TW201100263A - Nano-imprint stemplate and mthod for manufacturing the same - Google Patents

Nano-imprint stemplate and mthod for manufacturing the same Download PDF

Info

Publication number
TW201100263A
TW201100263A TW98120952A TW98120952A TW201100263A TW 201100263 A TW201100263 A TW 201100263A TW 98120952 A TW98120952 A TW 98120952A TW 98120952 A TW98120952 A TW 98120952A TW 201100263 A TW201100263 A TW 201100263A
Authority
TW
Taiwan
Prior art keywords
flexible substrate
mold
nano
polymer composition
composition material
Prior art date
Application number
TW98120952A
Other languages
Chinese (zh)
Other versions
TWI368574B (en
Inventor
Zheng-Dong Zhu
Qun-Qing Li
li-hui Zhang
Mo Chen
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW098120952A priority Critical patent/TWI368574B/en
Publication of TW201100263A publication Critical patent/TW201100263A/en
Application granted granted Critical
Publication of TWI368574B publication Critical patent/TWI368574B/en

Links

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

The present invention provides a nano-imprint template. The nano-imprint template includes a flexible substrate and a polymer layer formed on a surface of the flexible substrate. A nano pattern is formed on the surface of the polymer layer away from the flexible substrate. The polymer layer is a crosslinking curing material formed via crosslinking of high-branched oligomers, perfluorinated polyethylene ether, methyl methacrylate and the organic diluent material. The present invention also provides methods for manufacturing the nano-imprint template.

Description

201100263六、發明說明: 【發明所屬之技術領域】 [麵]本發明涉及一種奈米壓印模板及其製傷方法,尤其井 一種紫外奈米壓印模板及其製備方法。 7 [0002] 【先前技術】 先如技術在製作各種半導體設傷時·, 十奈米到數百奈米的微細結構的奈求 常需要製作具有數 圖形。具有上述微201100263 VI. Description of the Invention: [Technical Field of the Invention] [Face] The present invention relates to a nanoimprint template and a method for the same, and in particular to an ultraviolet nanoimprint template and a preparation method thereof. [ [Previous Art] When manufacturing various semiconductor scratches as in the art, it is often necessary to produce a number of patterns for the fine structure of ten nanometers to hundreds of nanometers. With the above micro

細結構的奈㈣形的製作方法主要有光或電子束的光巧 方法:首先,使用經過賴或者和聚焦_射線或者 電子束照射絲抗賴組合物轉m,上雜射線或電 子束將會改變樣曝光區域的抗蝕劑的化學結構;然後, 再通過職㈣法除去被曝光區域或者被曝光區域外的 抗蝕劑,從而獲得特定的圖案。 [0003]The fine-structured neat (four) shape is mainly produced by a light or electron beam method: first, using a ray or a focused ray or an electron beam to illuminate the ray-resistant composition, m, the upper ray or electron beam will The chemical structure of the resist of the exposed region is changed; then, the exposed region or the resist outside the exposed region is removed by the method of (4) to obtain a specific pattern. [0003]

