WO2022163275A1 - 分析装置 - Google Patents

分析装置 Download PDF

Info

Publication number
WO2022163275A1
WO2022163275A1 PCT/JP2021/048459 JP2021048459W WO2022163275A1 WO 2022163275 A1 WO2022163275 A1 WO 2022163275A1 JP 2021048459 W JP2021048459 W JP 2021048459W WO 2022163275 A1 WO2022163275 A1 WO 2022163275A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
sample container
nozzle
piercer
analysis
Prior art date
Application number
PCT/JP2021/048459
Other languages
English (en)
French (fr)
Inventor
和了 小野木
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN202180091786.0A priority Critical patent/CN116802504A/zh
Priority to JP2022578185A priority patent/JPWO2022163275A5/ja
Publication of WO2022163275A1 publication Critical patent/WO2022163275A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the present invention relates to an analyzer that is communicably connected to a transport device that transports a sample container containing a sample and that analyzes the sample contained in the sample container.
  • the sample When analyzing a sample such as blood or urine, the sample is generally dispensed from a sample container in which the sample is stored into another container and then analyzed by an analyzer.
  • Patent document 1 Japanese Patent Application Laid-Open No. 2015-219023 discloses an analysis device equipped with a sampling device.
  • a sampling device when the opening on the upper surface of the sample container in which the sample is stored is sealed with a cap (lid member) made of an elastic material such as rubber, a perforating member (piercer) is pierced into the cap to open the sample container.
  • a probe (nozzle) for aspirating the specimen into the sample container through the perforated member is inserted after inserting the probe (nozzle) into the sample container.
  • Such a sample analysis system includes one or more analyzers and a transport device that transports samples.
  • the transport device transports the sample container to a position where the analyzer can aspirate the specimen (hereinafter also referred to as "aspiration position").
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2009-008558 discloses a loading device into which a sample container is loaded, an opening device that opens a lid attached to the sample container, a sampling device that dispenses a specimen, and a dispensing device.
  • a specimen testing system includes an analyzer that analyzes an injected specimen.
  • a sampling device included in the analysis device disclosed in Patent Document 1 is configured to dispense a specimen in a sample container set on a rack.
  • a sample testing system is made by combining an analyzer configured to dispense a sample in a sample container set on a rack and a transport device.
  • An operation of dispensing a sample in a sample container transported by a transport device is sometimes performed using a mechanism for dispensing a sample in a sample container set on a rack.
  • the work of dispensing the sample in the sample container transported by the transport device includes, for example, the aspiration position for aspirating the sample in the sample container set on the rack and the sample in the sample container on the transport device. This is achieved by moving the nozzle to a suction position for
  • the present disclosure has been made to solve such problems, and the purpose of the present disclosure is to provide an analyzer suitable for use in combination with a transport device.
  • An analyzer is communicably connected to a transport device that transports a sample container containing a sample, and analyzes the sample contained in the sample container.
  • the analyzer includes a mounting section on which the sample container is mounted, a nozzle for aspirating the sample, a cylindrical first piercer configured to penetrate a lid member attached to the sample container, and a nozzle. a first moving mechanism for moving the first piercer; a second moving mechanism for moving the first piercer; and a controller.
  • the sample in the sample container placed on the placement section is aspirated at a second aspirating position different from the first aspirating position where the sample in the sample container transported by the transport device is aspirated.
  • the drive range of the nozzle overlaps at least part of the drive range of the first piercer.
  • the control device When the control device aspirates the sample from the second sample container to which the lid member is attached at the second aspiration position, the control device moves the first piercer to the second aspiration position and The first moving mechanism and the second moving mechanism are arranged so as to perform a second aspiration operation of forming a hole in the cover member, inserting the nozzle into the sample container, and aspirating the sample from the second sample container at the second aspiration position with the nozzle. Controls the movement mechanism.
  • the control device When the second sample container is placed on the placement unit during the first aspirating operation, the control device aspirates the sample from the sample container transported by the transport device after the first aspirating operation.
  • the first moving mechanism and the second moving mechanism are controlled so that the operation is performed, and the first moving mechanism and the second moving mechanism are controlled so that the nozzle and the first piercer do not come into contact with each other.
  • the user can simply place the sample container containing the specimen on the placement section, and the next sample to be transported by the transport device can be collected. It is possible to analyze the sample in the sample container placed on the placement section before the sample in the container. Further, when the sample container with the lid attached is placed on the placement section during the suction operation at the first suction position, the second suction operation is performed while avoiding contact between the first piercer and the nozzle. Therefore, the user can place the sample container on the placement section without worrying about the presence or absence of the lid. As a result, according to the present disclosure, it is possible to provide an analytical device that is suitable for use in conjunction with a transport device.
  • FIG. 3 is a block diagram showing an outline of the connection relationship of each device; 3 is a schematic plan view showing a configuration example of main parts of the device main body 300.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the analysis device 100;
  • FIG. 10 is a diagram showing a series of flows of transport analysis;
  • FIG. 10 is a diagram showing a series of flows of a second dispensing operation; It is a figure which shows the state in the middle of a 2nd suction operation. It is a figure which shows a series of flows of a 3rd dispensing operation.
  • FIG. 4 is a timing chart showing an example of movement when the sample container 22 is placed on the placement section 4 during transportation analysis.
  • FIG. 10 is a diagram showing an example of a display screen showing a device state during disconnection;
  • FIG. 10 is a diagram showing an example of a display screen showing the device status during transport analysis;
  • FIG. 10 is a diagram showing an example of a display screen showing the device state when switching to rack analysis during transportation analysis;
  • FIG. 10 is a diagram showing an example of a display screen showing a request status during transport analysis;
  • FIG. 11 is a diagram showing an example of a display screen showing a request status when switching to rack analysis during transportation analysis;
  • FIG. 11 is a schematic plan view showing a configuration example of main parts of an apparatus main body 300a of an analyzer according to a modification;
  • FIG. 1 is a schematic diagram showing an outline of an analysis system.
  • the analysis system SYS includes a transport device 10 , a capping device 20 , a capping device 30 , a host computer 40 and an analysis device 100 .
  • Each of the transport device 10 and the analysis device 100 is communicably connected to the host computer 40 .
  • Each of the capping device 20 , the capping device 30 and the analysis device 100 is communicably connected to the transport device 10 .
  • the transport device 10 transports the sample container 22 containing the specimen along the transport line L.
  • black circles indicate sample containers 22 with caps 24 attached, and shaded circles indicate sample containers 22 without caps 24 attached.
  • the capping device 20, the analysis device 100, and the capping device 30 are arranged in this order along the transport line L.
  • the conveying device 10 conveys the sample container 22 with the cap 24 attached to the capping device 20 .
  • the capping device 20 removes the cap 24 attached to the sample container 22 .
  • the transport device 10 transports the sample container 22 from which the cap 24 has been removed to the front of the analysis device 100 .
  • the analyzer 100 dispenses the specimen contained in the sample container 22 into the reaction container through a nozzle. After the required amount is dispensed by the analysis device 100 , the transport device 10 transports the sample container 22 toward the capping device 30 .
  • the capping device 30 attaches the cap 24 to the sample container 22 .
  • analysis system SYS may further include an analysis device other than the analysis device 100 according to the present embodiment.
  • analysis system SYS may further include a pretreatment device such as a centrifuge.
  • the host computer 40 manages information indicating the details of examinations performed on each sample.
  • a barcode for identifying the sample is attached to the sample container 22, and the transport device 10 reads the barcode with a barcode reader (not shown) before transporting the sample container 22 to the analyzer 100, Information (specimen information) for identifying the specimen is sent to the host computer 40 .
  • the host computer 40 sends information (test information) indicating the details of the test to be performed on the sample to the transport device 10 .
  • the transport device 10 determines to which analyzer the sample container 22 should be transported based on the inspection information, and determines the transport destination of the sample container 22. .
  • the plurality of sample containers 22 placed on the transport line L are sequentially transported by the transport device 10, and the specimens stored in the sample containers 22 are sequentially transported by the analyzer 100. analyzed.
  • the samples are stored in the sample containers 22 mounted on the mounting section 4 provided in the analyzer 100. It also analyzes the samples.
  • the sample containers 22 are sequentially transported to the analysis device 100 .
  • the sample container 22 is placed on the placement unit 4 provided in the analyzer 100 so that the sample container 22 is placed on the transfer line L before the sample container 22 is placed. A sample in the sample container 22 placed on the placement unit 4 may be tested.
  • transport analysis analyzing a sample transported by the transport device 10
  • rack analysis analyzing a sample placed on the placement section 4
  • FIG. 2 is a block diagram showing an outline of the connection relationship of each device.
  • the analysis device 100 is composed of a control device 500 and a device main body 300 .
  • the control device 500 controls the device body 300 .
  • the transport device 10 also includes the barcode reader 12 for reading the barcode attached to the sample container 22 as described above.
  • a plurality of barcode readers 12 are arranged on the transport line L in order to prevent sample mix-up.
  • the control device 500 is communicably connected to the device main body 300, the conveying device 10, and the host computer 40 via the electric wire LN1, the electric wire LN2, and the network NW1, respectively.
  • the transport device 10 is communicably connected to the device main body 300 and the host computer 40 via the electric wire LN3 and the network NW2, respectively.
  • Each of the wires LN1 to LN3 is, for example, a wire for realizing serial communication.
  • control device 500 transmits a control signal to device main body 300 via electric wire LN1.
  • the control device 500 also receives sample information of the sample container 22 transferred from the transport device 10 to the analysis device 100 .
  • the apparatus main body 300 transmits information indicating that the work of dispensing the sample stored in the sample container 22 into the reaction container has been completed to the transport device 10 via the electric wire LN3.
  • Each of the networks NW1 and NW2 includes, for example, the Internet, WAN (Wan Area Network), or LAN (Lan Area Network).
  • the control device 500 sends sample information sent from the transport device 10 via the network NW1 to the host computer 40, and receives test information corresponding to the sent sample information.
  • the transport apparatus 10 sends sample information to the host computer 40 via the network NW2 and receives test information corresponding to the sent sample information.
  • the electric wires LN1 to LN3 and the networks NW1 and NW2 need only enable communication between devices, and the communication method is not limited to those described above.
  • the analyzer 100 dispenses a specimen into a reaction container using a nozzle, and analyzes the specimen dispensed into the reaction container.
  • the analyzer 100 is configured to add a reagent to a sample dispensed into a reaction container and optically measure the reaction state within the reaction container.
  • Specimens are, for example, blood components (serum or plasma) or urine.
  • a disposable cuvette is employed as the reaction vessel of the analyzer.
  • FIG. 3 is a schematic plan view showing a configuration example of main parts of the apparatus main body 300.
  • FIG. FIG. 4 is a block diagram showing an example of the hardware configuration of the analysis device 100. As shown in FIG. Note that FIG. 3 shows part of the transport device 10 in addition to the device body 300 in order to show the positional relationship between the transport device 10 and the device main body 300 . In FIG. 3, black circles indicate sample containers 22 with caps 24 attached, and shaded circles indicate sample containers 22 without caps 24 attached. Each part of the device body 300 is controlled by the control device 500 .
  • the height direction of the device main body 300 is the Z-axis direction
  • the width direction of the device main body 300 is the X-axis direction
  • the depth direction of the device main body 300 is the Y-axis direction.
  • the Z-axis direction is also the vertical direction of the device body 300 .
  • the device main body 300 has a sampling mechanism for aspirating a sample from the sample container 22 and dispensing it into the reaction container. and a nozzle driving device 81 .
  • the sample container 22 is mounted on the mounting section 4 while being stored in the rack 3 .
  • the sample container 22 typically has a cylindrical shape with an opening.
  • the sample container 22 may or may not have a cap 24 attached to the opening.
  • the rack 3 holding the sample container 22 with the cap 24 attached is also called a CTS (Closed Tube Sampling) rack.
  • the rack 3 that holds the sample container 22 without the cap 24 attached to the opening is also called a SAM rack.
  • each rack 3 is provided with a mark for distinguishing between the CTS rack and the SAM rack. This mark is typically a barcode.
  • the device body 300 has a mark sensor 720 (see FIG. 4) that reads this mark. Based on the detection result of mark sensor 720, controller 500 determines whether rack 3 placed on placing section 4 is a CTS rack or a SAM rack.
  • the apparatus body 300 has a barcode reader 721 (see FIG. 4) apart from the mark sensor 720.
  • the barcode reader 721 reads the barcode attached to the sample container 22 and sends sample information indicated by the read barcode to the control device 500 . Based on the sample information, the control device 500 acquires, from the host computer 40, test information indicating the details of the test to be performed on the sample.
  • the mounting section 4 is provided with a rack sensor 722 (see FIG. 4 ) for detecting that the rack 3 is mounted on the mounting section 4 .
  • the rack sensor 722 detects which rack 3 is placed on the placing portion 4 in addition to the fact that the rack 3 is placed on the placing portion 4 . Based on the detection result of the rack sensor 722 , the control device 500 determines that the sample container 22 has been placed on the placement section 4 .
  • the control device 500 moves the rack 3 to the transport position 5 along the direction D1.
  • the direction D1 is the direction in which the racks 3 are arranged.
  • the direction D1 is also the X-axis direction.
  • the control device 500 transports the rack 3 from the mounting section 4 along the direction D2.
  • Direction D2 is a direction perpendicular to direction D1.
  • the direction D2 is also the Y-axis direction.
  • control device 500 When analyzing the sample in the sample container 22 placed on the placement section 4, the control device 500 performs the following control. First, the control device 500 sequentially moves the plurality of racks 3 to the transport position 5 one by one, and transports one rack 3 from the transport position 5 along the direction D2.
  • the mark sensor 720 is provided at the transport position 5, for example, and identifies the type of the rack 3 moved to the transport position 5 at the timing when the rack 3 is moved to the transport position 5.
  • the barcode reader 721 is provided, for example, at the transport position 5, and when the rack 3 is transported from the transport position 5 along the direction D2, one or more sample containers 22 held by the rack 3 are read. Read the barcode attached to each.
  • the controller 500 transports the sample container 22 storing the sample to be analyzed to the second suction position P2 on the rack transport path 6, and temporarily stops the rack 3.
  • the piercer 7 is a tubular member with a sharp tip, and is configured to pass through the cap 24 .
  • the piercer 7 is an example of a first piercer and is also called a "piercing member" because it pierces the cover member.
  • the piercer driving device 71 is an example of a moving mechanism that moves the piercer 7 .
  • a piercer driving device 71 drives the piercer 7 to hold the piercer 7 and to raise and lower the piercer 7 .
  • the piercer driving device 71 includes a piercer arm 711 extending horizontally.
  • a piercer 7 is held at one end of the piercer arm 711 .
  • a rotating shaft 712 is attached to the other end of the piercer arm 711 .
  • the piercer arm 711 is rotatable around a rotation axis 712 .
  • the piercer driving device 71 can horizontally move the piercer 7 along an arcuate track 717 by rotating the piercer arm 711 about the rotating shaft 712 .
  • the piercer driving device 71 can also move the piercer arm 711 vertically along the rotating shaft 712 .
  • the nozzle 8 is configured to aspirate a sample such as a specimen.
  • the nozzle driving device 81 is an example of a moving mechanism that moves the nozzle 8 .
  • the nozzle driving device 81 holds the nozzle 8 and drives the nozzle 8 so as to raise and lower the nozzle 8 .
  • the nozzle driving device 81 includes a nozzle arm 811 extending horizontally.
  • a nozzle 8 is held at one end of the nozzle arm 811 .
  • a rotating shaft 812 is attached to the other end of the nozzle arm 811 .
  • the nozzle arm 811 is rotatable around a rotating shaft 812 .
  • the nozzle driving device 81 can horizontally move the nozzle 8 along an arc-shaped track 817 by rotating the nozzle arm 811 around the rotating shaft 812 .
  • the nozzle driving device 81 can also move the nozzle arm 811 along the rotating shaft 812 in the vertical direction.
  • the intersection of the track 817, which is the driving range of the nozzle 8, and the transport line L is the first suction position P1.
  • the sample in the sample container 22 transported by the transport device 10 is aspirated by the nozzle 8 at the first aspirating position P1.
  • the intersection of the track 817 and the track 717 on the rack transport path 6 is the second suction position P2.
  • the specimen in the sample container 22 placed on the placement section 4 is aspirated by the nozzle 8 at the second aspiration position P2.
  • a dispensing port 814 , a reagent holding portion 815 , and a washing port 816 are provided on the track 817 .
  • a reaction container is supplied to the dispensing port 814 from a supply device (not shown).
  • a cleaning liquid for cleaning the nozzle 8 is stored in the cleaning port 816, and the cleaning liquid is replaced each time the nozzle 8 is cleaned.
  • the reagent holding unit 815 holds reagents such as detergents and diluents.
  • the control device 500 performs the following control when dispensing the sample in the sample container. After moving the nozzle to the aspiration position (first aspiration position P1 or second aspiration position P2), the control device 500 lowers the nozzle 8 to aspirate the sample in the sample container 22 to the nozzle 8 . The control device 500 then raises the nozzle 8 to move it from the suction position (the first suction position P1 or the second suction position P2) onto the dispensing port 814 . The control device 500 lowers the nozzle 8 to insert it into the reaction container supplied to the dispensing port 814, and discharges the sample aspirated by the nozzle 8 into the reaction container.
