WO2022163099A1 - 活物質粒子、電気化学素子、および電気化学デバイス - Google Patents

活物質粒子、電気化学素子、および電気化学デバイス Download PDF

Info

Publication number
WO2022163099A1
WO2022163099A1 PCT/JP2021/043116 JP2021043116W WO2022163099A1 WO 2022163099 A1 WO2022163099 A1 WO 2022163099A1 JP 2021043116 W JP2021043116 W JP 2021043116W WO 2022163099 A1 WO2022163099 A1 WO 2022163099A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
active material
carbon
particles
oxide
Prior art date
Application number
PCT/JP2021/043116
Other languages
English (en)
French (fr)
Inventor
修平 内田
吉宣 佐藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP21923104.0A priority Critical patent/EP4287310A1/en
Priority to JP2022578077A priority patent/JPWO2022163099A1/ja
Priority to CN202180091719.9A priority patent/CN116868369A/zh
Priority to US18/274,575 priority patent/US20240097111A1/en
Publication of WO2022163099A1 publication Critical patent/WO2022163099A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure primarily relates to improvements in active material particles.
  • Patent Document 1 proposes coating the surfaces of the positive electrode and the negative electrode with a metal oxide.
  • One aspect of the present disclosure comprises composite particles comprising a lithium silicate phase and a silicon phase dispersed within the lithium silicate phase, and a first coating covering at least a portion of a surface of the composite particles, wherein
  • the first coating includes an oxide of a first element having oxygen deficiency and a carbon material, and the first element relates to the active material particles, wherein the first element is an element other than a non-metallic element.
  • Another aspect of the present disclosure relates to an electrochemical device comprising a current collector and an active material layer supported on the current collector, wherein the active material layer contains the active material particles described above.
  • Yet another aspect of the present disclosure includes a first electrode, a second electrode, and an electrolyte, wherein one of the first electrode and the second electrode is composed of the electrochemical element described above. , relating to electrochemical devices.
  • FIG. 1 is a schematic cross-sectional view showing active material particles according to an embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view showing an enlarged main part of the active material particles shown in FIG. 1.
  • FIG. 4 is a TEM image showing a cross-sectional main part of an active material particle according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view showing details of active material particles according to an embodiment of the present disclosure.
  • 1 is a schematic perspective view of a partially cutaway non-aqueous electrolyte secondary battery according to an embodiment of the present disclosure;
  • An active material particle according to an embodiment of the present disclosure includes a composite particle and a first coating that coats at least part of the surface of the composite particle.
  • the composite particles include a lithium silicate phase and a silicon phase dispersed within the lithium silicate phase.
  • the composite particles are also referred to as "lithium silicate composite particles".
  • the first coating includes an oxide of a first element having oxygen deficiency and a carbon material.
  • the first element is an element other than nonmetallic elements.
  • the first coating enhances the chemical stability of the lithium silicate composite particles while maintaining electrical conductivity. As a result, the cycle characteristics of the electrochemical device are improved.
  • the oxide of the first element contained in the first coating contributes to suppressing corrosion of the lithium silicate composite particles.
  • the carbon material contained in the first coating contributes to improving the conductivity of the active material particles.
  • the active material particles according to the embodiments of the present disclosure are preferably used as a negative electrode active material for lithium ion secondary batteries.
  • Oxygen vacancies refer to a state in which oxygen atoms are absent and vacancies are formed in some of the oxygen sites in the crystal lattice of the oxide of the first element.
  • X-ray absorption edge structure (XANES) domain analysis can be used to analyze the oxygen deficiency of the oxide of the first element.
  • the amount of oxygen deficiency in the oxide of the first element (for example, x value in formula (1), y value in formula (2), z value in formula (3), and formula (4), which will be described later) u value) can be obtained by the following method.
  • the electrochemical device is disassembled, the electrodes are taken out, and a thin piece sample (thickness of about 100 nm) of the active material layer for observation with a transmission electron microscope (TEM) is obtained. Active material particles in the sample are observed by TEM.
  • the active material particles are subjected to elemental mapping by TEM-EDS analysis (energy dispersive X-ray spectroscopy) to confirm that the surfaces of the lithium silicate composite particles are covered with the first film.
  • TEM-EDS analysis energy dispersive X-ray spectroscopy
  • the first element is an element other than non-metallic elements, including metallic elements and so-called metalloid elements.
  • the first element is selected from the group consisting of the elements of Group 3, Group 4, Group 5 and Group 6 of the periodic table in that the corrosion inhibition effect of the lithium silicate composite particles is high. It preferably contains at least one element.
  • the first element preferably contains at least one selected from the group consisting of Al, Ti, Si, Zr, Mg, Nb, Ta, Sn, Ni and Cr.
  • the first element is more preferably Ti from the viewpoint of being able to form an oxide having a high dielectric constant and easily improving the rate characteristics.
  • the oxide of the first element having oxygen deficiency may include an oxide represented by formula (1): MeO 2-x .
  • Me is at least one selected from the group consisting of Ti, Si, Zr, and Sn, and satisfies 0 ⁇ x ⁇ 1.95. 0.1 or more and 1.9 or less may be sufficient as x in Formula (1), and 1.7 or more and 1.9 or less may be sufficient.
  • the oxide of the first element having oxygen deficiency may include an oxide represented by formula (2): MeO 1.5-y .
  • Me is Al and satisfies 0 ⁇ y ⁇ 1.47. 0.1 or more and 1.45 or less may be sufficient as y in Formula (2), and 1.2 or more and 1.45 or less may be sufficient.
  • the oxide of the first element having oxygen deficiency may include an oxide represented by formula (3): MeO 1-z .
  • Me is at least one selected from the group consisting of Mg and Ni, and satisfies 0 ⁇ z ⁇ 0.9.
  • z in the formula (3) may be 0.1 or more and 0.89 or less, or may be 0.7 or more and 0.89 or less.
  • the oxide of the first element having oxygen deficiency may include an oxide represented by formula (4): MeO 3-u .
  • Me is Cr and satisfies 0 ⁇ u ⁇ 2.1. 0.1 or more and 2.05 or less may be sufficient as u in Formula (4), and 1.8 or more and 2.05 or less may be sufficient.
  • the oxide of the first element may contain two or more kinds of oxides. In this case, each oxide may be mixed, or may be arranged in layers.
  • the lithium silicate composite particles included in the active material particles according to this embodiment include a lithium silicate phase and a silicon phase dispersed in the lithium silicate phase.
  • Lithium silicate composite particles usually exist as secondary particles in which multiple primary particles are aggregated.
  • the first coating coats at least part of the surface of the secondary particles.
  • Each primary particle comprises a lithium silicate phase and a silicon phase dispersed within the lithium silicate phase.
  • the particle size of the lithium silicate composite particles is not particularly limited.
  • the average particle size of the lithium silicate composite particles may be, for example, 1 ⁇ m or more and 20 ⁇ m or less.
  • the average particle size of the lithium silicate composite particles means the particle size (volume average particle size) at which the volume integrated value is 50% in the volume particle size distribution measured by the laser diffraction scattering method.
  • lithium silicate phase Since the lithium silicate phase (hereinafter sometimes simply referred to as the silicate phase) does not have many sites that can react with lithium, it is difficult for new irreversible reactions to occur during charging and discharging. Therefore, excellent charge/discharge efficiency is exhibited at the initial stage of charge/discharge.
  • a silicate phase is an oxide phase containing Li, Si, and O.
  • the silicate phase may further contain the element M.
  • M is for example from Be, Mg, Al, B, Zr, Nb, Ta, La, V, Y, Ti, P, Bi, Zn, Sn, Pb, Sb, Co, Er, F and W It may be at least one selected from the group consisting of Among them, B has a low melting point and is advantageous for improving the fluidity of molten silicate. Also, Al, Zr, Nb, Ta and La can improve the Vickers hardness while maintaining the ionic conductivity of the silicate phase.
  • the content of the element M is, for example, 10 mol % or less, and may be 5 mol % or less, relative to the total amount of elements other than O contained in the silicate phase.
  • the silicon phase dispersed in the silicate phase has a particulate phase of simple silicon (Si) and is composed of single or multiple crystallites.
  • the crystallite size of the silicon phase is not particularly limited.
  • the crystallite size of the silicon phase is more preferably 10 nm or more and 30 nm or less, and still more preferably 15 nm or more and 25 nm or less.
  • the crystallite size of the silicon phase is 10 nm or more, the surface area of the silicon phase can be kept small, so that the deterioration of the silicon phase accompanied by the generation of irreversible capacitance is less likely to occur.
  • the crystallite size of the silicon phase is calculated by Scherrer's formula from the half width of the diffraction peak attributed to the Si (111) plane in the X-ray diffraction (XRD) pattern of the silicon phase.
  • the content of the silicon phase in the lithium silicate composite particles should be, for example, 30% by mass or more and 80% by mass or less.
  • the content of the silicon phase By setting the content of the silicon phase to 30% by mass or more, the ratio of the silicate phase is reduced, and the initial charge/discharge efficiency is likely to be improved.
  • the content of the silicon phase By setting the content of the silicon phase to 80% by mass or less, it becomes easier to reduce the degree of expansion and contraction of the lithium silicate composite particles during charging and discharging.
  • the lithium silicate composite particles may contain a carbon phase together with a silicate phase and a silicon phase.
  • the carbon phase for example, covers at least part of the surface of the silicon phase and exists at least part of the interface between adjacent primary particles.
  • the content of each element contained in the lithium silicate composite particles can be calculated, for example, by SEM-EDS analysis using a powder sample of lithium silicate composite particles in a discharged state. A powder sample is analyzed and the spectral intensity of each element is measured. Subsequently, standard samples of commercially available elements are used to create a calibration curve, and the content of each element contained in the silicate phase is calculated.
  • ICP-AES analysis inductively coupled plasma atomic emission spectroscopy
  • AES Auger electron spectroscopy
  • LA-ICP-MS laser ablation ICP mass spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • the first coating coats at least part of the surface of the lithium silicate composite particles, which are secondary particles.
  • the first coating contains an oxide of the first element having oxygen deficiency and a carbon material.
  • the oxide of the first element having oxygen deficiency and the carbon material are mixed in the first coating.
  • the above-mentioned “mixed” means, for example, a state in which the oxide of the first element enters the gaps between the carbon materials.
  • the average elemental ratio RA of the first element to the carbon material in the first coating is not particularly limited.
  • the element ratio RA may be, for example, 0.01 or more and 99 or less.
  • the conductivity of the lithium silicate composite particles tends to be low.
  • the conductivity of the lithium silicate composite particles can be dramatically increased.
  • Examples of carbon materials include amorphous carbon with low crystallinity such as carbon black, coal, coke, charcoal, and activated carbon, and graphite with high crystallinity. Among them, amorphous carbon is preferable because it has a low hardness and a large buffering effect on the silicon phase that changes in volume due to charging and discharging.
  • the amorphous carbon may be graphitizable carbon (soft carbon) or non-graphitizable carbon (hard carbon).
  • Examples of carbon black include acetylene black and ketjen black.
  • Graphite means a material having a graphite-type crystal structure, and includes, for example, natural graphite, artificial graphite, and graphitized mesophase carbon particles.
  • the thickness of the first coating is not particularly limited. From the viewpoint of corrosion suppression, the thickness of the first coating may be 0.1 nm or more, 0.5 nm or more, or 1 nm or more. From the viewpoint of conductivity and lithium ion diffusibility, the thickness of the first coating may be 50 nm or less, 10 nm or less, or 2 nm or less. The thickness of the first coating may be, for example, 0.1 nm or more and 50 nm or less, or 0.1 nm or more and 10 nm or less.
  • the thickness of the first coating can be measured by cross-sectional observation of the active material particles using SEM or TEM.
  • an electrochemical device is disassembled to take out an electrochemical element (for example, an electrode), and a cross section of the element is obtained using a cross-section polisher (CP).
  • Ten active material particles having a maximum diameter of 5 ⁇ m or more are randomly selected from the cross-sectional image obtained using SEM or TEM.
  • the thickness of the first coating is measured at five arbitrary points for each particle. An average value of the thickness at these 50 points is calculated. After calculating this average value, data different from the obtained average value by 20% or more are excluded, and the average value is calculated again. This corrected average value is taken as the thickness T1A of the first coating.
  • the starting point of the first coating is the interface between the base particles (see below) formed by the lithium silicate composite particles and the first coating.
  • the point where the intensity of the peak attributed to Li obtained by SEM-EDS analysis is 1/10 or less of the peak attributed to the first element can be regarded as the starting point of the first coating.
  • the end point of the first coating can be regarded as a point at which the intensity of the peak attributed to the first element obtained by SEM-EDS analysis is 5% or less of its maximum value.
  • the endpoint of the first coating is the interface between the first coating and the second coating.
  • At least part of the first coating may be covered with a conductive second coating. This further improves the conductivity of the active material particles.
  • the second coating does not substantially contain oxides of the first element.
  • the fact that the second coating does not substantially contain the oxide of the first element means that the intensity of the peak attributed to the first element obtained by SEM-EDS is below the detection limit.
  • the second coating contains a conductive material.
  • the conductive material is preferably a conductive carbon material because it is electrochemically stable. Examples of the conductive carbon material include the carbon material contained in the first coating as described above.
  • the thickness of the second coating is not particularly limited. It is preferable that the second coating be thin enough not to substantially affect the average particle diameter of the lithium silicate composite particles.
  • the thickness of the second coating may be 1 nm or more, and may be 5 nm or more.
  • the thickness of the second coating may be 200 nm or less, and may be 100 nm or less.
  • the thickness of the second coating can be measured by cross-sectional observation of the lithium silicate composite particles using SEM or TEM, as in the case of the first coating.
  • the starting point of the second coating is the interface with the first coating.
  • the end point of the second coating is the outermost point of the active material particles that can be confirmed by SEM or TEM images.
  • the end point of the second coating is, alternatively, the point at which the intensity of the peak attributed to C obtained by SEM-EDS analysis is 5% or less of its maximum value.
  • the thickness T1A of the first coating and the thickness T2A of the second coating preferably satisfy the relationship 0 ⁇ T2A / T1A ⁇ 1500. This facilitates compatibility between corrosion resistance, ion diffusibility improvement, and conductivity improvement.
  • T2 A /T1 A is preferably 5 or more, and preferably 10 or more.
  • T2 A /T1 A is preferably 500 or less, more preferably 100 or less.
  • FIG. 1 is a schematic cross-sectional view showing active material particles according to one embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view showing an enlarged main part of the active material particles shown in FIG.
  • the active material particles 20 include lithium silicate composite particles 23 , a first coating 27 covering the surfaces thereof, and a second coating 26 covering the first coating 27 .
  • FIG. 3 shows a TEM image of an example of active material particles according to an embodiment of the present disclosure. The TEM image in FIG. 3 is a part of the cross section of the active material particles, which corresponds to FIG.
