高光热转换的效率,使光能更加高效地转化为热能、激发热释电材料产生电场梯度,从而提高电场强度,增强液滴所受的静电力,使液滴能够对光照作出快速的响应。本申请一些实施方式中,光热材料的光热转换率为0.1%~99.99%。本申请一些实施方式中,光热材料包括金属光热纳米材料、氧化物光热纳米材料、碳纳米材料、高分子聚合物材料和半导体纳米材料中的一种或多种。本申请一些实施方式中,金属光热纳米材料包括金纳米材料和钯纳米材料中的一种或多种。本申请一些实施方式中,金纳米材料包括金纳米棒、金纳米壳、金纳米笼和空心金纳米球中的一种或多种。本申请一些实施方式中,钯纳米材料包括钯纳米片、钯纳米壳、钯@银和钯@二氧化硅中的一种或多种,其中,钯@银表示银包覆钯的核壳纳米材料,钯@二氧化硅表示二氧化硅包覆钯的核壳纳米材料。在一些实施例中,光声响应层包括聚偏氟乙烯共聚物和聚多巴胺;在一些实施例中,光声响应层包括聚偏氟乙烯共聚物和金纳米材料。
本申请中,当微流控芯片包括光热材料时,热释电材料与光热材料的质量比为100:0~50:50(不包括100:0)。热释电材料与光热材料的质量比具体可以但不限于为100:1、95:5、90:10、80:20、75:25或70:30。在上述质量比范围内,光热材料可以与压电材料实现良好的配合作用,保证光照能够有效地控制液滴。
本申请实施方式中,芯片通道层是由透明的材料制得。本申请一些实施方式中,芯片通道层的材料包括无机玻璃、透明陶瓷、透明木材、有机玻璃、聚氯乙烯、聚苯乙烯、聚碳酸脂、聚醚砜、聚丙烯、聚酰胺、聚氨酯、聚酰亚胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯、苯乙烯-丙烯腈共聚物、苯乙烯-甲基丙烯酸甲酯共聚物、丙烯腈-丁二烯-苯乙烯共聚物、甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物、双烯丙基二甘醇碳酸酯聚合物、聚甲基-1-戊烯、聚四氟乙烯、聚偏氟乙烯、透明树脂、环氧树脂、酚醛树脂、不饱和聚酯树脂、醋酸纤维素、硝酸纤维素和乙烯-醋酸乙烯共聚物中的一种或多种。
请参阅图4,图4为本申请一实施例提供的第二芯片通道层的平面示意图,其中,第二芯片通道层20靠近光声响应层的一侧表面具有孔道结构,孔道结构与光声响应层结合形成封闭的通道,即液滴通道21。本申请中,液滴通道的形状和位置可根据应用需要进行设置,此处不作限定。本申请一些实施方式中,芯片通道层的孔道结构是由光刻微加工、机 械加工、激光切割、模板覆型、3D打印中的一种或多种方法制备得到。
本申请一些实施方式中,液滴通道内填充有润滑剂,其中,润滑剂可以是完全填充也可以是部分填充,完全填充指的是润滑剂填满整个液滴通道,部分填充指的是润滑剂只在液滴通道表面形成润滑层。在液滴通道内填充润滑剂可以降低液滴在通道中运动的阻力,从而提高液滴的运动速度。本申请一些实施例中,在液滴通道内填充润滑剂还能够提高液滴通道的生物相容性,保证微流控芯片中反应的稳定进行。
请参阅图5,图5为本申请一实施例提供的微流控芯片的结构示意图,图5中,润滑剂在液滴通道21的表面形成润滑层22。本申请一些实施方式中,润滑层的厚度为1nm-100μm。由于润滑层对液体速率的提升效果有限,且润滑层的稳定性较差,不易固定在液滴通道中,本申请一些实施例中,润滑剂完全填充液滴通道,液滴通道灌满润滑剂时,液滴浸泡在润滑剂中进行运动,从而大大降低液滴的运动阻力,需要注意的是,液滴与润滑剂并不相容,故液滴能够在光的操控下进行运动。请参阅图6,图6为本申请一实施例提供的微流控芯片的结构示意图,图6中,润滑剂完全填充微流控芯片的液滴通道21。
请参阅图7,图7为本申请一实施例提供的微流控芯片的结构示意图,图7中,润滑剂完全填充液滴通道21,液滴漂浮在润滑剂中,对微流控芯片进行光照即可使液滴向光照位点定向移动。
本申请一些实施方式中,润滑剂包括植物油、乙二醇、聚乙二醇、全氟聚醚、矿物油、丙三醇、石蜡、正十二烷、正十二烯、十六烯、长链润滑剂、聚氨酯、丙烯酸聚氨酯、氟油、蔬菜籽油、正癸醇、电动机润滑油、煤油、油酸、油酸甲酯、油酸乙酯、脂肪酸酰胺、硬脂酸、硬脂酰胺、N,N-亚乙基双硬脂酸酰胺、油酸酰胺、硬脂酸丁酯、甘油三羟基硬脂酸酯、聚酯、合成酯、羧酸、硅酸酯、磷酸酯、合成烃油、铁磁流体、热致液晶、离子液体、碘乙酸、甘露醇、二十碳五烯酸、褐藻胶、海藻酸、粘多糖、透明质酸、胶原蛋白、弹力蛋白、尿囊素、葡萄糖醛酸、甘醇酸、骨胶原、蘑菇液、大黄素、海带粘液、蜗牛粘液和硅油中的一种或多种。
本申请提供的液滴微流控平台利用极化后的压电材料在光照下发生温变,随之产生电场梯度,或者极化后的压电材料在声音刺激下产生温变和声-电转换,随后诱发电场梯度,引发液滴在微流控芯片通道中的运动。极化后的压电材料可快速产生电场,引发液滴快速长距离的运动,并且压电材料对光的响应波长宽,所需光照能量密度广,因此通过便携式激光笔也可以实现操控,无需复杂的泵阀结构,从而大大拓展了当前液滴微流控平台的应用范围,降低液滴微流控平台的制作成本和应用难度。
