WO2022163678A1 - ダイヤモンドセンサユニット及びダイヤモンドセンサシステム - Google Patents

ダイヤモンドセンサユニット及びダイヤモンドセンサシステム Download PDF

Info

Publication number
WO2022163678A1
WO2022163678A1 PCT/JP2022/002765 JP2022002765W WO2022163678A1 WO 2022163678 A1 WO2022163678 A1 WO 2022163678A1 JP 2022002765 W JP2022002765 W JP 2022002765W WO 2022163678 A1 WO2022163678 A1 WO 2022163678A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
light
optical waveguide
sensor unit
excitation light
Prior art date
Application number
PCT/JP2022/002765
Other languages
English (en)
French (fr)
Inventor
良樹 西林
裕美 中西
洋成 出口
司 林
夏生 辰巳
Original Assignee
日新電機株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社, 住友電気工業株式会社 filed Critical 日新電機株式会社
Priority to CN202280011208.6A priority Critical patent/CN116848422A/zh
Priority to EP22745898.1A priority patent/EP4286876A1/en
Priority to JP2022578434A priority patent/JPWO2022163678A1/ja
Priority to US18/273,286 priority patent/US20240111008A1/en
Publication of WO2022163678A1 publication Critical patent/WO2022163678A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/26Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux using optical pumping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Definitions

