WO2022163267A1 - 除湿装置及び除湿装置の制御方法 - Google Patents

除湿装置及び除湿装置の制御方法 Download PDF

Info

Publication number
WO2022163267A1
WO2022163267A1 PCT/JP2021/048271 JP2021048271W WO2022163267A1 WO 2022163267 A1 WO2022163267 A1 WO 2022163267A1 JP 2021048271 W JP2021048271 W JP 2021048271W WO 2022163267 A1 WO2022163267 A1 WO 2022163267A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
evaporator
compressed air
temperature
air
Prior art date
Application number
PCT/JP2021/048271
Other languages
English (en)
French (fr)
Inventor
昇 壷井
元 中村
克徳 濱田
Original Assignee
コベルコ・コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コベルコ・コンプレッサ株式会社 filed Critical コベルコ・コンプレッサ株式会社
Publication of WO2022163267A1 publication Critical patent/WO2022163267A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to a dehumidifier and a control method for the dehumidifier.
  • the compressed air dehumidifier of Patent Document 1 power consumption is reduced by adjusting the refrigerating capacity of the refrigerating cycle according to the outdoor temperature and changing the dew point temperature of the compressed air. For example, in the summer when it is hot outside and it is not necessary to completely dehumidify the compressed air, it is recommended to cool the compressed air to a temperature slightly higher than the target dew point temperature at which the compressed air can be dehumidified without causing condensation. In addition, the refrigerating capacity of the refrigerating cycle is adjusted.
  • Patent Document 1 power consumption cannot be reduced when it is desired to maintain the temperature of the compressed air below the target dew point temperature.
  • An object of the present disclosure is to reduce power consumption in a dehumidifier.
  • One aspect of the present disclosure includes a refrigerant circuit having a refrigerant compressor, a condenser, an expansion valve, and an evaporator, and an air compressor, and compressed air discharged from the air compressor passes through the evaporator.
  • an air flow path a motor that drives the refrigerant compressor, a temperature sensor that detects the temperature of the compressed air at the outlet of the evaporator, and a control unit that controls the rotation speed of the motor
  • a control unit provides the dehumidifying device for controlling the motor so that the number of revolutions of the motor is reduced when the temperature of the compressed air at the outlet of the evaporator falls below a predetermined temperature range.
  • the refrigerating capacity of the refrigerant circuit is required to maintain the temperature of the compressed air at the outlet of the evaporator within the specified temperature range. It is excessive than the normal refrigeration capacity. According to this configuration, when the refrigerating capacity of the refrigerant circuit is excessive, the power consumption of the dehumidifier can be reduced by reducing the rotation speed of the motor.
  • the predetermined temperature range may be a temperature range that includes the target dew point temperature of the compressed air at the outlet of the evaporator.
  • the predetermined temperature range is, for example, 8°C to 10°C.
  • a load detection unit that detects the load of the motor may be provided, and the control unit detects the load of the motor in advance when the temperature of the compressed air at the outlet of the evaporator exceeds the predetermined temperature range.
  • the motor may be controlled such that the number of revolutions of the motor decreases when a set upper limit is exceeded, and the number of revolutions of the motor increases when the load on the motor is equal to or less than the upper limit. .
  • the refrigerating capacity of the refrigerant circuit is required to maintain the temperature of the compressed air at the outlet of the evaporator within the specified temperature range. Insufficient than refrigeration capacity. According to this configuration, even when the refrigerating capacity of the refrigerant circuit is insufficient, when the load on the motor is excessive, the motor load is reduced by reducing the number of rotations of the motor, thereby protecting the motor. can. On the other hand, when the refrigerating capacity of the refrigerant circuit is insufficient and the load on the motor is not excessive, the refrigerating capacity of the refrigerant circuit is increased by increasing the rotation speed of the motor. Compressed air temperature can be lowered.
  • the air compressor may have a variable discharge flow rate.
  • the air flow path may have a heat exchanger that exchanges heat between the compressed air on the upstream side of the evaporator and the compressed air on the downstream side of the evaporator.
  • the motor may have a motor coil, and the load detection unit may detect a winding temperature of the motor coil as the load of the motor.
  • the load detection unit detects the temperature of the winding of the motor coil, so it is possible to more effectively prevent the motor from burning out, compared to the case where the load of the motor is detected by the motor current, for example.
  • Another aspect of the present disclosure includes a refrigerant circuit having a refrigerant compressor, a condenser, an expansion valve, and an evaporator, and an air compressor, wherein compressed air discharged from the air compressor passes through the evaporator.
  • a control method for a dehumidifying device is provided, which reduces the number of rotations of the motor when the temperature of the air falls below a predetermined temperature range.
  • power consumption can be reduced in the dehumidifier.
  • FIG. 1 is a schematic configuration diagram of a dehumidifier according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a diagram showing the relationship between the cooling heat load and the temperature of the compressed air at the outlet of the evaporator
  • 4 is a flowchart of motor rotation speed control executed by a control unit while the dehumidifier according to the embodiment is in operation.
  • FIG. 1 is a schematic configuration diagram of a dehumidifier 1 according to this embodiment.
  • the dehumidifier 1 includes a refrigerant compressor 10 , a motor 11 , a condenser 12 , an expansion valve 13 and an evaporator 14 .
  • the dehumidifier 1 also includes an air compressor 20 , an aftercooler 21 , and an economizer heat exchanger 22 .
  • the dehumidifier 1 includes a controller 30 and an inverter 31 .
  • the refrigerant compressor 10, the condenser 12, the expansion valve 13, and the evaporator 14 constitute a refrigerant circuit RC.
  • the refrigerant circulates through the refrigerant compressor 10, the condenser 12, the expansion valve 13, and the evaporator 14 in order.
  • the refrigerant of this embodiment is a natural refrigerant such as ammonia or an artificial refrigerant such as fluorocarbons, and does not contain air.
  • the refrigerant compressor 10 is a variable displacement compressor that compresses and discharges refrigerant.
  • the motor 11 is a variable speed motor that is mechanically connected to the refrigerant compressor 10 and drives the refrigerant compressor 10 . That is, as will be detailed later, the number of rotations of the motor 11 (the number of times the motor 11 rotates per unit time) can be increased and decreased within a certain range by the inverter 31 .
  • a load detector 15 for detecting the load of the motor 11 is connected to the motor 11 .
  • the load detector 15 of this embodiment detects a winding temperature Tm of a motor coil (not shown) of the motor 11 . In this embodiment, when the winding temperature Tm detected by the load detector 15 exceeds a preset upper limit value, the rotation speed of the motor 11 is decreased.
  • the condenser 12 is arranged on the discharge side (downstream side) of the refrigerant compressor 10 and is fluidly connected to the refrigerant compressor 10 via the first refrigerant flow path 16 .