為了適應積體電路技術的迅猛發展,在先前的光學光刻 努力突破解析度極㈣同時,下―代光刻技術在最近幾 年内獲得大量的研究V先前的新型光㈣統包括反射式 光子系統和折射,式光學系統,通過極紫外光刻技術採用 波長13nm〜I4nm的光源和精度極高的反射式光學系統, 有效降低了折射系統中強烈的光吸收,但整個光刻系統 造價非常昂貴,限制了所述技術的應用。 [0004]上世紀九十年代以來,一種新的奈米圖形的製作工藝得 到 了發展(晴參見Chou S Y,Krauss P R,Renstorm P. Imprint 〇f sub 25 nm vias and trenches in polymers. Appi. Phys Lett., 1995, 67(21): 3114_3116)。上述製作奈米圖形的新技術,在本領域 098120952 表單編號A0101 第3頁/共27頁 0982035676-0 201100263 中被稱作奈米壓印或者奈米壓印平板印刷術。奈米壓印 係指採用具有奈米圖形的奈米壓印模板將基片上的抗蝕 劑(resist )薄膜壓印形成奈米圖形後,再對基片上的 奈米圖形進行處理,如刻蝕、剝離等,最終製成具有奈 米結構的圖形和半導體器件。以奈米壓印技術形成奈米 圖案的方法,通過採用具有奈米圖形的硬性奈米壓印模 板壓印抗蝕劑層形成奈米圖案,而不需要依賴任何曝光 形成。所以,奈米壓印技術可以消除在常規的光刻方法 中所必須的限制條件,比如對光的波長的限制,以及在 抗蚀劑和基底内粒子的反向散射和光干擾。因此,相對 於光刻技術,奈米壓印技術具有製作成本低、簡單易行 、效率高的優點,具有廣闊的應用前景。 [0005] 先前的奈米壓印技術主要包括熱奈米壓印(HE-NIL)、 紫外奈米壓印(UV-NIL)等。熱奈米壓印係採用繪有奈 米圖案的剛性奈米壓印模板,將經過加熱後的基底上的 抗蝕劑薄膜壓印出奈米級的圖案,再通過降溫固化所述 抗蝕劑,使壓印後的奈米圖案得以保存,最後,再利用 常規的刻蝕、剝離等加工方法實現奈米圖案由模板向基 底轉移。紫外奈米壓印係採用繪製有奈米圖案的剛性奈 米壓印模板,將基片上的液態的抗蝕劑薄膜壓印出奈米 級圖案,再通過紫外光的照射使得抗蝕劑單體聚合物固 化,使所述奈米級圖案得以保存,最後再利用常規的刻 蝕、剝離等加工方法實現奈米圖案由模板向基底轉移。 [0006] 然而,先前的奈米壓印模板通常採用矽、二氧化矽、碳 化矽或氮化矽等高硬度、高導熱率、低膨脹係數、抗腐 098120952 表單編號A0101 第4頁/共27頁 0982035676-0 201100263 蝕性強的惰性材料製成。採用上述材料的奈米壓印模板 通常係由電子束刻蝕製成,然而利用上述高硬度材料製 備奈米壓印模板,工藝比較繁雜,條件要求較嚴格,從 而成本較高。並且,上述材料製備的奈米壓印模板較脆 ,抗壓碎性較差,比較容易破損。 【發明内容】 [0007] 有鑒於此,提供一種具有柔性、抗壓碎性好的奈米壓印 模板及其製備方法實為必要。 Ο [0008] —種奈米壓印模板,包括一柔性基底,以及一聚合物層 形成於所述柔性基底的表面。該聚合物層遠離所述柔性 基底的表面形成有奈米圖形。所述聚合物層為高支化低 聚物、全氟基聚乙醚、曱基丙烯酸曱酯以及有機稀釋劑 的固化交聯物。 ❹ [0009] —種奈米壓印模板的製備方法,其包括以下步驟:提供 一柔性基底,在所述柔性基底的一個成一聚合物 組合物材料層,所述聚合物組合物由1%支化低聚物、全 氟基聚乙醚、曱基丙烯酸甲酯、自由基引發劑以及有機 稀釋劑組成;提供一個表面具有第一奈米圖形的模具, 將所述模具表面的第一奈米圖形複製到所述聚合物組合 物材料層;以及光固化所述聚合物組合物材料,將所述 模具與所述柔性基底分離,在所述柔性基底表面形成包 括多個凸部及多個凹槽的奈米圖形。 [0010] 一種奈米壓印模板的製備方法,其包括以下步驟:提供 一表面具有第二奈米圖形的模具,在模具具有第二奈米 圖形的表面形成聚合物組合物材料;提供一柔性基底, 098120952 表單編號Α0101 第5頁/共27頁 201100263 將所述柔性基底覆蓋所述模具表面的聚合物纟A ' ,擠壓所述模板及柔性基底,使所述聚合物組入材料 黏附於所述柔性基底;以及光固化所述聚合 #材料 料,將所述模具與所述柔性基底分離,從而獲彳曰口物材 壓印模板 予奈米 [0011] [0012] [0013] 與先前技術相比較,所述奈米壓印模板及其製 有以下優點:所述奈米壓印模板的製傷方 備方去具 、,方法簡星 ,成本較低。所述奈米壓印模板包括— 平 / ^ 、 性基底,並玉 形成於所述柔性基底表面的奈米圖形.由高支 匕低聚物、 全氟基聚乙鍵、甲基丙烯酸甲醋、自由基引 機稀釋劑固化交聯形成,從而該奈米圖形也具=乂^有 性。因此’所述奈米壓印模板具有柔性,抗壓碎^柔 【實施方式】 以下將結合附圖詳細說明本發明提供的奈米壓印“ ' 及所述奈米壓印模板的製備方法。 *板以 請參見圖1,本發明實施例提供一種奈米壓印模板⑽ 其包括-柔性基底1()以及形成於柔性基底1Q表面的聚合 物層105。所述聚合物層105遠離所述柔性基底的表°面 形成有多個凸部m,任意相鄰的兩個凸部1{)4之間定: -個四槽106。所述多個凸部1〇4及多個凹槽組 奈米圖形108。 ’ [0014] …「κ,為 形平板’方形平板等,也可以根據實際需要製備。所 柔性基底1G的材料為雜透明高分子材料,具體可選 矽橡膠、聚氨脂、環氧樹脂、聚甲基丙烯 098120952 表單編號A0101 第6頁/共27頁 久1 201100263 苯二曱酸乙二醇酯(ΡΕΤ)中的一種及其住意成份的共混 。本實施例中,所述柔性基底10為4英寸矽片大小的圓形 平板,其材料為聚#笨二曱酸匕二醇酯(PET)。 [0015] Ο 所述聚合物層105形成於所述柔性基底10的表面,所述多 個凸部104以及多個凹槽1〇6為奈米級結構,其尺寸範圍 為50nm〜200nm。所述聚合物層為—聚合物組合物固 化交聯形成的固化交聯物。所述聚合物組合物為高支化 低聚物 '全氟基聚乙醚、甲基丙稀酸曱酯、自由基引發 劑以及有機稀釋劑的組合。在所述聚合物組合物中,所 述高支化低聚物的質量百分比含量優選為50%〜60%,全氣 基聚乙醚的質量百分比含量優選為3%~5%’甲基丙稀酸甲 酯的質量百分比含量優選為5¾〜10% ’所述有機稀釋劑的 質量百分比含量優選為25%~35%,所述自由基引發劑的質 量百分比含量優選為〇. 1%~2%。 [0016] Ο 其中’所述高支化低聚物由環氧為烯,酸功能團、乙二醇 功能團和卜羥基環已基苯基甲酮功能團改性的偏苯三酸 酐功能團組成9具體地,所述高支作低聚物可以經由偏 苯三酸酐、乙二硫醇與環氧丙烯酸共聚而成,還可以經 由乙二醇與環氧丙烯酸開環共聚而成。本實施例中,所 述高支化低聚物為乙二醇與環氧丙烯酸開環共聚而成。 所述全氟基聚乙醚的化學結構式為: 098120952 表單編號A0101 第7頁/共27頁 〇982〇35676-〇 [0017] 201100263 [0018] h2c ο CH3-C-C-0-C -c - o II H2 f2 f2 F2c-o-c -c -o^c -c 〇lIn order to adapt to the rapid development of integrated circuit technology, in the previous optical lithography efforts to break through the resolution pole (4), the next generation lithography technology has obtained a lot of research in recent years. V The previous new light (4) system includes the reflective optical subsystem. And refractive, optical systems, using extreme ultraviolet lithography technology with a wavelength of 13nm ~ I4nm light source and highly accurate reflective optical system, effectively reducing the strong light absorption in the refractive system, but the entire lithography system is very expensive, The application of the technology is limited. [0004] Since the 1990s, a new nano-patterning process has been developed (see Chou SY, Krauss PR, Renstorm P. Imprint 〇f sub 25 nm vias and trenches in polymers. Appi. Phys Lett ., 1995, 67(21): 3114_3116). The above-mentioned new technology for making nano graphics is called nanoimprint or nanoimprint lithography in the field 098120952 Form No. A0101 Page 3/27 Page 0982035676-0 201100263. Nano-embossing refers to the use of a nanoimprint template with a nano-pattern to imprint a resist film on a substrate to form a nano-pattern, and then process the nano-pattern on the substrate, such as etching. , peeling, etc., finally forming a pattern and a semiconductor device having a nanostructure. A method of forming a nano pattern by a nanoimprint technique by forming a nano pattern by imprinting a resist layer using a hard nanoimprinted mold having a nano pattern without depending on any exposure formation. Therefore, nanoimprint technology can eliminate the limitations necessary in conventional photolithographic methods, such as the limitation of the wavelength of light, and backscattering and light interference of particles in the resist and substrate. Therefore, compared with lithography, nanoimprint technology has the advantages of low production cost, simplicity, and high efficiency, and has broad application prospects. [0005] Previous nanoimprint techniques mainly include hot nanoimprint (HE-NIL), ultraviolet nanoimprint (UV-NIL) and the like. The thermal nanoprinting system uses a rigid nano imprint template with a nano pattern to imprint the resist film on the heated substrate to a nano-scale pattern, and then cure the resist by cooling. The embossed nano pattern is preserved, and finally, the nano pattern is transferred from the template to the substrate by a conventional etching, stripping, or the like. The UV nanoimprinting system uses a rigid nanoimprint template drawn with a nano pattern to imprint the liquid resist film on the substrate into a nano-scale pattern, and then irradiate the ultraviolet light to make the resist monomer. The polymer is solidified, the nano-scale pattern is preserved, and finally the nano pattern is transferred from the template to the substrate by conventional etching, stripping, and the like. [0006] However, the prior nanoimprint templates generally employ high hardness, high thermal conductivity, low expansion coefficient, and corrosion resistance of ruthenium, ruthenium dioxide, tantalum carbide or tantalum nitride. 098120952 Form No. A0101 Page 4 of 27 Page 0982035676-0 201100263 Made of an inert material that is highly corrosive. Nanoimprint stencils using the above materials are usually made by electron beam etching. However, the use of the above-mentioned high-hardness materials for the preparation of nanoimprint stencils is complicated and the conditions are strict, so that the cost is high. Moreover, the nanoimprint template prepared by the above materials is brittle, has poor crush resistance, and is relatively easy to break. SUMMARY OF THE INVENTION [0007] In view of the above, it is necessary to provide a nanoimprint template having flexibility and crush resistance and a preparation method thereof. [0008] A nanoimprint template comprising a flexible substrate, and a polymer layer formed on a surface of the flexible substrate. The polymer layer is formed with a nano pattern away from the surface of the flexible substrate. The polymer layer is a cured crosslinked product of a hyperbranched oligomer, a perfluoropolyether, a decyl decyl acrylate, and an organic diluent. 0009 [0009] A method for preparing a nanoimprint template, comprising the steps of: providing a flexible substrate on a layer of a polymer composition material of the flexible substrate, the polymer composition comprising 1% Composition of oligomerized oligomer, perfluoropolyether, methyl methacrylate, free radical initiator and organic diluent; providing a mold having a first nano-pattern on the surface, and a first nano-pattern of the surface of the mold Replicating to the polymer composition material layer; and photocuring the polymer composition material, separating the mold from the flexible substrate, forming a plurality of protrusions and a plurality of grooves on the surface of the flexible substrate Nano graphics. [0010] A method for preparing a nanoimprint template, comprising the steps of: providing a mold having a second nano-pattern on a surface, forming a polymer composition material on a surface of the mold having a second nano-pattern; providing a flexibility Substrate, 098120952 Form No. Α0101 Page 5 of 27 201100263 The flexible substrate covers the polymer 纟A ' of the surface of the mold, and the template and the flexible substrate are extruded to adhere the polymer to the material. The flexible substrate; and photocuring the polymerization #material material, separating the mold from the flexible substrate, thereby obtaining a mouthwash material imprint template to nanometer [0011] [0013] Compared with the technology, the nanoimprint template and the method have the following advantages: the nano-imprint template is prepared by the method, and the method is simple, and the cost is low. The nanoimprint template comprises a flat/^, a base, and a nanocrystal formed on the surface of the flexible substrate. The high-support oligomer, the perfluoropolyethyl bond, the methyl methacrylate The free radical entraining agent is cured and crosslinked to form, so that the nanograph has a property of 乂^. Therefore, the nanoimprint template has flexibility and is resistant to crushing. [Embodiment] The nanoimprint "' and the method for preparing the nanoimprint template provided by the present invention will be described in detail below with reference to the accompanying drawings. * Board Referring to Figure 1, an embodiment of the present invention provides a nanoimprint template (10) comprising a flexible substrate 1 () and a polymer layer 105 formed on the surface of the flexible substrate 1Q. The polymer layer 105 is far from the The surface of the flexible substrate is formed with a plurality of convex portions m, and between any two adjacent convex portions 1{) 4: - four grooves 106. The plurality of convex portions 1 〇 4 and a plurality of grooves Group nanograph 108. '[0014] ... "κ, a flat plate" square plate, etc., can also be prepared according to actual needs. The material of the flexible substrate 1G is a hetero-transparent polymer material, specifically 矽 rubber, polyurethane Lipid, Epoxy Resin, Polymethacryl 098120952 Form No. A0101 Page 6 / Total 27 Pages Long 1 201100263 Blending of one of the ethylene glycol phthalate (ΡΕΤ) and its in-situ ingredients. The flexible substrate 10 is a circular plate of 4 inch sepal size, and the material thereof is Poly(polystyrene decanoate) (PET). [0015] The polymer layer 105 is formed on the surface of the flexible substrate 10, and the plurality of protrusions 104 and the plurality of grooves 1〇6 are a nano-scale structure having a size ranging from 50 nm to 200 nm. The polymer layer is a cured cross-link formed by curing cross-linking of the polymer composition. The polymer composition is a highly branched oligomer 'perfluoro a combination of polyethyl ether, methacrylic acid decyl ester, a free radical initiator, and an organic diluent. In the polymer composition, the content of the hyperbranched oligomer is preferably 50% to 60% by mass. %, the mass percentage of the total gas-based polyether is preferably 3% to 5%. The mass percentage of methyl methacrylate is preferably 53⁄4 to 10%. The mass percentage of the organic diluent is preferably 25%. ~35%, the mass percentage content of the radical initiator is preferably 0.1% to 2%. [0016] wherein the high-branched oligomer consists of an epoxy group, an acid function group, and an ethylene group. Alcohol functional group and hydroxycyclohexyl phenyl ketone functional group modified trimellitic anhydride functional group composition 9 specifically, The high-support oligomer can be obtained by copolymerization of trimellitic anhydride, ethanedithiol and epoxy acrylate, and can also be formed by ring-opening copolymerization of ethylene glycol and epoxy acrylate. In this embodiment, the high-branched oligomerization The compound is formed by ring-opening copolymerization of ethylene glycol and epoxy acrylate. The chemical structural formula of the perfluoropolyether is: 098120952 Form No. A0101 Page 7 of 27 〇982〇35676-〇[0017] 201100263 [ 0018] h2c ο CH3-CC-0-C -c - o II H2 f2 f2 F2c-oc -c -o^c -c 〇l

