WO2022166587A1 - 红外温度传感器以及电子设备 - Google Patents
红外温度传感器以及电子设备 Download PDFInfo
- Publication number
- WO2022166587A1 WO2022166587A1 PCT/CN2022/072797 CN2022072797W WO2022166587A1 WO 2022166587 A1 WO2022166587 A1 WO 2022166587A1 CN 2022072797 W CN2022072797 W CN 2022072797W WO 2022166587 A1 WO2022166587 A1 WO 2022166587A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature sensor
- light
- infrared temperature
- substrate
- infrared
- Prior art date
Links
- 238000012545 processing Methods 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 44
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 230000003287 optical effect Effects 0.000 description 9
- 239000012790 adhesive layer Substances 0.000 description 8
- 238000004806 packaging method and process Methods 0.000 description 8
- 230000005855 radiation Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000009529 body temperature measurement Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/12—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
Definitions
- the utility model relates to the technical field of sensors, in particular to an infrared temperature sensor and an electronic device.
- thermopile chips and other devices are packaged infrared temperature sensors.
- TO Transistor Outline, transistor shape metal shell packages, which encapsulate thermopile chips and other devices through a package shell formed by connecting a cylindrical shell and a cover plate.
- Thermopile chips and other devices are gas-sealed, such as nitrogen sealing, vacuum sealing and inert gas sealing, etc., to avoid water vapor condensation interfering with the temperature measurement effect when the temperature changes, and to protect the thermopile chips and wire bonding and other devices.
- the structure design of this package form is complex, which not only needs to detect air tightness, which leads to high processing cost, but also has a large volume, which makes it difficult to apply to thin electronic devices such as mobile phones and wearable devices.
- the purpose of this application is to propose an infrared temperature sensor and an electronic device to solve the above problems.
- the present application achieves the above objects through the following technical solutions.
- an embodiment of the present application provides an infrared temperature sensor, including a substrate, an infrared light sensing component, and a package, the infrared light sensing component is disposed on the substrate, and the infrared light sensing component includes a thermopile sensing element and a filter.
- the filter is attached to the thermopile sensing element; the package body covers the base and wraps the infrared light sensing component, the package body is provided with a light entrance area, and the light entrance area is opposite to the infrared light sensing component.
- an embodiment of the present application provides an electronic device, including a casing and the infrared temperature sensor described in the first aspect, where the infrared temperature sensor is disposed on the casing.
- the infrared temperature sensor provided by the embodiment of the present application attaches the filter to the thermopile sensing element, and wraps the infrared light sensing component through the package body and the substrate, which can be achieved without affecting the transmission of light.
- the thermopile sensing element is protected by cavity-free sealing to ensure that no water vapor condensation will interfere with the temperature measurement effect when the temperature changes, and this packaging method can reduce the difficulty of process processing, and also reduce the thickness of the package body, which is convenient for infrared Temperature sensors are used in thin electronic devices such as mobile terminals and wearable devices.
- FIG. 1 is a cross-sectional view of an infrared temperature sensor provided by an embodiment of the present application.
- FIG. 2 is another cross-sectional view of the infrared temperature sensor provided by the embodiment of the present application.
- FIG. 3 is a schematic structural diagram of an infrared temperature sensor provided by an embodiment of the present application.
- FIG. 4 is a cross-sectional view of an infrared temperature sensor provided by another embodiment of the present application.
- FIG. 5 is another schematic structural diagram of the infrared temperature sensor provided by the embodiment of the present application.
- FIG. 6 is another schematic structural diagram of the infrared temperature sensor provided by the embodiment of the present application.
- FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
- the infrared temperature sensor 100 provided by the embodiment of the present application includes a substrate 110 , an infrared light sensing component 120 and a package body 130 .
- the infrared light sensing component 120 is disposed on the substrate 110 , and the infrared light sensing component 120 includes The thermopile sensing element 121 and the filter 122 , and the filter 122 is attached to the thermopile sensing element 121 .
- the package body 130 covers the substrate 110 and wraps the infrared light sensing element 120 .
- the package body 130 is provided with a light entrance area 131 , and the light entrance area 131 is disposed opposite to the infrared light sensing element 120 .
- the filter 122 is an infrared filter, which is used to transmit infrared light in a certain wavelength range to the thermopile sensing element 121 .
- the thermopile sensing element 121 generally includes a radiation receiving surface, and the thermopile sensing element 121 can absorb infrared energy incident on the radiation receiving surface by utilizing the thermoelectromotive force effect (Seebeck effect), and generate and output electrical signals.
- the filter 122 is attached to the thermopile sensing element 121, which may mean that the filter 122 is attached to the radiation receiving surface of the thermopile sensing element 121.
- the light entrance area 131 and the infrared light sensing component 120 are arranged opposite to each other, which may mean that the light entrance area 131 and the filter 122 are located opposite to each other, or the light entrance area 131 and the radiation receiving surface of the thermopile sensing element 121 are located opposite to each other, and the light entrance area 131
- the orthographic projection of ⁇ can fall within the range of the radiation receiving surface of the thermopile sensing element 121 , and the filter 122 is adapted to the range of the light entrance area 131 .
