WO2022163727A1 - 触媒及びそれを用いた不飽和カルボン酸の製造方法 - Google Patents
触媒及びそれを用いた不飽和カルボン酸の製造方法 Download PDFInfo
- Publication number
- WO2022163727A1 WO2022163727A1 PCT/JP2022/002964 JP2022002964W WO2022163727A1 WO 2022163727 A1 WO2022163727 A1 WO 2022163727A1 JP 2022002964 W JP2022002964 W JP 2022002964W WO 2022163727 A1 WO2022163727 A1 WO 2022163727A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- hydrogen consumption
- mmol
- catalyst according
- parts
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 118
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 150000001732 carboxylic acid derivatives Chemical class 0.000 title description 5
- 239000001257 hydrogen Substances 0.000 claims abstract description 87
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 87
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 85
- 238000005259 measurement Methods 0.000 claims abstract description 18
- 239000010949 copper Substances 0.000 claims abstract description 16
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 15
- 230000009467 reduction Effects 0.000 claims abstract description 14
- 229910052802 copper Inorganic materials 0.000 claims abstract description 13
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 13
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000011733 molybdenum Substances 0.000 claims abstract description 12
- 238000001228 spectrum Methods 0.000 claims abstract description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims description 48
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 17
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 13
- -1 carboxylic acid compounds Chemical class 0.000 claims description 11
- 239000000377 silicon dioxide Substances 0.000 claims description 10
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims description 9
- 229910052785 arsenic Inorganic materials 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 7
- 229910052787 antimony Inorganic materials 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052700 potassium Inorganic materials 0.000 claims description 6
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052792 caesium Inorganic materials 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- 229910052701 rubidium Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 229910052776 Thorium Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052702 rhenium Inorganic materials 0.000 claims description 3
- 229910052716 thallium Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 abstract 1
- 239000002002 slurry Substances 0.000 description 31
- 239000000243 solution Substances 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 18
- 239000011248 coating agent Substances 0.000 description 18
- 238000000576 coating method Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 16
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 15
- 239000002994 raw material Substances 0.000 description 15
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 14
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- 238000010304 firing Methods 0.000 description 11
- 230000003197 catalytic effect Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 238000000465 moulding Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 238000001354 calcination Methods 0.000 description 8
- 229960004643 cupric oxide Drugs 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- DJHGAFSJWGLOIV-UHFFFAOYSA-N Arsenic acid Chemical compound O[As](O)(O)=O DJHGAFSJWGLOIV-UHFFFAOYSA-N 0.000 description 7
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 7
- 229940000488 arsenic acid Drugs 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 239000011964 heteropoly acid Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 150000001299 aldehydes Chemical class 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 5
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 150000003839 salts Chemical group 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 238000001694 spray drying Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 239000012018 catalyst precursor Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical class CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002036 drum drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- BCTWNMTZAXVEJL-UHFFFAOYSA-N phosphane;tungsten;tetracontahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.P.[W].[W].[W].[W].[W].[W].[W].[W].[W].[W].[W].[W] BCTWNMTZAXVEJL-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical class CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/195—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
- B01J27/198—Vanadium
- B01J27/199—Vanadium with chromium, molybdenum, tungsten or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/12—Silica and alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8877—Vanadium, tantalum, niobium or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/23—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
- C07C51/235—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
- C07C57/04—Acrylic acid; Methacrylic acid
Definitions
- the present invention relates to a catalyst for obtaining an unsaturated carboxylic acid through an oxidation reaction, and to a catalyst that can obtain the desired product with higher selectivity than conventional catalysts.
- catalysts have been proposed as catalysts used to produce unsaturated carboxylic acids.
- unsaturated carboxylic acids catalysts for producing methacrylic acid contain molybdenum and phosphorus as main components and have a heteropolyacid and/or salt structure.
- methods for producing these catalysts have been made for many proposals.
- Patent Document 1 a catalyst precursor of a partially neutralized salt of a heteropolyacid is heat-treated at least twice under gas flow at a temperature of 350° C. to 500° C. for 1 hour to 30 hours, and the catalyst precursor is removed between each heat treatment.
- a catalyst for producing methacrylic acid has been proposed which is cooled to 250° C. once and the temperature difference between each heat treatment is within 30° C.
- Patent Document 2 proposes a method for producing a catalyst for producing methacrylic acid, wherein the catalyst raw material is divided into at least two, and the mixing tank and the mixing tank are different.
- Non-Patent Document 1 describes the hydrogen consumption and reaction results of the catalyst obtained by temperature-programmed reduction measurement of the heteropolyacid catalyst.
- Patent Document 1 involves a two-stage calcination process, which is not economical and there are concerns about a stable catalyst production method.
- Patent Document 2 since the preparation tank and the mixing tank are separated into two, there are concerns about working efficiency and a stable catalyst production method.
- Patent Document 3 calls for further improvement in the yield of methacrylic acid.
- Non-Patent Document 1 does not clarify the hydrogen consumption of the catalyst obtained by the optimum temperature-programmed reduction measurement of the heteropolyacid catalyst.
- the catalysts obtained as in Patent Documents 1 to 3 are still unsatisfactory in reaction results, and further improvements have been desired when used as industrial catalysts.
- An object of the present invention is to provide a catalyst that can stably produce an unsaturated carboxylic acid with excellent selectivity.
- the hydrogen consumption (L) of the catalyst containing molybdenum, copper and vanadium as essential components is 1.30 mmol/g in the TPR spectrum obtained by temperature-programmed reduction measurement.
- the inventors have found that a catalyst having a concentration of 10.00 mmol/g or less has a high selectivity for unsaturated carboxylic acids, and have completed the present invention.
- the present invention relates to the following 1) to 12).
- Molybdenum, copper and vanadium are contained as essential components, and the hydrogen consumption (L) of the hydrogen consumption peak appearing in the range of 300 ° C. or higher and 500 ° C. or lower in the TPR spectrum obtained by temperature programmed reduction measurement is 1.30 mmol / g or more 10 .00 mmol/g or less.
- X represents Ag, Mg, Zn, Al, B, Ge, Sn, Pb, represents at least one element selected from the group consisting of Ti, Zr, Sb, Cr, Re, Bi, W, Fe, Co, Ni, Ce and Th
- Y is selected from the group consisting of K, Rb, Cs and Tl
- a1, b1, c1, d1, e1, f1 and g1 represent the atomic ratio of each element, a1 is 0.1 ⁇ a1 ⁇ 6, b1 is 0 ⁇ b1 ⁇ 6, c1 is 0 ⁇ c1 ⁇ 3, d1 is 0 ⁇ d1 ⁇ 3, e1 is 0 ⁇ e1 ⁇ 3, f1 is 0 ⁇ f1 ⁇ 3, and g1 is a value determined by the valence and atomic ratio of other elements.) 8) The catalyst according to 7) above, wherein the catalytically active component having the composition represented by (1) above satisfies the relationship of formula (I) below.
- the present invention it is possible to provide a catalyst containing molybdenum, copper and vanadium as essential components and capable of obtaining the desired product with high selectivity. Therefore, in the gas-phase catalytic oxidation reaction using it, the desired product can be obtained with higher selectivity and stability.
- FIG. 4 is a graph showing measurement data in hydrogen consumption measurement of the catalyst of Example 1.
- FIG. 4 is a graph showing measurement data in measuring the hydrogen consumption of the catalyst of Comparative Example 1.
- FIG. 4 is a graph showing measurement data in measuring the hydrogen consumption of the catalyst of Comparative Example 1.
- the catalyst of the present invention is a composite oxide catalyst containing molybdenum, copper and vanadium as essential components, and hydrogen at a hydrogen consumption peak appearing in the range of 300 ° C. or higher and 500 ° C. or lower in the TPR spectrum obtained by temperature programmed reduction measurement.
- the consumption (L) is characterized by being 1.30 mmol/g or more and 10.00 mmol/g or less.
- the catalyst which has the said structure is described as a catalyst (A).
- the upper limit of the hydrogen consumption (L) of the catalyst (A) measured by temperature-programmed reduction measurement is 10.00 mmol/g, and further preferably 9.00 mmol/g, 8.00 mmol/g and 7.00 mmol/g. g, 6.00 mmol/g, 5.00 mmol/g, 4.00 mmol/g, 3.00 mmol/g, 2.20 mmol/g, and particularly preferably 2.00 mmol/g or less.
