WO2022163727A1 - 触媒及びそれを用いた不飽和カルボン酸の製造方法 - Google Patents

触媒及びそれを用いた不飽和カルボン酸の製造方法 Download PDF

Info

Publication number
WO2022163727A1
WO2022163727A1 PCT/JP2022/002964 JP2022002964W WO2022163727A1 WO 2022163727 A1 WO2022163727 A1 WO 2022163727A1 JP 2022002964 W JP2022002964 W JP 2022002964W WO 2022163727 A1 WO2022163727 A1 WO 2022163727A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrogen consumption
mmol
catalyst according
parts
Prior art date
Application number
PCT/JP2022/002964
Other languages
English (en)
French (fr)
Inventor
寛人 三輪
友洋 小畑
良太 平岡
徹 川口
秀臣 酒井
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2022578455A priority Critical patent/JPWO2022163727A1/ja
Priority to EP22745946.8A priority patent/EP4286050A1/en
Priority to CN202280012077.3A priority patent/CN116801979A/zh
Priority to KR1020237025778A priority patent/KR20230137338A/ko
Publication of WO2022163727A1 publication Critical patent/WO2022163727A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid

Definitions

  • the present invention relates to a catalyst for obtaining an unsaturated carboxylic acid through an oxidation reaction, and to a catalyst that can obtain the desired product with higher selectivity than conventional catalysts.
  • catalysts have been proposed as catalysts used to produce unsaturated carboxylic acids.
  • unsaturated carboxylic acids catalysts for producing methacrylic acid contain molybdenum and phosphorus as main components and have a heteropolyacid and/or salt structure.
  • methods for producing these catalysts have been made for many proposals.
  • Patent Document 1 a catalyst precursor of a partially neutralized salt of a heteropolyacid is heat-treated at least twice under gas flow at a temperature of 350° C. to 500° C. for 1 hour to 30 hours, and the catalyst precursor is removed between each heat treatment.
  • a catalyst for producing methacrylic acid has been proposed which is cooled to 250° C. once and the temperature difference between each heat treatment is within 30° C.
  • Patent Document 2 proposes a method for producing a catalyst for producing methacrylic acid, wherein the catalyst raw material is divided into at least two, and the mixing tank and the mixing tank are different.
  • Non-Patent Document 1 describes the hydrogen consumption and reaction results of the catalyst obtained by temperature-programmed reduction measurement of the heteropolyacid catalyst.
  • Patent Document 1 involves a two-stage calcination process, which is not economical and there are concerns about a stable catalyst production method.
  • Patent Document 2 since the preparation tank and the mixing tank are separated into two, there are concerns about working efficiency and a stable catalyst production method.
  • Patent Document 3 calls for further improvement in the yield of methacrylic acid.
  • Non-Patent Document 1 does not clarify the hydrogen consumption of the catalyst obtained by the optimum temperature-programmed reduction measurement of the heteropolyacid catalyst.
  • the catalysts obtained as in Patent Documents 1 to 3 are still unsatisfactory in reaction results, and further improvements have been desired when used as industrial catalysts.
  • An object of the present invention is to provide a catalyst that can stably produce an unsaturated carboxylic acid with excellent selectivity.
  • the hydrogen consumption (L) of the catalyst containing molybdenum, copper and vanadium as essential components is 1.30 mmol/g in the TPR spectrum obtained by temperature-programmed reduction measurement.
  • the inventors have found that a catalyst having a concentration of 10.00 mmol/g or less has a high selectivity for unsaturated carboxylic acids, and have completed the present invention.
  • the present invention relates to the following 1) to 12).
  • Molybdenum, copper and vanadium are contained as essential components, and the hydrogen consumption (L) of the hydrogen consumption peak appearing in the range of 300 ° C. or higher and 500 ° C. or lower in the TPR spectrum obtained by temperature programmed reduction measurement is 1.30 mmol / g or more 10 .00 mmol/g or less.
  • X represents Ag, Mg, Zn, Al, B, Ge, Sn, Pb, represents at least one element selected from the group consisting of Ti, Zr, Sb, Cr, Re, Bi, W, Fe, Co, Ni, Ce and Th
  • Y is selected from the group consisting of K, Rb, Cs and Tl
  • a1, b1, c1, d1, e1, f1 and g1 represent the atomic ratio of each element, a1 is 0.1 ⁇ a1 ⁇ 6, b1 is 0 ⁇ b1 ⁇ 6, c1 is 0 ⁇ c1 ⁇ 3, d1 is 0 ⁇ d1 ⁇ 3, e1 is 0 ⁇ e1 ⁇ 3, f1 is 0 ⁇ f1 ⁇ 3, and g1 is a value determined by the valence and atomic ratio of other elements.) 8) The catalyst according to 7) above, wherein the catalytically active component having the composition represented by (1) above satisfies the relationship of formula (I) below.
  • the present invention it is possible to provide a catalyst containing molybdenum, copper and vanadium as essential components and capable of obtaining the desired product with high selectivity. Therefore, in the gas-phase catalytic oxidation reaction using it, the desired product can be obtained with higher selectivity and stability.
  • FIG. 4 is a graph showing measurement data in hydrogen consumption measurement of the catalyst of Example 1.
  • FIG. 4 is a graph showing measurement data in measuring the hydrogen consumption of the catalyst of Comparative Example 1.
  • FIG. 4 is a graph showing measurement data in measuring the hydrogen consumption of the catalyst of Comparative Example 1.
  • the catalyst of the present invention is a composite oxide catalyst containing molybdenum, copper and vanadium as essential components, and hydrogen at a hydrogen consumption peak appearing in the range of 300 ° C. or higher and 500 ° C. or lower in the TPR spectrum obtained by temperature programmed reduction measurement.
  • the consumption (L) is characterized by being 1.30 mmol/g or more and 10.00 mmol/g or less.
  • the catalyst which has the said structure is described as a catalyst (A).
  • the upper limit of the hydrogen consumption (L) of the catalyst (A) measured by temperature-programmed reduction measurement is 10.00 mmol/g, and further preferably 9.00 mmol/g, 8.00 mmol/g and 7.00 mmol/g. g, 6.00 mmol/g, 5.00 mmol/g, 4.00 mmol/g, 3.00 mmol/g, 2.20 mmol/g, and particularly preferably 2.00 mmol/g or less.
  • the lower limit of the hydrogen consumption (L) is 1.30 mmol/g, and further preferably 1.40 mmol/g, 1.50 mmol/g, 1.60 mmol/g, 1.70 mmol/g, 1.75 mmol/g. is g.
  • the hydrogen consumption (L) of the catalyst (A) is particularly preferably 1.60 mmol/g or more and 4.00 mmol/g or less, and most preferably 1.75 mmol/g or more and 2.00 mmol/g or less.
  • the above-mentioned hydrogen consumption (L) is a parameter indicating the oxidation-reduction characteristics of the catalyst, and is considered to affect the selectivity to the target compound. Specifically, when the hydrogen consumption (L) exceeds 10.00 mmol/g, it is considered that the target compound is excessively oxidized, resulting in a decrease in selectivity. On the other hand, when the hydrogen consumption (L) is less than 1.30 mmol/g, it is considered that the reaction to the target compound does not proceed sufficiently, and side reactions other than the target reaction proceed, resulting in a decrease in selectivity.
  • the hydrogen consumption in the present invention means the hydrogen consumption (L) which is the area of the peak existing in the range of 300° C. or more and 500° C. or less.
  • the baseline correction method may be a method known to those skilled in the art using the peak start point and end point. For example, in FIG. 1, a straight line formed by connecting the point of 100° C. and the highest point between 450° C. and 600° C. is used as a baseline and corrected.
  • Methods for adjusting the hydrogen consumption of the catalyst include changing the composition, firing time, firing atmosphere, binder for molding the dried slurry, and the like. , or a method of extending the baking time is effective.
  • the hydrogen consumption (L) can be increased by about 1.00 to 5.00 mmol/g by increasing the firing temperature by 10°C to 40°C. Similarly, by shortening the firing time by about 1 to 3 hours, the hydrogen consumption (L) can be increased by about 1.00 to 5.00 mmol/g.
  • the hydrogen consumption (H) is preferably 1.50 mmol/g or more and 10.0 mmol/g or less, more preferably 2.00 mmol/g or more and 8.00 mmol/g or less, and particularly preferably 3. It is 00 mmol/g or more and 7.00 mmol/g or less, particularly preferably 3.50 mmol/g or more and 6.00 mmol/g or less, and most preferably 3.50 mmol/g or more and 5.00 mmol/g or less.
  • this is a particularly preferred embodiment of the catalyst of the present invention.
  • the hydrogen consumption (H)/hydrogen consumption (L) is preferably 1.0 or more and 3.8 or less, more preferably 1.5 or more and 3.5 or less, and 2.0 or more and 3 0.2 or less is particularly preferred, and 2.0 or more and 2.3 or less is most preferred.
  • a preferred composition of the catalytically active components of the catalyst (A) is represented by the following general formula (1).
  • Mo, V, P, Cu, As and O represent molybdenum, vanadium, phosphorus, copper, arsenic and oxygen respectively.
  • X is Ag (silver), Mg (magnesium), Zn (zinc), Al (aluminum), B (boron), Ge (germanium), Sn (tin), Pb (lead), Ti (titanium), Zr (zirconium) ), Sb (antimony), Cr (chromium), Re (rhenium), Bi (bismuth), W (tungsten), Fe (iron), Co (cobalt), Ni (nickel), Ce (cerium) and Th (thorium ) represents at least one element selected from the group consisting of Y represents at least one element selected from the group consisting of K (potassium), Rb (rubidium), Cs (cesium) and Tl (thallium).
  • a1, b1, c1, d1, e1, f1 and g1 represent the atomic ratio of each element, a1 is 0.1 ⁇ a1 ⁇ 6, b1 is 0 ⁇ b1 ⁇ 6, c1 is 0 ⁇ c1 ⁇ 3, d1 is 0 ⁇ d1 ⁇ 3, e1 is 0 ⁇ e1 ⁇ 3, f1 is 0 ⁇ f1 ⁇ 3, and g1 is a value determined by the valence and atomic ratio of other elements.
  • the composition in the present invention means an active component, and as an inert carrier, silicon carbide, alumina, silica, silica-alumina, mullite, alundum, steatite, etc. can be used.
  • X is preferably Zn, Ag, Fe or Sb, more preferably Ag, Fe or Sb, particularly preferably Fe or Sb, most preferably Sb. be.
  • Y is preferably K, Rb, or Cs, more preferably K, Cs, and most preferably Cs. The effects of the invention tend to appear remarkably.
  • the preferred range of a1 to g1 is as follows.
  • the lower limits of a1 are, in order of preference, 0.2, 0.25, 0.3 and 0.35, most preferably 0.4.
  • the upper limits of a1 are, in order of preference, 5, 3, 2, 1, 0.8, 0.7 and 0.62, most preferably 0.6. That is, the most preferable range of a1 is 0.4 ⁇ a1 ⁇ 0.6.