  • control device 500 cleans the nozzle 8 with the cleaning port 816 , sucks the reagent from the reagent holding part 815 and discharges it to the dispensing port 814 as necessary.
  • the reaction container into which the specimen has been dispensed is transported to the measuring section 740 .
  • Predetermined measurement is performed in the measurement unit 740 on the specimen in the reaction container transported to the measurement unit 740 .
  • the second suction operation for sucking will be described later.
  • the control device 500 includes a CPU (Central Processing Unit) 520, a RAM (Random Access Memory) 540, a storage device 560, an input device 581, a display device 582, and a communication interface (I/ F) 583; These units are communicatively connected to each other via a bus 584 .
  • the control device 500 is an example of a control device for controlling the analyzer.
  • the CPU 520 expands the control program 562 stored in the storage device 560 into the RAM 540 and executes it.
  • the control program 562 is a program in which procedures of various processes executed by the control device 500 are described.
  • the CPU 520 executes the control program 562 to create an analysis schedule 564, which will be described later, based on information sent from the device main body 300, the transport device 10, or the host computer 40.
  • a process of generating and transmitting a control signal for controlling each unit constituting the device body 300 according to the analysis schedule 564 is realized.
  • the processing is not limited to software, and may be implemented using dedicated hardware (for example, ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array)).
  • the RAM 540 functions as a temporary data memory used as a work area.
  • the storage device 560 is a nonvolatile storage device such as a semiconductor storage device such as a flash memory, an HDD (Hard Disk Drive), or the like.
  • the storage device 560 In addition to the control program 562, the storage device 560 also stores various information and data used for various processes. For example, the storage device 560 stores an analysis schedule 564 in addition to a control program 562 describing processing procedures.
  • the analysis schedule 564 is determined based on the analysis items set for each sample and the availability of each port in order to efficiently analyze all reserved samples.
  • the analysis schedule 564 is managed for each sample (sample information).
  • the analysis schedule 564 includes information on the sample to be dispensed into the reaction container, the timing to dispense the sample, the timing to measure the sample, the destination and timing of movement of the reaction container, the reagent to be dispensed to the reaction container, and the reagent to be dispensed. including location and timing.
  • the storage device 560 stores, in addition to the control program 562 and the analysis schedule 564, information about reagents (eg, reagent ID, reagent type, expiration date, reagent storage location, etc.), progress of analysis, and so on. Analysis history indicating the degree of progress including
  • the control program 562 stored in the storage device 560 may be stored in a recording medium and distributed as a program product.
  • the program may be provided by an information provider as a downloadable program product via the so-called Internet.
  • Recording media are not limited to DVD-ROM (Digital Versatile Disk Read Only Memory), CD-ROM (Compact disc read only memory), FD (Flexible Disk), hard disk, magnetic tape, cassette tape, optical disk (MO (Magneto Optical Disc) / MD (Mini Disc) / DVD (Digital Versatile Disc)), optical cards, mask ROM, EPROM (Electronically Programmable Read Only Memory), EEPROM (Electronically Erasable Programmable Read Only Memory), semiconductor memory such as flash ROM It may be a medium that holds the program in a fixed manner. Also, the recording medium is a computer-readable non-transitory medium for programs and the like.
  • the input device 581 is specifically a mouse, keyboard, touch panel, or the like.
  • the input device 581 receives input of information according to user's operation.
  • the input device 581 receives an input such as an instruction to start communication between the analysis device 100 and the transport device 10 or an instruction to cut off communication.
  • the input device 581 receives input of reagent information, sample information, and the like.
  • the display device 582 displays arbitrary information, for example, a display screen showing the device status, an input screen for reagent information, and the like.
  • a communication I/F 583 mediates data transmission between the host computer 40 and the CPU 520 .
  • control device 500 may have the function of creating analysis schedule 564
  • device body 300 may have the function of controlling each part according to analysis schedule 564 .
  • FIG. 5 is a diagram showing a series of flow of transport analysis.
  • FIG. 5 shows a flow of sequentially transporting specimens (sample containers 22) instructed to be analyzed by the analyzer 100 to the first aspiration position P1 by the transport device 10, and a flow of analysis performed by the analyzer 100. It is
  • the transport device 10 reads the barcode attached to the sample container 22 with the barcode reader 12 to acquire sample information.
  • the transport device 10 includes a plurality of barcode readers 12 .
  • the barcode is read by the barcode reader 12a (see FIG. 3) closest to the first suction position P1 among the barcode readers 12 arranged upstream of the first suction position P1.
  • the transport device 10 sends the read sample information to the analysis device 100 .
  • the transport device 10 transports the sample container 22 to the first suction position P1, and stops transport when the sample container 22 reaches the first suction position P1.
  • the transport device 10 sends an arrival signal to the analysis device 100 indicating that the sample container 22 has been transported to the first suction position P1.
  • the transport device 10 When the transport device 10 receives the release signal indicating that the aspirating operation is completed, in S110 it transports the next sample container 22 toward the first aspirating position P1. When the next sample container 22 passes through the bar code reader 12a, the processing after S102 is performed again.
  • the transport device 10 transports the sample container 22 containing the specimen to the first aspiration position P1
  • the transport device 10 sends an arrival signal to the analyzer 100, and moves the sample container 22 to the first position until the release signal is sent from the analyzer 100. Stop at the suction position P1.
  • the transport device 10 transports the sample container 22 upstream of the sample container 22 stopped at the first suction position P1 to the first suction position P1.
  • the conveying device 10 repeats conveying and stopping to sequentially convey the sample containers 22 to the first suction position P1.
  • control device 500 acquires test information from the host computer 40 based on the sent sample information in S202.
  • control device 500 creates an analysis schedule 564 based on the acquired examination information and stores it in the storage device 560 .
  • control device 500 Upon receiving the arrival signal from the transport device 10, the control device 500 performs the processing from S206 onward according to the analysis schedule 564 created in S204.
  • control device 500 moves the nozzle 8 to the first suction position P1.
  • control device 500 inserts the nozzle 8 into the sample container 22 transported at S106. In this embodiment, it is assumed that the cap 24 is not attached to the sample container 22 transported to the first suction position P1 by the transport device 10 .
  • control device 500 causes the nozzle 8 to aspirate the sample in the sample container 22.
  • control device 500 raises the nozzle 8. Thereafter, at S214, the control device 500 sends a release signal to the transport device 10 indicating that the first suction operation has been completed.
  • control device 500 moves the nozzle 8 that has aspirated the sample from the first aspirating position P1 to the dispensing port 814, and discharges the sample into the reaction container supplied to the dispensing port 814.
  • control device 500 moves the nozzle 8 from the dispensing port 814 to the cleaning port 816 to clean the nozzle 8.
  • the control device 500 measures the sample dispensed into the reaction container. When the measurement ends in S220, the transport analysis for one sample container 22 (specimen) transported from the transport device 10 ends.
  • first suction operation the series of operations from S206 to S212
  • first dispensing operation the series of operations from S206 to S218 including the first suction operation
  • a first suction operation and a first dispensing operation are realized by moving the nozzle 8 .
  • the analyzer 100 performs the transport analysis shown in FIG. 5 on the specimens in the sample containers 22 sequentially transported by the transport device 10 to the first aspiration position P1. Specifically, the analyzer 100 creates an analysis schedule 564 each time sample information is received from the transport apparatus 10 . The analysis device 100 receives the arrival signal from the transport device 10 and performs control according to the analysis schedule 564 .
  • the process of S214 may be executed at any timing after S212.
  • the process of S214 may be performed after S216. That is, the control device 500 may send the release signal to the transport device 10 after the process of ejecting the sample.
  • the control device 500 may send the release signal to the transport device 10 after the process of ejecting the sample.
  • the analyzer 100 determines whether or not the cap 24 is attached to the sample container 22 placed on the placement section 4. Perform different sucking actions.
  • the analyzer 100 performs a second dispensing operation including a second aspirating operation to dispense the sample into the reaction container.
  • the analyzer 100 performs the third dispensing operation including the third aspirating operation to dispense the specimen into the reaction container.
  • the control device 500 creates the analysis schedule 564 so that the sample container 22 held on the rack 3 is subjected to the second dispensing operation. do.
  • the control device 500 sets the analysis schedule 564 so that the sample container 22 held on the rack 3 is subjected to the third dispensing operation. to create
  • the barcode attached to the sample container 22 is read by the barcode reader 721 at the timing when the rack 3 is transported onto the rack transport path 6 . Therefore, for example, the analysis schedule 564 created at the timing when the rack 3 is transported on the rack transport path 6 is created for each rack 3 .
  • FIG. 6 is a diagram showing a series of flows of the second dispensing operation.
  • FIG. 7 is a diagram showing a state in the middle of the second suction operation.
  • control device 500 transports the sample container 22 containing the specimen to be inspected to the second aspiration position P2, and stops transport when the target sample container 22 reaches the second aspiration position P2.
  • control device 500 moves the piercer 7 to the second suction position P2.
  • control device 500 lowers the piercer 7 and pierces the cap 24 with the piercer 7 .
  • control device 500 moves the nozzle 8 to the second suction position P2.
  • the control device 500 inserts the nozzle 8 into the sample container 22 so that the nozzle 8 passes through the piercer 7 penetrating the cap 24 .
  • the nozzle 8 is inserted into the sample container 22, and the specimen is sucked into the nozzle. 8 may be aspirated, but by moving the piercer 7 and the nozzle 8 so that the nozzle 8 passes through the piercer 7 penetrating the cap 24 as described above, the nozzle 8 can be drawn as shown in FIG. The nozzle 8 can be inserted into the sample container 22 to which the cap 24 is attached without directly piercing the cap 24, which is preferable in terms of preventing data abnormalities due to foreign matter suction by the nozzle 8 and suppressing specimen consumption.
  • the nozzle 8 when the nozzle 8 is directly pierced into the cap 24, and when a plurality of items are analyzed for the same sample container 22, the number of times the cap 24 is pierced by the nozzle 8 increases, and a portion of the cap 24 is pierced during piercing. may fall off and fall into the sample container 22 as a foreign object. If the fallen foreign matter is sucked by the nozzle 8, the nozzle 8 may be clogged, resulting in suction failure and abnormal analysis results.
  • the nozzle In order to prevent multiple piercings by the nozzle, prepare two nozzles, use the first nozzle to transfer more than the required amount of sample (specimen) from the sample container to another container, and then use the second nozzle. may be used to dispense the required amount from the separate container. However, in this case, the sample left in the separate container is discarded together with the separate container, leading to wasted consumption of the sample and the container.
  • the sample suction port is generally formed on the side of the nozzle to prevent clogging of the nozzle due to perforation.
  • the amount of nozzle immersion during sample aspiration increases, and the amount of sample adhered to the tip of the nozzle also increases, making it difficult to ensure dispensing accuracy.
  • the nozzle has a liquid level detection function, the sensor may react to the wet cap, which may deteriorate the dispensing accuracy.
  • the nozzle 8 when the nozzle 8 is inserted into the sample container 22 through the piercer 7 penetrating the cap 24, the number of punctures can be minimized, and the nozzle 8 removes the sample container 22. It becomes possible to aspirate only the required amount of specimen. Therefore, it is possible to prevent data anomalies due to suction of foreign matter, and to suppress sample consumption by improving dispensing accuracy.
  • control device 500 causes the nozzle 8 to aspirate the sample in the sample container 22 .
  • control device 500 raises the nozzle 8.
  • control device 500 moves the nozzle 8 that has aspirated the sample from the second aspirating position P ⁇ b>2 to the dispensing port 814 and discharges the sample into the reaction container supplied to the dispensing port 814 .
  • control device 500 moves the nozzle 8 from the dispensing port 814 to the cleaning port 816 to clean the nozzle 8.
  • control device 500 raises the piercer 7 and removes the piercer 7 from the cap 24 .
  • control device 500 moves the piercer 7 from the second suction position P2 to a washing port for the piercer 7 (not shown) to wash the piercer 7. This completes the series of second dispensing operations.
  • a series of operations from S304 to S314 is hereinafter referred to as a second suction operation.
  • the piercer 7 is moved in addition to the nozzle 8 .
  • the driving range of the nozzle 8 and the driving range of the piercer 7 overlap at least in the vertical direction at the second suction position P2. In order to avoid collision between the piercer 7 and the nozzle 8, it is necessary to adjust the driving timing of the nozzle 8 and the driving timing of the piercer 7.
  • control device 500 forms a hole in cap 24 with piercer 7 after moving piercer 7 to second suction position P2. After that, the control device 500 moves the nozzle 8 to the second suction position P2 and inserts the nozzle 8 into the sample container 22 .
  • FIG. 8 is a diagram showing a series of flows of the third dispensing operation.
  • the third dispensing operation is common to the second dispensing operation in that S302, S316, and S318 are executed.
  • the third dispensing operation differs from the second dispensing operation in that S320 and S322 are not executed, and S304' through S310' are executed instead of S304 through S314.
  • control device 500 transports the sample container 22 containing the specimen to be inspected to the second aspiration position P2, and stops transport when the target sample container 22 reaches the second aspiration position P2.
  • the control device 500 moves the nozzle 8 to the second suction position P2.
  • the control device 500 inserts the nozzle 8 into the sample container 22 .
  • the sample is aspirated from the sample container 22 to which the cap 24 is not attached, so there is no need to pierce the cap 24 with the piercer 7 before inserting the nozzle 8 into the sample container 22 .
  • control device 500 causes the nozzle 8 to aspirate the sample in the sample container 22 .
  • control device 500 raises the nozzle 8.
  • control device 500 moves the nozzle 8 that has aspirated the sample from the second aspirating position P ⁇ b>2 to the dispensing port 814 and discharges the sample into the reaction container supplied to the dispensing port 814 .
  • control device 500 moves the nozzle 8 from the dispensing port 814 to the cleaning port 816 to clean the nozzle 8. This completes the series of third dispensing operations.
  • a series of operations from S304' to S310' is hereinafter referred to as a third suction operation.
  • the third aspiration operation of aspirating the specimen from the sample container 22 which is at the second aspiration position P2 and to which the cap 24 is not attached is realized only by the movement of the nozzle 8.
  • the analysis system SYS including the transport device 10 according to the present embodiment is used, for example, when many samples need to be processed.
  • analysis results can be obtained simply by placing the sampled samples on the transport device 10 by the user. need. Therefore, the analysis of samples using the transport device 10 is convenient when analyzing samples for which analysis results need not be obtained quickly, but when analyzing samples for which analysis results need to be obtained quickly. not convenient.
  • the user may directly operate the analyzer 100 to analyze the sample.
  • FIG. 9 is a timing chart showing an example of movement when the sample container 22 is placed on the placement section 4 during transport analysis.
  • the CTS rack is placed on the placement unit 4 at the timing t1 during the Nth transport analysis.
  • the description of the processing related to measurement is omitted for the sake of simplicity of explanation.
  • the rack 3 is not placed on the placement unit 4 during the transport analysis, after the first dispensing operation during the N-th transport analysis, in other words, the nozzle 8 during the N-th transport analysis , the first suction operation of the N+1-th transport analysis is performed.
  • the placement unit A second aspiration operation is performed to aspirate the sample from the sample container 22 held by the rack 3 placed on the 4 .
  • the first suction operation for the N+1 transport analysis is performed.
  • the control device 500 moves only the nozzle 8 in the first dispensing operation, and moves the piercer 7 in addition to the nozzle 8 in the second suction operation (second dispensing operation).
  • the control device 500 when it is detected that the rack 3 is placed on the placement unit 4 during the first suction operation of the Nth transport analysis, the control device 500 performs the first suction operation of the N+1th transport analysis.
  • the second suction operation for rack analysis is performed prior to the operation, and the nozzle driving device 81 and the piercer driving device 71 are controlled so that the nozzle 8 and the piercer 7 do not come into contact with each other.
  • the control device 500 performs the third suction operation of the rack analysis prior to the first suction operation of the N+1 transport analysis. take action. Only the nozzle 8 moves in the third suction operation. Therefore, similar to when the first suction operation of the N+1th transport analysis is performed after the Nth transport analysis, the control device 500 performs the rack analysis after the nozzle 8 has been used during the Nth transport analysis.
  • the nozzle driving device 81 is controlled to perform the third suction operation of .
  • the control device 500 normally performs connection control to repeat the first dispensing operation (see FIG. 5) when connected to the conveying device 10 . Further, when the control device 500 is not connected to the transport device 10, the second dispensing operation or the third dispensing operation ( 6 and 8) is repeated.
  • the control device 500 detects that the rack 3 has been placed on the placement unit 4 during connection control, the control device 500 switches from connection control to non-connection control, so that rack analysis is performed rather than transport analysis. Prioritize analysis. At this time, the control device 500 does not notify the conveying device 10 that the connection control has been switched to the disconnection control. In other words, the control device 500 internally switches control from connection control to non-connection control, and does not notify other devices of the switching.