- the light entrance area 131 can be aimed at the measured object, and the infrared radiation emitted by the measured object enters the filter 122 through the light entrance area 131, and is filtered by the filter 122 to eliminate interference The effect of wavelength.
- the filtered infrared light is absorbed by the thermopile sensing element 121 to generate an electrical signal related to temperature, and the temperature value of the detected object can be obtained according to the electrical signal.
- the filter 122 is attached to the thermopile sensing element 121, and the infrared light sensing component 120 is wrapped by the package body 130 and the substrate 110, which can not affect the light transmission on the basis of
- the thermopile sensing element 121 is protected by cavity-free sealing to ensure that no water vapor condensation will interfere with the temperature measurement effect when the temperature changes, and the infrared temperature sensor 100 adopts a cavity-free package to reduce the difficulty of processing and packaging.
- the thickness of the body solves the problems of complicated packaging process, difficult processing and large volume of the existing infrared temperature sensor using TO metal shell, which is convenient for application in thinner electronic devices such as mobile terminals and wearable devices.
- the thickness of the infrared temperature sensor 100 may be 0.2 mm-3 mm, which is relatively thin, and can be applied to electronic devices such as mobile phones and wearable devices that have strict thickness requirements.
- the infrared light sensing component 120 may further include an optical adhesive layer 123, and the optical adhesive layer 123 is attached between the thermopile sensing element 121 and the filter 122, and is connected with the package Body 130 is connected.
- the optical adhesive layer 123 can be a heat-curable colloid with a light transmittance of more than 90%.
- the filter 122 is connected to the thermopile sensing element 121 through the optical adhesive layer 123.
- the optical adhesive layer 123 can fully fill the filter 122 and the thermopile sensor.
- the micro-gap between the sensing elements 121 is further improved, thereby further improving the sealing performance of the thermopile sensing elements 121 .
- the optical adhesive layer 123 can be attached between the thermopile sensing element 121 and the filter 122 first, and then the thermopile sensing element 121 , the filter 122 and the optical adhesive can be attached by heating Layers 123 are secured together.
- the thickness of the optical adhesive layer 123 can be set according to actual requirements. In some embodiments, the thickness of the optical adhesive layer 123 can be ignored.
- the filter 122 can also be directly attached to the thermopile sensing element 121 , and then fixed together by heating.
- the shape of the filter 122 can be based on the shape of the radiation receiving surface of the thermopile sensing element 121 . Make adaptive adjustments.
- the package body 130 may be provided with a light entrance hole 132 , and the light entrance hole 132 defines a light entrance area 131 .
- the filter 122 is embedded in the light entrance hole 132 .
- the light entrance region 131 is disposed opposite to the thermopile sensing element 121 .
- the filter 122 can be fixed on the thermopile sensing element 121 first, and then the package body 130 is formed by covering the substrate 110 provided with the thermopile sensing element 121 .
- the outer periphery of the sheet 122 surrounds the filter sheet 122, so that the light inlet hole 132 can be formed, so that the light inlet hole 132 does not need to be provided on the package body 130 in advance, which is convenient for fabrication.
- the light inlet hole 132 may be a square hole
- the filter 122 may be a rectangular plate-like structure adapted to the light inlet hole 132
- the light inlet hole 132 The center, the center of the filter 122 and the center of the radiation receiving surface of the thermopile sensing element 121 may be located on the same straight line.
- the light inlet hole 132 may also be in other shapes such as a circular hole, an oval hole, etc., which is not specifically limited herein.
- the filter 122 may include an opposite light incident surface 1221 and a light exit surface 1222 , the light exit surface 1222 is attached to the thermopile sensing element 121 , and the light incident surface 1221 is flush with the top surface 133 of the package body 130 away from the substrate 110 .
- the top surface 133 is the surface of the package body 130 facing away from the base 110 , and the top surface 133 is flush with the light incident surface 1221 .
- it can prevent the light incident surface 1221 from protruding out of the top surface 133 , so that the filter 122 cannot be effectively protected by the package body 130 , and problems such as bumping and abrasion are likely to occur.
- the fact that the top surface 133 is flush with the light incident surface 1221 is also beneficial to reduce the thickness of the infrared temperature sensor 100 .
- the packaging body 130 can be made of ABS resin (Acrylonitrile butadiene Styrene copolymers), polylactic acid or polyvinyl alcohol, etc., which is similar to the traditional metal tube shell. ratio, the cost can be further reduced.
- the package body 130 includes a light-transmitting portion 134 , the light-transmitting portion 134 defines a light entrance area 131 , and the filter 122 includes an opposite light entrance surface 1221 and a light exit surface 1222 .
- the light-emitting surface 1222 is attached to the thermopile sensing element 121 , and the light-incident surface 1221 is attached to the light-transmitting portion 134 .
- the light entrance area 131 is disposed opposite to the filter 122 .
- the light-transmitting portion 134 may be a transparent body that transmits visible light, and the package body 130 transmits the visible light to the filter 122 through the light-transmitting portion 134 , so that the filter 122 can be completely packaged in the package body 130 , providing sufficient energy for the filter 122 . protection.