  • FIG. 4 is a schematic cross-sectional view showing in detail a cross section of an example of active material particles.
  • the lithium silicate composite particles 23 are secondary particles (mother particles) in which a plurality of primary particles 24 are aggregated.
  • Each primary particle 24 comprises a silicate phase 21 and a silicon phase 22 dispersed within the silicate phase 21 .
  • the silicon phase 22 is dispersed substantially uniformly within the silicate phase 21 .
  • a carbon phase (not shown) is arranged on at least part of the interface S between the adjacent primary particles 24 .
  • the carbon phase may cover at least part of the surface of the silicon phase 22 .
  • the surfaces of the lithium silicate composite particles (mother particles) 23 are covered with a first film 27 .
  • the first coating 27 is covered with the second coating 26 .
  • Electrochemical Device An electrochemical device according to an embodiment of the present disclosure includes a current collector and an active material layer supported on the current collector.
  • the active material layer contains the active material particles described above. Since such an electrochemical element has excellent conductivity and is suppressed from deterioration, an electrochemical device with high capacity and long life can be provided.
  • An example of an electrochemical element is an electrode.
  • the electrode is, for example, at least one of a positive electrode and a negative electrode used in a secondary battery.
  • the electrode according to the embodiments of the present disclosure is preferably used as a negative electrode for lithium ion secondary batteries.
  • Electrochemical Device An electrochemical device according to an embodiment of the present disclosure includes a first electrode, a second electrode, and a separator interposed therebetween. One of the first electrode and the second electrode is composed of the electrochemical element described above. Such electrochemical devices have high capacity and long life.
  • An electrochemical device is a device that transfers electrons between substances and causes a chemical reaction through the transfer of electrons.
  • Examples of electrochemical devices include primary batteries, secondary batteries, capacitors, and electric double layer capacitors.
  • the electrochemical device according to the embodiment of the present disclosure is preferably a lithium ion secondary battery using lithium silicate composite particles as a negative electrode active material.
  • the negative electrode includes, for example, a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer contains a negative electrode active material.
  • the negative electrode active material includes at least the above active material particles (hereinafter sometimes referred to as first active material).
  • the negative electrode active material layer is formed as a layer containing a negative electrode mixture on the surface of the negative electrode current collector.
  • the negative electrode active material layer may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces.
  • the negative electrode mixture contains a negative electrode active material as an essential component, and may contain a binder, a conductive agent, a thickener, and the like as optional components.
  • the negative electrode active material may further contain another active material (hereinafter sometimes referred to as a second active material).
  • a second active material examples include conductive carbon materials that electrochemically occlude and release lithium ions.
  • Examples of conductive carbon materials include graphite, graphitizable carbon (soft carbon), and non-graphitizable carbon (hard carbon). Among them, graphite is preferable because it has excellent charging/discharging stability and low irreversible capacity.
  • Graphite means a material having a graphite-type crystal structure, and includes, for example, natural graphite, artificial graphite, and graphitized mesophase carbon particles. The conductive carbon materials may be used singly or in combination of two or more.
  • the particle size of the conductive carbon material is not particularly limited.
  • the average particle size of the conductive carbon material may be, for example, 1 ⁇ m or more and 30 ⁇ m or less.
  • the ratio of the first active material to the total of the first and second active materials may be, for example, 3% by mass or more and 30% by mass or less. This makes it easier to achieve both high capacity and long life.
  • the negative electrode current collector a non-porous conductive substrate (metal foil, etc.) or a porous conductive substrate (mesh body, net body, punching sheet, etc.) is used.
  • materials for the negative electrode current collector include stainless steel, nickel, nickel alloys, copper, and copper alloys.
  • the thickness of the negative electrode current collector is not particularly limited, but is preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 20 ⁇ m or less, from the viewpoint of the balance between strength and weight reduction of the negative electrode.
  • binders include at least one selected from the group consisting of polyacrylic acid, polyacrylic acid salts, and derivatives thereof.
  • Li salt or Na salt is preferably used as the polyacrylate. Among them, it is preferable to use crosslinked lithium polyacrylate.
  • Conductive agents include, for example, carbon blacks such as acetylene black; conductive fibers such as carbon fibers and metal fibers; carbon fluoride; metal powders such as aluminum; and conductive whiskers such as zinc oxide and potassium titanate.
  • conductive metal oxides such as titanium oxide; organic conductive materials such as phenylene derivatives; These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • thickeners examples include carboxymethyl cellulose (CMC) and modified products thereof (including salts such as Na salts), cellulose derivatives such as methyl cellulose (cellulose ethers, etc.); polymer cellulose having a vinyl acetate unit such as polyvinyl alcohol; compound; polyether (polyalkylene oxide such as polyethylene oxide, etc.), and the like. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • CMC carboxymethyl cellulose
  • modified products thereof including salts such as Na salts
  • cellulose derivatives such as methyl cellulose (cellulose ethers, etc.
  • polymer cellulose having a vinyl acetate unit such as polyvinyl alcohol
  • compound compound
  • polyether polyalkylene oxide such as polyethylene oxide, etc.
  • the positive electrode includes, for example, a positive electrode current collector and a positive electrode active material layer formed on the surface of the positive electrode current collector.
  • the positive electrode active material layer may be formed on one surface of the positive electrode current collector, or may be formed on both surfaces.
  • the positive electrode active material layer is formed as a layer containing a positive electrode mixture on the surface of the positive electrode current collector.
  • the positive electrode mixture contains a positive electrode active material as an essential component, and may contain a binder, a conductive agent, and the like as optional components.
  • Lithium composite metal oxides include, for example, Li a CoO 2 , Li a NiO 2 , Li a MnO 2 , Li a Co b Ni 1-b O 2 , Li a Co b M 1-b O c , Li a Ni 1- bMbOc , LiaMn2O4 , LiaMn2 - bMbO4 , LiMePO4 , Li2MePO4F .
  • M is at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb and B.
  • Me contains at least a transition element (for example, at least one selected from the group consisting of Mn, Fe, Co, and Ni). 0 ⁇ a ⁇ 1.2, 0 ⁇ b ⁇ 0.9, and 2.0 ⁇ c ⁇ 2.3.
  • binder and conductive agent As the binder and conductive agent, the same ones as exemplified for the negative electrode can be used.
  • Graphite such as natural graphite and artificial graphite may be used as the conductive agent.
  • the shape and thickness of the positive electrode current collector can be selected from the shape and range according to the negative electrode current collector.
  • Examples of materials for the positive electrode current collector include stainless steel, aluminum, aluminum alloys, and titanium.
  • Electrochemical devices further include an electrolyte.
  • the electrolyte includes, for example, a solvent and a lithium salt dissolved in the solvent.
  • the lithium salt concentration in the electrolyte is, for example, 0.5 mol/L or more and 2 mol/L or less.
  • the electrolyte may contain known additives.
  • Aqueous solvents or non-aqueous solvents are used as solvents.
  • the non-aqueous solvent for example, cyclic carbonate, chain carbonate, cyclic carboxylate, and the like are used.
  • Cyclic carbonates include propylene carbonate (PC) and ethylene carbonate (EC).
  • Chain carbonates include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and the like.
  • Cyclic carboxylic acid esters include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • the non-aqueous solvent may be used singly or in combination of two or more.
  • Lithium salts include, for example, lithium salts of chlorine-containing acids (LiClO4, LiAlCl4 , LiB10Cl10 , etc.), lithium salts of fluorine - containing acids ( LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiCF3SO3 ).
  • LiN( SO2F ) 2 LiN ( CF3SO2 ) 2 , LiN ( CF3SO2 ) ( C4F9SO2 ), LiN ( C2F5SO2 ) 2 , etc.
  • lithium halides LiCl, LiBr, LiI, etc.
  • Lithium salts may be used singly or in combination of two or more.
  • a separator may be interposed between the positive electrode and the negative electrode.
  • the separator has high ion permeability and moderate mechanical strength and insulation.
  • Examples of separators include microporous thin films, woven fabrics, non-woven fabrics, and the like.
  • Polyolefin such as polypropylene or polyethylene is used as the material of the separator.
  • An example of the structure of a secondary battery is a structure in which an electrode group formed by winding a positive electrode, a negative electrode, and a separator, and an electrolyte are housed in an exterior body.
  • a laminated electrode group in which a positive electrode and a negative electrode are laminated via a separator is also used instead of the wound electrode group.
  • Other forms of electrode groups may also be applied.
  • the secondary battery may be of any shape such as cylindrical, square, coin, button, and laminate.
  • FIG. 5 is a partially cutaway schematic perspective view of a prismatic secondary battery according to an embodiment of the present disclosure.
  • the battery includes a bottomed prismatic battery case 4 , an electrode group 1 and an electrolyte (not shown) housed in the battery case 4 , and a sealing plate 5 that seals the opening of the battery case 4 .
  • the electrode group 1 has a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator interposed therebetween.
  • the negative electrode, the positive electrode, and the separator are wound around a flat core, and the electrode group 1 is formed by removing the core.
  • the sealing plate 5 has a liquid inlet closed with a sealing plug 8 and a negative electrode terminal 6 insulated from the sealing plate 5 with a gasket 7 .
  • One end of the negative electrode lead 3 is attached to the negative electrode current collector of the negative electrode by welding or the like.
  • One end of the positive electrode lead 2 is attached to the positive electrode current collector of the positive electrode by welding or the like.
  • the other end of the negative lead 3 is electrically connected to the negative terminal 6 .
  • the other end of positive electrode lead 2 is electrically connected to sealing plate 5 .
  • a frame made of resin is disposed above the electrode group 1 to separate the electrode group 1 from the sealing plate 5 and to separate the negative electrode lead 3 from the battery case 4 .
  • a method for producing an active material particle according to an embodiment of the present disclosure includes a silicate phase, a silicon phase dispersed in the silicate phase, and a carbon film containing a carbon material.
  • the first coating is formed by introducing the oxide of the first element into the inside of the carbon coating that coats the lithium silicate composite particles.
  • FIG. 6 is a flow chart showing a method for manufacturing active material particles according to an embodiment of the present disclosure.
  • silicon particles are prepared. Silicon particles can be obtained by a chemical vapor deposition method (CVD method), a thermal plasma method, a physical pulverization method, or the like. Silicon nanoparticles having an average particle size of 10 nm or more and 200 nm or less can be synthesized by the following method.
  • the average particle size of silicon particles means the particle size (volume average particle size) at which the volume integrated value is 50% in the volume particle size distribution measured by the laser diffraction scattering method.
  • reaction temperature may be set to, for example, 400° C. or higher and 1300° C. or lower.
  • silane compound silicon hydrides such as silane and disilane, halogenated silanes, alkoxysilanes, and the like can be used.
  • Halogenated silanes include dichlorosilane, trichlorosilane, tetrachlorosilane, and the like.
  • alkoxysilane tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane and the like can be used.
  • silicon hydride when silicon hydride is brought into contact with an oxidizing gas in the gas phase, a composite of silicon particles and silicon oxide particles is obtained. That is, the atmosphere of the vapor phase may be an oxidizing gas atmosphere. Silicon oxide is removed by washing the composite with, for example, hydrofluoric acid, yielding silicon particles.
  • the molten metal finely divided by the atomization method may be brought into contact with the silane compound.
  • the molten metal Na, K, Mg, Ca, Zn, Al, etc. can be used.
  • An inert gas, halogenated silane, hydrogen gas, or the like may be used as the atomizing gas. That is, the gas phase atmosphere may be an atmosphere of an inert gas or a reducing gas.
  • Thermal Plasma method is a method in which silicon raw materials are introduced into the generated thermal plasma to generate silicon particles in the high-temperature plasma.
  • Thermal plasma may be generated by arc discharge, high frequency discharge, microwave discharge, laser light irradiation, or the like.
  • radio frequency (RF) discharge is non-polar discharge, and is desirable in that it is difficult for impurities to mix into the silicon particles.
  • silicon oxide can be used as the raw material.
  • silicon and oxygen in the state of atoms or ions are instantly generated, and during cooling, the silicon bonds and solidifies to generate silicon particles.
  • a physical pulverization method (mechanical milling method) is a method of pulverizing coarse silicon particles with a pulverizer such as a ball mill or a bead mill.
  • the interior of the grinder may be, for example, an inert gas atmosphere.
  • Methods for coating silicon particles with a carbon phase include chemical vapor deposition (CVD), sputtering, atomic layer deposition (ALD), wet mixing, and dry mixing. Among them, CVD method, wet mixing method and the like are preferable.
  • silicon particles are introduced into a hydrocarbon-based gas atmosphere and heated to deposit a carbon material generated by thermal decomposition of the hydrocarbon-based gas on the surface of the particles to form a carbon phase. is formed.
  • the temperature of the hydrocarbon-based gas atmosphere may be, for example, 500° C. or higher and 1000° C. or lower.
  • Chain hydrocarbon gases such as acetylene and methane, and aromatic hydrocarbons such as benzene, toluene and xylene can be used as hydrocarbon gases.
  • a carbon precursor such as coal pitch, petroleum pitch, or tar is dissolved in a solvent, and the obtained solution and silicon particles are mixed and dried. After that, the silicon particles coated with the carbon precursor are heated in an inert gas atmosphere at, for example, 600° C. or less and 1000° C. or less to carbonize the carbon precursor and form a carbon phase.
  • a raw material mixture containing a Si raw material and a Li raw material in a predetermined ratio may be used as the raw material for the silicate phase.
  • a silicate can be obtained by melting the raw material mixture and passing the melt through a metal roll to form flakes.
  • the raw material mixture may be baked at a temperature below the melting point without melting to synthesize silicate by a solid phase reaction.
  • Silicon oxide (eg, SiO 2 ) can be used as the Si raw material.
  • Li source or element M source lithium or element M carbonate, oxide, hydroxide, hydride, nitrate, sulfate, or the like can be used, respectively. Among them, carbonates, oxides, hydroxides and the like are preferable.
  • silicon particles whose surfaces are at least partly coated with a carbon phase are added to the silicate, and the two are mixed.
  • carbon-coated silicon particles silicon particles whose surfaces are at least partly coated with a carbon phase
  • lithium silicate composite particles are produced through the following steps.
  • carbon-coated silicon particles and silicate powder are mixed at a mass ratio of, for example, 20:80 to 95:5.
  • a device such as a ball mill is used to stir the mixture of carbon-coated silicon particles and silicate.
  • an organic solvent may be charged into the pulverization vessel at once in the initial stage of pulverization, or may be intermittently introduced into the pulverization vessel in a plurality of times during the pulverization process.
  • the organic solvent plays a role in preventing the material to be ground from adhering to the inner wall of the grinding vessel.
  • organic solvents alcohols, ethers, fatty acids, alkanes, cycloalkanes, silicate esters, metal alkoxides and the like can be used.
  • the mixture is heated and sintered at 450°C or higher and 1000°C or lower while being pressurized, for example, in an inert gas atmosphere (eg, an atmosphere of argon, nitrogen, etc.).