  • the lower limits of b1 are, in order of preference, 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0, most preferably 1.05.
  • the upper limit of b1 is 5, 4, 3 and 2 in order of preference, most preferably 1.5. That is, the most preferable range of b1 is 1.05 ⁇ b1 ⁇ 1.5.
  • the lower limits of c1 are, in order of preference, 0.1, 0.2 and 0.3, most preferably 0.4.
  • the upper limits of c1 are, in order of preference, 2, 1.5, 1.2, 1.0 and 0.8, most preferably 0.6. That is, the most preferable range of c1 is 0.4 ⁇ c1 ⁇ 0.6.
  • the lower limits of d1 are, in order of preference, 0, 0.1, 0.2, 0.3 and 0.4, most preferably 0.45.
  • the upper limits of d1 are, in order of preference, 2, 1.5, 1.2, 1.0 and 0.8, most preferably 0.55. That is, the most preferable range of d1 is 0.45 ⁇ d1 ⁇ 0.55.
  • the upper limits of e1 are, in order of preference, 2, 1.5, 1, 0.5, 0.1 and 0.06, most preferably 0.065.
  • the upper limits of f1 are, in order of preference, 2, 1.5, 1, 0.5 and 0.1, most preferably 0.05.
  • the catalyst composition when the relationship between a1 and c1 satisfies the above formula (I), the catalyst composition is particularly preferred as the catalyst (A).
  • the upper limits of a1/c1 are 1.65, 1.6, 1.55, 1.5, 1.45, 1.4 and 1.35 in order of preference, and 1.3 is particularly preferred.
  • the lower limit is 0.65, 0.7, 0.75 and 0.8 in order of preference, and 0.85 is particularly preferred. Therefore, the most preferable range of a1/c1 is 0.85 ⁇ a1/c1 ⁇ 1.3.
  • the catalyst composition when the relationship among a1, c1 and d1 satisfies the above formula (II), the catalyst composition is particularly preferred as the catalyst (A).
  • the upper limit of (a1-c1)/d1 is 0.38, 0.37, 0.35 and 0.34 in order of preference, and 0.33 is particularly preferred.
  • the lower limit is -0.48, -0.46, -0.44, -0.42, -0.40, -0.38 in order of preference, and -0.36 is particularly preferred. Therefore, the most preferable range of (a1-c1)/d1 is -0.36 ⁇ (a1-c1)/d1 ⁇ 0.33.
  • the method for producing the catalyst (A) includes (a) a step of dispersing a compound containing each or a plurality of the above metals in water to prepare an aqueous solution or aqueous dispersion of these compounds (hereinafter both are referred to as a slurry liquid). , (b) a step of drying the slurry liquid obtained in step (a) to obtain a dried slurry, (c) a step of molding the dried slurry obtained in step (b), (d) step (c) ) includes a step of firing the coated molding obtained in ).
  • Step (a) includes preparing compounds containing active ingredient elements and mixing the compounds with water.
  • a compound containing essential active component elements and optional active component elements of the catalyst of the present invention is used.
  • the compounds include chlorides, sulfates, nitrates, oxides, and acetates of active ingredient elements.
  • nitrates such as cobalt nitrate, acetates such as copper acetate, molybdenum oxide, vanadium pentoxide, copper oxide, antimony trioxide, cerium oxide, oxides such as zinc oxide or germanium oxide
  • acids or salts thereof
  • Compounds containing these active ingredients may be used alone or in combination of two or more.
  • step (a) a compound containing each active ingredient and water are uniformly mixed to obtain a slurry liquid.
  • the amount of water used in the slurry liquid is not particularly limited as long as it can completely dissolve the entire amount of the compounds used or can be uniformly mixed.
  • the amount of water to be used may be appropriately determined in consideration of the drying method and drying conditions in step (b). Generally, the amount of water is about 200 to 2000 parts per 100 parts of the total mass of the slurry preparation compounds. The amount of water may be large, but if it is too large, the energy cost of the drying process in the step (b) will increase, and there will be many disadvantages such as not being able to dry completely.
  • the shape of the stirring blades of the stirrer used in the step (a) is not particularly limited. Arbitrary stirring blades can be used in one stage, or the same blade or different blades can be used in two or more stages in the vertical direction.
  • a baffle baffle plate
  • a baffle plate may be installed in the reaction vessel as necessary.
  • step (b) the slurry liquid obtained in step (a) is completely dried.
  • the drying method is not particularly limited, and examples thereof include drum drying, freeze drying, spray drying, and evaporation to dryness. Among these, in the present invention, spray drying is preferred because it can dry the slurry into powder or granules in a short period of time.
  • the drying temperature of the spray drying varies depending on the concentration of the slurry liquid, the liquid feeding speed, etc., but the temperature at the outlet of the dryer is generally 70 to 150°C.
  • Step (c) is a step of firing the dried slurry obtained in step (b) (this step is not essential), a step of mixing the dried slurry with an additive, a dried slurry or a dried slurry and an additive. including the step of molding a mixture of In step (c), the dried slurry obtained in step (b) is molded. If the dried slurry is calcined at about 250° C. to 350° C. and then molded, the mechanical strength and catalytic performance may be improved, so the dried slurry may be calcined before molding. There are no particular restrictions on the molding method.
  • the dried slurry may be molded into pillars, tablets, rings, spheres, etc., or the dried slurry may be coated on an inert carrier. You may Of these, it is preferable to coat an inert carrier with a slurry dried body to obtain a coated catalyst, since it can be expected to improve selectivity and remove reaction heat.
  • This coating step is preferably the tumbling granulation method described below. In this method, for example, in an apparatus having a flat or uneven disk at the bottom of a fixed container, the disk is rotated at high speed to vigorously stir the carrier in the container by repeating rotation and revolution.
  • the method of adding the binder is as follows: 1) pre-mixed with the coating mixture, 2) added at the same time as the coating mixture is added into the fixed container, and 3) added after the coating mixture is added into the fixed container. 4) adding the coating mixture before adding it into the fixed container; 5) dividing the coating mixture and the binder respectively; .
  • the addition speed is adjusted using an auto feeder or the like so that a predetermined amount of the coating mixture is carried on the carrier without the coating mixture adhering to the walls of the stationary container or agglomeration of the coating mixture.
  • the binder is preferably water/or at least one selected from the group consisting of organic compounds having a boiling point of 150° C. or less at 1 atm or less and/or an aqueous solution thereof.
  • binders other than water include alcohols such as methanol, ethanol, propanols and butanols, preferably alcohols having 1 to 4 carbon atoms, ethers such as ethyl ether, butyl ether and dioxane, and esters such as ethyl acetate and butyl acetate. , ketones such as acetone or methyl ethyl ketone, and aqueous solutions thereof, with ethanol being particularly preferred.
  • ethanol/water is preferably 10/0 to 0/10 (mass ratio), preferably 9/1 to 1/9 (mass ratio) when mixed with water.
  • the amount of these binders used is usually 2 to 60 parts by weight, preferably 10 to 50 parts by weight, per 100 parts by weight of the coating mixture.
  • the inert carrier in the coating include silicon carbide, alumina, silica, silica-alumina, mullite, alundum, steatite, etc., preferably silicon carbide, alumina, silica, silica-alumina, steatite, and more. Alumina, silica and silica-alumina are preferred.
  • the diameter of the carrier includes spherical carriers having a diameter of 1 to 15 mm, preferably 2.5 to 10 mm.
  • the component in the carrier is preferably 90% by mass or more, more preferably 95% by mass or more. These supports usually have a porosity of 10 to 70%.
  • coating mixture/(coating mixture+carrier) 10 to 75 mass %, preferably 15 to 60 mass %.
  • the proportion of the coating mixture is large, the reaction activity of the coated catalyst increases, but the mechanical strength tends to decrease. Conversely, when the proportion of the coating mixture is small, the mechanical strength is large, but the reaction activity tends to be small.
  • silica gel, diatomaceous earth, alumina powder, etc. are mentioned as a shaping
  • the amount of the molding aid to be used is usually 1 to 60 parts by mass per 100 parts by mass of the catalytically active component solid.
  • inorganic fibers for example, ceramic fibers, whiskers, etc.
  • inert to the catalytically active component and reaction gas are used as a strength improving agent, which is useful for improving the mechanical strength of the catalyst.
  • the amount of these fibers to be used is usually 1 to 30 parts by mass per 100 parts by mass of the catalytically active component solid.
  • the inert carrier in the present invention is a carrier that does not have activity on the raw material and the product, and includes, for example, a methacrolein conversion rate of 3.0% or less under generally known reaction conditions.
  • step (d) the molded dry body or coated catalyst in step (b) obtained in step (c) is calcined.
  • the dried body or coated catalyst can be directly used as a catalyst for the catalytic gas-phase oxidation reaction, but calcination is preferable because calcination stabilizes the structure and improves the catalytic performance.
  • the calcination temperature is too high, the heteropolyacid may be decomposed and the catalytic performance may be lowered. Especially preferred is 290°C to 340°C. If the calcination time is too short, the structure of the heteropolyacid may become unstable and the catalyst performance may be lowered.
  • a typical firing time is 1 to 20 hours.
  • Firing is usually performed in an air atmosphere, but may be performed in an atmosphere of an inert gas such as nitrogen or a reducing gas atmosphere such as ethanol. After firing in an inert gas or reducing gas atmosphere, firing may be further performed in an air atmosphere if necessary.
  • the ratio of the active component to the entire coated catalyst after calcination obtained as described above is 10 to 60% by mass.
  • the catalyst of the present invention obtained by the method for producing the catalyst of the present invention described above is used in a reaction in which an unsaturated aldehyde is catalytically oxidized with molecular oxygen to obtain an unsaturated carboxylic acid.
