WO2022162893A1 - Machine tool, optical systems, and measuring device - Google Patents

Machine tool, optical systems, and measuring device Download PDF

Info

Publication number
WO2022162893A1
WO2022162893A1 PCT/JP2021/003343 JP2021003343W WO2022162893A1 WO 2022162893 A1 WO2022162893 A1 WO 2022162893A1 JP 2021003343 W JP2021003343 W JP 2021003343W WO 2022162893 A1 WO2022162893 A1 WO 2022162893A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
light
optical system
head
measuring
Prior art date
Application number
PCT/JP2021/003343
Other languages
French (fr)
Japanese (ja)
Inventor
仁 増井
稔 椎葉
俊介 中
純恵 奥山
昌丈 杉田
優介 谷澤
康夫 鈴木
正範 荒井
喬之 森田
禎晃 小濱
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2021/003343 priority Critical patent/WO2022162893A1/en
Publication of WO2022162893A1 publication Critical patent/WO2022162893A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers

Definitions

  • the present invention for example, relates to the technical field of machine tools that can process objects using tools, and optical systems and measurement devices used in machine tools.
  • Patent Document 1 describes a machine tool equipped with a measuring device. In such a machine tool, it is a technical problem to properly arrange the measuring device.
  • a processing apparatus includes a spindle to which a processing tool is detachable, and a first light is irradiated onto an object, and a second light from the object irradiated with the first light is detected. and a measuring device capable of measuring the shape of the object by using a first optical system, wherein the measuring device is attached to a portion of the processing device different from the main axis and through which the first light and the second light pass.
  • a system which is detachably attached to the main shaft, emits the first light from the first optical system toward the object, and emits the second light from the object toward the first optical system;
  • a machine tool is provided comprising a second optical system for
  • the processing apparatus includes a spindle to which a processing tool can be attached and detached, and the object is irradiated with the first light and the second light from the object irradiated with the first light is detected. and a measuring device capable of measuring the object by means of a laser beam, wherein the measuring device includes a first optical system attached to a portion different from the main shaft of the processing device, and a second optical system detachably attached to the main shaft. and wherein the first optical system emits the first light toward the second optical system and receives the second light from the second optical system.
  • a processing device comprising a main shaft to which a processing tool is attachable and detachable, and a first optical system attached to a portion of the processing device different from the main shaft and used for measuring an object,
  • the first optical system emits a first light toward a second optical system detachably attached to the main axis, and emits a first light from the object irradiated with the first light via the second optical system.
  • a machine tool is provided that receives two lights.
  • an optical system for use in a machine tool having a processing device having a main shaft to which a processing tool is attachable and detachable, wherein the optical system is detachably attached to the main shaft and connected to the main shaft of the processing device.
  • receives a first light emitted from a measurement optical system attached to a different portion emits the received first light toward an object, and receives and receives a second light from the object
  • An optical system is provided that emits the second light toward the measurement optical system, and the measurement optical system measures the object using the second light from the optical system.
  • the tool for processing can be attached to a machine tool having a processing device having a detachable main shaft, irradiates the object with the first light, and the object irradiated with the first light
  • a measuring device capable of measuring the object by detecting a second light from the first optical system attached to a portion different from the main shaft of the processing device, and a second optical system detachably attached to the main shaft 2 optical systems, wherein the first optical system emits the first light toward the second optical system and receives the second light from the second optical system.
  • FIG. 1 is a perspective view showing the appearance of the machine tool of the first embodiment.
  • FIG. 2 is a system configuration diagram showing the system configuration of the machine tool of the first embodiment.
  • FIG. 3 is a cross-sectional view showing the structure of the processing head of the first embodiment.
  • FIG. 4 is a cross-sectional view showing the structure of the processing head of the first embodiment.
  • FIG. 5 is a cross-sectional view showing a processing head to which the measuring device (particularly, the measuring head) of the first embodiment is attached.
  • FIG. 6 is a cross-sectional view showing the structure of the measuring device (in particular, the measuring head) of the first embodiment.
  • FIG. 7 is a cross-sectional view showing the structure of the optical system of the first embodiment.
  • FIG. 8(a) to 8(c) is a plan view showing the shape of the scan area irradiated with the measurement light on the surface of the object to be measured.
  • FIG. 9 is a cross-sectional view showing how the optical paths of the measurement light and the return light are changed by changing the rotation angle of the main shaft.
  • FIG. 10 is a cross-sectional view showing a stage on which a coordinate reference member is formed.
  • 11(a) and 11(b) are cross-sectional views showing the coordinate reference member.
  • FIG. 12 is a perspective view showing an example of the structure of an optical system that can be used when the measuring device measures the coordinate reference member.
  • FIG. 13 is a flow chart showing the flow of work measuring operation.
  • FIG. 14 shows measurement light ML regarded as a virtual tool.
  • FIG. 15 is a flow chart showing the flow of the running error calibration operation.
  • FIG. 16 is a cross-sectional view showing an example of the running error correcting member.
  • FIG. 17 is a graph showing the position of the reference plane of the running error correcting member in the Z-axis direction calculated from the measurement result of the running error correcting member.
  • FIG. 18 is a flow chart showing the flow of the running error calibrating operation performed by using the workpiece machined by the machining head as the running error calibrating member.
  • FIG. 19 is a cross-sectional view schematically showing the measurement light ML with which the workpiece W is irradiated.
  • FIG. 20 shows the workpiece W machined under conditions with no running error and the position of the machined surface of the workpiece W measured under conditions without running error.
  • FIG. 21 shows the position of the machined surface of the work machined under conditions with running error and the position of the machined surface of the work measured under conditions with running error.
  • FIG. 22 is a cross-sectional view showing the structure of the measuring device (in particular, the measuring head) of the second embodiment.
  • FIG. 23 is a cross-sectional view showing the measuring head attached to the machining head so that the measuring axis of the measuring device and the rotation axis of the spindle are parallel.