  • an inert gas atmosphere eg, an atmosphere of argon, nitrogen, etc.
  • a sintering apparatus capable of applying pressure in an inert atmosphere, such as hot press or discharge plasma sintering, can be used.
  • the silicate melts and flows to fill the gaps between the silicon particles.
  • the sintered body obtained is pulverized to obtain lithium silicate composite particles.
  • lithium silicate composite particles having a predetermined average particle size can be obtained.
  • Methods for forming a carbon film on the surface of lithium silicate composite particles include a chemical vapor deposition method using chain hydrocarbon gases such as acetylene and methane as raw materials, and a method using coal pitch, petroleum pitch, phenol resin, etc. to form lithium silicate composite particles. and a method of heating and carbonizing can be exemplified. Carbon black may be adhered to the surface of the lithium silicate composite particles.
  • the carbon coating be thin enough not to substantially affect the average particle size of the lithium silicate composite particles.
  • the thickness of the carbon coating be equal to or greater than the desired thickness of the first coating.
  • the carbon coating may be 0.1 nm or more, and may be 1 nm or more.
  • the carbon film is preferably 300 nm or less, more preferably 200 nm or less.
  • the thickness of the carbon coating can be measured by cross-sectional observation of the lithium silicate composite particles using SEM or TEM, similarly to the first coating.
  • a step of washing the lithium silicate composite particles having a carbon coating with an acid may be performed.
  • an acidic aqueous solution it is possible to dissolve and remove trace amounts of alkaline components that may exist on the surfaces of the lithium silicate composite particles.
  • an aqueous solution of inorganic acids such as hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, phosphoric acid and carbonic acid
  • an aqueous solution of organic acids such as citric acid and acetic acid
  • Step of forming first coating (S12)
  • the carbon-coated lithium silicate composite particles are exposed to a gas phase containing the first element.
  • the first element is introduced into the carbon coating, and a first coating containing the oxide of the first element and the carbon material is formed on at least part of the surface of the lithium silicate composite particles.
  • vapor phase methods examples include CVD, ALD, and physical vapor deposition (PVD).
  • ALD method is preferable because the first coating can be formed at a relatively low temperature.
  • the first coating can be formed in an atmosphere of 200° C. or less.
  • an organometallic compound (precursor) containing the first element is used as the raw material for the first coating.
  • a raw material gas containing a vaporized precursor and an oxidant are alternately supplied to a reaction chamber in which an object is placed. As a result, a layer containing the oxide of the first element is formed on the surface of the object.
  • At least part of the surface of the target lithium silicate composite particles is covered with a carbon coating.
  • the first element contained in the source gas can pass through the carbon coating and reach the surface of the lithium silicate composite particles. Then, the first element is deposited as it is on the surface of the lithium silicate composite particles. Therefore, more of the first element is arranged near the surface of the lithium silicate composite particles.
  • the formed first coating contains the carbon material derived from the carbon coating together with the oxide of the first element.
  • the first element contained in the source gas is deposited on the surface of the lithium silicate composite particles, which is the object, on the portions not covered with the carbon film.
  • the self-limiting action works, so the first element is deposited on the surface of the object in units of atomic layers.
  • the thickness of the first film is determined by the number of cycles in which one cycle is supply of raw material gas (pulse) ⁇ exhaust of raw material gas (purge) ⁇ supply of oxidant (pulse) ⁇ exhaust of oxidant (purge). controlled.
  • oxidant supply (pulse) ⁇ oxidant exhaust (purge) ⁇ source gas supply (pulse) ⁇ source gas exhaust (purge) may be one cycle. If the thickness of the first coating is controlled to be approximately the same as that of the carbon coating, the oxide of the first element can be arranged over the entire carbon coating although there is a concentration gradient.
  • the first coating containing the oxide of the first element and the carbon material is formed on the surface side of the lithium silicate composite particles, and the lithium silicate composite particles are formed.
  • a second coating from the remainder of the carbon coating is formed at a position further away from the surface than the first coating.
  • a precursor is an organometallic compound containing the first element.
  • Various organometallic compounds conventionally used in the ALD method can be used as precursors.
  • Precursors containing Ti include, for example, bis(t-butylcyclopentadienyl)titanium (IV) dichloride (C 18 H 26 Cl 2 Ti), tetrakis(dimethylamino)titanium (IV) ([(CH 3 ) 2 N ]4Ti, TDMAT), tetrakis(diethylamino)titanium( IV ) ([( C2H5 )2N]4Ti), tetrakis(ethylmethylamino)titanium( IV ) ( Ti[N ( C2H5 )(CH 3 )] 4 ), titanium (IV) diisopropoxide-bis(2,2,6,6-tetramethyl-3,5-heptanedionate) (Ti[OCC(CH 3 ) 3 CHCOC( CH3 ) 3 ] 2 ( OC3H7 ) 2 ), titanium tetrachloride ( TiCl4 ), titanium
  • the source gas may contain multiple types of precursors. Different types of precursors may be supplied to the reaction chamber simultaneously or sequentially. Alternatively, the type of precursor contained in the source gas may be changed for each cycle.
  • the oxidizing agent As the oxidizing agent, the oxidizing agent conventionally used in the ALD method can be used.
  • oxidizing agents include water, oxygen, and ozone.
  • the oxidant may be supplied to the reaction chamber as an oxidant-based plasma.
  • the conditions for the ALD method are not particularly limited. Oxygen deficiency in the oxide of the first element can be controlled, for example, by adjusting the temperature in the reaction chamber (the temperature of the atmosphere containing the precursor or oxidizing agent), the pulse time of the oxidizing agent, and the like.
  • the temperature of the atmosphere containing the precursor or oxidizing agent in the reaction chamber may be, for example, 25° C. or higher and 200° C. or lower, or 50° C. or higher and 150° C. or lower.
  • the pressure in the reaction chamber during treatment may be, for example, 1 ⁇ 10 ⁇ 5 Pa or more and 1 ⁇ 10 ⁇ 2 Pa or less, and 1 ⁇ 10 ⁇ 4 Pa or more and 1 ⁇ 10 ⁇ 3 Pa or less.
  • the pulse time of the raw material gas may be 0.01 seconds or more and 5 seconds or less, or may be 0.05 seconds or more and 3 seconds or less.
  • the oxidant pulse time may be 0.005 seconds, 3 seconds or less.
  • An embodiment electrochemical device of the present disclosure includes the first active material described above. This electrochemical device is obtained by supporting a first active material having a first coating on the surface of a current collector. This electrochemical device can also be obtained by supporting lithium silicate composite particles coated with a carbon film on the surface of a current collector and then forming a first film by a vapor phase method.
  • FIG. 7 is a flow chart showing a method for manufacturing an electrochemical device according to one embodiment of the present disclosure.
  • the manufacturing method shown in FIG. 7 prepares lithium silicate composite particles containing a silicate phase and a silicon phase dispersed in the silicate phase, and having at least a portion of the surface coated with a carbon film containing a carbon material.
  • Lithium silicate composite particle preparation step (S21) Lithium silicate composite particles coated with a carbon film are prepared in the same manner as the steps (ii) to (i-iv) of the lithium silicate composite particle preparation step in the method for producing active material particles.
  • Step of supporting lithium silicate composite particles (S22) A slurry obtained by dispersing the prepared negative electrode mixture containing the lithium silicate composite particles in a dispersion medium is applied to the surface of the current collector, and the slurry is dried. Thereby, the precursor of the active material layer is formed on the surface of the current collector.
  • the dispersion medium is not particularly limited, but examples thereof include water, alcohols such as ethanol, ethers such as tetrahydrofuran, amides such as dimethylformamide, N-methyl-2-pyrrolidone (NMP), and mixed solvents thereof. .
  • Step of forming first coating A current collector comprising a precursor of an active material layer is exposed to a gas phase containing a first element. As a result, the first element is introduced into the carbon coating, and at least part of the surface of the lithium silicate composite particles contained in the precursor is covered with the first coating containing the oxide of the first element and the carbon material. Thereby, an active material layer is formed.
  • the ALD method is preferably used as described above.
  • the precursor and oxidant shown in the first coating forming step (ii) in the method for producing active material particles can be used.
  • the conditions for the ALD method are not particularly limited.
  • the temperature of the atmosphere containing the precursor or oxidant, the pressure of the reaction chamber during treatment, and the pulse time of the raw material gas are the precursor or oxidant shown in the first coating forming step (ii) in the method for producing active material particles. , the pressure of the reaction chamber during processing, and the pulse time of the raw material gas.
  • the active material layer may be rolled.
  • the rolling conditions are not particularly limited, and may be appropriately set so that the active material layer has a predetermined thickness or density. This increases the density of the active material layer and increases the capacity of the electrochemical device.
  • a carbon material was deposited on the surface of the silicon particles by chemical vapor deposition. Specifically, silicon particles were introduced into an acetylene gas atmosphere and heated at 700° C. to thermally decompose the acetylene gas and deposit it on the surface of the silicon particles to form a carbon phase. The amount of carbon material was 10 parts by mass with respect to 100 parts by mass of silicon particles.
  • Lithium silicate (Li 2 Si 2 O 5 ) having an average particle size of 10 ⁇ m and carbon-coated silicon were mixed at a mass ratio of 70:30.
  • the mixture is filled into a pot (made of SUS, volume 500 mL) of a planetary ball mill (manufactured by Fritsch, P-5), 24 SUS balls (20 mm in diameter) are placed in the pot, the lid is closed, and in an inert atmosphere, The mixture was stirred at 200 rpm for 50 hours.
  • the powdery mixture was taken out in an inert atmosphere and fired at 800°C for 4 hours in an inert atmosphere while applying pressure from a hot press to obtain a sintered body of the mixture. After that, the sintered body was pulverized to obtain lithium silicate composite particles.
  • the crystallite size of the silicon phase calculated by Scherrer's formula from the diffraction peak attributed to the Si (111) plane by XRD analysis was 15 nm.
  • the Si/Li ratio was 1.0
  • the content of Li 2 Si 2 O 5 measured by Si-NMR was 70% by mass (the content of the silicon phase was 30% by mass).
  • Negative Electrode Precursor Lithium silicate composite particles having a carbon coating and a second active material (graphite) were mixed at a mass ratio of 5:95 and used as a negative electrode active material.
  • Water was added to a negative electrode mixture containing a negative electrode active material, sodium carboxymethylcellulose (CMC-Na), styrene-butadiene rubber (SBR), and lithium polyacrylate at a mass ratio of 96.5:1:1.5:1. was added, and then stirred using a mixer (TK Hibismix, manufactured by Primix) to prepare a negative electrode slurry.
  • the negative electrode slurry was applied to the surface of the copper foil so that the mass of the negative electrode mixture per 1 m 2 was 190 g.
  • a negative electrode precursor on which a negative electrode active material layer was formed was produced.
  • the thickness of the negative electrode active material layer in the negative electrode precursor was 202 ⁇ m.
  • a negative electrode precursor was placed in a predetermined reaction chamber, and a first coating was formed on the surface of the negative electrode precursor according to the following procedure by ALD.
  • a vaporized oxidant (H 2 O) was supplied to the reaction chamber containing the negative electrode precursor.
  • the pulse time was 0.005 seconds.
  • the temperature of the atmosphere containing the oxidizing agent in the reaction chamber was controlled at 150° C., and the pressure was controlled at 260 Pa. After 30 seconds, excess oxidant was purged with nitrogen gas.
  • a vaporized precursor (TDMAT) serving as a supply source of the first element (Ti) was supplied to the reaction chamber containing the negative electrode precursor.
  • the pulse time was 0.1 seconds.
  • the temperature of the atmosphere containing the precursor in the reaction chamber was controlled to 150°C, and the pressure was controlled to 260Pa. After 30 seconds, excess precursor was purged with nitrogen gas, assuming that the surface of the negative electrode precursor was covered with a monomolecular layer of precursor.
  • a series of operations consisting of supply of oxidant, purge, supply of precursor, and purge were repeated 22 times to form a first film containing titanium.
  • the first coating and the second coating covering the first coating were simultaneously formed by adjusting the thickness of the first coating to be thinner than the carbon coating.
  • the first and second coatings were analyzed by SEM, EDS, ICP, etc.
  • the first coating contained Ti and C.
  • the second coating contained C.
  • the thickness T1A of the first coating was 5 nm.
  • the thickness T2A of the second coating was 45 nm.
  • XANES analysis confirmed that the Ti-containing oxide contained in the first coating had a crystal structure with oxygen deficiency.
  • the x value of TiO 2-x was about 0.1.
  • the negative electrode active material layer was rolled to obtain a negative electrode.
  • An electrolytic solution was prepared by dissolving LiPF 6 at a concentration of 1.0 mol/L in a mixed solvent containing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 3:7.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a tab was attached to each electrode, and an electrode group was produced by spirally winding the positive electrode and the negative electrode with the separator interposed therebetween such that the tab was positioned at the outermost periphery. After inserting the electrode group into an outer package made of an aluminum laminate film and vacuum-drying at 105° C. for 2 hours, an electrolytic solution was injected and the opening of the outer package was sealed to obtain a secondary battery A1.
  • the first coating contained Ti and C.
  • the thickness T1 A of the first coating was 10 nm, and the thickness T2 A of the second coating was 40 nm.
  • XANES analysis confirmed that the Ti-containing oxide contained in the first coating had a crystal structure with oxygen defects.
  • the x value of TiO 2-x was about 0.1.
  • the first coating contained Al and C.
  • the thickness T1 A of the first coating was 5 nm, and the thickness T2 A of the second coating was 45 nm.
  • XANES analysis confirmed that the Al-containing oxide contained in the first coating had a crystal structure with oxygen deficiency.
  • the y value of AlO 1.5-y was about 0.1.
  • the temperature of the atmosphere containing the oxidizing agent in the reaction chamber was set to 120°C.
  • the temperature of the atmosphere containing the precursor in the reaction chamber was 120°C.
  • a series of operations consisting of supply of oxidant, purge, supply of precursor and purge were repeated 44 times. Except for the above, a first active material was produced in the same manner as in Example 1 to produce a secondary battery A4.
  • the first coating contained Al and C.
  • the thickness T1 A of the first coating was 10 nm, and the thickness T2 A of the second coating was 40 nm.
  • XANES analysis confirmed that the Al-containing oxide contained in the first coating had a crystal structure with oxygen defects.
  • the y value of AlO 1.5-y was about 0.1.
  • the thickness T1 A of the first coating was 5 nm, and the thickness T2 A of the second coating was 45 nm.
  • XANES analysis it was confirmed that the Ti-containing oxide contained in the first coating had a crystal structure with no oxygen vacancies.
  • the x value of TiO 2-x was zero.
  • the thickness T1 A of the first coating was 10 nm, and the thickness T2 A of the second coating was 40 nm.
  • XANES analysis it was confirmed that the Ti-containing oxide contained in the first coating had a crystal structure with no oxygen vacancies.
  • the x value of TiO 2-x was zero.
  • the rest period between charging and discharging was 10 minutes.
  • the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the 1st cycle was determined as the capacity retention rate.
  • Table 1 shows the evaluation results.
  • the lithium silicate composite particles were coated with the first coating containing the oxide of the first element having oxygen deficiency and the carbon material, the capacity retention ratio and (1C capacity/0.1C capacity) were high. , and excellent cycle and rate characteristics were obtained.
  • an electrochemical device with high capacity and long life can be provided.
  • the electrochemical device according to the present disclosure is useful as a main power source for mobile communication equipment, portable electronic equipment, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

