WO2022166589A1 - 红外温度传感器以及电子设备 - Google Patents

红外温度传感器以及电子设备 Download PDF

Info

Publication number
WO2022166589A1
WO2022166589A1 PCT/CN2022/072801 CN2022072801W WO2022166589A1 WO 2022166589 A1 WO2022166589 A1 WO 2022166589A1 CN 2022072801 W CN2022072801 W CN 2022072801W WO 2022166589 A1 WO2022166589 A1 WO 2022166589A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
sensing element
temperature sensor
substrate
integrated circuit
Prior art date
Application number
PCT/CN2022/072801
Other languages
English (en)
French (fr)
Inventor
陈华辉
Original Assignee
芯海科技(深圳)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芯海科技(深圳)股份有限公司 filed Critical 芯海科技(深圳)股份有限公司
Publication of WO2022166589A1 publication Critical patent/WO2022166589A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity

Definitions

  • the utility model relates to the technical field of sensors, in particular to an infrared temperature sensor and an electronic device.
  • an infrared sensor element and an ASIC Application Specific Integrated Circuit
  • ASIC Application Specific Integrated Circuit
  • the purpose of this application is to propose an infrared temperature sensor and an electronic device to solve the above problems.
  • the present application achieves the above objects through the following technical solutions.
  • an embodiment of the present application provides an infrared temperature sensor, which includes a substrate, an infrared sensing element, an integrated circuit chip, a heat insulating member, and a package casing.
  • the infrared sensing element is disposed on the substrate;
  • the integrated circuit chip is disposed on the substrate.
  • the infrared sensing element and the integrated circuit chip are spaced apart and electrically connected to each other;
  • the heat insulating member is arranged on the substrate, and is located between the integrated circuit chip and the infrared sensing element;
  • the encapsulation shell is arranged on the substrate, and encapsulates the infrared sensing element, integrated Circuit chips and thermal insulation.
  • an embodiment of the present application further provides an electronic device, including a casing and the infrared temperature sensor described in the first aspect, where the infrared temperature sensor is disposed in the casing.
  • the infrared temperature sensor encapsulates the infrared sensing element, the integrated circuit chip and the heat insulating element together in a package casing, and the heat insulating element is located between the integrated circuit chip and the infrared sensing element. , so that the heat transfer between the integrated circuit chip and the infrared sensing element can be isolated, and the heat generated by the integrated circuit chip after packaging can be prevented from affecting the measurement accuracy of the infrared sensing element.
  • FIG. 1 is a top view of an infrared temperature sensor provided by an embodiment of the present application.
  • FIG. 2 is a side view of an infrared temperature sensor provided by an embodiment of the present application.
  • FIG. 3 is a cross-sectional view of the infrared temperature sensor shown in FIG. 1 in the direction A-A.
  • FIG. 4 is a cross-sectional view of the infrared temperature sensor shown in FIG. 2 in the direction B-B.
  • FIG. 5 is another cross-sectional view taken along the direction A-A of the infrared temperature sensor shown in FIG. 1 .
  • FIG. 6 is another cross-sectional view taken along the direction B-B of the infrared temperature sensor shown in FIG. 2 .
  • FIG. 7 is another cross-sectional view taken along the direction A-A of the infrared temperature sensor shown in FIG. 1 .
  • FIG. 8 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the infrared temperature sensor 100 provided by the embodiment of the present application includes a substrate 110 , an infrared sensing element 120 , an integrated circuit chip 130 , a heat insulating member 140 and a package casing 150 .
  • the infrared sensing element 120 is disposed on the substrate 110, the integrated circuit chip 130 is disposed on the substrate 110, and the infrared sensing element 120 and the integrated circuit chip 130 are spaced apart and electrically connected to each other; Between the circuit chip 130 and the infrared sensing element 120 ; the package casing 150 is disposed on the substrate 110 and encapsulates the infrared sensing element 120 , the integrated circuit chip 130 and the heat shield 140 .
  • the infrared sensing element 120 can be a thermopile sensing element, and the infrared sensing element 120 usually includes an infrared receiving surface, which can absorb the infrared energy incident on the infrared receiving surface by using the thermoelectromotive force effect (Seebeck effect), and generate and output electrical signals.
  • the integrated circuit chip 110 may be an ADC (analog-to-digital converter) chip, and the integrated circuit chip 110 is electrically connected to the infrared sensor element 120, and is used to convert the analog signal output by the infrared sensor element 120 into a digital signal after analog-to-digital conversion, so that a digital signal is generated.
  • the digital infrared temperature sensor 100 can directly output digital signals, which is convenient to use.
  • the integrated circuit chip 130 may be an ASIC (Application Specific Integrated Circuit) chip, which is used to generate a digital signal after converting and correcting the analog signal output by the infrared sensing element 120, so that the infrared temperature sensor 100 can directly output digital signals for use.
  • ASIC Application Specific Integrated Circuit
  • the thermal insulation member 140 may be made of thermal insulation materials such as glass fiber, polyurethane foam, micro-nano thermal insulation board, or centrifugally peeled fiber cotton.
  • the heat insulating member 140 is generally a long strip structure, and the cross section of the heat insulating member 140 may be rectangular, circular, oval or some other regular and irregular shapes.
  • the integrated circuit chip 130 and the infrared sensing element 120 are respectively located on both sides of the heat insulating member 140 .
  • the integrated circuit chip 130 and the infrared sensing element 120 can be disposed at a certain distance from the heat insulating member 140 , or can be disposed in contact with the heat insulating member 140 . .
  • the infrared temperature sensor 100 provided by the embodiment of the present application encapsulates the infrared sensing element 120 , the integrated circuit chip 130 , and the heat insulating element 140 together in the package casing 150 , and the heat insulating element 140 is located between the integrated circuit chip 130 and the infrared sensing element 120, so that the heat transfer between the integrated circuit chip 130 and the infrared sensing element 120 can be isolated, and the heat generated by the integrated circuit chip 130 after packaging can be prevented from affecting the measurement accuracy of the infrared sensing element.
  • the infrared sensing element 120 , the integrated circuit chip 130 and the heat insulating member 140 are all disposed on the substrate 110 , which can effectively reduce the thickness of the infrared temperature sensor 100 .
  • the heat insulator 140 may have a length direction Y, a width direction X and a thickness direction Z, the thickness direction Z of the heat insulator 140 may be consistent with the thickness direction Z of the substrate 110, and the infrared sense
  • the measuring element 120 and the integrated circuit chip 130 are respectively located on both sides of the width direction X of the heat shield 140 , and the length direction Y of the heat shield 140 is perpendicular to the width direction X and the thickness direction Z of the heat shield 140 .