  • FIG. 24 is a cross-sectional view showing the measuring head attached to the machining head so that the measuring axis of the measuring device and the rotation axis of the spindle are not parallel.
  • FIG. 22 is a cross-sectional view showing the structure of the measuring device (in particular, the measuring head) of the second embodiment.
  • FIG. 23 is a cross-sectional view showing the measuring head attached to the machining head so that the measuring axis of the measuring device and the rotation axis of the spindle are parallel.
  • FIG. 25 is a sectional view showing a measuring head attached to a machining head so that the measuring axis of the measuring device and the rotation axis of the spindle are not parallel.
  • FIG. 26 is a flow chart showing the flow of the shaft misalignment error calibration operation.
  • FIG. 27 is a graph showing the position of the machined surface of the work in the Z-axis direction calculated from the measurement result of the work.
  • FIG. 28 is a cross-sectional view showing the structure of the measuring device (in particular, the measuring head) of the second embodiment.
  • FIG. 29 is a cross-sectional view showing the structure of the measuring device (in particular, the measuring head) of the third embodiment.
  • FIG. 30(a) is a cross-sectional view showing a machining head for machining a work
  • FIG. 30(b) is a cross-sectional view showing a measuring device (in particular, a measuring head) for measuring the work.
  • FIG. 31 is a cross-sectional view showing the structure of the measuring device of the fourth embodiment.
  • FIG. 32 is a cross-sectional view showing the structure of the measuring device of the fifth embodiment.
  • FIG. 33 is a cross-sectional view showing the structure of the measuring device of the sixth embodiment.
  • FIG. 34 is a cross-sectional view showing the structure of the measuring device (in particular, the measuring head) of the seventh embodiment.
  • FIG. 35(a) and 35(b) is a cross-sectional view showing an example of a measuring head that can be attached to the spindle.
  • FIGS. 36(a) and 36(b) is a cross-sectional view showing an example of a measuring head that can be attached to the spindle.
  • 37(a) and 37(b) are cross-sectional views showing an example of a measuring head that can be attached to a spindle.
  • FIG. 38 is a cross-sectional view showing a measuring head that measures a surface of a measurement object facing a narrow space formed in the measurement object.
  • FIGS. 39(a) and 39(b) is a cross-sectional view showing an example of a measuring head that can be attached to the spindle.
  • FIGS. 39(a) and 39(b) is a cross-sectional view showing an example of a measuring head that can be attached to the spindle.
  • FIGS. 39(a) and 39(b) is a cross-sectional view
  • 40(a) and 40(b) is a cross-sectional view showing an example of a measuring head that can be attached to the spindle.
  • 41(a) and 41(b) are cross-sectional views showing an example of a measuring head that can be attached to the spindle.
  • FIGS. 42(a) and 42(b) is a cross-sectional view showing an example of a measuring head that can be attached to the spindle.
  • FIGS. 43(a) and 43(b) is a cross-sectional view showing an example of a measuring head that can be attached to the spindle.
  • 44(a) and 44(b) are cross-sectional views showing an example of a measuring head that can be attached to the spindle.
  • FIGS. 42(a) and 42(b) is a cross-sectional view showing an example of a measuring head that can be attached to the spindle.
  • FIGS. 43(a) and 43(b) is a cross-sectional view showing an example of a measuring
  • FIG. 45(a) and 45(b) is a cross-sectional view showing an example of a measuring head that can be attached to the spindle.
  • FIG. 46 is a perspective view showing a work.
  • FIG. 47 is a plan view showing an example of a work composed of members made of different materials.
  • FIG. 48 is a plan view showing the scanning area moving on the surface of the object to be measured.
  • FIG. 49 is a plan view showing a scan area divided into an upstream scan area and a downstream scan area.
  • FIG. 50 is a cross-sectional view showing the stage 41 on which the reference member is formed.
  • FIG. 51 schematically shows a measurement model and a target model each including a model portion corresponding to a reference member.
  • FIG. 52 is a cross-sectional view that schematically shows a machine tool that includes a temperature sensor and a temperature effect reduction device.
  • FIG. 53 is a cross-sectional view that schematically shows a machine tool that includes a vibration sensor and a vibration effect reduction device.
  • Embodiments of a machine tool, an optical system, and a measuring device will be described below using a machine tool 1 capable of processing a work W, which is an example of an object.
  • each of the X-axis direction and the Y-axis direction is the horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is the vertical direction (that is, the direction perpendicular to the horizontal plane).
  • the description will proceed using an example in which the vertical direction is substantially vertical).
  • the directions of rotation (in other words, tilt directions) about the X-, Y-, and Z-axes may be referred to as the .theta.X direction, the .theta.Y direction, and the .theta.Z direction, respectively.
  • Machine tool 1a of the first embodiment First, the machine tool 1 of the first embodiment will be described. In addition, below, the machine tool 1 of 1st Embodiment is called “machine tool 1a.”
  • FIG. 1 is a perspective view showing the appearance of a machine tool 1a according to the first embodiment.
  • FIG. 2 is a system configuration diagram showing an example of the system configuration of the machine tool 1a of the first embodiment.
  • the machine tool 1a includes a machining head 2, a head drive system 3, a stage device 4, a measuring device 5, a tool changer 6, and a control device 7. .
  • illustration of the tool changer 6 and the control device 7 is omitted in FIG.
  • the processing head 2 is a processing device for processing the workpiece W.
  • the machining head 2 has a spindle 21 and a head housing 22 .
  • the processing head 2 will be described below with reference to FIGS. 3 and 4 in addition to FIGS. 3 and 4 are cross-sectional views showing the structure of the processing head 2.
  • FIG. 3 and 4 are cross-sectional views showing the structure of the processing head 2.
  • the main shaft 21 is a member rotatable around the rotation axis RX.