- the package body 130 further includes a package body portion 135 , and the package body portion 135 covers the substrate 110 and is connected to the light-transmitting portion 134 .
- the materials selected for the light-transmitting portion 134 and the packaging body portion 135 may be different.
- the packaging body portion 135 may be made of ABS resin, polylactic acid or polyvinyl alcohol, etc.
- Transparent plates made of materials such as vinyl chloride or polystyrene.
- the infrared temperature sensor 100 may further include a signal processing circuit 150 , the signal processing circuit 150 is disposed on the substrate 110 , and the signal processing circuit 150 and the thermopile sensing element 121 are electrically connected to each other through the wiring of the substrate 110 .
- the processing circuit 150 is packaged inside the package body 130 .
- thermopile sensing element 121 generates an analog signal according to the received infrared light
- the signal processing circuit 150 is used to perform analog-to-digital conversion on the analog signal to generate a digital signal, so that the infrared temperature sensor 100 can directly output the digital signal, and the digital signal can be output through the digital output.
- This method can increase the practicability of the infrared temperature sensor 100 ; meanwhile, the thermopile sensing element 121 and the signal processing circuit 150 are integrated on the substrate 110 and packaged inside the package body 130 , which can improve the integration degree of the infrared temperature sensor 100 .
- the substrate 110 is provided with lines and pads for providing electrical connection channels for the thermopile sensing element 121 and the signal processing circuit 150 .
- the base 110 may be a resin substrate, a plastic substrate, a ceramic substrate or other substrates.
- the infrared temperature sensor 100 may further include a thermistor 160 .
- the thermistor 160 is disposed on the substrate 110 and is electrically connected to the signal processing circuit 150 through the wiring of the substrate 110 . 160 is packaged inside the package body 130 .
- the thermistor 160 can be an NTC (Negative Temperature Coefficient, negative temperature coefficient) thermistor or a thermistor made of other thermally sensitive materials, and is used to measure the ambient temperature where the thermopile sensing element 121 is located, that is, the thermopile sensing element. The cold end temperature of the measuring element 121 is measured.
- the signal processing circuit 150 can calibrate the temperature signal detected by the thermopile sensing element 121 according to the ambient temperature signal obtained by the thermistor 160 to improve the measurement accuracy.
- thermopile sensing element 121 and the thermistor 160 can be bonded and fixed on the substrate 110 by the fixing glue 180 respectively, and then the thermopile sensing element 121 and the thermistor 160 can be respectively fixed by the wire bonding method.
- the leads 140 are connected to the pads of the substrate 110 to establish electrical connections between the thermopile sensing element 121 and the signal processing circuit 150 , and the thermistor 160 and the signal processing circuit 150 .
- the lead 140 may be a metal connecting wire.
- thermopile sensing element 121 and the thermistor 160 can also be directly fixed on the pads of the substrate 110 through a chip package.
- the thermistor 160 can also be directly integrated into the signal processing circuit 150, so that a separate thermistor does not need to be provided in the package body 130, which can reduce the difficulty of processing.
- the signal processing circuit 150 may include a signal processing chip 151 and a resistance-capacitance circuit 152 .
- the signal processing chip 151 is adhesively fixed to the substrate 110 and is electrically connected to the wirings of the substrate 110 through the leads 140 .
- the RC circuit 152 is composed of at least one resistive device and at least one capacitive device.
- the resistance device and the capacitor device in the RC circuit 152 can be fixed to the substrate 110 by a chip package (as shown in FIG. 5 ), or the resistance device and the capacitor device in the RC circuit 152 can also be fixed by adhesive bonding connected to the substrate 110 and electrically connected to the wiring of the substrate 110 through wires.
- the signal processing chip 151 may be an ADC (Analog-to-Digital Converter) chip, and the thermopile sensing element 121 , the thermistor 160 and the resistance-capacitance circuit 152 are all electrically connected to the signal processing chip 151 .
- the resistance-capacitance circuit 152 can be a resistance-capacitance network integrated module composed of resistors and capacitors, which can perform functions such as filtering and voltage division.
- the signal processing chip 151 cooperates with the resistance-capacitance circuit 152 to output the received thermopile sensing element 121
- the analog signal of the device is processed by analog-to-digital conversion to obtain and output the digital signal.
- the signal processing chip 151 is also used for calibrating the temperature of the measured object according to the ambient temperature signal output by the thermistor 160 .
- the signal processing chip 151 has a high degree of integration, which can further reduce the volume of the infrared temperature sensor 100 .
- the signal processing chip 151 can also be an ASIC (Application Specific Integrated Circuit, application-specific integrated circuit) chip, which is used to output a digital signal after performing analog-to-digital conversion and correction processing on the analog signal output by the thermopile sensing element 121.
- ASIC Application Specific Integrated Circuit, application-specific integrated circuit
- the substrate 110 may further include a first surface 111 and a second surface 112 that face away from each other, the infrared light sensing component 120 is disposed on the first surface 111 , and the infrared temperature sensor 100 further includes a plurality of connections
- the terminal 170, a plurality of connection terminals 170 are disposed on the second surface 112, and are electrically connected with the signal processing circuit 150 through the wiring of the substrate 110, so as to output the digital signal obtained by the signal processing circuit 150.