  • the present disclosure relates to diamond sensor units and diamond sensor systems. This application claims priority based on Japanese Application No. 2021-010935 filed on January 27, 2021, and incorporates all the descriptions described in the Japanese Application.
  • a diamond NV center When a diamond NV center is used in combination with a microscope, it is constructed, for example, as shown in FIG. That is, LED 900 disposed on substrate 912 emits green light to excite the NV centers of diamond 904 . The emitted light passes through an SPF (Short Pass Filter) 902 and then strikes a diamond 904 arranged on a substrate 914 . This causes the electrons in the NV - center to be in an excited state. When the excited electrons return to the original ground state, red fluorescence is emitted from the diamond 904, and the fluorescence is collected by a lens 906, passed through an LPF (Long Pass Filter) 908, and placed on a substrate 916.
  • SPF Short Pass Filter
  • Lens 906 can be a high performance optical microscope lens configuration or a simple lens configuration.
  • Patent Document 1 discloses a scanning probe microscope (that is, a frequency modulated atomic force microscope (FM-AFM)) using a diamond NV center.
  • Patent Document 2 listed below discloses a magnetic field detection device using a diamond NV center.
  • the following non-patent document 2 discloses a compact magnetic field detection device using a lens.
  • a diamond sensor unit includes a sensor section including a diamond having a color center with electron spins, an irradiation section for irradiating the diamond with excitation light, and a detection section for detecting radiation light from the color center of the diamond. and an optical waveguide for transmitting excitation light and emission light.
  • a diamond sensor system includes the above-described diamond sensor unit in which diamond is arranged on a transmission line that transmits microwaves or millimeter waves, and the sensor unit functions as a magnetic sensor; or an electromagnetic wave generating unit that generates millimeter waves, and a control unit that controls the irradiating unit, the detecting unit, and the electromagnetic wave generating unit, and the control unit temporally and spatially combines microwaves or millimeter waves together with excitation light to irradiate the diamond.
  • FIG. 1 is a cross-sectional view showing a microscope using a conventional diamond NV center.
  • FIG. 2 is a schematic diagram showing the schematic configuration of the diamond sensor unit according to the first embodiment of the present disclosure.
  • FIG. 3 is a sequence diagram showing irradiation timings of excitation light and electromagnetic waves and measurement timings of radiated light during measurement using the diamond sensor unit shown in FIG.
  • FIG. 4 is a graph schematically showing the relationship between observed signal intensity (that is, radiant light intensity) and the frequency of electromagnetic waves (that is, microwaves).
  • FIG. 5 is a schematic diagram showing a schematic configuration of a diamond sensor unit according to the second embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing a schematic configuration of a diamond sensor unit according to a first modified example.
  • FIG. 1 is a cross-sectional view showing a microscope using a conventional diamond NV center.
  • FIG. 2 is a schematic diagram showing the schematic configuration of the diamond sensor unit according to the first embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram showing a schematic configuration of a diamond sensor unit according to a second modified example.
  • FIG. 8 is a schematic diagram showing a schematic configuration of a diamond sensor unit according to a third modified example.
  • FIG. 9 is a schematic diagram showing a schematic configuration of a diamond sensor unit according to a fourth modification.
  • FIG. 10 is a schematic diagram showing a schematic configuration of a diamond sensor unit according to a fifth modification.
  • FIG. 11 is a perspective view showing an example of the second embodiment (see FIG. 5).
  • FIG. 12 is a perspective view showing an electromagnetic wave irradiation unit using a coplanar line.
  • FIG. 13 is a perspective view showing a patch antenna for receiving microwaves.
  • FIG. 14A is a graph showing experimental results.
  • FIG. 14B is a graph showing experimental results.
  • FIG. 14C is a graph showing experimental results.
  • Patent Document 2 discloses that the light-emitting element and the light-receiving element are arranged apart from the diamond and the microwave irradiation coil. However, since the excitation light and the emitted fluorescence light are transmitted in the air as parallel light, they are diffused and there is a limit to the separation distance. In particular, fluorescence has a weak signal intensity, which poses a problem.
  • an object of the present disclosure is to provide a diamond sensor unit and a diamond sensor system that can accurately detect a magnetic field even from a remote location without being damaged even in a high-voltage environment.
  • a diamond sensor unit includes a sensor section including a diamond having a color center with electron spins, an irradiation section for irradiating the diamond with excitation light, and radiation from the diamond color center. It includes a sensing portion for sensing light and an optical waveguide for transmitting excitation light and emission light.
  • the sensor section may include a light collecting element that collects the excitation light and the emitted light, and the light collecting element may be placed between the diamond and the optical waveguide.
  • the condensing element may be a spherical lens made of silicon oxide or a Fresnel lens made of silicon oxide, and the optical waveguide has a core diameter of 1 ⁇ m or more and 80 ⁇ m or less. It may be an optical fiber. As a result, excitation light and synchrotron radiation can be transmitted more efficiently, and detection accuracy can be improved. In addition, laser light can be guided to a desired position relatively easily, and divergence at the output end of the optical fiber can be suppressed.
  • the optical waveguide may be arranged through at least one insulator.
  • the optical waveguide may include a single medium for transmitting the excitation light and the emission light, and within a predetermined distance from one of the two ends of the optical waveguide located farther from the diamond, It may include a fluorescence reflectance filter, LPF or dichroic mirror to separate the excitation and emission light.
  • a fluorescence reflectance filter LPF or dichroic mirror to separate the excitation and emission light.
  • the optical waveguide may include a first optical waveguide that transmits excitation light and a second optical waveguide that transmits radiation light, and one end of the first optical waveguide is connected to the first optical waveguide and one end of the second optical waveguide may be positioned closer to the diamond than the other end of the second optical waveguide. It may also include a fluorescence reflection filter, LPF or dichroic mirror for separating excitation light and emission light within a predetermined distance from one end of the first optical waveguide and one end of the second optical waveguide. good.
  • the excitation light and the synchrotron radiation can be transmitted in forms suitable for each, and the detection accuracy can be improved, compared to the case where both the excitation light and the synchrotron radiation are transmitted by one medium.
  • the first optical waveguide may include a first optical fiber
  • the second optical waveguide may include a second optical fiber
  • the core diameter of the second optical fiber may be the same as that of the first optical fiber may be larger than the core diameter of
  • the core diameter of the first optical fiber may be 1 ⁇ m or more and 100 ⁇ m or less
  • the core diameter of the second optical fiber may be 1 ⁇ m or more and 1 mm or less.
  • the diamond may have at least a plurality of flat surfaces, the excitation light may be incident on a first flat surface of the plurality of flat surfaces, and the detection unit may Radiation light emitted from a second flat surface other than the first flat surface may be detected.
  • a member for example, a fluorescence reflection filter, LPF, or dichroic mirror
  • the sensor portion containing diamond may be entirely made of an electrical insulating member. As a result, it is possible to prevent damage to the sensor section even if discharge or the like occurs in a high-voltage environment in which the sensor section is arranged.
  • the diamond may be arranged on a transmission line that transmits microwaves or millimeter waves, and the sensor section may function as a magnetic sensor. As a result, the NV center of diamond can be accurately irradiated with microwaves or millimeter waves.
  • the transmission line may include a main wiring arranged on a rectangular printed circuit board with one side of 5 cm or less, and a diamond may be arranged at one end of the main wiring. Thereby, the NV center of diamond can be irradiated with microwaves.
  • the spin coherence time of diamond may be less than 50 ⁇ sec.
  • the total hydrogen concentration in diamond may be 1 ppm or less.
  • the spin coherence time T2 of diamond can be shortened, and the NV center quickly returns from the excited state to the original state. Therefore, it is possible to efficiently detect an alternating magnetic field, an electric field, and the like.
  • Any of NVH - concentration, CH concentration and CH 2 concentration in the diamond may be less than 1 ppm.
  • the spin coherence time T2 of diamond can be shortened, and the NV center quickly returns from the excited state to the original state. Therefore, it is possible to efficiently detect alternating magnetic and electric fields, including pulse-like magnetic and electric fields.
  • a diamond sensor system is the diamond sensor unit described above, wherein the diamond is arranged on a transmission line that transmits microwaves or millimeter waves, and the sensor section functions as a magnetic sensor. , an electromagnetic wave generator that generates microwaves or millimeter waves, and a controller that controls the irradiation unit, the detector, and the electromagnetic wave generator, and the controller temporally and Spatially combined to irradiate the diamond.
  • the diamond sensor unit 100 includes an excitation light generator 106, a fluorescence reflection filter 110, an optical waveguide 112, a sensor section 120, an LPF 122 and a light receiver 128.
  • An electromagnetic wave generator 140 and a controller 142 are arranged outside the diamond sensor unit 100 .
  • the control unit 142 includes a CPU (Central Processing Unit) and a storage unit (both not shown). The later-described processing performed by the control unit 142 is realized by the CPU reading and executing a program stored in advance in the storage unit.
  • CPU Central Processing Unit
  • storage unit both not shown.
  • the excitation light generator 106 includes a light emitting element 102 and a light collecting element 104 .
  • the light emitting element 102 is controlled by the control unit 142 to generate excitation light for exciting the NV - center of diamond (hereinafter abbreviated as NV center), which will be described later.
  • the control unit 142 supplies, for example, a voltage for causing the light emitting element 102 to emit light to the light emitting element 102 at a predetermined timing.
  • the excitation light is green light (ie wavelength about 490-560 nm).
  • the excitation light is preferably laser light, and the light emitting element 102 is preferably a semiconductor laser (for example, the wavelength of emitted light is 532 nm).
  • the light collecting element 104 collects the excitation light output from the light emitting element 102 .
  • the condensing element 104 is for inputting as much of the excitation light diffused and output from the light emitting element 102 as possible to the light incident end portion of the optical waveguide 112, which will be described later.
  • the condensing element 104 outputs collimated light condensed in a range smaller than the size of the light incident end of the optical waveguide 112 (for example, when using an optical fiber, its core diameter (i.e. core diameter)). preferably.
  • the fluorescence reflection filter 110 is an element for separating excitation light incident from the condensing element 104 and light emitted from diamond (that is, fluorescence), which will be described later.
  • the fluorescence reflection filter 110 may be a short-pass filter that passes light with a wavelength below a predetermined wavelength and cuts (i.e. reflects) light with a wavelength greater than a predetermined wavelength, or a short-pass filter that passes light with a wavelength within a predetermined wavelength range and passes light with a predetermined wavelength. It is a bandpass filter that cuts (ie reflects) light with wavelengths outside the wavelength range. Such a configuration is preferable because excitation light generally has a shorter wavelength than fluorescence.
  • Fluorescence reflection filter 110 is preferably a dichroic mirror with such a function.
  • the optical waveguide 112 includes a medium for transmitting light and transmits light in both directions. That is, the excitation light incident on one end arranged on the excitation light generating section 106 side is transmitted to the other end arranged on the sensor section 120 side. It also transmits the emitted light (that is, fluorescence) of the diamond element 116, which is incident on the other end, to the one end.
  • the optical waveguide 112 is, for example, an optical fiber. In order to increase the energy density of the pumping light to be transmitted, it is preferable that the core diameter of the optical fiber be as small as possible.
  • the core diameter of the optical fiber is about 80 ⁇ m or less and 1 ⁇ m or more.
  • the core diameter is larger than 80 ⁇ m, it is difficult to increase the energy density of the excitation light even if a lens is used, so it takes time to initialize the spin of the NV center, resulting in a sensor with a slow response speed. A solution to this would require a higher power laser, at the expense of portability and stability.
  • the core diameter is less than 1 ⁇ m, the efficiency of the light entering the optical fiber becomes poor, and the size of the light source of the corresponding laser diode becomes too small, which easily causes failure due to catastrophic optical damage (COD). Furthermore, laser diodes that can provide sufficient output as pumping light are limited to expensive ones, making practical use difficult.
  • the sensor section 120 includes a condensing element 114 , a diamond element 116 and an electromagnetic wave irradiation section 118 .
  • Diamond element 116 includes NV centers.
  • Concentrating element 114 is placed in contact with diamond element 116 .
  • the condensing element 114 converges the excitation light output from the optical waveguide 112 and irradiates it onto the diamond element 116 .
  • the electromagnetic wave irradiation unit 118 irradiates the diamond element 116 with electromagnetic waves (for example, microwaves).
  • the electromagnetic wave irradiation unit 118 is, for example, a coil including an electric conductor. Electromagnetic waves are supplied from the electromagnetic wave generator 140 outside the diamond sensor unit 100 to the electromagnetic wave irradiator 118 .
  • Irradiation of excitation light and electromagnetic waves to the diamond element 116 is controlled by the controller 142, and is performed at the timings shown in FIG. 3, for example. That is, the control unit 142 controls the light emitting element 102 to output the excitation light at a predetermined timing for a predetermined time period (for example, period t1). The control unit 142 controls the electromagnetic wave generator 140 to output electromagnetic waves at predetermined timings for a predetermined time period (for example, period t2).
  • the pulse sequence in period t2 is appropriate depending on the diamond used (e.g., alignment of multiple NV centers) and observation signals (i.e., signals affected by spin states of NV centers). should be used.
  • the diamond element 116 is irradiated with the electromagnetic waves in combination temporally and spatially together with the excitation light.
  • the control unit 142 takes in the input output signal of the light detection unit 126 at a predetermined timing (for example, within the period t3) and stores it in the storage unit.
  • the NV center has a structure in which carbon (C) atoms in the diamond crystal are replaced with nitrogen (N) atoms, and carbon atoms that should be present adjacent thereto are absent (ie, vacancies (V)).
  • the NV center transitions from the ground state to the excited state by green light with a wavelength of about 490-560 nm (for example, laser light at 532 nm), and emits red light with a wavelength of about 630-800 nm (for example, fluorescence at 637 nm). to return to the ground state.
  • the NV center forms a spin triplet state with magnetic quantum numbers m s of ⁇ 1, 0, and +1 when one electron is trapped (that is, NV ⁇ ).
  • the energy levels of the states separate according to the magnetic field strength (ie Zeeman separation).
  • the control section 142 controls the light emitting element 102 and the electromagnetic wave generating section 140, so that the spectrum as shown in FIG. 4, for example, is measured.
  • the observed ⁇ f depends on the magnetic field strength at the diamond element 116 position.
  • Specific spectrum measurements are performed as follows. That is, the light (that is, fluorescence) diffused and emitted from the diamond element 116 is condensed by the condensing element 114 and input to the other end of the optical waveguide 112 as parallel light.
  • Light (that is, fluorescence) input to the optical waveguide 112 is transmitted through the optical waveguide 112 and output from one end of the optical waveguide 112 .
  • Light (that is, fluorescence) output from one end of the optical waveguide 112 is reflected by the fluorescence reflection filter 110, passes through the LPF 122, is collected by the light collecting element 124, and is irradiated to the light detection section 126. .
  • the photodetector 126 generates and outputs an electrical signal corresponding to incident light.