  • the main shaft 21 may be, for example, a member extending along the rotation axis RX (that is, a member having a longitudinal shape).
  • the rotation axis RX of the main shaft 21 is parallel to the Z-axis.
  • the main shaft 21 may rotate around a rotation axis RX that intersects the Z-axis (for example, orthogonal to the Z-axis or inclined with respect to the Z-axis).
  • a tool 23 for machining the workpiece W (that is, a machining tool) can be attached to the spindle 21, as shown in FIG.
  • the spindle 21 has a mounting portion 211 for mounting the tool 23 thereon.
  • the tool 23 is attached to the spindle 21 via the attachment portion 211 .
  • the tool 23 attached to the attachment portion 211 is removable from the attachment portion 211 . That is, the tool 23 is detachably attached to the spindle 21 .
  • the state “the first object is attached to the second object” in the embodiment means “the first object is directly attached to the second object (that is, the first object and the second object are The first object is attached to the second object so that the objects are in contact with each other) and the first object is indirectly attached to the second object (that is, the first object and the first object are attached to the second object). the first object is attached to the second object without the two objects coming into contact with each other)”.
  • the condition ⁇ the first object is indirectly attached to the second object'' is defined as ⁇ the first object is attached to the second object through a third object that is different from the first and second objects. It may include the state "attached”.
  • the spindle 21 has a hole 212 (for example, a tapered hole) in which the tool 23 is fitted (or inserted) at the tip of the spindle 21 (specifically, the tip on the workpiece W side). It has a mounting portion 211 formed with a hole).
  • the tool 23 is attached to the spindle 21 by fitting (or inserting) the shank 231 of the tool 23 having a shape complementary to the hole 212 into the hole 212 of the attachment portion 211 .
  • the attachment portion 211 may hold the tool 23 attached to the attachment portion 211 .
  • the mounting portion 211 may include at least one of a mechanical chuck, an electrostatic chuck, a vacuum chuck, and the like to hold the tool 23 .
  • the head housing 22 is a housing that accommodates the spindle 21 .
  • the head housing 22 may accommodate the main shaft 21 in a housing space formed inside the head housing 22 .
  • the main shaft 21 housed in the head housing 22 may be supported by the head housing 22 via bearing members (for example, bearings) not shown.
  • the head drive system 3 moves the processing head 2.
  • the head drive system 3 may move the processing head 2 along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction, for example.
  • the head drive system 3 moves the processing head 2 along at least one of the ⁇ X direction, ⁇ Y direction and ⁇ Z direction in addition to or instead of at least one of the X-axis direction, Y-axis direction and Z-axis direction. can be moved. That is, the head drive system 3 moves the machining head 2 along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the operation of moving the processing head 2 along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction may be considered equivalent to the operation of changing the attitude of the processing head 2 .
  • the head drive system 3 moves the processing head 2 along each of the X-axis direction and the Z-axis direction.
  • the head drive system 3 is attached to (or , formed) and extending along the X-axis direction, an X-slider member 33 attached to the X-guide member 32 and movable along the X-guide member 32, and for moving the X-slider member 33 , a Z guide member 35 attached (or formed) to the X slider member 33 and extending along the Z axis direction, and a Z guide member 35 attached to the Z guide member 35 and extending along the Z axis direction. and a servo motor 36 that generates a driving force for moving the Z slider member (not shown in FIG.
  • the processing head 2 (in particular, the head housing 22) may be attached to the Z slider member. As a result, the processing head 2 moves in the X-axis direction along with the movement of the X-slider member 33, and moves in the Z-axis direction along with the movement of the Z-slider member.
  • the head drive system 3 When the head drive system 3 moves the processing head 2, the relative positional relationship between the processing head 2 and a stage 41 (furthermore, the work W placed on the stage 41) changes. Therefore, the head drive system 3 may function as a position changing device capable of changing the relative positional relationship between the processing head 2 and the stage 41 and the work W, respectively.
  • the stage device 4 includes a bed 40 , a stage 41 and a stage drive system 42 .
  • the stage 41 and stage drive system 42 are supported by the bed 40 .
  • a workpiece W is placed on the stage 41 .
  • the stage 41 can support the work W placed on the stage 41 .
  • the stage 41 may be capable of holding the work W placed on the stage 41 .
  • the stage 41 may have at least one of a mechanical chuck, an electrostatic chuck, a vacuum chuck, and the like to hold the work W.
  • the stage 41 is arranged at a position where it can face the machining head 2 (especially the spindle 21).
  • the stage 41 is arranged below the machining head 2 (in particular, the spindle 21).
  • the stage 41 may be arranged at a position different from the position below the machining head 2 (in particular, the spindle 21).
  • the stage drive system 42 moves the stage 41 .
  • the stage drive system 42 may move the stage 41 along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction, for example.
  • the stage drive system 42 moves the stage 41 along at least one of the ⁇ X direction, ⁇ Y direction and ⁇ Z direction in addition to or instead of at least one of the X-axis direction, Y-axis direction and Z-axis direction. You can move it. That is, the stage drive system 42 moves the stage 41 along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the stage 41 may be rotated around at least one of the rotation axis along the Y-axis direction and the rotation axis along the Z-axis direction. Note that the operation of moving the stage 41 along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction may be considered equivalent to the operation of changing the attitude of the stage 41 .
  • the stage drive system 42 moves the stage 41 along each of the Y-axis direction, the ⁇ X direction, and the ⁇ Z direction.
  • the stage drive system 42 includes, for example, a Y guide member 421 attached (or formed) to the bed 40 and extending along the Y-axis direction, and a Y guide member 421 attached to the Y guide member 421 and extending along the Y guide member 421.
  • a trunnion (Y slider member) 422 that is movable by means of a trunnion 422; a servomotor 423 that generates a driving force for moving the trunnion 422; a cradle 424 rotatable about (which may be referred to as an axis) and a servomotor (not shown) that provides a driving force to rotate the cradle 424 .