- the connection terminal 170 may be a pad disposed on the second surface 112 , and the pad has a relatively thin thickness, which can reduce the overall thickness of the infrared temperature sensor 100 .
- “multiple” refers to two or more than two, and a plurality of connection terminals 170 may be arranged on the second surface 112 along the edge of the second surface 112 .
- thermopile sensing element 121 the signal processing chip 151 , the resistance-capacitance circuit 152 and the thermistor 160 are all directly fixed on the first surface 111 , that is, the electronic components of the infrared temperature sensor 100 are not used for each other. Packaging in a stacked manner can effectively reduce the thickness of the infrared temperature sensor 100 .
- An embodiment of the present application further provides an electronic device 200 , which includes a casing 210 and an infrared temperature sensor 100 .
- the infrared temperature sensor 100 is disposed on the casing 210 , and the light entrance area 131 is exposed. in the housing 210 .
- the electronic device 200 may be a mobile terminal or a wearable device, and the wearable device includes but is not limited to a smart watch, a smart bracelet, a smart clothing, and the like.
- the embodiments of the present application are described by taking the electronic device 200 as a smart watch as an example.
- the electronic device 200 may further include a display screen 220 and a main board.
- the display screen 220 is disposed outside the casing 210 , the main board is disposed in the casing 210 , and the display screen 220 is electrically connected to the main board.
- the main board can be electrically connected to the thermopile sensing element 121, and the main board is integrated with the signal processing circuit, so that the analog signal output by the thermopile sensing element 121 can be processed. After analog-to-digital conversion and other operations, a digital signal is obtained, and then the temperature value is displayed on the display screen 220 according to the digital signal.
- the main board can be electrically connected to the signal processing circuit 150 , so that the temperature value can be directly displayed on the display screen 220 according to the digital signal output by the signal processing circuit 150 .
- the electronic device 200 realizes the temperature detection function through the infrared temperature sensor 100. Since the infrared temperature sensor 100 adopts a cavity-free packaging method to reduce the volume and the thickness, the infrared temperature sensor 100 can be applied to the electronic device 200 and will not affect the electronic device. 200 thickness makes an impact.
- the electronic device 200 may also be any electronic device with a temperature measurement function, such as a tablet computer, a notebook computer, a human body monitor, and the like.