本申请还提供了一种液滴的操控方法,在一些实施例中,液滴的操控方法包括:向微流控芯片的液滴通道注入液滴,对液滴通道进行照射形成光照位点,液滴向光照位点发生移动。在一些实施例中,液滴的操控方法包括:向微流控芯片的液滴通道注入液滴,采用超声探头在液滴通道中形成声音刺激位点,液滴向声音刺激位点发生移动。本申请中,对微流控芯片进行照射或声音刺激时,光照位点处或声音刺激位点的温度较高,压电材料产生高强度的中心电场,液滴受静电力的作用向刺激位点处运动,刺激位点与液滴的距离越近则液滴的移动速度越快,通过设定光源或声源的运动轨迹即可使液滴顺着光或声的运动路径进行移动,从而实现对液滴的无接触操控。
本申请一些实施方式中,对微流控芯片进行照射所用光源的波长为150nm-4000nm。本申请一些实施方式中,对微流控芯片进行照射所用光源的波长为500nm-980nm。本申请一些实施方式中,光源的光照强度为1mW-20000mW,光源的光照强度具体可以但不限于为1mW、10mW、100mW、1000mW、5000mW、10000mW或20000mW。本申请一些实施方式中,对微流控芯片进行声音刺激所用的声源为超声波,超声波的功率为1W-1000W,超声波的功率具体可以但不限于为1W、10W、30W、100W、200W、500W或1000W。
本申请一些实施方式中,液滴通道内液滴的体积为1nL~100μL,液滴的体积具体可以但不限于为1nL、10nL、100nL、1μL、10μL或100μL,上述体积的液滴易于控制,在微流控芯片与光的作用下可以实现灵活、快速的运动。本申请一些实施方式中,液滴的表面张力为10mN·m -1~100mN·m -1。本申请一些实施方式中,液滴包括水滴、有机物液滴、无机物溶液液滴、微纳米颗粒悬浮液液滴、生物组织液液滴中的任意一种,其中,有机物液滴可以是有机溶剂液滴。本申请一些实施方式中,有机物液滴包括乙醇、丙酮、氯仿、四氢呋喃、二甲基亚砜、二甲基甲酰胺、正己烷、硅油、氟油、葵花籽油、橄榄油、正十六烷、庚烷、辛烷、乙酸、甲苯、乙醚、乙酸乙酯、丁醇、乙二醇、异丙醇和丙三醇中的一种或多种;无机物溶液液滴中,无机物溶液的溶质包括氯化钠、氯化钙、硫酸铜、氯化镁、硫酸镁、氢氧化钠、盐酸和氢氧化钾中的一种或多种;微纳米颗粒悬浮液液滴中的微纳米颗粒包括聚苯乙烯小球、二氧化硅小球和金颗粒中的一种或多种;生物组织液液滴包括血液、血清、含细胞组织液和含细胞培养液中的一种或多种。本申请提供的液滴的操控方法适用于多种液滴,并且操纵装置简便、具有优异的时空分辨率,有利于其在数字化光操控微流控系统、生物和化学检测、分子生物学和分析化学中的应用。
本申请还提供了一种微流控芯片的制备方法,在一些实施例中,微流控芯片的制备方法包括:
步骤100:将压电材料与溶剂混合后得到混合液,将混合液固化后得到含有压电材料的基层,对含有压电材料的基层进行极化处理,得到光声响应层;
步骤200:提供芯片通道层,将芯片通道层与光声响应层结合并进行封装,得到微流控芯片。
本申请步骤100中,压电材料包括有机压电材料和无机压电材料中的一种或多种。本申请实施方式中,溶剂包括乙二醇甲醚、冰醋酸、二甲基亚砜、N,N-二甲基甲酰胺丙酮、磷酸三甲酯、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、丙二醇、N-甲基吡咯烷酮、四氢呋喃、四甲基脲、六甲基磷酸酰胺和六氟异丙醇中一种或多种。本申请一些实施方式中,混合液中压电材料的质量浓度为1%-50%。压电材料的质量浓度具体可以但不限于为1%、5%、10%、20%、30%、40%或50%。本申请一些实施方式中,混合液的固化包括:在基底上流延或旋涂混合液,经干燥退火得到含有压电材料的基层,再对含有压电材料的基层进行极化得到光声响应层,其中,基底可以是平面基底也可是带微结构的基底。本申请一些实施方式中,混合液还包括光热材料,光声响应层的制备可以是将压电材料与光热材料分散在溶剂得到混合液,再将混合液经流延或旋涂得到含有压电材料的基层,再进行极化得到光声响应层。
在一些实施例中,微流控芯片的制备方法包括:
步骤100:将压电材料压制成膜,再进行极化得到光声响应层。
步骤200:提供芯片通道层,将芯片通道层与光声响应层结合并进行封装,得到微流控芯片。
本申请一些实施方式中,极化处理包括辐照处理、电处理、磁处理、外力处理中的一种或多种,其中,外力处理包括压力、拉力、挠曲力和超声波中的一种或多种。
本申请步骤200中,芯片通道层的表面具有孔道结构,将芯片通道层与光声响应层结合并进行封装即得到液滴通道,孔道结构可以通过光刻微加工、机械加工、激光切割、模板覆型和3D打印中的一种或多种方法制备得到。本申请一些实施方式中,将芯片通道层和光声响应层结合可以采用氧等离子体表面处理、氯仿粘接或双面胶粘接中的一种或多种方法。本申请一些实施方式中,微流控芯片的制备方法还包括:采用润滑剂灌注芯片通道层的液滴通道,在液滴通道内填充润滑剂。本申请中,润滑剂与液滴互不相容。本申请一些实施方式中,润滑剂包括全氟油、植物油、蔬菜籽油、正癸醇、乙二醇、电动机润滑油、煤油、矿物油、油酸、油酸甲酯、油酸乙酯、铁磁流体、石蜡、热致液晶、离子液体、硅油中的一种或多种。