活物質粒子は、リチウムシリケート相、および、リチウムシリケート相内に分散するシリコン相を含む複合粒子と、複合粒子の表面の少なくとも一部を被覆する第1被膜と、を備える。第1被膜は、酸素欠損を有する第1元素の酸化物と、炭素材料とを含み、第1元素は、非金属元素以外の元素である。

Description

活物質粒子、電気化学素子、および電気化学デバイス
 本開示は、主として活物質粒子の改良に関する。
 電気化学デバイスの用途の多様化に伴い、各種性能の向上が求められている。これに関し、特許文献1は、正極および負極の表面を金属酸化物で被覆することを提案している。
特開2017-97999号公報
 電気化学デバイスの性能の1つとして、高容量化が求められている。例えばリチウムイオン二次電池では、負極材料としてシリコン化合物を用いることが検討されている。シリコン化合物は、負極材料として炭素材料を用いる場合よりも、電池動作中の副反応により腐食され易いことも知られている。そのため、活物質粒子としてシリコン化合物を用いる場合であっても、電気化学デバイスのサイクル特性の低下を抑制することが求められる。また、レート特性の改善も求められている。
 本開示の一側面は、リチウムシリケート相、および、前記リチウムシリケート相内に分散するシリコン相を含む複合粒子と、前記複合粒子の表面の少なくとも一部を被覆する第1被膜と、を備え、前記第1被膜は、酸素欠損を有する第1元素の酸化物と、炭素材料とを含み、前記第1元素は、非金属元素以外の元素である、活物質粒子に関する。
 本開示の他の側面は、集電体と、前記集電体に担持された活物質層と、を備え、前記活物質層は、上記の活物質粒子を含む、電気化学素子に関する。
 本開示のさらに他の側面は、第1の電極と、第2の電極と、電解質と、を備え、前記第1の電極および第2の電極の一方が、上記の電気化学素子により構成される、電気化学デバイスに関する。
 本開示によれば、電気化学デバイスのサイクル特性およびレート特性を高めることができる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本願の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本開示の一実施形態に係る活物質粒子を示す模式断面図である。 図1に示す活物質粒子の要部を拡大して示す模式断面図である。 本開示の一実施形態に係る活物質粒子の断面の要部を示すTEM画像である。 本開示の一実施形態に係る活物質粒子を詳細に示す模式断面図である。 本開示の一実施形態に係る非水電解質二次電池の一部を切欠いた概略斜視図である。 本開示の一実施形態に係る活物質粒子の製造方法を示すフローチャートである。 本開示の一実施形態に係る電気化学素子の製造方法を示すフローチャートである。
A.活物質粒子
 本開示の実施形態に係る活物質粒子は、複合粒子と、複合粒子の表面の少なくとも一部を被覆する第1被膜と、を備える。複合粒子は、リチウムシリケート相と、リチウムシリケート相内に分散するシリコン相とを含む。以下、複合粒子を、「リチウムシリケート複合粒子」とも称する。第1被膜は、酸素欠損を有する第1元素の酸化物と、炭素材料とを含む。第1元素は、非金属元素以外の元素である。
 第1被覆によって、導電性を維持しながら、リチウムシリケート複合粒子の化学的安定性が高められる。その結果、電気化学デバイスのサイクル特性が向上する。第1被膜に含まれる第1元素の酸化物は、リチウムシリケート複合粒子の腐食の抑制に寄与する。第1被膜に含まれる炭素材料は、活物質粒子の導電性の向上に寄与する。
 第1被膜に含まれる第1元素の酸化物が酸素欠損を有することにより、活物質粒子のイオン伝導性が高められ、リチウムシリケート複合粒子と電解質の界面におけるリチウムイオンの吸蔵および放出がスムーズに行われる。その結果、電気化学デバイスのレート特性が向上する。本開示の実施形態に係る活物質粒子は、リチウムイオン二次電池用の負極活物質として用いられることが好ましい。
 酸素欠損とは、第1元素の酸化物における結晶格子中の酸素サイトの一部に酸素原子が存在せずに空孔が形成された状態を指す。第1元素の酸化物の酸素欠損の分析には、X線吸収端構造(XANES)領域解析を用いることができる。
 第1元素の酸化物の酸素欠損量(例えば、後述の、式(1)中のx値、式(2)中のy値、式(3)中のz値、および式(4)中のu値)は、以下の方法により求めることができる。
 電気化学デバイスを解体して電極を取り出し、透過型電子顕微鏡(TEM)観察用の活物質層の薄片試料(厚さ100nm程度)を得る。TEMにより当該試料中の活物質粒子を観察する。当該活物質粒子についてTEM-EDS分析(エネルギー分散型X線分光分析)による元素マッピングを行い、リチウムシリケート複合粒子の表面が第1被膜で覆われていることを確認する。1被膜の任意の複数点(例えば10点)についてXANES解析を行い、第1元素の価数の平均値を求め、それに基づいて酸素欠損量を求める。例えば、TiO2-xにおいて、Tiの価数の平均値が3.8の場合、酸素欠損量のxは0.1である。XANES解析では、金属(第1元素)のL端ピークおよびOのK端ショルダーがあるかどうかを確認し、適正価数か酸素欠損かを判断する。
 第1元素は、非金属元素以外の元素であって、金属元素およびいわゆる半金属元素を含む。なかでも、リチウムシリケート複合粒子の腐食抑制効果が高い点で、第1元素は、周期表の第3族元素、第4族元素、第5族元素および第6族元素よりなる群から選択される少なくとも1つの元素を含むことが好ましい。特に、第1元素は、Al、Ti、Si、Zr、Mg、Nb、Ta、Sn、NiおよびCrからなる群より選択される少なくとも1種を含むことが好ましい。なかでも、高誘電体である酸化物を形成可能であり、レート特性が向上し易い観点から、第1元素は、Tiがより好ましい。
 酸素欠損を有する第1元素の酸化物は、式(1):MeO2-xで表される酸化物を含んでもよい。式(1)中、Meは、Ti、Si、Zr、およびSnからなる群より選択される少なくとも1種であり、0<x≦1.95を満たす。式(1)中のxは、0.1以上、1.9以下であってもよく、1.7以上、1.9以下であってもよい。
 酸素欠損を有する第1元素の酸化物は、式(2):MeO1.5-yで表される酸化物を含んでもよい。式(2)中、MeはAlであり、0<y≦1.47を満たす。式(2)中のyは、0.1以上、1.45以下であってもよく、1.2以上、1.45以下であってもよい。
 酸素欠損を有する第1元素の酸化物は、式(3):MeO1-zで表される酸化物を含んでもよい。式(3)中、Meは、MgおよびNiからなる群より選択される少なくとも1種であり、0<z≦0.9を満たす。式(3)中のzは、0.1以上、0.89以下であってもよく、0.7以上、0.89以下であってもよい。
 酸素欠損を有する第1元素の酸化物は、式(4):MeO3-uで表される酸化物を含んでもよい。式(4)中、MeはCrであり、0<u≦2.1を満たす。式(4)中のuは、0.1以上、2.05以下であってもよく、1.8以上、2.05以下であってもよい。
 第1元素の酸化物は、2種以上の酸化物を含んでもよい。この場合、各酸化物は混在していてもよいし、それぞれ層状に配置されていてもよい。
[リチウムシリケート複合粒子]
 本実施形態に係る活物質粒子が備えるリチウムシリケート複合粒子は、リチウムシリケート相と、リチウムシリケート相内に分散しているシリコン相とを含む。
 リチウムシリケート複合粒子は、通常、複数の一次粒子が凝集した二次粒子として存在する。第1被膜は、二次粒子の表面の少なくとも一部を被覆する。各一次粒子は、リチウムシリケート相と、リチウムシリケート相内に分散するシリコン相とを備える。
 リチウムシリケート複合粒子の粒径は特に限定されない。リチウムシリケート複合粒子の平均粒径は、例えば1μm以上20μm以下であってよい。リチウムシリケート複合粒子の平均粒径は、レーザー回折散乱法で測定される体積粒度分布において、体積積算値が50%となる粒径(体積平均粒径)を意味する。
(リチウムシリケート相)
 リチウムシリケート相(以下、単にシリケート相と称す場合がある。)は、リチウムと反応し得るサイトを多くは有さないため、充放電時に新たな不可逆反応を起こしにくい。よって、充放電の初期に、優れた充放電効率を示す。
 シリケート相は、Liと、Siと、Oと、を含む酸化物相である。シリケート相におけるSiに対するOの原子比(=O/Si)は、例えば、2より大きく3未満である。O/Siがこの範囲であると、安定性やリチウムイオン伝導性の面で有利である。
 シリケート相は、例えば、Li2vSiO2+v(vは、0<v<1)で表される。安定性、作製容易性、リチウムイオン伝導性などの観点から、v=1/2がより好ましい。
 シリケート相はさらに、元素Mを含んでもよい。ここで、Mは、例えば、Be、Mg、Al、B、Zr、Nb、Ta、La、V、Y、Ti、P、Bi、Zn、Sn、Pb、Sb、Co、Er、FおよびWよりなる群から選択される少なくとも1種であり得る。なかでもBは融点が低く、溶融状態のシリケートの流動性を向上させるのに有利である。また、Al、Zr、Nb、TaおよびLaは、シリケート相のイオン伝導性を保持したままでビッカース硬度を向上させ得る。シリケート相に含まれるO以外の元素の全量に対し、元素Mの含有量は、例えば10モル%以下であり、5モル%以下であってもよい。
(シリコン相)
 シリケート相内に分散しているシリコン相は、ケイ素(Si)単体の粒子状の相を有し、単独または複数の結晶子で構成される。シリコン相の結晶子サイズは、特に限定されない。シリコン相の結晶子サイズは、より好ましくは10nm以上、30nm以下であり、さらに好ましくは15nm以上、25nm以下である。シリコン相の結晶子サイズが10nm以上である場合、シリコン相の表面積を小さく抑えることができるため、不可逆容量の生成を伴うシリコン相の劣化を生じ難い。シリコン相の結晶子サイズは、シリコン相のX線回折(XRD)パターンのSi(111)面に帰属される回析ピークの半値幅からシェラーの式により算出される。
 高容量化およびサイクル特性の向上のためには、リチウムシリケート複合粒子中のシリコン相の含有量は、例えば30質量%以上、80質量%以下であればよい。シリコン相の含有量を30質量%以上とすることで、シリケート相が占める割合が小さくなり、初期の充放電効率が向上しやすくなる。シリコン相の含有量を80質量%以下とすることで、充放電時のリチウムシリケート複合粒子の膨張収縮の度合いを低減しやすくなる。
(炭素相)
 リチウムシリケート複合粒子は、シリケート相およびシリコン相とともに、炭素相を含んでいてもよい。炭素相は、例えば、シリコン相の表面の少なくとも一部を覆っており、隣り合う一次粒子の界面の少なくとも一部に存在する。
 リチウムシリケート複合粒子に含まれる各元素の含有量は、例えば、放電状態におけるリチウムシリケート複合粒子の粉末試料を用いたSEM-EDS分析により算出できる。粉末試料を分析し、各元素のスペクトル強度を測定する。続いて、市販されている元素の標準試料を用いて検量線を作成し、シリケート相に含まれる各元素の含有量を算出する。
 リチウムシリケート複合粒子中の各元素の定量は、ICP-AES分析(誘導結合プラズマ発光分光分析)、オージェ電子分光分析(AES)、レーザアブレーションICP質量分析(LA-ICP-MS)、X線光電子分光分析(XPS)などでも可能である。
[第1被膜]
 第1被膜は、二次粒子であるリチウムシリケート複合粒子の表面の少なくとも一部を被覆する。
 第1被膜は、酸素欠損を有する第1元素の酸化物および炭素材料を含む。通常、酸素欠損を有する第1元素の酸化物と、炭素材料とは、第1被膜において混在している。上記の「混在」とは、例えば、炭素材料同士の隙間に第1元素の酸化物が入り込んでいる状態をいう。これにより、第1被膜内に導電パスを十分に形成しつつ、第1被膜によりリチウムシリケート複合粒子の腐食を抑制できる。
 第1元素は、リチウムシリケート複合粒子の表面に近いほど多く存在してもよい。これにより、リチウムシリケート複合粒子の腐食を抑制する効果が向上する。第1被膜における炭素材料に対する第1元素の平均の元素比RAは、特に限定されない。元素比RAは、例えば、0.01以上、99以下であってもよい。
 リチウムシリケート相は電子伝導性に乏しいため、リチウムシリケート複合粒子の導電性も低くなりがちである。リチウムシリケート複合粒子の表面を導電性の炭素材料を含む第1被膜で被覆することで、リチウムシリケート複合粒子の導電性を飛躍的に高めることができる。
 炭素材料としては、カーボンブラック、石炭、コークス、木炭、および活性炭のような結晶性の低い無定形炭素や、結晶性の高い黒鉛などを挙げることができる。なかでも、硬度が低く、充放電で体積変化するシリコン相に対する緩衝作用が大きいことから、無定形炭素が好ましい。無定形炭素は、易黒鉛化炭素(ソフトカーボン)でもよく、難黒鉛化炭素(ハードカーボン)でもよい。カーボンブラックとしては、アセチレンブラック、ケッチェンブラックが挙げられる。黒鉛とは、黒鉛型結晶構造を有する材料を意味し、例えば、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子が挙げられる。
 第1被膜の厚みは特に限定されない。腐食抑制の観点から、第1被膜の厚みは、0.1nm以上であってよく、0.5nm以上であってよく、1nm以上であってよい。導電性とリチウムイオン拡散性の観点から、第1被膜の厚みは、50nm以下であってよく、10nm以下であってよく、2nm以下であってよい。第1被膜の厚みは、例えば、0.1nm以上、50nm以下であってよく、0.1nm以上、10nm以下であってよい。
 第1被膜の厚みは、SEMまたはTEMを用いた活物質粒子の断面観察により計測できる。