  • connection control when the user performs an operation for switching from connection control to non-connection control via the input device 581 (for example, when a button 604 shown in FIG. 11 to be described later is operated), the control device 500 changes the transport device 10 that connection control has been switched to non-connection control. Upon receiving the notification that the control has been switched to disconnection control, the transport device 10 does not execute the processes of S102 to S110 shown in FIG. 1 A process of passing through the suction position P1 is performed.
  • the transfer device 10 when the transfer device 10 receives the notification that the control has been switched to the non-connection control, the sample container 22 is allowed to pass through the first suction position P1 without being stopped, but the control is switched to the non-connection control. It is possible to prevent the sample container 22 from passing through the first suction position P1 by not notifying the user of the fact.
  • the controller 500 When the controller 500 detects that the rack 3 has been placed on the placement section 4 during the first dispensing operation, the controller 500 waits until the first dispensing operation (see FIG. 5) is completed, and then performs connection control. to unconnected control. In other words, the control device 500 waits until the use of the nozzles 8 in the transport analysis ends, then switches from connection control to non-connection control and starts rack analysis.
  • the controller 500 carries out the operation of transporting the rack 3 to the rack transport path 6 and dispensing the sample from each sample container 22 stored in the rack 3 into the reaction container. This is done for all the racks 3 placed on the That is, the control device 500 switches to disconnection control and then starts the operation of transporting the rack 3 to the rack transport path 6 . In this manner, the control device 500 waits until the use of the nozzle 8 in the transport analysis is finished before starting to pull in the rack 3, thereby performing the first dispensing operation, the second suction operation, or the third dispensing operation.
  • the nozzle driving device 81 and the piercer driving device 71 can be controlled so that the nozzles 8 and the piercer 7 do not come into contact with each other.
  • control device 500 waits until the use of the nozzles 8 in the transport analysis is finished before starting the retraction of the rack 3, so that the movement of the nozzles 8 used in the first dispensing operation is not considered. Since two aspiration operations can be performed, the analysis schedule 564 can be easily created.
  • the control device 500 When switching from connection control to non-connection control, the control device 500 returns from non-connection control to connection control after completing the dispensing operation for all the sample containers 22 placed on the placement section 4 .
  • the analysis schedule 564 for the N+1th transport analysis may have already been created.
  • the control device 500 may discard the already created analysis schedule 564 related to the N+1-th transport analysis, and may create it again after returning from non-connection control to connection control.
  • the control device 500 may hold the already created analysis schedule 564 for the N+1th transport analysis, and delay the start of the operation according to the created analysis schedule 564 .
  • connection control The timing for switching from connection control to non-connection control is before inserting the nozzle 8 into the sample container 22 transported to the first suction position P1 in S208 shown in FIG. It can be inside.
  • the control device 500 temporarily stops the first dispensing operation and places the sample container 22 on the placement section 4 .
  • the specimen is first aspirated from the sample container 22 that has been opened. That is, when it is detected that the rack 3 is placed on the mounting section 4 during the transport analysis, the rack 3 (the sample container 22) placed on the mounting section 4 is prioritized over the transport analysis being executed. ) may be started.
  • control device 500 simply switches from connection control to non-connection control when detecting that the rack 3 has been placed on the placement unit 4 during connection control.
  • control device 500 may switch to special control for preferentially performing rack analysis when detecting that the rack 3 has been placed on the placement section 4 during connection control.
  • control device 500 may start pulling in the rack 3 without waiting for the end of the use of the nozzle 8 in the transport analysis. Then, the control device 500 may wait for the start of the second suction operation while the sample container 22 is transported to the second suction position P2. After that, the control device 500 starts the second dispensing operation after the nozzle 8 has been used in the transport analysis. That is, in the second example, when the control device 500 detects that the rack 3 has been placed on the placing portion 4 during the connection control, the control device 500 first performs priority control to pull the rack 3 into the transport path 6. .
  • control device 500 waits until the use of the nozzles 8 in the transport analysis is finished before starting the second dispensing operation.
  • the analysis schedule 564 can be easily created because the second suction operation can be performed without considering the movement of the .
  • the control device 500 waits until the first dispensing operation is finished before starting the second aspirating operation. In other words, the control device 500 starts the second suction operation after waiting for the end of the use of the nozzle 8 in the transport analysis.
  • the second suction operation can be performed without considering the movement of the nozzle 8 used in the first dispensing operation, so the control can be simplified.
  • the control device 500 performs priority control to first pull the rack 3 into the transport path 6 when it detects that the rack 3 is placed on the placement section 4 during connection control.
  • Priority control is not limited to the control shown in the second example.
  • the control device 500 waits until the use of the nozzle 8 in the transport analysis is finished before starting the second dispensing operation. and the second dispensing operation do not overlap.
  • the control device 500 starts the second dispensing operation (second suction operation) during the first dispensing operation while the nozzle 8 is being used in the transport analysis. Specifically, the movement of the piercer 7 (S304 in FIG. 6) may be started while the nozzle 8 is in use.
  • the control device 500 controls the piercer driving device 71 and the nozzle driving device 81 so as to move the piercer 7 at the timing when the nozzle 8 does not pass the second suction position P2. That is, in the third example, when the control device 500 detects that the rack 3 is placed on the placement section 4 during the connection control, the control device 500 draws the rack 3 into the transport path 6, and furthermore, performs the second dispensing.
  • priority control is performed to move the piercer 7 to the second suction position P2.
  • control device 500 identifies a period during which the nozzle 8 does not pass through the second suction position P2 based on the analysis schedule 564 in the transport analysis and the analysis history indicating the degree of progress including the progress of the analysis, and An analysis schedule 564 in the rack analysis is created so that the movement period of the piercer 7 falls within the identified period.
  • control device 500 starts the second suction operation before finishing the first dispensing operation.
  • the analysis operation can be speeded up.
  • control device 500 does not notify the transport device 10 of switching to special control for preferentially performing rack analysis.
  • the transport device 10 When some kind of information, such as information indicating that rack analysis is being performed, is notified from the control device 500, the transport device 10 needs to determine whether or not to change the control according to the information. If the control device 500 does not output any information to the transport device 10 when the sample to be dispensed is switched to the sample placed on the placement unit 4, the transport device 10 receives an arrival signal and a release signal. is continued (see FIG. 5). As a result, it is possible to preferentially analyze the sample container 22 mounted on the mounting section 4 without changing the transport device 10 .
  • the transport device 10 completes the dispensing operation for the sample in the sample container 22 placed on the placement section 4, and then performs the first dispensing operation.
  • the sample container 22 is stopped at the first suction position P1 until the release signal is sent from the analysis device 100 after the sample container 22 is released.
  • FIG. 10 is a diagram showing an example of the display screen when the connection to the transport device is disconnected.
  • FIG. 11 is a diagram showing an example of a display screen during transportation analysis.
  • FIG. 12 is a diagram showing an example of a display screen when it is detected that a sample container has been placed on the placement section during transport analysis.
  • FIG. 13 is a diagram showing an example of a display screen during transportation analysis.
  • FIG. 14 is a diagram showing an example of a display screen when it is detected that a sample container has been placed on the placement section during transport analysis.
  • the display screen shown in FIG. 10 is the display screen after the control device 500 notifies the conveying device 10 that the connection has been cut off.
  • the display screen 600 includes a first display area 610 that displays a main menu, a second display area 620 that displays a plurality of buttons for switching display contents, and a second display area 620 that displays a plurality of buttons for switching display contents. and a third display area 630 that displays a screen corresponding to the button selected in 620 .
  • the first display area 610 includes a display area 602 that displays connection status.
  • the control device 500 causes the display area 602 to display "under analysis”.
  • the control device 500 causes the display area 602 to display "transport analysis in progress".
  • the control device 500 changes the display in the display area 602 to “under analysis” and requests the transport device 10 to start connection. Then, when the connection is completed, the display in the display area 602 is changed to "conveyance analysis in progress".
  • a device status screen 632 (see FIGS. 10 to 12) is displayed in the third display area 630.
  • FIG. When the “request list” tab 623 in the “request” tab 622 is selected, a request status screen 634 (see FIGS. 13 and 14) is displayed in the third display area 630 .
  • the device status screen 632 includes a button 604 for starting or disconnecting connection with the transport device 10, and a display for displaying the detection result of the rack sensor 722. and area 606 .
  • the button 604 By operating the button 604, the user can start or disconnect the connection with the conveying apparatus 10.
  • the display of the button 604 switches from “transportation start” (see FIG. 10) to “transportation disconnection” (see FIG. 11 or 12).
  • the display in the display area 602 switches from “under analysis” to “under transport analysis”.
  • the display area 606 displays the detection result of the rack sensor 722 .
  • the display area 606 is empty as shown in FIG.
  • the display in the display area 606 is updated as shown in FIGS.
  • the detection result is displayed in the display area 606. Is displayed.
  • the request status screen 634 mainly includes a request identification column 950, a specimen column 951, a request date and time column 952, a status column 954, and an analysis item column 956.
  • the request identification column 950 displays identification information for identifying each request. A request number is displayed in the request identification column 950 as identification information.
  • the sample column 951 displays at least information that enables identification of whether the sample is transported by the transport device 10 or is placed on the placement section 4 while being stored in the rack 3 . be done.
  • the display of the sample column 951 is "transportation".
  • the display of the sample column 951 is, for example, "S1" indicating the position on the placement unit 4 where the sample is placed. .
  • the requested date and time is displayed in the requested date and time column 952 .
  • a status column 954 displays information indicating the progress of the analysis of the sample, such as "normally completed", “waiting for analysis”, and "under analysis”.
  • the analysis item column 956 displays information indicating the content of the analysis performed on the specimen and information indicating the progress of one or more analyzes performed on the specimen. In the examples shown in FIGS. 13 and 14, "black circle” indicates normal termination, "white circle” indicates waiting for analysis, and "double circle” indicates under analysis.
  • the analyzes are performed sequentially in the order in which they were requested. For example, in the state shown in FIG. 13, the specimen "No. 0007” is analyzed after the specimen "No. 0006" is analyzed.
  • the rack analysis is performed with priority over the transport analysis. Therefore, for example, if the rack 3 is placed on the placement unit 4 while the sample “No. 0006" is being analyzed and the sample “No. 0007” is waiting for analysis, as shown in FIG. , the specimen "No. 0009” stored in the rack 3 is analyzed before the specimen "No. 0007” is analyzed.
  • control device 500 when the control device 500 detects that the rack 3 has been placed on the placing section 4, it switches from transport analysis to rack analysis.
  • the piercer 7 is assumed to move to the second suction position P2.
  • the piercer may move to the first suction position P1 in addition to the second suction position P2.
  • FIG. 15 is a schematic plan view showing a configuration example of main parts of the device main body 300a of the analyzer according to the modification. 15, some of the reference numerals common to those in FIG. 3 are omitted.
  • the apparatus main body 300a further includes a piercer 7a and a piercer driving device 71a.
  • the piercer 7a has a configuration common to that of the piercer 7.
  • the piercer driving device 71a has the same configuration as the piercer driving device 71, the piercer 7a is held instead of the piercer 7, and the piercer 7a is positioned at the first suction position P1 instead of the second suction position P2. It differs from the piercer driving device 71 in that it has a mechanism for moving.
  • the piercer driving device 71a is an example of a moving mechanism that moves the piercer 7a.
  • the piercer driving device 71a drives the piercer 7a so as to hold the piercer 7a and raise and lower the piercer 7a.
  • the piercer driving device 71a includes a horizontally extending piercer arm 711a.
  • a piercer 7a is held at one end of the piercer arm 711a.
  • a rotary shaft 712a is attached to the other end of the piercer arm 711a.
  • the piercer arm 711a is rotatable around a rotating shaft 712a.
  • the piercer driving device 71 can horizontally move the piercer 7a along an arc-shaped track 717a by rotating a piercer arm 711a about a rotating shaft 712a.
  • the piercer driving device 71a can also move the piercer arm 711a in the vertical direction along the rotating shaft 712a.
  • the track 717a passes through the first suction position P1. Therefore, the piercer driving device 71a can move the piercer 7a to the first suction position P1.
  • the analysis device A specimen can be aspirated from the aspiration position P1.
  • this eliminates the need to install the capping device 20 and the capping device 30 (see FIG. 1), making it possible to reduce the introduction cost of the analysis system SYS.
  • two piercers and two piercer driving devices are provided.
  • the piercer may be moved to the first suction position P1 and the second suction position P2 by one piercer driving device.
  • the control device 500 when a plurality of sample containers 22 are placed on the placement section 4, the control device 500 performs a dispensing operation (first dispensing operation) in transport analysis and a dispensing operation (second dispensing operation) in rack analysis. or the third dispensing operation) may be alternately performed. Further, when a plurality of racks 3 are placed on the placing section 4 , the control device 500 performs the dispensing operation in the transport analysis after finishing the dispensing operation for all the sample containers 22 stored in one rack 3 . The operation (first dispensing operation) may be restarted. Then, the control device may start the dispensing operation for the next sample container 22 stored in the rack 3 after the first dispensing operation. That is, the control device may alternately repeat the first dispensing operation and the dispensing operation for all sample containers 22 stored in one rack 3 .
  • the dispensing operation is described as being performed once for each sample container 22 .
  • the dispensing operation may be performed multiple times for one sample container 22 .
  • the control device 500 may cause the sample container 22 to be placed after the pipetting operation in progress is completed or during the pipetting operation in progress.
  • a dispensing operation (second dispensing operation or third dispensing operation) for the sample container 22 placed on the unit 4 may be started.
  • An analyzer is communicably connected to a transport device that transports a sample container containing a sample, and analyzes the sample contained in the sample container.
  • the analyzer includes a mounting section on which the sample container is mounted, a nozzle for aspirating the sample, a cylindrical first piercer configured to penetrate a lid member attached to the sample container, and a nozzle. a first moving mechanism for moving the first piercer; a second moving mechanism for moving the first piercer; and a controller.
  • the sample in the sample container placed on the placement section is aspirated at a second aspirating position different from the first aspirating position where the sample in the sample container transported by the transport device is aspirated.
  • the drive range of the nozzle overlaps at least part of the drive range of the first piercer.
  • the control device aspirates the sample from the sample container transported by the transport device after the first aspirating operation.
  • the first moving mechanism and the second moving mechanism are controlled so that the operation is performed, and the first moving mechanism and the second moving mechanism are controlled so that the nozzle and the first piercer do not come into contact with each other.
  • the user can simply place the sample container containing the specimen on the placement section and the sample container will be transported next by the transport device. It is possible to analyze the sample in the sample container placed on the placement section before the sample in the sample container. Further, when the sample container with the lid attached is placed on the placement section during the suction operation at the first suction position, the second suction operation is performed while avoiding contact between the first piercer and the nozzle. Therefore, the user can place the sample container on the placement section without worrying about the presence or absence of the lid. As a result, it is possible to provide an analysis device that is suitable for use in combination with a transport device.
  • the second aspiration operation can be performed without considering the movement of the nozzle used in the operation of dispensing the sample aspirated by the first aspiration operation into the reaction container, thereby simplifying the control. It is possible to reduce the processing load on the control device.
  • the second moving mechanism moves the first piercer between the first suction position and the second suction position.
  • the specimen can be aspirated from the first aspiration position.
  • the analyzer according to any one of Sections 1 to 3 includes a cylindrical second piercer configured to penetrate the lid member, and the second piercer for the first suction. and a third moving mechanism for moving to the position.
  • the specimen can be aspirated from the first aspiration position.
  • the control device provides a first signal (arrival signal) indicating that the sample container has been transported to the first suction position. is received from the transport device, the suction operation at the first suction position is started, and after the suction operation at the first suction position is finished, transportation of a new sample container can be started.
  • a second signal (release signal) is sent to the transport device. If the first signal is received during the second suction operation, the control device terminates the suction operation performed based on the received first signal without notifying the transport device that the second suction operation is in progress. Thereafter, a second signal is transmitted to the transport device.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