  • the stage 41 is mounted on the cradle 424 so as to be rotatable around a rotation axis (which may be referred to as a C axis) along the Z axis with respect to the cradle 424 using a driving force generated by a servomotor (not shown).
  • the stage 41 moves in the Y-axis direction along with the movement of the trunnion 422, rotates around the X-axis along with the rotation of the cradle 424, and rotates around the Z-axis.
  • the stage drive system 42 may function as a position changing device capable of changing the relative positional relationship between the processing head 2 and the stage 41 and the work W, respectively.
  • the measurement device 5 can measure the measurement object.
  • the measurement device 5 may be capable of measuring the properties of the measurement object.
  • the characteristics of the object to be measured include, for example, the position of the object to be measured, the shape of the object to be measured, the distance between the measuring device 5 and the object to be measured, the reflectance of the object to be measured, the transmittance of the object to be measured, and the object to be measured. At least one of the temperature of the object and the surface roughness of the object to be measured may be included.
  • the shape of the measurement object may include the shape of the surface of the measurement object.
  • the shape of the surface of the object to be measured may include the shape of at least part of the surface of the object to be measured.
  • the object to be measured may include, for example, the work W to be processed by the processing head 2.
  • the object to be measured may include any object placed on the stage 41, for example. Any object placed on the stage 41 may include the work W, for example. Any object placed on the stage 41 may include a reference member.
  • the reference member may include, for example, at least one of a coordinate reference member 411, a running error correction member 91, and a reference member 413, which will be described later.
  • the measurement object may include the stage 41, for example.
  • the measuring device 5 may be capable of measuring the object to be measured without contact.
  • the measurement device 5 may be capable of optically measuring the measurement object.
  • the measuring device 5 may be capable of electrically measuring the object to be measured.
  • the measurement device 5 may be capable of magnetically measuring the measurement object.
  • the measuring device 5 may be capable of thermally measuring the object to be measured.
  • the measurement device 5 may be capable of measuring the measurement object using a probe that physically contacts the measurement object.
  • the measurement device 5 can optically measure the measurement object. Specifically, the measurement device 5 irradiates the measurement light ML (see FIG. 6 and the like, which will be described later) to the measurement target, and the light from the measurement target irradiated with the measurement light ML (hereinafter referred to as “return light RL", see FIG. 6) to measure the object to be measured.
  • the measurement light ML see FIG. 6 and the like, which will be described later
  • return light RL see FIG. 6
  • the measurement device 5 includes, for example, a measurement light source 51, a measurement head 52, a measurement head 53, and an output interface 54 in order to optically measure the measurement object.
  • the measurement light source 51 can generate measurement light ML.
  • the measuring head 52 is attached to the machining head 2 .
  • the measuring head 52 is attached to a portion of the machining head 2 different from the main shaft 21 . In other words, the measuring head 52 is not attached to the spindle 21 .
  • a measuring head 53 is also attached to the machining head 2 .
  • the measuring head 53 is different from the measuring head 52 which is not attached to the spindle 21 of the machining head 2 in that it is attached to the spindle 21 of the machining head 2 .
  • FIG. 1 does not show the measuring head 53 attached to the main shaft 21 for the sake of simplification of the drawing, the measuring head 53 attached to the main shaft 21 does not show the structure of the measuring device 5 and the It is illustrated in FIG. 5 and the like for detailed description of the operation later.
  • the measuring device 5 irradiates the measuring object with the measuring light ML via the measuring heads 52 and 53 . Furthermore, the measurement device 5 detects the return light RL from the measurement object irradiated with the measurement light ML via the measurement heads 52 and 53 .
  • the output interface 54 can output the measurement result of the measurement device 5 (that is, the detection result of the return light RL from the object to be measured) to the control device 7 .
  • the tool changer 6 is a device that can change the tool 23 attached to the spindle 21 .
  • the tool changer 6 may take out one tool 23 to be attached to the main shaft 21 from a tool magazine (not shown) containing a plurality of tools 23 and attach the taken out one tool 23 to the main shaft 21 . That is, the tool changer 6 may function as a mounting device capable of mounting the tool 23 on the spindle 21 .
  • the tool changer 6 may remove the tool 23 attached to the spindle 21 from the spindle 21 and store the removed tool 23 in a tool magazine (not shown). That is, the tool changer 6 may function as a removal device capable of removing the tool 23 from the spindle 21 .
  • An automatic tool changer (ATC) used in a machining center or the like may be used as the tool changer 6 .
  • ATC automatic tool changer
  • the spindle 21 can be attached with the measuring head 53 included in the measuring device 5 in addition to the tool 23 . Therefore, the tool changer 6 may function as a mounting device capable of mounting the measuring head 53 on the spindle 21 . That is, the tool changer 6 includes a tool magazine (not shown) in which the measuring head 53 is accommodated in addition to the tool 23 (or a tool magazine (not shown) in which the measuring head 53 is accommodated, which is different from the tool magazine in which the tool 23 is accommodated. Alternatively, the measuring head 53 may be taken out from the head magazine) and attached to the spindle 21 . Moreover, the tool changer 6 may function as a removal device capable of removing the measuring head 53 from the spindle 21 . That is, the tool changer 6 may remove the measuring head 53 attached to the spindle 21 from the spindle 21 and store the removed measuring head 53 in a tool magazine (not shown) or a head magazine (not shown).
  • the control device 7 controls the operation of the machine tool 1a.
  • the control device 7 may control the operation of the machining head 2 provided in the machine tool 1a (for example, rotation of the spindle 21).
  • the control device 7 may control the operation of the head drive system 3 provided in the machine tool 1a (for example, movement of the machining head 2).
  • the control device 7 may control the operation of the stage drive system 42 provided in the machine tool 1a (for example, movement of the stage 41).