  • the condenser 12 is a heat exchanger that cools and liquefies the high-temperature, high-pressure refrigerant gas discharged from the refrigerant compressor 10 .
  • the expansion valve 13 is arranged downstream of the condenser 12 and is fluidly connected to the condenser 12 via the second refrigerant flow path 17 .
  • the expansion valve 13 reduces the pressure of the refrigerant liquefied in the condenser 12 to a low temperature and a low pressure.
  • the evaporator 14 is arranged on the downstream side of the expansion valve 13 and on the suction side (upstream side) of the refrigerant compressor 10 .
  • the evaporator 14 is fluidly connected to the expansion valve 13 via a third refrigerant flow path 18 and fluidly connected to the refrigerant compressor 10 via a fourth refrigerant flow path 19 .
  • the evaporator 14 is a heat exchanger that exchanges heat between the refrigerant flowing through the refrigerant circuit RC and the air introduced into the evaporator 14 .
  • the liquid refrigerant that has been brought to a low temperature and low pressure by the expansion valve 13 is heated by the evaporator 14 to evaporate and is sucked into the refrigerant compressor 10 . Meanwhile, the air introduced into the evaporator 14 is cooled in the evaporator 14 .
  • a drain discharge port 14 c for discharging the drain accumulated in the evaporator 14 is provided in the lower part of the evaporator 14 .
  • the drain discharge port 14c is fluidly connected to a drain discharge passage 14d that guides the drain discharged from the drain discharge port 14c to the outside.
  • a drain discharge valve 14e for opening and closing the drain discharge passage 14d is provided in the drain discharge passage 14d.
  • the drain discharge valve 14e of this embodiment is an electromagnetic valve.
  • the drain discharge valve 14 e may be opened periodically, or may be opened when a sensor (not shown) detects that a predetermined amount of drain has accumulated in the evaporator 14 .
  • the drain discharge valve 14e is not limited to an electromagnetic valve, and may be a free float type air trap. Since the free-float type air trap does not require electrical opening/closing control, the drain can be discharged automatically without opening/closing control.
  • the air compressor 20, the aftercooler 21, the economizer heat exchanger 22, and the evaporator 14 constitute an air flow path AP.
  • the temperature of the compressed air at the outlet 14b of the evaporator 14 (outlet temperature To) is detected in the air flow path AP on the downstream side of the evaporator 14 (specifically, a fifth air flow path 28 described later).
  • a temperature sensor 23 is provided.
  • the air compressor 20 is a variable capacity compressor that compresses and discharges air sucked through the first air flow path 24 .
  • the air compressor 20 is driven by a variable speed motor (not shown), and the rotation speed of the variable speed motor can be increased and decreased within a certain range by an inverter (not shown).
  • the aftercooler 21 is arranged on the discharge side (downstream side) of the air compressor 20 and is fluidly connected to the air compressor 20 via the second air flow path 25 . Aftercooler 21 cools the compressed air discharged from air compressor 20 .
  • the economizer heat exchanger 22 is arranged downstream of the aftercooler 21 .
  • the economizer heat exchanger 22 comprises a first portion 22a fluidly connected to the aftercooler 21 via a third airflow passage 26. As shown in FIG.
  • the first portion 22a is fluidly connected via a fourth air flow path 27 with an inlet 14a for introducing compressed air to the evaporator 14 .
  • the economizer heat exchanger 22 also comprises a second portion 22b that is fluidly connected via a fifth airflow path 28 to an outlet 14b for discharging compressed air from the evaporator 14 . Compressed air that has passed through the second portion 22b is supplied to the outside via the sixth air flow path 29 .
  • the economizer heat exchanger 22 includes compressed air upstream of the evaporator 14 flowing through the first portion 22a and compressed air downstream of the evaporator 14 flowing through the second portion 22b (compressed air cooled in the evaporator 14). It is a heat exchanger that exchanges heat with air). Compressed air upstream of evaporator 14 is cooled in economizer heat exchanger 22 and compressed air downstream of evaporator 14 is heated in economizer heat exchanger 22 .
  • Air taken into the air flow path AP from the outside is dehumidified while flowing through the air flow path AP and supplied to the outside from the air flow path AP.
  • the air taken into the air flow path AP from the outside is compressed by the air compressor 20 and discharged as compressed air.
  • the discharge pressure of the air compressor 20 is, for example, 0.69 MPa.
  • the compressed air is cooled by the aftercooler 21.
  • the temperature of the compressed air at the outlet of the aftercooler 21 is 40° C., for example.
  • the compressed air is then further cooled in the economizer heat exchanger 22.
  • the temperature of the compressed air at the outlet of the economizer heat exchanger 22 is, for example, 30°C.
  • the compressed air is introduced into the evaporator 14 and cooled and dehumidified.
  • the temperature of the compressed air at the outlet 14b of the evaporator 14 (outlet temperature To) is 10° C., for example. That is, the dew point temperature of the compressed air at the outlet 14b of the evaporator 14 under a pressure of 0.69 MPa is 10.degree. At this time, the dew point temperature of compressed air under atmospheric pressure is -17.3°C.
  • the compressed air dehumidified by the evaporator 14 is heated by the economizer heat exchanger 22 and then supplied to the outside through the air flow path AP.
  • the control unit 30 includes a microcomputer, an input/output circuit, and the like.
  • a signal indicating the outlet temperature To is input from the temperature sensor 23 to the control unit 30, and a signal indicating the load of the motor 11 is input from the load detection unit 15 every moment.
  • the control unit 30 calculates the target rotation speed of the motor 11 based on the signals from the temperature sensor 23 and the load detection unit 15, and outputs a motor rotation speed command signal to the inverter 31.
  • the number of revolutions (the number of times the motor 11 rotates per unit time) is controlled.
  • the inverter 31 controls the rotation speed of the motor 11 by outputting a drive signal to the motor 11 based on the motor rotation speed command signal input from the control unit 30 .
  • a power supply 32 is electrically connected to the inverter 31 and AC power is supplied from the power supply 32 .
  • FIG. 2 is a graph showing the relationship between the temperature of the compressed air at the outlet 14b of the evaporator 14 (outlet temperature To) and the cooling heat load on the evaporator 14 when other conditions are the same.
  • the horizontal axis is the outlet temperature To [° C.]
  • the vertical axis is the cooling heat load in the evaporator 14 [arbitrary scale].
  • the graph shown in FIG. 2 shifts downward (the two-dot chain line reference). This is because the refrigerating capacity required to maintain the outlet temperature To within a predetermined temperature range, that is, the cooling heat load on the evaporator 14 is reduced.
  • the dehumidifier 1 is set so that the outlet temperature To is within a predetermined temperature range.
  • the region where the outlet temperature To is lower than the predetermined temperature range is indicated by the X region
  • the region where the outlet temperature To is within the predetermined temperature range is indicated by the Y region
  • the region where the outlet temperature To is above the predetermined temperature range. is shown in the Z region.