分析装置(100)の制御装置(500)は、搬送装置(10)によって搬送された試料容器(22)から検体を吸引する第1吸引動作中に蓋部材が取り付けられた第2試料容器が載置部に載置された場合、第1吸引動作後に搬送装置(10)によって搬送される試料容器(22)から検体を吸引するよりも先に載置部(4)に載置された第2試料容器から検体を吸引する第2吸引動作を行うとともに、ノズル(8)とピアサ(7)とが接触しないようにノズルの移動機構およびピアサの移動機構を制御する。

Description

分析装置
 本発明は、検体を収容した試料容器を搬送する搬送装置と通信可能に接続され、試料容器に収容された検体を分析する分析装置に関する。
 血液または尿などの検体を分析する場合、検体は、一般的に、検体が格納された試料容器から検体を他の容器に分注された後、分析装置で分析される。
 特許文献1(特開2015-219023号公報)は、サンプリング装置を備えた分析装置を開示する。サンプリング装置は、検体が格納された試料容器の上面の開口部がゴムなどの弾性体からなるキャップ(蓋部材)により封止されている場合に、穿孔部材(ピアサ)をキャップに突き刺して試料容器内に挿入した上で、穿孔部材内を通して試料容器内に検体を吸引するためのプローブ(ノズル)を挿入する構成を有する。
 また、近年、血液や尿などの検体を自動で分析するための検体分析システムの開発が進められている。このような検体分析システムは、1または複数の分析装置と検体を搬送する搬送装置とを含む。一般的に、搬送装置は、分析装置が検体を吸引することができる位置(以下、「吸引位置」ともいう)まで試料容器を移送する。
 特許文献2(特開2009-008558号公報)は、試料容器が投入される投入装置と、試料容器に取り付けられた蓋を開栓する開栓装置と、検体を分注するサンプリング装置と、分注された検体を分析する分析装置とを備えた検体検査システムを開示する。
特開2015-219023号公報 特開2009-008558号公報
 特許文献1に開示された分析装置が備えるサンプリング装置は、ラックにセットされた試料容器内の検体を分注するように構成されている。
 一般的に、検体検査システムは、ラックにセットされた試料容器内の検体を分注するように構成された分析装置と、搬送装置とを組み合わせて作られる。搬送装置によって移送される試料容器内の検体を分注する作業は、ラックにセットされた試料容器内の検体を分注するための機構を利用して行われることがある。搬送装置によって移送される試料容器内の検体を分注する作業は、たとえば、ラックにセットされた試料容器内の検体を吸引するための吸引位置と、搬送装置上の試料容器内の検体を吸引するための吸引位置とにノズルを移動できるようにすることで実現される。
 しかし、ピアサおよびノズルの駆動範囲の干渉により制御が複雑になるにも関わらず、ピアサとノズルとを備えた分析装置を搬送装置と合わせて利用する場合の分注動作について、十分に検討されていなかった。
 本開示は、かかる問題を解決するためになされたものであり、本開示の目的は、搬送装置と合わせて利用するのに適した分析装置を提供することである。
 本開示のある局面に従う分析装置は、検体を収容した試料容器を搬送する搬送装置と通信可能に接続され、試料容器に収容された検体を分析する。分析装置は、試料容器が載置される載置部と、検体を吸引するためのノズルと、試料容器に取り付けられた蓋部材を貫通するように構成された筒状の第1ピアサと、ノズルを移動させる第1移動機構と、第1ピアサを移動させる第2移動機構と、制御装置とを含む。載置部に載置された試料容器内の検体は、搬送装置によって搬送された試料容器内の検体が吸引される第1吸引位置とは異なる第2吸引位置で吸引される。ノズルの駆動範囲は、第1ピアサの駆動範囲の少なくとも一部と重なっている。搬送装置によって搬送された蓋部材が取り付けられていない第1試料容器から検体をノズルにより吸引する場合、制御装置は、ノズルを第1吸引位置に移動させた後に第1吸引位置にある第1試料容器から検体をノズルにより吸引する第1吸引動作が行われるように第1移動機構を制御する。制御装置は、第2吸引位置において、蓋部材が取り付けられた第2試料容器から検体をノズルにより吸引する場合、制御装置は、第1ピアサを第2吸引位置に移動させた後に第1ピアサで蓋部材に孔を形成してノズルを試料容器内に挿入し、第2吸引位置にある第2試料容器から検体をノズルにより吸引する第2吸引動作が行われるように第1移動機構および第2移動機構を制御する。第1吸引動作中に第2試料容器が載置部に載置された場合、制御装置は、第1吸引動作後に搬送装置によって搬送される試料容器から検体を吸引するよりも先に第2吸引動作が行われるように第1移動機構および第2移動機構を制御するとともに、ノズルと第1ピアサとが接触しないように第1移動機構および第2移動機構を制御する。
 本開示によれば、ユーザは、第1吸引位置での吸引動作中であっても、検体の収容された試料容器を載置部に載置するだけで、搬送装置によって次に搬送される試料容器内の検体よりも先に載置部に載置された試料容器の検体を分析させるようにすることができる。また、第1吸引位置での吸引動作中に蓋が取り付けられた試料容器が載置部に載置された場合に第1ピアサとノズルとの接触を避けて第2吸引動作が行われる。そのため、ユーザは、蓋の有無を気にすることなく試料容器を載置部に載置できる。その結果、本開示によれば、搬送装置と合わせて利用するのに適した分析装置を提供することができる。
分析システムの概略を示す模式図である。 各装置の接続関係の概略を示すブロック図である。 装置本体300の主要な箇所の構成例を示した概略平面図である。 分析装置100のハードウェア構成の一例を示すブロック図である。 搬送分析の一連の流れを示す図である。 第2分注動作の一連の流れを示す図である。 第2吸引動作の途中の状態を示す図である。 第3分注動作の一連の流れを示す図である。 搬送分析中に試料容器22が載置部4に載置されたときの動きの一例を示すタイミングチャートである。 非接続中における装置状態を示す表示画面の一例を示す図である。 搬送分析中における装置状態を示す表示画面の一例を示す図である。 搬送分析中にラック分析に切り替わったときの装置状態を示す表示画面の一例を示す図である。 搬送分析中における依頼状況を示す表示画面の一例を示す図である。 搬送分析中にラック分析に切り替わったときの依頼状況を示す表示画面の一例を示す図である。 変形例にかかる分析装置の装置本体300aの主要な箇所の構成例を示した概略平面図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。また、各実施の形態における構成の少なくとも一部を適宜組み合わせて用いることは当初から予定されていることである。図面においては、実際の寸法の比率に従って図示しておらず、構造の理解を容易にするために、構造が明確となるように比率を変更して図示している箇所がある。
 [分析システムの構成]
 図1は、分析システムの概略を示す模式図である。分析システムSYSは、搬送装置10と、開栓装置20と、閉栓装置30と、ホストコンピュータ40と、分析装置100とを備える。
 搬送装置10および分析装置100の各々は、ホストコンピュータ40と通信可能に接続されている。開栓装置20、閉栓装置30および分析装置100の各々は、搬送装置10と通信可能に接続されている。
 搬送装置10は、搬送ラインL上に沿って、検体が格納された試料容器22を搬送する。なお、図1において、黒丸は、キャップ24が取り付けられている試料容器22を示し、斜線で塗りつぶされた丸は、キャップ24が取り付けられていない試料容器22を示す。
 搬送ラインLに沿って開栓装置20、分析装置100、閉栓装置30が順番に配置されている。まず、搬送装置10は、キャップ24が取り付けられた試料容器22を開栓装置20に搬送する。開栓装置20は、試料容器22に取り付けられたキャップ24を取り外す。搬送装置10は、キャップ24が取り外された試料容器22を分析装置100の前に搬送する。分析装置100は、試料容器22に収容された検体をノズルにより反応容器に分注する。分析装置100によって必要な量分注された後、搬送装置10は、試料容器22を閉栓装置30に向けて搬送する。閉栓装置30は、試料容器22にキャップ24を取り付ける。
 なお、分析システムSYSは、本実施の形態にかかる分析装置100とは別の分析装置をさらに備えていてもよい。また、分析システムSYSは、遠心分離機などの前処理装置をさらに備えていてもよい。
 ホストコンピュータ40は、各検体に対して実施される検査内容を示す情報を管理する。試料容器22には検体を識別するためのバーコードが付されており、搬送装置10は、分析装置100に試料容器22を搬送する前に、図示していないバーコードリーダでバーコードを読み取り、検体を識別するための情報(検体情報)をホストコンピュータ40に送る。ホストコンピュータ40は、検体情報に基づいて、当該検体に対して実施される検査内容を示す情報(検査情報)を搬送装置10に送る。たとえば、分析システムSYSが複数の分析装置を備える場合、搬送装置10は、いずれの分析装置に試料容器22を搬送すべきかを、検査情報に基づいて判断して試料容器22の搬送先を決定する。以上のように、分析システムSYSにおいて、搬送ラインL上に載置された複数の試料容器22は、搬送装置10によって順次搬送され、試料容器22に格納された検体は、分析装置100によって順次、分析される。
 本実施の形態にかかる分析装置100は、搬送ラインL上の試料容器22に格納された検体とは別に、分析装置100に設けられた載置部4に載置された試料容器22に格納された検体の分析も行う。
 通常、試料容器22は、搬送ラインL上に載置された後、順次、分析装置100に搬送される。しかし、搬送ラインL上に複数の試料容器22が載置されている場合、検査結果を得るまでに時間を要してしまう。そこで、急いで検査結果を得たい場合に、分析装置100に設けられた載置部4に試料容器22を載置して、搬送ラインL上に載置された試料容器22よりも先に載置部4に載置された試料容器22の検体を検査する場合がある。
 以下では、搬送装置10によって搬送された検体を分析することを「搬送分析」と、載置部4に載置された検体を分析することを「ラック分析」と呼ぶことがある。
 [各装置の接続関係]
 図2は、各装置の接続関係の概略を示すブロック図である。分析装置100は、制御装置500および装置本体300から構成されている。制御装置500は、装置本体300を制御する。また、搬送装置10は、上述したように試料容器22に付されたバーコードを読み取るためのバーコードリーダ12を備える。なお、バーコードリーダ12は、検体の取り違いを防止するために、搬送ラインL上に複数配置されている。
 制御装置500は、装置本体300、搬送装置10、およびホストコンピュータ40と、それぞれ、電線LN1、電線LN2、およびネットワークNW1を介して通信可能に接続されている。
 搬送装置10は、装置本体300およびホストコンピュータ40と、それぞれ、電線LN3およびネットワークNW2を介して通信可能に接続されている。
 電線LN1~LN3の各々は、たとえば、シリアル通信を実現するための電線である。一例として、制御装置500は、電線LN1を介して、装置本体300に制御信号を送信する。また、制御装置500は、搬送装置10から分析装置100に移送される試料容器22の検体情報を受信する。また、装置本体300は、電線LN3を介して、試料容器22に格納された検体を反応容器に分注する作業が完了したことを示す情報を搬送装置10に送信する。
 ネットワークNW1,NW2の各々は、たとえばインターネット、WAN(Wan Area Network)、またはLAN(Lan Area Network)を含む。一例として、制御装置500は、ネットワークNW1を介して搬送装置10から送られた検体情報をホストコンピュータ40に送り、送信した検体情報に対応する検査情報を受け取る。搬送装置10は、ネットワークNW2を介して検体情報をホストコンピュータ40に送り、送信した検体情報に対応する検査情報を受け取る。
 なお、電線LN1~LN3、およびネットワークNW1,NW2は、それぞれ、装置間の通信を可能にするものであればよく、通信方式は上述したものに限られない。
 [分析装置の構成]
 分析装置100は、ノズルにより検体を反応容器に分注し、反応容器に分注した検体を分析する。一例として、分析装置100は、反応容器に分注した検体に試薬を加えて、反応容器内の反応状態を光学的に測定するように構成される。検体は、例えば、血液成分(血清又は血漿)または尿等である。この実施の形態では、分析装置の反応容器として、ディスポーザブルキュベットを採用する。
 図3は、装置本体300の主要な箇所の構成例を示した概略平面図である。図4は、分析装置100のハードウェア構成の一例を示すブロック図である。なお、図3には、搬送装置10と装置本体300との位置関係を示すため、装置本体300に加えて搬送装置10の一部が記載されている。なお、図3において、黒丸は、キャップ24が取り付けられている試料容器22を示し、斜線で塗りつぶされた丸は、キャップ24が取り付けられていない試料容器22を示す。装置本体300の各部は、制御装置500によって制御される。
 図3において、装置本体300の高さ方向をZ軸方向とし、装置本体300の幅方向をX軸方向とし、装置本体300の奥行き方向をY軸方向とする。Z軸方向は、装置本体300の鉛直方向でもある。
 装置本体300は、試料容器22から検体を吸引して反応容器に分注するためのサンプリング機構を有し、サンプリング機構を実現するために、ピアサ7と、ノズル8と、ピアサ駆動装置71と、ノズル駆動装置81とを備える。
 ラック分析の場合、試料容器22は、ラック3に格納された状態で載置部4に載置される。試料容器22は、典型的には、開口部を有する円筒形状を有している。試料容器22は、開口部にキャップ24が取り付けられている場合と、開口部にキャップ24が取り付けられていない場合とがある。キャップ24が取り付けられている試料容器22を保持するラック3を、CTS(Closed Tube Sampling)ラックともいう。また、開口部にキャップ24が取り付けられていない試料容器22を保持するラック3は、SAMラックともいう。また、各ラック3には、CTSラックおよびSAMラックのいずれであるかを判別するためのマークが設けられている。このマークは、典型的には、バーコードである。装置本体300は、このマークを読み取るマークセンサ720(図4参照)を有する。制御装置500は、マークセンサ720の検出結果に基づいて、載置部4に載置されたラック3が、CTSラックおよびSAMラックのいずれであるのかを判別する。
 また、装置本体300は、マークセンサ720とは別に、バーコードリーダ721(図4参照)を有する。バーコードリーダ721は、試料容器22に付されたバーコードを読み取り、読み取ったバーコードが示す検体情報を制御装置500に送る。制御装置500は、検体情報に基づいて、検体に対して実施される検査内容を示す検査情報をホストコンピュータ40から取得する。
 また、載置部4には、マークセンサ720とは別に、載置部4上にラック3が載置されたことを検知するラックセンサ722(図4参照)が設けられている。ラックセンサ722は、載置部4上にラック3が載置されていることに加えて、載置部4上のどのラック3が載置されたかを検知する。制御装置500は、ラックセンサ722の検出結果に基づいて、試料容器22が載置部4に載置されたことを判別する。
 制御装置500は、ラック3を方向D1に沿って、搬送位置5に移動させる。方向D1は、ラック3が配列される方向である。方向D1は、X軸方向でもある。次に、制御装置500は、ラック3を方向D2に沿って、載置部4から搬送する。方向D2は、方向D1と直交する方向である。方向D2は、Y軸方向でもある。
 載置部4に載置された試料容器22内の検体を分析する場合、制御装置500は、次のような制御を行う。まず、制御装置500は、複数のラック3を搬送位置5へと1つずつ順次移動させ、搬送位置5から方向D2に沿って1つのラック3を搬送する。
 マークセンサ720は、たとえば、搬送位置5に設けられており、ラック3が搬送位置5に移動されたタイミングで搬送位置5に移動されたラック3の種類を識別する。また、バーコードリーダ721は、たとえば、搬送位置5に設けられており、ラック3が搬送位置5から方向D2に沿って搬送されるときに、ラック3が保持する1または複数の試料容器22の各々に付されたバーコードを読み取る。制御装置500は、分析対象の検体が格納された試料容器22をラック搬送路6上の第2吸引位置P2に搬送させて、ラック3を一旦停止する。
 ピアサ7は、先端が尖った筒状の部材であって、キャップ24を貫通するように構成されている。なお、ピアサ7は、蓋部材に対して穿孔することから、「穿孔部材」ともいい、第1ピアサの一例である。