  • the photodetector 126 is, for example, a photodiode.
  • the output signal of the photodetector 126 is acquired by the controller 142 .
  • the LPF 122 is a long-pass filter that passes light with a wavelength equal to or greater than a predetermined wavelength and cuts (eg, reflects) light with a wavelength smaller than a predetermined wavelength.
  • the emitted light of the diamond element 116 is red light and passes through the LPF 122 while the excitation light has a shorter wavelength and does not pass through the LPF 122 . Accordingly, it is possible to prevent the excitation light emitted from the light emitting element 102 from being detected by the light detection unit 126 and becoming noise, thereby suppressing a decrease in the detection sensitivity of the diamond element 116 for emitted light (that is, fluorescence).
  • the control unit 142 irradiates the diamond element 116 with the excitation light, sweeps the frequency of the electromagnetic waves in a predetermined range, irradiates the diamond element 116, and emits light (that is, fluorescence) emitted from the diamond element 116 as It can be acquired as an electrical signal output from the photodetector 126 . From the observed ⁇ f (ie, the value dependent on the magnetic field strength at the diamond element 116 position), the magnetic field strength at the diamond element 116 position can be calculated. That is, the diamond sensor unit 100 functions as a magnetic sensor.
  • the diamond sensor unit 100 can be used as a sensor for detecting not only magnetic fields (that is, magnetic fields) but also physical quantities related to magnetic fields, such as magnetization, electric fields, voltages, currents, temperatures and pressures.
  • the sensor unit 120 and the other end of the optical waveguide 112 are high because the diamond element 116, which is the main body of the sensor, and the light collecting element 114 are formed of an electrical insulator. Even if it is installed in a voltage facility or the like, it is possible to suppress the occurrence of damage due to discharge or the like. Therefore, the diamond sensor unit 100 can safely measure a magnetic field or the like in a high voltage environment. In addition, the excitation light generator 106 and the light receiver 128 can be placed far away from the high voltage environment via the optical waveguide 112, and the diamond sensor unit 100 can remotely measure magnetic fields and the like.
  • the sensor section 120 includes the condensing element 114 arranged between the diamond element 116 and the optical waveguide 112, loss of excitation light and emitted light can be reduced, and detection accuracy can be improved.
  • a fluorescence reflection filter 110 is provided to separate the excitation light and the emission light, so that the transmission of the excitation light and the emission light can be performed by one medium (for example, an optical waveguide 112). As will be described later, this makes it possible to reduce the number of components and simplify the configuration as compared with the case of providing two media for transmitting the excitation light and the emission light respectively.
  • one optical waveguide 112 is used to transmit light (that is, excitation light and emission light) in both directions.
  • An optical waveguide is used to transmit each.
  • the diamond sensor unit 200 according to the second embodiment of the present disclosure includes an excitation light generating section 206, a first optical waveguide 212, a condensing element 208, a fluorescence reflecting filter 210, a sensor section 220, an LPF 222, a concentrating It includes an optical element 224 , a second optical waveguide 230 and a light receiving portion 228 .
  • An electromagnetic wave generator 140 and a controller 142 are arranged outside the diamond sensor unit 200, as in the first embodiment.
  • the excitation light generator 206 includes a light emitting element 202 and a light collecting element 204 .
  • the sensor section 220 includes a light collecting element 214 , a diamond element 216 and an electromagnetic wave irradiation section 218 .
  • the light receiving section 228 includes a light detecting section 226 .
  • the light emitting element 202, the light collecting element 204, the fluorescence reflecting filter 210, the light collecting element 214, the diamond element 216, the electromagnetic wave irradiation section 218, the LPF 222, and the light detection section 226 are the light emitting element 102 and the light collecting element 104 shown in FIG.
  • the fluorescence reflection filter 110 the condensing element 114, the diamond element 116, the electromagnetic wave irradiation section 118, the LPF 122, and the light detection section 126, and function in the same manner. Therefore, these will be briefly described.
  • the light emitting element 202 generates excitation light for exciting the NV center of diamond under the control of the control unit 142 .
  • the control unit 142 supplies, for example, a voltage for causing the light emitting element 202 to emit light to the light emitting element 202 at a predetermined timing.
  • the excitation light is green light.
  • the excitation light is preferably laser light, and the light emitting element 202 is preferably a semiconductor laser.
  • the condensing element 204 condenses the excitation light diffused and output from the light emitting element 202 and inputs it to the light incident end of the first optical waveguide 212 .
  • the first optical waveguide 212 includes a medium that transmits light. Unlike the optical waveguide 112 shown in FIG. 2, the first optical waveguide 212 transmits the excitation light but not the emission light of the diamond element 216 . That is, the excitation light incident on one end (that is, incident end) of the first optical waveguide 212 arranged on the excitation light generating section 206 side is transferred to the other end (that is, incident end) arranged on the sensor section 220 side. output end) and output.
  • the first optical waveguide 212 is, for example, an optical fiber.
  • the excitation light diffused and output from the first optical waveguide 212 is condensed by the condensing element 208 and enters the fluorescence reflecting filter 210 as parallel light.
  • the fluorescence reflection filter 210 is an element for separating excitation light incident from the condensing element 208 and light emitted from the diamond element 216 (that is, fluorescence). Fluorescence reflecting filter 210 may be a dichroic mirror.
  • the condensing element 214 converges the excitation light input through the fluorescence reflection filter 210 and irradiates it onto the diamond element 216 .
  • Concentrating element 214 is placed in contact with diamond element 216 .
  • Diamond element 216 includes NV centers.
  • the electromagnetic wave irradiation unit 218 irradiates the diamond element 216 with electromagnetic waves (for example, microwaves).
  • the electromagnetic wave irradiation unit 218 is, for example, a coil.
  • Electromagnetic waves are supplied from the electromagnetic wave generator 140 to the electromagnetic wave irradiator 218 . Irradiation of excitation light and electromagnetic waves to the diamond element 216 is controlled by the controller 142 at the timings shown in FIG. 3, for example. This causes the diamond element 216 to emit red light (ie, fluorescence), as described above.
  • the light diffusely emitted from the diamond element 216 (that is, the red fluorescent light) is collected by the condensing element 214 into parallel light, and is input to the fluorescent reflection filter 210 .
  • the light (that is, red fluorescence) input to the fluorescence reflection filter 210 is reflected by the fluorescence reflection filter 210 and enters the LPF 222 .
  • the emitted light (that is, red fluorescence) of the diamond element 216 that enters the LPF 222 passes through the LPF 222, is collected by the light collecting element 224, and enters one end (that is, the incident end) of the second optical waveguide 230. .
  • the LPF 222 suppresses the excitation light emitted from the light emitting element 202 from being detected by the light detection section 226 and becoming noise, and thus prevents the detection sensitivity of the diamond element 216 for emitted light (that is, fluorescence) from deteriorating. Suppress.
  • the second optical waveguide 230 includes a medium that transmits light.
  • the second optical waveguide 230 directs the light incident on one end (that is, the incident end) from the light collecting element 224 (that is, the emitted light from the diamond element 216) to the other end (that is, the namely, to the output end).
  • Light output from the second optical waveguide 230 is detected by the photodetector 226 .
  • the photodetector 226 is, for example, a photodiode.
  • the output signal of the photodetector 226 is acquired by the controller 142 .
  • the control unit 142 irradiates the diamond element 216 with the excitation light, sweeps the frequency of the electromagnetic waves in a predetermined range, irradiates the diamond element 216 with the excitation light, and radiates the light emitted from the diamond element 216 as in the first embodiment.
  • the light (that is, fluorescence) emitted from the light can be obtained as an electrical signal output from the photodetector 226 . Therefore, the diamond sensor unit 200 functions as a magnetic sensor.
  • the diamond sensor unit 200 can be used as a sensor for detecting not only magnetic fields but also physical quantities related to magnetic fields such as magnetization, electric field, voltage, current, temperature and pressure.
  • the diamond element 216 which is the main body of the sensor, and the condensing element 214 are made of an electrical insulator, so damage due to discharge or the like can be suppressed. Therefore, the diamond sensor unit 200 can safely measure a magnetic field or the like in a high voltage environment.
  • the excitation light generator 206 and the light receiver 228 can be placed far from the high voltage environment via the first optical waveguide 212 and the second waveguide 230, and the diamond sensor unit 200 can remotely measure the magnetic field. .
  • the sensor unit 220 includes the light collecting element 214 arranged between the diamond element 216 and the first optical waveguide 212 and the second waveguide 230, the loss of the excitation light and the radiated light is reduced, and the detection accuracy is improved. can be improved.
  • excitation light with different wavelengths and radiation light from the diamond element 216 can be transmitted appropriately. That is, by using an optical fiber having a core diameter corresponding to the wavelength, it is possible to design a condensing optical system (that is, condensing element 204, condensing element 208, condensing element 214, and condensing element 224) suitable for each. , the light transmission efficiency can be improved, and the measurement accuracy can be improved.
  • the core diameter of the optical fiber that transmits diamond radiation light i.e., the second optical waveguide 230
  • the core diameter of the optical fiber that transmits excitation light i.e., the first optical waveguide 212.
  • the optical fiber used to transmit pumping light should have a small core diameter in order to increase the energy density of the pumping light. input into the optical fiber from the Therefore, there is an appropriate core diameter.
  • the core diameter of the first optical waveguide 212 is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the larger the core diameter of the optical fiber for transmitting the light emitted from the diamond element 216 the better.
  • the core diameter of the second optical waveguide 230 is preferably 1 ⁇ m or more and 1 mm or less.
  • the core diameter of the second optical waveguide 230 is preferably equal to or larger than the core diameter of the first optical waveguide 212 and more preferably larger than the core diameter of the first optical waveguide 212 .
  • the core diameter of the second optical waveguide 230 is preferably 1 ⁇ m or more, more preferably 25 ⁇ m or more, and even more preferably 50 ⁇ m or more.
  • the core diameter of the second optical waveguide 230 is preferably 80 ⁇ m or more, more preferably 400 ⁇ m or more, and even more preferably 800 ⁇ m or more, rather than 50 ⁇ m or more.
  • the core diameter of the second optical waveguide 230 is preferably 80 ⁇ m or more, more preferably 105 ⁇ m or more, even more preferably 400 ⁇ m or more, and even more preferably 800 ⁇ m or more.
  • the core diameter is larger than 1 mm, it is difficult to bend the optical fiber and the cost is high.
  • the core diameter of the first optical waveguide 212 is in the range of 1 ⁇ m or more and 100 ⁇ m or less, the above preferable conditions are satisfied.
  • the fluorescence reflection filter 210 and the LPF 222 are used to separate the excitation light and the light emitted from the diamond element 216, but this is not the only option.
  • the excitation light and the emitted light of the diamond element 216 may be separated by using the excitation light reflection filter having the function of LPF.
  • a diamond sensor unit 300 uses an excitation light reflection filter 302 having an LPF function to separate excitation light from a light emitting element 202 and radiation light from a diamond element 216.
  • the diamond sensor unit 300 replaces the fluorescence reflection filter 210 and the LPF 222 in the diamond sensor unit 200 (see FIG. 5) with an excitation light reflection filter 302 having an LPF function, and includes a path for generating and transmitting excitation light and a diamond element. 216 radiation transmission and detection paths are interchanged.
  • the excitation light reflection filter 302 having an LPF function is a long-pass filter as well as an excitation light reflection filter.
  • constituent elements with the same reference numerals as in FIG. 5 represent the same elements as in FIG. Therefore, redundant description will not be repeated with respect to them.
  • the excitation light generated by the light emitting element 202 is condensed by the condensing element 204 and input to one end of the first optical waveguide 212 .
  • the excitation light is transmitted through the first optical waveguide 212, output from the other end of the first optical waveguide 212, condensed by the condensing element 224 into parallel light, and passed through the excitation light reflection filter 302 having an LPF function.
  • incident on Since the excitation light is green light, it is reflected by the excitation light reflection filter 302 having an LPF function and enters the condensing element 214 .
  • the light emitted from the diamond element 216 is condensed by the condensing element 214 into parallel light, and enters the excitation light reflection filter 302 having an LPF function.
  • Emitted light (that is, red fluorescence) from the diamond element 216 passes through the excitation light reflection filter 302 having an LPF function, is collected by the light collecting element 224, enters the second optical waveguide 230, and enters the second optical waveguide 230. is transmitted to the light receiving unit 228 and detected by the light receiving unit 228 . Therefore, like the diamond sensor unit 200 of the second embodiment, the diamond sensor unit 300 functions as a sensor that detects magnetic fields and the like.
  • the excitation light is incident on one surface of the diamond element containing the NV center, and the emission light from the same surface is measured, but the present invention is not limited to this. If the diamond element containing the NV center has multiple flat surfaces, the surface irradiated with the excitation light and the surface measured with the emitted light may be different.
  • a flat surface means a plane having an area greater than or equal to a predetermined area, and here, a flat surface of the diamond element containing the NV center means a plane having an area larger than a circle having a diameter of about 200 ⁇ m. .
  • diamond sensor unit 400 detects light emitted from a surface different from the surface on which excitation light is incident on diamond element 402 .
  • Diamond sensor unit 400 is obtained by replacing sensor section 220 with sensor section 408 in diamond sensor unit 200 shown in FIG.
  • constituent elements with the same reference numerals as in FIG. 5 represent the same ones as in FIG. Duplicate descriptions will not be repeated with respect to them.
  • the sensor section 408 includes a diamond element 402 , a condensing element 404 , a condensing element 406 and an electromagnetic wave irradiation section 218 .
  • the diamond element 402 includes NV centers and has multiple planar surfaces.
  • the diamond element 402 is formed, for example, in the shape of a rectangular parallelepiped.
  • the condensing element 404 is arranged in contact with one flat surface (hereinafter referred to as the first flat surface) of the diamond element 402 .
  • the condensing element 406 is arranged in contact with a flat surface (hereinafter referred to as a second flat surface) of the diamond element 402 that is different from the first flat surface.
  • the excitation light transmitted by the first optical waveguide 212 enters the condensing element 404 and is condensed by the condensing element 404 to irradiate the first flat surface of the diamond element 402 .
  • the diamond elements 402 are irradiated with excitation light and electromagnetic waves (for example, microwaves) by the electromagnetic wave irradiation unit 218 at predetermined timings, whereby light is emitted from the diamond elements 402 . Emitted light is emitted in all directions.
  • the light emitted from the second flat surface of the diamond element 402 (that is, the red fluorescent light) is condensed by the condensing element 406 into parallel light, enters the LPF 222, passes through the LPF 222, and passes through the second optical waveguide 230. Incident at one end.
  • Light (ie, red fluorescent light) emitted from the second flat surface of diamond element 402 is then transmitted through second optical waveguide 230 to photodetector 226 and detected by photodetector 226 . Therefore, like the diamond sensor unit 200 of the second embodiment, the diamond sensor unit 400 functions as a sensor that detects magnetic fields and the like.
  • the number of light collecting elements can be reduced, and excitation light can be It is possible to eliminate elements (eg, fluorescence reflection filters, etc.) for separating the light emitted from the diamond element. Therefore, the diamond sensor unit can have a simpler configuration, and the cost can be reduced.