- the electronic device 200 includes the infrared temperature sensor 100 in the above-mentioned embodiment, it has all the beneficial effects of the infrared temperature sensor 100 , which will not be repeated here.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
Abstract
本申请实施例提供一种红外温度传感器以及电子设备,红外温度传感器包括基底、红外光感测组件和封装体,红外光感测组件设置于基底,红外光感测组件包括热电堆感测元件和滤波片,滤波片贴合于热电堆感测元件;封装体覆盖于基底且包裹红外光感测组件,封装体设有进光区,进光区与红外光感测组件相对设置。本申请实施例提供的红外温度传感器采用封装体封装红外光感测组件,能够在不影响光线透过的基础上保护热电堆感测元件,降低了工艺加工难度,还减小了红外温度传感器的体积。
Description
相关申请的交叉引用
本申请要求于2021年02月05日提交的申请号为202120334356.4的中国申请的优先权,其在此处于所有目的通过引用将其全部内容并入本文。
本实用新型涉及传感器技术领域,具体涉及一种红外温度传感器以及电子设备。
红外温度传感器的封装形式大多为TO(Transistor Outline,晶体管外形)金属外壳封装,其通过圆柱形外壳和盖板连接形成的封装外壳封装热电堆芯片等器件,封装外壳内需要留有空腔以对热电堆芯片等器件进行气体密封,例如氮气密封、真空密封和惰性气体密封等等,避免在温度变化时有水汽凝结干扰测温效果,起到保护热电堆芯片以及打线等器件的作用。然而,该封装形式的结构设计复杂,不仅需要检测气密性,导致加工成本较高,而且体积大,难以应用在手机、穿戴设备等较薄的电子设备上。
实用新型内容
本申请的目的在于提出一种红外温度传感器以及电子设备,以解决上述问题。本申请通过以下技术方案来实现上述目的。
第一方面,本申请实施例提供了一种红外温度传感器,包括基底、红外光感测组件和封装体,红外光感测组件设置于基底,红外光感测组件包括热电堆感测元件和滤波片,滤波片贴合于热电堆感测元件;封装体覆盖于基底且包裹红外光感测组件,封装体设有进光区,进光区与红外光感测组件相对设置。
第二方面,本申请实施例提供了一种电子设备,包括壳体以及第一方面所述的红外温度传感器,红外温度传感器设置于壳体。
相对于现有技术中,本申请实施例提供的红外温度传感器将滤波片贴合于热电堆感测元件,并通过封装体和基底包裹红外光感测组件,能够在不影响光线透过的基础上对热电堆感测元件进行无空腔密封保护,确保在温度变化时不会有水汽凝结干扰测温效果,且该封装方式能够降低工艺加工难度,还减小了封装体的厚度,方便红外温度传感器应用在移动终端、穿戴设备等较薄的电子设备上。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的红外温度传感器的剖面图。
图2是本申请实施例提供的红外温度传感器的另一剖面图。
图3是本申请实施例提供的红外温度传感器的结构示意图。
图4是本申请另一实施例提供的红外温度传感器的剖面图。
图5是本申请实施例提供的红外温度传感器的另一结构示意图。
图6是本申请实施例提供的红外温度传感器的又一结构示意图。
图7是本申请实施例提供的电子设备的结构示意图。
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1所示,本申请实施例提供的红外温度传感器100包括基底110、红外光感测组件120和封装体130,红外光感测组件120设置于基底110,红外光感测组件120包括热电堆感测元件121和滤波片122,滤波片122贴合于热电堆感测元件121。封装体130覆盖于基底110且包裹红外光感测组件120,封装体130设有进光区131,进光区131与红外光感测组件120相对设置。
其中,滤波片122为红外滤波片,用于将一定波长范围的红外光透射至热电堆感测元件121。热电堆感测元件121通常包括辐射接收面,热电堆感测元件121可以利用热电动势效应(塞贝克效应)吸收入射至辐射接收面的红外能量,并产生和输出电信号。
滤波片122贴合于热电堆感测元件121,可以是指滤波片122贴合于热电堆 感测元件121的辐射接收面。进光区131与红外光感测组件120相对设置可以是指进光区131和滤波片122相对设置,或者进光区131和热电堆感测元件121的辐射接收面相对设置,进光区131的正投影可以落在热电堆感测元件121的辐射接收面的范围内,滤波片122适配于进光区131的范围大小。
在使用红外温度传感器100测量物体温度时,可以将进光区131对准被测物体,由被测物体发出的红外辐射经过进光区131入射至滤波片122,通过滤波片122滤波以排除干扰波长的影响。经过滤波后的红外光被热电堆感测元件121吸收,产生与温度相关的电信号,根据该电信号可以获取被检测物体的温度值。
本申请实施例提供的红外温度传感器100将滤波片122贴合于热电堆感测元件121,并通过封装体130和基底110包裹红外光感测组件120,能够在不影响光线透过的基础上对热电堆感测元件121进行无空腔密封保护,确保在温度变化时不会有水汽凝结干扰测温效果,且红外温度传感器100采用无空腔封装能够降低工艺加工难度,还减小了封装体的厚度,解决了现有红外温度传感器采用TO金属外壳封装工艺复杂、加工难度大、体积较大的问题,方便应用在移动终端、穿戴设备等较薄的电子设备上。
在一些实施例中,红外温度传感器100的厚度可以为0.2mm-3mm,厚度较薄,可以应用于对厚度要求比较严格的手机、穿戴设备等电子设备上。
请参阅图2所示,在一些实施例中,红外光感测组件120还可以包括光学胶层123,光学胶层123贴合于热电堆感测元件121和滤波片122之间,并与封装体130连接。
光学胶层123可以是透光率在90%以上的热固化胶体,滤波片122通过光学胶层123连接于热电堆感测元件121,利用光学胶层123可以充分填充滤波片122和热电堆感测元件121之间的微间隙,从而进一步提高热电堆感测元件121 的密封性。在装配红外温度传感器100时,可以先将光学胶层123贴合于热电堆感测元件121和滤波片122之间,再通过加热的方式将热电堆感测元件121、滤波片122和光学胶层123固定在一起。光学胶层123的厚度可以根据实际需求进行设置,在一些实施方式中,光学胶层123的厚度可以忽略不计。