 まず、電気化学デバイスを解体して電気化学素子(例えば、電極)を取り出し、クロスセクションポリッシャ(CP)を用いて当該素子の断面を得る。SEMまたはTEMを用いて得られた当該断面の画像から、最大径が5μm以上の活物質粒子を無作為に10個選び出す。それぞれの粒子について任意の5点における第1被膜の厚みを測定する。これら計50点における厚みの平均値を求める。この平均値を算出した後、得られた平均値と20%以上異なるデータを除き、再び平均値を算出する。この修正された平均値を、第1被膜の厚みT1とする。
 第1被膜の起点は、リチウムシリケート複合粒子によって形成される母粒子(後述参照)と第1被膜との界面である。例えば、SEM-EDS分析によって得られるLiに帰属するピークの強度が第1元素に帰属するピークの1/10以下である箇所を、第1被膜の起点とみなすことができる。第1被膜の終点は、例えば、SEM-EDS分析によって得られる第1元素に帰属するピークの強度が、その最大値の5%以下となる地点とみなすことができる。第2被膜が形成されている場合、第1被膜の終点は、第1被膜と第2被膜との界面である。
[第2被膜]
 第1被膜の少なくとも一部は、導電性の第2被膜により被覆されていてもよい。これにより、活物質粒子の導電性はさらに向上する。
 第2被膜は、第1被膜とは異なり、第1元素の酸化物を実質的に含まない。第2被膜が第1元素の酸化物を実質的に含まないとは、SEM-EDSによって得られる第1元素に帰属するピークの強度が検出限界以下であることと同義である。
 第2被膜は導電性材料を含む。導電性材料は、電気化学的に安定である点で、導電性炭素材料であることが好ましい。導電性炭素材料としては、上記のような第1被膜に含まれる炭素材料が挙げられる。
 第2被膜の厚みは特に限定されない。第2被膜は、実質上リチウムシリケート複合粒子の平均粒径に影響しない程度に薄いことが好ましい。第2被膜の厚みは、1nm以上であってよく、5nm以上であってよい。第2被膜の厚みは、200nm以下であってよく、100nm以下であってよい。第2被膜の厚みは、第1被膜と同様、SEMまたはTEMを用いたリチウムシリケート複合粒子の断面観察により計測できる。
 第2被膜の起点は、第1被膜との界面である。第2被膜の終点は、SEMあるいはTEM画像により確認できる活物質粒子の最外の地点である。第2被膜の終点は、あるいは、SEM-EDS分析によって得られるCに帰属するピークの強度が、その最大値の5%以下となる地点である。
 第1被膜の厚みT1と第2被膜の厚みT2とは、0<T2/T1<1500の関係を満たすことが好ましい。これにより、耐腐食性とイオン拡散性向上と導電性向上とが両立され易くなる。T2/T1は、5以上であることが好ましく、10以上であることが好ましい。T2/T1は、500以下であることが好ましく、100以下であることが好ましい。
 図1は、本開示の一実施形態に係る活物質粒子を示す模式断面図である。図2は、図1に示す活物質粒子の要部を拡大して示す模式断面図である。
 活物質粒子20は、リチウムシリケート複合粒子23と、その表面を覆う第1被膜27と、第1被膜27を覆う第2被膜26と、を備える。また、図3に、本開示の一実施形態に係る活物質粒子の一例のTEM画像を示す。図3のTEM画像は、活物質粒子の断面の一部であって、図2に相当する部分である。
 図4は、活物質粒子の一例の断面を詳細に示す模式断面図である。リチウムシリケート複合粒子23は、複数の一次粒子24が凝集した二次粒子(母粒子)である。各一次粒子24は、シリケート相21と、シリケート相21内に分散しているシリコン相22とを備える。シリコン相22は、シリケート相21内に略均一に分散している。
 隣り合う一次粒子24の界面Sの少なくとも一部には、図示しない炭素相が配置されている。炭素相は、シリコン相22の表面の少なくとも一部を覆っていてもよい。
 リチウムシリケート複合粒子(母粒子)23の表面は、第1被膜27により被覆されている。第1被膜27は、第2被膜26により被覆されている。
B.電気化学素子
 本開示の実施形態に係る電気化学素子は、集電体と、集電体に担持された活物質層と、を備える。活物質層は、上記の活物質粒子を含む。このような電気化学素子は、導電性に優れるとともに劣化が抑制されるため、高容量かつ長寿命な電気化学デバイスを提供することができる。
 電気化学素子としては、電極が挙げられる。電極は、例えば、二次電池に用いられる正極および負極の少なくとも一方である。本開示の実施形態に係る電極は、リチウムイオン二次電池用の負極として用いられることが好ましい。
C.電気化学デバイス
 本開示の実施形態に係る電気化学デバイスは、第1の電極、第2の電極およびこれらの間に介在するセパレータを備える。第1の電極および第2の電極の一方は、上記の電気化学素子により構成される。このような電気化学デバイスは、高容量かつ長寿命である。
 電気化学デバイスは、物質間で電子の授受を行って、この電子の授受によって化学的反応を生じさせる装置である。電気化学デバイスとしては、例えば、一次電池、二次電池、コンデンサ、電気二重層キャパシタが挙げられる。本開示の実施形態に係る電気化学デバイスは、リチウムシリケート複合粒子を負極活物質として用いたリチウムイオン二次電池であることが好ましい。
 以下、本開示の実施形態に係る電気化学素子として負極を、電気化学デバイスとしてリチウムイオン二次電池を例に挙げて、これらの構成を説明する。
[負極]
 負極は、例えば、負極集電体と負極活物質層とを含む。
 負極活物質層は、負極活物質を含む。負極活物質は、少なくとも上記の活物質粒子(以下、第1の活物質と称す場合がある。)を含む。負極活物質層は、負極集電体の表面に負極合材を含む層として形成される。負極活物質層は、負極集電体の一方の表面に形成されてもよく、両方の表面に形成されてもよい。負極合剤は、必須成分として負極活物質を含み、任意成分として結着剤、導電剤、増粘剤などを含み得る。
 負極活物質は、さらに他の活物質材料(以下、第2の活物質と称す場合がある。)を含んでもよい。第2の活物質としては、例えば、電気化学的にリチウムイオンを吸蔵および放出する導電性炭素材料が挙げられる。第1の活物質と導電性炭素材料を併用することで、さらなる高寿命化が期待できる。
 導電性炭素材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)などが挙げられる。なかでも、充放電の安定性に優れ、不可逆容量も少ない黒鉛が好ましい。黒鉛とは、黒鉛型結晶構造を有する材料を意味し、例えば、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子などが含まれる。導電性炭素材料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 導電性炭素材料の粒径は特に限定されない。導電性炭素材料の平均粒径は、例えば、1μm以上、30μm以下であってよい。
 第1と第2の活物質との合計に占める第1の活物質の割合は、例えば3質量%以上30質量%以下であってよい。これにより、高容量化と高寿命化とを両立し易くなる。
 負極集電体としては、無孔の導電性基板(金属箔など)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシートなど)が使用される。負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金などが例示できる。負極集電体の厚みは、特に限定されないが、負極の強度と軽量化とのバランスの観点から、1μm以上、50μm以下が好ましく、5μm以上、20μm以下がより好ましい。
 結着剤としては、例えば、ポリアクリル酸、ポリアクリル酸塩およびそれらの誘導体よりなる群から選択される少なくとも1種が挙げられる。ポリアクリル酸塩としては、Li塩若しくはNa塩が好ましく用いられる。なかでも架橋型ポリアクリル酸リチウムを用いることが好ましい。
 導電剤としては、例えば、アセチレンブラックなどのカーボンブラック類;炭素繊維や金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛やチタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;フェニレン誘導体などの有機導電性材料などが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)およびその変性体(Na塩などの塩も含む)、メチルセルロースなどのセルロース誘導体(セルロースエーテルなど);ポリビニルアルコールなどの酢酸ビニルユニットを有するポリマーのケン化物;ポリエーテル(ポリエチレンオキシドなどのポリアルキレンオキサイドなど)などが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[正極]
 正極は、例えば、正極集電体と、正極集電体の表面に形成された正極活物質層とを具備する。正極活物質層は、正極集電体の一方の表面に形成されてもよく、両方の表面に形成されてもよい。
 正極活物質層は、正極集電体の表面に正極合材を含む層として形成される。正極合剤は、必須成分として正極活物質を含み、任意成分として、結着剤、導電剤などを含み得る。
 正極活物質としては、リチウム複合金属酸化物を用いることができる。リチウム複合金属酸化物としては、例えば、LiaCoO2、LiaNiO2、LiaMnO2、LiaCobNi1-b2、LiaCob1-bc、LiaNi1-bbc、LiaMn24、LiaMn2-bb4、LiMePO4、Li2MePO4Fが挙げられる。ここで、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、およびBよりなる群から選択される少なくとも1種である。Meは、少なくとも遷移元素(例えば、Mn、Fe、Co、Niよりなる群から選択される少なくとも1種)を含む。0≦a≦1.2、0≦b≦0.9、2.0≦c≦2.3である。
 結着剤および導電剤としては、負極について例示したものと同様のものが使用できる。導電剤としては、天然黒鉛、人造黒鉛などの黒鉛を用いてもよい。
 正極集電体の形状および厚みは、負極集電体に準じた形状および範囲からそれぞれ選択できる。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが例示できる。
[電解質]
 本開示の実施形態に係る電気化学デバイスは、さらに電解質を含む。電解質は、例えば、溶媒と、溶媒に溶解したリチウム塩を含む。電解質におけるリチウム塩の濃度は、例えば、0.5mol/L以上、2mol/L以下である。電解質は、公知の添加剤を含有してもよい。
 溶媒は、水系溶媒若しくは非水溶媒を用いる。非水溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)などが挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 リチウム塩としては、例えば、塩素含有酸のリチウム塩(LiClO4、LiAlCl4、LiB10Cl10など)、フッ素含有酸のリチウム塩(LiPF6、LiBF4、LiSbF6、LiAsF6、LiCF3SO3、LiCF3CO2など)、フッ素含有酸イミドのリチウム塩(LiN(SO2F)2、LiN(CF3SO22、LiN(CF3SO2)(C49SO2)、LiN(C25SO22など)、リチウムハライド(LiCl、LiBr、LiIなど)などが挙げられる。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[セパレータ]
 セパレータは、正極と負極との間に介在してもよい。セパレータは、イオン透過度が高くて適度な機械的強度および絶縁性を備えている。セパレータとしては、微多孔薄膜、織布、不織布などが挙げられる。セパレータの材質には、例えばポリプロピレン、ポリエチレンなどのポリオレフィンが用いられる。
 二次電池の構造の一例としては、正極、負極およびセパレータを捲回してなる電極群と電解質とが外装体に収容された構造が挙げられる。捲回型の電極群の代わりに、正極および負極がセパレータを介して積層された積層型の電極群も用いられる。また、他の形態の電極群が適用されてもよい。二次電池は、例えば円筒型、角型、コイン型、ボタン型、ラミネート型など、いずれの形態であってもよい。
 図5は、本開示の一実施形態に係る角形の二次電池の一部を切欠いた概略斜視図である。電池は、有底角形の電池ケース4と、電池ケース4内に収容された電極群1および電解質(図示せず)と、電池ケース4の開口部を封口する封口板5とを備えている。電極群1は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在するセパレータとを有する。負極、正極およびセパレータは、平板状の巻芯を中心にして捲回され、巻芯を抜き取ることにより電極群1が形成される。封口板5は、封栓8で塞がれた注液口と、ガスケット7で封口板5から絶縁された負極端子6とを有する。
 負極の負極集電体には、負極リード3の一端が溶接などにより取り付けられている。正極の正極集電体には、正極リード2の一端が溶接などにより取り付けられている。負極リード3の他端は、負極端子6に電気的に接続される。正極リード2の他端は、封口板5に電気的に接続される。電極群1の上部には、電極群1と封口板5とを隔離するとともに負極リード3と電池ケース4とを隔離する樹脂製の枠体が配置されている。
D.活物質粒子の製造方法
 本開示の実施形態に係る活物質粒子の製造方法は、シリケート相、および、シリケート相内に分散するシリコン相を含むとともに、炭素材料を含む炭素被膜により表面の少なくとも一部が被覆されたリチウムシリケート複合粒子を準備する準備工程と、非金属元素以外の第1元素を含む気相にリチウムシリケート複合粒子を曝して炭素被膜に第1元素を導入し、リチウムシリケート複合粒子の表面の少なくとも一部に、第1元素の酸化物および炭素材料を含む第1被膜を形成する被膜形成工程と、を備える。当該製造方法によれば、リチウムシリケート複合粒子を被覆する炭素被膜の内部に第1元素の酸化物が導入されて、第1被膜が形成される。
 図6は、本開示の一実施形態に係る活物質粒子の製造方法を示すフローチャートである。
(i)リチウムシリケート複合粒子の準備工程(S11)