Hs H2 η CHi—C-C-O-C -c -N// li h2c o o — II h2 f2 C-〇-C -c Ό -CF2Hs H2 η CHi-C-C-O-C -c -N// li h2c o o — II h2 f2 C-〇-C -c Ό -CF2

[0019] 其中,m:n = 0. 6〜11。全氟基聚乙醚末端基係丙烯酸酯結 構可以參與紫外光固化,全氟的醚使得固化體系表面能 較低,從而奈米壓印模板的表面能較低具有較好的脫模 性能,其長鏈貢獻在於固化體系中大分子鏈間的纏結、 〇 交聯,有助於提高奈米壓印模板的模量,從而使得該奈 米壓印模板結構穩定。 [0020] 所述有機稀釋劑為二羥基乙基二甲基乙烯。所述自由基 引發劑為光引發劑,所述光引發劑的作用為使得所述聚 合物組合物材料中高支化低聚物、全氟基聚乙醚以及甲 基丙烯酸甲酯組分在紫外光照的條件下實現固化交聯。 本實施例中,所述光引發劑可以係工藝名為1173,184, k TP0等的光引發劑。以184為例,其化學結構式為:[0019] wherein m: n = 0. 6~11. The perfluoropolyether end-group acrylate structure can participate in ultraviolet curing, and the perfluoroether makes the surface energy of the curing system lower, so that the surface energy of the nanoimprint template is lower and has better release property, and the length thereof is long. The chain contribution is the entanglement between the macromolecular chains in the curing system and the cross-linking of the ruthenium, which helps to increase the modulus of the nanoimprint template, thereby making the nanoimprint template structure stable. [0020] The organic diluent is dihydroxyethyl dimethylethylene. The free radical initiator is a photoinitiator, and the photoinitiator functions to make the high-branched oligomer, the perfluoropolyether and the methyl methacrylate component in the polymer composition material in ultraviolet light. Curing crosslinking is achieved under the conditions. In this embodiment, the photoinitiator may be a photoinitiator having a process name of 1173, 184, k TP0 or the like. Taking 184 as an example, its chemical structural formula is:

[0021] 098120952 表單編號A0101 第8頁/共27頁 0982035676-0 201100263 [0022] [0023] Ο [0024] [0025] ❹ 為了進«合物心5與一Γ基底10之間 為了進步 1f)0還彳以進-步包括-附 的处附办,所述奈米壓印模板10 附 、,金層置在所述聚合 著力增強層1〇3所述附者曰㈣附著㈣_1Q3 物㈣5與所述柔性基底1〇之0 _烧偶聯劑。肋 的材料為附著力促進劑0’為’0CI1)。 的分子式為H2C=CCH3COOCH2CH2Si( 3 3 本發明進-步提供所述奈絲印糕板&方、明參 閱圖2及圖3,所述奈米壓印模板的製備第—實施例 包括以下步驟: 步驟一,提供4性基底1G,在所述系性基底10的一個 表面形成一聚合物組合物材料廣110 所述柔性基底Η為-平板,其形狀大小不限,可以為圓 形平板,㈣平板等。所述W衫1G㈣料為柔性透 明高分子材料’具體可選自石夕橡膠、聚氣月曰環氧樹脂 、聚甲基丙烯酸甲醋、聚對笨>子酸6,醇8曰(PET)中 ·.·種及其任意成份的共混》本實施例中,所述柔性基 〇為4英神片大小的圓形样,所述柔性基底10的材 [0026] 戶斤述聚合物組合物材料層now合物組合㈣料由高支 化低聚物、全氟基聚乙醚、甲纂丙烯酸甲醋、自由基引 發劍以及有__組成。所述聚合物組合物材料層110 的聚合物組合物材料可以採用以下方法製備:將質量百 分比含量優選為50%〜60%的高支化低聚物、質量百分比含 量優選為3%〜5%的全氟基聚乙醚、質量百分比含量優選為 098120952 表單編號A0101 第9頁/共27頁 0982035676-0 201100263 5%〜10%的甲基丙烯酸甲酯、質量百分比含量優選為 25%~35%的有機稀釋劑’以及質量百分比含量優選為 0. 的自由基引發劑充分共混,靜置卜3小時後,獲 得一液態的聚合物混合物;採用規格為〇. 2U~〇. 25^的篩 檢程式過濾上述液態的聚合物混合物,除去所述液態的 聚合物混合物中的其他雜質’從而制得所述聚合物組合 物材料。 [0027] 在所述柔性基底10的一個表面形成一個聚合物組合物材 料層110的方法可以為絲網印刷法或旋塗法等。 [0028] 本實施例中,採用旋塗法於所述柔性基底10的一個表面 I ' ~ — 旋塗上述聚合物組合物材料,旋塗轉為5400轉/分鐘 〜7000轉/分鐘,時間為〇· 5分鐘5务鐘,然後在140。 C〜18(TC烘烤3~5分鐘。從而在基底10的一個表面形成_ 聚合物組合物材料層110,所述聚合物組合物材料層11〇 的厚度優選為100奈米〜300奈米》 [0029] 另外,在所述柔性基底10的表面形成上述聚合物組合物 材料層110之前,遠可以先在所述柔性基底10的表面塗專文 一附著力增強層103,用於增加所述聚合物組合物材料層 110與所述柔性基底10之間的黏附力。本實施例中,所% 附著力增強層103的材料為附著力促進劑HD,HD為卫 矽烷偶聯劑。HD的分子式為 H^CCHqCOOCWKOCHs:^。 ^ 〇 Li 3 [0030] 步驟二,提供一個表面具有第一奈米圖形208的模具2〇 並將所述模具20表面的第一奈米圖形208複製到所迷聚人 098120952 表單編號A0101 第10頁/共27頁 201100263 [0031] [0032] [0033] Ο ❹ [0034] [0035] 物組合物材料層11()。 步驟二具體包如下步驟: 首先,提供一矣^ 具有第一奈米圖形208的模具20。 、:化破的材料為硬性透明材料,如二氧化矽、石英 所述模具2表所述模具2G可以通過電子束曝光製備, 一凹槽面形成有包括多個第一凸部24和多個第 的材料為石英^奈米圖形綱。本實施例中,所述模具20 "、。具體地,本實蜱例中所述模具20採用以 〇去製備:提供一個石英基體,通過電子束曝光在石 央基體的-個表面形成—個光刻膠構成的奈米圖形,·在 上迹光刻膠構成的奈米圖形上沈積-層金屬線,用有機 溶劑洗去所述光刻膠,從而在二氧切基體的一個表面 形成-由金屬鉻構成的奈米圖形;採用等離子束刻姓的 方法,將所述奈米圖形轉移到所述石英基體,從而得到 個由石英材料製成的模具20 〇,此'外,所述模具2〇還可 以通過其他先前的方法製成。可以理解,第一奈米圖形 2〇8的圖案不限,本領域技術人員可以根據需求製備出具 有各種圖案的第一奈米圖形208。 其次,將模具20形成有第一奈米圖形2〇8的表面與所述柔 性基底10表面的聚合物組合物材料層110貼合,擠壓所述 模具20與基底10。 可以通過模具20向柔性基底10施加壓力,使得所述模具 20上的第一奈米圖形208轉移到所述聚合物組合物材料層 110。本實施例中’通過壓印機實現所述方法。具體地, 098120952 表單編號Α0101 第11頁/共27頁 0982035676- 201100263 將模具20與所述柔性基底1 0分別安裝到壓印機的兩個壓 印盤,使模具20形成有第一奈米圖形208的表面與所述柔 性基底10表面的聚合物組合物材料層110貼合,設置壓印 機的真空度為5. 0x10 3百帕(mbar);施加壓力為12碎 /平方英寸(Psi) ~15磅/平方英寸(Psi),保持5〜10 分鐘,聚合物組合物材料層110的聚合物組合物材料具有 較好的流動性,模具20的第一凸部24壓到柔性基底10上 的聚合物組合物材料層110中,使聚合物組合物材料充滿 模具20的第一奈米圖形208中的第一凹槽26。 [0036] 步驟三,光固化所述聚合物組合物材料層110,將所述模 具20與所述柔性基底10分離,在所述柔性基底10表面形 成包括多個凸部104及多個凹槽106的奈米圖形108,從 而獲得一奈米壓印模板100。 [0037] 由於本實施例中模具20為透明模板,光固化所述聚合物 組合物材料層110的聚合物組合物材料的方法,可以通過 紫外光照射所述模具20的方式使得紫外光透過模具20照 射到所述聚合物組合物材料上。所述聚合物組合物材料 中的自由基引發劑為光引發劑,所述光引發劑的作用為 使得所述聚合物組合物材料中高支化低聚物、全氟基聚 乙醚以及曱基丙烯酸甲酯組分在紫外光照的條件下實現 交聯,從而固化所述聚合物組合物中的各組分。當聚合 物組合物材料完全固化後,直接將所述模具20脫模,從 而可以在所述柔性基底10的一個表面形成一聚合物層105 ,在該聚合物層105遠離所述柔性基底10的表面形成有多 個凸部104,以及多個凹槽10 6。所述凹槽106與所述模 098120952 表單編號A0101 第12頁/共27頁 0982035676-0 201100263 [0038] [0039]Ο [0040] 〇 具20的第一凸部24對應,所述凸部1〇4與所述模具2〇的 第-凹槽26對應。所述多個公部104及多個凹槽106組成 -個奈米圖形108。本實一中’广述紫外光的能流密度 為10〜20毫焦/立方厘米’照射時間為 10~30min 〇 請參閱圖4及圖5,本發明的条米壓印模板的製備方法的 第二實施例包括以下步驟: 步驟一,提供一表面具有第二奈米圖形608的模具60,在 模具60具有奈米圖形608的表面形成聚合物組合物材料 410 〇 本實施例中,所述模具60與第一實施例中的模具20完全 相同,所述模具60的第二奈求圖形6〇8由多個第二凹槽66 以及第二凸部64構成。所述聚合物組合物材料410與第一 實施例中的聚合物組合物材料廣110的材料完全相同。所 述在模具60具有奈米圖形6〇8的表面形成聚合物組合物材 料410的方法包括旋塗,絲網印刷,超聲波回流或抽真空 鋪展的自組裝方法或直接滴定的*方法形成均勻的聚合物 組合物材料410。本實施例中’可以取一定量的聚合物組 合物材料410,緩慢滴在所述模具60形成有第二奈米圖形 608的表面,在所述模具60形成有第二奈米圖形608的表 面沈積一定量的聚合物組合物材料410,然後將模具6〇於 密閉的環境下靜置1〜2個小時。 步驟二,提供一柔性基底4〇,將所述柔性基底40覆蓋所 述模具60表面的聚合物組合物材料410 ’掛壓所述模具6〇 098120952 表單編號A0101 第13頁/共27頁 0982035676-0 [0041] 201100263[0021] 098120952 Form No. A0101 Page 8 / Total 27 Page 0992035676-0 201100263 [0023] [0025] [0025] [In order to advance between the compound 5 and a substrate 10 for progress 1f) Further, the step-by-step includes-attachment, the nano-imprint template 10 is attached, and the gold layer is placed on the polymerization-enhancing layer 1〇3, and the attached layer (4) is attached (4)_1Q3 (4) 5 and The flexible substrate 1 _ 0 _ burning coupling agent. The material of the rib is that the adhesion promoter 0' is '0CI1). The molecular formula is H2C=CCH3COOCH2CH2Si (3 3 The present invention further provides the nanoscreen printing plate & square, see FIG. 2 and FIG. 3, the preparation of the nanoimprint template comprises the following steps: Step one, providing a tetragonal substrate 1G, forming a polymer composition material on one surface of the structural substrate 10, the flexible substrate is a flat plate, and the shape and size thereof are not limited, and may be a circular flat plate, (4) Flat plate, etc. The W-shirt 1G (four) material is a flexible transparent polymer material 'specifically, it can be selected from the group consisting of Shixia rubber, polyglycolic epoxy resin, polymethyl methacrylate, poly-peptidic acid, and acid 8 In the present embodiment, the flexible base is a circular sample of a size of 4 Yingshen, and the material of the flexible substrate 10 is [0026] The polymer composition material layer combination composition (four) is composed of a hyperbranched oligomer, a perfluoropolyether, a formazan methacrylate, a free radical-initiated sword, and a __. The polymer composition material. The polymer composition material of layer 110 can be prepared by the following method: mass percentage The amount is preferably from 50% to 60% of the highly branched oligomer, the perfluoropolyether having a mass percentage of preferably from 3% to 5%, and the mass percentage is preferably 098120952. Form No. A0101 Page 9 of 27 page 0982035676 -0 201100263 5% to 10% of methyl methacrylate, an organic diluent having a mass percentage of preferably 25% to 35%, and a free radical initiator having a mass percentage of preferably 0. After 3 hours, a liquid polymer mixture was obtained; the liquid polymer mixture was filtered using a screening procedure of U. 2U~〇. 25^ to remove other impurities in the liquid polymer mixture. The polymer composition material is obtained. [0027] A method of forming a polymer composition material layer 110 on one surface of the flexible substrate 10 may be a screen printing method, a spin coating method, or the like. [0028] This embodiment The spin coating method is used to spin-coat the above polymer composition material on one surface of the flexible substrate 10, and the spin coating is rotated to 5400 rpm to 7000 rpm, and the time is 〇·5 minutes. Clock, then at 140. C~18 (TC baking for 3 to 5 minutes. Thus, a polymer composition material layer 110 is formed on one surface of the substrate 10, and the thickness of the polymer composition material layer 11 is preferably 100 nm to 300 nm. [0029] In addition, before the surface of the flexible substrate 10 is formed with the polymer composition material layer 110, the surface of the flexible substrate 10 may be coated with an adhesion-enhancing layer 103 for