  • Both ends of the heat insulating member 140 in the thickness direction Z may be in contact with the package case 150 and the substrate 110 respectively, wherein abutting on the package case 150 refers to abutting against the inner wall of the package case 150 .
  • the two ends in the thickness direction Z of the heat sink are closely attached to the package casing 150 and the substrate 110 , which can prevent heat from being transferred through the gap between the heat insulating member 140 , the packaging casing 150 and the substrate 110 .
  • Both ends of the thermal insulation member 140 in the length direction Y may respectively abut against two opposite side walls of the packaging casing 150 , wherein the two opposite side walls abutting against the packaging casing 150 refer to the side walls abutting against the packaging casing 150 .
  • the two opposite inner side walls can prevent heat from being transferred through the gap between the heat insulating element 140 and the encapsulating case 150 by closely contacting both ends of the heat insulating element 140 in the longitudinal direction Y with the encapsulating case 150 .
  • the substrate 110 may be the substrate 142 and may be a resin substrate, a plastic substrate, a ceramic substrate or other substrates.
  • the substrate 110 may be provided with electrical connectors 111 such as lines and pads, and the infrared sensing element 120 and the integrated circuit chip 130 are electrically connected through the electrical connectors 111 on the substrate 110 .
  • the infrared sensing element 120 and the integrated circuit chip 130 may be fixed to the substrate 110 by a fixing glue, and then electrically connected to the electrical connectors 111 on the substrate 110 through bonding wires respectively.
  • the bonding wire can be a wire such as gold wire or aluminum wire, and the bonding wire can be welded and fixed to the infrared sensing element 120 and the integrated circuit chip 130 .
  • the infrared temperature sensor 100 may further include SMD pins, the SMD pins are disposed on the substrate 110 and exposed outside the substrate 110 , and the SMD pins are electrically connected to the integrated circuit chip 130 to facilitate the acquisition of the integrated circuit chip 130
  • the digital signal output of the IR temperature sensor 100 can be reduced by using the SMD pins.
  • the SMD pins and the integrated circuit chip 130 may be located on opposite sides of the substrate 110 respectively, and the SMD pins may be electrically connected to the integrated circuit chip 130 through the electrical connectors 111 on the substrate 110 .
  • the SMD pins can also be directly connected to the integrated circuit chip 130 after passing through the substrate 110 .
  • the infrared temperature sensor 100 may further include an ambient temperature sensing element 160.
  • the ambient temperature sensing element 160 is disposed on the substrate 110 and is located on the same side of the heat shield 140 as the infrared sensing element 120.
  • the ambient temperature sensing element 160 is connected to the integrated circuit.
  • the chip 130 is electrically connected and packaged in the package casing 150 .
  • the ambient temperature sensing element 160 may be a thermistor, such as an NTC (Negative Temperature Coefficient, negative temperature coefficient) thermistor or a thermistor made of other heat-sensitive materials, for measuring the environment where the infrared sensing element 120 is located temperature, that is, the temperature of the cold end of the infrared sensing element 120 .
  • the integrated circuit chip 130 can calibrate the temperature signal detected by the infrared sensing element 120 according to the ambient temperature signal obtained by the ambient temperature sensing element 160 to improve the measurement accuracy.
  • the ambient temperature sensing element 160 and the infrared sensing element 120 are located on the same side of the heat shield 140 , which can avoid thermal interference of the integrated circuit chip 130 and ensure that the ambient temperature sensing element 160 can accurately measure the location where the infrared sensing element 120 is located. ambient temperature.
  • the ambient temperature sensing element 160 can be fixed on the substrate 110 by adhesive, and then electrically connected to the electrical connector 111 on the substrate 110 by bonding wires, so as to realize the electrical connection with the integrated circuit chip 130 .
  • the encapsulation housing 150 may include a first encapsulation part 151 and a second encapsulation part 152 , the heat shield 140 is located between the first encapsulation part 151 and the second encapsulation part 152 , and the infrared sensing element 120 is encapsulated in the first encapsulation part 151 , the integrated circuit chip 130 is packaged in the second package portion 152 .
  • the heat insulator 140 separates the encapsulation shell 150 to form the first encapsulation part 151 and the second encapsulation part 152 , which can prevent heat transfer through the thermal conduction of the encapsulation shell 150 to a certain extent, and further improve the thermal insulation effect.
  • the package casing 150 may further include a top cover portion 153 , the top cover portion 153 is substantially a sheet-like structure, the top cover portion 153 is disposed opposite to the substrate 110 and is connected to the first package Between the part 151 and the second encapsulation part 152 , the two ends of the heat insulation member 140 in the thickness direction are respectively in contact with the packaging case 150 and the substrate 110 , that is, the two ends in the thickness direction of the heat insulation member 140 are respectively in contact with the top cover part 153 and the substrate 110 , cover the heat insulating member 140 in the thickness direction of the heat insulating member 140 through the top cover portion 153 , so as to encapsulate the heat insulating member 140 in the package case 150 .
  • the package housing 150 may further include a sidewall portion 154 , the sidewall portion 154 is substantially a sheet-like structure, and the sidewall portion 154 is connected to the first package portion 151 and the second encapsulation part 152 and located between the top cover part 153 and the substrate 110 .
  • the number of the side wall portions 154 may include two, and the two side wall portions 154 are respectively located at both ends of the thermal insulation member 140 in the length direction Y, and the two sides of the thermal insulation member 140 in the longitudinal direction Y are respectively abutted against the opposite sides of the packaging shell 150 .
  • the two side walls that is, the two ends in the length direction Y of the heat insulating member 140 are respectively abutted against the two side wall portions 154 , and the heat insulating member 140 is covered by the side wall portions 154 in the length direction Y of the heat insulating member 140 to prevent
  • the heat insulating member 140 is encapsulated in the encapsulation case 150 .
  • the first packaging part 151 , the second packaging part 152 , the top cover part 153 and the side wall part 154 can be integrally formed to simplify the packaging process.
  • the package casing 150 may be made of materials such as ABS resin (Acrylonitrile butadiene Styrene copolymers, acrylonitrile-butadiene-styrene copolymer), polylactic acid, or polyvinyl alcohol.
  • the first encapsulation part 151 , the second encapsulation part 152 , the top cover part 153 and the side wall part 154 can also be molded in stages, for example, the first encapsulation part 151 and the second encapsulation part 152 are molded first to encapsulate the infrared