(i-i)シリコン粒子の調製
 まず、シリコン粒子を調製する。
 シリコン粒子は、化学気相成長法(CVD法)、熱プラズマ法、物理的粉砕法などにより得ることができる。以下の方法では、例えば平均粒径が10nm以上、200nm以下のシリコンナノ粒子を合成し得る。シリコン粒子の平均粒径は、レーザー回折散乱法で測定される体積粒度分布において、体積積算値が50%となる粒径(体積平均粒径)を意味する。
(a)化学気相成長法
 CVD法では、例えば気相中でシラン化合物を酸化または還元してシリコン粒子を生成させる方法である。反応温度は、例えば、400℃以上、1300℃以下に設定すればよい。
 シラン化合物としては、シラン、ジシランのような水素化ケイ素、ハロゲン化シラン、アルコキシシランなどを用い得る。ハロゲン化シランとしては、ジクロロシラン、トリクロロシラン、テトラクロロシランなどを用い得る。アルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシランなどを用い得る。
 例えば、気相中で水素化ケイ素を酸化性ガスと接触させると、シリコン粒子とシリコン酸化物粒子との複合物が得られる。すなわち、気相の雰囲気は、酸化性ガス雰囲気であればよい。複合物を例えばフッ化水素酸で洗浄することによりシリコン酸化物が除去され、シリコン粒子が得られる。
 ハロゲン化シラン、アルコキシシランなどを還元する場合は、例えば、アトマイズ法により微粒子化された溶融金属とシラン化合物とを接触させればよい。溶融金属としては、Na、K、Mg、Ca、Zn、Alなどを用い得る。アトマイズガスには、不活性ガス、ハロゲン化シラン、水素ガスなどを用いればよい。すなわち、気相の雰囲気は、不活性ガス、還元性ガス雰囲気であればよい。
(b)熱プラズマ法
 熱プラズマ法は、発生させた熱プラズマ中にシリコンの原料を導入して、高温のプラズマ中でシリコン粒子を生成させる方法である。熱プラズマは、アーク放電、高周波放電、マイクロ波放電、レーザー光照射などにより発生させればよい。なかでも高周波(RF)による放電は無極放電であり、シリコン粒子に不純物が混入しにくい点で望ましい。
 原料には、例えばシリコン酸化物を用い得る。プラズマ中に原料を導入すると、瞬時に原子もしくはイオンの状態のケイ素と酸素が生成し、冷却途中でケイ素が結合し、固化してシリコン粒子が生成する。
(c)物理的粉砕法
 物理的粉砕法(メカニカルミリング法)は、シリコンの粗粒子をボールミル、ビーズミルなどの粉砕機で粉砕する方法である。粉砕機の内部は、例えば不活性ガス雰囲気とすればよい。
(i-ii)炭素相によるシリコン粒子の被覆
 シリコン粒子の表面の少なくとも一部を炭素相により被覆してもよい。
 シリコン粒子を炭素相で被覆する方法としては、化学気相成長法(CVD法)、スパッタリング、原子層堆積法(ALD法:Atomic Layer Deposition)、湿式混合法、乾式混合法などが挙げられる。なかでもCVD法、湿式混合法などが好ましい。
(a)化学気相成長法
 CVD法は、炭化水素系ガス雰囲気中にシリコン粒子を導入し、加熱して、炭化水素系ガスの熱分解により生じる炭素材料を粒子表面に堆積させて、炭素相が形成される。炭化水素系ガス雰囲気の温度は、例えば、500℃以上、1000℃以下であればよい。炭化水素系ガスとしては、アセチレン、メタンなどの鎖状炭化水素ガス、ベンゼン、トルエン、キシレンなどの芳香族炭化水素を用い得る。
(b)湿式混合法
 湿式混合法では、例えば、石炭ピッチ、石油ピッチ、タールなどの炭素前駆体を溶媒に溶解し、得られた溶液とシリコン粒子とを混合し、乾燥させる。その後、炭素前駆体で被覆されたシリコン粒子を、不活性ガス雰囲気中で、例えば、600℃以下、1000℃以下で加熱し、炭素前駆体を炭化させて、炭素相が形成される。
(i-iii)リチウムシリケート複合粒子の合成
 シリケート相の原料を準備する。
 シリケート相の原料には、Si原料と、Li原料とを所定の割合で含む原料混合物を用いればよい。原料混合物を溶解し、融液を金属ロールに通してフレーク化すればシリケートが得られる。原料混合物を溶解せずに、融点以下の温度で焼成して固相反応によりシリケートを合成してもよい。
 Si原料には、酸化ケイ素(例えばSiO2)を用い得る。Li原料または元素Mの原料には、それぞれリチウムまたは元素Mの炭酸塩、酸化物、水酸化物、水素化物、硝酸塩、硫酸塩などを用い得る。なかでも炭酸塩、酸化物、水酸化物などが好ましい。
 次に、シリケートに、表面の少なくとも一部が炭素相で被覆されたシリコン粒子(以下、炭素被覆シリコン粒子とも称する。)を配合して両者を混合する。例えば、以下の工程を経てリチウムシリケート複合粒子が作製される。
 まず、炭素被覆シリコン粒子とシリケートの粉末とを、例えば20:80から95:5の質量比で混合する。
 次に、ボールミルのような装置を用いて、炭素被覆シリコン粒子とシリケートの混合物を攪拌する。このとき、混合物に有機溶媒を添加し、湿式混合することが好ましい。所定量の有機溶媒を、粉砕初期に一度に粉砕容器に投入してもよく、粉砕過程で複数回に分けて間欠的に粉砕容器に投入してもよい。有機溶媒は、粉砕対象物の粉砕容器の内壁への付着を防ぐ役割を果たす。有機溶媒としては、アルコール、エーテル、脂肪酸、アルカン、シクロアルカン、珪酸エステル、金属アルコキシドなどを用いることができる。
 続いて、混合物を、例えば不活性ガス雰囲気(例えばアルゴン、窒素などの雰囲気)中で加圧しながら、450℃以上、1000℃以下で加熱し、焼結させる。焼結には、ホットプレス、放電プラズマ焼結など、不活性雰囲気下で加圧できる焼結装置を用い得る。焼結時、シリケートが溶融し、シリコン粒子間の隙間を埋めるように流動する。その結果、シリケート相を海部とし、粒子状のシリコン相を島部とする緻密なブロック状の焼結体を得ることができる。
 最後に得られた焼結体を粉砕すれば、リチウムシリケート複合粒子が得られる。粉砕条件を適宜選択することにより、所定の平均粒径のリチウムシリケート複合粒子を得ることができる。
(i-iv)炭素被膜によるリチウムシリケート複合粒子の被覆
 次に、リチウムシリケート複合粒子の表面の少なくとも一部を炭素被膜で被覆する。第1被膜に含まれる炭素材料は、この炭素被膜に由来する。
 炭素被膜をリチウムシリケート複合粒子の表面に形成する方法としては、アセチレン、メタンなどの鎖状炭化水素ガスを原料に用いる化学気相成長法、石炭ピッチ、石油ピッチ、フェノール樹脂などをリチウムシリケート複合粒子と混合し、加熱して炭化させる方法などが例示できる。カーボンブラックをリチウムシリケート複合粒子の表面に付着させてもよい。
 炭素被膜は、実質上、リチウムシリケート複合粒子の平均粒径に影響しない程度に薄いことが好ましい。一方、第1被膜の炭素源であることを考慮すると、炭素被膜の厚みは、所望の第1被膜以上であることが望ましい。炭素被膜は、0.1nm以上であってよく、1nm以上であってよい。リチウムイオンの拡散性を考慮すると、炭素被膜は、300nm以下が好ましく、200nm以下がより好ましい。炭素被膜の厚みは、第1被膜と同様、SEMまたはTEMを用いたリチウムシリケート複合粒子の断面観察により計測できる。
 最後に、炭素被膜を有するリチウムシリケート複合粒子を酸で洗浄する工程を行ってもよい。例えば、酸性水溶液で複合粒子を洗浄することで、リチウムシリケート複合粒子の表面に存在し得る微量のアルカリ成分を溶解させ、除去することができる。酸性水溶液としては、塩酸、フッ化水素酸、硫酸、硝酸、リン酸、炭酸などの無機酸の水溶液や、クエン酸、酢酸などの有機酸の水溶液を用いることができる。
(ii)第1被膜の形成工程(S12)
 炭素被膜を有するリチウムシリケート複合粒子を、第1元素を含む気相に曝す。これにより、炭素被膜に第1元素が導入されて、リチウムシリケート複合粒子の表面の少なくとも一部に、第1元素の酸化物および炭素材料を含む第1被膜が形成される。
 気相法としては、例えば、CVD法、ALD法、物理気相成長法(PVD)などが挙げられる。特に、比較的低温で第1被膜を形成できる点で、ALD法が好ましい。ALD法によれば、200℃以下の雰囲気で第1被膜を形成することができる。
 ALD法では、第1被膜の原料として、第1元素を含む有機金属化合物(プリカーサ)が用いられる。ALD法では、対象物が配置された反応室に、気化されたプリカーサを含む原料ガスと酸化剤とが交互に供給される。これにより、対象物の表面に第1元素の酸化物を含む層が形成される。
 対象物であるリチウムシリケート複合粒子の表面の少なくとも一部は、炭素被膜により覆われている。原料ガスに含まれる第1元素は、この炭素被膜を通過してリチウムシリケート複合粒子の表面にまで到達することができる。そして、第1元素はそのままリチウムシリケート複合粒子の表面に堆積する。そのため、第1元素は、リチウムシリケート複合粒子の表面近傍により多く配置される。形成される第1被膜には、第1元素の酸化物とともに炭素被膜由来の炭素材料が含まれる。なお、対象物であるリチウムシリケート複合粒子の表面のうち炭素被膜により覆われていない部分は、原料ガスに含まれる第1元素はリチウムシリケート複合粒子の表面に堆積される。
 ALD法では、自己停止(Self-limiting)作用が機能するため、第1元素は原子層単位で対象物の表面に堆積する。ALD法では、原料ガスの供給(パルス)→原料ガスの排気(パージ)→酸化剤の供給(パルス)→酸化剤の排気(パージ)を1サイクルとしたサイクル数により、第1被膜の厚みは制御される。ALD法では、酸化剤の供給(パルス)→酸化剤の排気(パージ)→原料ガスの供給(パルス)→原料ガスの排気(パージ)を、1サイクルとしてもよい。第1被膜の厚みを炭素被膜と同程度になるように制御すると、濃度勾配はあるものの、炭素被膜全体に第1元素の酸化物が配置され得る。第1被膜の厚みを炭素被膜より薄くなるように制御すると、リチウムシリケート複合粒子の表面側に第1元素の酸化物と炭素材料とを含む第1被膜が形成されるとともに、リチウムシリケート複合粒子の表面に対して第1被膜よりも離れた位置に炭素被膜の残部由来の第2被膜が形成される。
 プリカーサは、第1元素を含む有機金属化合物である。プリカーサとしては、従来、ALD法で用いられている各種の有機金属化合物を使用することができる。
 Tiを含むプリカーサとしては、例えば、ビス(t-ブチルシクロペンタジエニル)チタン(IV)ジクロライド(C1826ClTi)、テトラキス(ジメチルアミノ)チタン(IV)([(CHN]Ti、TDMAT)、テトラキス(ジエチルアミノ)チタン(IV)([(CN]Ti)、テトラキス(エチルメチルアミノ)チタン(IV)(Ti[N(C)(CH)])、チタン(IV)ジイソプロポキサイド-ビス(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート)(Ti[OCC(CHCHCOC(CH](OC)、四塩化チタン(TiCl)、チタン(IV)イソプロポキシド(Ti[OCH(CH)、チタン(IV)エトキシド(Ti[O(C)])が挙げられる。Alを含むプリカーサとしては、例えば、トリメチルアルミニウム((CHAl)(TMA)が挙げられる。
 原料ガスは、複数種のプリカーサを含んでいてもよい。反応室には、異なる種類のプリカーサが同時にあるいは順に供給されてもよい。あるいは、原料ガスに含まれるプリカーサの種類をサイクルごとに変えてもよい。
 酸化剤としては、従来、ALD法で用いられている酸化剤を使用することができる。酸化剤としては、例えば、水、酸素、オゾンなどが挙げられる。酸化剤は、酸化剤を原料とするプラズマとして反応室に供給されてもよい。
 ALD法の条件は特に限定されない。第1元素の酸化物における酸素欠損は、例えば、反応室内の温度(プリカーサまたは酸化剤を含む雰囲気の温度)、酸化剤のパルス時間などを調節することにより制御できる。
 反応室内のプリカーサまたは酸化剤を含む雰囲気の温度は、例えば、25℃以上、200℃以下であってよく、50℃以上、150℃以下であってよい。同様の観点から、処理中の反応室の圧力は、例えば、1×10-5Pa以上、1×10-2Pa以下であってよく、1×10-4Pa以上、1×10-3Pa以下であってよい。原料ガスのパルス時間は、0.01秒以上、5秒以下であってよく、0.05秒以上、3秒以下であってよい。酸化剤のパルス時間は、0.005秒、3秒以下であってよい。
E.電気化学素子の製造方法
 本開示の実施形態電気化学素子は、上記の第1の活物質を備える。この電気化学素子は、第1被膜を備える第1の活物質を、集電体の表面に担持させることにより得られる。この電気化学素子は、炭素被膜で被覆されたリチウムシリケート複合粒子を集電体の表面に担持させた後、気相法により第1被膜を形成することによっても得られる。
 図7は、本開示の一実施形態に係る電気化学素子の製造方法を示すフローチャートである。
 図7に示された製造方法は、シリケート相、および、シリケート相内に分散するシリコン相を含むとともに、炭素材料を含む炭素被膜により表面の少なくとも一部が被覆されたリチウムシリケート複合粒子を準備する準備工程と、集電体の表面に、リチウムシリケート複合粒子を担持させる担持工程と、非金属元素以外の第1元素を含む気相にリチウムシリケート複合粒子を曝して炭素被膜に第1元素を導入し、リチウムシリケート複合粒子の表面の少なくとも一部に第1元素の酸化物および炭素材料を含む第1被膜が形成された活物質層を形成する被膜形成工程と、を備える。
(I)リチウムシリケート複合粒子の準備工程(S21)
 活物質粒子の製造方法におけるリチウムシリケート複合粒子の準備工程の(i-i)から(i-iv)として示された工程と同様にして、炭素被膜で被覆されたリチウムシリケート複合粒子を準備する。
(II)リチウムシリケート複合粒子の担持工程(S22)
 集電体の表面に、準備されたリチウムシリケート複合粒子を含む負極合剤を分散媒に分散させたスラリーを塗布し、当該スラリーを乾燥させる。これにより、集電体の表面に活物質層の前駆体が形成される。