  • the diamond element 402 is formed in the shape of a rectangular parallelepiped and the first flat surface and the second flat surface are two surfaces forming 90 degrees, it is not limited to this. If the diamond element 402 is shaped like a rectangular parallelepiped, a flat surface parallel to the first flat surface may be used as the second flat surface for collecting the radiation to be detected. Moreover, the diamond element 402 only needs to have at least two flat surfaces, and the shape of the diamond element 402 is not limited to hexahedron, and the shape of the diamond element 402 is arbitrary.
  • a diamond sensor unit 500 according to a third modification is obtained by removing the electromagnetic wave irradiation section 118 from the diamond sensor unit 100 shown in FIG. That is, the sensor section 502 includes the condensing element 114 and the diamond element 116, but does not include an electromagnetic wave irradiation section (for example, a coil or the like).
  • the diamond element 116 is irradiated with excitation light (that is, green light) output from the light emitting element 102.
  • excitation light that is, green light
  • FIG. This excites the NV center of the diamond element 116 to emit light (ie, red fluorescence) and return to its original state. Therefore, by measuring the emitted light, the diamond sensor unit 500 functions as a magnetic sensor.
  • the measurement principle using microwaves is as described above, and the difference between the intensity of fluorescence from the ground level and the intensity of fluorescence from the excitation level that is resonantly absorbed by microwaves is used to determine the resonance level can be quantified at the microwave frequency, and changes in the magnetic field can be measured by changes in the resonance level.
  • the principle of measurement used here uses the fact that fluorescence intensity changes even when microwaves are not irradiated. That is, it utilizes the fact that electrons existing at the ground level change under the influence of the magnetic field, and the fluorescence intensity changes in correlation with the magnetic field.
  • the diamond sensor unit 500 functions as a sensor that detects magnetic fields and the like.
  • the sensor unit 502 does not include a conductive member such as a coil, and is entirely composed of electrical insulating members. Therefore, even if the sensor unit 502 is installed in high-voltage equipment, it will not be damaged by discharge or the like. As a result, the diamond sensor unit 500 can safely measure a magnetic field or the like in a high voltage environment.
  • diamond sensor unit 600 (Fourth modification) The configuration in which the diamond element including the NV center functions as a magnetic sensor without being irradiated with electromagnetic waves is not limited to that shown in FIG.
  • diamond sensor unit 600 according to a fourth modification is obtained by removing condensing element 114 and electromagnetic wave irradiation section 118 from diamond sensor unit 100 shown in FIG. That is, the sensor section 602 includes the diamond element 116, but does not include any of the condensing element and the electromagnetic wave irradiation section.
  • a diamond element 116 is placed in contact with the end of the optical waveguide 112 .
  • the diamond sensor unit 600 similarly to the diamond sensor unit 100 (see FIG. 2), when the diamond element 116 is irradiated with excitation light (that is, green light) output from the light emitting element 102, the NV center of the diamond element 116 is excited. , emits light (ie red fluorescence) and returns to its original state. Therefore, by measuring the emitted light, the diamond sensor unit 600 functions as a magnetic sensor.
  • the magnetic field measurement method is the same as in the third modification.
  • the diamond sensor unit 600 functions as a sensor that detects magnetic fields and the like.
  • the sensor unit 602 does not include conductive members such as coils, and is entirely composed of electrical insulating members. Therefore, even if the sensor unit 602 is installed in a high-voltage facility, it will not be damaged by discharge or the like, and can safely measure a magnetic field or the like in a high-voltage environment.
  • diamond sensor unit 700 In the third and fourth modifications, one optical waveguide transmits excitation light and radiation light, but two optical waveguides may be used to transmit each of the excitation light and radiation light. .
  • diamond sensor unit 700 according to the fifth modification is obtained by removing electromagnetic wave irradiation section 218 from diamond sensor unit 200 shown in FIG. That is, the sensor section 702 includes the condensing element 214 and the diamond element 216, but does not include an electromagnetic wave irradiation section (for example, a coil or the like). In the diamond sensor unit 700, similarly to the diamond sensor unit 200 (see FIG.
  • the diamond sensor unit 700 functions as a magnetic sensor.
  • the method of magnetic field measurement is the same as in the third modification.
  • the diamond sensor unit 700 functions as a sensor that detects magnetic fields and the like.
  • the sensor unit 702 does not include conductive members such as coils, and is entirely composed of electrical insulating members. Therefore, even if the sensor unit 702 is installed in a high-voltage facility, it will not be damaged by discharge or the like, and can safely measure a magnetic field or the like in a high-voltage environment.
  • the electromagnetic wave irradiation section 218 may be removed from each of the diamond sensor unit 300 shown in FIG. 6 and the diamond sensor unit 400 shown in FIG. In that case also, the magnetic field can be measured without irradiating electromagnetic waves.
  • the diamond sensor unit uses a diamond element having an NV center, but it is not limited to this.
  • a diamond element having a color center with electron spin may be used.
  • a color center having an electron spin is a center that forms a spin triplet state and emits light when excited, and NV centers are typical examples.
  • silicon-vacancy centers ie Si-V centers
  • germanium-vacancy centers ie Ge-V centers
  • tin-vacancy centers ie Sn-V centers
  • Centers are known to exist. Therefore, diamond elements containing these may be used instead of diamond elements containing NV centers to form a diamond sensor unit.
  • the wavelengths of excitation light and emitted light (that is, fluorescence) and the frequency of electromagnetic waves for resonance excitation differ according to the level of the color center.
  • the NV center is preferable because it is easy to handle in terms of light wavelength and microwave frequency.
  • the electromagnetic waves to be irradiated include millimeter waves (eg, 30 GHz to 300 GHz) or submillimeter waves (eg, 300 GHz), which are higher in frequency than microwaves (eg, 1 GHz to 30 GHz). ⁇ 3 THz).
  • a Si-V center can use a millimeter wave of about 48 GHz
  • a Sn-V center can use a sub-millimeter wave of about 850 GHz.
  • a laser beam is preferable for the excitation light, and a semiconductor laser is more preferable as the generator because it can be miniaturized.
  • the detector for the emitted light of the diamond element may be of the vacuum tube type, a semiconductor detector device is more preferable in terms of miniaturization.
  • the optical waveguide preferably has a two-layer or more coaxial structure having a core portion through which light passes and a portion formed around the core and made of a material having a different refractive index from that of the core portion.
  • the core portion need not be a densely packed form of the light transmitting medium.
  • the core portion may be hollow, as the space itself can transmit light.
  • the optical waveguide is preferably an optical fiber having a core diameter of 1 ⁇ m or more and 80 ⁇ m or less. This is because if an optical fiber is used, the laser light can be guided to a desired position relatively easily, and divergence at the output end of the optical fiber can be suppressed.
  • the condensing element may be made of a substance that has the effect of condensing light.
  • it may be a lens made of a silicon oxide-based material (for example, glass, which may contain additives other than silicon oxide) or a substance with a diffraction function.
  • the condensing element is preferably a lens that transmits light and utilizes a refraction phenomenon.
  • a spherical lens, a hemispherical lens, a Fresnel lens, and the like are preferred.
  • a lens in which the focal point of parallel light is positioned on the spherical surface is more preferable due to the relationship between the refractive index and the spherical shape.
  • the silicon oxide-based material lens is in direct contact with the diamond. This is because if there is no contact, there will be a problem that the light cannot be collected well. Also, if the lens receives a strong impact, the distance from the diamond to the lens may change, and even in that case, the light cannot be collected well. More preferably, the silicon oxide-based material lens is also in direct contact with the optical fiber. This is because there is less loss when the fluorescence is focused on the optical fiber, and the change in distance due to impact is less likely to occur.
  • an optical waveguide for example, an optical fiber
  • the excitation light generator and the light receiver can be insulated from the high voltage, and devices used in the excitation light generator and the light receiver can be protected.
  • the electromagnetic wave irradiation part is not limited to a coil-shaped one, and may be a linear electric wiring as described later.
  • the diamond element may be arranged on the surface or at the end of a transmission path (eg, conductive member) that transmits electromagnetic waves (eg, microwaves, millimeter waves, etc.).
  • a transmission path eg, conductive member
  • electromagnetic waves eg, microwaves, millimeter waves, etc.
  • the NV center of the diamond element when the diamond sensor unit described above is used to detect a time change such as a fluctuating magnetic field for AC power, the NV center of the diamond element, after being excited, quickly returns from the state of emitting light to the original state. It is preferable to return to the state (ie the state prior to excitation).
  • the spin coherence time T2 of the diamond element is short.
  • the diamond element preferably has a spin coherence time T2 of less than 50 ⁇ sec. Since the detection sensitivity is proportional to (T2) -1/2 , the detection sensitivity decreases as T2 decreases. Therefore, when detecting sudden changes in magnetic field fluctuations, for example, when detecting pulse-like magnetic field fluctuations, it is conceivable to sacrifice the detection sensitivity and shorten the spin coherence time T2 of the diamond element as much as possible.
  • the diamond element preferably contains impurities.
  • the total hydrogen concentration in diamond is preferably greater than 0 ppm and less than or equal to 1 ppm. It is also preferable that all of the NVH 3 ⁇ concentration, CH concentration and CH 2 concentration in the diamond are greater than 0 ppm and not more than 1 ppm.
  • the concentration (ppm unit) represents the ratio of the number of atoms.
  • FIG. 11 shows an embodiment of the arrangement shown in FIG.
  • components corresponding to the components shown in FIG. 5 are given the same reference numerals as in FIG.
  • a step-index multimode optical fiber was used for the first optical waveguide 212 and the second optical waveguide 230 .
  • the first optical waveguide 212 has a core diameter of 50 ⁇ m and NA (that is, numerical aperture) of 0.2.
  • the second optical waveguide 230 has a core diameter of 400 ⁇ m and an NA of 0.5.
  • As the diamond element 216 a rectangular parallelepiped diamond of 3 mm ⁇ 3 mm ⁇ 0.3 mm was used.
  • a spherical lens with a diameter of 2 mm was used as the condensing element 214 , and the condensing element 214 was fixed in contact with the surface of the diamond element 216 (that is, a flat surface of 3 mm ⁇ 3 mm).
  • a triangular prism 250 was arranged in addition to the condensing element 208 and the fluorescence reflection filter 210 to constitute a collimating optical system. Thereby, the excitation light was adjusted to be incident on the center of the condensing element 214 .
  • a coplanar line shown in FIG. 12 was used for the electromagnetic wave irradiation unit 218 .
  • a copper foil 272 formed on the surface of a glass epoxy substrate 270 having a side length of about 2 cm was notched in a U-shape, and an electromagnetic wave irradiation section 218 as a main wiring having a width of 1 mm was formed in the center.
  • the diamond element 216 was fixed to one end of the electromagnetic wave irradiation part 218 (that is, the area indicated by the dashed line ellipse in FIG. 12) with silver paste. Thereby, the NV center of the diamond element 216 can be accurately irradiated with the microwave.
  • the other end of the electromagnetic wave irradiation section 218 (that is, the end where the diamond element 216 is not arranged) was connected to the connector 254 shown in FIG.
  • the microwaves were generated by a remotely installed microwave generator, transmitted through the air, and received by the antenna 252 (see FIG. 11).
  • a horn antenna (gain 10 dB) was used to radiate microwaves into the air.
  • the patch antenna (frequency: 2.873 GHz, maximum gain: about 10 dBi) shown in FIG. 13 was used as the antenna 252 .
  • the patch antenna includes substrates 280 and 284 and a connector 288 for outputting received signals.
  • Both substrates 280 and 284 are substrates made of glass epoxy resin (for example, FR4), and have a thickness of 1 mm and a square plane (one side length L is 120 mm).
  • Four conductive members 282 are arranged on the surface of the substrate 280 that does not face the substrate 284 .
  • a conductive member is arranged on the entire surface of the substrate 284 facing the substrate 280 (hereinafter referred to as a ground surface).
  • the four conductive members 282 are connected in parallel to the signal lines of connector 288 and the ground plane of substrate 284 is connected to the shield (or ground) of connector 288 .
  • the microwave received by the antenna 252 was transmitted to the connector 254 via the transmission line (that is, the coaxial cable), and the diamond element 216 was irradiated from the electromagnetic wave irradiation section 218 .
  • a PIN-AMP (that is, a photodiode IC having a linear current amplifier circuit) was used for the photodetector 226 .
  • the PIN-AMP used has a photodiode sensitivity wavelength range of 300 to 1000 nm and a maximum sensitivity wavelength of 650 nm, and amplifies the photocurrent generated by the photodiode by a factor of 1300 and outputs it.
  • the condensing element 214, the diamond element 216, and the electromagnetic wave irradiation unit 218, which constitute the sensor unit, are arranged near the electric wiring 260, and an alternating current (50 Hz or 60 Hz, 30 A) is passed through the electric wiring 260, thereby generating a fluctuating magnetic field. was targeted for detection.
  • the maximum value of the magnetic field formed in the sensor section by the alternating current is about 0.3 ⁇ T.
  • FIGS. 14A to 14C show signals detected by PIN-AMP when an alternating current (30 A) of 50 Hz is passed through the electrical wiring 260.
  • the vertical axis is 10.0 mV per scale, and the horizontal axis is 4 ms per scale.
  • the detected signal decreases. Even if it radiated from the The sensed signals shown in FIGS. 14A-14C vary at an alternating frequency of 50 Hz.
  • the detection signal shown in FIG. 15 changes at an AC frequency of 60 Hz.
  • the microwave attenuates according to the distance, the microwave power to be radiated, the gain of the antenna for radiation, and the reception It is sufficient to adjust the gain, etc. of the antenna.
  • the coplanar line was formed on a substrate with a side of about 2 cm, but a rectangular substrate with a side of about 5 cm or less may be used.
  • the magnetic field can be detected without irradiating the diamond element with electromagnetic waves (for example, microwaves).
  • electromagnetic waves for example, microwaves.
  • the diamond sensor unit is configured by removing the elements for microwave irradiation (ie, electromagnetic wave irradiation section 218, antenna 252, connector 254, etc.) from the configuration of the embodiment shown in FIG. may Even in that case, the fluctuating magnetic field generated by the alternating current flowing through the electric wiring 260 can be detected.
  • the signal intensity means the difference between the maximum value and the minimum value obtained by averaging the noise part with respect to the value on the vertical axis in FIG. 14A.
  • the signal could be detected except when the core diameter of the second optical waveguide 230 was 0.9 ⁇ m, and the detected signal increased as the core diameter of the second optical waveguide 230 increased.
  • the core diameter of the second optical waveguide 230 is 1.2 mm, it could not be accommodated in a compact experimental system. Similar experiments were also conducted with other variations utilizing the first optical waveguide 212 and the second optical waveguide 230, resulting in approximately the same ratios of detected signal intensities as above.
  • the signal could be detected except when the core diameter of the second optical waveguide 230 was 50 ⁇ m, and the detected signal increased as the core diameter of the second optical waveguide 230 increased.
  • the core diameter of the second optical waveguide 230 is 1.2 mm, it could not be accommodated in a compact experimental system. Similar experiments were also conducted with other variations utilizing the first optical waveguide 212 and the second optical waveguide 230, resulting in approximately the same ratios of detected signal intensities as above.
  • Electromagnetic wave generator 142 Control unit 212 First optical waveguide 230 Second optical waveguide 250 Triangular prism 252 Antenna 254, 288 Connector 260 Electrical wiring 270 Glass epoxy substrate 272 Copper foils 280, 284 , 912, 914, 916 substrate 282 conductive member 286 spacer 302 excitation light reflection filter 900 LED 902 SPF 904 Diamond 906 Lens 910 Photodiode H Spacing L Le