  • an unsaturated aldehyde is catalytically oxidized with molecular oxygen to obtain an unsaturated carboxylic acid.
  • it is suitably used for the production of methacrylic acid by gas-phase catalytic oxidation of methacrolein.
  • Molecular oxygen or a molecular oxygen-containing gas is used for the gas-phase catalytic oxidation reaction.
  • the molar ratio of molecular oxygen to unsaturated aldehyde such as methacrolein is preferably in the range of 0.5-20, more preferably in the range of 1-10.
  • water to the source gas in a molar ratio of 1 to 20 relative to methacrolein.
  • the raw material gas may contain oxygen, if necessary, water (usually contained as water vapor), as well as gases inert to the reaction, such as nitrogen, carbon dioxide, and saturated hydrocarbons.
  • a gas containing unsaturated aldehyde obtained by oxidizing the raw material alkene compound, alcohol compound, or ether compound may be used as it is.
  • a methacrolein-containing gas obtained by oxidizing isobutylene, tertiary butanol, and methyl tertiary butyl ether may be supplied as it is.
  • the reaction temperature in the vapor-phase catalytic oxidation reaction is usually 200 to 400° C., preferably 260 to 360° C., and the supply amount of the raw material gas is usually 100 to 6000 hr ⁇ 1 , preferably 300 to 3000 hr ⁇ 1 in terms of space velocity (SV). is.
  • the gas-phase catalytic oxidation reaction can be carried out under pressure or under reduced pressure, but a pressure near atmospheric pressure is generally suitable.
  • Hydrogen is diluted with argon or nitrogen to a few percent by increasing the temperature of the catalyst, allowing the catalyst and hydrogen to react, and measuring the amount of hydrogen consumed at each temperature to obtain a temperature-programmed reduction spectrum. . Calculate the area from the temperature-programmed reduction spectrum to determine the hydrogen consumption (L). These methods are common methods for measuring the hydrogen consumption (L), and for more details, see Non-Patent Document 2 and the like. As a matter of course, the experimental conditions for the temperature-programmed reduction are set appropriately within the range of scientifically valid conditions, taking into consideration the physical properties of the catalyst to be measured and the characteristics of the measuring apparatus. The amount of hydrogen consumption (H) is also obtained from the temperature-programmed reduction spectrum obtained according to the method for measuring the amount of hydrogen consumption (L) described above.
  • Example 1 1) Preparation of catalyst To 7100 parts of pure water were added 1000 parts of molybdenum oxide, 37.91 parts of vanadium pentoxide, 22.11 parts of cupric oxide, 88.08 parts of 85% aqueous phosphoric acid solution, and 98 parts of 60% aqueous arsenic acid solution. 60 parts was added, and the mixture was heated and stirred at 92° C. for 10 hours to obtain a reddish brown transparent solution. Subsequently, this solution was spray-dried to obtain a dried slurry.
  • the composition of the catalytically active component solid obtained from the amount of raw material charged is Mo-10, V-0.6, P-1.1, As-0.6, Cu-0.4.
  • Conversion rate number of moles of reacted methacrolein/number of moles of supplied methacrolein x 100
  • Selectivity number of moles of methacrylic acid produced/number of moles of methacrolein reacted x 100
  • the hydrogen consumption (L) of the obtained catalyst was evaluated using the following equipment and conditions. Apparatus used: (BEL-CATII manufactured by Microtrack Bell) Sample weight: 0.08g Pretreatment for measurement: Pretreatment is performed for 1 hour by flowing helium under conditions of 300° C. and 50 ml/min. Temperature increase rate during measurement: 10°C/min Maximum measurement temperature: 700°C Carrier gas: 5% hydrogen (mixed gas diluted with argon) Carrier gas flow rate: 30 ml/min Table 1 shows the measurement results, and FIG. 1 shows the measurement data.
  • the hydrogen consumption (L) is a value obtained by integrating the peak area at 300° C. or higher and 500° C. or lower in FIG. Also, the hydrogen consumption (H) (peak area at 500° C. or higher and 700° C. or lower) was similarly determined to be 5.89 mmol/g. Also, the hydrogen consumption (H)/hydrogen consumption (L) was 2.87.
  • Example 2 To 7100 parts of pure water were added 1000 parts of molybdenum oxide, 39.17 parts of vanadium pentoxide, 24.87 parts of cupric oxide, 93.69 parts of 85% aqueous phosphoric acid solution, and 82.16 parts of 60% aqueous arsenic acid solution. The mixture was heated and stirred at 92° C. for 10 hours to obtain a reddish brown transparent solution. Subsequently, 7.09 parts of antimony trioxide was added to this solution, and the mixture was heated and stirred for 4 hours to obtain a dark green transparent solution. Subsequently, this solution was spray-dried to obtain a dried slurry.
  • the composition of the catalytically active component solid obtained from the amount of raw material charged is Mo-10, V-0.6, P-1.2, As-0.5, Cu-0.5, Sb-0.1. .
  • 214 parts of the dried slurry and 29.8 parts of strength improving material alumina-silica fiber
  • about 90% ethanol aqueous solution was added to 200 parts of spherical porous alumina carrier (particle size: 3.5 mm).
  • 30 parts were coated and molded as a binder.
  • the obtained molded product was calcined at 310° C. for 6 hours under air circulation to obtain the catalyst (coated catalyst) of the present invention.
  • Example 3 31.59 parts of 37.91 parts of vanadium pentoxide, 27.63 parts of 22.11 parts of cupric oxide, 96.09 parts of 88.08 parts of 85% aqueous phosphoric acid solution, 60% arsenic acid in Example 1
  • a catalyst was prepared in the same manner as in Example 1, except that the aqueous solution of 98.60 parts was changed to 82.16 parts.
  • the composition of the catalytically active component solid obtained from the charged amount of raw materials is Mo-10, V-0.5, P-1.2, As-0.5, and Cu-0.5.
  • Example 4 In Example 1, 37.91 parts of vanadium pentoxide was changed to 31.59 parts, 22.11 parts of cupric oxide was changed to 27.63 parts, and 98.60 parts of 60% aqueous arsenic acid solution was changed to 82.16 parts.
  • a catalyst was prepared in the same manner as in Example 1.
  • the composition of the catalytically active component solid obtained from the raw material charge was Mo-10, V-0.5, P-1.1, As-0.5, and Cu-0.5.
  • the hydrogen consumption (H) of the catalyst of Example 4 was 3.89 mmol/g, hydrogen consumption (H)/hydrogen consumption. (L) was 2.06.
  • Example 5 A catalyst was prepared in the same manner as in Example 1, except that the calcination time was changed from 6 hours to 4 hours.
  • Example 6 A catalyst was prepared in the same manner as in Example 2, except that the calcination time was changed from 6 hours to 4 hours.
  • the hydrogen consumption was measured in the same manner as in Example 1, the hydrogen consumption (H) of the catalyst of Example 6 was 4.11 mmol/g, hydrogen consumption (H)/hydrogen consumption. (L) was 2.40.
  • Example 7 To 7100 parts of pure water were added 1000 parts of molybdenum oxide, 31.59 parts of vanadium pentoxide, 11.05 parts of cupric oxide, 80.07 parts of 85% aqueous phosphoric acid solution, and 82.16 parts of 60% aqueous arsenic acid solution. The mixture was heated and stirred at 92° C. for 10 hours to obtain a reddish brown transparent solution. Subsequently, 10.13 parts of antimony trioxide was added to this solution, and the mixture was heated and stirred for 4 hours to obtain a dark green transparent solution. Subsequently, this solution was spray-dried to obtain a dried slurry.
  • the composition of the catalytically active component solid obtained from the raw material charge is Mo-10, V-0.50, P-1.0, As-0.50, Cu-0.20, Sb-0.10. .
  • 214 parts of the dried slurry and 29.8 parts of strength improving material alumina-silica fiber
  • 29.8 parts of strength improving material alumina-silica fiber
  • about 90% ethanol aqueous solution was added to 200 parts of spherical porous alumina carrier (particle size: 3.5 mm). 30 parts were coated and molded as a binder.
  • the obtained molded product was calcined at 340° C. for 4 hours under air circulation to obtain the catalyst (coated catalyst) of the present invention.
  • Example 8 To 7100 parts of pure water were added 1000 parts of molybdenum oxide, 31.59 parts of vanadium pentoxide, 27.63 parts of cupric oxide, 92.09 parts of 85% aqueous phosphoric acid solution, and 90.38 parts of 60% aqueous arsenic acid solution. The mixture was heated and stirred at 92° C. for 10 hours to obtain a reddish brown transparent solution. Subsequently, the mixture was heated and stirred for 4 hours to obtain a dark green transparent solution. Subsequently, this solution was spray-dried to obtain a dried slurry.
  • the composition of the catalytically active component solid obtained from the charged amount of raw materials is Mo-10, V-0.50, P-1.15, As-0.55, and Cu-0.50.
  • 214 parts of the dried slurry and 29.8 parts of strength improving material alumina-silica fiber
  • 29.8 parts of strength improving material alumina-silica fiber
  • 30 parts were coated and molded as a binder.
  • the obtained molded product was calcined at 340° C. for 4 hours under air circulation to obtain the catalyst (coated catalyst) of the present invention.
  • the hydrogen consumption was measured in the same manner as in Example 1, the hydrogen consumption (H) of the catalyst of Example 8 was 4.26 mmol/g, hydrogen consumption (H)/hydrogen consumption. (L) was 1.90.
  • Example 1 In Example 1, 44.23 parts of 37.91 parts of vanadium pentoxide, 11.05 parts of 22.11 parts of cupric oxide, 82.16 parts of 98.60 parts of 60% aqueous arsenic acid solution, and a firing time of 6 A catalyst was prepared in the same manner as in Example 1, except that the time was changed to 4 hours.
  • the composition of the catalytically active component solid obtained from the charged amount of raw materials is Mo-10, V-0.7, P-1.1, As-0.5, and Cu-0.2.
  • the hydrogen consumption (H) of the catalyst of Comparative Example 1 was 5.1 mmol/g
  • hydrogen consumption (H)/hydrogen consumption. (L) was 3.95.
  • the catalysts of the present invention of Examples have higher methacrylic acid selectivities than the catalysts of Comparative Examples.
  • the present invention provides a catalyst that contains molybdenum, copper and vanadium as essential components and is capable of obtaining the desired product with high selectivity. Therefore, in the gas-phase catalytic oxidation reaction using it, the desired product can be obtained stably with higher selectivity and yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