- the lower limit of the hydrogen consumption (L) is 1.30 mmol/g, and further preferably 1.40 mmol/g, 1.50 mmol/g, 1.60 mmol/g, 1.70 mmol/g, 1.75 mmol/g. is g.
- the hydrogen consumption (L) of the catalyst (A) is particularly preferably 1.60 mmol/g or more and 4.00 mmol/g or less, and most preferably 1.75 mmol/g or more and 2.00 mmol/g or less.
- the above-mentioned hydrogen consumption (L) is a parameter indicating the oxidation-reduction characteristics of the catalyst, and is considered to affect the selectivity to the target compound. Specifically, when the hydrogen consumption (L) exceeds 10.00 mmol/g, it is considered that the target compound is excessively oxidized, resulting in a decrease in selectivity. On the other hand, when the hydrogen consumption (L) is less than 1.30 mmol/g, it is considered that the reaction to the target compound does not proceed sufficiently, and side reactions other than the target reaction proceed, resulting in a decrease in selectivity.
- the hydrogen consumption in the present invention means the hydrogen consumption (L) which is the area of the peak existing in the range of 300° C. or more and 500° C. or less.
- the baseline correction method may be a method known to those skilled in the art using the peak start point and end point. For example, in FIG. 1, a straight line formed by connecting the point of 100° C. and the highest point between 450° C. and 600° C. is used as a baseline and corrected.
- Methods for adjusting the hydrogen consumption of the catalyst include changing the composition, firing time, firing atmosphere, binder for molding the dried slurry, and the like. , or a method of extending the baking time is effective.
- the hydrogen consumption (L) can be increased by about 1.00 to 5.00 mmol/g by increasing the firing temperature by 10°C to 40°C. Similarly, by shortening the firing time by about 1 to 3 hours, the hydrogen consumption (L) can be increased by about 1.00 to 5.00 mmol/g.
- the hydrogen consumption (H) is preferably 1.50 mmol/g or more and 10.0 mmol/g or less, more preferably 2.00 mmol/g or more and 8.00 mmol/g or less, and particularly preferably 3. It is 00 mmol/g or more and 7.00 mmol/g or less, particularly preferably 3.50 mmol/g or more and 6.00 mmol/g or less, and most preferably 3.50 mmol/g or more and 5.00 mmol/g or less.
- this is a particularly preferred embodiment of the catalyst of the present invention.
- the hydrogen consumption (H)/hydrogen consumption (L) is preferably 1.0 or more and 3.8 or less, more preferably 1.5 or more and 3.5 or less, and 2.0 or more and 3 0.2 or less is particularly preferred, and 2.0 or more and 2.3 or less is most preferred.
- a preferred composition of the catalytically active components of the catalyst (A) is represented by the following general formula (1).
- Mo, V, P, Cu, As and O represent molybdenum, vanadium, phosphorus, copper, arsenic and oxygen respectively.
- X is Ag (silver), Mg (magnesium), Zn (zinc), Al (aluminum), B (boron), Ge (germanium), Sn (tin), Pb (lead), Ti (titanium), Zr (zirconium) ), Sb (antimony), Cr (chromium), Re (rhenium), Bi (bismuth), W (tungsten), Fe (iron), Co (cobalt), Ni (nickel), Ce (cerium) and Th (thorium ) represents at least one element selected from the group consisting of Y represents at least one element selected from the group consisting of K (potassium), Rb (rubidium), Cs (cesium) and Tl (thallium).
- a1, b1, c1, d1, e1, f1 and g1 represent the atomic ratio of each element, a1 is 0.1 ⁇ a1 ⁇ 6, b1 is 0 ⁇ b1 ⁇ 6, c1 is 0 ⁇ c1 ⁇ 3, d1 is 0 ⁇ d1 ⁇ 3, e1 is 0 ⁇ e1 ⁇ 3, f1 is 0 ⁇ f1 ⁇ 3, and g1 is a value determined by the valence and atomic ratio of other elements.
- the composition in the present invention means an active component, and as an inert carrier, silicon carbide, alumina, silica, silica-alumina, mullite, alundum, steatite, etc. can be used.
- X is preferably Zn, Ag, Fe or Sb, more preferably Ag, Fe or Sb, particularly preferably Fe or Sb, most preferably Sb. be.
- Y is preferably K, Rb, or Cs, more preferably K, Cs, and most preferably Cs. The effects of the invention tend to appear remarkably.
- the preferred range of a1 to g1 is as follows.
- the lower limits of a1 are, in order of preference, 0.2, 0.25, 0.3 and 0.35, most preferably 0.4.
- the upper limits of a1 are, in order of preference, 5, 3, 2, 1, 0.8, 0.7 and 0.62, most preferably 0.6. That is, the most preferable range of a1 is 0.4 ⁇ a1 ⁇ 0.6.
- the lower limits of b1 are, in order of preference, 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0, most preferably 1.05.
- the upper limit of b1 is 5, 4, 3 and 2 in order of preference, most preferably 1.5. That is, the most preferable range of b1 is 1.05 ⁇ b1 ⁇ 1.5.
- the lower limits of c1 are, in order of preference, 0.1, 0.2 and 0.3, most preferably 0.4.
- the upper limits of c1 are, in order of preference, 2, 1.5, 1.2, 1.0 and 0.8, most preferably 0.6. That is, the most preferable range of c1 is 0.4 ⁇ c1 ⁇ 0.6.
- the lower limits of d1 are, in order of preference, 0, 0.1, 0.2, 0.3 and 0.4, most preferably 0.45.
- the upper limits of d1 are, in order of preference, 2, 1.5, 1.2, 1.0 and 0.8, most preferably 0.55. That is, the most preferable range of d1 is 0.45 ⁇ d1 ⁇ 0.55.
- the upper limits of e1 are, in order of preference, 2, 1.5, 1, 0.5, 0.1 and 0.06, most preferably 0.065.
- the upper limits of f1 are, in order of preference, 2, 1.5, 1, 0.5 and 0.1, most preferably 0.05.
- the catalyst composition when the relationship between a1 and c1 satisfies the above formula (I), the catalyst composition is particularly preferred as the catalyst (A).
- the upper limits of a1/c1 are 1.65, 1.6, 1.55, 1.5, 1.45, 1.4 and 1.35 in order of preference, and 1.3 is particularly preferred.
- the lower limit is 0.65, 0.7, 0.75 and 0.8 in order of preference, and 0.85 is particularly preferred. Therefore, the most preferable range of a1/c1 is 0.85 ⁇ a1/c1 ⁇ 1.3.
- the catalyst composition when the relationship among a1, c1 and d1 satisfies the above formula (II), the catalyst composition is particularly preferred as the catalyst (A).
- the upper limit of (a1-c1)/d1 is 0.38, 0.37, 0.35 and 0.34 in order of preference, and 0.33 is particularly preferred.
- the lower limit is -0.48, -0.46, -0.44, -0.42, -0.40, -0.38 in order of preference, and -0.36 is particularly preferred. Therefore, the most preferable range of (a1-c1)/d1 is -0.36 ⁇ (a1-c1)/d1 ⁇ 0.33.
- the method for producing the catalyst (A) includes (a) a step of dispersing a compound containing each or a plurality of the above metals in water to prepare an aqueous solution or aqueous dispersion of these compounds (hereinafter both are referred to as a slurry liquid). , (b) a step of drying the slurry liquid obtained in step (a) to obtain a dried slurry, (c) a step of molding the dried slurry obtained in step (b), (d) step (c) ) includes a step of firing the coated molding obtained in ).
- Step (a) includes preparing compounds containing active ingredient elements and mixing the compounds with water.
- a compound containing essential active component elements and optional active component elements of the catalyst of the present invention is used.
- the compounds include chlorides, sulfates, nitrates, oxides, and acetates of active ingredient elements.
- nitrates such as cobalt nitrate, acetates such as copper acetate, molybdenum oxide, vanadium pentoxide, copper oxide, antimony trioxide, cerium oxide, oxides such as zinc oxide or germanium oxide
- acids or salts thereof
- Compounds containing these active ingredients may be used alone or in combination of two or more.
- step (a) a compound containing each active ingredient and water are uniformly mixed to obtain a slurry liquid.
- the amount of water used in the slurry liquid is not particularly limited as long as it can completely dissolve the entire amount of the compounds used or can be uniformly mixed.