  • the sensing element 120 and the integrated circuit chip 130, the top cover part 153 and the side wall part 154 are remolded, and the top cover part 153 and the side wall part 154 are connected with the first packaging part 151 and the second packaging part 152, so as to encapsulate the spacer.
  • Heater 140 The materials of the first encapsulation part 151 , the second encapsulation part 152 , the top cover part 153 and the side wall part 154 may be the same or different.
  • the first encapsulation part 151 , the heat insulator 140 and the substrate 110 are enclosed to form the accommodating cavity 112 , and the infrared sensing element 120 is disposed in the accommodating cavity 112 .
  • the first encapsulation portion 151 can be prevented from covering the infrared receiving surface of the infrared sensing element 120 .
  • the ambient temperature sensing element 160 and the infrared sensing element 120 can be disposed in the accommodating cavity 112 together, so that the ambient temperature sensing element 160 can more accurately measure the infrared The ambient temperature where the sensing element 120 is located.
  • the size of the accommodating cavity 112 can be adjusted according to the sizes of the infrared sensing element 120 and the ambient temperature sensing element 160 , as long as the infrared sensing element 120 and the ambient temperature sensing element 160 can be accommodated.
  • the second packaging part 152 can directly cover the outer surface of the integrated circuit chip 130 , that is, the second packaging part 152 can be directly attached to the integrated circuit chip 130 to facilitate the packaging of the integrated circuit chip 130 .
  • the first encapsulation part 151 may also be provided with a light-transmitting window 1511 (see FIGS. 1 and 3 for details), and the infrared temperature sensor 100 further includes an infrared filter lens 170. Window 1511 is set relatively.
  • the infrared filter lens 170 is used for filtering the incident light in the non-infrared band, and transmits the infrared light in a certain wavelength range to the infrared receiving surface of the infrared sensing element 120, so as to exclude the influence of the interference wavelength in the non-infrared band.
  • the optical axis of the infrared filter lens 170 may coincide with the center of the infrared receiving surface of the infrared sensing element 120, and the orthographic projection of the infrared filter lens 170 may fall within the range of the infrared receiving surface.
  • the infrared filter lens 170 can be embedded in the light-transmitting window 1511 , and the top surface of the infrared filter lens 170 can be flush with the top surface of the first package portion 151 to improve the appearance consistency of the infrared temperature sensor 100 .
  • the shape of the light transmission window 1511 and the shape of the infrared filter lens 170 are adapted to each other.
  • the infrared filter lens 170 is a circular convex lens with a thick middle and a thin edge, and the cross section of the light transmission window 1511 is circular.
  • the infrared filter lens 170 may also be a lens with other shapes such as a square lens, and in this case, the cross section of the light transmission window 1511 is a square or other suitable shapes.
  • the infrared filter lens 170 can also be disposed inside the light-transmitting window 1511 , and the light enters the infrared filter lens 170 through the light-transmitting window 1511 .
  • the top surface is indented toward the side of the infrared sensing element 120 to prevent the infrared filter lens 170 from being worn.
  • a part of the periphery of the infrared filter lens 170 is in contact with the first encapsulation part 151 , and the remaining part of the periphery of the infrared filter lens 170 is in contact with the heat insulating member 140 .
  • the lens 170 and the heat shield together form an accommodating cavity 112 for accommodating the infrared sensing element 120 .
  • the accommodating cavity 112 may also be formed only by the substrate 110 , the first encapsulation portion 151 and the infrared filter lens 170 , and the heat insulating member 140 is disposed on the first encapsulation portion 151 in this case. and the second encapsulation portion 152 , and is not exposed in the accommodating cavity 112 .
  • the first package portion 151 is provided with a light-transmitting window 1511 . When the infrared filter lens 170 is embedded in the light-transmitting window 1511 , the periphery of the infrared filter lens 170 abuts against the first package portion 151 .
  • An embodiment of the present application further provides an electronic device 200 , including a housing 210 and an infrared temperature sensor 100 .
  • the infrared temperature sensor 100 is disposed in the housing 210 .
  • the electronic device 200 may be a wearable device or a mobile terminal, and the wearable device includes but is not limited to a smart watch, a smart bracelet, a smart clothing, and the like.
  • the electronic device 200 may also be some other electronic devices 200 with a temperature measurement function, such as a tablet computer, a notebook computer, a human body monitor and other healthcare devices.
  • the embodiments of the present application are described by taking the electronic device 200 as a smart watch as an example.
  • a temperature measurement window is opened on the housing 210 of the electronic device 200, and the temperature measurement window is arranged opposite to the light transmission window 1511 of the infrared temperature sensor 100, so that the radiation of the target to be measured can be sequentially Incident to the infrared sensing element 120 through the temperature measurement window.
  • the electronic device 200 may further include a display panel 220 and a main board.
  • the display panel 220 is disposed in the casing 210 and exposed outside the casing 210 .
  • the digital signal shows the temperature value directly on the display.
  • the infrared temperature sensor 100 includes SMD pins, and the SMD pins can be directly welded and fixed on the pads of the main board.
  • an integrated circuit is established.
  • the chip 130 is electrically connected to the motherboard.
  • the electrical connection between the main board and the integrated circuit chip 130 can also be established in other ways, for example, through wires.
  • the infrared temperature sensor 100 can be installed on the main board or in other positions of the housing 210 .
  • the electronic device 200 realizes the temperature detection function through the infrared temperature sensor 100 .
  • the infrared temperature sensor 100 encapsulates the infrared sensing element 120 , the integrated circuit chip 130 and the heat shield 140 together in the package casing 150 , and the heat shield 140 is located in the integrated circuit. Between the chip 130 and the infrared sensing element 120, heat transfer between the integrated circuit chip 130 and the infrared sensing element 120 can be isolated, so as to prevent the heat generated by the integrated circuit chip 130 from affecting the measurement accuracy of the infrared sensing element after packaging.
  • the infrared sensing element 120 , the integrated circuit chip 130 and the heat insulator 140 are all disposed on the substrate 110 , which can effectively reduce the thickness of the infrared temperature sensor 100 and can be applied to mobile terminals and wearable devices with strict thickness requirements.
  • the electronic device 200 includes the infrared temperature sensor 100 in the above-mentioned embodiment, it has all the beneficial effects of the infrared temperature sensor 100 , which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