在一些实施例中,微流控芯片的制备方法包括:
将压电材料与溶剂混合后得到混合液,将混合液固化后得到含有压电材料的基层,对含有压电材料的基层进行极化处理,得到第一芯片通道层,即得到微流控芯片。
在一些实施例中,微流控芯片的制备方法包括:
提供芯片通道层,芯片通道层具有液滴通道,在液滴通道表面涂覆压电材料,对压电材料进行极化处理,得到微流控芯片。
本申请提供的微流控芯片的制备方法操作简单、工艺可控、适用于工业化生产。
下面分多个实施例对本申请实施方式进行进一步的说明。
实施例1
一种微流控芯片,包括芯片通道层和光声响应层,光声响应层中的热释电材料为聚偏氟乙烯(PVDF),聚偏氟乙烯的热释电系数p为20μC·m -2·K -1
上述微流控芯片制备方法,包括:
1)制备光声响应层:将10wt%的PVDF溶解于N,N-二甲基甲酰胺中,将溶液流延于玻璃基底表面,烘干后从玻璃基底上取下膜,膜厚100μm,对膜进行3倍伸长率拉伸以实现极化,得到热释电系数p为20μC·m -2·K -1的PVDF膜,对膜进行裁剪,得到面积为15*35mm的PVDF膜,即光声响应层。
2)制备微流控芯片:取长20mm,宽40mm,高2mm的玻璃,采用光刻微加工的方法得到1mm宽,1mm高的孔道结构,形成芯片通道层。
取相同大小的无结构玻璃,将PVDF膜夹在无结构玻璃和芯片通道层之间,通过氧等离子体表面处理使各层之间结合,孔道结构与PVDF膜形成液滴通道,在液滴通道中灌注全氟油,得到微流控芯片。
实施例2
一种微流控芯片,包括芯片通道层和光声响应层,光声响应层中的热释电材料为钛酸铅,钛酸铅的热释电系数p为100μC·m -2·K -1
上述微流控芯片制备方法,包括:
1)制备光声响应层:将醋酸铅、钛酸四丁酯溶于乙二醇甲醚与冰醋酸体积比为1:1的混合溶剂中,得到2.5wt%的钛酸铅溶胶,采用匀胶机按照3000rpm,5min的参数将钛酸铅溶胶旋涂在硅基底上,重复旋涂10次,750℃退火得到钛酸铅膜,钛酸铅膜的厚度为500nm;对钛酸铅膜进行5kV直流高压电处理以实现极化,得到热释电系数p为100μC·m -2·K -1的钛酸铅膜,对带有硅基底的钛酸铅膜进行切割,得到面积为20*40mm的带有硅基底的钛酸铅膜。
2)制备微流控芯片:取长20mm,宽40mm,高2mm的有机玻璃,采用机械加工的方法得到1mm宽,1mm高的孔道结构,形成芯片通道层。
采用双面胶将带有硅基底的钛酸铅膜与芯片通道层结合,其中钛酸铅膜夹在芯片通道层与硅基底之间,孔道结构与钛酸铅膜形成液滴通道,在液滴通道中灌注植物油,得到微流控芯片。
实施例3
一种微流控芯片,包括芯片通道层和光声响应层,光声响应层中的热释电材料为钛酸钡陶瓷,钛酸钡陶瓷的热释电系数p为50μC·m -2·K -1
上述微流控芯片制备方法,包括:
1)制备光声响应层:将95wt%钛酸钡纳米颗粒和5wt%粘结剂聚乙烯吡咯烷酮(PVP)球磨混合均匀后,采用300MPa压力压制成陶瓷片,钛酸钡陶瓷的厚度为1mm;对钛酸钡陶瓷进行15kV直流高压电处理以实现极化,得到热释电系数p为50μC·m -2·K -1的钛酸钡陶瓷,对钛酸钡陶瓷进行切割,得到面积为20*40mm的钛酸钡陶瓷。
2)制备微流控芯片:取长20mm,宽40mm,高2mm的有机玻璃,采用机械加工的方法得到2mm宽,2mm高的孔道结构,形成芯片通道层。
采用双面胶将钛酸钡陶瓷与芯片通道层结合,孔道结构与钛酸钡陶瓷形成液滴通道,在液滴通道中灌注正癸醇,得到微流控芯片。
实施例4
一种微流控芯片,包括芯片通道层和光声响应层,光声响应层中的热释电材料包括聚偏氟乙烯和铁酸铋的复合材料,复合材料的热释电系数p为1μC·m -2·K -1
上述微流控芯片制备方法,包括:
1)制备光声响应层:将10wt%的聚偏氟乙烯溶解于N,N-二甲基甲酰胺中,将5wt%的铁酸铋纳米粉体分散在聚偏氟乙烯溶液中,将混合溶液流延于的玻璃基底上,烘干后从玻璃基底上取下膜,聚偏氟乙烯-铁酸铋复合材料膜的厚度为100μm;对复合材料膜进行20kV直流高压电晕处理以实现极化,得到热释电系数p为15μC·m -2·K -1的聚偏氟乙烯-铁酸铋复合材料膜,对复合材料膜进行切割,得到面积为15*35mm的光声响应层。
2)制备微流控芯片:取长20mm,宽40mm,高3mm的聚碳酸酯,采用机械加工的方法得到2mm宽,2mm高的孔道结构,形成芯片通道层。
取相同大小的无结构聚碳酸酯,将光声响应层夹在无结构聚碳酸酯和芯片通道层之间,用双面胶将各层粘合,孔道结构与光声响应层形成液滴通道,在液滴通道中灌注乙二醇,得到微流控芯片。