- the amount of water to be used may be appropriately determined in consideration of the drying method and drying conditions in step (b). Generally, the amount of water is about 200 to 2000 parts per 100 parts of the total mass of the slurry preparation compounds. The amount of water may be large, but if it is too large, the energy cost of the drying process in the step (b) will increase, and there will be many disadvantages such as not being able to dry completely.
- the shape of the stirring blades of the stirrer used in the step (a) is not particularly limited. Arbitrary stirring blades can be used in one stage, or the same blade or different blades can be used in two or more stages in the vertical direction.
- a baffle baffle plate
- a baffle plate may be installed in the reaction vessel as necessary.
- step (b) the slurry liquid obtained in step (a) is completely dried.
- the drying method is not particularly limited, and examples thereof include drum drying, freeze drying, spray drying, and evaporation to dryness. Among these, in the present invention, spray drying is preferred because it can dry the slurry into powder or granules in a short period of time.
- the drying temperature of the spray drying varies depending on the concentration of the slurry liquid, the liquid feeding speed, etc., but the temperature at the outlet of the dryer is generally 70 to 150°C.
- Step (c) is a step of firing the dried slurry obtained in step (b) (this step is not essential), a step of mixing the dried slurry with an additive, a dried slurry or a dried slurry and an additive. including the step of molding a mixture of In step (c), the dried slurry obtained in step (b) is molded. If the dried slurry is calcined at about 250° C. to 350° C. and then molded, the mechanical strength and catalytic performance may be improved, so the dried slurry may be calcined before molding. There are no particular restrictions on the molding method.
- the dried slurry may be molded into pillars, tablets, rings, spheres, etc., or the dried slurry may be coated on an inert carrier. You may Of these, it is preferable to coat an inert carrier with a slurry dried body to obtain a coated catalyst, since it can be expected to improve selectivity and remove reaction heat.
- This coating step is preferably the tumbling granulation method described below. In this method, for example, in an apparatus having a flat or uneven disk at the bottom of a fixed container, the disk is rotated at high speed to vigorously stir the carrier in the container by repeating rotation and revolution.
- the method of adding the binder is as follows: 1) pre-mixed with the coating mixture, 2) added at the same time as the coating mixture is added into the fixed container, and 3) added after the coating mixture is added into the fixed container. 4) adding the coating mixture before adding it into the fixed container; 5) dividing the coating mixture and the binder respectively; .
- the addition speed is adjusted using an auto feeder or the like so that a predetermined amount of the coating mixture is carried on the carrier without the coating mixture adhering to the walls of the stationary container or agglomeration of the coating mixture.
- the binder is preferably water/or at least one selected from the group consisting of organic compounds having a boiling point of 150° C. or less at 1 atm or less and/or an aqueous solution thereof.
- binders other than water include alcohols such as methanol, ethanol, propanols and butanols, preferably alcohols having 1 to 4 carbon atoms, ethers such as ethyl ether, butyl ether and dioxane, and esters such as ethyl acetate and butyl acetate. , ketones such as acetone or methyl ethyl ketone, and aqueous solutions thereof, with ethanol being particularly preferred.
- ethanol/water is preferably 10/0 to 0/10 (mass ratio), preferably 9/1 to 1/9 (mass ratio) when mixed with water.
- the amount of these binders used is usually 2 to 60 parts by weight, preferably 10 to 50 parts by weight, per 100 parts by weight of the coating mixture.
- the inert carrier in the coating include silicon carbide, alumina, silica, silica-alumina, mullite, alundum, steatite, etc., preferably silicon carbide, alumina, silica, silica-alumina, steatite, and more. Alumina, silica and silica-alumina are preferred.
- the diameter of the carrier includes spherical carriers having a diameter of 1 to 15 mm, preferably 2.5 to 10 mm.
- the component in the carrier is preferably 90% by mass or more, more preferably 95% by mass or more. These supports usually have a porosity of 10 to 70%.
- coating mixture/(coating mixture+carrier) 10 to 75 mass %, preferably 15 to 60 mass %.
- the proportion of the coating mixture is large, the reaction activity of the coated catalyst increases, but the mechanical strength tends to decrease. Conversely, when the proportion of the coating mixture is small, the mechanical strength is large, but the reaction activity tends to be small.
- silica gel, diatomaceous earth, alumina powder, etc. are mentioned as a shaping
- the amount of the molding aid to be used is usually 1 to 60 parts by mass per 100 parts by mass of the catalytically active component solid.
- inorganic fibers for example, ceramic fibers, whiskers, etc.
- inert to the catalytically active component and reaction gas are used as a strength improving agent, which is useful for improving the mechanical strength of the catalyst.
- the amount of these fibers to be used is usually 1 to 30 parts by mass per 100 parts by mass of the catalytically active component solid.
- the inert carrier in the present invention is a carrier that does not have activity on the raw material and the product, and includes, for example, a methacrolein conversion rate of 3.0% or less under generally known reaction conditions.
- step (d) the molded dry body or coated catalyst in step (b) obtained in step (c) is calcined.
- the dried body or coated catalyst can be directly used as a catalyst for the catalytic gas-phase oxidation reaction, but calcination is preferable because calcination stabilizes the structure and improves the catalytic performance.
- the calcination temperature is too high, the heteropolyacid may be decomposed and the catalytic performance may be lowered. Especially preferred is 290°C to 340°C. If the calcination time is too short, the structure of the heteropolyacid may become unstable and the catalyst performance may be lowered.
- a typical firing time is 1 to 20 hours.
- Firing is usually performed in an air atmosphere, but may be performed in an atmosphere of an inert gas such as nitrogen or a reducing gas atmosphere such as ethanol. After firing in an inert gas or reducing gas atmosphere, firing may be further performed in an air atmosphere if necessary.
- the ratio of the active component to the entire coated catalyst after calcination obtained as described above is 10 to 60% by mass.
- the catalyst of the present invention obtained by the method for producing the catalyst of the present invention described above is used in a reaction in which an unsaturated aldehyde is catalytically oxidized with molecular oxygen to obtain an unsaturated carboxylic acid.
- an unsaturated aldehyde is catalytically oxidized with molecular oxygen to obtain an unsaturated carboxylic acid.
- it is suitably used for the production of methacrylic acid by gas-phase catalytic oxidation of methacrolein.
- Molecular oxygen or a molecular oxygen-containing gas is used for the gas-phase catalytic oxidation reaction.
- the molar ratio of molecular oxygen to unsaturated aldehyde such as methacrolein is preferably in the range of 0.5-20, more preferably in the range of 1-10.
- water to the source gas in a molar ratio of 1 to 20 relative to methacrolein.
- the raw material gas may contain oxygen, if necessary, water (usually contained as water vapor), as well as gases inert to the reaction, such as nitrogen, carbon dioxide, and saturated hydrocarbons.
- a gas containing unsaturated aldehyde obtained by oxidizing the raw material alkene compound, alcohol compound, or ether compound may be used as it is.
- a methacrolein-containing gas obtained by oxidizing isobutylene, tertiary butanol, and methyl tertiary butyl ether may be supplied as it is.
- the reaction temperature in the vapor-phase catalytic oxidation reaction is usually 200 to 400° C., preferably 260 to 360° C., and the supply amount of the raw material gas is usually 100 to 6000 hr ⁇ 1 , preferably 300 to 3000 hr ⁇ 1 in terms of space velocity (SV). is.
- the gas-phase catalytic oxidation reaction can be carried out under pressure or under reduced pressure, but a pressure near atmospheric pressure is generally suitable.
- Hydrogen is diluted with argon or nitrogen to a few percent by increasing the temperature of the catalyst, allowing the catalyst and hydrogen to react, and measuring the amount of hydrogen consumed at each temperature to obtain a temperature-programmed reduction spectrum. . Calculate the area from the temperature-programmed reduction spectrum to determine the hydrogen consumption (L). These methods are common methods for measuring the hydrogen consumption (L), and for more details, see Non-Patent Document 2 and the like. As a matter of course, the experimental conditions for the temperature-programmed reduction are set appropriately within the range of scientifically valid conditions, taking into consideration the physical properties of the catalyst to be measured and the characteristics of the measuring apparatus. The amount of hydrogen consumption (H) is also obtained from the temperature-programmed reduction spectrum obtained according to the method for measuring the amount of hydrogen consumption (L) described above.