  • the control device 7 may control the operation of the tool changer 6 included in the machine tool 1a (that is, the change of the tool 23 attached to the spindle 21 and the measuring head 53).
  • the control device 7 may acquire the measurement result of the measuring device 5 from the output interface 54 of the measuring device 5 and control the operation of the machine tool 1a based on the acquired measurement result. For example, the control device 7 generates measurement data of the object to be measured (for example, data related to the shape of the object to be measured) based on the measurement result of the measuring device 5, and controls the machine tool 1a based on the generated measurement data. You can control the action.
  • measurement data of the object to be measured for example, data related to the shape of the object to be measured
  • the control device 7 may include, for example, an arithmetic device and a storage device.
  • the computing device may include, for example, at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • a storage device may include, for example, memory.
  • the control device 7 functions as a device that controls the operation of the machine tool 1a as the arithmetic device executes a computer program.
  • This computer program is a computer program for causing the arithmetic device to perform (that is, to execute) an operation to be performed by the control device 7, which will be described later. That is, this computer program is a computer program for causing the control device 7 to function so as to cause the machine tool 1a to perform the operations described later.
  • the computer program executed by the arithmetic device may be recorded in a storage device (that is, a recording medium) included in the control device 7, or may be stored in any storage device built in the control device 7 or external to the control device 7. It may be recorded on a medium (for example, hard disk or semiconductor memory). Alternatively, the computing device may download the computer program to be executed from a device external to the control device 7 via the network interface.
  • a storage device that is, a recording medium
  • the computing device may download the computer program to be executed from a device external to the control device 7 via the network interface.
  • the control device 7 does not have to be provided inside the machine tool 1a.
  • the control device 7 may be provided as a server or the like outside the machine tool 1a.
  • the controller 7 and the machine tool 1a may be connected via a wired and/or wireless network (or data bus and/or communication line).
  • a wired network a network using a serial bus interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485 and USB may be used.
  • a network using a parallel bus interface may be used as the wired network.
  • a network using an Ethernet (registered trademark)-compliant interface represented by at least one of 10BASE-T, 100BASE-TX, and 1000BASE-T may be used.
  • a network using radio waves may be used as the wireless network.
  • An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of wireless LAN and Bluetooth (registered trademark)).
  • a network using infrared rays may be used as the wireless network.
  • a network using optical communication may be used as the wireless network.
  • the controller 7 and the machine tool 1a may be configured to be able to transmit and receive various information via a network.
  • control device 7 may be capable of transmitting information such as commands and control parameters to the machine tool 1a via a network.
  • the machine tool 1a may include a receiving device that receives information such as commands and control parameters from the control device 7 via the network.
  • the machine tool 1a may be equipped with a transmission device (that is, an output device that outputs information to the control device 7) that transmits information such as commands and control parameters to the control device 7 via the network. good.
  • a first control device that performs part of the processing performed by the control device 7 is provided inside the machine tool 1a, while a second control device that performs another part of the processing performed by the control device 7 is provided inside the machine tool 1a.
  • the control device may be provided outside the machine tool 1a.
  • Recording media for recording computer programs executed by the control device 7 include CD-ROMs, CD-Rs, CD-RWs, flexible disks, MOs, DVD-ROMs, DVD-RAMs, DVD-Rs, DVD+Rs, and DVDs.
  • optical discs such as RW, DVD+RW and Blu-ray (registered trademark)
  • magnetic media such as magnetic tapes
  • magneto-optical discs semiconductor memories such as USB memories
  • the recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which a computer program is implemented in at least one form of software, firmware, etc., in an executable state).
  • each process and function included in the computer program may be realized by a logical processing block realized in the control device 7 by the control device 7 (that is, computer) executing the computer program, It may be implemented by hardware such as a predetermined gate array (FPGA, ASIC) provided in the control device 7, or a mixture of logical processing blocks and partial hardware modules that implement some elements of hardware. It can be implemented in the form of
  • FIG. 5 is a cross-sectional view showing the processing head 2 to which the measuring device 5 (in particular, measuring heads 52 and 53) is attached.
  • the measuring head 52 is attached to the processing head 2.
  • the measurement head 52 includes a head housing 521 and the head housing 521 is attached to the processing head 2 .
  • the head housing 521 is attached to the head housing 22 of the processing head 2 .
  • the head housing 521 may be attached to the machining head 2 at a position separated from the rotation axis RX of the main shaft 21 along the direction intersecting the rotation axis RX.
  • the head housing 521 is attached to the side surface of the head housing 22 .
  • the mounting position of the head housing 521 (that is, the mounting position of the measurement head 52) is not limited to the position shown in FIG.
  • a measuring head 53 is also attached to the processing head 2 .
  • the measurement head 53 includes a head housing 531 and the head housing 531 is attached to the processing head 2 .
  • the head housing 531 is attached to the spindle 21 of the machining head 2 .
  • the head housing 531 is attached to the attachment portion 211 provided on the main shaft 21 .
  • the shank 530 corresponding to the projecting portion of the head housing 531 having a shape complementary to the hole 212 is the mounting portion.
  • the head housing 531 is attached to the main shaft 21 by being fitted (or inserted) into the hole 212 of 211 .
  • the mounting portion 211 may hold the head housing 531 .
  • the mounting portion 211 may include at least one of a mechanical chuck, an electrostatic chuck, a vacuum chuck, and the like to hold the head housing 531 .
  • the head housing 531 (that is, the measurement head 53) attached to the attachment portion 211 is removable from the attachment portion 211. That is, the head housing 531 (that is, the measurement head 53) is detachably attached to the spindle 21. As shown in FIG. For example, if the measuring head 53 is attached to the spindle 21 , the tool 23 is removed from the spindle 21 . On the other hand, when the tool 23 is attached to the spindle 21 , the measuring head 53 is removed from the spindle 21 . As described above, attachment and detachment of the head housing 531 and attachment and detachment of the tool 23 are performed by the tool changer 6 . However, the operator of the machine tool 1 a may manually perform at least one of attaching and detaching the measuring head 53 to and from the spindle 21 and attaching and detaching the tool 23 to and from the spindle 21 .