实施例5
一种微流控芯片,包括芯片通道层和光声响应层,光声响应层包括热释电材料聚偏氟乙烯和光热材料金纳米棒,聚偏氟乙烯的热释电系数p为15μC·m -2·K -1
上述微流控芯片制备方法,包括:
1)制备光声响应层:将10wt%的PVDF溶解于N,N-二甲基甲酰胺中,将0.5wt%金纳米棒分散在PVDF溶液中,将混合溶液流延于玻璃基底表面,烘干后从玻璃基底上取下复合膜,复合膜的厚度为100μm;对复合膜进行15kV直流高压电晕处理以实现极化,得到热释电系数p为15μC·m -2·K -1的聚偏氟乙烯-金纳米棒复合膜,对复合膜进行切割,得到面积为15*35mm的光声响应层。
2)制备微流控芯片:取长20mm,宽40mm,高2mm的聚醚砜板,采用模板覆型法得到1mm宽,1mm高的孔道结构,形成芯片通道层。
取相同大小的无结构聚醚砜板,将光声响应层夹在无结构聚醚砜板和芯片通道层之间,用双面胶将各层粘合,孔道结构与光声响应层形成液滴通道,在液滴通道中灌注硅油,得到微流控芯片。
实施例6
一种微流控芯片,包括芯片通道层和光声响应层,光声响应层包括热释电材料聚偏氟乙烯-三氟乙烯共聚物(PVDF-TrFE)、钛酸钡和光热材料聚多巴胺,热释电材料的热释电系数p为20μC·m -2·K -1
上述微流控芯片制备方法,包括:
1)制备光声响应层:将10wt%的PVDF-TrFE溶解于N,N-二甲基甲酰胺中,将5wt%聚多巴胺包覆的钛酸钡纳米粉体分散在PVDF-TrFE溶液中,将混合溶液流延于玻璃基底上,烘干后从玻璃基底上取下复合膜,复合膜的厚度为100μm;对复合膜进行15kV直流高压电处理电晕处理以实现极化,得到热释电系数p为20μC·m -2·K -1的PVDF-TrFE/聚多巴胺@钛酸钡复合膜,对复合膜进行切割,得到面积为15*35mm的光声响应层。
2)制备微流控芯片:取长20mm,宽40mm,高2mm的聚醚砜板,采用3D打印法得到1mm宽,1mm高的孔道结构,形成芯片通道层。
取相同大小的无结构聚醚砜板,将光声响应层夹在无结构聚醚砜板和芯片通道层之间,用双面胶将各层粘合,孔道结构与光声响应层形成液滴通道,在液滴通道中灌注硅油,得到微流控芯片。
实施例7
一种微流控芯片,包括芯片通道层和光声响应层,光声响应层包括热释电材料聚偏氟乙烯-三氟乙烯共聚物(PVDF-TrFE)和聚丙烯腈,热释电材料的热释电系数p为15μC·m -2·K -1
上述微流控芯片制备方法,包括:
1)制备光声响应层:将10wt%的PVDF-TrFE和5wt%聚丙烯腈溶解于N,N-二甲基甲酰胺中,将混合溶液至于容器中,通过溶剂置换,得到复合膜,复合膜的厚度为100μm;对复合膜进行15kV直流高压电晕处理以实现极化,得到热释电系数p为15μC·m -2·K -1的PVDF-TrFE/聚丙烯腈复合膜,对复合膜进行切割,得到面积为15*35mm的光声响应层。
2)制备微流控芯片:取长20mm,宽40mm,高2mm的聚醚砜板,采用机械加工法得 到1mm宽,1mm高的孔道结构,形成芯片通道层。
取相同大小的无结构聚醚砜板,将光声响应层夹在无结构聚醚砜板和芯片通道层之间,用双面胶将各层粘合,孔道结构与光声响应层形成液滴通道,在液滴通道中灌注硅油,得到微流控芯片。
实施例8
一种微流控芯片,包括芯片通道层和光声响应层,光声响应层包括热释电材料钛酸铅和铁酸铋,热释电材料的热释电系数p为500μC·m -2·K -1
上述微流控芯片制备方法,包括:
1)制备光声响应层:将醋酸铅,钛酸四丁酯,硝酸铁,醋酸铋溶于乙二醇甲醚与冰醋酸体积比为1:1的混合溶剂中,分别得到2.5wt%的钛酸铅和2.5wt%铁酸铋的混合溶胶,采用匀胶机以3000rpm,5min旋涂溶胶在硅基底上,重复旋涂10次,750℃退火得到钛酸铅-铁酸铋复合膜,复合膜的厚度为500nm;对复合膜进行5kV直流高压电处理以实现极化,得到热释电系数p为500μC·m -2·K -1的钛酸铅-铁酸铋复合膜,对复合膜进行切割,得到面积为15*35mm的光声响应层。
2)制备微流控芯片:取长20mm,宽40mm,高2mm的有机玻璃,采用机械加工法得到1mm宽,1mm高的孔道结构,形成芯片通道层。
通过双面胶将带有硅基底的钛酸铅-铁酸铋复合膜与芯片通道层粘合,其中,钛酸铅-铁酸铋复合膜位于硅基底和芯片通道层之间,孔道结构与钛酸铅-铁酸铋复合膜形成液滴通道,在液滴通道中灌注植物油,得到微流控芯片。
实施例9
一种微流控芯片,包括芯片通道层,芯片通道层中的热释电材料为聚偏氟乙烯(PVDF),聚偏氟乙烯的热释电系数p为20μC·m -2·K -1
上述微流控芯片制备方法,包括:
将10wt%的PVDF溶解于N,N-二甲基甲酰胺中,将溶液流延于PMMA芯片模具中,模具有1mm宽,1mm高的孔道结构,烘干后从模具取下带孔道结构的膜,对膜进行电晕极化,取长20mm,宽40mm,高2mm的玻璃,与带孔道结构的膜粘合形成芯片通道层,在液滴通道中灌注全氟油,得到微流控芯片。