- Example 1 1) Preparation of catalyst To 7100 parts of pure water were added 1000 parts of molybdenum oxide, 37.91 parts of vanadium pentoxide, 22.11 parts of cupric oxide, 88.08 parts of 85% aqueous phosphoric acid solution, and 98 parts of 60% aqueous arsenic acid solution. 60 parts was added, and the mixture was heated and stirred at 92° C. for 10 hours to obtain a reddish brown transparent solution. Subsequently, this solution was spray-dried to obtain a dried slurry.
- the composition of the catalytically active component solid obtained from the amount of raw material charged is Mo-10, V-0.6, P-1.1, As-0.6, Cu-0.4.
- Conversion rate number of moles of reacted methacrolein/number of moles of supplied methacrolein x 100
- Selectivity number of moles of methacrylic acid produced/number of moles of methacrolein reacted x 100
- the hydrogen consumption (L) of the obtained catalyst was evaluated using the following equipment and conditions. Apparatus used: (BEL-CATII manufactured by Microtrack Bell) Sample weight: 0.08g Pretreatment for measurement: Pretreatment is performed for 1 hour by flowing helium under conditions of 300° C. and 50 ml/min. Temperature increase rate during measurement: 10°C/min Maximum measurement temperature: 700°C Carrier gas: 5% hydrogen (mixed gas diluted with argon) Carrier gas flow rate: 30 ml/min Table 1 shows the measurement results, and FIG. 1 shows the measurement data.
- the hydrogen consumption (L) is a value obtained by integrating the peak area at 300° C. or higher and 500° C. or lower in FIG. Also, the hydrogen consumption (H) (peak area at 500° C. or higher and 700° C. or lower) was similarly determined to be 5.89 mmol/g. Also, the hydrogen consumption (H)/hydrogen consumption (L) was 2.87.
- Example 2 To 7100 parts of pure water were added 1000 parts of molybdenum oxide, 39.17 parts of vanadium pentoxide, 24.87 parts of cupric oxide, 93.69 parts of 85% aqueous phosphoric acid solution, and 82.16 parts of 60% aqueous arsenic acid solution. The mixture was heated and stirred at 92° C. for 10 hours to obtain a reddish brown transparent solution. Subsequently, 7.09 parts of antimony trioxide was added to this solution, and the mixture was heated and stirred for 4 hours to obtain a dark green transparent solution. Subsequently, this solution was spray-dried to obtain a dried slurry.
- the composition of the catalytically active component solid obtained from the amount of raw material charged is Mo-10, V-0.6, P-1.2, As-0.5, Cu-0.5, Sb-0.1. .
- 214 parts of the dried slurry and 29.8 parts of strength improving material alumina-silica fiber
- about 90% ethanol aqueous solution was added to 200 parts of spherical porous alumina carrier (particle size: 3.5 mm).
- 30 parts were coated and molded as a binder.
- the obtained molded product was calcined at 310° C. for 6 hours under air circulation to obtain the catalyst (coated catalyst) of the present invention.
- Example 3 31.59 parts of 37.91 parts of vanadium pentoxide, 27.63 parts of 22.11 parts of cupric oxide, 96.09 parts of 88.08 parts of 85% aqueous phosphoric acid solution, 60% arsenic acid in Example 1
- a catalyst was prepared in the same manner as in Example 1, except that the aqueous solution of 98.60 parts was changed to 82.16 parts.
- the composition of the catalytically active component solid obtained from the charged amount of raw materials is Mo-10, V-0.5, P-1.2, As-0.5, and Cu-0.5.
- Example 4 In Example 1, 37.91 parts of vanadium pentoxide was changed to 31.59 parts, 22.11 parts of cupric oxide was changed to 27.63 parts, and 98.60 parts of 60% aqueous arsenic acid solution was changed to 82.16 parts.
- a catalyst was prepared in the same manner as in Example 1.
- the composition of the catalytically active component solid obtained from the raw material charge was Mo-10, V-0.5, P-1.1, As-0.5, and Cu-0.5.
- the hydrogen consumption (H) of the catalyst of Example 4 was 3.89 mmol/g, hydrogen consumption (H)/hydrogen consumption. (L) was 2.06.
- Example 5 A catalyst was prepared in the same manner as in Example 1, except that the calcination time was changed from 6 hours to 4 hours.
- Example 6 A catalyst was prepared in the same manner as in Example 2, except that the calcination time was changed from 6 hours to 4 hours.
- the hydrogen consumption was measured in the same manner as in Example 1, the hydrogen consumption (H) of the catalyst of Example 6 was 4.11 mmol/g, hydrogen consumption (H)/hydrogen consumption. (L) was 2.40.
- Example 7 To 7100 parts of pure water were added 1000 parts of molybdenum oxide, 31.59 parts of vanadium pentoxide, 11.05 parts of cupric oxide, 80.07 parts of 85% aqueous phosphoric acid solution, and 82.16 parts of 60% aqueous arsenic acid solution. The mixture was heated and stirred at 92° C. for 10 hours to obtain a reddish brown transparent solution. Subsequently, 10.13 parts of antimony trioxide was added to this solution, and the mixture was heated and stirred for 4 hours to obtain a dark green transparent solution. Subsequently, this solution was spray-dried to obtain a dried slurry.
- the composition of the catalytically active component solid obtained from the raw material charge is Mo-10, V-0.50, P-1.0, As-0.50, Cu-0.20, Sb-0.10. .
- 214 parts of the dried slurry and 29.8 parts of strength improving material alumina-silica fiber
- 29.8 parts of strength improving material alumina-silica fiber
- about 90% ethanol aqueous solution was added to 200 parts of spherical porous alumina carrier (particle size: 3.5 mm). 30 parts were coated and molded as a binder.
- the obtained molded product was calcined at 340° C. for 4 hours under air circulation to obtain the catalyst (coated catalyst) of the present invention.
- Example 8 To 7100 parts of pure water were added 1000 parts of molybdenum oxide, 31.59 parts of vanadium pentoxide, 27.63 parts of cupric oxide, 92.09 parts of 85% aqueous phosphoric acid solution, and 90.38 parts of 60% aqueous arsenic acid solution. The mixture was heated and stirred at 92° C. for 10 hours to obtain a reddish brown transparent solution. Subsequently, the mixture was heated and stirred for 4 hours to obtain a dark green transparent solution. Subsequently, this solution was spray-dried to obtain a dried slurry.
- the composition of the catalytically active component solid obtained from the charged amount of raw materials is Mo-10, V-0.50, P-1.15, As-0.55, and Cu-0.50.
- 214 parts of the dried slurry and 29.8 parts of strength improving material alumina-silica fiber
- 29.8 parts of strength improving material alumina-silica fiber
- 30 parts were coated and molded as a binder.
- the obtained molded product was calcined at 340° C. for 4 hours under air circulation to obtain the catalyst (coated catalyst) of the present invention.
- the hydrogen consumption was measured in the same manner as in Example 1, the hydrogen consumption (H) of the catalyst of Example 8 was 4.26 mmol/g, hydrogen consumption (H)/hydrogen consumption. (L) was 1.90.
- Example 1 In Example 1, 44.23 parts of 37.91 parts of vanadium pentoxide, 11.05 parts of 22.11 parts of cupric oxide, 82.16 parts of 98.60 parts of 60% aqueous arsenic acid solution, and a firing time of 6 A catalyst was prepared in the same manner as in Example 1, except that the time was changed to 4 hours.
- the composition of the catalytically active component solid obtained from the charged amount of raw materials is Mo-10, V-0.7, P-1.1, As-0.5, and Cu-0.2.
- the hydrogen consumption (H) of the catalyst of Comparative Example 1 was 5.1 mmol/g
- hydrogen consumption (H)/hydrogen consumption. (L) was 3.95.
- the catalysts of the present invention of Examples have higher methacrylic acid selectivities than the catalysts of Comparative Examples.