モリブデン、銅及びバナジウムを必須成分として含み、昇温還元測定により得られるTPRスペクトルにおいて300℃以上500℃以下の範囲に表れる水素消費のピークの水素消費量(L)が1.30mmol/g以上10.00mmol/g以下である、触媒。

Description

触媒及びそれを用いた不飽和カルボン酸の製造方法
 本発明は、酸化反応によって、不飽和カルボン酸を得る為の触媒に関し、従来の触媒より高選択的に目的物を得ることができる触媒に関する。
 不飽和カルボン酸を製造するために使用される触媒として数多くの触媒が提案されている。不飽和カルボン酸の中でもメタクリル酸を製造するための触媒はモリブデン、リンを主成分とするもので、ヘテロポリ酸及び/又はその塩の構造を有するものである。また、これら触媒の製造方法についても同様に数多く提案されている。
 メタクリル酸製造用触媒についてはこれまで多くの提案がされている。特許文献1ではヘテロポリ酸部分中和塩の触媒前駆体を少なくとも2回、ガス流通下に350℃~500℃の温度で1時間~30時間熱処理を行い、各回の熱処理の間に触媒前駆体を250℃まで一旦冷却し、かつ、各回の熱処理温度の差を30℃以内とするメタクリル酸製造用触媒が提案されている。
 特許文献2には、触媒原料を少なくとも2つに分けて、調合槽と混合槽とが異なることを特徴とするメタクリル酸製造用触媒の製造法が提案されている。特許文献3ではX線回折測定における2θ=10.7±0.3°の回折線強度に対する2θ=19.1±0.3°の回折線強度の比率に着目した技術が開示されている。その他、非特許文献1ではヘテロポリ酸触媒の昇温還元測定により得られる触媒の水素消費量と反応成績に関して記載されている。
 これら公知技術について、特許文献1では2段階の焼成工程を経るため、経済的ではなく、安定した触媒の製造方法に懸念がある。特許文献2では調合槽と混合槽を2つに分けていることから作業効率及び安定した触媒の製造方法に懸念がある。特許文献3ではメタクリル酸の収率において更なる改善が求められている。非特許文献1ではヘテロポリ酸触媒の最適な昇温還元測定により得られる触媒の水素消費量について明らかになっていない。また特許文献1から3のようにして得られた触媒は反応成績がまだ十分ではなく、工業触媒としての使用に際しては更に改良が望まれていた。
日本国特開2000-210566号公報 国際公開第2015/037611号 日本国特許第6628386号公報 日本国特開2012-115825号公報
Molecular Catalysis 438(2017)47-54 田中庸裕、山下弘巳著 「固体表面キャラクタリタゼーションの実際」講談社サイエンティフィク、2015年7月30日、P142~P145
 本発明の目的は、優れた選択率で不飽和カルボン酸を安定して製造できる触媒を提供することにある。
 本発明者等は前記課題を解決すべく鋭意検討の結果、モリブデン、銅及びバナジウムを必須成分とし、昇温還元測定により得られるTPRスペクトルにおいて触媒の水素消費量(L)が1.30mmol/g以上、10.00mmol/g以下である触媒が高い不飽和カルボン酸選択率を有することを見出し、本発明を完成させるに至った。
 すなわち、本発明は、以下1)~12)に関する。
1)
 モリブデン、銅及びバナジウムを必須成分として含み、昇温還元測定により得られるTPRスペクトルにおいて300℃以上500℃以下の範囲に表れる水素消費のピークの水素消費量(L)が1.30mmol/g以上10.00mmol/g以下である、触媒。
2)
 前記水素消費量(L)が1.40mmol/g以上6.00mmol/g以下である、上記1)に記載の触媒。
3)
 前記水素消費量(L)が1.60mmol/g以上4.00mmol/g以下である、上記1)に記載の触媒。
4)
 前記TPRスペクトルにおいて500℃以上700℃以下の範囲に表れる水素消費のピークの水素消費量(H)が1.50mmol/g以上10.0mmol/g以下である、上記1)から3)のいずれか一項に記載の触媒。
5)
 前記水素消費量(H)/前記水素消費量(L)が1.0以上3.8以下である、上記4)に記載の触媒。
6)
 更に砒素を必須成分として含む、上記1)から5)のいずれか一項に記載の触媒。
7)
 触媒活性成分が下記式(1)で表される組成を有する、上記1)から6)のいずれか一項に記載の触媒。
 
Mo10a1b1Cuc1Asd1e1f1g1(1)
 
(式中、Mo、V、P、Cu、As及びOは、それぞれモリブデン、バナジウム、リン、銅、砒素及び酸素を表す。XはAg、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Sb、Cr、Re、Bi、W、Fe、Co、Ni、Ce及びThからなる群から選ばれる少なくとも一種の元素を表す。YはK、Rb、Cs及びTlからなる群から選ばれる少なくとも一種の元素を表す。a1、b1、c1、d1、e1、f1及びg1は、各元素の原子比を表し、a1は0.1≦a1≦6、b1は0≦b1≦6、c1は0<c1≦3、d1は0<d1<3、e1は0≦e1≦3、f1は0≦f1≦3、g1は他の元素の原子価ならびに原子比により定まる値である。)
 
8)
 前記(1)で表される組成を有する触媒活性成分が下記式(I)の関係を満たす、上記7)に記載の触媒。
 
0.6 ≦ a1/c1 ≦ 1.7・・・(I)
 
9)
 前記(1)で表される組成を有する触媒活性成分が下記式(II)の関係を満たす、上記7)又は8)に記載の触媒。
 
-0.5 ≦ (a1-c1)/d1 ≦ 0.4・・・(II)
 