实施例10
一种微流控芯片,包括芯片通道层,芯片通道层中的热释电材料为钛酸钡,钛酸钡的热释电系数p为50μC·m -2·K -1
上述微流控芯片制备方法,包括:
将钛酸钡单晶采用光刻微加工的方法得到1mm宽,1mm高的孔道结构,取长20mm,宽40mm,高2mm的玻璃,与钛酸钡单晶形成芯片通道层,在液滴通道中灌注全氟油,得到微流控芯片。
实施例11
一种微流控芯片,包括芯片通道层,芯片通道层包括热释电材料钛酸钡粉体和光热材料聚多巴胺,热释电材料的热释电系数p为20μC·m -2·K -1
取长20mm,宽40mm,高2mm的聚醚砜板,采用3D打印法得到1mm宽,1mm高 的孔道结构,在通道层内壁喷涂钛酸钡粉体和聚多巴胺的混合粉体,然后进行电晕极化,取相同大小的无结构聚醚砜板,采用双面胶将具有孔道结构的聚醚砜板与无结构聚醚砜板粘合形成液滴通道,得到芯片通道层,在液滴通道中灌注硅油,得到微流控芯片。
实施例12
一种微流控芯片,包括芯片通道层和光声响应层,光声响应层包括压电材料聚偏氟乙烯,聚偏氟乙烯的压电系数为25pC·N -1
上述微流控芯片制备方法,包括:
1)制备光声响应层:将10wt%的PVDF溶解于N,N-二甲基甲酰胺中,将溶液流延于玻璃基底表面,烘干后从玻璃基底上取下膜,膜的厚度为100μm;对膜进行15kV直流高压电晕处理以实现极化,得到压电系数为25pC·N -1的聚偏氟乙烯复合膜,对膜进行切割,得到面积为15*35mm的光声响应层。
2)制备微流控芯片:取长20mm,宽40mm,高2mm的聚醚砜板,采用模板覆型法得到1mm宽,1mm高的孔道结构,形成芯片通道层。
取相同大小的无结构聚醚砜板,将光声响应层夹在无结构聚醚砜板和芯片通道层之间,用双面胶将各层粘合,孔道结构与光声响应层形成液滴通道,在液滴通道中灌注硅油,得到微流控芯片。
实施例13
一种微流控芯片,包括芯片通道层,芯片通道层中的压电材料为聚偏氟乙烯(PVDF),聚偏氟乙烯的压电系数为25pC·N -1
上述微流控芯片制备方法,包括:
将10wt%的PVDF溶解于N,N-二甲基甲酰胺中,将溶液流延于PMMA芯片模具中,模具有1mm宽,1mm高的孔道结构,烘干后从模具取下带孔道结构的膜,对膜进行电晕极化,取长20mm,宽40mm,高2mm的玻璃,与带孔道结构的膜粘合形成芯片通道层,在液滴通道中灌注全氟油,得到微流控芯片。
实施例14
一种微流控芯片,包括芯片通道层和光声响应层,光声响应层中的压电材料为钛酸钡陶瓷,钛酸钡陶瓷的压电系数p为50pC·N -1
上述微流控芯片制备方法,包括:
1)制备光声响应层:将95wt%钛酸钡纳米颗粒和5wt%粘结剂聚乙烯吡咯烷酮(PVP)球磨混合均匀后,采用300MPa压力压制成陶瓷片,钛酸钡陶瓷的厚度为1mm;对钛酸钡陶瓷进行15kV直流高压电处理以实现极化,得到压电系数p为50pC·N -1的钛酸钡陶瓷,对钛酸钡陶瓷进行切割,得到面积为20*40mm的钛酸钡陶瓷。
2)制备微流控芯片:取长20mm,宽40mm,高2mm的有机玻璃,采用机械加工的方法得到2mm宽,2mm高的孔道结构,形成芯片通道层。
采用双面胶将钛酸钡陶瓷与芯片通道层结合,孔道结构与钛酸钡陶瓷形成液滴通道,在液滴通道中灌注正癸醇,得到微流控芯片。
对比例1
一种液滴微流控平台的制备方法,包括:
将10wt%的聚偏氟乙烯-三氟乙烯共聚物(PVDF-TrFE)溶解于N,N-二甲基甲酰胺中,将5wt%聚多巴胺包覆的钛酸钡纳米粉体分散在PVDF-TrFE溶液中,将混合溶液流延于玻璃基底上,烘干后从玻璃基底上取下PVDF-TrFE/聚多巴胺@钛酸钡复合膜,复合膜的厚度为100μm,对复合膜进行裁切得到15*35mm大小的复合膜。
取长20mm,宽40mm,高2mm的聚醚砜板,采用3D打印法得到1mm宽,1mm高的孔道结构,形成芯片通道层。取相同大小的无结构聚醚砜板,将未经极化的复合膜夹在无结构聚醚砜板和芯片通道层之间,用双面胶将各层粘合,孔道结构与复合膜形成液滴通道,得到液滴微流控平台。
效果实施例
为验证本申请制得微流控芯片的性能,本申请还提供了效果实施例。
1)向实施例1-11的微流控芯片和对比例1的液滴微流控平台中注入液滴,并利用激光笔对液滴进行操控,光照位点在液滴边缘处,观察液滴的运动情况。以实施例1为例,实施例1的液滴为水滴,水滴的尺寸为1nL,光的波长λ为4000nm,光照强度为2000mW的激光笔对液滴通道进行照射,液滴在微流控芯片中运动速度为100mm/s。各实施例和对比例实验的具体参数请参阅表1。
2)向实施例12-14的微流控芯片和对比例1的液滴微流控平台中注入液滴,并利用超声探头对液滴进行操控,超声探头在芯片上1cm位置处,对准液滴边缘,观察液滴的运动情况。以实施例12为例,实施例12的液滴为水滴,水滴的尺寸为300nL,超声探头功率为60W,对通道内的液滴进行驱动,液滴在声操控液滴微流控芯片中运动速度为10mm/s。各实施例和对比例实验的具体参数请参阅表1。