- the present invention provides a catalyst that contains molybdenum, copper and vanadium as essential components and is capable of obtaining the desired product with high selectivity. Therefore, in the gas-phase catalytic oxidation reaction using it, the desired product can be obtained stably with higher selectivity and yield.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
1)
モリブデン、銅及びバナジウムを必須成分として含み、昇温還元測定により得られるTPRスペクトルにおいて300℃以上500℃以下の範囲に表れる水素消費のピークの水素消費量(L)が1.30mmol/g以上10.00mmol/g以下である、触媒。
2)
前記水素消費量(L)が1.40mmol/g以上6.00mmol/g以下である、上記1)に記載の触媒。
3)
前記水素消費量(L)が1.60mmol/g以上4.00mmol/g以下である、上記1)に記載の触媒。
4)
前記TPRスペクトルにおいて500℃以上700℃以下の範囲に表れる水素消費のピークの水素消費量(H)が1.50mmol/g以上10.0mmol/g以下である、上記1)から3)のいずれか一項に記載の触媒。
5)
前記水素消費量(H)/前記水素消費量(L)が1.0以上3.8以下である、上記4)に記載の触媒。
6)
更に砒素を必須成分として含む、上記1)から5)のいずれか一項に記載の触媒。
7)
触媒活性成分が下記式(1)で表される組成を有する、上記1)から6)のいずれか一項に記載の触媒。
Mo10Va1Pb1Cuc1Asd1Xe1Yf1Og1(1)
(式中、Mo、V、P、Cu、As及びOは、それぞれモリブデン、バナジウム、リン、銅、砒素及び酸素を表す。XはAg、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Sb、Cr、Re、Bi、W、Fe、Co、Ni、Ce及びThからなる群から選ばれる少なくとも一種の元素を表す。YはK、Rb、Cs及びTlからなる群から選ばれる少なくとも一種の元素を表す。a1、b1、c1、d1、e1、f1及びg1は、各元素の原子比を表し、a1は0.1≦a1≦6、b1は0≦b1≦6、c1は0<c1≦3、d1は0<d1<3、e1は0≦e1≦3、f1は0≦f1≦3、g1は他の元素の原子価ならびに原子比により定まる値である。)
8)
前記(1)で表される組成を有する触媒活性成分が下記式(I)の関係を満たす、上記7)に記載の触媒。
0.6 ≦ a1/c1 ≦ 1.7・・・(I)
9)
前記(1)で表される組成を有する触媒活性成分が下記式(II)の関係を満たす、上記7)又は8)に記載の触媒。
-0.5 ≦ (a1-c1)/d1 ≦ 0.4・・・(II)
10)
不活性担体に触媒活性成分が担持された上記1)から9)のいずれか一項に記載の触媒。
11)
前記不活性担体がシリカ及び/又はアルミナである、上記10)に記載の触媒。
12)
触媒が不飽和カルボン酸化合物の製造用である、上記1)から11)のいずれか一項に記載の触媒。
13)
上記1)から12)のいずれか一項に記載の触媒を用いた不飽和カルボン酸化合物の製造方法。
14)
不飽和カルボン酸化合物がメタクリル酸である上記13)に記載の製造方法。
本発明の触媒は、モリブデン、銅及びバナジウムを必須成分として含む複合酸化物触媒であり、かつ昇温還元測定により得られるTPRスペクトルにおいて300℃以上500℃以下の範囲に表れる水素消費のピークの水素消費量(L)が1.30mmol/g以上10.00mmol/g以下であることを特徴とする。なお、本明細書において、上記構成を有する触媒を触媒(A)と記載する。
また水素消費量(L)の下限は1.30mmol/gであり、また更に好ましい順に1.40mmol/g、1.50mmol/g、1.60mmol/g、1.70mmol/g、1.75mmol/gである。触媒(A)の水素消費量(L)として特に好ましくは、1.60mmol/g以上4.00mmol/g以下であり、最も好ましくは1.75mmol/g以上2.00mmol/g以下である。上記水素消費量(L)は触媒の酸化還元特性を示すパラメータであり、目的化合物への選択率に影響を与えると考えられる。具体的には水素消費量(L)が10.00mmol/gを超える場合、目的化合物が過剰に酸化されることで、選択率が低下すると考えられる。一方水素消費量(L)が1.30mmol/g未満の場合、目的化合物への反応が十分に進行せず、目的反応以外の副反応が進行することで、選択率が低下すると考えられる。
なお触媒の水素消費量を調整する方法としては、組成変更、焼成時間、焼成雰囲気、スラリー乾燥体を成型する際のバインダー、等があげられるが、特に組成を変更する方法、及び焼成温度を上げ、又は焼成時間を延ばす方法が効果的である。
例えば、焼成温度としては、同一組成であっても10℃~40℃焼成温度を上げることで、水素消費量(L)を1.00~5.00mmol/g程度上げることができる。また同様に焼成時間を1~3時間程度短くすることで、水素消費量(L)を1.00~5.00mmol/g程度上げることができる。
また、水素消費量(L)と水素消費量(H)との間に一定の関係がある場合、本発明の触媒の特に好ましい態様である。例えば、水素消費量(H)/水素消費量(L)が1.0以上3.8以下である場合が好ましく、1.5以上3.5以下である場合がより好ましく、2.0以上3.2以下である場合が特に好ましく、2.0以上2.3以下である場合が最も好ましい。
[化1]
Mo10Va1Pb1Cuc1Asd1Xe1Yf1Og1(1)
ここで、Mo、V、P、Cu、As及びOは、それぞれモリブデン、バナジウム、リン、銅、砒素及び酸素を表す。XはAg(銀)、Mg(マグネシウム)、Zn(亜鉛)、Al(アルミニウム)、B(ホウ素)、Ge(ゲルマニウム)、Sn(錫)、Pb(鉛)、Ti(チタン)、Zr(ジルコニウム)、Sb(アンチモン)、Cr(クロム)、Re(レニウム)、Bi(ビスマス)、W(タングステン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Ce(セリウム)及びTh(トリウム)からなる群から選ばれる少なくとも一種の元素を表す。YはK(カリウム)、Rb(ルビジウム)、Cs(セシウム)及びTl(タリウム)からなる群から選ばれる少なくとも一種の元素を表す。a1、b1、c1、d1、e1、f1及びg1は、各元素の原子比を表し、a1は0.1≦a1≦6、b1は0≦b1≦6、c1は0<c1≦3、d1は0<d1<3、e1は0≦e1≦3、f1は0≦f1≦3、g1は他の元素の原子価ならびに原子比により定まる値である。また本発明における組成は活性成分を意味し、不活性担体としては炭化珪素、アルミナ、シリカ、シリカアルミナ、ムライト、アランダム、ステアタイト等を用いることができる。
a1の下限は好ましい順に、0.2、0.25、0.3、0.35であり、最も好ましくは0.4である。a1の上限は望ましい順に、5、3、2、1、0.8、0.7、0.62であり、最も好ましくは0.6である。すなわちa1の最も好ましい範囲は、0.4≦a1≦0.6である。
b1の下限は好ましい順に、0、0.1、0.3、0.5、0.7、0.9、1.0、であり、最も好ましくは1.05である。b1の上限は好ましい順に、5、4、3、2であり、最も好ましくは1.5である。すなわちb1の最も好ましい範囲は、1.05≦b1≦1.5である。
c1の下限は好ましい順に、0.1、0.2、0.3であり、最も好ましくは0.4である。c1の上限は好ましい順に、2、1.5、1.2、1.0、0.8であり、最も好ましくは0.6である。すなわちc1の最も好ましい範囲は、0.4≦c1≦0.6である。
d1の下限は好ましい順に、0、0.1、0.2、0.3、0.4であり、最も好ましくは0.45である。d1の上限は好ましい順に、2、1.5、1.2、1.0、0.8であり、最も好ましくは0.55である。すなわちd1の最も好ましい範囲は、0.45≦d1≦0.55である。
e1の上限は好ましい順に、2、1.5、1、0.5、0.1、0.06であり、最も好ましくは0.065である。なおe1の下限は0であり、Xは含有しない、すなわちe1=0が触媒(A)の最も好ましい組成である。
f1の上限は好ましい順に、2、1.5、1、0.5、0.1、最も好ましくは0.05である。なおf1の下限は0であり、Yは含有しない、すなわちf1=0が触媒(A)の最も好ましい組成である。
a1/c1の上限は好ましい順に1.65、1.6、1.55、1.5、1.45、1.4、1.35であり、特に好ましくは1.3である。また下限としては好ましい順に、0.65、0.7、0.75、0.8であり、特に好ましくは0.85である。従って、a1/c1の最も好ましい範囲は、0.85≦a1/c1≦1.3である。
前記式(1)において、a1、c1、d1の関係が上記式(II)を満たす場合、触媒(A)として特に好ましい触媒組成である。
(a1-c1)/d1の上限は好ましい順に0.38、0.37、0.35、0.34であり、特に好ましくは0.33である。また下限としては好ましい順に、-0.48、-0.46、-0.44、-0.42、-0.40、-0.38であり特に好ましくは-0.36である。従って、(a1-c1)/d1の最も好ましい範囲は、-0.36≦(a1-c1)/d1≦0.33である。