在一些实施例中,滤波片122也可以直接贴合于热电堆感测元件121,再通过加热的方式固定在一起,滤波片122的形状可以根据热电堆感测元件121的辐射接收面的形状作出适应性调整。
封装体130可以设置有进光孔132,进光孔132限定形成进光区131。在一些实施例中,滤波片122嵌设于进光孔132。该实施例中,进光区131与热电堆感测元件121相对设置。在装配红外温度传感器100时,可以先将滤波片122固定在热电堆感测元件121上,然后再覆盖设有热电堆感测元件121的基底110形成封装体130,此时封装体130从滤波片122的外周包围滤波片122,即可形成进光孔132,从而无需预先在封装体130上设置进光孔132,方便加工制作。
请一并参阅图2和图3所示,本实施例中,进光孔132可以是方形孔,滤波片122可以是适配于进光孔132的矩形板状结构,且进光孔132的中心、滤波片122的中心以及热电堆感测元件121的辐射接收面的中心可以位于同一直线上。当然,在一些实施例中,进光孔132也可以是圆形孔、椭圆形孔等其他形状,在此并不具体限定。
滤波片122可以包括相背对的入光面1221和出光面1222,出光面1222贴合于热电堆感测元件121,入光面1221与封装体130的远离基底110的顶面133平齐。顶面133为封装体130背离基底110的表面,顶面133与入光面1221平齐,一方面可以避免顶面133凸出于入光面1221外,对入射至入光面1221的光线造成阻挡;另一方面,可以避免入光面1221凸出于顶面133外,导致滤波 片122无法被封装体130有效保护,容易产生磕碰、磨损等问题。此外,顶面133与入光面1221平齐还有利于减薄红外温度传感器100的厚度。
本实施例中,封装体130的制成材料可以是ABS树脂(Acrylonitrile butadiene Styrene copolymers,丙烯腈-丁二烯-苯乙烯共聚物)、聚乳酸或者聚乙烯醇等,与传统的金属管壳相比,能够进一步降低成本。
请参阅图4所示,在一些实施例中,封装体130包括透光部134,透光部134限定形成进光区131,滤波片122包括相背对的入光面1221和出光面1222,出光面1222贴合于热电堆感测元件121,入光面1221贴合于透光部134。本实施例中,进光区131与滤波片122相对设置。透光部134可以是透过可见光的透明体,封装体130通过透光部134透射可见光至滤波片122,由此能够将滤波片122完全封装在封装体130内,为滤波片122提供足够的防护。
本实施例中,封装体130还包括封装本体部135,封装本体部135覆盖基底110并与透光部134相接。透光部134和封装本体部135所选用的材料可以不同,例如,封装本体部135的制成材料可以是ABS树脂、聚乳酸或者聚乙烯醇等,透光部134可以是采用聚丙烯、聚氯乙烯或者聚苯乙烯等材料制成的透明板。
仍请参阅图2所示,红外温度传感器100还可以包括信号处理电路150,信号处理电路150设置于基底110,信号处理电路150和热电堆感测元件121通过基底110的布线互相电连接,信号处理电路150封装于封装体130内部。
热电堆感测元件121根据接收到的红外光生成模拟信号,信号处理电路150用于将该模拟信号进行模数转换后生成数字信号,使得红外温度传感器100可以直接输出数字信号,通过数字输出的方式可以增加红外温度传感器100的实用性;同时,热电堆感测元件121和信号处理电路150一同集成在基底110上,并封装在封装体130内部,可以提高红外温度传感器100的集成度。
本实施例中,基底110设有线路和焊盘,用于为热电堆感测元件121和信号处理电路150提供电连接通道。基底110可以是树脂基板、塑料基板、陶瓷基板或者其他基板。
请一并参阅图1和图4所示,红外温度传感器100还可以包括热敏电阻160,热敏电阻160设置于基底110,并通过基底110的布线与信号处理电路150电连接,热敏电阻160封装于封装体130内部。
热敏电阻160可以是NTC(Negative Temperature Coefficient,负温度系数)热敏电阻或其他热敏材料制成的热敏电阻,用于测量热电堆感测元件121所处的环境温度,即热电堆感测元件121的冷端温度。信号处理电路150可以根据热敏电阻160获取到的环境温度信号对热电堆感测元件121检测到温度信号进行校准,提高测量准确性。
本实施例中,热电堆感测元件121和热敏电阻160可以分别通过固定胶180粘接固定在基底110上,然后再通过打线方法,将热电堆感测元件121和热敏电阻160分别通过引线140连接于基底110的焊盘,以建立热电堆感测元件121和信号处理电路150,以及热敏电阻160和信号处理电路150的电连接。其中,引线140可以是金属连接线。
在一些实施例中,热电堆感测元件121和热敏电阻160也可以通过贴片封装直接固定在基底110的焊盘上。或者,热敏电阻160也可以直接集成于信号处理电路150,从而无须在封装体130内单独设置一个热敏电阻,能够降低加工的难度。
信号处理电路150可以包括信号处理芯片151和阻容电路152,信号处理芯片151粘接固定于基底110,并通过引线140与基底110的布线电连接。阻容电路152由至少一个电阻器件和至少一个电容器件构成。可选地,阻容电路152 中的电阻器件和电容器件可通过贴片封装固定于基底110(如图5所示),或者,阻容电路152中的电阻器件和电容器件也可粘接固定于基底110,并通过引线与基底110的布线电连接。
信号处理芯片151可以是ADC(Analog-to-Digital Converter,模数转换器)芯片,热电堆感测元件121、热敏电阻160和阻容电路152均与信号处理芯片151电连接。阻容电路152可以是由电阻和电容构成的阻容网络集成模块,可以起到滤波和分压等作用,信号处理芯片151配合阻容电路152用于对接收到的热电堆感测元件121输出的模拟信号进行模数转换等处理,以获取数字信号并输出,信号处理芯片151还用于根据热敏电阻160输出的环境温度信号对被测物体的温度进行校准。信号处理芯片151集成度高,可以进一步缩小红外温度传感器100的体积。进一步可选地,信号处理芯片151还可以是ASIC(Application Specific Integrated Circuit,专用集成电路)芯片,用于将热电堆感测元件121输出的模拟信号进行模数转换和修正处理后输出数字信号。