10)
 不活性担体に触媒活性成分が担持された上記1)から9)のいずれか一項に記載の触媒。
11)
 前記不活性担体がシリカ及び/又はアルミナである、上記10)に記載の触媒。
12)
 触媒が不飽和カルボン酸化合物の製造用である、上記1)から11)のいずれか一項に記載の触媒。
13)
 上記1)から12)のいずれか一項に記載の触媒を用いた不飽和カルボン酸化合物の製造方法。
14)
 不飽和カルボン酸化合物がメタクリル酸である上記13)に記載の製造方法。
 本発明によれば、モリブデン、銅及びバナジウムを必須成分とする高選択率で目的物を得ることができる触媒の提供が可能である。従ってそれを用いた気相接触酸化反応では、より高選択率かつ安定に目的物を得ることができる。
実施例1の触媒の水素消費量測定における測定データを示すグラフである。 比較例1の触媒の水素消費量測定における測定データを示すグラフである。
[触媒(A)について]
 本発明の触媒は、モリブデン、銅及びバナジウムを必須成分として含む複合酸化物触媒であり、かつ昇温還元測定により得られるTPRスペクトルにおいて300℃以上500℃以下の範囲に表れる水素消費のピークの水素消費量(L)が1.30mmol/g以上10.00mmol/g以下であることを特徴とする。なお、本明細書において、上記構成を有する触媒を触媒(A)と記載する。
 上記触媒(A)において昇温還元測定による触媒の水素消費量(L)の上限は10.00mmol/gであり、また更に好ましい順に9.00mmol/g、8.00mmol/g、7.00mmol/g、6.00mmol/g、5.00mmol/g、4.00mmol/g、3.00mmol/g、2.20mmol/gであり、特に好ましくは2.00mmol/g以下である。
 また水素消費量(L)の下限は1.30mmol/gであり、また更に好ましい順に1.40mmol/g、1.50mmol/g、1.60mmol/g、1.70mmol/g、1.75mmol/gである。触媒(A)の水素消費量(L)として特に好ましくは、1.60mmol/g以上4.00mmol/g以下であり、最も好ましくは1.75mmol/g以上2.00mmol/g以下である。上記水素消費量(L)は触媒の酸化還元特性を示すパラメータであり、目的化合物への選択率に影響を与えると考えられる。具体的には水素消費量(L)が10.00mmol/gを超える場合、目的化合物が過剰に酸化されることで、選択率が低下すると考えられる。一方水素消費量(L)が1.30mmol/g未満の場合、目的化合物への反応が十分に進行せず、目的反応以外の副反応が進行することで、選択率が低下すると考えられる。
 本発明の触媒の一例を昇温還元(例えば「BEL-CATII」、マイクロトラック・ベル社製等で測定可能)にて測定すると、300℃以上500℃以下の範囲に1つの水素消費のピーク(この水素消費量の値を水素消費量(L)と表記する)を有しており、500℃以上700℃以下の範囲に1つのピーク(この水素消費量の値を水素消費量(H)と表記する)を有していた。TPRスペクトルは水素消費量を示すため、スペクトルは負のピークとして記録される。この例では水素消費量(L)のピークの頂点は450℃付近に存在し、水素消費量(H)のピークの頂点は600℃付近に存在した。本発明における水素消費量とは300℃以上500℃以下の範囲に存在するピークの面積である水素消費量(L)を意味するものとする。なお、水素消費量を正確に測定するために、ベースライン補正をかける。ベースライン補正の方法は、ピークの始点と終点を用いる当業者に公知の方法で良い。例えば、図1では、100℃の点と450℃から600℃の間の最上点を結ぶことでつくる直線をベースラインとして、補正をかける方法である。
 なお触媒の水素消費量を調整する方法としては、組成変更、焼成時間、焼成雰囲気、スラリー乾燥体を成型する際のバインダー、等があげられるが、特に組成を変更する方法、及び焼成温度を上げ、又は焼成時間を延ばす方法が効果的である。
 例えば、焼成温度としては、同一組成であっても10℃~40℃焼成温度を上げることで、水素消費量(L)を1.00~5.00mmol/g程度上げることができる。また同様に焼成時間を1~3時間程度短くすることで、水素消費量(L)を1.00~5.00mmol/g程度上げることができる。
 水素消費量(H)については、1.50mmol/g以上10.0mmol/g以下である場合が好ましく、更に好ましくは2.00mmol/g以上8.00mmol/g以下であり、特に好ましくは3.00mmol/g以上7.00mmol/g以下であり、特に更に好ましくは3.50mmol/g以上6.00mmol/g以下であり、最も好ましくは3.50mmol/g以上5.00mmol/gである。
 また、水素消費量(L)と水素消費量(H)との間に一定の関係がある場合、本発明の触媒の特に好ましい態様である。例えば、水素消費量(H)/水素消費量(L)が1.0以上3.8以下である場合が好ましく、1.5以上3.5以下である場合がより好ましく、2.0以上3.2以下である場合が特に好ましく、2.0以上2.3以下である場合が最も好ましい。
 触媒(A)の触媒活性成分の好ましい組成は、下記一般式(1)で表される。
[化1]
 Mo10a1b1Cuc1Asd1e1f1g1(1)
 ここで、Mo、V、P、Cu、As及びOは、それぞれモリブデン、バナジウム、リン、銅、砒素及び酸素を表す。XはAg(銀)、Mg(マグネシウム)、Zn(亜鉛)、Al(アルミニウム)、B(ホウ素)、Ge(ゲルマニウム)、Sn(錫)、Pb(鉛)、Ti(チタン)、Zr(ジルコニウム)、Sb(アンチモン)、Cr(クロム)、Re(レニウム)、Bi(ビスマス)、W(タングステン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Ce(セリウム)及びTh(トリウム)からなる群から選ばれる少なくとも一種の元素を表す。YはK(カリウム)、Rb(ルビジウム)、Cs(セシウム)及びTl(タリウム)からなる群から選ばれる少なくとも一種の元素を表す。a1、b1、c1、d1、e1、f1及びg1は、各元素の原子比を表し、a1は0.1≦a1≦6、b1は0≦b1≦6、c1は0<c1≦3、d1は0<d1<3、e1は0≦e1≦3、f1は0≦f1≦3、g1は他の元素の原子価ならびに原子比により定まる値である。また本発明における組成は活性成分を意味し、不活性担体としては炭化珪素、アルミナ、シリカ、シリカアルミナ、ムライト、アランダム、ステアタイト等を用いることができる。
 上記式(1)の組成において、Xとして好ましいものは、Zn、Ag、Fe、Sbであり、更に好ましくはAg、Fe、Sbであり、特に好ましくはFe、Sbであり、最も好ましくはSbである。
 上記式(1)の組成において、Yとして好ましいものは、K、Rb、Csであり、更に好ましくは、K、Csであり、最も好ましくはCsであるが、Y成分を含まない触媒は特に本発明の効果が顕著に表れる傾向にある。
 上記式(1)の組成において、a1~g1の好ましい範囲は以下である。
 a1の下限は好ましい順に、0.2、0.25、0.3、0.35であり、最も好ましくは0.4である。a1の上限は望ましい順に、5、3、2、1、0.8、0.7、0.62であり、最も好ましくは0.6である。すなわちa1の最も好ましい範囲は、0.4≦a1≦0.6である。
 b1の下限は好ましい順に、0、0.1、0.3、0.5、0.7、0.9、1.0、であり、最も好ましくは1.05である。b1の上限は好ましい順に、5、4、3、2であり、最も好ましくは1.5である。すなわちb1の最も好ましい範囲は、1.05≦b1≦1.5である。
 c1の下限は好ましい順に、0.1、0.2、0.3であり、最も好ましくは0.4である。c1の上限は好ましい順に、2、1.5、1.2、1.0、0.8であり、最も好ましくは0.6である。すなわちc1の最も好ましい範囲は、0.4≦c1≦0.6である。
 d1の下限は好ましい順に、0、0.1、0.2、0.3、0.4であり、最も好ましくは0.45である。d1の上限は好ましい順に、2、1.5、1.2、1.0、0.8であり、最も好ましくは0.55である。すなわちd1の最も好ましい範囲は、0.45≦d1≦0.55である。
 e1の上限は好ましい順に、2、1.5、1、0.5、0.1、0.06であり、最も好ましくは0.065である。なおe1の下限は0であり、Xは含有しない、すなわちe1=0が触媒(A)の最も好ましい組成である。
 f1の上限は好ましい順に、2、1.5、1、0.5、0.1、最も好ましくは0.05である。なおf1の下限は0であり、Yは含有しない、すなわちf1=0が触媒(A)の最も好ましい組成である。
 前記式(1)において、a1とc1の関係が上記式(I)を満たす場合、触媒(A)として特に好ましい触媒組成である。
 a1/c1の上限は好ましい順に1.65、1.6、1.55、1.5、1.45、1.4、1.35であり、特に好ましくは1.3である。また下限としては好ましい順に、0.65、0.7、0.75、0.8であり、特に好ましくは0.85である。従って、a1/c1の最も好ましい範囲は、0.85≦a1/c1≦1.3である。
 前記式(1)において、a1、c1、d1の関係が上記式(II)を満たす場合、触媒(A)として特に好ましい触媒組成である。
 (a1-c1)/d1の上限は好ましい順に0.38、0.37、0.35、0.34であり、特に好ましくは0.33である。また下限としては好ましい順に、-0.48、-0.46、-0.44、-0.42、-0.40、-0.38であり特に好ましくは-0.36である。従って、(a1-c1)/d1の最も好ましい範囲は、-0.36≦(a1-c1)/d1≦0.33である。
[触媒(A)の製造方法]
 触媒(A)の製造方法は、(a)上記金属をそれぞれ又は複数含む化合物を水に分散し、これらの化合物の水溶液又は水分散体(以下、両者を含めてスラリー液という)を調製する工程、(b)工程(a)で得られたスラリー液を乾燥してスラリー乾燥体を得る工程、(c)工程(b)で得られたスラリー乾燥体を成型する工程、(d)工程(c)で得られた被覆成型物を焼成する工程が含まれる。以下、工程ごとに好ましい実施形態を記載するが、本発明の実施においては、下記実施形態に限られるものではない。