本申请实施例提供一种红外温度传感器以及电子设备,红外温度传感器包括基板、红外感测元件、集成电路芯片、隔热件和封装壳体,红外感测元件设置于基板;集成电路芯片设置于基板,红外感测元件和集成电路芯片相互间隔并电连接;隔热件设置于基板,并位于集成电路芯片和红外感测元件之间;封装壳体设置于基板,并封装红外感测元件、集成电路芯片和隔热件。本申请实施例提供的红外温度传感器通过隔热件隔绝了电路芯片和红外感测元件之间的热量传递,从而能够避免封装后集成电路芯片产生的热量影响红外传感元件的测量准确度。

Description

红外温度传感器以及电子设备
相关申请的交叉引用
本申请要求于2021年02月05日提交的申请号为202120334340.3的中国申请的优先权,其在此处于所有目的通过引用将其全部内容并入本文。
技术领域
本实用新型涉及传感器技术领域,具体涉及一种红外温度传感器以及电子设备。
背景技术
随着电子设备的快速发展,系统对电子器件的尺寸要求越来越严苛。相关技术将红外传感器元件与ASIC(Application Specific Integrated Circuit,专用集成电路)集成封装在同一个封装体内,形成一个小型化的数字输出的红外温度传感器,能够减少封装尺寸。然而红外传感器元件对温度非常敏感,小尺寸封装可能会导致封装内的其它器件对红外传感器元件产生影响,导致温度测量不准确。
实用新型内容
本申请的目的在于提出一种红外温度传感器以及电子设备,以解决上述问题。本申请通过以下技术方案来实现上述目的。
第一方面,本申请实施例提供了一种红外温度传感器,包括基板、红外感测元件、集成电路芯片、隔热件和封装壳体,红外感测元件设置于基板;集成 电路芯片设置于基板,红外感测元件和集成电路芯片相互间隔并电连接;隔热件设置于基板,并位于集成电路芯片和红外感测元件之间;封装壳体设置于基板,并封装红外感测元件、集成电路芯片和隔热件。
第二方面,本申请实施例还提供了一种电子设备,包括外壳以及第一方面所述的红外温度传感器,红外温度传感器设置于外壳。
相对于现有技术,本申请实施例提供的红外温度传感器将红外感测元件、集成电路芯片和隔热件一同封装在封装壳体内,且隔热件位于集成电路芯片和红外感测元件之间,从而能够隔绝集成电路芯片和红外感测元件之间的热量传递,避免封装后集成电路芯片产生的热量影响红外传感元件的测量准确度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的红外温度传感器的俯视图。
图2是本申请实施例提供的红外温度传感器的侧视图。
图3是图1所示红外温度传感器A-A方向的剖面图。
图4是图2所示红外温度传感器B-B方向的剖面图。
图5是图1所示红外温度传感器A-A方向的另一剖面图。
图6是图2所示红外温度传感器B-B方向的另一剖面图。
图7是图1所示红外温度传感器A-A方向的又一剖面图。
图8是本申请实施例提供的电子设备的结构示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1-3所示,本申请实施例提供的红外温度传感器100包括基板110、红外感测元件120、集成电路芯片130、隔热件140和封装壳体150。
其中,红外感测元件120设置于基板110,集成电路芯片130设置于基板110,且红外感测元件120和集成电路芯片130相互间隔并电连接;隔热件140设置于基板110,并位于集成电路芯片130和红外感测元件120之间;封装壳体150设置于基板110,并封装红外感测元件120、集成电路芯片130和隔热件140。
红外感测元件120可以是热电堆感测元件,红外感测元件120通常包括红外接收面,可以利用热电动势效应(塞贝克效应)吸收入射至红外接收面的红外能量,并产生和输出电信号。集成电路芯片110可以是ADC(模数转换器)芯片,集成电路芯片110与红外传感元件120电连接,用于将红外传感元件120输出的模拟信号进行模数转换后生成数字信号,使得数字式红外温度传感器100可以直接输出数字信号,方便使用。
进一步可选地,集成电路芯片130可以是ASIC(Application Specific Integrated Circuit,专用集成电路)芯片,用于将红外感测元件120输出的模拟信号进行转换和修正处理后生成数字信号,使得红外温度传感器100可以直接输出数字信号进行使用。
隔热件140可以由玻璃纤维、聚氨酯泡沫、微纳隔热板或者离心剥离纤维棉等隔热材料制成。隔热件140大致为长条状结构,隔热件140的横截面可以呈矩形、圆形、椭圆形或者其他一些规则、不规则的形状。集成电路芯片130和红外感测元件120分别位于隔热件140的两侧,集成电路芯片130和红外感测元件120可以与隔热件140间隔一定距离设置,也可以贴合隔热件140设置。
本申请实施例提供的红外温度传感器100将红外感测元件120、集成电路芯片130和隔热件140一同封装在封装壳体150内,且隔热件140位于集成电路芯片130和红外感测元件120之间,从而能够隔绝集成电路芯片130和红外感测元件120之间的热量传递,避免封装后集成电路芯片130产生的热量影响红外传感元件的测量准确度。另一方面,红外感测元件120、集成电路芯片130和隔热件140均设置于基板110,能够有效地减薄红外温度传感器100的厚度。
请一并参阅图3和图4所示,隔热件140可以具有长度方向Y、宽度方向X和厚度方向Z,隔热件140的厚度方向Z可以与基板110的厚度方向Z一致,红外感测元件120和集成电路芯片130分别位于隔热件140的宽度方向X两侧,隔热件140的长度方向Y垂直于隔热件140的宽度方向X和厚度方向Z。