increasing the Adhesion between the polymer composition material layer 110 and the flexible substrate 10. In the present embodiment, the material of the % adhesion-enhancing layer 103 is an adhesion promoter HD, and HD is a eucalane coupling agent. The molecular formula of HD is H^CCHqCOOCWKOCHs:^. ^ 〇 Li 3 [0030] Step 2, providing a mold 2 having a surface having a first nano-pattern 208 and copying the first nano-pattern 208 on the surface of the mold 20 to the merging person 098120952 Form No. A0101 No. 10 Page 21 of 201100260026 [0033] [0033] [0035] [0035] Composition material layer 11 (). Step 2 specifically includes the following steps: First, a mold 20 having a first nano-pattern 208 is provided. The material to be broken is a hard transparent material such as ruthenium dioxide or quartz. The mold 2G can be prepared by electron beam exposure, and a groove surface is formed with a plurality of first convex portions 24 and a plurality of The first material is quartz crystal. In this embodiment, the mold 20 ",. Specifically, the mold 20 in the present embodiment is prepared by using a crucible: a quartz substrate is provided, and a nano-pattern formed by a photoresist is formed on the surface of the core substrate by electron beam exposure. Depositing a layer of metal lines on the nano-pattern formed by the trace photoresist, washing the photoresist with an organic solvent to form a nano-pattern of metal chromium on one surface of the dioxy-cut substrate; using a plasma beam In the method of engraving the surname, the nano-pattern is transferred to the quartz substrate to obtain a mold 20 made of a quartz material, and the mold 2 can be made by other prior methods. It can be understood that the pattern of the first nano-pattern 2 〇 8 is not limited, and those skilled in the art can prepare the first nano-pattern 208 having various patterns as needed. Next, the surface of the mold 20 on which the first nano-pattern 2 is formed is bonded to the polymer composition material layer 110 on the surface of the flexible substrate 10, and the mold 20 and the substrate 10 are pressed. Pressure can be applied to the flexible substrate 10 by the mold 20 such that the first nano-pattern 208 on the mold 20 is transferred to the polymer composition material layer 110. In the present embodiment, the method is implemented by an imprinter. Specifically, 098120952 Form No. 101 0101 Page 11 / Total 27 Page 0992035676 - 201100263 The mold 20 and the flexible substrate 10 are respectively mounted to the two platens of the embossing machine, so that the mold 20 is formed with the first nano graphic. The surface of the 208 is bonded to the polymer composition material layer 110 on the surface of the flexible substrate 10, and the vacuum of the embossing machine is set to 5.0 x 10 3 kPa; the applied pressure is 12 psi (Psi). ~15 psi (Psi), held for 5 to 10 minutes, the polymer composition material of the polymer composition material layer 110 has better fluidity, and the first convex portion 24 of the mold 20 is pressed onto the flexible substrate 10. In the polymer composition material layer 110, the polymer composition material is filled with the first recess 26 in the first nano-pattern 208 of the mold 20. [0036] Step 3, photo-curing the polymer composition material layer 110, separating the mold 20 from the flexible substrate 10, forming a plurality of convex portions 104 and a plurality of grooves on the surface of the flexible substrate 10. The nano-pattern 108 of 106, thereby obtaining a nanoimprint template 100. [0037] Since the mold 20 in the embodiment is a transparent template, a method of photocuring the polymer composition material of the polymer composition material layer 110, the ultraviolet light can be transmitted through the mold by irradiating the mold 20 with ultraviolet light. 20 is irradiated onto the polymer composition material. The free radical initiator in the polymer composition material is a photoinitiator which acts to make the high molecular weight oligomer, perfluoropolyether and thioglycol in the polymer composition material The methyl ester component is crosslinked under ultraviolet light conditions to cure the components of the polymer composition. After the polymer composition material is completely cured, the mold 20 is directly released from the mold, so that a polymer layer 105 may be formed on one surface of the flexible substrate 10, and the polymer layer 105 is away from the flexible substrate 10 The surface is formed with a plurality of convex portions 104, and a plurality of grooves 106. The groove 106 corresponds to the modulo 098120952, the form number A0101, the second convex portion 24 of the cookware 20, the convex portion 1 corresponding to the first convex portion 24 of the cookware 20, [0040] The crucible 4 corresponds to the first groove 26 of the mold 2〇. The plurality of male portions 104 and the plurality of grooves 106 constitute a nano-pattern 108. In the present embodiment, the energy flow density of the ultraviolet light is 10 to 20 mJ/cm 3 and the irradiation time is 10 to 30 min. Referring to FIG. 4 and FIG. 5, the preparation method of the strip imprint template of the present invention is as follows. The second embodiment comprises the following steps: Step one, providing a mold 60 having a second nano-pattern 608 on the surface, and forming a polymer composition material 410 on the surface of the mold 60 having the nano-pattern 608. In this embodiment, The mold 60 is identical to the mold 20 in the first embodiment, and the second pattern 6〇8 of the mold 60 is composed of a plurality of second grooves 66 and second protrusions 64. The polymer composition material 410 is identical to the material of the polymer composition material 110 in the first embodiment. The method of forming the polymer composition material 410 on the surface of the mold 60 having the nano pattern 6〇8 includes spin coating, screen printing, ultrasonic reflow or vacuum spreading self-assembly method or direct titration* method to form a uniform Polymer composition material 410. In the present embodiment, a certain amount of the polymer composition material 410 may be taken, and the surface of the second nano-pattern 608 is slowly dropped on the mold 60, and the surface of the second nano-pattern 608 is formed on the mold 60. A certain amount of the polymer composition material 410 is deposited, and then the mold 6 is allowed to stand in a closed environment for 1 to 2 hours. In the second step, a flexible substrate 4 is provided, and the flexible substrate 40 covers the surface of the mold 60. The polymer composition material 410' is pressed against the mold 6〇098120952. Form No. A0101 Page 13 / 27 pages 0992035676- 0 [0041] 201100263