 ピアサ駆動装置71は、ピアサ7を移動させる移動機構の一例である。ピアサ駆動装置71は、ピアサ7を保持し、かつピアサ7を上昇および下降させるようにピアサ7を駆動する。ピアサ駆動装置71は、水平方向に延びるピアサアーム711を備える。ピアサアーム711の一端部にピアサ7が保持される。ピアサアーム711の他端部に回転軸712が取り付けられる。ピアサアーム711は、回転軸712を中心に回転可能である。ピアサ駆動装置71は、回転軸712を中心にピアサアーム711を回転させることによりピアサ7を円弧状の軌道717に沿って水平方向に移動させることができる。ピアサ駆動装置71は、ピアサアーム711を回転軸712に沿って鉛直方向にも移動させることができる。
 ノズル8は、検体などの試料を吸引するように構成されている。ノズル駆動装置81は、ノズル8を移動させる移動機構の一例である。ノズル駆動装置81は、ノズル8を保持し、かつノズル8を上昇および下降させるようにノズル8を駆動する。ノズル駆動装置81は、水平方向に延びるノズルアーム811を備える。ノズルアーム811の一端部にノズル8が保持される。ノズルアーム811の他端部に回転軸812が取り付けられる。ノズルアーム811は、回転軸812を中心に回転可能である。ノズル駆動装置81は、回転軸812を中心にノズルアーム811を回転させることによりノズル8を円弧状の軌道817に沿って水平方向に移動させることができる。ノズル駆動装置81は、ノズルアーム811を回転軸812に沿って鉛直方向にも移動させることができる。
 ノズル8の駆動範囲である軌道817と搬送ラインLとの交点は、第1吸引位置P1である。搬送装置10によって搬送された試料容器22内の検体は、第1吸引位置P1でノズル8によって吸引される。また、ラック搬送路6上であって軌道817と軌道717との交点は、第2吸引位置P2である。載置部4上に載置された試料容器22内の検体は、第2吸引位置P2でノズル8によって吸引される。
 軌道817上には、分注口814と、試薬保持部815と、洗浄口816とが設けられている。分注口814には、図示していない供給装置から反応容器が供給される。洗浄口816には、ノズル8を洗浄するための洗浄液を貯められており、ノズル8を洗浄する度に洗浄液は交換される。試薬保持部815には、洗剤や希釈液などの試薬が保持されている。
 制御装置500は、試料容器内の検体を分注する場合、次のような制御を行う。制御装置500は、ノズルを吸引位置(第1吸引位置P1または第2吸引位置P2)に移動させた後、当該ノズル8を下降させて試料容器22内の検体をノズル8に吸引させる。制御装置500は、その後、ノズル8を上昇させて吸引位置(第1吸引位置P1または第2吸引位置P2)から分注口814上に移動させる。制御装置500は、ノズル8を下降させて分注口814に供給された反応容器内に挿入させ、ノズル8が吸引した検体を反応容器内に吐出させる。その後、制御装置500は、ノズル8を洗浄口816で洗浄し、必要に応じて試薬保持部815から試薬を吸引させて分注口814に吐出させる。なお、検体が分注された反応容器は、測定部740に搬送される。測定部740に搬送された反応容器内の検体に対しては、測定部740で所定の測定が行われる。
 第1吸引位置P1に搬送されたキャップ24が取り付けられていない試料容器22から検体を吸引する第1吸引動作および第2吸引位置P2に搬送されたキャップ24が取り付けられている試料容器22から検体を吸引する第2吸引動作については、後述する。
 図4に示すように、制御装置500は、CPU(Central Processing Unit)520と、RAM(Random Access Memory)540と、記憶装置560と、入力装置581と、表示装置582と、通信インターフェイス(I/F)583とを含む。これらの各部は、バス584を介して互いに通信可能に接続される。制御装置500は、分析装置を制御するための制御装置の一例である。
 CPU520は、記憶装置560に格納されている制御プログラム562をRAM540に展開して実行する。制御プログラム562は、制御装置500により実行される各種処理の手順が記されたプログラムである。一例として、CPU520が制御プログラム562を実行することで、装置本体300、搬送装置10、またはホストコンピュータ40などから送られた情報に基づいて、後述する分析スケジュール564を作成する処理、または、作成した分析スケジュール564に従って装置本体300を構成する各部を制御するための制御信号を生成・送信する処理などが実現される。なお、処理については、ソフトウェアによるものに限られず、専用のハードウェア(例えば、ASIC(Application Specific Integrated Circuit)またはFPGA(Field Programmable Gate Array)など)を用いて実装されてもよい。
 RAM540は、作業領域として利用される一時的なデータメモリとして機能する。記憶装置560は、不揮発性の記憶装置であって、フラッシュメモリなどの半導体記憶装置、およびHDD(Hard Disk Drive)などである。
 記憶装置560には、制御プログラム562のほか、各種処理に用いられる各種情報やデータも格納されている。たとえば、記憶装置560には、処理手順を記した制御プログラム562のほか、分析スケジュール564が格納される。
 分析スケジュール564は、予約された全ての検体の分析を効率良く行うために、各検体に対して設定されている分析項目及び各ポートの空き状況等に基づいて決定される。分析スケジュール564は、一の検体(検体情報)ごとに管理される。分析スケジュール564は、反応容器に分注する検体の情報、検体を分注するタイミング、検体を測定するタイミング、反応容器の移動先と移動タイミング、反応容器に分注する試薬、試薬を分注する位置とタイミングなどを含む。
 図示していないものの、記憶装置560には、制御プログラム562および分析スケジュール564の他に、試薬に関する情報(たとえば、試薬ID、試薬の種類、有効期限、試薬の格納先など)、分析の途中経過を含む進行度合いを示す分析履歴などが格納される。
 記憶装置560に格納される制御プログラム562は、記録媒体に格納されて、プログラムプロダクトとして流通されてもよい。または、プログラムは、情報提供事業者によって、いわゆるインターネットなどによりダウンロード可能なプログラムプロダクトとして提供されてもよい。
 記録媒体は、DVD-ROM(Digital Versatile Disk Read Only Memory)、CD-ROM(Compact disc read only memory)、FD(Flexible Disk)、ハードディスクに限られず、磁気テープ、カセットテープ、光ディスク(MO(Magneto Optical Disc)/MD(Mini Disc)/DVD(Digital Versatile Disc))、光カード、マスクROM、EPROM(Electronically Programmable Read Only Memory)、EEPROM(Electronically Erasable Programmable Read Only Memory)、フラッシュROMなどの半導体メモリなどの固定的にプログラムを担持する媒体としてもよい。また、記録媒体は、プログラムなどをコンピュータが読取可能な非一時的な媒体である。
 入力装置581は、具体的には、マウス、キーボード、タッチパネル等である。入力装置581は、ユーザの操作に従った情報の入力を受け付ける。たとえば、入力装置581は、分析装置100と搬送装置10との通信を開始する指示、あるいは通信を遮断する指示などの入力を受け付ける。また、入力装置581は、試薬情報、検体情報などの入力を受け付ける。
 表示装置582は、任意の情報を表示し、たとえば、装置状態を示す表示画面、試薬情報の入力画面などを表示する。
 通信I/F583は、ホストコンピュータ40とCPU520との間のデータ伝送を仲介する。
 なお、制御装置500により実現される機能の全部または一部は、装置本体300が備えていてもよい。たとえば、制御装置500が分析スケジュール564を作成する機能を有し、装置本体300が分析スケジュール564に従って各部を制御する機能を有していてもよい。
 [搬送分析における吸引動作(第1吸引動作)]
 分析装置100は、搬送装置10によって搬送された試料容器22に収容された検体を分析する場合(搬送分析を行う場合)、第1吸引動作を行って検体を反応容器に分注する。
 図5は、搬送分析の一連の流れを示す図である。図5には、搬送装置10によって第1吸引位置P1へ、分析装置100による分析が指示された検体(試料容器22)を順次搬送する流れと、分析装置100によって行われる分析の流れとが示されている。
 S102において、搬送装置10は、バーコードリーダ12により試料容器22に付されたバーコードを読み取り、検体情報を取得する。なお、搬送装置10は、複数のバーコードリーダ12を備えている。S102においては、第1吸引位置P1の上流に配置されたバーコードリーダ12のうち、第1吸引位置P1に最も近いバーコードリーダ12a(図3参照)でバーコードが読み取られたとする。
 S104において、搬送装置10は、読み取った検体情報を分析装置100へ送る。また、S106において、搬送装置10は、試料容器22を第1吸引位置P1へ搬送し、第1吸引位置P1に試料容器22が到着すると搬送を停止する。
 S108において、搬送装置10は、試料容器22が第1吸引位置P1に搬送されたことを示す到着信号を分析装置100へ送る。
 搬送装置10は、吸引動作が完了したことを示すリリース信号を受信すると、S110において、次の試料容器22を第1吸引位置P1に向けて搬送する。次の試料容器22がバーコードリーダ12aを通過すると再びS102以降の処理が行われることとなる。
 すなわち、搬送装置10は、検体の収容された試料容器22を第1吸引位置P1に搬送すると、到着信号を分析装置100に送り、分析装置100からリリース信号が送られるまで試料容器22を第1吸引位置P1に停止させておく。そして、搬送装置10は、リリース信号を受け取ると、第1吸引位置P1に停止していた試料容器22の上流にある試料容器22を第1吸引位置P1に搬送する。搬送装置10は、搬送と停止とを繰り返して、第1吸引位置P1に順次、試料容器22を搬送する。
 制御装置500は、搬送装置10から検体情報が送られると、S202において、送られた検体情報に基づいて検査情報をホストコンピュータ40から取得する。
 S204において、制御装置500は、取得した検査情報に基づいて分析スケジュール564を作成して、記憶装置560に格納する。
 制御装置500は、搬送装置10からの到着信号を受けて、S204において作成した分析スケジュール564に従って、S206以降の処理を行う。
 S206において、制御装置500は、ノズル8を第1吸引位置P1に移動させる。S208において、制御装置500は、S106において搬送された試料容器22内にノズル8を挿入する。なお、本実施の形態においては、搬送装置10によって第1吸引位置P1に搬送される試料容器22にキャップ24は取り付けられていないものとする。
 S210において、制御装置500は、試料容器22内の検体をノズル8によって吸引させる。
 S212において、制御装置500は、ノズル8を上昇させる。その後、S214において、制御装置500は、第1吸引動作が完了したことを示すリリース信号を搬送装置10に送る。
 S216において、制御装置500は、検体を吸引したノズル8を第1吸引位置P1から分注口814に移動させ、検体を分注口814に供給された反応容器内に吐出する。
 S218において、制御装置500は、ノズル8を分注口814から洗浄口816に移動させて、ノズル8を洗浄する。S220において、制御装置500は、反応容器に分注された検体を測定する。S220において測定が終わると、搬送装置10から搬送された一の試料容器22(検体)に対する搬送分析が終了する。
 以下では、S206~S212までの一連の動作を第1吸引動作といい、第1吸引動作を含むS206~S218までの一連の動作を第1分注動作という。第1吸引動作および第1分注動作は、ノズル8を動かすことで実現される。
 分析装置100は、搬送装置10が第1吸引位置P1に順次搬送する各試料容器22の検体に対して、図5に示した搬送分析を行う。具体的には、分析装置100は、搬送装置10から検体情報を受信する度に分析スケジュール564を作成する。分析装置100は、搬送装置10からの到着信号を受けて分析スケジュール564に従った制御を行う。
 なお、S214の処理は、S212よりも後であれば、どのタイミングで実行されてもよい。たとえば、S214の処理は、S216の後に実行されてもよい。すなわち、制御装置500は、検体を吐出する処理の後にリリース信号を搬送装置10に送ってもよい。これにより、検体を吸引した洗浄前のノズル8が第1吸引位置P1にある状態でS106の処理が行われることを防止することができる。検体を吸引した洗浄前のノズル8が第1吸引位置P1にある状態で新たな試料容器22が搬送されると、ノズル8に付着した試料容器22(新たに搬送された試料容器22の一つ前の試料容器22)内の検体が新たに搬送された試料容器22内に落下してしまう虞がある。そのため、検体を吐出する処理の後、換言すると、ノズル8を第1吸引位置P1から別の位置に移動させた後にリリース信号を送るようにすることで、コンタミネーションの発生を抑制することができる。
 [ラック分析における吸引動作]
 分析装置100は、載置部4に載置された検体を分析する場合(ラック分析を行う場合)、載置部4に載置された試料容器22にキャップ24が取り付けられているか否かによって異なる吸引動作を行う。試料容器22にキャップ24が取り付けられている場合、分析装置100は、第2吸引動作を含む第2分注動作を行って検体を反応容器に分注する。一方、試料容器22にキャップ24が取り付けられていない場合、分析装置100は、第3吸引動作を含む第3分注動作を行って検体を反応容器に分注する。
 第2分注動作および第3分注動作のうちのいずれの動作を行うかは、マークセンサ720の検出結果に基づいて決定される。搬送位置5に搬送されたラック3がCTSラックである場合、制御装置500は、当該ラック3に保持された試料容器22に対しては第2分注動作が行われるように分析スケジュール564を作成する。一方、搬送位置5に搬送されたラック3がSAMラックである場合、制御装置500は、当該ラック3に保持された試料容器22に対しては第3分注動作が行われるように分析スケジュール564を作成する。
 試料容器22に付されたバーコードは、ラック3がラック搬送路6上に搬送されたタイミングでバーコードリーダ721によって読み取られる。そのため、たとえば、ラック3がラック搬送路6上に搬送されたタイミングで作成される分析スケジュール564は、たとえば、ラック3ごとに作成される。
 以下、第2分注動作および第3分注動作について詳細に説明する。
 (第2分注動作)
 図6は、第2分注動作の一連の流れを示す図である。図7は、第2吸引動作の途中の状態を示す図である。
 S302において、制御装置500は、検査対象の検体が収容された試料容器22を第2吸引位置P2に搬送し、第2吸引位置P2に対象の試料容器22が到着すると搬送を停止する。
 S304において、制御装置500は、ピアサ7を第2吸引位置P2に移動させる。S306において、制御装置500は、ピアサ7を下降させて、ピアサ7をキャップ24に刺す。
 S308において、制御装置500は、ノズル8を第2吸引位置P2に移動させる。S310において、制御装置500は、キャップ24を貫通しているピアサ7をノズル8が通るようにして、ノズル8を試料容器22内に挿入する。
 ここで、ノズル8での吸引動作に関し、ピアサ7を下降させてピアサ7でキャップ24に孔を形成した後、ピアサ7をキャップ24から抜き取り、ノズル8を試料容器22に挿入して検体をノズル8により吸引してもよいが、上述のように、キャップ24を貫通しているピアサ7をノズル8が通るように、ピアサ7およびノズル8を動かすことで、図7に示すように、ノズル8をキャップ24に直接刺すことなく、キャップ24が取り付けられた試料容器22にノズル8を挿入することができ、ノズル8による異物吸引に起因したデータ異常の防止および検体消費の抑制の点で好ましい。
 より詳細には、ノズル8をキャップ24に直接刺す場合、同じ試料容器22に対して複数の項目について分析する場合、ノズル8によるキャップ24の穿孔回数が増加することによって穿孔時にキャップ24の一部が脱落し、異物として試料容器22内に落下し得る。落下した異物がノズル8によって吸引されると、ノズル8が詰まって吸引不良となり、分析結果が異常になるおそれがある。