隔热件140的厚度方向Z两端可以分别抵接于封装壳体150和基板110,其中抵接于封装壳体150是指抵接于封装壳体150的内侧壁,通过将隔热件140的厚度方向Z两端与封装壳体150和基板110紧密贴合,可以防止热量通过隔热件140、封装壳体150和基板110之间的间隙传递。
隔热件140的长度方向Y两端可以分别抵接于封装壳体150相对的两个侧壁,其中抵接于封装壳体150相对的两个侧壁是指抵接于封装壳体150的相对的两个内侧壁,通过将隔热件140的长度方向Y两端与封装壳体150紧密贴合,可以防止热量通过隔热件140和封装壳体150之间的间隙传递。
本实施例中,基板110可以是基板142可以是树脂基板、塑料基板、陶瓷基板或者其他基板。基板110可以设置有线路、焊盘等电气连接件111,红外感测元件120和集成电路芯片130通过基板110上的电气连接件111实现电连接。
在一些实施方式中,红外感测元件120和集成电路芯片130可以通过固定胶固定于基板110,再分别通过邦线与基板110上的电气连接件111电连接。邦线可以是金线或者铝线等导线,邦线可以焊接固定于红外感测元件120和集成电路芯片130。
红外温度传感器100还可以包括贴片式引脚,贴片式引脚设置于基板110并显露于基板110外,贴片式引脚与集成电路芯片130电连接,以方便将集成电路芯片130获取的数字信号输出,且采用贴片式引脚可以减薄红外温度传感器100的整体厚度。
本实施例中,贴片式引脚和集成电路芯片130可以分别位于基板110的相背两侧,贴片式引脚可以通过基板110上的电气连接件111与集成电路芯片130电连接。在一些实施方式中,贴片式引脚也可以贯穿基板110后直接与集成电路芯片130电连接。
红外温度传感器100还可以包括环境温度感测元件160,环境温度感测元件160设置于基板110,并和红外感测元件120位于隔热件140的同一侧,环境温度感测元件160与集成电路芯片130电连接,并封装于封装壳体150内。
环境温度感测元件160可以是热敏电阻,例如NTC(Negative Temperature  Coefficient,负温度系数)热敏电阻或其他热敏材料制成的热敏电阻,用于测量红外感测元件120所处的环境温度,即红外传感元件120的冷端温度。集成电路芯片130可以根据环境温度感测元件160获取到的环境温度信号对红外感测元件120检测到温度信号进行校准,提高测量准确性。环境温度感测元件160与红外感测元件120位于隔热件140的同一侧,可以避免集成电路芯片130的热干扰,确保环境温度感测元件160可以准确地测量红外感测元件120所处的环境温度。
本实施例中,环境温度感测元件160可以通过粘胶固定于基板110,再通过邦线与基板110上的电气连接件111电连接,进而实现与集成电路芯片130的电连接。
封装壳体150可以包括第一封装部151和第二封装部152,隔热件140位于第一封装部151和第二封装部152之间,红外感测元件120封装于第一封装部151内,集成电路芯片130封装于第二封装部152内。隔热件140将封装壳体150分隔形成第一封装部151和第二封装部152,可以在一定程度上避免热量通过封装壳体150的导热作用进行传递,进一步地提高隔热效果。
请参阅图5所示,本实施例中,封装壳体150还可以包括顶盖部153,顶盖部153大致为薄片状结构,顶盖部153与基板110相对设置,并连接于第一封装部151和第二封装部152之间,隔热件140的厚度方向两端分别抵接于封装壳体150和基板110,即指隔热件140的厚度方向两端分别抵接于顶盖部153和基板110,通过顶盖部153在隔热件140的厚度方向上遮盖隔热件140,以将隔热件140封装于封装壳体150内。
请一并参阅图5和图6所示,本实施例中,封装壳体150还可以包括侧壁部154,侧壁部154大致为薄片状结构,侧壁部154连接于第一封装部151和第 二封装部152,并位于顶盖部153和基板110之间。侧壁部154的数量可以包括两个,两个侧壁部154分别位于隔热件140的长度方向Y两端,隔热件140的长度方向Y两端分别抵接于封装壳体150相对的两个侧壁,即指隔热件140的长度方向Y两端分别抵持于两个侧壁部154,通过侧壁部154在隔热件140的长度方向Y上遮盖隔热件140,以将隔热件140封装于封装壳体150内。
本实施例中,第一封装部151、第二封装部152、顶盖部153和侧壁部154可以一体成型,以简化封装工艺。封装壳体150可以采用ABS树脂(Acrylonitrile butadiene Styrene copolymers,丙烯腈-丁二烯-苯乙烯共聚物)、聚乳酸或者聚乙烯醇等材料制成。
在一些实施例中,第一封装部151、第二封装部152、顶盖部153和侧壁部154也可以分次成型,例如先成型第一封装部151和第二封装部152以封装红外感测元件120和集成电路芯片130,再成型顶盖部153和侧壁部154,并将顶盖部153和侧壁部154与第一封装部151和第二封装部152连接,以封装隔热件140。第一封装部151、第二封装部152、顶盖部153和侧壁部154的制成材料可以相同,也可以不同。