请参阅图1和图5所示,基底110还可以包括相背离的第一表面111和第二表面112,红外光感测组件120设置于第一表面111,红外温度传感器100还包括多个连接端子170,多个连接端子170设置于第二表面112,并和信号处理电路150通过基底110的布线互相电连接,以将信号处理电路150获取的数字信号输出。连接端子170可以是设置于第二表面112的焊盘,焊盘厚度较薄,能够减薄红外温度传感器100的整体厚度。其中,“多个”是指两个或者两个以上,多个连接端子170可以沿第二表面112的边缘排列于第二表面112。
本实施例中,热电堆感测元件121、信号处理芯片151、阻容电路152和热敏电阻160均直接固定在第一表面111上,即红外温度传感器100的各个电子元器件之间未采用层叠的方式进行封装,能够有效减薄红外温度传感器100的 厚度。
请一并参阅图1和图6所示,本申请实施例还提供一种电子设备200,包括壳体210以及红外温度传感器100,红外温度传感器100设置于壳体210,且进光区131外露于壳体210。其中,电子设备200可以是移动终端或者穿戴设备,穿戴设备包括但不限于智能手表、智能手环、智能衣物等等。本申请实施例以电子设备200为智能手表为例进行说明。
电子设备200还可以包括显示屏220和主板,显示屏220设置于壳体210外,主板设置于壳体210内,且显示屏220与主板电连接。
当红外温度传感器100未集成有信号处理电路150时,该主板可以与热电堆感测元件121电连接,且该主板集成有信号处理电路,从而可以对热电堆感测元件121输出的模拟信号进行模数转换等操作后获取数字信号,再根据数字信号在显示屏220上显示温度值。当红外温度传感器100集成有信号处理电路150时,该主板可以与信号处理电路150电连接,从而可以根据信号处理电路150输出的数字信号直接在显示屏220上显示温度值。
电子设备200通过红外温度传感器100实现温度检测功能,由于红外温度传感器100采用无空腔的封装方式缩小了体积,厚度较薄,因此红外温度传感器100可以适用于电子设备200,不会对电子设备200的厚度造成影响。
在一些实施例中,电子设备200也可以是任意一种具有温度测量功能的电子设备,例如平板电脑、笔记本电脑、人体监测仪等等。
关于红外温度传感器100的详细结构特征请参阅上述实施例的相关描述。由于电子设备200包括上述实施例中的红外温度传感器100,因而具有红外温度传感器100所具有的一切有益效果,在此不再赘述。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的 限制,虽然本申请已以较佳实施例揭示如上,然而并非用以限定本申请,任何本领域技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案内容,依据本申请的技术实质对以上实施例所作的任何简介修改、等同变化与修饰,均仍属于本申请技术方案的范围内。
Claims (11)
- 一种红外温度传感器,其特征在于,包括:基底;红外光感测组件,设置于所述基底,所述红外光感测组件包括热电堆感测元件和滤波片,所述滤波片贴合于所述热电堆感测元件;以及封装体,覆盖于所述基底且包裹所述红外光感测组件,所述封装体设有进光区,所述进光区与所述红外光感测组件相对设置。
- 根据权利要求1所述的红外温度传感器,其特征在于,所述封装体设有进光孔,所述进光孔限定形成所述进光区,所述滤波片嵌设于所述进光孔。
- 根据权利要求2所述的红外温度传感器,其特征在于,所述滤波片包括相背对的入光面和出光面,所述出光面贴合于所述热电堆感测元件,所述入光面与所述封装体的远离所述基底的顶面平齐。
- 根据权利要求1所述的红外温度传感器,其特征在于,所述封装体包括透光部,所述透光部限定形成所述进光区,所述滤波片包括相背对的入光面和出光面,所述出光面贴合于所述热电堆感测元件,所述入光面贴合于所述透光部。
- 根据权利要求1-4任一项所述的红外温度传感器,其特征在于,所述红外温度传感器还包括信号处理电路,所述信号处理电路设置于所述基底,所述信号处理电路和所述热电堆感测元件通过所述基底的布线互相电连接,所述信号处理电路封装于所述封装体内部。
- 根据权利要求5所述的红外温度传感器,其特征在于,所述红外温度传感器还包括热敏电阻,所述热敏电阻设置于所述基底,并通过所述基底的布线与所述信号处理电路电连接,所述热敏电阻封装于所述封装体内部。
- 根据权利要求5所述的红外温度传感器,其特征在于,所述信号处理电路 包括信号处理芯片和阻容电路,所述信号处理芯片粘接固定于所述基底,并通过引线与所述基底的布线电连接;所述阻容电路通过贴片封装固定于所述基底,或者,所述阻容电路粘接固定于所述基底,并通过引线与所述基底的布线电连接。
- 根据权利要求5所述的红外温度传感器,其特征在于,所述基底包括相背离的第一表面和第二表面,所述红外光感测组件设置于所述第一表面,所述红外温度传感器还包括多个连接端子,所述多个连接端子设置于所述第二表面,并和所述信号处理电路通过所述基底的布线互相连接。
- 根据权利要求1-4任一项所述的红外温度传感器,其特征在于,所述红外温度传感器的厚度为0.2mm-3mm。
- 一种电子设备,其特征在于,包括壳体以及如权利要求1-9任一项所述的红外温度传感器,所述红外温度传感器设置于所述壳体,所述壳体露出所述进光区。
- 根据权利要求10所述的电子设备,其特征在于,所述电子设备为穿戴设备或者移动终端。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202120334356.4U CN214621493U (zh) | 2021-02-05 | 2021-02-05 | 红外温度传感器以及电子设备 |
CN202120334356.4 | 2021-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022166587A1 true WO2022166587A1 (zh) | 2022-08-11 |
Family
ID=78441197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/072797 WO2022166587A1 (zh) | 2021-02-05 | 2022-01-19 | 红外温度传感器以及电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN214621493U (zh) |