触媒(A)の製造方法は、(a)上記金属をそれぞれ又は複数含む化合物を水に分散し、これらの化合物の水溶液又は水分散体(以下、両者を含めてスラリー液という)を調製する工程、(b)工程(a)で得られたスラリー液を乾燥してスラリー乾燥体を得る工程、(c)工程(b)で得られたスラリー乾燥体を成型する工程、(d)工程(c)で得られた被覆成型物を焼成する工程が含まれる。以下、工程ごとに好ましい実施形態を記載するが、本発明の実施においては、下記実施形態に限られるものではない。
工程(a)においては本発明の触媒の必須の活性成分元素及び任意の活性成分元素を含む化合物を用いる。前記化合物を例示すると、活性成分元素の塩化物、硫酸塩、硝酸塩、酸化物又は酢酸塩等が挙げられる。好ましい化合物をより具体的に例示すると硝酸コバルト等の硝酸塩、酢酸銅等の酢酸塩、酸化モリブデン、五酸化バナジウム、酸化銅、三酸化アンチモン、酸化セリウム、酸化亜鉛又は酸化ゲルマニウム等の酸化物、正リン酸、リン酸、硼酸、リン酸アルミニウム又は12タングストリン酸等の酸(又はその塩)等が挙げられるが、これらに限られない。これら活性成分を含む化合物は単独で使用してもよいし、2種以上を混合して使用してもよい。工程(a)では、各活性成分を含む化合物と水とを均一に混合し、スラリー液を得る。前記スラリー液においては、全ての成分が水に溶解している必要は無く、その一部または全体が懸濁状態であっても差し支えない。スラリー液における水の使用量は、用いる化合物の全量を完全に溶解できるか、または均一に混合できる量であれば特に制限はない。工程(b)における乾燥方法や乾燥条件を勘案して、水の使用量を適宜決定すれば良い。通常、水の量はスラリー液調製用化合物の合計質量100部に対して、200~2000部程度である。水の量は多くてもよいが、多過ぎると工程(b)の乾燥工程のエネルギーコストが高くなり、又完全に乾燥できない場合も生ずるなどのデメリットが多い。
工程(c)では工程(b)で得られたスラリー乾燥体を成型する。なお、スラリー乾燥体を250℃から350℃程度で焼成してから成型すると、機械的強度や触媒性能が向上する場合があるので、成型前にスラリー乾燥体を焼成してもよい。成型方法は特に制約はなく、酸化反応において反応ガスの圧力損失を小さくするために、スラリー乾燥体を柱状物、錠剤、リング状、球状等に成型する他、不活性担体にスラリー乾燥体を被覆してもよい。このうち選択性の向上や反応熱の除去が期待できることから、不活性担体にスラリー乾燥体を被覆し、被覆触媒とするのが好ましい。この被覆工程は以下に述べる転動造粒法が好ましい。この方法は、例えば固定容器内の底部に、平らなあるいは凹凸のある円盤を有する装置中で、円盤を高速で回転することにより、容器内の担体を自転運動と公転運動の繰返しにより激しく攪拌させ、ここにバインダーと工程(b)で得られたスラリー乾燥体並びにこれらに、必要により、他の添加剤例えば成型助剤、強度向上剤を添加した被覆用混合物を担体に被覆する方法である。バインダーの添加方法は、1)前記被覆用混合物に予め混合しておく、2)被覆用混合物を固定容器内に添加するのと同時に添加、3)被覆用混合物を固定容器内に添加した後に添加、4)被覆用混合物を固定容器内に添加する前に添加、5)被覆用混合物とバインダーをそれぞれ分割し、2)~4)を適宜組み合わせて全量添加する等の方法が任意に採用しうる。このうち5)においては、例えば被覆用混合物の固定容器壁への付着、被覆用混合物同士の凝集がなく担体上に所定量が担時されるようオートフィーダー等を用いて添加速度を調節して行うのが好ましい。バインダーは水/または1気圧以下での沸点が150℃以下の有機化合物からなる群から選ばれる少なくとも1種/またはそれらの水溶液であることが好ましい。水以外のバインダーの具体例としてはメタノール、エタノール、プロパノール類、ブタノール類等のアルコール、好ましくは炭素数1~4のアルコール、エチルエーテル、ブチルエーテル又はジオキサン等のエーテル、酢酸エチル又は酢酸ブチル等のエステル、アセトン又はメチルエチルケトン等のケトン等並びにそれらの水溶液が挙げられ、特にエタノールが好ましい。バインダーとしてエタノールを使用する場合、エタノール/水=10/0~0/10(質量比)、好ましくは水と混合し9/1~1/9(質量比)とすることが好ましい。これらバインダーの使用量は、被覆用混合物100質量部に対して通常2~60質量部、好ましくは10~50質量部である。
[水素消費量(L)の測定方法]
触媒の水素消費量(L)の測定方法は触媒の還元性や活性サイトの酸化還元特性を表す指標として幅広く用いられている。
一般的には、測定対象の触媒0.01グラムから2グラムを目安に秤量し、真空脱気などの前処理を行う。
水素をアルゴンや窒素で数%程度に希釈したガスの流通下で触媒を昇温することで、触媒と水素を反応させ、各温度に対する水素の消費量を測定することで昇温還元スペクトルを得る。
昇温還元スペクトルから面積を計算し、水素消費量(L)を求める。
水素消費量(L)の測定方法としてはこれらの手法が一般的であり、より詳細には非特許文献2などを参照できる。当然のことながら、昇温還元の実験条件は科学的に妥当な条件である範囲で、測定対象の触媒の物性や測定装置の特性を鑑み、適宜設定されるものである。
なお、水素消費量(H)も、上述した水素消費量(L)の測定方法に従って得られる昇温還元スペクトルから求められる。
1)触媒の調製
純水7100部に酸化モリブデン1000部、五酸化バナジウム37.91部、酸化第二銅22.11部、85%の燐酸水溶液88.08部、及び60%の砒酸水溶液98.60部を添加し、92℃で10時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を噴霧乾燥しスラリー乾燥体を得た。原料仕込み量から求めた、触媒活性成分固体の組成は、
Mo-10、V-0.6、P-1.1、As-0.6、Cu-0.4である。
次いで得られたスラリー乾燥体214部、強度向上材(アルミナ-シリカ繊維)29.8部を均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)200部に90%エタノール水溶液約30部をバインダーとして被覆成型した。次いで得られた成型物を空気流通下において310℃で6時間かけて焼成を行い本発明の触媒(被覆触媒)を得た。
得られた本発明の被覆触媒40.2mlを内径18.4mmのステンレス反応管に充填し、原料ガス(組成(モル比);メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6)、空間速度(SV)900hr-1の条件で、メタクロレインの酸化反応を実施した。反応浴温度を290℃から330℃の間に調整し、メタクロレイン転化率77mоl%の時のメタクリル酸選択率を算出した。
なお転化率、選択率は次の通りに定義される。
転化率=反応したメタクロレインのモル数/供給したメタクロレインのモル数×100
選択率=生成したメタクリル酸のモル数/反応したメタクロレインのモル数×100
得られた触媒の水素消費量(L)の評価は、次の装置および条件で行った。
使用装置:(マイクロトラック・ベル社製BEL-CATII)
試料重量:0.08g
測定の前処理:ヘリウムを300℃、50ml/minの条件下で流して1時間前処理を行う。
測定中の昇温速度:10℃/min
測定最大温度:700℃
キャリアガス:5%水素(アルゴンで希釈した混合ガス)
キャリアガス流量:30ml/min
測定結果を表1、及び測定データを図1に示す。なお水素消費量(L)は図1における300℃以上500℃以下のピーク面積を積分により求めた値である。また、水素消費量(H)(500℃以上700℃以下のピーク面積)も同様にして求めたところ、5.89mmol/gであった。また、水素消費量(H)/水素消費量(L)は2.87であった。
純水7100部に酸化モリブデン1000部、五酸化バナジウム39.17部、酸化第二銅24.87部、85%の燐酸水溶液93.69部、及び60%の砒酸水溶液82.16部を添加し、92℃で10時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液に三酸化アンチモン7.09部を加え、4時間加熱攪拌して濃緑色の透明溶液を得た。続いて、この溶液を噴霧乾燥しスラリー乾燥体を得た。原料仕込み量から求めた、触媒活性成分固体の組成は、Mo-10、V-0.6、P-1.2、As-0.5、Cu-0.5、Sb-0.1である。
次いで得られたスラリー乾燥体214部、強度向上材(アルミナ-シリカ繊維)29.8部を均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)200部に90%エタノール水溶液約30部をバインダーとして被覆成型した。次いで得られた成型物を空気流通下において310℃で6時間かけて焼成を行い本発明の触媒(被覆触媒)を得た。
実施例1において五酸化バナジウム37.91部を31.59部、酸化第二銅22.11部を27.63部、85%の燐酸水溶液88.08部を96.09部、60%の砒酸水溶液98.60部を82.16部にした以外は実施例1と同様の方法で触媒を調製した。原料仕込み量から求めた、触媒活性成分固体の組成は、Mo-10、V-0.5、P-1.2、As-0.5、Cu-0.5である。なお、実施例1と同様の方法に従って水素消費量測定を測定したところ、実施例3の触媒の水素消費量(H)は4.21mmol/gであり、水素消費量(H)/水素消費量(L)は2.14であった。