表1 实施例1-14和对比例1的实验参数表
Figure PCTCN2022092667-appb-000001
Figure PCTCN2022092667-appb-000002
由表1可以看出,对比例1中液滴的运动速度远小于实施例6液滴的运动速度,对比例1液滴微流控平台和实施例6的微流控芯片结构相同,区别在于对比例1的复合膜未经极化,复合膜未经极化时光照无法产生电场梯度,即无法通过静电力驱动液滴运动。对比例1的液滴能够运动的原因是热效应驱动液滴运动,但由于液滴运动的粘滞阻力大,热效应的驱动力有限,对比例1的液滴运动速度很慢且运动距离短。而采用声音对对比例2的液滴微流控平台进行刺激时,液滴的运动速度远小于实施例14液滴的运动速度,对比例2液滴微流控平台和实施例14的微流控芯片结构相同,区别在于对比例2的复合膜未经极化,复合膜未经极化时声音刺激无法产生电场梯度,即无法通过静电力驱动液滴运动。对比例2的液滴能够运动的原因是超声产生的热效应驱动液滴运动,但由于液滴运动的粘滞阻力大,热效应的驱动力有限,对比例2的液滴运动速度很慢且运动距离短。由实验可以看出,本申请的微流控芯片可以高效地利用光驱动液滴,实现液滴快速的运动,并且该方法适用于不同种类的液滴,通过调节光的波长、光照强度和压电材料的极化强度即能够改变液滴的运动速度。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种微流控芯片,其特征在于,所述微流控芯片包括第一芯片通道层,所述第一芯片通道层包括压电材料,所述第一芯片通道层具有第一液滴通道;
    或所述微流控芯片包括第二芯片通道层和设置在所述第二芯片通道层表面的光声响应层,所述光声响应层包括压电材料,所述第二芯片通道层靠近所述光声响应层的一侧表面具有孔道结构,所述孔道结构与所述光声响应层结合形成第二液滴通道;所述压电材料的压电系数大于或等于1pC·N -1
  2. 如权利要求1所述的微流控芯片,其特征在于,所述第一芯片通道层的材料包括压电材料。
  3. 如权利要求1所述的微流控芯片,其特征在于,所述第一液滴通道的表面覆有压电材料。
  4. 如权利要求1-3任一项所述的微流控芯片,其特征在于,所述压电材料包括有机压电材料和无机压电材料中的一种或多种;所述有机压电材料的压电系数大于或等于10pC·N -1;所述无机压电材料的压电系数大于或等于30pC·N -1
  5. 如权利要求4所述的微流控芯片,其特征在于,所述有机压电材料包括聚偏氟乙烯、聚偏氟乙烯共聚物、聚四氟乙烯、碳原子数为奇数的尼龙、聚丙烯腈、聚酰亚胺、聚亚乙烯基二氰、聚脲、聚苯基氰基醚、聚氯乙烯、聚醋酸乙烯、聚丙烯、聚丙烯酰胺、铁电液晶中的一种或多种。
  6. 如权利要求4所述的微流控芯片,其特征在于,所述无机压电材料包括钛酸铅、钛酸钡、铌酸钾、铌酸锂、钽酸锂、钛酸铋、铋层状钙钛矿结构铁电体、钨青铜型铁电体、铁酸铋、磷酸二氢钾、硫酸三甘酸氨、罗息盐、钙钛矿型有机金属卤化物铁电体及上述的掺杂化合物中的一种或多种。
  7. 如权利要求1-3任一项所述的微流控芯片,其特征在于,所述压电材料包括热释电材料,所述热释电材料包括有机热释电材料和无机热释电材料中的一种或多种;所述有机热释电材料的热释电系数大于或等于10μC·m -2·K -1;所述无机热释电材料的热释电系数大于或等于30μC·m -2·K -1
  8. 如权利要求7所述的微流控芯片,其特征在于,所述第一芯片通道层还包括光热材料,或所述光声响应层还包括光热材料;所述光热材料的光热转换率为0.1%~99.99%。
  9. 如权利要求8所述的微流控芯片,其特征在于,所述光热材料包括金属光热纳米材料、无机非金属光热纳米材料、高分子聚合物光热材料中的一种或多种。
  10. 如权利要求8或9所述的微流控芯片,其特征在于,所述热释电材料与所述光热材料的质量比大于或等于1。
  11. 如权利要求1-10任一项所述的微流控芯片,其特征在于,所述第一液滴通道内填充有润滑剂,或所述第二液滴通道内填充有润滑剂;所述润滑剂包括植物油、乙二醇、聚乙二醇、全氟聚醚、矿物油、丙三醇、石蜡、正十二烷、正十二烯、十六烯、长链润滑剂、聚氨酯、丙烯酸聚氨酯、氟油、蔬菜籽油、正癸醇、电动机润滑油、煤油、油酸、油酸甲酯、油酸乙酯、脂肪酸酰胺、硬脂酸、硬脂酰胺、N,N-亚乙基双硬脂酸酰胺、油酸酰胺、 硬脂酸丁酯、甘油三羟基硬脂酸酯、聚酯、合成酯、羧酸、硅酸酯、磷酸酯、合成烃油、铁磁流体、热致液晶、离子液体、碘乙酸、甘露醇、二十碳五烯酸、褐藻胶、海藻酸、粘多糖、透明质酸、胶原蛋白、弹力蛋白、尿囊素、葡萄糖醛酸、甘醇酸、骨胶原、蘑菇液、大黄素、海带粘液、蜗牛粘液和硅油中的一种或多种。