WO (1) | WO2022166587A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN214621493U (zh) * | 2021-02-05 | 2021-11-05 | 合肥市芯海电子科技有限公司 | 红外温度传感器以及电子设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104409624A (zh) * | 2014-12-05 | 2015-03-11 | 上海新微技术研发中心有限公司 | 封装方法和半导体器件 |
CN106932104A (zh) * | 2015-12-30 | 2017-07-07 | 上海新微技术研发中心有限公司 | 一种双元火焰探测传感器 |
CN207798270U (zh) * | 2017-12-29 | 2018-08-31 | 常州元晶电子科技有限公司 | 红外温度传感器 |
CN110146176A (zh) * | 2019-06-21 | 2019-08-20 | 中国人民解放军陆军工程大学 | 一种红外传感器 |
TWM607216U (zh) * | 2020-10-13 | 2021-02-01 | 眾智光電科技股份有限公司 | 紅外線溫度感測器 |
CN212458679U (zh) * | 2020-05-22 | 2021-02-02 | 众智光电科技股份有限公司 | 红外线温度感测器 |
CN214621493U (zh) * | 2021-02-05 | 2021-11-05 | 合肥市芯海电子科技有限公司 | 红外温度传感器以及电子设备 |
-
2021
- 2021-02-05 CN CN202120334356.4U patent/CN214621493U/zh active Active
-
2022
- 2022-01-19 WO PCT/CN2022/072797 patent/WO2022166587A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104409624A (zh) * | 2014-12-05 | 2015-03-11 | 上海新微技术研发中心有限公司 | 封装方法和半导体器件 |
CN106932104A (zh) * | 2015-12-30 | 2017-07-07 | 上海新微技术研发中心有限公司 | 一种双元火焰探测传感器 |
CN207798270U (zh) * | 2017-12-29 | 2018-08-31 | 常州元晶电子科技有限公司 | 红外温度传感器 |
CN110146176A (zh) * | 2019-06-21 | 2019-08-20 | 中国人民解放军陆军工程大学 | 一种红外传感器 |
CN212458679U (zh) * | 2020-05-22 | 2021-02-02 | 众智光电科技股份有限公司 | 红外线温度感测器 |
TWM607216U (zh) * | 2020-10-13 | 2021-02-01 | 眾智光電科技股份有限公司 | 紅外線溫度感測器 |
CN214621493U (zh) * | 2021-02-05 | 2021-11-05 | 合肥市芯海电子科技有限公司 | 红外温度传感器以及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN214621493U (zh) | 2021-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10184910B2 (en) | Combined pressure and humidity sensor | |
US6559539B2 (en) | Stacked package structure of image sensor | |
JP5736253B2 (ja) | 光センサ装置 | |
TW201104850A (en) | Image sensor package structure with large air cavity | |
WO2022166586A1 (zh) | 数字式红外温度传感器以及电子设备 | |
WO2022111132A1 (zh) | 传感器封装结构及差压传感器 | |
WO2022166587A1 (zh) | 红外温度传感器以及电子设备 | |
US20180269337A1 (en) | Optical component packaging structure | |
WO2018166095A1 (zh) | 红外温度传感器及终端 | |
WO2022166589A1 (zh) | 红外温度传感器以及电子设备 | |
KR20150031709A (ko) | 가스센서패키지 | |
US20230273070A1 (en) | Thermopile module | |
CN107543614A (zh) | 热电堆传感器 | |
WO2022042442A1 (zh) | 红外测温模组、终端设备以及温度测量方法 | |
CN108074874B (zh) | 光学组件封装结构 | |
US20230026571A1 (en) | Thermal sensor package | |
CN217424566U (zh) | 红外传感封装结构及电子设备 | |
JP3502063B2 (ja) | イメージセンサのスタックパッケージ構造 | |
CN106706135A (zh) | 集成asic的红外温度传感器的封装结构及其制造方法 | |
CN110649012A (zh) | 系统级封装结构和电子设备 | |
TW201519334A (zh) | 感應晶片封裝方法 | |
WO2006112122A1 (ja) | 赤外線センサ | |
CN114459598B (zh) | 光感测集成电路及使用该光感测集成电路的电子装置 | |
CN217424568U (zh) | 红外传感器及电子设备 | |
TWI689710B (zh) | 熱電堆感測元件之封裝結構 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22748866 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22748866 Country of ref document: EP Kind code of ref document: A1 |