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

ダイヤモンドセンサユニットは、電子スピンを持つカラーセンタを有するダイヤモンドを含むセンサ部と、ダイヤモンドに励起光を照射する照射部と、ダイヤモンドのカラーセンタからの放射光を検知する検知部と、励起光及び放射光を伝送する光導波路とを含む。

Description

ダイヤモンドセンサユニット及びダイヤモンドセンサシステム
 本開示は、ダイヤモンドセンサユニット及びダイヤモンドセンサシステムに関する。本出願は、2021年1月27日出願の日本出願第2021-010935号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 ダイヤモンドのNVセンタを用いたセンサが知られている。ダイヤモンドのNVセンタを顕微鏡と組合せて使用する場合、例えば図1に示すように構成される。即ち、基板912に配置されたLED900は、ダイヤモンド904のNVセンタを励起するための緑色の光を放射する。放射された光は、SPF(Short Pass Filter)902を通過した後、基板914に配置されたダイヤモンド904に入射する。これにより、NVセンタの電子は励起状態となる。励起された電子が元の基底状態に戻るときに、ダイヤモンド904から赤色の蛍光が放射され、その蛍光はレンズ906により集光され、LPF(Long Pass Filter)908を通過した後、基板916に配置されたフォトダイオード910により検出される。また、外部装置(図示せず)により発生されたマイクロ波をダイヤモンド904に照射する。これにより、スピン状態の異なる状態と共鳴状態となり励起されると、ダイヤモンド904からの赤色の蛍光の強度が変化する。この変化は、フォトダイオード910により検出される。レンズ906は高性能な光学顕微鏡のレンズ構成であることも、簡易的なレンズ構成であることも可能である。
 下記特許文献1には、ダイヤモンドのNVセンタを使用した走査プローブ顕微鏡(即ち周波数変調型原子間力顕微鏡(FM-AFM))が開示されている。また、下記特許文献2には、ダイヤモンドのNVセンタを用いた磁場検出装置が開示されている。下記非特許文献2には、レンズを使ったコンパクトな磁場検出装置が開示されている。
特開2017-67650号公報 特開2018-136316号公報
Arne Wickenbrock, et al., "Microwave-free magnetometry with nitrogen-vacancy centers in diamond", Applied Physics Letters 109, 053505 (2016) Felix M. Stuerner, et al., "Compact integrated magnetometer based on nitrogen-vacancy centres in diamond", Diamond & Related Materials 93 (2019) 59-65
 本開示のある局面に係るダイヤモンドセンサユニットは、電子スピンを持つカラーセンタを有するダイヤモンドを含むセンサ部と、ダイヤモンドに励起光を照射する照射部と、ダイヤモンドのカラーセンタからの放射光を検知する検知部と、励起光及び放射光を伝送する光導波路とを含む。
 本開示の別の局面に係るダイヤモンドセンサシステムは、ダイヤモンドが、マイクロ波又はミリ波を伝送する伝送線路上に配置されており、センサ部が磁気センサとして機能する上記のダイヤモンドセンサユニットと、マイクロ波又はミリ波を発生する電磁波発生部と、照射部、検出部、及び電磁波発生部を制御する制御部を含み、制御部は、励起光と共に、マイクロ波又はミリ波を時間的及び空間的に組合せてダイヤモンドに照射する。
図1は、従来のダイヤモンドのNVセンタを使用した顕微鏡を示す断面図である。 図2は、本開示の第1実施形態に係るダイヤモンドセンサユニットの概略構成を示す模式図である。 図3は、図2に示したダイヤモンドセンサユニットを用いた測定時の励起光及び電磁波の照射タイミング、並びに、放射光の測定タイミングを示すシーケンス図である。 図4は、観測される信号強度(即ち放射光強度)と電磁波(即ちマイクロ波)の周波数との関係を模式的に示すグラフである。 図5は、本開示の第2実施形態に係るダイヤモンドセンサユニットの概略構成を示す模式図である。 図6は、第1変形例に係るダイヤモンドセンサユニットの概略構成を示す模式図である。 図7は、第2変形例に係るダイヤモンドセンサユニットの概略構成を示す模式図である。 図8は、第3変形例に係るダイヤモンドセンサユニットの概略構成を示す模式図である。 図9は、第4変形例に係るダイヤモンドセンサユニットの概略構成を示す模式図である。 図10は、第5変形例に係るダイヤモンドセンサユニットの概略構成を示す模式図である。 図11は、第2実施形態(図5参照)の実施例を示す斜視図である。 図12は、コプレーナ線路を用いた電磁波照射部を示す斜視図である。 図13は、マイクロ波を受信するパッチアンテナを示す斜視図である。 図14Aは、実験結果を示すグラフである。 図14Bは、実験結果を示すグラフである。 図14Cは、実験結果を示すグラフである。 図15は、実験結果を示すグラフである。 図16は、図10に示した構成の実施例を示す斜視図である。
 [発明が解決しようとする課題]
 電力機器等の高電圧機器に対してセンサを使用する場合、放電により瞬間的に発生する高電圧及び大電流により、また、それに伴う強力な電磁波の発生により、発光素子及び受光素子が損傷する可能性がある。高電圧環境で使用するセンサには、特許文献1に開示された構成を採用できない。
 特許文献2には、発光素子及び受光素子を、ダイヤモンド及びマイクロ波照射コイルから離隔して配置することが開示されている。しかし、励起光及び発光した蛍光を平行光として、空中を伝送させるので拡散されてしまい、離隔する距離に限界がある。特に、蛍光の信号強度は弱いので、問題となる。
 したがって、本開示は、高電圧環境においても損傷を受けることなく、遠隔からも精度よく磁場等を検知可能なダイヤモンドセンサユニット及びダイヤモンドセンサシステムを提供することを目的とする。
 [発明の効果]
 本開示によれば、高電圧環境においても損傷を受けることなく、遠隔からも精度よく磁場及び電場等を測定可能なダイヤモンドセンサユニット及びダイヤモンドセンサシステムを提供できる。
 [本開示の実施形態の説明]
 本開示の実施形態の内容を列記して説明する。以下に記載する実施形態の少なくとも一部を任意に組合せてもよい。
 (1)本開示の第1の局面に係るダイヤモンドセンサユニットは、電子スピンを持つカラーセンタを有するダイヤモンドを含むセンサ部と、ダイヤモンドに励起光を照射する照射部と、ダイヤモンドのカラーセンタからの放射光を検知する検知部と、励起光及び放射光を伝送する光導波路とを含む。これにより、高電圧環境においても損傷を受けることなく、遠隔からも精度よく磁場及び電場等を測定できる。
 (2)センサ部は、励起光及び放射光を集光する集光素子を含むことができ、集光素子は、ダイヤモンドと光導波路との間に配置され得る。これにより、励起光及び放射光のロスを低減し、検出精度を向上できる。
 (3)集光素子は、酸化ケイ素をベースとして形成された球状のレンズ、又は、酸化ケイ素をベースとして形成されたフレネルレンズであってもよく、光導波路は、コア径が1μm以上80μm以下の光ファイバであってもよい。これにより、より励起光及び放射光を効率的に伝送でき、検出精度を向上できる。また、レーザー光を比較的容易に、所望の位置に導くことができ、光ファイバの出力端部での発散を抑えることもできる。
 (4)光導波路は、少なくとも1つの絶縁碍子中を経由して配置されてもよい。これにより、センサ部が配置された高電圧環境において放電等が発生しても、検出部等が損傷を受けることを防止できる。
 (5)光導波路は、励起光及び放射光を伝送する1つの媒体を含んでいてもよく、光導波路の両端部のうち、ダイヤモンドからより遠くに位置する一方の端部から所定距離内に、励起光と放射光とを分離する蛍光反射フィルタ、LPF又はダイクロイックミラーを含んでいてもよい。これにより、励起光及び放射光の各々を伝送する媒体を設ける場合よりも、構成要素を少なくでき、簡単な構成にできる。
 (6)光導波路は、励起光を伝送する第1光導波路と、放射光を伝送する第2光導波路とを含んでいてもよく、第1光導波路の一方の端部は、第1光導波路の他方の端部よりもダイヤモンドの近くに配置されてもいてもよく、第2光導波路の一方の端部は、第2光導波路の他方の端部よりもダイヤモンドの近くに配置されてもいてもよく、第1光導波路の一方の端部及び第2光導波路の一方の端部から所定距離内に、励起光と放射光とを分離する蛍光反射フィルタ、LPF又はダイクロイックミラーを含んでいてもよい。これにより、励起光及び放射光を共に1つの媒体で伝送する場合よりも、励起光及び放射光を、各々に適した形態で伝送でき、検出精度を向上できる。
 (7)第1光導波路は、第1光ファイバを含んでいてもよく、第2光導波路は、第2光ファイバを含んでいてもよく、第2光ファイバのコア径は、第1光ファイバのコア径よりも大きくてもよい。これにより、励起光及び放射光を、各々の波長に適した形態で伝送でき、検出精度を向上できる。
 (8)第1光ファイバのコア径は、1μm以上100μm以下であってもよく、第2光ファイバのコア径は、1μm以上1mm以下であってもよい。これにより、励起光及び放射光を、各々の波長に適したコア径の光ファイバを用いて伝送でき、不必要に太いコア径の光ファイバを使用することがないので、コストを低減できる。
 (9)ダイヤモンドは、少なくとも複数の平坦面を有していてもよく、励起光は、複数の平坦面のうちの第1平坦面に入射してもよく、検知部は、複数の平坦面のうちの第1平坦面以外の第2平坦面から放射される放射光を検出してもよい。これにより、励起光と放射光とを分離する部材(例えば、蛍光反射フィルタ、LPF又はダイクロイックミラー)が不要になり、コストを低減できる。
 (10)ダイヤモンドを有するセンサ部は、全て電気絶縁部材で形成されていてもよい。これにより、センサ部が配置された高電圧環境において、放電等が発生してもセンサ部が損傷を受けることを抑制できる。
 (11)ダイヤモンドは、マイクロ波又はミリ波を伝送する伝送線路上に配置されていてもよく、センサ部は、磁気センサとして機能してもよい。これにより、ダイヤモンドのNVセンタにマイクロ波又はミリ波を精度よく照射できる。
 (12)伝送線路は、1辺5cm以下の矩形のプリント基板上に配置された主配線を含んでいてもよく、主配線の一方の端部にダイヤモンドが配置されていてもよい。これにより、ダイヤモンドのNVセンタにマイクロ波を照射できる。
 (13)ダイヤモンドのスピンコヒーレンス時間は、50μsec未満であってもよい。これにより、NVセンタは、励起状態から元の状態に速やかに戻るので、交流の磁場及び電場等を効率的に検出できる。特に、パルス的に変化する磁場及び電場等を検出可能になる。
 (14)ダイヤモンド中の全水素濃度は、1ppm以下であってもよい。これにより、ダイヤモンドのスピンコヒーレンス時間T2を短くでき、NVセンタは、励起状態から元の状態に速やかに戻る。したがって、交流の磁場及び電場等を効率的に検出できる。
 (15)ダイヤモンド中のNVH濃度、CH濃度及びCH濃度のいずれも、1ppm未満であってもよい。これにより、ダイヤモンドのスピンコヒーレンス時間T2を短くでき、NVセンタは、励起状態から元の状態に速やかに戻る。したがって、パルス的に変化する磁場及び電場を含み、交流の磁場及び電場等を効率的に検出できる。
 (16)本開示の第2の局面に係るダイヤモンドセンサシステムは、ダイヤモンドが、マイクロ波又はミリ波を伝送する伝送線路上に配置されており、センサ部が磁気センサとして機能する上記のダイヤモンドセンサユニットと、マイクロ波又はミリ波を発生する電磁波発生部と、照射部、検出部、及び電磁波発生部を制御する制御部を含み、制御部は、励起光と共に、マイクロ波又はミリ波を時間的及び空間的に組合せてダイヤモンドに照射する。これにより、高電圧環境においても損傷を受けることなく、遠隔からも精度よく磁場及び電場等を測定可能である。
 [本開示の実施形態の詳細]
 以下の実施形態においては、同一の部品には同一の参照番号を付してある。それらの名称及び機能も同一である。したがって、それらについての詳細な説明は繰返さない。
(第1実施形態)
 図2を参照して本開示の第1実施形態に係るダイヤモンドセンサユニット100は、励起光発生部106、蛍光反射フィルタ110、光導波路112、センサ部120、LPF122及び受光部128を含む。ダイヤモンドセンサユニット100の外部には、電磁波発生部140及び制御部142が配置されている。
 制御部142は、CPU(Central Processing Unit)及び記憶部(いずれも図示せず)を備えている。制御部142が行う後述の処理は、記憶部に予め記憶されたプログラムをCPUが読出して実行することにより実現される。
 励起光発生部106は、発光素子102及び集光素子104を含む。発光素子102は、制御部142の制御を受けて、後述するダイヤモンドのNVセンタ(以下、NVセンタと略記する)を励起するための励起光を発生する。制御部142は、例えば、発光素子102を発光させるための電圧を、所定のタイミングで発光素子102に供給する。励起光は、緑色の光(即ち波長約490~560nm)である。励起光は、レーザー光であることが好ましく、発光素子102は、半導体レーザー(例えば、放射光の波長532nm)であることが好ましい。集光素子104は、発光素子102から出力される励起光を集光する。集光素子104は、発光素子102から拡散して出力される励起光をできるだけ多く、後述する光導波路112の光の入射端部に入力するためのものである。集光素子104は、光導波路112の光の入射端部の大きさ(例えば、光ファイバを用いる場合、そのコア径(即ちコアの直径))よりも小さい範囲に集光された平行光を出力することが好ましい。
 蛍光反射フィルタ110は、集光素子104から入射される励起光と、後述するダイヤモンドから放射される光(即ち蛍光)とを分離するための素子である。例えば、蛍光反射フィルタ110は、所定波長以下の波長の光を通し、所定波長より大きい波長の光をカット(即ち反射)するショートパスフィルタ、又は、所定波長範囲内の波長の光を通し、所定波長範囲外の波長の光をカット(即ち反射)するバンドパスフィルタである。一般的に、励起光は蛍光よりも波長が短いことから、このような構成が好ましい。蛍光反射フィルタ110は、このような機能を持つダイクロイックミラーであるのが好ましい。
 光導波路112は、光を伝送する媒体を含み、双方向に光を伝送する。即ち、励起光発生部106の側に配置された一方の端部に入射する励起光を、センサ部120の側に配置された他方の端部まで伝送する。また、他方の端部に入射する、ダイヤモンド素子116の放射光(即ち蛍光)を、一方の端部まで伝送する。光導波路112は、例えば光ファイバである。伝送する励起光のエネルギー密度を高くするには、光ファイバのコア径はできるだけ小さい方が好ましい。一方、コア径が小さすぎると、光源(即ち発光素子)から拡散して放射される光を、光ファイバに入力する効率が低下する。したがって、適切なコア径が存在する。例えば、光ファイバのコア径は、約80μm以下1μm以上である。例えば、コア径が80μmより大きい場合、レンズを利用しても励起光のエネルギー密度を高くすることが難しいため、NVセンタのスピンの初期化に時間がかかり、応答速度の遅いセンサとなる。これを解決するには、より出力の大きいレーザーが必要となり、可搬性及び安定性が犠牲となってしまう。一方、コア径が1μmより小さい場合、光ファイバへの入射効率が悪くなると共に、対応するレーザーダイオードの光源サイズが小さくなり過ぎて光学損傷COD(Catastrophic Optical Damage)による故障が発生し易くなる。さらに、励起光として充分な出力が得られるレーザーダイオードは高額なものに限定され、実用上利用が困難になる。
 センサ部120は、集光素子114、ダイヤモンド素子116及び電磁波照射部118を含む。ダイヤモンド素子116はNVセンタを含む。集光素子114は、ダイヤモンド素子116に接触して配置されている。集光素子114は、光導波路112から出力される励起光を収束し、ダイヤモンド素子116に照射する。電磁波照射部118は、ダイヤモンド素子116に電磁波(例えばマイクロ波)を照射する。電磁波照射部118は、例えば電気導体を含んで形成されたコイルである。電磁波は、ダイヤモンドセンサユニット100外部の電磁波発生部140から電磁波照射部118に供給される。ダイヤモンド素子116への励起光及び電磁波の照射は、制御部142により制御され、例えば、図3に示すようなタイミングで行われる。即ち、制御部142は、所定のタイミングで所定の時間(例えば期間t1)励起光を出力するように発光素子102を制御する。制御部142は、所定の時間(例えば期間t2)、所定のタイミングで電磁波を出力するように電磁波発生部140を制御する。期間t2におけるパルスシーケンスは、使用するダイヤモンド(例えば、複数のNVセンタの方位の揃い具合)及び観測信号(即ち、NVセンタのスピンの状態の影響を受けた信号)等に応じて、適切なものが使用されればよい。これにより、励起光と共に、電磁波を時間的及び空間的に組合せてダイヤモンド素子116に照射する。制御部142は、後述するように、入力される光検知部126の出力信号を所定のタイミング(例えば期間t3内)で取込み、記憶部に記憶する。
 NVセンタは、ダイヤモンド結晶中の炭素(C)原子が窒素(N)原子と置換され、それに隣接して存在するはずの炭素原子が存在しない(即ち空孔(V))構造を有する。NVセンタは、波長が約490~560nmの緑色の光(例えば532nmのレーザー光)により基底状態から励起状態に遷移し、波長が約630~800nmの赤色の光(例えば637nmの蛍光)を放射して、基底状態に戻る。NVセンタは、電子を1個捕獲した状態(即ちNV)では、磁気量子数mが-1、0、+1のスピン三重項状態を形成し、磁場が存在すると、m=±1の状態のエネルギーレベルは磁場強度に応じて分離する(即ちゼーマン分離)。約2.87GHzのマイクロ波をNVセンタに照射して、m=0の状態をm=±1の状態に遷移(即ち電子スピン共鳴)させた後、緑色の光を照射して励起する。これにより、基底状態に戻るときの遷移には光(即ち蛍光)を放射しない遷移が含まれるので、観測される放射光の強度は低下する。したがって、ESR(Electron Spin Resonance)スペクトルにおいて谷(即ち信号の落込み)が観測される。上記したように、制御部142が、発光素子102及び電磁波発生部140を制御することにより、例えば、図4に示すようなスペクトルが測定される。観測されるΔfは、ダイヤモンド素子116の位置における磁場強度に依存する。