仍请参阅图3和图4所示,本实施例中,第一封装部151、隔热件140与基板110围合形成容置腔112,红外感测元件120设于容置腔112内,通过容置腔112收容红外感测元件120,可以避免第一封装部151覆盖到红外感测元件120的红外接收面。当红外温度传感器还包括环境温度感测元件160时,环境温度感测元件160可以和红外感测元件120一并设于容置腔112内,使得环境温度感测元件160可以更加准确地测量红外感测元件120所处的环境温度。容置腔112的腔体大小可以根据红外感测元件120和环境温度感测元件160的大小进行调整,只要能够收容红外感测元件120和环境温度感测元件160即可。
本实施例中,第二封装部152可以直接覆盖于集成电路芯片130的外表面,即第二封装部152可以直接与集成电路芯片130相贴合,以方便进行集成电路芯片130的封装。
第一封装部151还可以设有透光窗口1511(详见图1、3),红外温度传感器100还包括红外滤波透镜170,红外滤波透镜170的两侧分别与红外感测元件120和透光窗口1511相对设置。红外滤波透镜170用于过滤非红外波段的入射光,而将一定波长范围内的红外光透射至红外感测元件120的红外接收面,以排除非红外波段的干扰波长的影响。
本实施例中,红外滤波透镜170的光轴可以与红外感测元件120的红外接收面的中心重合,且红外滤波透镜170的正投影可以落在红外接收面的范围内。红外滤波透镜170可以嵌设于透光窗口1511,红外滤波透镜170的顶面可以和第一封装部151的顶面平齐,以提高红外温度传感器100的外观一致性。
透光窗口1511的形状与红外滤波透镜170的形状相互适配。作为一种示例,红外滤波透镜170为中间厚、边缘薄的圆形凸透镜,则透光窗口1511的横截面为圆形。当然,红外滤波透镜170也可以是方形透镜等其他一些形状的透镜,此时透光窗口1511的横截面为方形或者其他相适配的形状。
在一些实施方式中,红外滤波透镜170也可以设于透光窗口1511内侧,光线经透光窗口1511入射至红外滤波透镜170,此时红外滤波透镜170的顶面可以相对第一封装部151的顶面朝向红外感测元件120的一侧缩进,以避免红外滤波透镜170遭受磨损。
在一些实施例中,红外滤波透镜170的部分周缘与第一封装部151相抵接,红外滤波透镜170的其余部分周缘与隔热件140相抵接,由基板110、第一封装部151、红外滤波透镜170和隔热件共同围合形成用于容纳红外感测元件120的 容置腔112。
在一些实施例中,如图7所述,也可以仅由基板110、第一封装部151和红外滤波透镜170围合形成容置腔112,此时隔热件140设置在第一封装部151和第二封装部152之间,并没有显露于容置腔112内。第一封装部151设有透光窗口1511,当红外滤波透镜170嵌设于透光窗口1511时,红外滤波透镜170的周缘与第一封装部151相抵。
请一并参阅图3和图8所示,本申请实施例还提供了一种电子设备200,包括外壳210以及红外温度传感器100,红外温度传感器100设置于外壳210。
其中,电子设备200可以为穿戴设备或者移动终端,穿戴设备包括但不限于智能手表、智能手环、智能衣物等等。在一些实施例中,电子设备200也可以是其他一些具有温度测量功能的电子设备200,例如平板电脑、笔记本电脑、人体监测仪等医疗保健设备。本申请实施例以电子设备200为智能手表为例进行说明。
当红外温度传感器100设置于电子设备200时,电子设备200外壳210上开设有测温窗口,测温窗口与红外温度传感器100的透光窗口1511相对设置,以使得待测目标的辐射光线可以依次通过测温窗口入射至红外感测元件120。
电子设备200还可以包括显示面板220和主板,显示面板220设置于外壳210并露出于外壳210外,主板设置于外壳210内并与集成电路芯片130电连接,用于根据集成电路芯片130输出的数字信号直接在显示屏上显示温度值。
在一些实施方式中,红外温度传感器100包括贴片式引脚,可以将贴片式引脚直接焊接固定于主板的焊盘上,在完成红外温度传感器100的安装固定的同时,建立了集成电路芯片130与主板的电连接。当然,也可以通过其他方式,例如通过导线建立主板和集成电路芯片130的电连接,此时红外温度传感器100 可以安装于主板上,也可以安装于外壳210的其他位置。
电子设备200通过红外温度传感器100实现温度检测功能,红外温度传感器100将红外感测元件120、集成电路芯片130和隔热件140一同封装在封装壳体150内,且隔热件140位于集成电路芯片130和红外感测元件120之间,从而能够隔绝集成电路芯片130和红外感测元件120之间的热量传递,避免封装后集成电路芯片130产生的热量影响红外传感元件的测量准确度。同时,红外感测元件120、集成电路芯片130和隔热件140均设置于基板110,能够有效地减薄红外温度传感器100的厚度,可以适用于对厚度要求比较严格的移动终端和穿戴设备。
关于红外温度传感器100的详细结构特征请参阅上述实施例的相关描述。由于电子设备200包括上述实施例中的红外温度传感器100,因而具有红外温度传感器100所具有的一切有益效果,在此不再赘述。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制,虽然本申请已以较佳实施例揭示如上,然而并非用以限定本申请,任何本领域技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案内容,依据本申请的技术实质对以上实施例所作的任何简介修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (10)