 分散媒としては、特に制限されないが、例えば、水、エタノールなどのアルコール、テトラヒドロフランなどのエーテル、ジメチルホルムアミドなどのアミド、N-メチル-2-ピロリドン(NMP)、またはこれらの混合溶媒などが例示できる。
(III)第1被膜の形成工程(S23)
 活物質層の前駆体を備える集電体を、第1元素を含む気相に曝す。これにより、炭素被膜に第1元素が導入されて、前駆体に含まれるリチウムシリケート複合粒子の表面の少なくとも一部は、第1元素の酸化物および炭素材料を含む第1被膜により覆われる。これにより、活物質層が形成される。気相法としては、上記の通り、ALD法が好ましく挙げられる。
 ALD法で用いられるプリカーサおよび酸化剤には、活物質粒子の製造方法における第1被膜の形成工程(ii)で示されるプリカーサおよび酸化剤を用いることができる。
 ALD法の条件は特に限定されない。プリカーサまたは酸化剤を含む雰囲気の温度、処理中の反応室の圧力、および原料ガスのパルス時間としては、活物質粒子の製造方法における第1被膜の形成工程(ii)で示されるプリカーサまたは酸化剤を含む雰囲気の温度、処理中の反応室の圧力、および原料ガスのパルス時間と同様の範囲が例示できる。
(IV)圧延工程(S24)
 第1被膜を形成した後、活物質層を圧延してもよい。圧延の条件は特に限定されず、活物質層が所定の厚みあるいは密度になるように適宜設定すればよい。これにより、活物質層の密度が高まって、電気化学デバイスの容量を高めることができる。
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本開示は以下の実施例に限定されるものではない。
《実施例1》
[負極の作製]
(1)シリコン粒子の調製
 シリコンの粗粒子(3N、平均粒径10μm)を遊星ボールミル(フリッチュ社製、P-5)のポット(SUS製、容積500mL)に充填し、ポットにSUS製ボール(直径20mm)を24個入れて蓋を閉め、不活性雰囲気中で、200rpmで平均粒径が150nmになるまで粉砕し、シリコン粒子を調製した。
(2)炭素相によるシリコン粒子の被覆
 シリコン粒子の表面に、化学気相成長法により炭素材料を堆積させた。具体的には、アセチレンガス雰囲気中にシリコン粒子を導入し、700℃で加熱して、アセチレンガスを熱分解させてシリコン粒子の表面に堆積させ、炭素相を形成した。シリコン粒子100質量部に対する炭素材料量は10質量部とした。
(3)リチウムシリケート複合粒子の調製
 二酸化ケイ素と炭酸リチウムとを原子比(=Si/Li)が1.05となるように混合し、混合物を950℃空気中で10時間焼成することにより、LiSi(z=0.5)で表わされるリチウムシリケートを得た。得られたリチウムシリケートは平均粒径10μmになるように粉砕した。
 平均粒径10μmのリチウムシリケート(LiSi)と、炭素被覆シリコンとを、70:30の質量比で混合した。混合物を遊星ボールミル(フリッチュ社製、P-5)のポット(SUS製、容積500mL)に充填し、ポットにSUS製ボール(直径20mm)を24個入れて蓋を閉め、不活性雰囲気中で、200rpmで混合物を50時間攪拌した。
 次に、不活性雰囲気中で粉末状の混合物を取り出し、不活性雰囲気中、ホットプレス機による圧力を印加した状態で、800℃で4時間焼成して、混合物の燒結体を得た。その後、焼結体を粉砕して、リチウムシリケート複合粒子を得た。
 XRD分析によりSi(111)面に帰属される回折ピークからシェラーの式で算出したシリコン相の結晶子サイズは15nmであった。シリケート相において、Si/Li比は1.0であり、Si-NMRにより測定されるLi2Si25の含有量は70質量%(シリコン相の含有量は30質量%)であった。
(4)炭素被膜によるリチウムシリケート複合粒子の被覆
 得られたリチウムシリケート複合粒子を40μmのメッシュに通した後、石炭ピッチ(JFEケミカル株式会社製、MCP250)と混合し、リチウムシリケート複合粒子とピッチとの混合物を不活性雰囲気中で、800℃で5時間焼成し、リチウムシリケート複合粒子の表面に炭素被膜を形成した。炭素被膜による被覆量は、リチウムシリケート複合粒子と炭素被膜との総質量に対して5質量%とした。その後、篩を用いて、リチウムシリケート複合粒子とその表面に形成された炭素被膜とを備える平均粒径10μmの粒子を分別した。炭素被膜の厚みは、50nmであった。
(5)負極前駆体の作製
 炭素被膜を備えるリチウムシリケート複合粒子と第2の活物質(黒鉛)とを5:95の質量比で混合し、負極活物質として用いた。負極活物質と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレンブタジエンゴム(SBR)、ポリアクリル酸リチウム塩とを96.5:1:1.5:1の質量比で含む負極合剤に水を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、負極スラリーを調製した。次に、銅箔の表面に1m2当りの負極合剤の質量が190gとなるように負極スラリーを塗布し、塗膜を乾燥させることにより、銅箔の両面に密度1.5g/cm3の負極活物質層が形成された負極前駆体を作製した。負極前駆体における負極活物質層の厚みは、202μmであった。
(6)第1および第2の被膜の形成
 負極前駆体を所定の反応室に収容し、ALD法により、下記手順に従って第1被膜を負極前駆体の表面に形成した。
 負極前駆体が収容されている反応室に、酸化剤(HO)を気化させて供給した。パルス時間は、0.005秒とした。反応室における酸化剤を含む雰囲気の温度は150℃、圧力は260Paに制御した。30秒後、余分な酸化剤を窒素ガスでパージした。
 次に、負極前駆体が収容されている反応室に、第1元素(Ti)の供給源となるプリカーサ(TDMAT)を気化させて供給した。パルス時間は、0.1秒とした。反応室におけるプリカーサを含む雰囲気の温度は150℃、圧力は260Paに制御した。30秒後、負極前駆体の表面がプリカーサの単分子層で覆われたものとして、余分なプリカーサを窒素ガスでパージした。
 酸化剤の供給、パージ、プリカーサの供給、パージからなる一連の操作を22回繰り返すことによりチタンを含む第1被膜を形成した。第1被膜が炭素被膜より薄くなるように調整して、第1被膜と、第1被膜を覆う第2被膜とを同時に形成した。
 第1および第2の被膜をSEM、EDS、ICPなどで分析した。第1被膜は、TiおよびCを含んでいた。第2被膜は、Cを含んでいた。第1被膜の厚みT1は5nmであった。第2被膜の厚みT2は45nmであった。XANES解析により、第1被膜に含まれるTiを含む酸化物は酸素欠損を有する結晶構造であることが確認された。TiO2-xのx値は0.1程度であった。
 第1被膜および第2被膜を形成した後、負極活物質層を圧延し、負極を得た。
[正極の作製]
 コバルト酸リチウムと、アセチレンブラックと、ポリフッ化ビニリデンとを95:2.5:2.5の質量比で含む正極合剤にN-メチル-2-ピロリドン(NMP)を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、正極スラリーを調製した。次に、アルミニウム箔の表面に正極スラリーを塗布し、塗膜を乾燥させた後、圧延して、アルミニウム箔の両面に、密度3.6g/cm3の正極活物質層が形成された正極を作製した。正極活物質層の厚みは、138μmであった。
[電解液の調製]
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比で含む混合溶媒にLiPF6を1.0mol/L濃度で溶解して電解液を調製した。
[二次電池の作製]
 各電極にタブをそれぞれ取り付け、タブが最外周部に位置するように、セパレータを介して正極および負極を渦巻き状に巻回することにより電極群を作製した。電極群をアルミニウムラミネートフィルム製の外装体内に挿入し、105℃で2時間真空乾燥した後、電解液を注入し、外装体の開口部を封止して、二次電池A1を得た。
《実施例2》
 第1および第2の被膜の形成(6)において、酸化剤の供給、パージ、プリカーサの供給、パージからなる一連の操作を44回繰り返したこと以外、実施例1と同様に第1の活物質を製造し、二次電池A2を作製した。
 第1被膜は、TiおよびCを含んでいた。第1被膜の厚みT1は10nm、第2被膜の厚みT2は40nmであった。XANES解析により、第1被膜に含まれるTiを含む酸化物は酸素欠損を有する結晶構造であることが確認された。TiO2-xのx値は0.1程度であった。
《実施例3》
 第1および第2の被膜の形成(6)において、第1元素(Al)の供給源となるプリカーサにトリメチルアルミニウムを用いたこと以外、実施例1と同様に第1の活物質を製造し、二次電池A3を作製した。
 第1被膜は、AlおよびCを含んでいた。第1被膜の厚みT1は5nm、第2被膜の厚みT2は45nmであった。XANES解析により、第1被膜に含まれるAlを含む酸化物が酸素欠損を有する結晶構造であることが確認された。AlO1.5-yのy値は0.1程度であった。
《実施例4》
 第1および第2の被膜の形成(6)において、第1元素(Al)の供給源となるプリカーサにトリメチルアルミニウムを用いた。反応室における酸化剤を含む雰囲気の温度は120℃とした。反応室におけるプリカーサを含む雰囲気の温度は120℃とした。酸化剤の供給、パージ、プリカーサの供給、パージからなる一連の操作を44回繰り返した。
 上記以外、実施例1と同様に第1の活物質を製造し、二次電池A4を作製した。
 第1被膜は、AlおよびCを含んでいた。第1被膜の厚みT1は10nm、第2被膜の厚みT2は40nmであった。XANES解析により、第1被膜に含まれるAlを含む酸化物は酸素欠損を有する結晶構造であることが確認された。AlO1.5-yのy値は0.1程度であった。
《比較例1》
 第1被膜および第2被膜の形成(6)を行わなかったこと以外、実施例1と同様に活物質を製造し、二次電池B1を作製した。活物質は、厚み50nmの炭素被膜で被覆されていた。
《比較例2》
 第1および第2の被膜の形成(6)において、酸化剤(HO)を気化させて供給する際のパルス時間は、0.015秒とした。反応室における酸化剤を含む雰囲気の温度は200℃とした。反応室におけるプリカーサを含む雰囲気の温度は200℃とした。
 上記以外、実施例1と同様に第1の活物質を製造し、二次電池B2を作製した。
 第1被膜の厚みT1は5nm、第2被膜の厚みT2は45nmであった。XANES解析により、第1被膜に含まれるTiを含む酸化物が酸素欠損を有さない結晶構造であることが確認された。TiO2-xのx値は0であった。
《比較例3》
 第1および第2の被膜の形成(6)において、酸化剤(HO)を気化させて供給する際のパルス時間は、0.015秒とした。反応室における酸化剤を含む雰囲気の温度は200℃とした。反応室におけるプリカーサを含む雰囲気の温度は200℃とした。酸化剤の供給、パージ、プリカーサの供給、パージからなる一連の操作を44回繰り返した。
 上記以外、実施例1と同様に第1の活物質を製造し、二次電池B3を作製した。
 第1被膜の厚みT1は10nm、第2被膜の厚みT2は40nmであった。XANES解析により、第1被膜に含まれるTiを含む酸化物が酸素欠損を有さない結晶構造であることが確認された。TiO2-xのx値は0であった。
 上記で作製した実施例および比較例の各電池について、以下の評価を行った。
[レート特性の評価:(1C容量/0.1C容量)の測定]
 25℃で、1Cの電流で電圧が4.2Vになるまで定電流充電を行い、その後、4.2Vの電圧で電流が1/20Cになるまで定電圧充電を行った。10分休止後、25℃で、1Cの電流で電圧が2.5Vになるまで定電流放電を行い、このときの放電容量を1C容量として求めた。
 25℃で、1Cの電流で電圧が4.2Vになるまで定電流充電を行い、その後、4.2Vの電圧で電流が1/20Cになるまで定電圧充電を行った。10分休止後、25℃で、0.1Cの電流で電圧が2.5Vになるまで定電流放電を行い、このときの放電容量を0.1C容量として求めた。0.1C容量に対する1C容量の比(1C容量/0.1C容量)を求めた。
[サイクル特性の評価:容量維持率の測定]
 下記条件で充放電を繰り返し行った。
<充電>
 25℃で、1Cの電流で電圧が4.2Vになるまで定電流充電を行い、その後、4.2Vの電圧で電流が1/20Cになるまで定電圧充電を行った。
<放電>
 25℃で、1Cの電流で電圧が2.5Vになるまで定電流放電を行った。
 充電と放電との間の休止期間は10分とした。1サイクル目の放電容量に対する100サイクル目の放電容量の割合を、容量維持率として求めた。
 評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 電池A1~A4では、酸素欠損を有する第1元素の酸化物と、炭素材料とを含む第1被膜でリチウムシリケート複合粒子を被覆したため、高い容量維持率および(1C容量/0.1C容量)が得られ、優れたサイクル特性およびレート特性が得られた。
 一方、電池B1では、酸素欠損を有する第1元素の酸化物と、炭素材料とを含む第1被膜でリチウムシリケート複合粒子を被覆しなかったため、サイクル特性が大幅に低下し、レート特性も低下した。
 電池B2~B3では、第1元素の酸化物を含む第1被膜でリチウムシリケート複合粒子を被覆したため、電池B1よりも高い容量維持率が得られたが、第1元素の酸化物が酸素欠損を有さなかったため、活物質粒子のイオン伝導性が低く、レート特性が低下した。
 本開示によれば、高容量かつ長寿命な電気化学デバイスを提供することができる。本開示に係る電気化学デバイスは、移動体通信機器、携帯電子機器などの主電源に有用である。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 1 電極群
 2 正極リード
 3 負極リード
 4 電池ケース
 5 封口板
 6 負極端子
 7 ガスケット
 8 封栓
 20 活物質粒子
  21 シリケート相
  22 シリコン相
  23 リチウムシリケート複合粒子
  24 一次粒子
  26 第2被膜
  27 第1被膜