  12. 如权利要求1-11任一项所述的微流控芯片,其特征在于,所述芯片通道层的材质包括无机玻璃、透明陶瓷、透明木材、有机玻璃、聚氯乙烯、聚苯乙烯、聚碳酸脂、聚醚砜、聚丙烯、聚酰胺、聚氨酯、聚酰亚胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯、苯乙烯-丙烯腈共聚物、苯乙烯-甲基丙烯酸甲酯共聚物、丙烯腈-丁二烯-苯乙烯共聚物、甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物、双烯丙基二甘醇碳酸酯聚合物、聚甲基-1-戊烯、聚四氟乙烯、聚偏氟乙烯、透明树脂、环氧树脂、酚醛树脂、不饱和聚酯树脂、醋酸纤维素、硝酸纤维素和乙烯-醋酸乙烯共聚物中的一种或多种。
  13. 一种液滴的操控方法,其特征在于,包括:提供光源和如权利要求1-12任一项所述的微流控芯片,所述微流控芯片的液滴通道中含有液滴,利用所述光源在所述液滴通道形成光照位点,所述液滴向所述光照位点运动;
    或所述液滴的操控方法包括:提供声源和如权利要求1-12任一项所述的微流控芯片,所述微流控芯片的液滴通道中含有液滴,利用所述声源在所述液滴通道形成声音刺激位点,所述液滴向所述声音刺激位点运动。
  14. 如权利要求13所述的微流控芯片,其特征在于,所述液滴包括水滴、有机物液滴、无机物溶液液滴、微纳米颗粒悬浮液液滴、生物组织液液滴中的任意一种。
  15. 如权利要求1-12任一项所述的微流控芯片在微流控芯片控制系统、生物检测和化学检测中的应用。
PCT/CN2022/092667 2022-05-13 2022-05-13 微流控芯片及其应用 WO2023216229A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092667 WO2023216229A1 (zh) 2022-05-13 2022-05-13 微流控芯片及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092667 WO2023216229A1 (zh) 2022-05-13 2022-05-13 微流控芯片及其应用

Publications (1)

Publication Number Publication Date
WO2023216229A1 true WO2023216229A1 (zh) 2023-11-16

Family

ID=88729543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092667 WO2023216229A1 (zh) 2022-05-13 2022-05-13 微流控芯片及其应用

Country Status (1)

Country Link
WO (1) WO2023216229A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713900A (zh) * 2019-11-05 2020-01-21 深圳先进技术研究院 一种分离捕获单细胞的微流控芯片及其制备方法和应用
CN111307714A (zh) * 2020-03-04 2020-06-19 华南师范大学 基于光流控热毛细微流涡旋的液滴操控芯片及其操控方法
CN111334403A (zh) * 2018-12-18 2020-06-26 深圳先进技术研究院 基于微流控的微泡发生芯片及其制备方法和应用
CN112718028A (zh) * 2020-12-24 2021-04-30 深圳先进技术研究院 一种光操控液滴运动材料及其制备方法和应用
CN112892627A (zh) * 2021-02-05 2021-06-04 浙江大学 一种基于弹性支撑体的光固化微流控芯片及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111334403A (zh) * 2018-12-18 2020-06-26 深圳先进技术研究院 基于微流控的微泡发生芯片及其制备方法和应用
CN110713900A (zh) * 2019-11-05 2020-01-21 深圳先进技术研究院 一种分离捕获单细胞的微流控芯片及其制备方法和应用
CN111307714A (zh) * 2020-03-04 2020-06-19 华南师范大学 基于光流控热毛细微流涡旋的液滴操控芯片及其操控方法
CN112718028A (zh) * 2020-12-24 2021-04-30 深圳先进技术研究院 一种光操控液滴运动材料及其制备方法和应用
CN112892627A (zh) * 2021-02-05 2021-06-04 浙江大学 一种基于弹性支撑体的光固化微流控芯片及其制备方法和应用

Similar Documents

Publication Publication Date Title
Zhu et al. Liquid metal–based soft microfluidics