  1. 一种红外温度传感器,其特征在于,包括:
    基板;
    红外感测元件,设置于所述基板;
    集成电路芯片,设置于所述基板,所述红外感测元件和所述集成电路芯片相互间隔并电连接;
    隔热件,设置于所述基板,并位于所述集成电路芯片和所述红外感测元件之间;以及
    封装壳体,设置于所述基板,并封装所述红外感测元件、所述集成电路芯片和所述隔热件。
  2. 根据权利要求1所述的红外温度传感器,其特征在于,所述红外温度传感器还包括环境温度感测元件,所述环境温度感测元件设置于所述基板,并和所述红外感测元件位于所述隔热件的同一侧,所述环境温度感测元件与所述集成电路芯片电连接,并封装于所述封装壳体内。
  3. 根据权利要求1所述的红外温度传感器,其特征在于,所述封装壳体包括第一封装部和第二封装部,所述隔热件位于所述第一封装部和所述第二封装部之间,所述红外感测元件封装于所述第一封装部内,所述集成电路芯片封装于所述第二封装部内。
  4. 根据权利要求3所述的红外温度传感器,其特征在于,所述第一封装部、所述隔热件与所述基板围合形成容置腔,所述红外感测元件设于所述容置腔内。
  5. 根据权利要求3所述的红外温度传感器,其特征在于,所述第一封装部设有透光窗口,所述红外温度传感器还包括红外滤波透镜,所述红外滤波透镜的两侧分别与所述红外感测元件和所述透光窗口相对设置。
  6. 根据权利要求1-5任一项所述的红外温度传感器,其特征在于,所述隔热件的厚度方向两端分别抵接于所述封装壳体和所述基板。
  7. 根据权利要求1-5任一项所述的红外温度传感器,其特征在于,所述隔热件的长度方向两端分别抵接于所述封装壳体相对的两个侧壁。
  8. 根据权利要求1-5任一项所述的红外温度传感器,其特征在于,所述红外温度传感器还包括贴片式引脚,所述贴片式引脚设置于所述基板并显露于所述基板外,所述贴片式引脚与所述集成电路芯片电连接。
  9. 一种电子设备,其特征在于,包括外壳以及如权利要求1-8任一项所述的红外温度传感器,所述红外温度传感器设置于所述外壳。
  10. 根据权利要求9所述的电子设备,其特征在于,所述电子设备为穿戴设备或者移动终端。
PCT/CN2022/072801 2021-02-05 2022-01-19 红外温度传感器以及电子设备 WO2022166589A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202120334340.3U CN214471356U (zh) 2021-02-05 2021-02-05 红外温度传感器以及电子设备
CN202120334340.3 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022166589A1 true WO2022166589A1 (zh) 2022-08-11