 具体的なスペクトルの測定は、以下のようにして測定される。即ち、ダイヤモンド素子116から拡散して放射される光(即ち蛍光)は、集光素子114により集光されて平行光として、光導波路112の他方の端部に入力される。光導波路112に入力された光(即ち蛍光)は、光導波路112により伝送されて、光導波路112の一方の端部から出力される。光導波路112の一方の端部から出力された光(即ち蛍光)は、蛍光反射フィルタ110により反射され、LPF122を通過し、集光素子124により集光されて、光検知部126に照射される。これにより、ダイヤモンド素子116が配置された位置における磁場に応じた周波数の光が光検知部126により検知される。光検知部126は、入射する光に応じた電気信号を生成して出力する。光検知部126は、例えばフォトダイオードである。光検知部126の出力信号は、制御部142により取得される。
 LPF122は、ロングパスフィルタであり、所定波長以上の波長の光を通し、所定波長より小さい波長の光をカット(例えば反射)する。ダイヤモンド素子116の放射光は赤色の光であり、LPF122を通るが、励起光はそれよりも波長が短いので、LPF122を通らない。これにより、発光素子102から放射された励起光が光検知部126により検知されてノイズとなり、ダイヤモンド素子116の放射光(即ち蛍光)の検知感度が低下することを抑制できる。
 以上により、制御部142は、励起光をダイヤモンド素子116に照射し、電磁波の周波数を所定の範囲で掃引してダイヤモンド素子116に照射し、ダイヤモンド素子116から放射される光(即ち蛍光)を、光検知部126から出力される電気信号として取得できる。観測されたΔf(即ち、ダイヤモンド素子116の位置における磁場強度に依存する値)から、ダイヤモンド素子116の位置における磁場強度を算出できる。即ち、ダイヤモンドセンサユニット100は、磁気センサとして機能する。なお、ダイヤモンドセンサユニット100は、磁場(即ち磁界)に限らず、磁場に関係する物理量、例えば、磁化、電場、電圧、電流、温度及び圧力等を検知するためのセンサとしても利用できる。
 光導波路112に光ファイバを用いれば、センサの本体であるダイヤモンド素子116と、集光素子114とは電気絶縁体により形成されているので、センサ部120及び光導波路112の他方の端部が高電圧設備等に設置されても、放電等による損傷の発生を抑制できる。したがって、ダイヤモンドセンサユニット100により、高電圧環境において安全に磁場等を測定できる。また、光導波路112を介して励起光発生部106及び受光部128を高電圧環境から遠くに配置でき、ダイヤモンドセンサユニット100により、遠隔から磁場等を測定可能になる。また、センサ部120は、ダイヤモンド素子116と光導波路112との間に配置される集光素子114を含むので、励起光及び放射光のロスを低減し、検出精度を向上できる。また、励起光と放射光とを分離する蛍光反射フィルタ110を設け、励起光及び放射光の伝送を1つの媒体(例えば光導波路112)により行うことができる。これにより、後述するように、励起光及び放射光の各々を伝送する2つの媒体を設ける場合よりも、構成要素を少なくでき、簡単な構成にできる。
(第2実施形態)
 第1実施形態においては、1つの光導波路112を用いて、双方向に光(即ち励起光及び放射光)を伝送したが、第2実施形態においては、ダイヤモンド素子216の励起光及び放射光の各々を伝送する光導波路を用いる。図5を参照して本開示の第2実施形態に係るダイヤモンドセンサユニット200は、励起光発生部206、第1光導波路212、集光素子208、蛍光反射フィルタ210、センサ部220、LPF222、集光素子224、第2光導波路230及び受光部228を含む。ダイヤモンドセンサユニット200の外部には、第1実施形態と同様に、電磁波発生部140及び制御部142が配置されている。
 励起光発生部206は、発光素子202及び集光素子204を含む。センサ部220は、集光素子214、ダイヤモンド素子216及び電磁波照射部218を含む。受光部228は、光検知部226を含む。発光素子202、集光素子204、蛍光反射フィルタ210、集光素子214、ダイヤモンド素子216、電磁波照射部218、LPF222及び光検知部226はそれぞれ、図2に示した発光素子102、集光素子104、蛍光反射フィルタ110、集光素子114、ダイヤモンド素子116、電磁波照射部118、LPF122及び光検知部126に対応し、同様に機能する。したがって、これらに関しては簡略に説明する。
 発光素子202は、第1実施形態と同様に、制御部142の制御を受けて、ダイヤモンドのNVセンタを励起するための励起光を発生する。制御部142は、例えば、発光素子202を発光させるための電圧を、所定のタイミングで発光素子202に供給する。励起光は、緑色の光である。励起光は、レーザー光であることが好ましく、発光素子202は、半導体レーザーであることが好ましい。集光素子204は、発光素子202から拡散して出力される励起光を集光し、第1光導波路212の光の入射端部に入力する。
 第1光導波路212は、光を伝送する媒体を含む。第1光導波路212は、図2に示した光導波路112とは異なり、励起光を伝送するが、ダイヤモンド素子216の放射光は伝送しない。即ち、第1光導波路212の、励起光発生部206側に配置された一方の端部(即ち入射端部)に入射する励起光を、センサ部220側に配置された他方の端部(即ち出力端部)まで伝送して出力する。第1光導波路212は、例えば光ファイバである。第1光導波路212から拡散して出力される励起光は、集光素子208により集光されて平行光として蛍光反射フィルタ210に入射される。
 蛍光反射フィルタ210は、集光素子208から入射される励起光と、ダイヤモンド素子216から放射される光(即ち蛍光)とを分離するための素子である。蛍光反射フィルタ210は、ダイクロイックミラーであってもよい。
 集光素子214は、蛍光反射フィルタ210を通過して入力される励起光を収束し、ダイヤモンド素子216に照射する。集光素子214は、ダイヤモンド素子216に接触して配置されている。ダイヤモンド素子216はNVセンタを含む。電磁波照射部218は、ダイヤモンド素子216に電磁波(例えばマイクロ波)を照射する。電磁波照射部218は、例えばコイルである。電磁波は、電磁波発生部140から電磁波照射部218に供給される。ダイヤモンド素子216への励起光及び電磁波の照射は、制御部142により、例えば、図3に示すようなタイミングで制御される。これにより、上記したように、ダイヤモンド素子216から赤色の光(即ち蛍光)が放射される。
 ダイヤモンド素子216から拡散して放射される光(即ち赤色の蛍光)は、集光素子214により集光されて平行光になり、蛍光反射フィルタ210に入力される。蛍光反射フィルタ210に入力された光(即ち赤色の蛍光)は、蛍光反射フィルタ210により反射され、LPF222に入射する。LPF222に入射したダイヤモンド素子216の放射光(即ち赤色の蛍光)は、LPF222を通り、集光素子224により集光され、第2光導波路230の一方の端部(即ち入射端部)に入射する。LPF222は、発光素子202から放射された励起光が、光検知部226により検知されてノイズとなることを抑制し、したがって、ダイヤモンド素子216の放射光(即ち蛍光)の検知感度が低下することを抑制する。
 第2光導波路230は、光を伝送する媒体を含む。第2光導波路230は、集光素子224から一方の端部(即ち入射端部)に入射する光(即ちダイヤモンド素子216の放射光)を、受光部228側に配置された他方の端部(即ち出力端部)まで伝送する。第2光導波路230から出力される光は、光検知部226により検知される。光検知部226は、例えばフォトダイオードである。光検知部226の出力信号は、制御部142により取得される。
 以上により、制御部142は、第1実施形態と同様に、励起光をダイヤモンド素子216に照射し、電磁波の周波数を所定の範囲で掃引してダイヤモンド素子216に照射し、ダイヤモンド素子216から放射される光(即ち蛍光)を、光検知部226から出力される電気信号として取得できる。したがって、ダイヤモンドセンサユニット200は、磁気センサとして機能する。ダイヤモンドセンサユニット200は、磁場に限らず、磁場に関係する物理量、例えば、磁化、電場、電圧、電流、温度及び圧力等を検知するためのセンサとしても利用できる。
 2つの光導波路に光ファイバを用いれば、センサの本体であるダイヤモンド素子216と、集光素子214とは電気絶縁体により形成されているので、放電等による損傷の発生を抑制できる。したがって、ダイヤモンドセンサユニット200により、高電圧環境において安全に磁場等を測定できる。また、第1光導波路212及び第2導波路230を介して励起光発生部206及び受光部228を高電圧環境から遠くに配置でき、ダイヤモンドセンサユニット200により、遠隔から磁場等を測定可能になる。また、センサ部220は、ダイヤモンド素子216と第1光導波路212及び第2導波路230との間に配置される集光素子214を含むので、励起光及び放射光のロスを低減し、検出精度を向上できる。
 2つの光導波路(即ち第1光導波路212及び第2光導波路230)を用いることにより、波長が異なる励起光とダイヤモンド素子216の放射光とを、それぞれ適切に伝送できる。即ち、波長に応じたコア径の光ファイバを用いることにより、各々に適した集光光学系(即ち、集光素子204、集光素子208、集光素子214及び集光素子224)を設計でき、光の伝送効率を向上でき、測定精度を向上できる。光導波路に光ファイバを用いる場合、ダイヤモンドの放射光を伝送する光ファイバ(即ち第2光導波路230)のコア径は、励起光を伝送する光ファイバ(即ち第1光導波路212)のコア径よりも大きいことが好ましい。
 上記したように、励起光を伝送するために使用される光ファイバは、励起光のエネルギー密度を高くするためには、コア径は小さい方がよいが、コア径が小さ過ぎると、光を光源から光ファイバに入力するときにロスが生じる。したがって、適度なコア径が存在する。第1光導波路212のコア径は、1μm以上100μm以下であることが好ましい。一方、ダイヤモンド素子216の放射光を伝送するための光ファイバのコア径は、大きいほど好ましい。但し、コア径が大き過ぎるとコストがかかる。第2光導波路230のコア径は、1μm以上1mm以下であることが好ましい。但し、この場合にも、第1光導波路212のコア径より第2光導波路230のコア径が小さいと、励起光により発生した蛍光が充分集光されず、駆動電力の損失が大きくなってしまう。したがって、第2光導波路230のコア径は、第1光導波路212のコア径以上であることが好ましく、第1光導波路212のコア径より大きいことがより好ましい。例えば、第1光導波路212のコア径が1μmの場合には第2光導波路230のコア径は、1μm以上が好ましく、25μm以上がより好ましく、50μm以上がさらに好ましい。また、第1光導波路212のコア径が1μmの場合には第2光導波路230のコア径は、50μm以上よりも80μm以上が好ましく、400μm以上がより好ましく、800μm以上がさらに好ましい。例えば、第1光導波路212のコア径が80μmの場合には第2光導波路230のコア径は、80μm以上が好ましく、105μm以上がより好ましく、400μm以上がさらに好ましく、800μm以上がよりさらに好ましい。いずれの場合にも、コア径が1mmより大きいと光ファイバを曲げにくい、コストがかかる等の不都合が生じる。上記したように、第1光導波路212のコア径が1μm以上100μm以下の範囲であれば、上記の好ましい条件が成立する。
(第1変形例)
 第2実施形態においては、蛍光反射フィルタ210とLPF222とを用いて、励起光とダイヤモンド素子216の放射光とを分離したが、これに限定されない。励起光とダイヤモンド素子216の放射光とを、励起光反射フィルタがLPFの機能を持つことを用いて分離してもよい。
 図6を参照して、第1変形例に係るダイヤモンドセンサユニット300は、LPFの機能を持つ励起光反射フィルタ302を用いて、発光素子202からの励起光と、ダイヤモンド素子216の放射光とを分離する。ダイヤモンドセンサユニット300は、ダイヤモンドセンサユニット200(図5参照)において、蛍光反射フィルタ210及びLPF222をLPFの機能を持つ励起光反射フィルタ302で代替し、励起光を発生及び伝送する経路と、ダイヤモンド素子216の放射光を伝送及び検知する経路とを入替えたものである。LPFの機能を持つ励起光反射フィルタ302はロングパスフィルタであり、励起光反射フィルタでもある。図6において、図5と同じ符号を付した構成要素は、図5と同じものを表す。したがって、それらに関して、重複説明は繰返さない。
 発光素子202により発生した励起光は、集光素子204により集光され、第1光導波路212の一方の端部に入力される。励起光は第1光導波路212により伝送され、第1光導波路212の他方の端部から出力され、集光素子224により集光されて平行光になり、LPFの機能を持つ励起光反射フィルタ302に入射する。励起光は緑色の光であるので、LPFの機能を持つ励起光反射フィルタ302により反射され、集光素子214に入射する。
 一方、ダイヤモンド素子216の放射光は、集光素子214により集光されて平行光になり、LPFの機能を持つ励起光反射フィルタ302に入射する。ダイヤモンド素子216の放射光(即ち赤色の蛍光)は、LPFの機能を持つ励起光反射フィルタ302を通って集光素子224により集光され、第2光導波路230に入射し、第2光導波路230により受光部228まで伝送され、受光部228により検知される。したがって、第2実施形態のダイヤモンドセンサユニット200と同様に、ダイヤモンドセンサユニット300は、磁場等を検知するセンサとして機能する。
(第2変形例)
 上記では、NVセンタを含むダイヤモンド素子の1つの面に励起光を入射し、その同じ面からの放射光を測定する場合を説明したが、これに限定されない。NVセンタを含むダイヤモンド素子が、複数の平坦な面を有している場合、励起光を照射する面と、放射光を測定する面とが異なっていてもよい。平坦面とは、所定以上の面積を有する1つの平面を意味し、ここでは、NVセンタを含むダイヤモンド素子の平坦面とは、直径約200μmの円よりも大きい面積を有する1つの平面を意味する。
 図7を参照して、第2変形例に係るダイヤモンドセンサユニット400は、ダイヤモンド素子402に対して励起光を入射した面と異なる面から放射される光を検出する。ダイヤモンドセンサユニット400は、図5に示したダイヤモンドセンサユニット200において、センサ部220をセンサ部408で代替し、集光素子208、蛍光反射フィルタ210及び集光素子224を取除いたものである。図7において、図5と同じ符号を付した構成要素は、図5と同じものを表す。それらに関して、重複説明は繰返さない。
 センサ部408は、ダイヤモンド素子402、集光素子404、集光素子406及び電磁波照射部218を含む。ダイヤモンド素子402は、NVセンタを含み、複数の平坦面を有する。ダイヤモンド素子402は、例えば直方体に形成されている。集光素子404は、ダイヤモンド素子402の1つの平坦面(以下、第1平坦面という)に接触して配置されている。集光素子406は、ダイヤモンド素子402の、第1平坦面とは異なる平坦面(以下、第2平坦面という)に接触して配置されている。
 第1光導波路212により伝送された励起光は、集光素子404に入射し、集光素子404により集光されてダイヤモンド素子402の第1平坦面を照射する。上記したように、ダイヤモンド素子402に対して、励起光の照射及び電磁波照射部218による電磁波(例えばマイクロ波)の照射が所定のタイミングで行われることにより、ダイヤモンド素子402から光が放射される。放射光は全方向に放射される。ダイヤモンド素子402の第2平坦面から放射される光(即ち赤色の蛍光)は、集光素子406により集光されて平行光になり、LPF222に入射し、LPF222を通って第2光導波路230の一方の端部に入射する。その後、ダイヤモンド素子402の第2平坦面から放射された光(即ち赤色の蛍光)は、第2光導波路230により光検知部226まで伝送され、光検知部226により検知される。したがって、第2実施形態のダイヤモンドセンサユニット200と同様に、ダイヤモンドセンサユニット400は、磁場等を検知するセンサとして機能する。
 このように、励起光を照射した面(即ち第1平坦面)と異なる面(即ち第2平坦面)から放射光を検知する構成とすることにより、集光素子の数を削減でき、励起光とダイヤモンド素子の放射光とを分離するための素子(例えば蛍光反射フィルタ等)を削減できる。したがって、ダイヤモンドセンサユニットをより簡単な構成にでき、コストを削減できる。
 上記では、ダイヤモンド素子402が、直方体に形成されており、第1平坦面及び第2平坦面が、90度を成す2つの面である場合を説明したが、これに限定されない。ダイヤモンド素子402が、直方体に形成されている場合、第1平坦面に平行な平坦面を、検知対象の放射光を集光する第2平坦面としてもよい。また、ダイヤモンド素子402は少なくとも2つの平坦面を有していればよく、6面体に限らず、ダイヤモンド素子402の形状は任意である。
(第3変形例)
 上記では、NVセンタを含むダイヤモンド素子に電磁波(例えばマイクロ波)を照射する場合を説明したが、これに限定されない。非特許文献1に開示されているように、NVセンタを含むダイヤモンド素子は、電磁波を照射しなくても磁気センサとして機能する。
 図8を参照して、第3変形例に係るダイヤモンドセンサユニット500は、図2に示したダイヤモンドセンサユニット100において、電磁波照射部118を取除いたものである。即ち、センサ部502は、集光素子114及びダイヤモンド素子116を含むが、電磁波照射部(例えばコイル等)を含まない。ダイヤモンドセンサユニット500において、ダイヤモンドセンサユニット100(図2参照)と同様に、発光素子102から出力される励起光(即ち緑色の光)をダイヤモンド素子116に照射する。これにより、ダイヤモンド素子116のNVセンタは励起され、光(即ち赤色の蛍光)を放射して、元の状態に戻る。したがって、放射光を測定することにより、ダイヤモンドセンサユニット500は、磁気センサとして機能する。