 工程(a)は活性成分元素を含む化合物を準備する工程、それら化合物と水とを混合する工程を含む。
 工程(a)においては本発明の触媒の必須の活性成分元素及び任意の活性成分元素を含む化合物を用いる。前記化合物を例示すると、活性成分元素の塩化物、硫酸塩、硝酸塩、酸化物又は酢酸塩等が挙げられる。好ましい化合物をより具体的に例示すると硝酸コバルト等の硝酸塩、酢酸銅等の酢酸塩、酸化モリブデン、五酸化バナジウム、酸化銅、三酸化アンチモン、酸化セリウム、酸化亜鉛又は酸化ゲルマニウム等の酸化物、正リン酸、リン酸、硼酸、リン酸アルミニウム又は12タングストリン酸等の酸(又はその塩)等が挙げられるが、これらに限られない。これら活性成分を含む化合物は単独で使用してもよいし、2種以上を混合して使用してもよい。工程(a)では、各活性成分を含む化合物と水とを均一に混合し、スラリー液を得る。前記スラリー液においては、全ての成分が水に溶解している必要は無く、その一部または全体が懸濁状態であっても差し支えない。スラリー液における水の使用量は、用いる化合物の全量を完全に溶解できるか、または均一に混合できる量であれば特に制限はない。工程(b)における乾燥方法や乾燥条件を勘案して、水の使用量を適宜決定すれば良い。通常、水の量はスラリー液調製用化合物の合計質量100部に対して、200~2000部程度である。水の量は多くてもよいが、多過ぎると工程(b)の乾燥工程のエネルギーコストが高くなり、又完全に乾燥できない場合も生ずるなどのデメリットが多い。
 本発明において、工程(a)において用いられる攪拌機の攪拌翼の形状は特に制約はなく、プロペラ翼、タービン翼、パドル翼、傾斜パドル翼、スクリュー翼、アンカー翼、リボン翼、大型格子翼などの任意の攪拌翼を1段あるいは上下方向に同一翼または異種翼を2段以上で使用することができる。また、反応槽内には必要に応じてバッフル(邪魔板)を設置しても良い。
 工程(b)では工程(a)で得られたスラリー液を完全に乾燥させる。前記乾燥の方法には特に制約はないが、例えばドラム乾燥、凍結乾燥、噴霧乾燥、蒸発乾固などが挙げられる。これらのうち本発明においては、スラリー液を短時間に粉末又は顆粒に乾燥することができる噴霧乾燥が好ましい。噴霧乾燥の乾燥温度はスラリー液の濃度、送液速度等によって異なるが、概ね乾燥機の出口における温度が70~150℃である。
 工程(c)は工程(b)で得られたスラリー乾燥体を焼成する工程(本工程は必須ではない)、スラリー乾燥体を添加剤と混合する工程、スラリー乾燥体又はスラリー乾燥体と添加剤の混合物を成型する工程を含む。
 工程(c)では工程(b)で得られたスラリー乾燥体を成型する。なお、スラリー乾燥体を250℃から350℃程度で焼成してから成型すると、機械的強度や触媒性能が向上する場合があるので、成型前にスラリー乾燥体を焼成してもよい。成型方法は特に制約はなく、酸化反応において反応ガスの圧力損失を小さくするために、スラリー乾燥体を柱状物、錠剤、リング状、球状等に成型する他、不活性担体にスラリー乾燥体を被覆してもよい。このうち選択性の向上や反応熱の除去が期待できることから、不活性担体にスラリー乾燥体を被覆し、被覆触媒とするのが好ましい。この被覆工程は以下に述べる転動造粒法が好ましい。この方法は、例えば固定容器内の底部に、平らなあるいは凹凸のある円盤を有する装置中で、円盤を高速で回転することにより、容器内の担体を自転運動と公転運動の繰返しにより激しく攪拌させ、ここにバインダーと工程(b)で得られたスラリー乾燥体並びにこれらに、必要により、他の添加剤例えば成型助剤、強度向上剤を添加した被覆用混合物を担体に被覆する方法である。バインダーの添加方法は、1)前記被覆用混合物に予め混合しておく、2)被覆用混合物を固定容器内に添加するのと同時に添加、3)被覆用混合物を固定容器内に添加した後に添加、4)被覆用混合物を固定容器内に添加する前に添加、5)被覆用混合物とバインダーをそれぞれ分割し、2)~4)を適宜組み合わせて全量添加する等の方法が任意に採用しうる。このうち5)においては、例えば被覆用混合物の固定容器壁への付着、被覆用混合物同士の凝集がなく担体上に所定量が担時されるようオートフィーダー等を用いて添加速度を調節して行うのが好ましい。バインダーは水/または1気圧以下での沸点が150℃以下の有機化合物からなる群から選ばれる少なくとも1種/またはそれらの水溶液であることが好ましい。水以外のバインダーの具体例としてはメタノール、エタノール、プロパノール類、ブタノール類等のアルコール、好ましくは炭素数1~4のアルコール、エチルエーテル、ブチルエーテル又はジオキサン等のエーテル、酢酸エチル又は酢酸ブチル等のエステル、アセトン又はメチルエチルケトン等のケトン等並びにそれらの水溶液が挙げられ、特にエタノールが好ましい。バインダーとしてエタノールを使用する場合、エタノール/水=10/0~0/10(質量比)、好ましくは水と混合し9/1~1/9(質量比)とすることが好ましい。これらバインダーの使用量は、被覆用混合物100質量部に対して通常2~60質量部、好ましくは10~50質量部である。
 上記被覆における不活性担体の具体例としては、炭化珪素、アルミナ、シリカ、シリカアルミナ、ムライト、アランダム、ステアタイト等が挙げられ、好ましくは炭化珪素、アルミナ、シリカ、シリカアルミナ、ステアタイト、更に好ましくはアルミナ、シリカ、シリカアルミナである。担体の直径としては1~15mm、好ましくは2.5~10mmの球形担体等が挙げられる。担体中の当該成分は90質量%以上が好ましく、更に好ましくは95質量%以上である。これら担体は通常は10~70%の空孔率を有するものが用いられる。担体と被覆用混合物の割合は通常、被覆用混合物/(被覆用混合物+担体)=10~75質量%、好ましくは15~60質量%となる量を使用する。被覆用混合物の割合が大きい場合、被覆触媒の反応活性は大きくなるが、機械的強度が小さくなる傾向にある。逆に、被覆用混合物の割合が小さい場合、機械的強度は大きいが、反応活性は小さくなる傾向がある。なお、前記において、必要により使用する成型助剤としては、シリカゲル、珪藻土、アルミナ粉末等が挙げられる。成型助剤の使用量は、触媒活性成分固体100質量部に対して通常1~60質量部である。また、更に必要により触媒活性成分及び反応ガスに対して不活性な無機繊維(例えば、セラミックス繊維又はウィスカー等)を強度向上剤として用いることは、触媒の機械的強度の向上に有用である。これら繊維の使用量は、触媒活性成分固体100質量部に対して通常1~30質量部である。また本発明における不活性担体とは原料及び生成物に活性を持たない担体であり、例えば一般的に公知である反応条件におけるメタクロレインの転化率が3.0%以下であることが挙げられる。
 工程(d)では工程(c)で得られた成型された工程(b)の乾燥体又は被覆触媒を焼成する。前記乾燥体又は被覆触媒はそのまま触媒として接触気相酸化反応に供することもできるが、焼成すると構造が安定すること、また、触媒性能が向上することから、焼成することが好ましい。また、焼成温度が高すぎるとヘテロポリ酸が分解し、触媒性能が低下することがあるため、焼成温度は通常100~400℃、好ましくは250℃~380℃、更に好ましくは270℃~360℃、特に好ましくは290℃~340℃である。焼成時間は短すぎるとヘテロポリ酸の構造が不安定となって触媒性能が低下することが懸念され、長すぎると触媒の製造効率が低下する。通常の焼成時間は1~20時間である。なお、焼成は、通常空気雰囲気下に行われるが、窒素のような不活性ガス雰囲気下もしくはエタノールのような還元ガス雰囲気で行ってもよい。不活性ガスもしくは還元ガス雰囲気下での焼成後に必要に応じて更に空気雰囲気下で焼成を行ってもよい。上記のようにして得られた焼成後の被覆触媒全体に対する活性成分の割合は、10~60質量%である。
 上記の本発明の触媒の製造法により得られた本発明の触媒は、不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を得る反応において用いられる。中でもメタクロレインを気相接触酸化することによるメタクリル酸の製造に好適に用いられる。
 気相接触酸化反応には分子状酸素又は分子状酸素含有ガスが使用される。メタクロレイン等の不飽和アルデヒドに対する分子状酸素の使用割合は、モル比で0.5~20の範囲が好ましく、特に1~10の範囲が好ましい。例えば、反応を円滑に進行させることを目的として、原料ガス中に水をメタクロレインに対しモル比で1~20の範囲で添加することが好ましい。原料ガスは酸素、必要により水(通常水蒸気として含む)の他に窒素、炭酸ガス、飽和炭化水素等の反応に不活性なガス等を含んでいてもよい。
 また、原料となる不飽和アルデヒドは、その原料であるアルケン化合物、アルコール化合物、エーテル化合物を酸化して得られた不飽和アルデヒドを含むガスをそのまま用いてもよい。メタクロレインの場合はイソブチレン、第三級ブタノール、及びメチルターシャリーブチルエーテルを酸化して得られたメタクロレインを含むガスをそのまま供給してもよい。
 気相接触酸化反応における反応温度は通常200~400℃、好ましくは260~360℃、原料ガスの供給量は空間速度(SV)にして、通常100~6000hr-1、好ましくは300~3000hr-1である。また、気相接触酸化反応は加圧下または減圧下でも可能であるが、一般的には大気圧付近の圧力が適している。
 また、本発明の触媒を使用して不飽和カルボン酸を製造する際、プロピレン、イソブチレン、t-ブチルアルコール等を原料にして対応する不飽和アルデヒドを製造する触媒に制限はないが、例えば特許文献4に記載のモリブデン、ビスマスを含む複合酸化物触媒を使用すると好ましい。
[水素消費量(L)の測定方法]
 触媒の水素消費量(L)の測定方法は触媒の還元性や活性サイトの酸化還元特性を表す指標として幅広く用いられている。
 一般的には、測定対象の触媒0.01グラムから2グラムを目安に秤量し、真空脱気などの前処理を行う。