  • the head housing 521 (that is, the measurement head 52) attached to the processing head 2 does not have to be removable from the processing head 2. That is, the measurement head 52 does not have to be detachably attached to the processing head 2 .
  • the measuring head 52 may remain attached to the machining head 2 even during the machining period in which the machining head 2 processes the workpiece W using the tool 23 .
  • the measurement head 52 may be detachably attached to the processing head 2 .
  • the measuring head 52 may be attached at a fixed position with respect to the processing head 2 . That is, the measuring head 52 may be attached to the processing head 2 so that the positional relationship between the processing head 2 and the measuring head 52 is fixed (that is, does not change).
  • the head housing 521 (that is, the measurement head 52) may be fixed and attached directly to the head housing 22 (that is, the processing head 2).
  • the head housing 521 may be indirectly fixedly attached to the head housing 22 .
  • the head housing 521 may be fixed to the other of the support members, one of which is directly fixed to the head housing 22 .
  • the head housing 521 (that is, the measurement head 52) is attached at a fixed position with respect to the processing head 2, whether directly or indirectly fixed to the head housing 22. It can be said.
  • the processing head is normally 2 and the measuring head 52 are fixed.
  • the measuring head 52 does not have to be attached at a position where the positional relationship with the processing head 2 is fixed.
  • the positional relationship between the processing head 2 and the measuring head 52 may be variable.
  • the measuring device 5 may have a drive system for moving the measuring head 52 independently of the processing head 2 .
  • this drive system may be configured to relatively move the processing head 2 and the measurement head 52 along the rotation axis RX.
  • the measuring head 52 may interfere with the machining of the workpiece W during the machining period in which the machining head 2 is machining the workpiece W with the tool 23 .
  • the measuring head 52 contacts the work W (or another object) before the tool 23 contacts the work W, the tool 23 cannot contact the work W, resulting in , the measuring head 52 interferes with the machining of the workpiece W. Therefore, the positional relationship between the machining head 2 and the measuring head 52 during at least part of the measurement period during which the measuring device 5 measures the object to be measured, and the machining head during at least part of the machining period during which the machining head 2 processes the workpiece W 2 and the measuring head 52 may be different.
  • the positional relationship between the machining head 2 and the measuring head 52 is set to the first relationship in which the measuring head 52 does not interfere with the machining of the workpiece W, and at least part of the measuring period.
  • the positional relationship between the processing head 2 and the measurement head 52 is a second relationship different from the first relationship (for example, a second relationship in which the measurement device 5 can measure the measurement object using the measurement head 52). 2 relationship).
  • each of the measuring heads 52 and 53 also moves as the processing head 2 moves. That is, each of the measuring heads 52 and 53 moves like the processing head 2 . Therefore, the head drive system 3 that moves the processing head 2 may be regarded as functioning as a head drive system that moves the measurement heads 52 and 53, respectively. Furthermore, when the measurement head 53 is attached to the main shaft 21, the measurement head 53 may also rotate around the rotation axis RX as the main shaft 21 rotates.
  • the measurement head 52 further includes an optical system 522.
  • the optical system 522 is housed in a housing space inside the head housing 521 . Therefore, the optical system 522 is attached to the processing head 2 via the head housing 521 .
  • unwanted substances eg, cutting waste, cutting fluid, etc. generated by machining the workpiece W are prevented from adhering to the optical system 522 .
  • the measurement head 53 further includes an optical system 532.
  • the optical system 532 is housed in a housing space inside the head housing 531 . Therefore, the optical system 532 is attached to the processing head 2 via the head housing 531 .
  • the optical system 532 is detachably attached to the spindle 21 of the machining head 2 via the head housing 531 .
  • the optical systems 522 and 532 are used to irradiate the measurement object with the measurement light ML from the measurement light source 51 . Further, optical systems 522 and 532 are used to detect return light RL from the measurement object.
  • the structure of the optical systems 522 and 523 will be further described below with reference to FIG.
  • FIG. 6 is a cross-sectional view showing the structures of the optical systems 522 and 532 together with the optical paths of the measurement light ML and the return light RL.
  • the measurement light ML generated by the measurement light source 51 enters the optical system 522 from the measurement light source 51 via an optical transmission member (not shown) such as an optical fiber. That is, the optical system 522 receives (receives) the measurement light ML from the measurement light source 51 .
  • the measurement light ML that has entered the optical system 522 passes through the optical system 522 .
  • the measurement light ML that has passed through the optical system 522 is emitted from the optical system 522 toward the optical system 532 . That is, the optical system 522 passes the measurement light ML that has entered the optical system 522 and emits the measurement light ML toward the optical system 532 .
  • the measurement light source 51 may be provided outside the measurement head 52, and the measurement light ML from the measurement light source 51 may enter the optical system 522 via an optical transmission member (not shown). Also, the measurement light source 51 may be provided inside the measurement head 52 .
  • the head housing 521 Since the optical system 522 is accommodated in the head housing 521, the head housing 521 is formed with an opening 5211 through which the measurement light ML emitted from the optical system 522 toward the optical system 532 can pass. good. However, if unnecessary substances generated by processing the workpiece W enter the accommodation space inside the head housing 521 through the opening 5211 , the unnecessary substances may adhere to the optical system 522 . Therefore, the head housing 521 may include a lid member 5212 capable of at least partially covering (that is, closing) the opening 5211 .
  • the opening 5211 is at least part of the period during which the measurement light ML is emitted from the optical system 522 (that is, the measurement period during which the measurement device 5 measures the object to be measured, and the measurement head 53 is attached to the spindle 21).
  • the part may not be closed by the lid member 5212 .