Kim et al. Three-dimensional printing of highly conductive carbon nanotube microarchitectures with fluid ink
Chen et al. Additive manufacturing of piezoelectric materials
Hilber Stimulus-active polymer actuators for next-generation microfluidic devices
Jin et al. Nanoclay-based self-supporting responsive nanocomposite hydrogels for printing applications
Park et al. Near-field electrospinning for three-dimensional stacked nanoarchitectures with high aspect ratios
Lin et al. Three-dimensional printing of complex structures: man made or toward nature?
Wang et al. Graphene aerogel templated fabrication of phase change microspheres as thermal buffers in microelectronic devices
Dickey Emerging applications of liquid metals featuring surface oxides
CN107583696B (zh) 一种基于体声波激励和移动气泡的微粒捕获与释放装置
CN112718028B (zh) 一种光操控液滴运动材料及其制备方法和应用
Athira et al. High-performance flexible piezoelectric nanogenerator based on electrospun PVDF-BaTiO3 nanofibers for self-powered vibration sensing applications
CN103532425B (zh) 一种磁场驱动的纳米摩擦发电机
CN101814577A (zh) 电致伸缩材料及其制备方法以及电热式致动器
Lu et al. Universal control for micromotor swarms with a hybrid sonoelectrode
Safaee et al. Field-assisted additive manufacturing of polymeric composites
Persano et al. Integrated bottom-up and top-down soft lithographies and microfabrication approaches to multifunctional polymers
CN110138263B (zh) 一种基于可溶性模具制备微结构化压电俘能器的方法
Li et al. Directional transportation on microplate-arrayed surfaces driven via a magnetic field
Li et al. A review on fabrication and application of tunable hybrid micro–nano array surfaces
Rozynek et al. Opening and closing of particle shells on droplets via electric fields and its applications
Gaur et al. Flexible, lead-free nanogenerators using poly (vinylidene fluoride) nanocomposites
Zhang et al. Smart film actuators for biomedical applications
Shu et al. Particle-based porous materials for the rapid and spontaneous diffusion of liquid metals
CN110002397A (zh) 一种复杂构型纳米马达的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941183

Country of ref document: EP

Kind code of ref document: A1