 水素をアルゴンや窒素で数%程度に希釈したガスの流通下で触媒を昇温することで、触媒と水素を反応させ、各温度に対する水素の消費量を測定することで昇温還元スペクトルを得る。
 昇温還元スペクトルから面積を計算し、水素消費量(L)を求める。
 水素消費量(L)の測定方法としてはこれらの手法が一般的であり、より詳細には非特許文献2などを参照できる。当然のことながら、昇温還元の実験条件は科学的に妥当な条件である範囲で、測定対象の触媒の物性や測定装置の特性を鑑み、適宜設定されるものである。
 なお、水素消費量(H)も、上述した水素消費量(L)の測定方法に従って得られる昇温還元スペクトルから求められる。
 以下実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例において「部」は重量部を、「%」は重量%をそれぞれ意味する。
[実施例1]
1)触媒の調製
 純水7100部に酸化モリブデン1000部、五酸化バナジウム37.91部、酸化第二銅22.11部、85%の燐酸水溶液88.08部、及び60%の砒酸水溶液98.60部を添加し、92℃で10時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を噴霧乾燥しスラリー乾燥体を得た。原料仕込み量から求めた、触媒活性成分固体の組成は、
Mo-10、V-0.6、P-1.1、As-0.6、Cu-0.4である。
 次いで得られたスラリー乾燥体214部、強度向上材(アルミナ-シリカ繊維)29.8部を均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)200部に90%エタノール水溶液約30部をバインダーとして被覆成型した。次いで得られた成型物を空気流通下において310℃で6時間かけて焼成を行い本発明の触媒(被覆触媒)を得た。
2)メタクリル酸の製造
 得られた本発明の被覆触媒40.2mlを内径18.4mmのステンレス反応管に充填し、原料ガス(組成(モル比);メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6)、空間速度(SV)900hr-1の条件で、メタクロレインの酸化反応を実施した。反応浴温度を290℃から330℃の間に調整し、メタクロレイン転化率77mоl%の時のメタクリル酸選択率を算出した。
 なお転化率、選択率は次の通りに定義される。
転化率=反応したメタクロレインのモル数/供給したメタクロレインのモル数×100
選択率=生成したメタクリル酸のモル数/反応したメタクロレインのモル数×100
3)水素消費量測定
 得られた触媒の水素消費量(L)の評価は、次の装置および条件で行った。
使用装置:(マイクロトラック・ベル社製BEL-CATII)
試料重量:0.08g
測定の前処理:ヘリウムを300℃、50ml/minの条件下で流して1時間前処理を行う。
測定中の昇温速度:10℃/min
測定最大温度:700℃
キャリアガス:5%水素(アルゴンで希釈した混合ガス)
キャリアガス流量:30ml/min
 測定結果を表1、及び測定データを図1に示す。なお水素消費量(L)は図1における300℃以上500℃以下のピーク面積を積分により求めた値である。また、水素消費量(H)(500℃以上700℃以下のピーク面積)も同様にして求めたところ、5.89mmol/gであった。また、水素消費量(H)/水素消費量(L)は2.87であった。
[実施例2]
 純水7100部に酸化モリブデン1000部、五酸化バナジウム39.17部、酸化第二銅24.87部、85%の燐酸水溶液93.69部、及び60%の砒酸水溶液82.16部を添加し、92℃で10時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液に三酸化アンチモン7.09部を加え、4時間加熱攪拌して濃緑色の透明溶液を得た。続いて、この溶液を噴霧乾燥しスラリー乾燥体を得た。原料仕込み量から求めた、触媒活性成分固体の組成は、Mo-10、V-0.6、P-1.2、As-0.5、Cu-0.5、Sb-0.1である。
 次いで得られたスラリー乾燥体214部、強度向上材(アルミナ-シリカ繊維)29.8部を均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)200部に90%エタノール水溶液約30部をバインダーとして被覆成型した。次いで得られた成型物を空気流通下において310℃で6時間かけて焼成を行い本発明の触媒(被覆触媒)を得た。
[実施例3]
 実施例1において五酸化バナジウム37.91部を31.59部、酸化第二銅22.11部を27.63部、85%の燐酸水溶液88.08部を96.09部、60%の砒酸水溶液98.60部を82.16部にした以外は実施例1と同様の方法で触媒を調製した。原料仕込み量から求めた、触媒活性成分固体の組成は、Mo-10、V-0.5、P-1.2、As-0.5、Cu-0.5である。なお、実施例1と同様の方法に従って水素消費量測定を測定したところ、実施例3の触媒の水素消費量(H)は4.21mmol/gであり、水素消費量(H)/水素消費量(L)は2.14であった。
[実施例4]
 実施例1において五酸化バナジウム37.91部を31.59部、酸化第二銅22.11部を27.63部、60%の砒酸水溶液98.60部を82.16部にした以外は実施例1と同様の方法で触媒を調製した。原料仕込み量から求めた、触媒活性成分固体の組成は、Mo-10、V-0.5、P-1.1、As-0.5、Cu-0.5である。なお、実施例1と同様の方法に従って水素消費量測定を測定したところ、実施例4の触媒の水素消費量(H)は3.89mmol/gであり、水素消費量(H)/水素消費量(L)は2.06であった。
[実施例5]
 実施例1において焼成時間を6時間から4時間にした以外は実施例1と同様の方法で触媒を調製した。
[実施例6]
 実施例2において焼成時間を6時間から4時間にした以外は実施例2と同様の方法で触媒を調製した。なお、実施例1と同様の方法に従って水素消費量測定を測定したところ、実施例6の触媒の水素消費量(H)は4.11mmol/gであり、水素消費量(H)/水素消費量(L)は2.40であった。
[実施例7]
 純水7100部に酸化モリブデン1000部、五酸化バナジウム31.59部、酸化第二銅11.05部、85%の燐酸水溶液80.07部、及び60%の砒酸水溶液82.16部を添加し、92℃で10時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液に三酸化アンチモン10.13部を加え、4時間加熱攪拌して濃緑色の透明溶液を得た。続いて、この溶液を噴霧乾燥しスラリー乾燥体を得た。原料仕込み量から求めた、触媒活性成分固体の組成は、Mo-10、V-0.50、P-1.0、As-0.50、Cu-0.20、Sb-0.10である。
 次いで得られたスラリー乾燥体214部、強度向上材(アルミナ-シリカ繊維)29.8部を均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)200部に90%エタノール水溶液約30部をバインダーとして被覆成型した。次いで得られた成型物を空気流通下において340℃で4時間かけて焼成を行い本発明の触媒(被覆触媒)を得た。
[実施例8]
 純水7100部に酸化モリブデン1000部、五酸化バナジウム31.59部、酸化第二銅27.63部、85%の燐酸水溶液92.09部、及び60%の砒酸水溶液90.38部を添加し、92℃で10時間加熱攪拌して赤褐色の透明溶液を得た。続いて、4時間加熱攪拌して濃緑色の透明溶液を得た。続いて、この溶液を噴霧乾燥しスラリー乾燥体を得た。原料仕込み量から求めた、触媒活性成分固体の組成は、Mo-10、V-0.50、P-1.15、As-0.55、Cu-0.50である。
 次いで得られたスラリー乾燥体214部、強度向上材(アルミナ-シリカ繊維)29.8部を均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)200部に90%エタノール水溶液約30部をバインダーとして被覆成型した。次いで得られた成型物を空気流通下において340℃で4時間かけて焼成を行い本発明の触媒(被覆触媒)を得た。なお、実施例1と同様の方法に従って水素消費量測定を測定したところ、実施例8の触媒の水素消費量(H)は4.26mmol/gであり、水素消費量(H)/水素消費量(L)は1.90であった。
[比較例1]
 実施例1において五酸化バナジウム37.91部を44.23部、酸化第二銅22.11部を11.05部、60%の砒酸水溶液98.60部を82.16部、焼成時間を6時間から4時間にした以外は実施例1と同様の方法で触媒を調製した。原料仕込み量から求めた、触媒活性成分固体の組成は、Mo-10、V-0.7、P-1.1、As-0.5、Cu-0.2である。なお、実施例1と同様の方法に従って水素消費量測定を測定したところ、比較例1の触媒の水素消費量(H)は5.1mmol/gであり、水素消費量(H)/水素消費量(L)は3.95であった。
 実施例1と同様の方法に従って、実施例2~8および比較例1の触媒を使用したメタクリル酸の製造、および当該触媒の水素消費量(L)の測定を行った。これらの結果を、実施例1の触媒の結果と併せて表1に示す。また、参考のために比較例1の測定データを図2に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において明らかな通り、実施例の本発明の触媒はメタクリル酸選択率が比較例の触媒に比較して高い。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2021年1月27日付で出願された日本国特許出願(特願2021-10890)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明は、モリブデン、銅及びバナジウムを必須成分とする高選択率で目的物を得ることができる触媒を提供する。従ってそれを用いた気相接触酸化反応では、より高選択率、高収率かつ安定に目的物を得ることができる。