  • the opening 5211 may be closed by the lid member 5212 during at least a part of the machining period when the machine tool 1 machines the workpiece W (that is, the period during which the tool 23 is attached to the spindle 21).
  • the lid member 5212 may be a light transmitting member having transparency to the measurement light ML and the return light RL.
  • the lid member 5212 may be a glass member or another member.
  • the lid member 5212 is a light-transmitting member that transmits the measurement light ML and the return light RL, the opening 5211 may be closed with the lid member 5212 at all times.
  • the lid member 5212 includes a light-transmitting member as a first lid member that always closes the opening 5211 and an opening 5211 (first lid member) that prevents unnecessary substances from adhering to the first lid member (light-transmitting member). member) that can be opened and closed.
  • the measurement light ML emitted from the optical system 522 toward the optical system 532 enters the optical system 532 . That is, the optical system 532 receives (receives) the measurement light ML emitted from the optical system 522 .
  • the measurement light ML that has entered the optical system 532 passes through the optical system 532 .
  • the measurement light ML that has passed through the optical system 532 is emitted from the optical system 532 toward the object to be measured. That is, the optical system 532 allows the measurement light ML that has entered the optical system 532 to pass therethrough, and emits the measurement light ML toward the object to be measured.
  • the head housing 531 Since the optical system 532 is accommodated in the head housing 531, the head housing 531 has an aperture 5311 through which the measurement light ML that enters the optical system 532 from the optical system 522 can pass, and an opening 5311 that passes through the optical system 532 to the measurement object.
  • An aperture 5312 may be formed through which the measurement light ML that is emitted toward the aperture 5312 can pass.
  • the measuring head 53 is not attached to the spindle 21 during the machining period when the machine tool 1 is machining the workpiece W because the tool 23 is attached to the spindle 21 .
  • the head housing 531 may not include a lid member capable of at least partially covering the opening 5311 and a lid member capable of at least partially covering the opening 5312 .
  • the head housing 531 may include at least one of a lid member capable of at least partially covering the opening 5311 and a lid member capable of at least partially covering the opening 5312 .
  • the head housing 531 may have a lid member that covers at least part of the opening 5311 .
  • the lid member may be a light transmitting member that is transparent to the measurement light ML and the return light RL.
  • the lid member may be a glass member or another member.
  • the opening 5311 may always be covered with the lid member.
  • the lid member consists of a light-transmitting member as a first lid member that always closes the opening 5311 and an opening 5311 (first lid member) that prevents unnecessary substances from adhering to the first lid member.
  • a second lid member that can be opened and closed may be included.
  • the measurement target emits light caused by the irradiation of the measurement light ML.
  • the light generated due to the irradiation of the measurement light ML may include reflected light of the measurement light ML with which the object to be measured is irradiated.
  • the light generated due to the irradiation of the measurement light ML may include scattered light of the measurement light ML irradiated to the measurement object.
  • the light generated as a result of the irradiation of the measurement light ML may include transmitted light of the measurement light ML with which the object to be measured is irradiated.
  • the light generated due to the irradiation of the measurement light ML may include the diffracted light of the measurement light ML with which the object to be measured is irradiated.
  • At least part of the light generated due to the irradiation of the measurement light ML enters the optical system 532 via the aperture 5312 as the return light RL from the measurement object. That is, the optical system 532 receives (receives) the return light RL from the object to be measured.
  • the return light RL that has entered the optical system 532 passes through the optical system 532 and is emitted from the optical system 532 toward the optical system 522 through an aperture 5311 .
  • the optical system 532 allows the return light RL incident on the optical system 532 to pass therethrough and emits the return light RL toward the optical system 522 .
  • the return light RL emitted from the optical system 532 toward the optical system 522 enters the optical system 522 through the aperture 5211 . That is, the optical system 522 receives (receives) the return light RL emitted from the optical system 532 .
  • the return light RL that has entered the optical system 522 passes through the optical system 522 .
  • the return light RL that has passed through the optical system 522 is emitted from the optical system 522 toward the detection element 5232 (see FIG. 7 described later). That is, the optical system 522 allows the return light RL incident on the optical system 522 to pass therethrough, and emits the return light RL toward the detection element 5232 .
  • the optical system 522 includes an optical system 5221 , a galvanomirror 5222 and a mirror 5223 to emit the measurement light ML to the optical system 532 and receive the return light RL from the optical system 532 .
  • the optical system 522 includes a mirror 5321 and an f ⁇ lens 5322 in order to emit the measurement light ML toward the measurement object, receive the return light RL from the measurement object, and emit the return light RL toward the optical system 532 .
  • the measurement device 5 may include a relay optical system that optically conjugates the galvanomirror 5222 and the entrance pupil of the f ⁇ lens 5322 .
  • the relay optical system may have multiple optical members. Some of the multiple optical members may be included in the optical system 522 .
  • the optical system 532 may be included in the optical system 532 .
  • some of the plurality of optical members may be arranged in the optical path of the return light RL from the mirror 5321 to the mirror 5223 and provided inside the measurement head 52 (may be included in the optical system 522).
  • Another part of the plurality of optical members may be arranged on the optical path of the return light RL from the mirror 5321 to the mirror 5223 and provided inside the measurement head 53 (may be included in the optical system 532).
  • the optical system 5221 includes a beam splitter 52211, a beam splitter 52212, a beam splitter 52213, and a mirror 52214, as shown in FIG. 7, which is a cross-sectional view showing the structure of the optical system 5221.
  • the optical systems 522 and 532 will be described in more detail below with reference to FIG. 7 in addition to FIG.
  • the measurement light ML from the measurement light source 51 is incident on the beam splitter 52211.
  • two measurement light beams ML respectively generated by the two measurement light sources 51 enter the beam splitter 52211 . Therefore, the measurement device 5 includes a measurement light source 51#1 and a measurement light source 51#2.