Claims (11)

  1.  リチウムシリケート相、および、前記リチウムシリケート相内に分散するシリコン相を含む複合粒子と、
     前記複合粒子の表面の少なくとも一部を被覆する第1被膜と、を備え、
     前記第1被膜は、酸素欠損を有する第1元素の酸化物と、炭素材料とを含み、
     前記第1元素は、非金属元素以外の元素である、活物質粒子。
  2.  前記第1元素は、Al、Ti、Si、Zr、Mg、Nb、Ta、Sn、NiおよびCrからなる群より選択される少なくとも1種を含む、請求項1に記載の活物質粒子。
  3.  前記第1元素の酸化物は、MeO2-xで表される酸化物を含み、Meは、Ti、Si、Zr、およびSnからなる群より選択される少なくとも1種であり、0<x≦1.95を満たす、請求項1に記載の活物質粒子。
  4.  前記第1元素の酸化物は、MeO1.5-yで表される酸化物を含み、MeはAlであり、0<y≦1.47を満たす、請求項1に記載の活物質粒子。
  5.  前記第1元素の酸化物は、MeO1-zで表される酸化物を含み、Meは、MgおよびNiからなる群より選択される少なくとも1種であり、0<z≦0.9を満たす、請求項1に記載の活物質粒子。
  6.  前記第1元素の酸化物は、MeO3-uで表される酸化物を含み、MeはCrであり、0<u≦2.1を満たす、請求項1に記載の活物質粒子。
  7.  前記第1被膜の厚みT1は、0.1nm以上、50nm以下である、請求項1~6のいずれか1項に記載の活物質粒子。
  8.  前記活物質粒子は、さらに、前記第1被膜の少なくとも一部を被覆する、前記第1被膜とは異なる導電性の第2被膜を備え、
     前記第2被膜は、前記第1元素の酸化物を実質的に含まない、請求項1~7のいずれか1項に記載の活物質粒子。
  9.  前記第2被膜は、炭素材料を含む、請求項8に記載の活物質粒子。
  10.  集電体と、前記集電体に担持された活物質層と、を備え、
     前記活物質層は、請求項1~9のいずれか1項に記載の活物質粒子を含む、電気化学素子。
  11.  第1の電極と、第2の電極と、電解質と、を備え、
     前記第1の電極および第2の電極の一方は、請求項10に記載の電気化学素子により構成される、電気化学デバイス。
PCT/JP2021/043116 2021-01-29 2021-11-25 活物質粒子、電気化学素子、および電気化学デバイス WO2022163099A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21923104.0A EP4287310A1 (en) 2021-01-29 2021-11-25 Active material particle, electrochemical element, and electrochemical device
JP2022578077A JPWO2022163099A1 (ja) 2021-01-29 2021-11-25
CN202180091719.9A CN116868369A (zh) 2021-01-29 2021-11-25 活性物质颗粒、电化学元件和电化学器件
US18/274,575 US20240097111A1 (en) 2021-01-29 2021-11-25 Active material particle, electrochemical element, and electrochemical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021013998 2021-01-29
JP2021-013998 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163099A1 true WO2022163099A1 (ja) 2022-08-04

Family

ID=82653095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043116 WO2022163099A1 (ja) 2021-01-29 2021-11-25 活物質粒子、電気化学素子、および電気化学デバイス

Country Status (5)

Country Link
US (1) US20240097111A1 (ja)
EP (1) EP4287310A1 (ja)
JP (1) JPWO2022163099A1 (ja)
CN (1) CN116868369A (ja)
WO (1) WO2022163099A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116262610A (zh) * 2023-03-16 2023-06-16 中南大学 一种钠离子硬碳负极材料制备和改性方法及成套装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026038A (ja) * 2011-07-21 2013-02-04 Sumitomo Electric Ind Ltd 非水電解質二次電池とその製造方法
JP2016506035A (ja) * 2012-12-05 2016-02-25 サムスン エレクトロニクス カンパニー リミテッド 表面改質された負極活物質用シリコンナノ粒子及びその製造方法
JP2017097999A (ja) 2015-11-19 2017-06-01 株式会社デンソー 蓄電素子及びその製造方法
WO2017199606A1 (ja) * 2016-05-17 2017-11-23 Jfeケミカル株式会社 Liイオン二次電池用負極材料、Liイオン二次電池用負極およびLiイオン二次電池
WO2018179970A1 (ja) * 2017-03-29 2018-10-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極材料および非水電解質二次電池
JP2019012646A (ja) * 2017-06-30 2019-01-24 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026038A (ja) * 2011-07-21 2013-02-04 Sumitomo Electric Ind Ltd 非水電解質二次電池とその製造方法
JP2016506035A (ja) * 2012-12-05 2016-02-25 サムスン エレクトロニクス カンパニー リミテッド 表面改質された負極活物質用シリコンナノ粒子及びその製造方法
JP2017097999A (ja) 2015-11-19 2017-06-01 株式会社デンソー 蓄電素子及びその製造方法
WO2017199606A1 (ja) * 2016-05-17 2017-11-23 Jfeケミカル株式会社 Liイオン二次電池用負極材料、Liイオン二次電池用負極およびLiイオン二次電池
WO2018179970A1 (ja) * 2017-03-29 2018-10-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極材料および非水電解質二次電池
JP2019012646A (ja) * 2017-06-30 2019-01-24 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116262610A (zh) * 2023-03-16 2023-06-16 中南大学 一种钠离子硬碳负极材料制备和改性方法及成套装置
CN116262610B (zh) * 2023-03-16 2024-01-26 中南大学 一种钠离子硬碳负极材料制备和改性方法及成套装置

Also Published As

Publication number Publication date
CN116868369A (zh) 2023-10-10
EP4287310A1 (en) 2023-12-06
US20240097111A1 (en) 2024-03-21
JPWO2022163099A1 (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
JP7180532B2 (ja) リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
JP7478973B2 (ja) 二次電池用負極活物質および二次電池
JP7272345B2 (ja) リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
JP5637102B2 (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、及びリチウムイオン二次電池
WO2016068436A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
TWI556494B (zh) 鋰離子二次電池用正極材料、鋰離子二次電池用正極構件、鋰離子二次電池、及鋰離子二次電池用正極材料之製造方法
WO2022163099A1 (ja) 活物質粒子、電気化学素子、および電気化学デバイス
CN115023825B (zh) 电化学元件和其制造方法、以及电化学器件
WO2021153074A1 (ja) 電気化学素子およびその製造方法、ならびに電気化学デバイス
WO2021153076A1 (ja) 電気化学素子およびその製造方法、ならびに電気化学デバイス
JP7074006B2 (ja) 複合粒子
WO2022168408A1 (ja) 活物質粒子、電気化学素子、および電気化学デバイス
WO2021153073A1 (ja) 活物質粒子、電気化学素子およびこれらの製造方法、ならびに電気化学デバイス
JP7455244B2 (ja) 活物質及びその製造方法
JP7446596B2 (ja) リチウム金属複合酸化物粉末の製造方法
JP7070296B2 (ja) 正極活物質層製造用組成物のゲル化が抑制される複合粒子
WO2023171580A1 (ja) 二次電池用負極活物質および二次電池
JPWO2013080763A1 (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923104

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578077

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180091719.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18274575

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021923104

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021923104

Country of ref document: EP

Effective date: 20230829