 マイクロ波を用いた測定原理は上記した通りであり、基底準位からの蛍光の強度と、マイクロ波で共鳴吸収した励起準位からの蛍光の強度とが違うことを利用して、共鳴準位をマイクロ波の周波数で数値化でき、磁場の変化を共鳴準位の変化により測定できる。一方、ここで利用する測定原理は、マイクロ波を照射しない場合においても、蛍光強度が変化することを使う。即ち、基底準位に存在する電子が磁場の影響で変化し、蛍光強度が磁場と相関を持って変化することを利用するものである。
 したがって、ダイヤモンドセンサユニット500は、磁場等を検知するセンサとして機能する。センサ部502は、コイル等の導電性部材を含まず、全て電気絶縁部材により構成される。したがって、センサ部502は、高電圧設備に設置されても、放電等により損傷されることがない。この結果、ダイヤモンドセンサユニット500により、高電圧環境において安全に磁場等を測定できる。
(第4変形例)
 NVセンタを含むダイヤモンド素子を、電磁波を照射せずに磁気センサとして機能させる構成は、図8に示したものに限定されない。図9を参照して、第4変形例に係るダイヤモンドセンサユニット600は、図2に示したダイヤモンドセンサユニット100から集光素子114及び電磁波照射部118を取除いたものである。即ち、センサ部602は、ダイヤモンド素子116を含むが、集光素子及び電磁波照射部のいずれも含まない。ダイヤモンド素子116は、光導波路112の端部に接触して配置されている。
 ダイヤモンドセンサユニット600において、ダイヤモンドセンサユニット100(図2参照)と同様に、発光素子102から出力される励起光(即ち緑色の光)をダイヤモンド素子116に照射すると、ダイヤモンド素子116のNVセンタは励起され、光(即ち赤色の蛍光)を放射して、元の状態に戻る。したがって、放射光を測定することにより、ダイヤモンドセンサユニット600は、磁気センサとして機能する。磁場の測定方法は、第3変形例と同様である。
 したがって、ダイヤモンドセンサユニット600は、磁場等を検知するセンサとして機能する。センサ部602は、コイル等の導電性部材を含まず、全て電気絶縁部材により構成される。したがって、センサ部602は、高電圧設備に設置されても、放電等により損傷されることがなく、高電圧環境において安全に磁場等を測定できる。
(第5変形例)
 第3変形例及び第4変形例においては、1つの光導波路により、励起光及び放射光を伝送したが、励起光及び放射光の各々を伝送するために、2つの光導波路を用いてもよい。図10を参照して、第5変形例に係るダイヤモンドセンサユニット700は、図5に示したダイヤモンドセンサユニット200において、電磁波照射部218を取除いたものである。即ち、センサ部702は、集光素子214及びダイヤモンド素子216を含むが、電磁波照射部(例えばコイル等)を含まない。ダイヤモンドセンサユニット700において、ダイヤモンドセンサユニット200(図5参照)と同様に、発光素子202から出力される励起光(即ち緑色の光)をダイヤモンド素子216に照射すると、ダイヤモンド素子216のNVセンタは励起され、光(即ち赤色の蛍光)を放射して、元の状態に戻る。したがって、放射光を測定することにより、ダイヤモンドセンサユニット700は、磁気センサとして機能する。磁場測定の測定方法は、第3変形例と同様である。
 したがって、ダイヤモンドセンサユニット700は、磁場等を検知するセンサとして機能する。センサ部702は、コイル等の導電性部材を含まず、全て電気絶縁部材により構成される。したがって、センサ部702は、高電圧設備に設置されても、放電等により損傷されることがなく、高電圧環境において安全に磁場等を測定できる。
 なお、図6に示したダイヤモンドセンサユニット300、及び、図7に示したダイヤモンドセンサユニット400の各々においても、電磁波照射部218を取除いてよい。その場合にも、電磁波を照射せずに、磁場を測定できる。
 上記では、ダイヤモンドセンサユニットに、NVセンタを有するダイヤモンド素子を用いる場合を説明したが、これに限定されない。電子スピンを持つカラーセンタを有するダイヤモンド素子であればよい。電子スピンを持つカラーセンタは、スピン三重項状態を形成し、励起されることにより発光するセンタであり、NVセンタが代表例である。その他に、シリコン-空孔センタ(即ちSi-Vセンタ)、ゲルマニウム-空孔センタ(即ちGe-Vセンタ)、錫-空孔センタ(即ちSn-Vセンタ)にも、電子スピンを持ったカラーセンタが存在することが知られている。したがって、これらを含むダイヤモンド素子を、NVセンタを含むダイヤモンド素子の代わりに用いて、ダイヤモンドセンサユニットを構成してもよい。
 なお、カラーセンタの準位に応じて、励起光及び放射光(即ち蛍光)の波長、並びに、共鳴励起させる電磁波の周波数が異なる。中でも、NVセンタが、光の波長及びマイクロ波の周波数の点で扱いやすく、好ましい。Si-Vセンタ、Ge-Vセンタ、Sn-Vセンタの場合、照射する電磁波には、マイクロ波(例えば1GHz~30GHz)よりも周波数が高いミリ波(例えば30GHz~300GHz)又はサブミリ波(例えば300GHz~3THz)を使用する。例えば、Si-Vセンタであれば、約48GHzのミリ波を使用し、Sn-Vセンタであれば、約850GHzのサブミリ波を使用できる。
 励起光はレーザー光が好ましく、発生装置としては半導体レーザーが、小型化できる点でより好ましい。ダイヤモンド素子の放射光の検知器は真空管型でもよいが、半導体検知デバイスが、小型化の点でより好ましい。
 光導波路は、光が通るコア部分と、コアの周辺に形成されたコア部分とは屈折率が異なる材料の部分とを有する2層以上の同軸構造であることが好ましい。コア部分は、光を伝送する媒体が密に充填された形態でなくてもよい。空間自体が光を伝送できるので、コア部分は空洞であってもよい。光導波路は、コア径が1μm以上80μm以下の光ファイバであることが好ましい。光ファイバを使用すれば、レーザー光を比較的容易に、所望の位置に導くことができ、光ファイバの出力端部での発散を抑えることもできるからである。
 集光素子は、光を集光する作用のある物質により形成されていればよい。例えば、酸化ケイ素をベースとした素材(例えばガラス。酸化ケイ素以外の添加物が含まれていてもよい)により形成されたレンズであっても、回折機能を持った物質であってもよい。集光素子は、光を透過して屈折現象を利用するレンズが好ましい。球面状のレンズ、半球面状のレンズ、及び、フレネルレンズ等が好ましい。特に、屈折率と球体形状との関係で、平行光の焦点が球面上に位置するレンズがより好ましい。そのようなレンズを使用すれば、光学上の焦点及び光軸の調整が非常に簡便になり、光量を最大に利用できるからである。酸化ケイ素をベースとした素材のレンズは、ダイヤモンドに直接接触していることが好ましい。接触していないと、光がうまく集光できない不具合が生じるからである。また、強い衝撃を受けると、ダイヤモンドからレンズまでの距離が変化してしまうことがあり、その場合にも光がうまく集光できないからである。さらに、酸化ケイ素をベースとした素材のレンズは、光ファイバにも直接接触していることがより好ましい。蛍光を光ファイバに集光する際のロスが少なくなり、衝撃による距離の変化が起こりにくいからである。
 高電圧環境にセンサ部を配置する場合、励起光とダイヤモンドの放射光とを伝送する光導波路(例えば光ファイバ)は、絶縁碍子の中を通して配置することが好ましい。これにより、励起光発生部及び受光部を、高電圧から絶縁でき、励起光発生部及び受光部において使用される機器を保護できる。
 電磁波照射部は、コイル状のものに限らず、後述するように直線状の電気配線であってもよい。その場合、ダイヤモンド素子は、電磁波(例えばマイクロ波又はミリ波等)を伝送する伝送路(例えば導電性部材)の表面上又は端部に配置されていればよい。これにより、ダイヤモンドのNVセンタに電磁波を精度よく照射できる。
 上記したダイヤモンドセンサユニットを使用して、交流電力を対象とし、変動する磁場等の時間変化を検知する場合、ダイヤモンド素子のNVセンタは、励起された後、光を放射する状態から速やかに元の状態(即ち励起前の状態)に戻ることが好ましい。そのためには、ダイヤモンド素子のスピンコヒーレンス時間T2が短いことが好ましい。例えば、ダイヤモンド素子のスピンコヒーレンス時間T2は50μsec未満であることが好ましい。なお、検知感度は(T2)-1/2に比例するので、T2が小さいほど検知感度は小さくなる。したがって、磁場変動の急激な変化を検知する場合、例えば、パルス状の磁場変動を検知する場合には、検知感度を犠牲にして、ダイヤモンド素子のスピンコヒーレンス時間T2をできるだけ短くすることが考えられる。
 スピンコヒーレンス時間を短くするには、ダイヤモンド素子が不純物を含むことが好ましい。T2が小さいほど検知感度は低下することを考慮すると、例えば、ダイヤモンド中の全水素濃度が、0ppmより大きく1ppm以下であることが好ましい。また、ダイヤモンド中のNVH濃度、CH濃度及びCH濃度のいずれもが、0ppmより大きく1ppm以下であることも好ましい。ここで、濃度(ppm単位)は原子の個数の割合を表す。
 以下に、実施例により、本開示の有効性を示す。図11は、図5に示した構成の実施例を示す。図11において、図5に示した構成要素に対応するものは、図5と同じ符号を付している。
 第1光導波路212及び第2光導波路230には、ステップインデックス・マルチモード型の光ファイバを用いた。第1光導波路212は、コア径50μm、NA(即ち開口数)0.2である。第2光導波路230は、コア径400μm、NA0.5である。ダイヤモンド素子216には、3mm×3mm×0.3mmの直方体のダイヤモンドを用いた。集光素子214には、直径2mmの球形のレンズを用い、集光素子214をダイヤモンド素子216の表面(即ち3mm×3mmの平坦面)に接触させて固定した。励起光を伝送する光学系には、集光素子208及び蛍光反射フィルタ210に加えて三角プリズム250を配置し、コリメート光学系を構成した。これにより、励起光が集光素子214の中心に入射するように調整した。
 電磁波照射部218には、図12に示すコプレーナ線路を用いた。1辺約2cmのガラスエポキシ基板270の表面に形成された銅箔272をコの字状に切欠き、中央に幅1mmの主配線である電磁波照射部218を形成した。ダイヤモンド素子216は、電磁波照射部218の一方の端部(即ち、図12において一点鎖線の楕円で示す領域)に、銀ペーストで固定した。これにより、ダイヤモンド素子216のNVセンタにマイクロ波を精度よく照射できる。電磁波照射部218の他方の端部(即ち、ダイヤモンド素子216が配置されない端部)は、図11のコネクタ254に接続した。
 マイクロ波は、遠隔に設けたマイクロ波発生装置により生成し、空中を伝送し、アンテナ252(図11参照)により受信した。空中へのマイクロ波の放射には、ホーンアンテナ(ゲイン10dB)を用いた。アンテナ252には、図13に示したパッチアンテナ(周波数2.873GHz、最大利得約10dBi)を用いた。パッチアンテナは、基板280及び284と、受信した信号を出力するためのコネクタ288とを備えている。基板280及び284は、4隅に設けたスペーサ286により間隔H(H=5.2(mm))を空けて配置されている。基板280及び284はいずれも、ガラスエポキシ樹脂の基板(例えばFR4)であり、厚さは1mm、平面は正方形(1辺の長さLは120mm)である。基板280の、基板284に対向しない面には、4つの導電部材282が配置されている。基板284の、基板280に対向する面(以下、グラウンド面という)には、全面に導電性部材が配置されている。4つの導電部材282は並列に、コネクタ288の信号線に接続され、基板284のグラウンド面は、コネクタ288のシールド(即ちグラウンド)に接続されている。アンテナ252により受信されたマイクロ波を、伝送路(即ち同軸ケーブル)を介してコネクタ254に伝送し、電磁波照射部218からダイヤモンド素子216に照射した。
 光検知部226には、PIN-AMP(即ち、リニア電流増幅回路を有するフォトダイオードIC)を用いた。使用したPIN-AMPは、フォトダイオードの感度波長範囲300~1000nm、最大感度波長650nmであり、フォトダイオードが発生する光電流を1300倍に増幅して出力する。
 センサ部を構成する集光素子214、ダイヤモンド素子216、電磁波照射部218を電気配線260の近傍に配置し、電気配線260に交流電流(50Hz又は60Hz、30A)を流し、これにより発生する変動磁場を検知対象とした。交流電流により、センサ部に形成される磁場の最大値は約0.3μTである。ホーンアンテナから放射するマイクロ波の電力を一定(30dBm(=1W))にし、センサ部とマイクロ波を放射するホーンアンテナとの距離Dを変化させて測定した。その結果を図14A~14C及び図15に示す。
 図14A~14Cは、電気配線260に50Hzの交流電流(30A)を流した状態で、PIN-AMPにより検出された信号を示す。図14A~14Cは、それぞれ、D=2.8(m)、D=4(m)及びD=5(m)における測定結果である。いずれも、縦軸は1目盛10.0mV、横軸は1目盛5msである。図15は、電気配線260に60Hzの交流電流(30A)を流した状態で、D=10(m)として、PIN-AMPにより検出された信号を示す。縦軸は1目盛10.0mV、横軸は1目盛4msである。
 図14A~14C及び図15から分かるように、マイクロ波を放射する距離Dが長くなると、検知される信号は減少するが、1W程度の比較的弱いマイクロ波を、センサ部から約10m離隔した位置から放射しても、交流電流により形成される磁場変化を十分に検知できた。図14A~14Cに示した検知信号は、交流の周波数50Hzで変化している。図15に示した検知信号は、交流の周波数60Hzで変化している。なお、距離に応じてマイクロ波は減衰するが、採用する光検知部の検知限界(即ち電力の下限値)及び放射距離を考慮して、放射するマイクロ波電力、放射用アンテナのゲイン、及び受信用アンテナのゲイン等を調整すればよい。
 上記では、1辺約2cmの基板上にコプレーナ線路を形成したが、1辺約5cm以下の長方形の基板を用いてもよい。
 また、第3変形例~第5変形例(図8~図10参照)として示したように、ダイヤモンド素子に電磁波(例えばマイクロ波等)を照射しなくても磁場を検出できる。例えば、図16に示したように、図11に示した実施例の構成からマイクロ波照射のための要素(即ち電磁波照射部218、アンテナ252及びコネクタ254等)を除いてダイヤモンドセンサユニットを構成してもよい。その場合にも、電気配線260に流した交流電流により発生する変動磁場を検知できる。
 集光素子214をダイヤモンド素子216の表面から0.1mm離して非接触とし、その他の条件は、上記したD=2.8mの実験条件、即ち、図14Aの信号が観測された実験条件と同じにして実験した。その結果、信号強度は検出限界の1/10未満となり観測できなくなってしまった。励起光の密度が低減し、かつ蛍光強度が集光されずに信号強度が1/10未満になったものと思われる。なお、信号強度とは、図14Aの縦軸の値に関して、ノイズ部分を平均化して得られる最大値と最小値との差を意味する。
 また、第1光導波路212のコア径を1μmとし、第2光導波路230のコア径を0.9μm、1μm、25μm、50μm、80μm、400μm及び800μmと変更して実験した。その他の条件は、上記したD=2.8mの実験条件、即ち、図14Aの信号が観測された実験条件と同じとした。その結果、信号強度(即ち蛍光強度)は、図14Aの信号強度を基準値(例えば1)として、それぞれその0.1倍未満、0.5倍、1.2倍、1.6倍、1.8倍、1.9倍及び2倍となった。即ち、第2光導波路230のコア径が0.9μmである場合を除いて信号を検出でき、第2光導波路230のコア径が大きくなると検出信号も大きくなった。なお、第2光導波路230のコア径が1.2mmの場合には、コンパクトな実験系に収めることができなかった。また、第1光導波路212と第2光導波路230とを利用する他の変形例に関して同様な実験を行った結果、検出された信号強度に関して上記とほぼ同じ比率が得られた。
 また、第1光導波路212のコア径を80μmとし、第2光導波路230のコア径を50μm、80μm、105μm、400μm及び800μmと変更して実験した。その他の条件は、上記したD=2.8mの実験条件、即ち、図14Aの信号が観測された実験条件と同じとした。その結果、信号強度(即ち蛍光強度)は、図14Aの信号強度を基準値(例えば1)として、それぞれその0.1倍未満、0.3倍、0.6倍、0.75倍及び0.8倍となった。即ち、第2光導波路230のコア径が50μmの場合を除いて信号を検出でき、第2光導波路230のコア径が大きくなると検出信号も大きくなった。なお、第2光導波路230のコア径が1.2mmの場合には、コンパクトな実験系に収めることができなかった。また、第1光導波路212と第2光導波路230とを利用する他の変形例に関して同様な実験を行った結果、検出された信号強度に関して上記とほぼ同じ比率が得られた。
 以上、実施の形態を説明することにより本開示を説明したが、上記した実施の形態は例示であって、本開示は上記した実施の形態のみに制限されるわけではない。本開示の範囲は、発明の詳細な説明の記載を参酌した上で、請求の範囲の各請求項によって示され、そこに記載された文言と均等の意味及び範囲内での全ての変更を含む。
100、200、300、400、500、600、700  ダイヤモンドセンサユニット
102、202  発光素子
104、114、124、204、208、214、224、404、406  集光素子
106、206  励起光発生部
110、210  蛍光反射フィルタ
112  光導波路
116、216、402  ダイヤモンド素子
118、218  電磁波照射部
120、220、408、502、602、702  センサ部
122、222、908  LPF
126、226  光検知部
128、228  受光部
140  電磁波発生部
142  制御部
212  第1光導波路
230  第2光導波路
250  三角プリズム
252  アンテナ
254、288  コネクタ
260  電気配線
270  ガラスエポキシ基板
272  銅箔
280、284、912、914、916  基板
282  導電部材
286  スペーサ
302  励起光反射フィルタ
900  LED
902  SPF
904  ダイヤモンド
906  レンズ
910  フォトダイオード
H  間隔
L  長さ