  • the predetermined temperature range is the temperature range that includes the target dew point temperature of the compressed air at the outlet of the evaporator.
  • the upper limit value of the predetermined temperature range may be the target dew point temperature
  • the lower limit value of the predetermined temperature range may be the target dew point temperature.
  • the upper limit of the predetermined temperature range is the target dew point temperature.
  • the target dew point temperature in this embodiment is the target dew point temperature under the pressure of 0.69 MPa of compressed air.
  • the target dew point temperature is 10°C
  • the predetermined temperature range is 8°C to 10°C, for example.
  • the refrigerating capacity of the refrigerant circuit RC is in a state that is neither excessive nor deficient with respect to the refrigerating capacity required to maintain the outlet temperature To within the predetermined temperature range. . Therefore, when the outlet temperature To belongs to the Y region, there is no need to change the rotation speed of the motor 11 .
  • the refrigerating capacity of the refrigerant circuit RC is greater than the refrigerating capacity required to maintain the outlet temperature To within the predetermined temperature range.
  • the refrigerating capacity of the refrigerant circuit RC is insufficient for keeping the outlet temperature To at or below the target dew point temperature. . Therefore, when the outlet temperature To belongs to the Z region, it is necessary to increase the rotational speed of the motor 11 to increase the refrigerating capacity of the refrigerant circuit RC.
  • FIG. 3 is a flowchart of rotation speed control of the motor 11 executed by the control unit 30 while the dehumidifier 1 is in operation.
  • the control unit 30 starts controlling the rotation speed of the motor 11 .
  • the rotation speed of the motor 11 immediately after the rotation speed control of the motor 11 is started is set in advance.
  • control unit 30 acquires the temperature of the compressed air at the outlet of the evaporator 14 (outlet temperature To) from the temperature sensor 23 (step S1).
  • control unit 30 determines to which of the above-described X, Y, and Z regions (shown in FIG. 2) the acquired outlet temperature To belongs (step S2).
  • step S2 When it is determined in step S2 that the outlet temperature To belongs to the X region, the controller 30 reduces the rotation speed of the motor 11 (step S7). After that, the rotation speed control of the motor 11 proceeds to step S6.
  • step S2 When it is determined in step S2 that the outlet temperature To belongs to the Y region, the controller 30 does not change the rotation speed of the motor 11. After that, the rotation speed control of the motor 11 proceeds to step S6.
  • step S2 when it is determined that the outlet temperature To belongs to the Z region, the control unit 30 acquires the load information of the motor 11 (in this embodiment, the winding temperature Tm of the motor coil) from the load detection unit 15. (Step S3).
  • control unit 30 determines whether or not the load of the motor 11 is equal to or less than the upper limit (step S4). In this embodiment, it is determined whether or not the winding temperature Tm of the motor coil is equal to or lower than a preset upper limit value.
  • step S7 when it is determined in step S4 that the winding temperature Tm of the motor coil exceeds the preset upper limit value, the control unit 30 reduces the rotation speed of the motor 11 (step S7).
  • the winding temperature Tm of the motor coil exceeds a preset upper limit value, the motor 11 is in an overloaded state, so the rotation speed of the motor 11 is reduced to protect the motor 11 .
  • the rotation speed control of the motor 11 proceeds to step S6.
  • step S4 if it is determined in step S4 that the winding temperature Tm of the motor coil is equal to or lower than the preset upper limit value, the control unit 30 increases the rotation speed of the motor 11 (step S5 ). After that, the rotation speed control of the motor 11 proceeds to step S6.
  • control unit 30 determines whether the air compressor 20 is stopped.
  • step S6 When it is determined in step S6 that the air compressor 20 has stopped, the control unit 30 terminates the rotation speed control of the motor 11.
  • step S6 if it is determined in step S6 that the air compressor 20 has not stopped, the rotation speed control of the motor 11 returns to step S1 again.
  • the dehumidifier 1 of this embodiment has the following functions.
  • the refrigerating capacity of the refrigerant circuit RC is required to maintain the outlet temperature To within the predetermined temperature range. It is excessive than the normal refrigeration capacity.
  • the rotation speed of the motor 11 is reduced, so that the power consumption of the dehumidifier 1 can be reduced.
  • the air compressor 20 is a variable displacement compressor as in this embodiment, the flow rate of the compressed air introduced into the evaporator 14 increases or decreases.
  • the outlet temperature To decreases if the refrigerating capacity of the refrigerant circuit RC is constant.
  • the dehumidifier 1 of the present embodiment power consumption can be reduced when the outlet temperature To drops below a predetermined temperature range. Therefore, it is particularly effective when the air compressor 20 is a variable displacement compressor.
  • the refrigerating capacity of the refrigerant circuit RC is insufficient for maintaining the outlet temperature To within the predetermined temperature range.
  • the refrigerating capacity of the refrigerant circuit RC is insufficient than the required refrigerating capacity, when the load on the motor 11 is excessive, the rotation speed of the motor 11 is reduced to 11 is reduced, and the motor 11 can be protected.
  • the refrigerating capacity of the refrigerant circuit RC is less than the required refrigerating capacity and the load on the motor 11 is not excessive, the rotation speed of the motor 11 is increased to increase the refrigerating capacity of the refrigerant circuit RC. By increasing it, the outlet temperature To can be lowered.
  • the economizer heat exchanger 22 exchanges heat between the compressed air upstream of the evaporator 14 and the compressed air downstream of the evaporator 14 cooled by the evaporator 14, The temperature of the compressed air entering evaporator 14 decreases. As a result, power consumption can be reduced.
  • the temperature of the compressed air at the outlet of the evaporator 14 can be controlled to a predetermined temperature. Even so, the required dew point temperature can be maintained while preventing the efficiency of the refrigerant circuit RC (that is, the refrigeration type dehumidifier) from decreasing due to excessive cooling of the compressed air. Thereby, the best efficiency as a refrigerant circuit RC (refrigerating dehumidifier) can be obtained, and power consumption can be reduced.
  • the efficiency of the refrigerant circuit RC that is, the refrigeration type dehumidifier
  • the load detection unit 15 detects the winding temperature of the motor coil, compared with the case where the load of the motor 11 is detected by the motor current, for example, burning of the motor 11 can be prevented more effectively.
  • the air compressor 20 of the embodiment is an inverter type variable displacement compressor, but it is not limited to this, and the discharge amount may be changed by performing suction throttling.
  • the air compressor 20 of the embodiment is an inverter type variable displacement compressor, but is not limited to this, and may be a fixed displacement compressor.
  • the load detection unit 15 of the embodiment detects the winding temperature Tm of the motor coil
  • the present invention is not limited to this, and the motor current of the motor 11 may be detected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Gases (AREA)