 ノズルによる複数回の穿孔を防止するために、2本のノズルを準備し、1本目のノズルを用いて試料容器から必要量より多めの試料(検体)を別容器に移し、2本目のノズルを用いて当該別容器から必要量だけ分注する場合が考えられる。しかしながら、この場合、別容器内で余った試料は別容器とともに破棄されるため、検体および容器の無駄な消費につながってしまう。
 なお、1本のノズルを用いてキャップの穿孔および試料の吸引を行なう場合、一般的には穿孔によるノズル詰まり防止のために試料吸引口はノズルの側部に形成される。そうすると、試料吸引の際のノズル浸漬量が多くなり、ノズル先端への試料付着量も増加するため、分注精度を確保することが困難となり得る。また、ノズルに液面検知機能が備えられている場合には、濡れたキャップにセンサが反応してしまうことで、分注精度が悪化する可能性がある。
 本実施の形態のように、キャップ24に貫通させたピアサ7を通してノズル8を試料容器22内に挿入する構成の場合、穿孔回数を必要最小限にすることができ、ノズル8によって試料容器22から必要量だけ検体を吸引することが可能となる。したがって、異物吸引によるデータ異常の防止、および、分注精度の向上による検体消費の抑制が実現できる。
 S312において、制御装置500は、試料容器22内の検体をノズル8によって吸引させる。
 S314において、制御装置500は、ノズル8を上昇させる。S316において、制御装置500は、検体を吸引したノズル8を第2吸引位置P2から分注口814に移動させ、検体を分注口814に供給された反応容器内に吐出する。
 S318において、制御装置500は、ノズル8を分注口814から洗浄口816に移動させて、ノズル8を洗浄する。
 S320において、制御装置500は、ピアサ7を上昇させて、キャップ24からピアサ7を抜き取る。
 S322において、制御装置500は、ピアサ7を第2吸引位置P2から図示していないピアサ7用の洗浄口に移動させて、ピアサ7を洗浄する。これにより、一連の第2分注動作は終了する。
 以下では、S304~S314までの一連の動作を第2吸引動作という。図6に示すように、第2吸引位置P2にあり、かつ、キャップ24が取り付けられている試料容器22から検体を吸引する第2吸引動作においては、ノズル8に加えてピアサ7が動かされる。また、ノズル8の駆動範囲とピアサ7の駆動範囲とは、少なくとも、第2吸引位置P2における上下方向で重なることになる。ピアサ7とノズル8との衝突を避けるためには、ノズル8の駆動タイミングとピアサ7の駆動タイミングとを調整する必要がある。本実施の形態においては、制御装置500は、ピアサ7を第2吸引位置P2に移動させた後、ピアサ7でキャップ24に孔を形成する。その後、制御装置500は、ノズル8を第2吸引位置P2に移動させてノズル8を試料容器22内に挿入する。
 (第3吸引動作)
 図8は、第3分注動作の一連の流れを示す図である。第3分注動作は、S302,S316,S318が実行される点で第2分注動作と共通する。一方、第3分注動作は、S320,およびS322が実行されない点、およびS304~S314にかえてS304’~S310’が実行される点で第2分注動作と異なる。
 S302において、制御装置500は、検査対象の検体が収容された試料容器22を第2吸引位置P2に搬送し、第2吸引位置P2に対象の試料容器22が到着すると搬送を停止する。
 S304’において、制御装置500は、ノズル8を第2吸引位置P2に移動させる。S306’において、制御装置500は、ノズル8を試料容器22内に挿入する。第3分注動作においては、キャップ24が取り付けられていない試料容器22から検体を吸引するため、ノズル8を試料容器22に挿入する前にピアサ7をキャップ24に刺しておく必要がない。
 S308’において、制御装置500は、試料容器22内の検体をノズル8によって吸引させる。
 S310’において、制御装置500は、ノズル8を上昇させる。S316において、制御装置500は、検体を吸引したノズル8を第2吸引位置P2から分注口814に移動させ、検体を分注口814に供給された反応容器内に吐出する。
 S318において、制御装置500は、ノズル8を分注口814から洗浄口816に移動させて、ノズル8を洗浄する。これにより、一連の第3分注動作は終了する。
 以下では、S304’~S310’までの一連の動作を第3吸引動作という。図8に示すように、第2吸引位置P2にあり、かつ、キャップ24が取り付けられていない試料容器22から検体を吸引する第3吸引動作は、ノズル8の動きだけで実現される。
 [搬送分析中に試料容器が載置部に載置されたときの動き]
 搬送装置10と分析装置100とが接続された状態において、搬送装置10は、キャップ24が取り付けられていない試料容器22を第1吸引位置P1に搬送する。分析装置100は、試料容器22から検体を吸引する。搬送装置10は、第1吸引動作が終わると、次の試料容器22を第1吸引位置P1に搬送する。このように、搬送装置10と分析装置100とが接続された状態においては、第1吸引位置P1への試料容器22の搬送と、検体の吸引とが繰り返し行われる。そして、分析装置100は、搬送装置10との接続中、繰り返し搬送分析を行う。
 本実施の形態にかかる搬送装置10を含む分析システムSYSは、たとえば、多くの検体を処理する必要がある場合に利用される。搬送装置10を利用して検体を分析した場合、採取した検体をユーザが搬送装置10に置くだけで分析結果が得られる一方、検体の数が多い場合には、分析結果を得るまでに時間を要する。そのため、搬送装置10を利用した検体の分析は、急いで分析結果を得る必要のない検体を分析する場合には都合が良いが、急いで分析結果を得る必要がある検体を分析する場合には都合が良くない。急いで検体を分析する場合、ユーザは、分析装置100を直接操作して検体を分析することがある。
 本実施の形態にかかる分析装置100は、搬送装置10との接続中に載置部4に試料容器22が載置されたことを検知すると、搬送分析よりも優先してラック分析を行う。図9は、搬送分析中に試料容器22が載置部4に載置されたときの動きの一例を示すタイミングチャートである。図9に示す例では、N回目の搬送分析中のタイミングt1に、載置部4にCTSラックが載置されたものとする。また、図9に示す例では、説明を簡略にするため、測定にかかる処理については記載を省略している。
 分析システムSYSにおいて、搬送分析中に載置部4にラック3が載置されなかった場合、N回目の搬送分析中の第1分注動作以降、換言すると、N回目の搬送分析中におけるノズル8の使用を終えた以降に、N+1回目の搬送分析の第1吸引動作が行われる。
 これに対して、分析システムSYSにおいて、搬送分析中に載置部4にラック3(CTSラック)が載置された場合、N+1回目の搬送分析の第1吸引動作よりも先に、載置部4に載置されたラック3が保持する試料容器22から検体を吸引する第2吸引動作が行われる。そして、ラック分析中の第2分注動作以降、換言すると、ラック分析中におけるノズル8の使用を終えた以降に、N+1回目の搬送分析の第1吸引動作が行われる。
 上述したように、ノズル8の駆動範囲と、ピアサ7の駆動範囲とが一部で重なっている。制御装置500は、第1分注動作においてはノズル8だけを動かし、第2吸引動作(第2分注動作)においてはノズル8に加えてピアサ7を動かす。本実施の形態において、N回目の搬送分析の第1吸引動作中に載置部4にラック3が載置されたことを検知した場合、制御装置500は、N+1回目の搬送分析の第1吸引動作よりも先にラック分析の第2吸引動作を行うとともに、ノズル8とピアサ7とが接触しないようにノズル駆動装置81およびピアサ駆動装置71を制御する。
 なお、N回目の搬送分析中に載置部4にSAMラックが載置された場合においても、制御装置500は、N+1回目の搬送分析の第1吸引動作よりも先にラック分析の第3吸引動作を行う。第3吸引動作においてはノズル8だけが動く。このため、N回目の搬送分析の後にN+1回目の搬送分析の第1吸引動作を行うときと同様、制御装置500は、N回目の搬送分析中におけるノズル8の使用を終えた以降に、ラック分析の第3吸引動作を行うようにノズル駆動装置81を制御する。
 このように制御されることで、試料容器22にキャップ24が取り付けられているか否かに関わらず、ユーザが載置部4に急いで分析したい検体の収容された試料容器22を載置すれば、搬送分析よりも先にラック分析が行われる。その結果、分析装置100の使い勝手が向上する。特に、ユーザは、試料容器22にキャップ24を取り付けた状態で検体を取り扱うことができるため、ユーザへの感染リスクを軽減させることができる。
 以下、N+1回目の搬送分析の第1吸引動作よりも先に第2吸引動作を行う場合の具体的な制御方法について説明する。
 (制御方法の第1例)
 制御装置500は、通常、搬送装置10と接続されているときは第1分注動作(図5参照)を繰り返す接続制御を行う。また、制御装置500は、搬送装置10と接続されていないときは載置部4に載置されたすべての試料容器に対する分注動作が終えるまで、第2分注動作または第3分注動作(図6,図8参照)を繰り返す非接続制御を行う。第1例においては、制御装置500は、接続制御中に載置部4にラック3が載置されたことを検知した場合に、接続制御から非接続制御に切り替えることで、搬送分析よりもラック分析を優先して行うようにする。このとき、制御装置500は、接続制御から非接続制御に切り替わったことを搬送装置10に対して通知しない。換言すると、制御装置500は、接続制御から非接続制御への制御の切り替えを内部的に行い、他の装置に対して切り替えたことを通知しない。
 なお、制御装置500は、ユーザが入力装置581を介して接続制御から非接続制御に切り替えるための操作を行った場合(たとえば、後述する図11に示すボタン604が操作された場合)、搬送装置10に対して、接続制御から非接続制御に切り替わったことを通知する。搬送装置10は、非接続制御に切り替わった旨の通知を受けると、図5に示したS102~S110の処理を実行することなく、第1吸引位置P1で試料容器22を停止させることなく、第1吸引位置P1を通過させる処理を行う。
 本実施の形態においては、搬送装置10は、非接続制御に切り替わった旨の通知を受けると、試料容器22を第1吸引位置P1で停止させることなく通過させてしまうものの、非接続制御に切り替わったことを通知しないようにすることで、試料容器22が第1吸引位置P1を通過してしまうことを防止できる。
 制御装置500は、第1分注動作中にラック3が載置部4に載置されたことを検知した場合、第1分注動作(図5参照)を終えるのを待ってから、接続制御から非接続制御に切り替える。換言すると、制御装置500は、搬送分析におけるノズル8の使用が終えるのを待ってから、接続制御から非接続制御に切り替えて、ラック分析を開始する。
 非接続制御中、制御装置500は、ラック3をラック搬送路6に搬送して、ラック3に格納された各試料容器22から試料を反応容器にそれぞれ分注するという動作を、載置部4に載置されたすべてのラック3に対して行う。すなわち、制御装置500は、非接続制御に切り替えてから、ラック3をラック搬送路6に搬送する動作を開始する。このように、制御装置500は、搬送分析におけるノズル8の使用が終えるのを待ってからラック3の引き込みを開始することで、第1分注動作と第2吸引動作または第3分注動作とが重なることがなく、ノズル8とピアサ7とが接触しないようにノズル駆動装置81およびピアサ駆動装置71を制御できる。また、制御装置500は、搬送分析におけるノズル8の使用が終えるのを待ってからラック3の引き込みを開始することで、第1分注動作で使用されるノズル8の動きを考慮することなく第2吸引動作を行うことができるため、分析スケジュール564を容易に作成できる。
 制御装置500は、接続制御から非接続制御に切り替えた場合、載置部4に載置されたすべての試料容器22に対する分注動作を終えた以降に、非接続制御から接続制御に戻す。なお、N回目の搬送分析中にラック3が載置されたときに、N+1回目の搬送分析にかかる分析スケジュール564が既に作成されていることがある。この場合に、制御装置500は、既に作成したN+1回目の搬送分析にかかる分析スケジュール564を破棄して、非接続制御から接続制御に戻した以降に、再度作成してもよい。また、制御装置500は、既に作成したN+1回目の搬送分析にかかる分析スケジュール564を保持し、作成済みの分析スケジュール564に従った動作の開始を遅らせるようにしてもよい。
 なお、接続制御から非接続制御に切り替えるタイミングは、図5に示したS208において、第1吸引位置P1に搬送された試料容器22内にノズル8を挿入する前であれば、第1分注動作中であってもよい。この場合、制御装置500は、第1分注動作中に試料容器22が載置部4に載置された場合、当該第1分注動作を一旦停止させて、載置部4に載置された試料容器22から先に検体を吸引する。すなわち、搬送分析中にラック3が載置部4に載置されたことを検知した場合、実行中の搬送分析よりも優先して、載置部4に載置されたラック3(試料容器22)に対するラック分析を開始するようにしてもよい。
 (制御方法の第2例)
 第1例においては、制御装置500は、接続制御中に載置部4にラック3が載置されたことを検知した場合に、接続制御から非接続制御に単に切り替えるものとした。なお、制御装置500は、接続制御中に載置部4にラック3が載置されたことを検知した場合に、ラック分析を優先的に行うための特別な制御に切り替えてもよい。
 具体的には、制御装置500は、搬送分析におけるノズル8の使用を終えるのを待つことなく、ラック3の引き込みを開始してもよい。そして、制御装置500は、第2吸引位置P2に試料容器22を搬送させた状態で第2吸引動作の開始を待機するようにしてもよい。その後、制御装置500は、搬送分析におけるノズル8の使用を終えてから第2分注動作を開始する。すなわち、第2例においては、制御装置500は、接続制御中に載置部4にラック3が載置されたことを検知した場合に、一先ず搬送路6へラック3を引き込むという優先制御を行う。
 この場合であっても、制御装置500は、搬送分析におけるノズル8の使用が終えるのを待ってから第2分注動作を開始するようにするため、第1分注動作で使用されるノズル8の動きを考慮することなく第2吸引動作を行うことができるため、分析スケジュール564を容易に作成できる。
 第1例および第2例のいずれにおいても、制御装置500は、第1分注動作を終えるのを待ってから、第2吸引動作を開始する。換言すると、制御装置500は、搬送分析におけるノズル8の使用が終えるのを待ってから、第2吸引動作を開始する。
 このようにすることで、第1分注動作で使用されるノズル8の動きを考慮することなく第2吸引動作を行うことができるため、制御を単純にできる。
 (制御方法の第3例)
 第2例においては、制御装置500は、接続制御中に載置部4にラック3が載置されたことを検知した場合に、一先ず搬送路6へラック3を引き込むという優先制御を行うとした。優先制御は、第2例に示した制御に限られない。第1例および第2例の制御方法においては、制御装置500は、搬送分析におけるノズル8の使用を終えるのを待ってから第2分注動作を開始するものであって、第1分注動作と第2分注動作とが重ならないものとした。
 第3例において、制御装置500は、搬送分析におけるノズル8の使用中である第1分注動作中に第2分注動作(第2吸引動作)を開始する。具体的には、ノズル8の使用中に、ピアサ7の移動(図6中のS304)を開始してもよい。この場合、制御装置500は、ノズル8が第2吸引位置P2を通過しないタイミングでピアサ7を動かすようにピアサ駆動装置71およびノズル駆動装置81を制御する。すなわち、第3例において、制御装置500は、接続制御中に載置部4にラック3が載置されたことを検知した場合に、搬送路6へラック3を引き込み、さらに、第2分注動作を行う場合にあっては、ピアサ7を第2吸引位置P2に移動させておくという優先制御を行う。
 より具体的には、制御装置500は、搬送分析における分析スケジュール564および分析の途中経過を含む進行度合いを示す分析履歴に基づいて、ノズル8が第2吸引位置P2を通過しない期間を特定し、特定した期間内にピアサ7の移動期間が収まるようにラック分析における分析スケジュール564を作成する。
 すなわち、制御装置500は、第1分注動作を終える前に第2吸引動作を開始する。このように、ノズル8の使用中に、第2吸引動作を開始することで、分析動作の高速化を図れる。
 なお、第2例および第3例のいずれにおいても、制御装置500は、ラック分析を優先的に行うための特別な制御に切り替えたことを搬送装置10に対して通知しない。
 [ラック分析を優先している際の搬送装置10の動作]
 制御装置500は、上述した第1例~第3例のいずれの制御方法でN+1回目の搬送分析の第1吸引動作よりも先に第2吸引動作を行ったとしても、搬送装置10に対してラック分析を実行していることを示す信号を出力しない。