Family

ID=78137478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072801 WO2022166589A1 (zh) 2021-02-05 2022-01-19 红外温度传感器以及电子设备

Country Status (2)

Country Link
CN (1) CN214471356U (zh)
WO (1) WO2022166589A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214471356U (zh) * 2021-02-05 2021-10-22 芯海科技(深圳)股份有限公司 红外温度传感器以及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403508A (zh) * 2011-03-02 2013-11-20 欧姆龙株式会社 红外线温度传感器、电子设备及红外线温度传感器的制造方法
JP2014098671A (ja) * 2012-11-16 2014-05-29 Panasonic Corp 赤外線センサ
CN205879369U (zh) * 2016-06-27 2017-01-11 南阳森霸光电股份有限公司 基于可编程芯片的热释电红外传感器
CN108702402A (zh) * 2017-03-16 2018-10-23 华为技术有限公司 红外温度传感器及终端
CN111637978A (zh) * 2020-06-24 2020-09-08 南京信息工程大学 一种dfn封装的数字式红外温度传感器
CN111900244A (zh) * 2020-07-01 2020-11-06 上海烨映电子技术有限公司 绝缘板载热电堆传感器元器件及其制作方法
CN212458679U (zh) * 2020-05-22 2021-02-02 众智光电科技股份有限公司 红外线温度感测器
CN214471356U (zh) * 2021-02-05 2021-10-22 芯海科技(深圳)股份有限公司 红外温度传感器以及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403508A (zh) * 2011-03-02 2013-11-20 欧姆龙株式会社 红外线温度传感器、电子设备及红外线温度传感器的制造方法
JP2014098671A (ja) * 2012-11-16 2014-05-29 Panasonic Corp 赤外線センサ
CN205879369U (zh) * 2016-06-27 2017-01-11 南阳森霸光电股份有限公司 基于可编程芯片的热释电红外传感器
CN108702402A (zh) * 2017-03-16 2018-10-23 华为技术有限公司 红外温度传感器及终端
CN212458679U (zh) * 2020-05-22 2021-02-02 众智光电科技股份有限公司 红外线温度感测器
CN111637978A (zh) * 2020-06-24 2020-09-08 南京信息工程大学 一种dfn封装的数字式红外温度传感器
CN111900244A (zh) * 2020-07-01 2020-11-06 上海烨映电子技术有限公司 绝缘板载热电堆传感器元器件及其制作方法
CN214471356U (zh) * 2021-02-05 2021-10-22 芯海科技(深圳)股份有限公司 红外温度传感器以及电子设备

Also Published As

Publication number Publication date
CN214471356U (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
JP3743394B2 (ja) 赤外線センサおよびそれを用いた電子装置
JP5640529B2 (ja) 赤外線センサ及びこれを備えた回路基板
KR101727070B1 (ko) 체온센서 패키지
KR101415559B1 (ko) 비접촉식 적외선 센서 모듈
CN100402999C (zh) 红外线体温计
WO2022166586A1 (zh) 数字式红外温度传感器以及电子设备
EP2813826B1 (en) Infrared sensor and infrared sensor device
WO2022166589A1 (zh) 红外温度传感器以及电子设备
WO2018166095A1 (zh) 红外温度传感器及终端
WO2022166587A1 (zh) 红外温度传感器以及电子设备
JP2011058929A (ja) 赤外線センサ
CN107543614A (zh) 热电堆传感器
WO2015019762A1 (ja) 光伝送装置、導光プラグ、光ファイバープラグ、受光装置及び携帯機器
JP2003149045A (ja) 熱型赤外線検出器
WO2022042442A1 (zh) 红外测温模组、终端设备以及温度测量方法
CN216309227U (zh) 一种测温设备及电子设备
CN217424566U (zh) 红外传感封装结构及电子设备
CN107664534B (zh) 温度传感器封装结构
JP3855458B2 (ja) 放射温度検出素子
JPH1130553A (ja) 赤外線センサ
CN117012734B (zh) 一种传感器封装结构
CN115701268A (zh) 热感测封装
CN217560803U (zh) 感应式红外测温探测器及烹饪器具
JP2012053011A (ja) 赤外線センサおよび温度センサ装置
CN216309226U (zh) 一种热电堆传感器及温度检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.12.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 22748868

Country of ref document: EP

Kind code of ref document: A1