Abstract

除湿装置1は、冷媒圧縮機10、凝縮器12、膨張弁13、及び蒸発器14を有する冷媒回路RCと、空気圧縮機20を有し、空気圧縮機20から吐出された圧縮空気が蒸発器14を介して流れる空気流路APと、冷媒圧縮機10を駆動するモータ11と、蒸発器14の出口での圧縮空気の温度を検出する温度センサ23と、モータ11の回転数を制御する制御部30とを備える。制御部30は、蒸発器14の出口での圧縮空気の温度が所定の温度範囲を下回った場合、モータ11の回転数が減少するように、モータ11を制御する。

Description

除湿装置及び除湿装置の制御方法
 本開示は、除湿装置及び除湿装置の制御方法に関する。
 特許文献1の圧縮空気除湿装置では、屋外の温度に応じて冷凍サイクルの冷凍能力を調整して、圧縮空気の露点温度を変えることで、消費電力の低減を図っている。例えば、屋外が高温であり、圧縮空気を完全に除湿する必要がない夏季において、結露水を生じさせない程度に圧縮空気を除湿可能な目標露点温度よりも僅かに高い温度まで圧縮空気を冷却するように、冷凍サイクルの冷凍能力を調整している。
特開2003-326126号公報
 しかし、特許文献1では、圧縮空気の温度を目標露点温度以下に維持したい場合に、消費電力の低減を図れない。
 本開示は、除湿装置において消費電力の低減を図ることを目的とする。
 本開示の一態様は、冷媒圧縮機、凝縮器、膨張弁、及び蒸発器を有する冷媒回路と、空気圧縮機を有し、前記空気圧縮機から吐出された圧縮空気が前記蒸発器を介して流れる空気流路と、前記冷媒圧縮機を駆動するモータと、前記蒸発器の出口での前記圧縮空気の温度を検出する温度センサと、前記モータの回転数を制御する制御部とを備え、前記制御部は、前記蒸発器の出口での前記圧縮空気の温度が所定の温度範囲を下回った場合、前記モータの回転数が減少するように、前記モータを制御する、除湿装置を提供する。
 蒸発器の出口での圧縮空気の温度が所定の温度範囲を下回っている場合、冷媒回路の冷凍能力が、蒸発器の出口での圧縮空気の温度を所定の温度範囲内に維持するために必要な冷凍能力よりも過大である。この構成によれば、冷媒回路の冷凍能力が過大である場合に、モータの回転数を減少させることで、除湿装置の消費電力を低減できる。
 所定の温度範囲は、蒸発器の出口での圧縮空気の目標露点温度を含む温度範囲であってもよい。
 例えば、目標露点温度が10℃である場合、所定の温度範囲は、例えば、8℃から10℃である。
 前記モータの負荷を検出する負荷検出部を備えてもよく、前記制御部は、前記蒸発器の出口での前記圧縮空気の温度が上記所定の温度範囲を上回った場合、前記モータの負荷が予め設定された上限値を超えるときに前記モータの回転数が減少し、前記モータの負荷が前記上限値以下であるときに前記モータの回転数が増加するように、前記モータを制御してもよい。
 蒸発器の出口での圧縮空気の温度が所定の温度範囲を上回った場合、冷媒回路の冷凍能力が、蒸発器の出口での圧縮空気の温度を所定の温度範囲内に維持するために必要な冷凍能力よりも不足している。この構成によれば、冷媒回路の冷凍能力が不足している場合であっても、モータの負荷が過大であるときには、モータの回転数を減少させることでモータの負荷が軽減し、モータを保護できる。一方で、冷媒回路の冷凍能力が不足している場合に、モータの負荷が過大でないときは、モータの回転数を増加させて冷媒回路の冷凍能力を増加させることで、蒸発器の出口での圧縮空気の温度を低下できる。
 前記空気圧縮機は、吐出流量が可変であってもよい。
 前記空気流路は、前記蒸発器よりも上流側での前記圧縮空気と前記蒸発器よりも下流側での前記圧縮空気との間で熱交換させる熱交換器を有してもよい。
 蒸発器に流入する圧縮空気の温度が低いほど、蒸発器の出口での圧縮空気の温度を所定の温度範囲内に維持するために必要な冷凍能力は減少する。つまり、蒸発器に流入する圧縮空気の温度が低いほど、蒸発器の出口での圧縮空気の温度が所定の温度範囲を上回らないようにするために必要な冷媒圧縮機のモータの回転数は低下する。この構成によれば、蒸発器よりも上流側での圧縮空気と、蒸発器で冷却された蒸発器よりも下流側の圧縮空気とを熱交換させることで、蒸発器に流入する圧縮空気の温度が低下する。その結果、消費電力を低減できる。
 前記モータは、モータコイルを有しており、前記負荷検出部は、前記モータの負荷として前記モータコイルの巻線温度を検出してもよい。
 この構成によれば、負荷検出部がモータコイルの巻線温度を検出するため、例えばモータ電流によりモータの負荷を検出する場合と比較して、モータの焼損をより効果的に防止できる。
 本開示の他の態様は、冷媒圧縮機、凝縮器、膨張弁、及び蒸発器を有する冷媒回路と、空気圧縮機を有し、前記空気圧縮機から吐出された圧縮空気が前記蒸発器を介して流れる空気流路と、前記冷媒圧縮機を駆動するモータと、前記蒸発器の出口での前記圧縮空気の温度を検出する温度センサとを備える除湿装置において、前記蒸発器の出口での前記圧縮空気の温度が所定の温度範囲を下回った場合に、前記モータの回転数を減少させる、除湿装置の制御方法を提供する。
 本開示によれば、除湿装置において消費電力を低減できる。
本開示の実施形態に係る除湿装置の概略構成図。 冷却熱負荷と、蒸発器の出口での圧縮空気の温度との関係を示す図。 実施形態に係る除湿装置の稼働中において制御部が実行するモータの回転数制御のフローチャート。
 以下、添付の図面を参照して、本開示の実施形態を説明する。
 図1は、本実施形態に係る除湿装置1の概略構成図である。
(全体構成)