 ラック分析中であることを示す情報等、何かしらの情報が制御装置500から通知されると、搬送装置10は、当該情報に応じて制御を変更するか否かを判断する必要が生じる。分注対象が載置部4に載置された検体に切り替わった場合に制御装置500から搬送装置10に対して何らの情報も出力しないようにすれば、搬送装置10は、到着信号およびリリース信号の送受信に応じた制御を継続すればよい(図5参照)。その結果、搬送装置10に対して変更を加えることなく載置部4に載置された試料容器22に対する分析を優先して行うことができる。
 到着信号およびリリース信号の送受信に応じた制御が継続された場合、搬送装置10は、載置部4に載置された試料容器22の検体に対する分注作業が終わり、その後、第1分注動作がされて分析装置100からリリース信号が送られるまで試料容器22を第1吸引位置P1に停止させておくこととなる。
 [表示画面例]
 図10~図14を参照して、表示装置582に表示される表示画面の一例について説明する。図10は、搬送装置に対して接続が切断されているときの表示画面の一例を示す図である。図11は、搬送分析中における表示画面の一例を示す図である。図12は、搬送分析中に載置部に試料容器が載置されたことを検知したときの表示画面の一例を示す図である。図13は、搬送分析中における表示画面の一例を示す図である。図14は、搬送分析中に載置部に試料容器が載置されたことを検知したときの表示画面の一例を示す図である。なお、図10に示す表示画面は、制御装置500が搬送装置10に対して接続が切断されている旨の通知をした以降の表示画面である。
 図10~図14に示すように、表示画面600は、メインメニューを表示する第1表示領域610と、表示内容を切り替えるための複数のボタンを表示する第2表示領域620と、第2表示領域620内で選択されたボタンに応じた画面を表示する第3表示領域630とを含む。
 第1表示領域610は、接続状況を表示する表示領域602を含む。たとえば、図10に示すように、搬送装置10と分析装置100との接続が切断されているときには、制御装置500は、表示領域602の表示を「分析中」とする。一方、図11~図14に示すように、搬送装置10と分析装置100とが接続されているときには、制御装置500は、表示領域602の表示を「搬送分析中」とする。換言すると、制御装置500は、搬送装置10に対して接続が切断されている旨の通知をした場合に表示領域602の表示を「分析中」とし、搬送装置10に対して接続の開始を要求して、接続が完了した場合に表示領域602の表示を「搬送分析中」とする。
 「装置状態」のタブ621が選択されているときは、第3表示領域630に装置状態画面632(図10~図12参照)が表示される。「依頼」のタブ622の中の「依頼一覧」のタブ623が選択されているときは、第3表示領域630に依頼状況画面634(図13、図14参照)が表示される。
 図10~図12に示すように、装置状態画面632は、搬送装置10との接続を開始したり、あるいは接続を切断したりするためのボタン604と、ラックセンサ722の検出結果を表示する表示領域606とを含む。ユーザは、ボタン604を操作することで、搬送装置10との接続を開始したり、あるいは、接続を切断したりすることができる。
 たとえば、非接続中に、ユーザが入力装置581を用いてボタン604を操作すると、ボタン604の表示が「搬送スタート」(図10参照)から「搬送切り離し」(図11または図12参照)に切り替わるとともに、表示領域602の表示が「分析中」から「搬送分析中」に切り替わる。
 表示領域606には、ラックセンサ722の検出結果が表示される。たとえば、載置部4にラック3が載置されていない場合、図11に示すように、表示領域606は空の状態になる。ラック3が載置部4に載置されたことをラックセンサ722が検知した場合、図10および図12に示すように、表示領域606の表示が更新される。なお、上述したように、接続中(搬送分析中)であっても、ラック3が載置部4に載置されたことをラックセンサ722が検知した場合、搬送装置10によって搬送される検体よりも優先してラック3の検体が分析される。そのため、図12に示すように、接続中(搬送分析中)であっても、ラック3が載置部4に載置されたことをラックセンサ722が検知した場合、表示領域606に検知結果が表示される。
 図13および図14に示すように、依頼状況画面634は、主に、依頼識別欄950と、検体欄951と、依頼日時欄952と、ステータス欄954と、分析項目欄956とを含む。
 依頼識別欄950には、各依頼を識別するための識別情報が表示される。依頼識別欄950には、識別情報として、依頼ナンバーが表示されている。
 検体欄951には、少なくとも、搬送装置10によって搬送された検体であるか、あるいは、ラック3に格納された状態で載置部4に載置された検体であるかを識別可能な情報が表示される。図13および図14に示す例では、搬送装置10によって搬送された検体である場合、検体欄951の表示は「搬送」となる。図14に示す例では、載置部4に載置された検体である場合、検体欄951の表示が一例として、検体が載置された載置部4上の位置を示す「S1」となる。
 依頼日時欄952には、依頼された日時が表示される。ステータス欄954には、「正常終了」、「分析待ち」、「分析中」など、検体に対する分析の経過を示す情報が表示される。分析項目欄956には、検体に対して行われる分析内容を示す情報および、検体に対して行われる1または複数の各分析の経過を示す情報が表示される。なお、図13および図14に示す例では、「黒丸」は正常終了を示し、「白丸」は分析待ちを示し、「二重丸」は分析中を示すものとする。
 図13に示すように、依頼されている検体のすべてが搬送装置10によって搬送される検体である場合、依頼された順番で順次、分析が行われる。たとえば、図13に示す状態においては、「No.0006」の検体が分析された後に、「No.0007」の検体が分析される。
 本実施の形態においては、搬送装置10との接続中に載置部4に試料容器22が載置されたことを検知すると、搬送分析よりも優先してラック分析が行われる。そのため、たとえば、「No.0006」の検体の分析途中であって、「No.0007」の検体の分析待ち中に載置部4にラック3が載置されると、図14に示すように、「No.0007」の検体が分析されるよりも前に、ラック3に格納された「No.0009」の検体が分析される。
 以上のように、本実施の形態において、制御装置500は、ラック3が載置部4に載置されたことを検知すると、搬送分析からラック分析に切り替える。
 [分析装置の変形例]
 上記実施の形態において、分析装置100において、ピアサ7は、第2吸引位置P2に移動するものとした。なお、ピアサが、第2吸引位置P2に加えて、第1吸引位置P1に移動するようにしてもよい。
 図15は、変形例にかかる分析装置の装置本体300aの主要な箇所の構成例を示した概略平面図である。なお、図15において、図3と共通する符号を一部省略している。図15に示すように、装置本体300aは、ピアサ7aおよびピアサ駆動装置71aをさらに備える。ピアサ7aは、ピアサ7と共通の構成を有する。ピアサ駆動装置71aは、ピアサ駆動装置71と共通の構成を有するものの、ピアサ7の代わりにピアサ7aを保持していること、および、ピアサ7aを第2吸引位置P2ではなく第1吸引位置P1に移動させる機構を有する点でピアサ駆動装置71と異なる。
 より具体的には、ピアサ駆動装置71aは、ピアサ7aを移動させる移動機構の一例である。ピアサ駆動装置71aは、ピアサ7aを保持し、かつピアサ7aを上昇および下降させるようにピアサ7aを駆動する。ピアサ駆動装置71aは、水平方向に延びるピアサアーム711aを備える。ピアサアーム711aの一端部にピアサ7aが保持される。ピアサアーム711aの他端部に回転軸712aが取り付けられる。ピアサアーム711aは、回転軸712aを中心に回転可能である。ピアサ駆動装置71は、回転軸712aを中心にピアサアーム711aを回転させることによりピアサ7aを円弧状の軌道717aに沿って水平方向に移動させることができる。ピアサ駆動装置71aは、ピアサアーム711aを回転軸712aに沿って鉛直方向にも移動させることができる。
 図15に示すように、軌道717aは、第1吸引位置P1を通過する。そのため、ピアサ駆動装置71aは、ピアサ7aを第1吸引位置P1に移動させることができる。
 このように、ピアサ7aが第1吸引位置P1に移動するため、搬送装置10によってキャップ24付きの試料容器22が第1吸引位置P1に搬送された場合であっても、分析装置は、第1吸引位置P1から検体を吸引できる。また、これによって開栓装置20、閉栓装置30(図1参照)の設置が不要になり、分析システムSYSの導入コストを抑えることが可能となる。
 なお、図15においては、ピアサおよびピアサ駆動装置を各々、2つ設けるようにした。なお、一のピアサ駆動装置によってピアサを第1吸引位置P1および第2吸引位置P2に移動させるように構成してもよい。
 [ラック分析を優先した場合に搬送分析(第1吸引動作)を再開するタイミング]
 上記実施の形態において、制御装置500は、搬送装置10との接続中に載置部4に試料容器22が載置されたことを検知すると、搬送分析よりも優先してラック分析を行う。このとき、制御装置500は、載置部4に載置されたすべての試料容器22に対する分注動作を終えた以降に、搬送分析を再開するものとした。なお、制御装置500は、載置部4に載置された少なくとも一の試料容器22に対する動作を優先するように制御できればよい。たとえば、制御装置500は、載置部4に複数の試料容器22が載置された場合、搬送分析における分注動作(第1分注動作)と、ラック分析における分注動作(第2分注動作または第3分注動作)とを交互に行うようにしてもよい。また、制御装置500は、載置部4に複数のラック3が載置された場合、一のラック3に格納されたすべての試料容器22に対する分注動作を終えた後に、搬送分析における分注動作(第1分注動作)を再開するようにしてもよい。そして、制御装置は、第1分注動作後に次のラック3に格納された試料容器22に対する分注動作を開始するようにしてもよい。すなわち、制御装置は、第1分注動作と、一のラック3に格納されたすべての試料容器22に対する分注動作とを交互に繰り返すようにしてもよい。
 [一の試料容器に対する分注動作の回数]
 上記実施の形態において、分注動作は、各試料容器22対して1回行われるものとして説明した。なお、分注動作は、一の試料容器22に対して複数回行われてもよい。たとえば、制御装置500は、第1吸引位置P1にある試料容器22に対する分注動作が残っていたとしても、実行中の分注動作が完了した後または実行中の分注動作中に、載置部4に載置された試料容器22に対する分注動作(第2分注動作または第3分注動作)を開始してもよい。
 [態様]
 上述した例示的な実施の形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)一態様に係る分析装置は、検体を収容した試料容器を搬送する搬送装置と通信可能に接続され、試料容器に収容された検体を分析する。分析装置は、試料容器が載置される載置部と、検体を吸引するためのノズルと、試料容器に取り付けられた蓋部材を貫通するように構成された筒状の第1ピアサと、ノズルを移動させる第1移動機構と、第1ピアサを移動させる第2移動機構と、制御装置とを含む。載置部に載置された試料容器内の検体は、搬送装置によって搬送された試料容器内の検体が吸引される第1吸引位置とは異なる第2吸引位置で吸引される。ノズルの駆動範囲は、第1ピアサの駆動範囲の少なくとも一部と重なっている。搬送装置によって搬送された蓋部材が取り付けられていない第1試料容器から検体をノズルにより吸引する場合、制御装置は、ノズルを第1吸引位置に移動させた後に第1吸引位置にある第1試料容器から検体をノズルにより吸引する第1吸引動作が行われるように第1移動機構を制御する。制御装置は、第2吸引位置において、蓋部材が取り付けられた第2試料容器から検体をノズルにより吸引する場合、第1ピアサを第2吸引位置に移動させた後に第1ピアサで蓋部材に孔を形成してノズルを試料容器内に挿入し、第2吸引位置にある第2試料容器から検体をノズルにより吸引する第2吸引動作が行われるように第1移動機構および第2移動機構を制御する。第1吸引動作中に第2試料容器が載置部に載置された場合、制御装置は、第1吸引動作後に搬送装置によって搬送される試料容器から検体を吸引するよりも先に第2吸引動作が行われるように第1移動機構および第2移動機構を制御するとともに、ノズルと第1ピアサとが接触しないように第1移動機構および第2移動機構を制御する。
 このような構成によれば、ユーザは、第1吸引位置での吸引動作中であっても、検体の収容された試料容器を載置部に載置するだけで、搬送装置によって次に搬送される試料容器内の検体よりも先に載置部に載置された試料容器の検体を分析させるようにすることができる。また、第1吸引位置での吸引動作中に蓋が取り付けられた試料容器が載置部に載置された場合に第1ピアサとノズルとの接触を避けて第2吸引動作が行われる。そのため、ユーザは、蓋の有無を気にすることなく試料容器を載置部に載置できる。その結果、搬送装置と合わせて利用するのに適した分析装置を提供することができる。
 (第2項)第1項に記載の分析装置において、制御装置は、第1試料容器に対する第1吸引動作中に第2試料容器が載置部に載置された場合、第1吸引動作により吸引した検体を反応容器に分注する動作を終えてから第2吸引動作が開始されるように第1移動機構および第2移動機構を制御する。
 このような構成によれば、第1吸引動作により吸引した検体を反応容器に分注する動作において使用されるノズルの動きを考慮することなく第2吸引動作を行うことができるため、制御を単純にでき、制御装置への処理負担を軽減できる。
 (第3項)第1項に記載の分析装置において、制御装置は、第1吸引動作中に第2試料容器が載置部に載置された場合、第1吸引動作により吸引した検体を反応容器に分注する動作を終える前に第2吸引動作が開始されるように第1移動機構および第2移動機構を制御する。
 このような構成によれば、分析動作の高速化を図れる。
 (第4項)第1項~第3項のうちいずれか1項に記載の分析装置において、第2移動機構は、第1ピアサを第1吸引位置と第2吸引位置とに移動させる。
 このような構成によれば、蓋部材が取り付けられた試料容器が第1吸引位置に搬送された場合であっても、第1吸引位置から検体を吸引できる。
 (第5項)第1項~第3項のうちいずれか1項に記載の分析装置は、蓋部材を貫通するように構成された筒状の第2ピアサと、第2ピアサを第1吸引位置に移動させる第3移動機構とをさらに含む。
 このような構成によれば、蓋部材が取り付けられた試料容器が第1吸引位置に搬送された場合であっても、第1吸引位置から検体を吸引できる。
 (第6項)第1項~第5項のうちいずれか1項に記載の分析装置において、制御装置は、第1吸引位置に試料容器が搬送されたことを示す第1信号(到着信号)を搬送装置から受信したことに基づいて第1吸引位置での吸引動作を開始し、第1吸引位置での吸引動作を終えた以降に、新たな試料容器の搬送を開始可能である旨を示す第2信号(リリース信号)を搬送装置に送信する。第2吸引動作中に第1信号を受信した場合、制御装置は、第2吸引動作中であることを搬送装置に通知することなく、受信した第1信号に基づいて行われる吸引動作を終えた以降に第2信号を搬送装置に送信する。
 このような構成によれば、搬送装置の制御を変更することなく、載置部に載置された試料容器に対する分析を優先して行うことができる。
 今回開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 3 ラック、4 載置部、5 搬送位置、6 ラック搬送路、7,7a ピアサ、8 ノズル、10 搬送装置、12,12a,721 バーコードリーダ、20 開栓装置、22 試料容器、24 キャップ、30 閉栓装置、40 ホストコンピュータ、71,71a ピアサ駆動装置、81 ノズル駆動装置、100 分析装置、300,300a 装置本体、500 制御装置、520 CPU、540 RAM、560 記憶装置、562 制御プログラム、564 分析スケジュール、581 入力装置、582 表示装置、583 通信I/F、584 バス、600 表示画面、602,606 表示領域、604 ボタン、711,711a ピアサアーム、712,712a,812 回転軸、717,717a,817 軌道、720 マークセンサ、722 ラックセンサ、740 測定部、811 ノズルアーム、814 分注口、815 試薬保持部、816 洗浄口、L 搬送ライン、P1 第1吸引位置、P2 第2吸引位置、SYS 分析システム。