及柔性基底40,使所述聚合物組合物材料4l〇黏附於所述 柔性基底40。 ,LAnd a flexible substrate 40 for adhering the polymer composition material 41 to the flexible substrate 40. ,L

[0042] [0043] [0044] 本實施例中,所述柔性基底40與第一實施例中的柔性基 _ 的材料結構完全相同。具體地,將柔性基底40覆蓋 於所述模具6〇,使所述柔性基底4〇與所述模具6〇表面的 聚合物組合物材料410相接觸,將所述柔性基底40及所述 模具60放置于壓印機中;設置壓印機的真空度為5.〇χ1(Γ 3mbar ’使聚合物組合物材料41〇具有較好的流動性能 夠完全填充到模具6 0的第二四槽6 β申;施加壓力為 2Psi l5Psi ’保持分綠使聚合物組合物村料 410充滿第二凹槽66並枯附到柔性基底40的表面。 另外,可預先在所述柔性基底40的表面塗教一附著力增 強層403 ’然後再將柔性基底40塗敷有附著力增強層4〇3 的表面覆蓋於所述模具60形成有聚合物k合物材料41〇的 表面,從而可以提高所述耨合物材将4i;a與柔性基底4〇的 粘附力。本實施例中,所述附著力增強層403的材料為附 著力促進劑HD,肋為工業化矽烷幾癖劑。HD的分子式為 kCeCHqCOOCI^CH SKOC%:^。 3 2 2 6 ό 步驟三,光固化所述聚合物組合物材料410,將所述模具 60與所述柔性基底40分離’從而獲得一奈米壓印模板400 本實施例中模具60為透明模具,因此可以通過紫外光照 射模具60,使得紫外光透過模具6〇照射所述聚合物組合 物材料410,所述聚合物組合物材料中的各組分將會 098120952 表單煸號Α0101 第14真/共27頁 0982035676-0 [0045] 201100263 發生固化父聯。當聚合物組合物材料4i〇完全固化後,直 接將所述模具60與所述柔性基底4〇分離,從而在所述柔 性基底40表面形成一聚合物層4〇5,所述聚合物層4〇5遠 離所述柔性基底40的表面形成有多個凸部4〇4及多個凹槽 406。所述多個凸部404及多個凹槽4〇6組成一奈米圖形 408 ’從而獲得一奈米壓印模板4〇〇。本實施例中,所述 紫外光的能流密度為1 〇 ~ 2 0mJ/cm3,照射時間為 10~30min。 〇 [0046]本實施例與第一實施例的區別在於,本實施例通過將聚 合物組合物材料410形成於模具60具有奈米圖形608的表 面,然後再將柔性基底40施壓在所述聚合組合物材料41〇 ,從而獲得奈米壓印模板400。 [0047]本發明實施例提供的奈求壓印模板在使用時,可以先提 供一個基底,然後在於該基底表面形成一抗蝕劑層,將 所述奈米壓印模板上的奈米圖形壓印咅所述抗蝕劑層, 然後通過紫外光固化所述抗蝕;部層的抗蝕劑,將所述奈 © 米壓印模板與所述抗蝕劑層分_,徉而將奈米壓印模板 的奈米圖形轉移到所述抗蝕劑層,然後再通過刻蝕的方 法在所述基底上形成奈米圖形。由於本發明實施例提供 的奈米壓印模板的奈米圖形採用所述包含高支化低聚物 的聚合物組合物材料固化而成,所述聚合物組合物材料 固化得到的奈米圖形具有較高的模量,從而使得該奈米 圖形不易形變失效,具有較高的結構穩定性。由於聚合 物組合物材料加入了全氟基聚乙醚參與光固化交聯,全 氟基聚乙醚為低表面能材料,使得聚合物組合物材料固 098120952 表單編號A0101 第15頁/共27頁 0982035676-0 201100263 化以後_性小,在脫模過程切免了所述奈米壓印模 板與抗姓·連’從而易於職。從而使得使用本發明 提供的奈板製作的奈米圖料有較高的完整性 ’且保真度好’從而避免了如使用含氟有機小分子的自 組裝等複雜的表面處理工藝,從而獲得預期的低表面能 奈米壓印模板。 [0048] [0049] 所述奈緑印懸及奈錢顿㈣製備方法具有以下 優點:其-,通過聚合物組合物材料在柔性基底的表面 固化形成奈米圖形,所述奢求壓印模板具有柔性不易 破碎其一,由於所述聚合物組合物材料包含高支化低 聚物,所述聚合物組合物材料固化得到的奈米圖形具有 較咼的模量,從而使得該奈米圖形不易形變失效具有 較高的結構穩定性。其三,由於聚合物組合物材料加入 了全氟基聚乙醚參與光固化交聯,全氟基聚乙醚為低表 面能材料,使得聚合物組合物材料固化以後粘附性小, 在脫模過程中避免了所述奈米壓印模板與抗蝕劑粘連, 從而易於脫模,從而使得使用本發明提供的奈米壓印模 板製作的奈米圖形具有較高的完整性,且保真度好。其 四,本發明實施例提供的奈米壓印模板的製備方法,通 過光固化的方法,在常溫下就可以完成,使得所述方法 工藝簡單,成本較低。 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 098120952 表單編號A0101 第16頁/共27頁 0982035676-0 201100263 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0050] [0051] [0052] [0053] Ο [0054] [0055] Ο 圖1係本發明提供的奈米壓印模板的剖面結構示意圖。 圖2係本發明提供的奈米壓印模板製備方法第一實施例的 流程圖。 圖3係本發明提供的奈米壓印模板製備方法第一實施例的 工藝流程示意圖。 圖4係本發明提供的奈米壓印模板製備方法第二實施例的 流程圖。 圖5係本發明提供的奈米壓印模板製備方法第二實施例的 工藝流程示意圖。 【主要元件符號說明】 柔性基底 10, 40 奈米壓印範本 1 00,400 附著力增強層 1 03, 403 凸部 1 04, 404 聚合物層 105, 405 凹部 1 06, 406 奈米圖形 1 08, 408 聚合物組合物材料層 110 聚合物組合物材料 410 模具 20, 60 第一凸部 24, 第一凹槽 26, 表單編號Α0101 第17頁/共27頁 0982035676-0 098120952 201100263 第一奈米圖形 208 第二凸部 64 第二凹槽 66 第二奈米圖形 608 098120952 表單編號A0101 第18頁/共27頁 0982035676-0[0044] In the present embodiment, the flexible substrate 40 is identical in material structure to the flexible substrate in the first embodiment. Specifically, the flexible substrate 40 is covered on the mold 6〇, and the flexible substrate 4〇 is brought into contact with the polymer composition material 410 on the surface of the mold 6〇, and the flexible substrate 40 and the mold 60 are Placed in the embossing machine; set the embossing machine to a vacuum of 5. 〇χ 1 (Γ 3 mbar ' to make the polymer composition material 41 〇 have better fluidity and can be completely filled into the second four grooves 6 of the mold 60 The application pressure is 2Psi l5Psi 'maintained green to fill the polymer composition village material 410 with the second groove 66 and adhered to the surface of the flexible substrate 40. In addition, the surface of the flexible substrate 40 may be preliminarily coated. An adhesion enhancing layer 403' then covers the surface of the flexible substrate 40 coated with the adhesion enhancing layer 4〇3 over the surface of the mold 60 formed with the polymer k compound material 41〇, so that the crucible can be raised The adhesion of the composite material 4i;a to the flexible substrate 4〇. In the embodiment, the material of the adhesion enhancement layer 403 is an adhesion promoter HD, and the rib is an industrial decane enthalpy. The molecular formula of HD is kCeCHqCOOCI^CH SKOC%:^. 3 2 2 6 ό Step 3, Light The polymer composition material 410 is cured, and the mold 60 is separated from the flexible substrate 40 to obtain a nanoimprint template 400. In this embodiment, the mold 60 is a transparent mold, so that the mold 60 can be irradiated by ultraviolet light. The ultraviolet light is irradiated through the mold 6 to irradiate the polymer composition material 410, and the components in the polymer composition material will be 098120952. Form number Α 0101 14th true / total 27 pages 0982035676-0 [0045] 201100263 The curing of the curing father occurs. After the polymer composition material 4i〇 is completely cured, the mold 60 is directly separated from the flexible substrate 4〇, thereby forming a polymer layer 4〇5 on the surface of the flexible substrate 40, The polymer layer 4〇5 is formed with a plurality of protrusions 4〇4 and a plurality of grooves 406 away from the surface of the flexible substrate 40. The plurality of protrusions 404 and the plurality of grooves 4〇6 constitute a The rice pattern 408' thus obtains a nanoimprint template 4〇〇. In this embodiment, the energy density of the ultraviolet light is 1 〇~20 mJ/cm3, and the irradiation time is 10~30 min. 〇[0046]本The difference between the embodiment and the first embodiment is that the implementation The nanoimprint template 400 is obtained by forming the polymer composition material 410 on the surface of the mold 60 having the nano-pattern 608, and then pressing the flexible substrate 40 against the polymeric composition material 41. [0047] In the embodiment of the present invention, the imprint template can be provided with a substrate, and then a resist layer is formed on the surface of the substrate to imprint the nano pattern on the nano imprint template. a resist layer, which is then cured by ultraviolet light; a portion of the resist, the nano-imprint template is separated from the resist layer, and the nano-imprinted template is applied The nano-pattern is transferred to the resist layer, and then a nano pattern is formed on the substrate by etching. Since the nano-pattern of the nanoimprint template provided by the embodiment of the present invention is cured by using the polymer composition material containing the high-branched oligomer, the nano-pattern obtained by curing the polymer composition material has The higher modulus makes the nano-pattern difficult to deform and has high structural stability. Since the polymer composition material is added to the perfluoropolyether to participate in photocuring cross-linking, the perfluoropolyether is a low surface energy material, so that the polymer composition material is solid 098120952. Form No. A0101 Page 15 / 27 pages 0992035676- 0 201100263 After the _small, the nano-imprinted template and the anti-surname's are cut off during the demoulding process, which makes it easy to work. Therefore, the nanograph prepared by using the nanoplate provided by the invention has higher integrity 'and good fidelity', thereby avoiding complicated surface treatment processes such as self-assembly using fluorine-containing organic small molecules, thereby obtaining The expected low surface energy nanoimprint template. [0049] The nano green printing and the Nykton (four) preparation method have the following advantages: - forming a nano graphic by curing the surface of the flexible substrate by the polymer composition material, the luxury imprint template having The flexibility is not easy to break. Since the polymer composition material comprises a hyperbranched oligomer, the nano-pattern obtained by curing the polymer composition material has a relatively high modulus, so that the nano-pattern is not easily deformed. Failure has a high structural stability. Third, since the polymer composition material is added with perfluoropolyether to participate in photocuring cross-linking, the perfluoropolyether is a low surface energy material, so that the polymer composition material has little adhesion after curing, in the demolding process. The nanoimprint template is prevented from sticking to the resist, so that the mold release is easy, so that the nano pattern prepared by using the nano imprint template provided by the invention has high integrity and good fidelity. . Fourthly, the preparation method of the nano imprint template provided by the embodiment of the invention can be completed by the photocuring method at normal temperature, so that the method is simple in process and low in cost. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention, 098120952 Form No. A0101 Page 16 of 27 0982035676-0 201100263 are to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0055] FIG. 1 is a schematic cross-sectional view of a nanoimprint template provided by the present invention. Fig. 2 is a flow chart showing the first embodiment of the method for preparing a nanoimprint template provided by the present invention. Fig. 3 is a schematic view showing the process flow of the first embodiment of the method for preparing a nanoimprint template provided by the present invention. Fig. 4 is a flow chart showing a second embodiment of a method for preparing a nanoimprint template provided by the present invention. Fig. 5 is a schematic view showing the process flow of the second embodiment of the method for preparing a nanoimprint template provided by the present invention. [Major component symbol description] Flexible substrate 10, 40 nm imprinted template 1 00,400 Adhesion enhancement layer 1 03, 403 Convex 1 04, 404 Polymer layer 105, 405 Concave 1 06, 406 Nano graphic 1 08, 408 Polymer Composition Material Layer 110 Polymer Composition Material 410 Mold 20, 60 First Protrusion 24, First Groove 26, Form No. 1010101 Page 17 of 27 0982035676-0 098120952 201100263 First Nano Figure 208 Second convex portion 64 second groove 66 second nano graphic 608 098120952 Form No. A0101 Page 18 of 27 0982035676-0