 図1を参照すると、除湿装置1は、冷媒圧縮機10と、モータ11と、凝縮器12と、膨張弁13と、蒸発器14とを備える。また、除湿装置1は、空気圧縮機20と、アフタークーラー21と、エコノマイザ熱交換器22とを備える。さらに、除湿装置1は、制御部30と、インバータ31とを備える。
(冷媒回路)
 冷媒圧縮機10と、凝縮器12と、膨張弁13と、蒸発器14とは、冷媒回路RCを構成している。冷媒回路RCでは、冷媒圧縮機10、凝縮器12、膨張弁13、及び蒸発器14を順に冷媒が流れて循環する。本実施形態の冷媒は、アンモニア等の自然冷媒又はフロン類のような人工冷媒であり、空気を含まない。
 冷媒圧縮機10は、冷媒を圧縮して吐出する可変容量型圧縮機である。
 モータ11は、冷媒圧縮機10に機械的に接続され、冷媒圧縮機10を駆動する可変速モータである。つまり、後に詳述するとおり、モータ11の回転数(単位時間当たりにモータ11が回転する回数)は、インバータ31により、一定範囲で増加及び減少させることができる。モータ11には、モータ11の負荷を検出する負荷検出部15が接続されている。本実施形態の負荷検出部15は、モータ11のモータコイル(図示せず)の巻線温度Tmを検出する。本実施形態では、負荷検出部15により検出された巻線温度Tmが予め設定された上限値を超える場合、モータ11の回転数を減少させる。
 凝縮器12は、冷媒圧縮機10の吐出側(下流側)に配置されており、第1冷媒流路16を介して冷媒圧縮機10に流体的に接続されている。凝縮器12は、冷媒圧縮機10から吐出された高温・高圧の冷媒ガスを冷却して液化させる熱交換器である。
 膨張弁13は、凝縮器12の下流側に配置されており、第2冷媒流路17を介して凝縮器12に流体的に接続されている。膨張弁13は、凝縮器12で液化した冷媒を減圧し、低温・低圧にする。
 蒸発器14は、膨張弁13の下流側かつ冷媒圧縮機10の吸込側(上流側)に配置されている。蒸発器14は、第3冷媒流路18を介して膨張弁13に流体的に接続されており、第4冷媒流路19を介して冷媒圧縮機10に流体的に接続されている。蒸発器14は、冷媒回路RCを流れる冷媒と、蒸発器14内に導入された空気との間で熱交換をさせる熱交換器である。膨張弁13で低温かつ低圧にされた液冷媒は、蒸発器14で加熱されて蒸発し、冷媒圧縮機10に吸い込まれる。一方で、蒸発器14内に導入された空気は、蒸発器14で冷却される。
 蒸発器14内に導入された空気が蒸発器14で冷却されることで、空気に含まれる水分が凝縮し、ドレンが発生する。蒸発器14の下部には、蒸発器14内に溜まったドレンを排出するためのドレン排出口14cが設けられている。ドレン排出口14cには、ドレン排出口14cから排出されたドレンを外部に案内するドレン排出流路14dが流体的に接続されている。また、ドレン排出流路14dには、ドレン排出流路14dを開閉するドレン排出弁14eが設けられている。本実施形態のドレン排出弁14eは、電磁弁である。ドレン排出弁14eは、定期的に開放してもよいし、ドレンが蒸発器14内に所定量溜まったことをセンサ(図示せず)で検知したときに開放してもよい。ドレン排出弁14eは、電磁弁に限定されず、フリーフロート式のエアトラップであってもよい。フリーフロート式のエアトラップであれば、電気的な開閉制御が不要であるため、開閉制御を行うことなく自動的にドレンを排出できる。
 (空気流路)
 本実施形態では、空気圧縮機20と、アフタークーラー21と、エコノマイザ熱交換器22と、蒸発器14とは、空気流路APを構成している。空気流路APのうち、蒸発器14の下流側(具体的には、後述する第5空気流路28)には、蒸発器14の出口14bでの圧縮空気の温度(出口温度To)を検出する温度センサ23が設けられている。
 空気圧縮機20は、第1空気流路24を介して吸い込まれた空気を圧縮して吐出する可変容量型圧縮機である。空気圧縮機20は、図示しない可変速モータにより駆動され、上記可変速モータの回転数は、図示しないインバータにより一定範囲で増加及び減少させることができる。
 アフタークーラー21は、空気圧縮機20の吐出側(下流側)に配置されており、第2空気流路25を介して空気圧縮機20に流体的に接続されている。アフタークーラー21は、空気圧縮機20から吐出された圧縮空気を冷却する。
 エコノマイザ熱交換器22は、アフタークーラー21の下流側に配置されている。エコノマイザ熱交換器22は、第3空気流路26を介してアフタークーラー21に流体的に接続された第1部分22aを備える。第1部分22aは、第4空気流路27を介して、蒸発器14に圧縮空気を導入するための入口14aと流体的に接続されている。
 また、エコノマイザ熱交換器22は、第5空気流路28を介して、蒸発器14から圧縮空気を排出するための出口14bと流体的に接続されている第2部分22bを備える。第2部分22bを通過した圧縮空気は、第6空気流路29を介して外部に供給される。
 エコノマイザ熱交換器22は、第1部分22aを流れる蒸発器14の上流側での圧縮空気と、第2部分22bを流れる蒸発器14の下流側での圧縮空気(蒸発器14で冷却された圧縮空気)との間で熱交換をさせる熱交換器である。蒸発器14の上流側の圧縮空気は、エコノマイザ熱交換器22で冷却され、蒸発器14の下流側の圧縮空気は、エコノマイザ熱交換器22で加熱される。
(空気の流れ)
 外部から空気流路APに取り込まれた空気は、空気流路APを流れながら除湿されて空気流路APから外部に供給される。
 まず、外部から空気流路APに取り込まれた空気は、空気圧縮機20で圧縮されて圧縮空気として吐出される。本実施形態では、空気圧縮機20の吐出圧力は、例えば0.69MPaである。