実施例1において五酸化バナジウム37.91部を31.59部、酸化第二銅22.11部を27.63部、60%の砒酸水溶液98.60部を82.16部にした以外は実施例1と同様の方法で触媒を調製した。原料仕込み量から求めた、触媒活性成分固体の組成は、Mo-10、V-0.5、P-1.1、As-0.5、Cu-0.5である。なお、実施例1と同様の方法に従って水素消費量測定を測定したところ、実施例4の触媒の水素消費量(H)は3.89mmol/gであり、水素消費量(H)/水素消費量(L)は2.06であった。
実施例1において焼成時間を6時間から4時間にした以外は実施例1と同様の方法で触媒を調製した。
実施例2において焼成時間を6時間から4時間にした以外は実施例2と同様の方法で触媒を調製した。なお、実施例1と同様の方法に従って水素消費量測定を測定したところ、実施例6の触媒の水素消費量(H)は4.11mmol/gであり、水素消費量(H)/水素消費量(L)は2.40であった。
純水7100部に酸化モリブデン1000部、五酸化バナジウム31.59部、酸化第二銅11.05部、85%の燐酸水溶液80.07部、及び60%の砒酸水溶液82.16部を添加し、92℃で10時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液に三酸化アンチモン10.13部を加え、4時間加熱攪拌して濃緑色の透明溶液を得た。続いて、この溶液を噴霧乾燥しスラリー乾燥体を得た。原料仕込み量から求めた、触媒活性成分固体の組成は、Mo-10、V-0.50、P-1.0、As-0.50、Cu-0.20、Sb-0.10である。
次いで得られたスラリー乾燥体214部、強度向上材(アルミナ-シリカ繊維)29.8部を均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)200部に90%エタノール水溶液約30部をバインダーとして被覆成型した。次いで得られた成型物を空気流通下において340℃で4時間かけて焼成を行い本発明の触媒(被覆触媒)を得た。
純水7100部に酸化モリブデン1000部、五酸化バナジウム31.59部、酸化第二銅27.63部、85%の燐酸水溶液92.09部、及び60%の砒酸水溶液90.38部を添加し、92℃で10時間加熱攪拌して赤褐色の透明溶液を得た。続いて、4時間加熱攪拌して濃緑色の透明溶液を得た。続いて、この溶液を噴霧乾燥しスラリー乾燥体を得た。原料仕込み量から求めた、触媒活性成分固体の組成は、Mo-10、V-0.50、P-1.15、As-0.55、Cu-0.50である。
次いで得られたスラリー乾燥体214部、強度向上材(アルミナ-シリカ繊維)29.8部を均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)200部に90%エタノール水溶液約30部をバインダーとして被覆成型した。次いで得られた成型物を空気流通下において340℃で4時間かけて焼成を行い本発明の触媒(被覆触媒)を得た。なお、実施例1と同様の方法に従って水素消費量測定を測定したところ、実施例8の触媒の水素消費量(H)は4.26mmol/gであり、水素消費量(H)/水素消費量(L)は1.90であった。
実施例1において五酸化バナジウム37.91部を44.23部、酸化第二銅22.11部を11.05部、60%の砒酸水溶液98.60部を82.16部、焼成時間を6時間から4時間にした以外は実施例1と同様の方法で触媒を調製した。原料仕込み量から求めた、触媒活性成分固体の組成は、Mo-10、V-0.7、P-1.1、As-0.5、Cu-0.2である。なお、実施例1と同様の方法に従って水素消費量測定を測定したところ、比較例1の触媒の水素消費量(H)は5.1mmol/gであり、水素消費量(H)/水素消費量(L)は3.95であった。
なお、本願は、2021年1月27日付で出願された日本国特許出願(特願2021-10890)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Claims (14)
- モリブデン、銅及びバナジウムを必須成分として含み、昇温還元測定により得られるTPRスペクトルにおいて300℃以上500℃以下の範囲に表れる水素消費のピークの水素消費量(L)が1.30mmol/g以上10.00mmol/g以下である、触媒。
- 前記水素消費量(L)が1.40mmol/g以上6.00mmol/g以下である、請求項1に記載の触媒。
- 前記水素消費量(L)が1.60mmol/g以上4.00mmol/g以下である、請求項1に記載の触媒。
- 前記TPRスペクトルにおいて500℃以上700℃以下の範囲に表れる水素消費のピークの水素消費量(H)が1.50mmol/g以上10.0mmol/g以下である、請求項1から3のいずれか一項に記載の触媒。
- 前記水素消費量(H)/前記水素消費量(L)が1.0以上3.8以下である、請求項4に記載の触媒。
- 更に砒素を必須成分として含む、請求項1から5のいずれか一項に記載の触媒。
- 触媒活性成分が下記式(1)で表される組成を有する、請求項1から6のいずれか一項に記載の触媒。
Mo10Va1Pb1Cuc1Asd1Xe1Yf1Og1(1)
(式中、Mo、V、P、Cu、As及びOは、それぞれモリブデン、バナジウム、リン、銅、砒素及び酸素を表す。XはAg、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Sb、Cr、Re、Bi、W、Fe、Co、Ni、Ce及びThからなる群から選ばれる少なくとも一種の元素を表す。YはK、Rb、Cs及びTlからなる群から選ばれる少なくとも一種の元素を表す。a1、b1、c1、d1、e1、f1及びg1は、各元素の原子比を表し、a1は0.1≦a1≦6、b1は0≦b1≦6、c1は0<c1≦3、d1は0<d1<3、e1は0≦e1≦3、f1は0≦f1≦3、g1は他の元素の原子価ならびに原子比により定まる値である。)
- 前記(1)で表される組成を有する触媒活性成分が下記式(I)の関係を満たす、請求項7に記載の触媒。
0.6 ≦ a1/c1 ≦ 1.7・・・(I)
- 前記(1)で表される組成を有する触媒活性成分が下記式(II)の関係を満たす、請求項7又は8に記載の触媒。
-0.5 ≦ (a1-c1)/d1 ≦ 0.4・・・(II)
- 不活性担体に触媒活性成分が担持された触媒である、請求項1から9のいずれか一項に記載の触媒。
- 前記不活性担体がシリカ及び/又はアルミナである、請求項10に記載の触媒。
- 触媒が不飽和カルボン酸化合物の製造用である、請求項1から11のいずれか一項に記載の触媒。
- 請求項1から12のいずれか一項に記載の触媒を用いた不飽和カルボン酸化合物の製造方法。
- 不飽和カルボン酸化合物がメタクリル酸である、請求項13に記載の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022578455A JPWO2022163727A1 (ja) | 2021-01-27 | 2022-01-26 | |
EP22745946.8A EP4286050A1 (en) | 2021-01-27 | 2022-01-26 | Catalyst, and method for producing unsaturated carboxylic acid using same |
CN202280012077.3A CN116801979A (zh) | 2021-01-27 | 2022-01-26 | 催化剂和使用该催化剂的不饱和羧酸的制造方法 |
KR1020237025778A KR20230137338A (ko) | 2021-01-27 | 2022-01-26 | 촉매 및 그것을 이용한 불포화 카본산의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021010890 | 2021-01-27 | ||
JP2021-010890 | 2021-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022163727A1 true WO2022163727A1 (ja) | 2022-08-04 |
Family
ID=82654609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/002964 WO2022163727A1 (ja) | 2021-01-27 | 2022-01-26 | 触媒及びそれを用いた不飽和カルボン酸の製造方法 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4286050A1 (ja) |
JP (1) | JPWO2022163727A1 (ja) |
KR (1) | KR20230137338A (ja) |
CN (1) | CN116801979A (ja) |
WO (1) | WO2022163727A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0328386B2 (ja) | 1984-06-11 | 1991-04-18 | Chichibu Semento Kk | |
JP2000210566A (ja) | 1998-11-16 | 2000-08-02 | Mitsubishi Rayon Co Ltd | メタクリル酸製造用触媒及びその製造法並びにその触媒を用いるメタクリル酸の製造法 |
JP2002233760A (ja) * | 2000-09-21 | 2002-08-20 | Nippon Kayaku Co Ltd | メタクリル酸製造用触媒、被覆触媒及びその製法 |
JP2012115825A (ja) | 2010-08-04 | 2012-06-21 | Nippon Kayaku Co Ltd | メタクロレインおよびメタクリル酸製造用触媒、ならびにその製造方法 |