Claims (14)

  1.  モリブデン、銅及びバナジウムを必須成分として含み、昇温還元測定により得られるTPRスペクトルにおいて300℃以上500℃以下の範囲に表れる水素消費のピークの水素消費量(L)が1.30mmol/g以上10.00mmol/g以下である、触媒。
  2.  前記水素消費量(L)が1.40mmol/g以上6.00mmol/g以下である、請求項1に記載の触媒。
  3.  前記水素消費量(L)が1.60mmol/g以上4.00mmol/g以下である、請求項1に記載の触媒。
  4.  前記TPRスペクトルにおいて500℃以上700℃以下の範囲に表れる水素消費のピークの水素消費量(H)が1.50mmol/g以上10.0mmol/g以下である、請求項1から3のいずれか一項に記載の触媒。
  5.  前記水素消費量(H)/前記水素消費量(L)が1.0以上3.8以下である、請求項4に記載の触媒。
  6.  更に砒素を必須成分として含む、請求項1から5のいずれか一項に記載の触媒。
  7.  触媒活性成分が下記式(1)で表される組成を有する、請求項1から6のいずれか一項に記載の触媒。
     
    Mo10a1b1Cuc1Asd1e1f1g1(1)
     
    (式中、Mo、V、P、Cu、As及びOは、それぞれモリブデン、バナジウム、リン、銅、砒素及び酸素を表す。XはAg、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Sb、Cr、Re、Bi、W、Fe、Co、Ni、Ce及びThからなる群から選ばれる少なくとも一種の元素を表す。YはK、Rb、Cs及びTlからなる群から選ばれる少なくとも一種の元素を表す。a1、b1、c1、d1、e1、f1及びg1は、各元素の原子比を表し、a1は0.1≦a1≦6、b1は0≦b1≦6、c1は0<c1≦3、d1は0<d1<3、e1は0≦e1≦3、f1は0≦f1≦3、g1は他の元素の原子価ならびに原子比により定まる値である。)
     
  8.  前記(1)で表される組成を有する触媒活性成分が下記式(I)の関係を満たす、請求項7に記載の触媒。
     
    0.6 ≦ a1/c1 ≦ 1.7・・・(I)
     
  9.  前記(1)で表される組成を有する触媒活性成分が下記式(II)の関係を満たす、請求項7又は8に記載の触媒。
     
    -0.5 ≦ (a1-c1)/d1 ≦ 0.4・・・(II)
     
  10.  不活性担体に触媒活性成分が担持された触媒である、請求項1から9のいずれか一項に記載の触媒。
  11.  前記不活性担体がシリカ及び/又はアルミナである、請求項10に記載の触媒。
  12.  触媒が不飽和カルボン酸化合物の製造用である、請求項1から11のいずれか一項に記載の触媒。
  13.  請求項1から12のいずれか一項に記載の触媒を用いた不飽和カルボン酸化合物の製造方法。
  14.  不飽和カルボン酸化合物がメタクリル酸である、請求項13に記載の製造方法。
PCT/JP2022/002964 2021-01-27 2022-01-26 触媒及びそれを用いた不飽和カルボン酸の製造方法 WO2022163727A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022578455A JPWO2022163727A1 (ja) 2021-01-27 2022-01-26
EP22745946.8A EP4286050A1 (en) 2021-01-27 2022-01-26 Catalyst, and method for producing unsaturated carboxylic acid using same
CN202280012077.3A CN116801979A (zh) 2021-01-27 2022-01-26 催化剂和使用该催化剂的不饱和羧酸的制造方法
KR1020237025778A KR20230137338A (ko) 2021-01-27 2022-01-26 촉매 및 그것을 이용한 불포화 카본산의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021010890 2021-01-27
JP2021-010890 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022163727A1 true WO2022163727A1 (ja) 2022-08-04

Family

ID=82654609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002964 WO2022163727A1 (ja) 2021-01-27 2022-01-26 触媒及びそれを用いた不飽和カルボン酸の製造方法

Country Status (5)

Country Link
EP (1) EP4286050A1 (ja)
JP (1) JPWO2022163727A1 (ja)
KR (1) KR20230137338A (ja)
CN (1) CN116801979A (ja)
WO (1) WO2022163727A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328386B2 (ja) 1984-06-11 1991-04-18 Chichibu Semento Kk
JP2000210566A (ja) 1998-11-16 2000-08-02 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒及びその製造法並びにその触媒を用いるメタクリル酸の製造法
JP2002233760A (ja) * 2000-09-21 2002-08-20 Nippon Kayaku Co Ltd メタクリル酸製造用触媒、被覆触媒及びその製法
JP2012115825A (ja) 2010-08-04 2012-06-21 Nippon Kayaku Co Ltd メタクロレインおよびメタクリル酸製造用触媒、ならびにその製造方法
WO2012102411A2 (ja) * 2011-01-28 2012-08-02 日本化薬株式会社 飽和アルデヒドを選択的に低減させる触媒と、その製造方法
JP2014511363A (ja) * 2011-01-28 2014-05-15 アルケマ フランス 改善されたアクロレイン/アクリル酸の製造方法
WO2015037611A1 (ja) 2013-09-11 2015-03-19 三菱レイヨン株式会社 メタクリル酸製造用触媒の製造方法
WO2019188955A1 (ja) * 2018-03-28 2019-10-03 日本化薬株式会社 不飽和カルボン酸製造用触媒
JP2021010890A (ja) 2019-07-08 2021-02-04 日鉄ケミカル&マテリアル株式会社 底質からの硫化水素の発生抑制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2827289B2 (ja) 1989-06-23 1998-11-25 大同特殊鋼株式会社 金属の酸洗処理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328386B2 (ja) 1984-06-11 1991-04-18 Chichibu Semento Kk
JP2000210566A (ja) 1998-11-16 2000-08-02 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒及びその製造法並びにその触媒を用いるメタクリル酸の製造法
JP2002233760A (ja) * 2000-09-21 2002-08-20 Nippon Kayaku Co Ltd メタクリル酸製造用触媒、被覆触媒及びその製法
JP2012115825A (ja) 2010-08-04 2012-06-21 Nippon Kayaku Co Ltd メタクロレインおよびメタクリル酸製造用触媒、ならびにその製造方法
WO2012102411A2 (ja) * 2011-01-28 2012-08-02 日本化薬株式会社 飽和アルデヒドを選択的に低減させる触媒と、その製造方法
JP2014511363A (ja) * 2011-01-28 2014-05-15 アルケマ フランス 改善されたアクロレイン/アクリル酸の製造方法
WO2015037611A1 (ja) 2013-09-11 2015-03-19 三菱レイヨン株式会社 メタクリル酸製造用触媒の製造方法
WO2019188955A1 (ja) * 2018-03-28 2019-10-03 日本化薬株式会社 不飽和カルボン酸製造用触媒
JP2021010890A (ja) 2019-07-08 2021-02-04 日鉄ケミカル&マテリアル株式会社 底質からの硫化水素の発生抑制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MOLECULAR CATALYSIS, vol. 438, 2017, pages 47 - 54
YASUHIRO TANAKAHIROMI YAMASHITA: "Actual Characterization of Solid Surfaces", KODANSHA SCIENTIFIC, 30 July 2015 (2015-07-30), pages 142 - 145
ZHOU LILONG, WANG LEI, CAO YUNLI, DIAO YANYAN, YAN RUIYI, ZHANG SUOJIANG: "The states and effects of copper in Keggin-type heteropolyoxometalate catalysts on oxidation of methacrolein to methacrylic acid", MOLECULAR CATALYSIS, ELSEVIER, vol. 438, 1 September 2017 (2017-09-01), pages 47 - 54, XP055954875, ISSN: 2468-8231, DOI: 10.1016/j.mcat.2017.04.031 *

Also Published As

Publication number Publication date
CN116801979A (zh) 2023-09-22
KR20230137338A (ko) 2023-10-04
EP4286050A1 (en) 2023-12-06
JPWO2022163727A1 (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
JP5574434B2 (ja) メタクリル酸の製造方法及びメタクリル酸製造用触媒
JP5973999B2 (ja) メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法
JP2015096497A (ja) 不飽和カルボン酸の製造方法、及び担持触媒
JP4478107B2 (ja) メタクリル酸製造用触媒及びその製法
JP2006314923A (ja) メタクリル酸製造用触媒の製造方法
KR102618400B1 (ko) 촉매 및 그의 제조 방법, 그리고 당해 촉매를 이용한 직결 2단 접촉 기상 산화 방법 및 그의 이용
JP2020015043A (ja) メタクリル酸製造用触媒の製造方法
JP2011152543A (ja) メタクリル酸製造用触媒の製造方法
WO2022163727A1 (ja) 触媒及びそれを用いた不飽和カルボン酸の製造方法
KR20140121908A (ko) 메타크릴산 제조용 촉매의 제조 방법 및 메타크릴산의 제조 방법
KR102600910B1 (ko) 불포화 카본산 제조용 촉매 및 그의 제조 방법, 그리고 불포화 카본산의 제조 방법
JP7105397B1 (ja) 触媒及びそれを用いた不飽和カルボン酸の製造方法
WO2022163725A1 (ja) 触媒及びそれを用いた不飽和カルボン酸の製造方法
JP7105398B1 (ja) 触媒及びそれを用いた不飽和カルボン酸の製造方法
KR20220119386A (ko) 촉매, 그것을 이용한 화합물의 제조 방법 및 화합물
WO2022163726A1 (ja) 触媒及びそれを用いた不飽和カルボン酸の製造方法
JP5269046B2 (ja) メタクリル酸製造用触媒の製造方法
JP2695480B2 (ja) メタクリル酸製造用触媒およびその製造方法
JP2024142970A (ja) 不飽和アルデヒド、不飽和カルボン酸または共役ジエン製造用触媒の製造方法
JP2024091001A (ja) 不飽和アルデヒド、不飽和カルボン酸または共役ジエンの製造方法
KR20230140472A (ko) 불포화 알데히드 및/또는 불포화 카본산의 제조 방법
JP2023141551A (ja) 触媒、及びそれを用いた不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法
KR20210029151A (ko) 촉매 및 그것을 이용한 화합물의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745946

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578455

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280012077.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022745946

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022745946

Country of ref document: EP

Effective date: 20230828