 次に、圧縮空気は、アフタークーラー21で冷却される。本実施形態では、アフタークーラー21の出口での圧縮空気の温度は、例えば40℃である。
 そして、圧縮空気は、エコノマイザ熱交換器22で更に冷却される。本実施形態では、エコノマイザ熱交換器22の出口での圧縮空気の温度は、例えば30℃である。
 その後、圧縮空気は、蒸発器14内に導入され、冷却・除湿される。本実施形態では、蒸発器14の出口14bでの圧縮空気の温度(出口温度To)は、例えば10℃である。つまり、蒸発器14の出口14bにおける圧縮空気の0.69MPa圧力下での露点温度は、10℃である。このとき、圧縮空気の大気圧下での露点温度は、-17.3℃である。
 最後に、蒸発器14で除湿された圧縮空気は、エコノマイザ熱交換器22で加熱された後、空気流路APから外部に供給される。
(制御部・インバータ)
 制御部30は、マイクロコンピュータ及び入出力回路などからなる。制御部30には、温度センサ23から出口温度Toを示す信号が入力され、負荷検出部15からモータ11の負荷を示す信号が時々刻々と入力される。制御部30は、温度センサ23及び負荷検出部15からの信号に基づいて目標とするモータ11の回転数を算出し、インバータ31に対してモータ回転数指令信号を出力することで、モータ11の回転数(単位時間当たりにモータ11が回転する回数)を制御する。
 インバータ31は、制御部30から入力されたモータ回転数指令信号に基づいて、モータ11に駆動信号を出力することにより、モータ11の回転数を制御する。また、インバータ31には、電源32が電気的に接続されており、電源32から交流電力が供給されている。
(圧縮空気の温度と蒸発器での冷却熱負荷の関係)
 図2は、他の条件が同一である場合における、蒸発器14の出口14bでの圧縮空気の温度(出口温度To)と、蒸発器14での冷却熱負荷との関係を示すグラフである。図2において横軸が出口温度To[℃]であり、縦軸が蒸発器14での冷却熱負荷[任意目盛]である。
 図2に示すグラフは、空気圧縮機20の吐出流量が低下した場合又は蒸発器14に導入された圧縮空気の温度が低下した場合には、下側に移動する(図2中の二点鎖線参照)。これは、出口温度Toが所定の温度範囲内に維持するために必要な冷凍能力、つまり蒸発器14での冷却熱負荷が低下するためである。
 図2を参照すると、出口温度Toが高いほど、蒸発器14での冷却熱負荷は増大する。除湿装置1は、出口温度Toが所定の温度範囲になるように設定されている。図2において、出口温度Toが所定の温度範囲を下回る領域をX領域で示し、出口温度Toが所定の温度範囲内にある領域をY領域で示し、出口温度Toが所定の温度範囲を上回る領域をZ領域で示している。所定の温度範囲とは、蒸発器の出口での圧縮空気の目標露点温度を含む温度範囲である。すなわち、所定の温度範囲内に目標露点温度が含まれればよいため、所定の温度範囲の上限値が目標露点温度であってもよく、所定の温度範囲の下限値が目標露点温度であってもよい。所定の温度範囲の上限値が目標露点温度であることが好ましい。また、本実施形態の目標露点温度とは、圧縮空気の0.69MPa圧力下での目標とする露点温度である。本実施形態では、目標露点温度が10℃であり、例えば、所定の温度範囲は、8℃から10℃である。
 出口温度Toが所定の温度範囲内にあるY領域では、冷媒回路RCの冷凍能力が、出口温度Toを所定の温度範囲に維持するために必要な冷凍能力に対して過不足がない状態である。このため、出口温度ToがY領域に属する場合、モータ11の回転数を変更する必要がない。
 出口温度Toが所定の温度範囲の下限値未満であるX領域では、冷媒回路RCの冷凍能力が、出口温度Toを所定の温度範囲内に維持するために必要な冷凍能力よりも過大である。出口温度ToがX領域に属するとき、モータ11の回転数を下げることで、出口温度ToがX領域からY領域に遷移し、出口温度Toは所定の温度範囲内に維持される。このため、出口温度ToがX領域に属する場合、モータ11の回転数を下げて消費電力を低減する余地がある。
 一方で、出口温度Toが所定の温度範囲の上限値を超えるZ領域では、冷媒回路RCの冷凍能力が、出口温度Toを目標露点温度以下に保つために必要な冷凍能力よりも不足している。このため、出口温度ToがZ領域に属する場合、モータ11の回転数を上げて、冷媒回路RCの冷凍能力を上げる必要がある。
(モータの回転数制御)
 以下、除湿装置1の稼働中において制御部30が実行するモータ11の回転数制御について説明する。図3は、除湿装置1の稼働中において制御部30が実行するモータ11の回転数制御のフローチャートである。
 図3を参照すると、制御部30は、空気圧縮機20が起動すると、モータ11の回転数制御を開始する。モータ11の回転数制御が開始された直後のモータ11の回転数は、予め設定される。
 まず、制御部30は、温度センサ23から、蒸発器14の出口での圧縮空気の温度(出口温度To)を取得する(ステップS1)。
 次に、制御部30は、取得した出口温度Toが上述したX,Y,Z領域(図2に示す)のいずれに属するかを判定する(ステップS2)。
 ステップS2において、出口温度ToがX領域に属すると判定された場合、制御部30は、モータ11の回転数を減少させる(ステップS7)。その後、モータ11の回転数制御は、ステップS6に進む。
 ステップS2において、出口温度ToがY領域に属すると判定された場合、制御部30は、モータ11の回転数を変更しない。その後、モータ11の回転数制御は、ステップS6に進む。