Claims (1)

201100263 七、申請專利範圍: 1 . 一種奈米壓印模板,包括一柔性基底,以及一聚合物層形 成於所述柔性基底的表面,該聚合物層遠離所述柔性基底 的表面形成有奈米圖形,所述聚合物層為高支化低聚物、 全氟基聚乙醚、甲基丙烯酸甲酯以及有機稀釋劑的固化交 聯物。 2 .如申請專利範圍第1項所述的奈米壓印模板,其中,所述 奈米圖形由多個凸部及凹槽組成。 3 .如申請專利範圍第2項所述的奈米壓.印模板,其中,所述 〇 多個凸部形成在所述聚合物層遠離所述柔性基底的表面, 任意兩個相鄰的凸部之間形成一個凹槽。 ?':〒 jj:'WS·膏 4.如申請專利範圍第2項所述的奈米壓印模板,其中,所述 凸部及凹槽的尺寸小于200奈米。 5 .如申請專利範圍第1項所述的奈米壓印模板,其中,所述 高支化低聚物為偏苯三酸酐、乙二醇以及環氧丙烯酸共聚 而成,或者為乙二硫醇和環氧丙烯酸開環共聚而成。 ^ 6 .如申請專利範圍第1項所述的奈米壓印模板,其中,所述 高支化低聚物由環氧丙烯酸功能團、乙二醇功能團和1-羥 基環已基苯基苯甲酮功能團改性的偏苯三酸酐功能團組成 〇 7 .如申請專利範圍第1項所述的奈米壓印模板,其中,所述 有機稀釋劑為二羥基乙基二曱基乙烯。 8 .如申請專利範圍第1項所述的奈米壓印模板,其中,所述 奈米壓印模板還包括設置於所述柔性基底與所述聚合物層 之間的附著力增強層。 098120952 表單編號A0101 第19頁/共27頁 0982035676-0 201100263 9 .如申請專利範圍第8項所述的奈米壓印模板,其中,所述 附著力增強層包括分子式為 H2〇CCH3COOCH2CH2Si(OCH3)3的材料。 10. —種奈米壓印模板的製備方法,其包括以下步驟· 提供一柔性基底’在所述柔性基底的一個表面形成一聚合 物組合物材料層’所述聚合物組合物由高支化低聚物,全 氟基聚乙醚’甲基丙稀酸甲醋’自由基引發劑以及有機稀 釋劑組成; 提供一個表面具有第一奈米圖形的模昇,將所述模具表面 的第一奈米圖形複答到所述聚合物组合物村料層;以及 光固化所述聚合物組合物材料,將所述模具與所述柔性基 底分離’在所述柔性基底表面形成包括多個凸部及多個凹 槽的奈米圖形。 11 ·如申請專利範圍第10項所述的奈米壓印構板的製備方法, 其中’所述聚合物組合物中,高支化低聚物的質量百分比 含量為50%〜&0%,全氟基聚乙謎的質量百分比含量為 3%~5% ’甲基丙烯今甲醋的質量百分比含量為5%〜1〇%, 所述有機稀釋劑的賣量百分比含量為25%〜35%,所述自由 基引發劑的質量百分比含量為〇. 1 2%。 12 .如申請專利範圍第1〇項所述的奈米壓印模板的製備方法, 其中,所述自由基引發劑為光引發劑。 13 .如申請專利範圍第1〇項所述的奈米壓印模板的製備方法, 其中’所述提供一柔性基底,在所述柔性基底的一個表面 形成一聚合物組合物材料層之前,進一步包括一在所述柔 性基底表面塗敷附著力促進劑的步驟。 14 .如申請專利範圍第13項所述的奈米壓印模板的製備方法, 098120952 表單編號 A0101 第 20 頁/共 27 頁 0982035676-0 201100263 15 . 其中,所述附著力促進劍為 HoC=CCH-C00CH9CH2Si(0CH3)3 ° 如申請專利範圍第10頊所述的奈米壓印模板的製備方法, 其中,所述提供一個表面具有第一奈米圖形的模具,將模 具表面的第一奈米圖形複製到所述壓印抗蝕層的方法具體 包括以下步驟: 提供一表面具有第一奈米圖形的模具,所述模具的第一奈 米圖形包括多個第一凸部及多個第一凹槽;以及 將模具形成有第一奈米圖形的表面與所述柔性基底表面的 Ο 16 . 17 . 聚合物組合物材料層貼合,擠壓所述模具與柔性基底。 如申請專利範圍第1〇項所述的奈米麼印模板的製備方法, 其中,所述光固化所述聚合物組合物材料的方法為紫外光 固化。 一i奈米壓印模板的製備方法,其包括以下步驟: Ο 提供一表面具有第二奈米圖形的模具’在模具具有第二奈 米圖形的表面形成聚合物組合物材料。 提供一柔性基底,將所述柔性基底覆蓋所述模板表面的聚 合物組合物材料’播壓所述模具及柔性基底,使所述聚合 物組合物材料黏附於所述柔性基底。 光固化所述聚。物組合物材料,將所賴具減述柔性基 底分離,從而獲得—奈米壓印模板。 18 . 如申請專職_17項所述的奈米壓印模板的製備方法, /、中斤述在模具具有奈米_的表面形成聚合物組合物 材料的方法I㈣塗 ' 絲網印刷、超聲波回流或抽真空鋪 展的自組裝方法。 098120952 如申請專利範圍 表單編號A0101 第17項所述的奈 第21頁/共27頁 来壓印模板的製備方法 19 . 201100263 其中,所述第二奈米圖形包括多個第二凸部及第二凹槽 098120952 表單編號A0101 第22頁/共27頁 0982035676-0201100263 VII. Patent Application Range: 1. A nanoimprint template comprising a flexible substrate, and a polymer layer formed on a surface of the flexible substrate, the polymer layer being formed with a nanometer away from the surface of the flexible substrate Graphically, the polymer layer is a cured crosslinked product of a hyperbranched oligomer, perfluoropolyether, methyl methacrylate, and an organic diluent. 2. The nanoimprint template of claim 1, wherein the nanograph is composed of a plurality of protrusions and grooves. 3. The nano-pressure stamping template of claim 2, wherein the plurality of protrusions are formed on a surface of the polymer layer away from the flexible substrate, any two adjacent protrusions. A groove is formed between the portions. The embossing template of the second aspect of the invention, wherein the convex portion and the groove have a size of less than 200 nm. 5. The nanoimprint template according to claim 1, wherein the hyperbranched oligomer is copolymerized with trimellitic anhydride, ethylene glycol, and epoxy acrylate, or is ethanedithiol and epoxy. Acrylic ring-opening copolymerization. The nanoimprint template according to claim 1, wherein the hyperbranched oligomer comprises an epoxy acrylate functional group, an ethylene glycol functional group, and a 1-hydroxycyclohexyl phenyl group. The benzophenone functional group-modified trimellitic anhydride functional group composition. The nanoimprint template according to claim 1, wherein the organic diluent is dihydroxyethyldinonylethylene. 8. The nanoimprint template of claim 1, wherein the nanoimprint template further comprises an adhesion enhancing layer disposed between the flexible substrate and the polymer layer. The embossing template of the invention of claim 8, wherein the adhesion enhancement layer comprises a molecular formula of H2〇CCH3COOCH2CH2Si(OCH3), wherein the adhesion enhancement layer comprises a molecular formula of H2〇CCH3COOCH2CH2Si(OCH3). 3 materials. 10. A method of preparing a nanoimprint template, comprising the steps of: providing a flexible substrate 'forming a layer of a polymer composition material on one surface of the flexible substrate' from the high-branched polymer composition An oligomer, a perfluoropolyether 'methyl methacrylate methyl vinegar' radical initiator and an organic diluent; providing a mold having a surface having a first nanograph, the first surface of the mold surface Reaching the polymer composition to the polymer layer; and photocuring the polymer composition material, separating the mold from the flexible substrate, forming a plurality of protrusions on the surface of the flexible substrate and A nanograph of multiple grooves. The method for preparing a nano embossed plate according to claim 10, wherein in the polymer composition, the mass percentage of the highly branched oligomer is 50% to & 0% The content of the perfluoropolypolymymology is 3% to 5%. The content of the methyl methacrylate is 5% to 1% by mass, and the percentage of the organic thinner is 25%. 3重量。 The content of the free radical initiator is 〇. 12%. 12. The method of preparing a nanoimprint template according to claim 1, wherein the radical initiator is a photoinitiator. 13. The method of preparing a nanoimprint template according to claim 1, wherein the providing a flexible substrate is further formed before a layer of the polymer composition material is formed on one surface of the flexible substrate. A step of applying an adhesion promoter to the surface of the flexible substrate is included. 14. The method for preparing a nanoimprint template according to claim 13 of the patent application scope, 098120952, Form No. A0101, No. 20, page 27, 0992035676-0, 201100263 15 . wherein the adhesion promoting sword is HoC=CCH -C00CH9CH2Si(0CH3)3 ° The preparation method of the nanoimprint template according to claim 10, wherein the method provides a mold having a first nano-pattern on the surface, and the first nanometer on the surface of the mold The method for copying a pattern to the embossed resist layer comprises the following steps: providing a mold having a first nano-pattern on a surface, the first nano-pattern of the mold comprising a plurality of first protrusions and a plurality of first a groove; and a surface of the mold having the first nano-pattern formed thereon and a layer of the polymer composition material of the surface of the flexible substrate are bonded to the mold and the flexible substrate. The method for producing a nanoprinting template according to the above aspect of the invention, wherein the method of photocuring the polymer composition material is ultraviolet light curing. A method of preparing an i nanoimprint template comprising the steps of: Ο providing a mold having a second nanopattern on a surface ' forming a polymer composition material on a surface of the mold having a second nanopattern. A flexible substrate is provided, the polymeric composition material of the flexible substrate covering the surface of the template is used to smear the mold and flexible substrate to adhere the polymeric composition material to the flexible substrate. Light curing the poly. The material composition material is separated from the reduced flexible substrate to obtain a nanoimprint template. 18. The method for preparing a nanoimprint template according to the application of the full-time item _17, wherein the method of forming a polymer composition material on the surface of the mold has a method I (4) coating 'screen printing, ultrasonic reflow Or self-assembly method of vacuum spreading. 098120952 The preparation method of the imprint template is as described in the patent application form No. A0101, item 17 of the 17th item, which is described in claim 17, wherein the second nano-pattern includes a plurality of second convex portions and Two grooves 098120952 Form number A0101 Page 22 / Total 27 pages 0992035676-0
TW098120952A 2009-06-23 2009-06-23 Nano-imprint stemplate and mthod for manufacturing the same TWI368574B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098120952A TWI368574B (en) 2009-06-23 2009-06-23 Nano-imprint stemplate and mthod for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098120952A TWI368574B (en) 2009-06-23 2009-06-23 Nano-imprint stemplate and mthod for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201100263A true TW201100263A (en) 2011-01-01
TWI368574B TWI368574B (en) 2012-07-21