Claims (6)

  1.  検体を収容した試料容器を搬送する搬送装置と通信可能に接続され、前記試料容器に収容された検体を分析する分析装置であって、
     前記試料容器が載置される載置部と、
     検体を吸引するためのノズルと、
     前記試料容器に取り付けられた蓋部材を貫通するように構成された筒状の第1ピアサと、
     前記ノズルを移動させる第1移動機構と、
     前記第1ピアサを移動させる第2移動機構と、
     制御装置とを備え、
     前記載置部に載置された前記試料容器内の検体は、前記搬送装置によって搬送された前記試料容器内の検体が吸引される第1吸引位置とは異なる第2吸引位置で吸引され、
     前記ノズルの駆動範囲は、前記第1ピアサの駆動範囲の少なくとも一部と重なっており、
     前記制御装置は、
      前記搬送装置によって搬送された前記蓋部材が取り付けられていない第1試料容器から検体を前記ノズルにより吸引する場合、前記ノズルを前記第1吸引位置に移動させた後に前記第1吸引位置にある前記第1試料容器から検体を前記ノズルにより吸引する第1吸引動作が行われるように前記第1移動機構を制御し、
      前記第2吸引位置において、前記蓋部材が取り付けられた第2試料容器から検体を前記ノズルにより吸引する場合、前記第1ピアサを前記第2吸引位置に移動させた後に前記第1ピアサで前記蓋部材に孔を形成して前記ノズルを前記試料容器内に挿入し、前記第2吸引位置にある前記第2試料容器から検体を前記ノズルにより吸引する第2吸引動作が行われるように前記第1移動機構および前記第2移動機構を制御し、
      前記第1吸引動作中に前記第2試料容器が前記載置部に載置された場合、当該第1吸引動作後に前記搬送装置によって搬送される前記試料容器から検体を吸引するよりも先に前記第2吸引動作が行われるように前記第1移動機構および前記第2移動機構を制御するとともに、前記ノズルと前記第1ピアサとが衝突しないように前記第1移動機構および前記第2移動機構を制御する、分析装置。
  2.  前記制御装置は、前記第1試料容器に対する前記第1吸引動作中に前記第2試料容器が前記載置部に載置された場合、当該第1吸引動作により吸引した検体を反応容器に分注する動作を終えてから前記第2吸引動作が開始されるように前記第1移動機構および前記第2移動機構を制御する、請求項1に記載の分析装置。
  3.  前記制御装置は、前記第1吸引動作中に前記第2試料容器が前記載置部に載置された場合、当該第1吸引動作により吸引した検体を反応容器に分注する動作を終える前に前記第2吸引動作が開始されるように前記第1移動機構および前記第2移動機構を制御する、請求項1に記載の分析装置。
  4.  前記第2移動機構は、前記第1ピアサを前記第1吸引位置と前記第2吸引位置とに移動させる、請求項1~請求項3のうちいずれか1項に記載の分析装置。
  5.  前記蓋部材を貫通するように構成された筒状の第2ピアサと、
     前記第2ピアサを前記第1吸引位置に移動させる第3移動機構とをさらに備える、請求項1~請求項3のうちいずれか1項に記載の分析装置。
  6.  前記制御装置は、
      前記第1吸引位置に前記試料容器が搬送されたことを示す第1信号を前記搬送装置から受信したことに基づいて前記第1吸引位置での吸引動作を開始し、
      前記第1吸引位置での吸引動作を終えた以降に、新たな前記試料容器の搬送を開始可能である旨を示す第2信号を前記搬送装置に送信し、
      前記第2吸引動作中に前記第1信号を受信した場合、前記第2吸引動作中であることを前記搬送装置に通知することなく、受信した前記第1信号に基づいて行われる吸引動作を終えた以降に前記第2信号を前記搬送装置に送信する、請求項1~請求項5のうちいずれか1項に記載の分析装置。
PCT/JP2021/048459 2021-01-27 2021-12-27 分析装置 WO2022163275A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180091786.0A CN116802504A (zh) 2021-01-27 2021-12-27 分析装置
JP2022578185A JPWO2022163275A5 (ja) 2021-12-27 分析装置および分析システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021010752 2021-01-27
JP2021-010752 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022163275A1 true WO2022163275A1 (ja) 2022-08-04

Family

ID=82654541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048459 WO2022163275A1 (ja) 2021-01-27 2021-12-27 分析装置

Country Status (2)

Country Link
CN (1) CN116802504A (ja)
WO (1) WO2022163275A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294768A (ja) * 2002-03-29 2003-10-15 Aloka Co Ltd 検体前処理システム
JP2009008558A (ja) * 2007-06-28 2009-01-15 A & T Corp 分注装置、検体検査システム、分注方法、検体検査方法、分注プログラム、検体検査プログラム
JP2011508215A (ja) * 2007-12-20 2011-03-10 アボット・ラボラトリーズ 臨床分析器のためのサンプル管の自動装填
JP2015219023A (ja) * 2014-05-14 2015-12-07 株式会社島津製作所 サンプリング装置
JP2016223922A (ja) * 2015-05-29 2016-12-28 シスメックス株式会社 検体分析装置、搬送装置、及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294768A (ja) * 2002-03-29 2003-10-15 Aloka Co Ltd 検体前処理システム
JP2009008558A (ja) * 2007-06-28 2009-01-15 A & T Corp 分注装置、検体検査システム、分注方法、検体検査方法、分注プログラム、検体検査プログラム
JP2011508215A (ja) * 2007-12-20 2011-03-10 アボット・ラボラトリーズ 臨床分析器のためのサンプル管の自動装填
JP2015219023A (ja) * 2014-05-14 2015-12-07 株式会社島津製作所 サンプリング装置
JP2016223922A (ja) * 2015-05-29 2016-12-28 シスメックス株式会社 検体分析装置、搬送装置、及び方法

Also Published As

Publication number Publication date
CN116802504A (zh) 2023-09-22
JPWO2022163275A1 (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
JP5192263B2 (ja) 分析装置および検体の搬送方法
JP5178830B2 (ja) 自動分析装置
US8883078B2 (en) Sample testing system and transporting apparatus
US7957935B2 (en) Analyzer and method of restarting sample measurement
JP5850625B2 (ja) 分析装置及び位置確認方法
CN108700603B (zh) 自动分析装置
JPWO2010117044A1 (ja) 自動分析装置および分注装置
JP2011064660A (ja) 検体処理装置及び検体処理方法
WO2011122607A1 (ja) 検体分析装置および検体分析システム
JP5580636B2 (ja) 検体分析装置
JP3140422B2 (ja) 自動分析装置
WO2022163275A1 (ja) 分析装置
JP5869783B2 (ja) 自動分析装置
JP2010217047A (ja) 自動分析装置とその検体搬送方法
JP4908956B2 (ja) 分注装置
JP7329625B2 (ja) 自動分析装置、自動分析装置の表示システム、および自動分析装置における表示方法
JP6711690B2 (ja) 自動分析装置
JP7461963B2 (ja) 自動分析装置および試薬の分注方法
JP2023056431A (ja) 自動分析装置
JP2013148360A (ja) 自動分析装置、分注機構および分注方法
JP7054616B2 (ja) 自動分析装置
JP2000055926A (ja) 自動分析装置
JP2016170075A (ja) 自動分析装置及び自動分析方法
JP7298449B2 (ja) 血液凝固分析装置、及び分注ノズルの洗浄方法
JP2012132939A (ja) 検体処理装置及び検体処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578185

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180091786.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923278

Country of ref document: EP

Kind code of ref document: A1