 ステップS2において、出口温度ToがZ領域に属すると判定された場合、制御部30は、負荷検出部15からモータ11の負荷情報(本実施形態では、モータコイルの巻線温度Tm)を取得する(ステップS3)。
 その後、制御部30は、モータ11の負荷が上限値以下か否かを判定する(ステップS4)。本実施形態では、モータコイルの巻線温度Tmが予め設定された上限値以下か否かを判定する。
 本実施形態では、ステップS4において、モータコイルの巻線温度Tmが予め設定された上限値を超えると判定された場合、制御部30は、モータ11の回転数を減少させる(ステップS7)。モータコイルの巻線温度Tmが予め設定された上限値を超える場合、モータ11が過負荷状態であるため、モータ11の回転数を減少させることでモータ11が保護される。その後、モータ11の回転数制御は、ステップS6に進む。
 一方で、本実施形態において、ステップS4においてモータコイルの巻線温度Tmが予め設定された上限値以下であると判定された場合、制御部30は、モータ11の回転数を増加させる(ステップS5)。その後、モータ11の回転数制御は、ステップS6に進む。
 ステップS6では、制御部30は、空気圧縮機20が停止しているか否かを判定する。
 ステップS6において、空気圧縮機20が停止していると判定された場合、制御部30は、モータ11の回転数制御を終了する。
 一方で、ステップS6において、空気圧縮機20が停止していないと判定された場合、モータ11の回転数制御は、再びステップS1に戻る。
 本実施形態の除湿装置1は、以下の機能を有する。
 蒸発器14の出口での圧縮空気の温度(出口温度To)が所定の温度範囲を下回っている場合、冷媒回路RCの冷凍能力は、出口温度Toを所定の温度範囲内に維持するために必要な冷凍能力よりも過大である。本実施形態では、冷媒回路RCの冷凍能力が上記必要な冷凍能力よりも過大である場合に、モータ11の回転数を減少させるため、除湿装置1の消費電力を低減できる。
 本実施形態のように空気圧縮機20が可変容量型の圧縮機である場合には、蒸発器14に導入される圧縮空気の流量が増減する。蒸発器14に導入される圧縮空気の流量が減少した場合、冷媒回路RCの冷凍能力が一定であると、出口温度Toは低下する。本実施形態の除湿装置1によれば、出口温度Toが低下し、所定の温度範囲を下回った場合に、消費電力を低減できる。このため、空気圧縮機20が可変容量型の圧縮機である場合に特に有効である。
 出口温度Toが所定の温度範囲を上回っている場合、冷媒回路RCの冷凍能力は、出口温度Toを所定の温度範囲内に維持するために必要な冷凍能力よりも不足している。本実施形態では、冷媒回路RCの冷凍能力が上記必要な冷凍能力よりも不足している場合であっても、モータ11の負荷が過大であるときには、モータ11の回転数を減少させることでモータ11の負荷が軽減し、モータ11を保護できる。一方で、冷媒回路RCの冷凍能力が上記必要な冷凍能力よりも不足している場合に、モータ11の負荷が過大でないときは、モータ11の回転数を増加させて冷媒回路RCの冷凍能力を増加させることで、出口温度Toを低下できる。
 蒸発器14に流入する圧縮空気の温度が低いほど、出口温度Toを所定の温度範囲内に維持するために必要な冷凍能力は減少する。つまり、出口温度Toが所定の温度範囲を上回らないようにするために必要な冷媒圧縮機10のモータ11の回転数は低下する。本実施形態では、エコノマイザ熱交換器22によって、蒸発器14よりも上流側での圧縮空気と、蒸発器14で冷却された蒸発器14よりも下流側の圧縮空気とを熱交換させることで、蒸発器14に流入する圧縮空気の温度が低下する。その結果、消費電力を低減できる。
 以上のことから、本実施形態の除湿装置1によれば、蒸発器14の出口での圧縮空気の温度を所定の温度に制御できるので、たとえ空気圧縮機20の吐出空気量が変化した場合であっても、圧縮空気の冷やし過ぎによる冷媒回路RC(すなわち冷凍式除湿装置)の効率低下を防止しつつ、必要な露点温度を保持できる。それにより、冷媒回路RC(冷凍式除湿装置)としての最良の効率を得ることができ、消費電力を低減できる。
 さらに、本実施形態の除湿装置1によれば、負荷検出部15がモータコイルの巻線温度を検出するため、例えばモータ電流によりモータ11の負荷を検出する場合と比較して、モータ11の焼損をより効果的に防止できる。
 以上より、本開示の具体的な実施形態およびその変形例について説明したが、本開示は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。
 例えば、実施形態の空気圧縮機20は、インバータ式の可変容量型の圧縮機であったが、これに限定されず、吸込絞りを行うことで吐出量を変更してもよい。
 また、実施形態の空気圧縮機20は、インバータ式の可変容量型の圧縮機であったが、これに限定されず、固定容量形の圧縮機であってもよい。
 実施形態の負荷検出部15は、モータコイルの巻線温度Tmを検出していたが、これに限定されず、モータ11のモータ電流を検出してもよい。
  1 除湿装置
  10 冷媒圧縮機
  11 モータ
  12 凝縮器
  13 膨張弁
  14 蒸発器
  14a 入口
  14b 出口
  14c ドレン排出口
  14d ドレン排出流路
  14e ドレン排出弁
  15 負荷検出部
  20 空気圧縮機
  21 アフタークーラー
  22 エコノマイザ熱交換器
  22a 第1部分
  22b 第2部分
  23 温度センサ
  30 制御部
  31 インバータ
  RC 冷媒回路
  AP 空気流路