WO2012102411A2 (ja) * | 2011-01-28 | 2012-08-02 | 日本化薬株式会社 | 飽和アルデヒドを選択的に低減させる触媒と、その製造方法 |
JP2014511363A (ja) * | 2011-01-28 | 2014-05-15 | アルケマ フランス | 改善されたアクロレイン/アクリル酸の製造方法 |
WO2015037611A1 (ja) | 2013-09-11 | 2015-03-19 | 三菱レイヨン株式会社 | メタクリル酸製造用触媒の製造方法 |
WO2019188955A1 (ja) * | 2018-03-28 | 2019-10-03 | 日本化薬株式会社 | 不飽和カルボン酸製造用触媒 |
JP2021010890A (ja) | 2019-07-08 | 2021-02-04 | 日鉄ケミカル&マテリアル株式会社 | 底質からの硫化水素の発生抑制方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2827289B2 (ja) | 1989-06-23 | 1998-11-25 | 大同特殊鋼株式会社 | 金属の酸洗処理方法 |
-
2022
- 2022-01-26 WO PCT/JP2022/002964 patent/WO2022163727A1/ja active Application Filing
- 2022-01-26 CN CN202280012077.3A patent/CN116801979A/zh active Pending
- 2022-01-26 KR KR1020237025778A patent/KR20230137338A/ko active Search and Examination
- 2022-01-26 JP JP2022578455A patent/JPWO2022163727A1/ja active Pending
- 2022-01-26 EP EP22745946.8A patent/EP4286050A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0328386B2 (ja) | 1984-06-11 | 1991-04-18 | Chichibu Semento Kk | |
JP2000210566A (ja) | 1998-11-16 | 2000-08-02 | Mitsubishi Rayon Co Ltd | メタクリル酸製造用触媒及びその製造法並びにその触媒を用いるメタクリル酸の製造法 |
JP2002233760A (ja) * | 2000-09-21 | 2002-08-20 | Nippon Kayaku Co Ltd | メタクリル酸製造用触媒、被覆触媒及びその製法 |
JP2012115825A (ja) | 2010-08-04 | 2012-06-21 | Nippon Kayaku Co Ltd | メタクロレインおよびメタクリル酸製造用触媒、ならびにその製造方法 |
WO2012102411A2 (ja) * | 2011-01-28 | 2012-08-02 | 日本化薬株式会社 | 飽和アルデヒドを選択的に低減させる触媒と、その製造方法 |
JP2014511363A (ja) * | 2011-01-28 | 2014-05-15 | アルケマ フランス | 改善されたアクロレイン/アクリル酸の製造方法 |
WO2015037611A1 (ja) | 2013-09-11 | 2015-03-19 | 三菱レイヨン株式会社 | メタクリル酸製造用触媒の製造方法 |
WO2019188955A1 (ja) * | 2018-03-28 | 2019-10-03 | 日本化薬株式会社 | 不飽和カルボン酸製造用触媒 |
JP2021010890A (ja) | 2019-07-08 | 2021-02-04 | 日鉄ケミカル&マテリアル株式会社 | 底質からの硫化水素の発生抑制方法 |
Non-Patent Citations (3)
Title |
---|
MOLECULAR CATALYSIS, vol. 438, 2017, pages 47 - 54 |
YASUHIRO TANAKAHIROMI YAMASHITA: "Actual Characterization of Solid Surfaces", KODANSHA SCIENTIFIC, 30 July 2015 (2015-07-30), pages 142 - 145 |
ZHOU LILONG, WANG LEI, CAO YUNLI, DIAO YANYAN, YAN RUIYI, ZHANG SUOJIANG: "The states and effects of copper in Keggin-type heteropolyoxometalate catalysts on oxidation of methacrolein to methacrylic acid", MOLECULAR CATALYSIS, ELSEVIER, vol. 438, 1 September 2017 (2017-09-01), pages 47 - 54, XP055954875, ISSN: 2468-8231, DOI: 10.1016/j.mcat.2017.04.031 * |
Also Published As
Publication number | Publication date |
---|---|
CN116801979A (zh) | 2023-09-22 |
KR20230137338A (ko) | 2023-10-04 |
EP4286050A1 (en) | 2023-12-06 |
JPWO2022163727A1 (ja) | 2022-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5574434B2 (ja) | メタクリル酸の製造方法及びメタクリル酸製造用触媒 | |
JP5973999B2 (ja) | メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法 | |
JP2015096497A (ja) | 不飽和カルボン酸の製造方法、及び担持触媒 | |
JP4478107B2 (ja) | メタクリル酸製造用触媒及びその製法 | |
JP2006314923A (ja) | メタクリル酸製造用触媒の製造方法 | |
KR102618400B1 (ko) | 촉매 및 그의 제조 방법, 그리고 당해 촉매를 이용한 직결 2단 접촉 기상 산화 방법 및 그의 이용 | |
JP2020015043A (ja) | メタクリル酸製造用触媒の製造方法 | |
JP2011152543A (ja) | メタクリル酸製造用触媒の製造方法 | |
WO2022163727A1 (ja) | 触媒及びそれを用いた不飽和カルボン酸の製造方法 | |
KR20140121908A (ko) | 메타크릴산 제조용 촉매의 제조 방법 및 메타크릴산의 제조 방법 | |
KR102600910B1 (ko) | 불포화 카본산 제조용 촉매 및 그의 제조 방법, 그리고 불포화 카본산의 제조 방법 | |
JP7105397B1 (ja) | 触媒及びそれを用いた不飽和カルボン酸の製造方法 | |
WO2022163725A1 (ja) | 触媒及びそれを用いた不飽和カルボン酸の製造方法 | |
JP7105398B1 (ja) | 触媒及びそれを用いた不飽和カルボン酸の製造方法 | |
KR20220119386A (ko) | 촉매, 그것을 이용한 화합물의 제조 방법 및 화합물 | |
WO2022163726A1 (ja) | 触媒及びそれを用いた不飽和カルボン酸の製造方法 | |
JP5269046B2 (ja) | メタクリル酸製造用触媒の製造方法 | |
JP2695480B2 (ja) | メタクリル酸製造用触媒およびその製造方法 | |
JP2024142970A (ja) | 不飽和アルデヒド、不飽和カルボン酸または共役ジエン製造用触媒の製造方法 | |
JP2024091001A (ja) | 不飽和アルデヒド、不飽和カルボン酸または共役ジエンの製造方法 | |
KR20230140472A (ko) | 불포화 알데히드 및/또는 불포화 카본산의 제조 방법 | |
JP2023141551A (ja) | 触媒、及びそれを用いた不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法 | |
KR20210029151A (ko) | 촉매 및 그것을 이용한 화합물의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22745946 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022578455 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280012077.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022745946 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022745946 Country of ref document: EP Effective date: 20230828 |