Family

ID=44836547

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098120952A TWI368574B (en) 2009-06-23 2009-06-23 Nano-imprint stemplate and mthod for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI368574B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI418464B (en) * 2011-07-27 2013-12-11 Jiin Ming Industry Co Ltd Multi-curable decorative board and its manufacturing method
TWI668431B (en) * 2017-09-08 2019-08-11 鴻海精密工業股份有限公司 A method for preparing molecule carrier
US10527553B2 (en) 2017-09-08 2020-01-07 Tsinghua University Molecule carrier used for molecule detection
TWI688115B (en) * 2013-12-27 2020-03-11 伊利諾大學受託人董事會 Nanostructure material stack-transfer methods and devices
CN112892627A (en) * 2021-02-05 2021-06-04 浙江大学 Photocuring micro-fluidic chip based on elastic support body and preparation method and application thereof
CN115542662A (en) * 2021-06-30 2022-12-30 镭亚电子(苏州)有限公司 Flexible imprint template and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI418464B (en) * 2011-07-27 2013-12-11 Jiin Ming Industry Co Ltd Multi-curable decorative board and its manufacturing method
TWI688115B (en) * 2013-12-27 2020-03-11 伊利諾大學受託人董事會 Nanostructure material stack-transfer methods and devices
TWI668431B (en) * 2017-09-08 2019-08-11 鴻海精密工業股份有限公司 A method for preparing molecule carrier
US10527553B2 (en) 2017-09-08 2020-01-07 Tsinghua University Molecule carrier used for molecule detection
US11198610B2 (en) 2017-09-08 2021-12-14 Tsinghua University Method for making molecule carrier
CN112892627A (en) * 2021-02-05 2021-06-04 浙江大学 Photocuring micro-fluidic chip based on elastic support body and preparation method and application thereof
WO2022166600A1 (en) * 2021-02-05 2022-08-11 浙江大学 Photocuring microfluidic chip based on elastic support body, and manufacturing method and application of photocuring microfluidic chip
CN115542662A (en) * 2021-06-30 2022-12-30 镭亚电子(苏州)有限公司 Flexible imprint template and method of manufacturing the same

Also Published As

Publication number Publication date
TWI368574B (en) 2012-07-21

Similar Documents

Publication Publication Date Title
KR101621381B1 (en) Process and method for modifying polymer film surface interaction
Lan et al. UV-nanoimprint lithography: structure, materials and fabrication of flexible molds
CN101918896B (en) Composition for mold sheet and method for preparing mold sheet using same
CN102791452B (en) Resin mold
JP4901467B2 (en) Organic mold and manufacturing method thereof
US9120265B2 (en) Nanoimprint resist, nanoimprint mold and nanoimprint lithography
TW578200B (en) Patterned structure reproduction using nonsticking mold
CN101923279B (en) Nano-imprint template and preparation method thereof
TWI500638B (en) Curable composition for nanoimprint and cured product
CN101809046A (en) Photocurable composition, method for producing fine patterned body, and optical device
JP2004002702A (en) Prepolymer material, polymer material, imprinting process and its use
TW201027251A (en) Methods and processes for modifying polymer material surface interactions
TW201100263A (en) Nano-imprint stemplate and mthod for manufacturing the same
TW201135363A (en) Curable composition for imprints and producing method of polymerizable monomer for imprints
TW201825617A (en) Composition for forming primer layer for imprinting, primer layer for imprinting, and laminate
TW201723074A (en) Photo-imprinting resin composition, photo-imprinting resin film and patterning process
JP2010280159A (en) High-durability replica mold for nano-imprint lithography, and method for manufacturing the same
TW201425355A (en) Resin for nanoimprinting, laminate containing resin for nanoimprinting, printed board containing resin for nanoimprinting, and method for producing nanoimprint substrate
TWI389931B (en) Nano-imprint resist and nanoimprinting lithography method using the same
TW201127609A (en) Resinous mold insert, molded article, and method of manufacturing molded article
CN101923283A (en) Nano-imprint resist and nano-imprint method adopting same
JP7357882B2 (en) Method for manufacturing a molded article, method for manufacturing a replica mold, and method for manufacturing a device
TW201542714A (en) Curable composition for photo-imprints, method for forming pattern, pattern and fluorine-containing compound
TWI391418B (en) Nano-imprint resist and nanoimprinting lithography method using the same
Zhang et al. A Novel nanoimprint lithography thiol-ene resist for sub-70 nm nanostructures