Claims (10)

  1.  冷媒圧縮機、凝縮器、膨張弁、及び蒸発器を有する冷媒回路と、
     空気圧縮機を有し、前記空気圧縮機から吐出された圧縮空気が前記蒸発器を介して流れる空気流路と、
     前記冷媒圧縮機を駆動するモータと、
     前記蒸発器の出口での前記圧縮空気の温度を検出する温度センサと、
     前記モータの回転数を制御する制御部と
     を備え、
     前記制御部は、前記蒸発器の出口での前記圧縮空気の温度が所定の温度範囲を下回った場合、前記モータの回転数が減少するように、前記モータを制御する、除湿装置。
  2.  前記所定の温度範囲は、前記蒸発器の出口での前記圧縮空気の目標露点温度を含む温度範囲である、請求項1に記載の除湿装置。
  3.  前記モータの負荷を検出する負荷検出部を備え、
     前記制御部は、前記蒸発器の出口での前記圧縮空気の温度が上記所定の温度範囲を上回った場合、前記モータの負荷が予め設定された上限値を超えるときに前記モータの回転数が減少し、前記モータの負荷が前記上限値以下であるときに前記モータの回転数が増加するように、前記モータを制御する、請求項1又は2に記載の除湿装置。
  4.  前記空気圧縮機は、吐出流量が可変である、請求項1又は2に記載の除湿装置。
  5.  前記空気圧縮機は、吐出流量が可変である、請求項3に記載の除湿装置。
  6.  前記空気流路は、前記蒸発器よりも上流側での前記圧縮空気と前記蒸発器よりも下流側での前記圧縮空気との間で熱交換させる熱交換器を有する、請求項1又は2に記載の除湿装置。
  7.  前記空気流路は、前記蒸発器よりも上流側での前記圧縮空気と前記蒸発器よりも下流側での前記圧縮空気との間で熱交換させる熱交換器を有する、請求項3に記載の除湿装置。
  8.  前記空気流路は、前記蒸発器よりも上流側での前記圧縮空気と前記蒸発器よりも下流側での前記圧縮空気との間で熱交換させる熱交換器を有する、請求項5に記載の除湿装置。
  9.  前記モータは、モータコイルを有し、
     前記負荷検出部は、前記モータの負荷として前記モータコイルの巻線温度を検出する、請求項3に記載の除湿装置。
  10.  冷媒圧縮機、凝縮器、膨張弁、及び蒸発器を有する冷媒回路と、
     空気圧縮機を有し、前記空気圧縮機から吐出された圧縮空気が前記蒸発器を介して流れる空気流路と、
     前記冷媒圧縮機を駆動するモータと、
     前記蒸発器の出口での前記圧縮空気の温度を検出する温度センサと
     を備える除湿装置において、
     前記蒸発器の出口での前記圧縮空気の温度が所定の温度範囲を下回った場合、前記モータの回転数を減少させる、除湿装置の制御方法。
PCT/JP2021/048271 2021-01-26 2021-12-24 除湿装置及び除湿装置の制御方法 WO2022163267A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021010599A JP2022114337A (ja) 2021-01-26 2021-01-26 除湿装置及び除湿装置の制御方法
JP2021-010599 2021-01-26

Publications (1)

Publication Number Publication Date
WO2022163267A1 true WO2022163267A1 (ja) 2022-08-04

Family

ID=82654512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048271 WO2022163267A1 (ja) 2021-01-26 2021-12-24 除湿装置及び除湿装置の制御方法

Country Status (3)

Country Link
JP (1) JP2022114337A (ja)
TW (1) TW202233296A (ja)
WO (1) WO2022163267A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505813A (ja) * 2005-08-25 2009-02-12 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ 冷却乾燥のための改良された装置
JP2019195747A (ja) * 2018-05-07 2019-11-14 三菱電機株式会社 除湿機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505813A (ja) * 2005-08-25 2009-02-12 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ 冷却乾燥のための改良された装置
JP2019195747A (ja) * 2018-05-07 2019-11-14 三菱電機株式会社 除湿機

Also Published As

Publication number Publication date
TW202233296A (zh) 2022-09-01
JP2022114337A (ja) 2022-08-05

Similar Documents

Publication Publication Date Title
JP5472391B2 (ja) コンテナ用冷凍装置
AU2002332260B2 (en) Air conditioner
JP2008224210A (ja) 空気調和装置、及び空気調和装置の運転制御方法
JP5370551B1 (ja) コンテナ用冷凍装置
JP4290480B2 (ja) 温度制御方法
JP2018204898A (ja) マルチ型空気調和機の制御装置、マルチ型空気調和機、マルチ型空気調和機の制御方法及びマルチ型空気調和機の制御プログラム
JP2016166710A (ja) 空気調和システム
CA3095390C (en) Modulating reheat operation of hvac system
KR101677031B1 (ko) 공기조화기 및 그 운전방법
KR101558503B1 (ko) 멀티형 공기조화기 및 그 운전 방법
JP2009210213A (ja) 鉄道車両用空調装置
WO2022163267A1 (ja) 除湿装置及び除湿装置の制御方法
JP2007085659A (ja) 空気調和機の制御装置
US10914487B2 (en) Low load mode of HVAC system
KR101186326B1 (ko) 공기조화기 및 그 제어방법
JP3306455B2 (ja) 空気調和装置
JP2005055053A (ja) 空気調和装置
JPH0252955A (ja) 冷却装置とその制御方法
JPH0682122A (ja) 冷凍装置
JP4726658B2 (ja) 冷凍システム
KR100717463B1 (ko) 공기 조화기 및 공기 조화기의 제어 방법
JP7496938B2 (ja) 空気調和装置
JP4726657B2 (ja) 冷凍システム
JP2006153406A (ja) 冷却システムおよびショーケース冷却装置
JPH04344056A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923270

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923270

Country of ref document: EP

Kind code of ref document: A1