Claims (16)

  1.  電子スピンを持つカラーセンタを有するダイヤモンドを含むセンサ部と、
     前記ダイヤモンドに励起光を照射する照射部と、
     前記ダイヤモンドの前記カラーセンタからの放射光を検知する検知部と、
     前記励起光及び前記放射光を伝送する光導波路とを含む、ダイヤモンドセンサユニット。
  2.  前記センサ部は、前記励起光及び前記放射光を集光する集光素子を含み、
     前記集光素子は、前記ダイヤモンドと前記光導波路との間に配置される、請求項1に記載のダイヤモンドセンサユニット。
  3.  前記集光素子は、酸化ケイ素をベースとして形成された球状のレンズ、又は、酸化ケイ素をベースとして形成されたフレネルレンズであり、
     前記光導波路は、コア径が1μm以上80μm以下の光ファイバである、請求項2に記載のダイヤモンドセンサユニット。
  4.  前記光導波路は、少なくとも1つの絶縁碍子中を経由して配置される、請求項1から請求項3のいずれか1項に記載のダイヤモンドセンサユニット。
  5.  前記光導波路は、前記励起光及び前記放射光を伝送する1つの媒体を含み、
     前記光導波路の両端部のうち、前記ダイヤモンドからより遠くに位置する一方の端部から所定距離内に、前記励起光と前記放射光とを分離する蛍光反射フィルタ、LPF又はダイクロイックミラーを含む、請求項1から請求項4のいずれか1項に記載のダイヤモンドセンサユニット。
  6.  前記光導波路は、前記励起光を伝送する第1光導波路と、前記放射光を伝送する第2光導波路とを含み、
     前記第1光導波路の一方の端部は、前記第1光導波路の他方の端部よりも前記ダイヤモンドの近くに配置され、
     前記第2光導波路の一方の端部は、前記第2光導波路の他方の端部よりも前記ダイヤモンドの近くに配置され、
     前記第1光導波路の前記一方の端部及び前記第2光導波路の前記一方の端部から所定距離内に、前記励起光と前記放射光とを分離する蛍光反射フィルタ、LPF又はダイクロイックミラーを含む、請求項1から請求項4のいずれか1項に記載のダイヤモンドセンサユニット。
  7.  前記第1光導波路は、第1光ファイバを含み、
     前記第2光導波路は、第2光ファイバを含み、
     前記第2光ファイバのコア径は、前記第1光ファイバのコア径よりも大きい、請求項6に記載のダイヤモンドセンサユニット。
  8.  前記第1光ファイバのコア径は、1μm以上100μm以下であり、
     前記第2光ファイバのコア径は、1μm以上1mm以下である、請求項7に記載のダイヤモンドセンサユニット。
  9.  前記ダイヤモンドは、複数の平坦面を有し、
     前記励起光は、前記複数の平坦面のうちの第1平坦面に入射し、
     前記検知部は、前記複数の平坦面のうちの前記第1平坦面以外の第2平坦面から放射される前記放射光を検出する、請求項6から請求項8のいずれか1項に記載のダイヤモンドセンサユニット。
  10.  前記ダイヤモンドを有する前記センサ部は、全て電気絶縁部材で形成されている、請求項1から請求項9のいずれか1項に記載のダイヤモンドセンサユニット。
  11.  前記ダイヤモンドは、マイクロ波又はミリ波を伝送する伝送線路上に配置されており、
     前記センサ部は、磁気センサとして機能する、請求項1から請求項10のいずれか1項に記載のダイヤモンドセンサユニット。
  12.  前記伝送線路は、1辺5cm以下の矩形のプリント基板上に配置された主配線を含み、
     前記主配線の一方の端部にダイヤモンドが配置されている、請求項11に記載のダイヤモンドセンサユニット。
  13.  前記ダイヤモンドのスピンコヒーレンス時間は、50μsec未満である、請求項1から請求項12のいずれか1項に記載のダイヤモンドセンサユニット。
  14.  前記ダイヤモンド中の全水素濃度は、1ppm以下である、請求項1から請求項13のいずれか1項に記載のダイヤモンドセンサユニット。
  15.  前記ダイヤモンド中のNVH濃度、CH濃度及びCH濃度のいずれも、1ppm以下である、請求項1から請求項13のいずれか1項に記載のダイヤモンドセンサユニット。
  16.  請求項11又は請求項12に記載のダイヤモンドセンサユニットと、
     前記マイクロ波又は前記ミリ波を発生する電磁波発生部と、
     前記照射部、前記検出部、及び前記電磁波発生部を制御する制御部を含み、
     前記制御部は、前記励起光と共に、前記マイクロ波又は前記ミリ波を時間的及び空間的に組合せて前記ダイヤモンドに照射する、ダイヤモンドセンサシステム。
PCT/JP2022/002765 2021-01-27 2022-01-26 ダイヤモンドセンサユニット及びダイヤモンドセンサシステム WO2022163678A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280011208.6A CN116848422A (zh) 2021-01-27 2022-01-26 金刚石传感器单元及金刚石传感器系统
EP22745898.1A EP4286876A1 (en) 2021-01-27 2022-01-26 Diamond sensor unit and diamond sensor system
JP2022578434A JPWO2022163678A1 (ja) 2021-01-27 2022-01-26
US18/273,286 US20240111008A1 (en) 2021-01-27 2022-01-26 Diamond sensor unit and diamond sensor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-010935 2021-01-27
JP2021010935 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022163678A1 true WO2022163678A1 (ja) 2022-08-04

Family

ID=82653413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002765 WO2022163678A1 (ja) 2021-01-27 2022-01-26 ダイヤモンドセンサユニット及びダイヤモンドセンサシステム

Country Status (5)

Country Link
US (1) US20240111008A1 (ja)
EP (1) EP4286876A1 (ja)
JP (1) JPWO2022163678A1 (ja)
CN (1) CN116848422A (ja)
WO (1) WO2022163678A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505494A (ja) * 2012-12-13 2016-02-25 エレメント シックス テクノロジーズ リミテッド 量子光学的用途のための合成ダイヤモンド材料およびその作製方法
JP2016539900A (ja) * 2013-11-18 2016-12-22 エレメント シックス テクノロジーズ リミテッド 量子撮像、感知、および情報処理デバイス用のダイヤモンド構成要素
JP2017067650A (ja) 2015-09-30 2017-04-06 国立大学法人北陸先端科学技術大学院大学 近接場プローブ構造および走査プローブ顕微鏡
JP2017146158A (ja) * 2016-02-16 2017-08-24 ルネサスエレクトロニクス株式会社 磁気計測装置
US20170363696A1 (en) * 2016-05-31 2017-12-21 Lockheed Martin Corporation Magneto-optical defect center magnetometer
JP2018136316A (ja) 2017-02-21 2018-08-30 日新電機株式会社 検出装置及び検出方法、並びに、それを用いた電圧電流検出装置
US20190285706A1 (en) * 2018-03-13 2019-09-19 Lockheed Martin Corporation Magnetic detection system for device detection, characterization, and monitoring
JP2019211271A (ja) * 2018-06-01 2019-12-12 株式会社日立製作所 探針製造装置、及び方法
JP2020008298A (ja) * 2018-07-03 2020-01-16 スミダコーポレーション株式会社 磁場測定装置および磁場測定方法
JP2021010935A (ja) 2019-07-09 2021-02-04 日鉄テックスエンジ株式会社 下地処理方法及び下地処理装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505494A (ja) * 2012-12-13 2016-02-25 エレメント シックス テクノロジーズ リミテッド 量子光学的用途のための合成ダイヤモンド材料およびその作製方法
JP2016539900A (ja) * 2013-11-18 2016-12-22 エレメント シックス テクノロジーズ リミテッド 量子撮像、感知、および情報処理デバイス用のダイヤモンド構成要素
JP2017067650A (ja) 2015-09-30 2017-04-06 国立大学法人北陸先端科学技術大学院大学 近接場プローブ構造および走査プローブ顕微鏡
JP2017146158A (ja) * 2016-02-16 2017-08-24 ルネサスエレクトロニクス株式会社 磁気計測装置
US20170363696A1 (en) * 2016-05-31 2017-12-21 Lockheed Martin Corporation Magneto-optical defect center magnetometer
JP2018136316A (ja) 2017-02-21 2018-08-30 日新電機株式会社 検出装置及び検出方法、並びに、それを用いた電圧電流検出装置
US20190285706A1 (en) * 2018-03-13 2019-09-19 Lockheed Martin Corporation Magnetic detection system for device detection, characterization, and monitoring
JP2019211271A (ja) * 2018-06-01 2019-12-12 株式会社日立製作所 探針製造装置、及び方法
JP2020008298A (ja) * 2018-07-03 2020-01-16 スミダコーポレーション株式会社 磁場測定装置および磁場測定方法
JP2021010935A (ja) 2019-07-09 2021-02-04 日鉄テックスエンジ株式会社 下地処理方法及び下地処理装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ARNE WICKENBROCK ET AL.: "Microwave-free magnetometry with nitrogen-vacancy centers in diamond", APPLIED PHYSICS LETTERS, vol. 109, 2016, pages 053505, XP012209939, DOI: 10.1063/1.4960171
FELIX M. STUERNER ET AL.: "Compact integrated magnetometer based on nitrogen-vacancy centres in diamond", DIAMOND & RELATED MATERIALS, vol. 93, 2019, pages 59 - 65
HATANO, YUJI, NISHITANI, DAISUKE, MASUYAMA, YUTA, ONODA, SHINOBU, OHSHIMA, TAKESHI, ARAI, KEIGO, IWASAKI, TAKAYUKI, HATANO, MUTSUK: "8p-Z05-18 Sensitivity of the diamond quantum sensor in the simultaneous multiple operation point measurement", PROCEEDINGS OF THE 81ST JSAP AUTUMN MEETING; [ONLINE VIRTUAL MEETING]; SEPTEMBER 9-11, 2020, JAPAN SOCIETY OF APPLIED PHYSICS, JP, vol. 81, 12 November 2020 (2020-11-12) - 11 September 2020 (2020-09-11), JP, pages 05 - 052, XP009538535, DOI: 10.11470/jsapmeeting.2020.2.0_930 *

Also Published As

Publication number Publication date
US20240111008A1 (en) 2024-04-04
JPWO2022163678A1 (ja) 2022-08-04
CN116848422A (zh) 2023-10-03
EP4286876A1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
US10539630B2 (en) Package for chip scale magnetometer or atomic clock
US20230358709A1 (en) Devices and methods for quartz enhanced photoacoustic spectroscopy
CN113678041A (zh) 基于缺陷中心的传感器
US11747414B2 (en) Measurement device having a microwave generator in which a capacitor spans coil legs
KR20150077302A (ko) 파장 중심 검출 기반 센서 장치 및 방법
JP5765086B2 (ja) テラヘルツ波発生装置、カメラ、イメージング装置および計測装置
US10495698B2 (en) Magneto-encephalography device
US20080238419A1 (en) Magnetic field measuring apparatus capable of measuring at high spatial resolution
JP2017515091A (ja) 電磁放射を送信及び受信するためのシステム
WO2022163679A1 (ja) ダイヤモンドセンサユニット
JP2019124556A (ja) 光導波機構を有するセルを用いた磁気計測装置
WO2022163677A1 (ja) ダイヤモンド磁気センサユニット及びダイヤモンド磁気センサシステム
WO2022163678A1 (ja) ダイヤモンドセンサユニット及びダイヤモンドセンサシステム
US8781265B2 (en) Sensor, a system and a method for measuring forces and/or moments
WO2023013234A1 (ja) 磁場測定装置および磁場測定方法
WO2022183895A1 (en) Methods and apparatus for integrating diamond with led towards on-chip quantum sensing
WO2022244399A1 (ja) 磁場測定装置および磁場測定方法
AU2016300218A1 (en) A magneto-encephalography device
US20240142396A1 (en) Sensor Device for Magnetic Field Measurement by Means of Optical Magnetic Resonance Measurement
US20240019476A1 (en) Electrometer system with rydberg decay fluorescence detection
US20240175945A1 (en) Diamond magneto-optical sensor
CN116413512A (zh) 一种基于里德堡原子的瞬时测频方法和系统
JP2005101401A (ja) テラヘルツ電磁波発生装置
CN116380842A (zh) 一种传感探头及其制备方法、传感器
WO2024099542A1 (en) Integrated device for spatially offset raman spectroscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578434

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18273286

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280011208.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022745898

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022745898

Country of ref document: EP

Effective date: 20230828