  • the two measurement light sources 51 may each emit two measurement light beams ML that are phase-synchronized with each other and have coherence. However, the measurement device 5 may have a single measurement light source 51 .
  • the two measurement light sources 51 have different oscillation frequencies. Therefore, the two measurement light beams ML emitted by the two measurement light sources 51 are two measurement light beams ML having different frequencies.
  • the measurement light source 51 When the measurement light source 51 generates pulsed light as the measurement light ML, the two measurement light beams ML emitted by the two measurement light sources 51 have a pulse frequency (for example, the number of pulsed light beams per unit time, and a pulse The two measurement lights ML differ in the reciprocal of the light emission period).
  • the measurement light source 51#1 may emit measurement light ML with a pulse frequency of 25 GHz
  • the measurement light source 51#2 may emit measurement light ML with a pulse frequency of 25 GHz+ ⁇ (eg, +100 kHz). .
  • the measurement light ML generated by the measurement light source 51#1 is referred to as “measurement light ML#1”
  • the measurement light ML generated by the measurement light source 51#2 is referred to as “measurement light ML#2”. called.
  • the two measurement light sources 51 may have the same oscillation frequency.
  • the measurement light source 51 includes an optical comb light source.
  • the optical comb light source is a light source capable of generating light containing frequency components arranged at equal intervals on the frequency axis (hereinafter referred to as "optical frequency comb") as pulsed light.
  • the measurement light source 51 emits, as the measurement light ML, pulsed light containing frequency components arranged at equal intervals on the frequency axis.
  • the measurement light source 51 may include a light source different from the optical comb light source.
  • the two measurement beams ML#1 and ML#2 that have entered the beam splitter 52211 are emitted toward the beam splitter 52212. That is, the beam splitter 52211 emits the measurement light beams ML2#1 and ML#2, which are incident on the beam splitter 52211 from different directions, in the same direction (that is, the direction in which the beam splitter 52212 is arranged).
  • the beam splitter 52212 emits the measurement light ML#1-1, which is part of the measurement light ML#1 incident on the beam splitter 52212, toward the detection element 5231 provided in the measurement device 5.
  • the detection element 5231 may be housed in the head housing 521 .
  • the detection element 5231 may be included in the optical system 5221 .
  • the beam splitter 52212 emits, toward the beam splitter 52213, measurement light ML#1-2, which is another part of the measurement light ML#1 incident on the beam splitter 52212.
  • the beam splitter 52212 emits the measurement light ML#2-1, which is part of the measurement light ML2#2 incident on the beam splitter 52212, toward the detection element 5231.
  • the beam splitter 52212 emits, toward the beam splitter 52213, the measurement light ML#2-2, which is another part of the measurement light ML#2 incident on the beam splitter 52212.
  • the detection element 5231 detects the measurement light ML#1-1 and the measurement light ML#2-1.
  • the detection element 5231 detects interference light generated by interference between the measurement light ML#1-1 and the measurement light ML#2-1. Therefore, the beam splitter 52212 that emits the measurement light beams ML#1-1 and ML#2-1 toward the detection element 5231 functions as an interference optical system that interferes the measurement light beams ML#1-1 and ML#2-1. You can assume it works.
  • the detection element 5231 detects the interference light by receiving the interference light.
  • the detection element 5231 may include a light receiving element (for example, a photoelectric conversion element) capable of receiving light.
  • the detection result of the detection element 5231 is output to the control device 7 via the output interface 54 as part of the measurement result of the measurement device 5 .
  • the optical system 5221 Since the optical system 5221 is used for detecting the measurement light beams ML#1-1 and ML#2-1, the optical system 5221 may be called a detection side optical system. Also, the detection-side optical system and the detection element 5231 may constitute one optical system (which may be referred to as a measurement optical system).
  • the beam splitter 52213 directs at least a part of the measurement light ML#1-2 incident on the beam splitter 52213 to the mirror 52214 and emits it.
  • the beam splitter 52213 directs at least part of the measurement light ML#2-2 incident on the beam splitter 52213 toward the galvanomirror 5222 .
  • the measurement light ML#1-2 emitted from the beam splitter 52213 is incident on the mirror 52214.
  • the measurement light beams ML#1-2 that have entered the mirror 52214 are reflected by the reflecting surface of the mirror 52214 (the reflecting surface may also be referred to as a reference surface).
  • the mirror 52214 reflects the measurement light ML#1-2 incident on the mirror 52214 toward the beam splitter 52213 . That is, the mirror 52214 emits the measurement light ML#1-2 incident on the mirror 52214 toward the beam splitter 52213 as the measurement light ML#1-3 which is the reflected light.
  • the measurement beams ML#1-3 may be referred to as reference beams.
  • the measurement light beams ML#1-3 emitted from the mirror 52214 enter the beam splitter 52213.
  • the beam splitter 52213 emits the measurement light beams ML#1-3 incident on the beam splitter 52213 toward the beam splitter 52212.
  • FIG. The measurement light beams ML#1-3 emitted from the beam splitter 52213 enter the beam splitter 52212.
  • the beam splitter 52212 emits the measurement light beams ML#1-3 incident on the beam splitter 52212 toward the detection element 5232 provided in the measurement device 5.
  • the detection element 5232 may be housed in the head housing 521 .
  • the detection element 5232 may be included in the optical system 5221 .
  • the measurement light ML#2-2 emitted from the beam splitter 52213 toward the galvanomirror 5222 enters the galvanomirror 5222.
  • Galvanometer mirror 5222 adjusts measurement light ML#2-2 emitted from galvanometer mirror 5222 so that the irradiation position of measurement light ML (measurement light ML#2-2 in this case) on the object to be measured changes. change direction. Therefore, the galvanomirror 5222 may be called a traveling direction changing member.
  • the galvanomirror 5222 may include an X scanning mirror 52221 and a Y scanning mirror 52222 .
  • Each of the X scanning mirror 52221 and the Y scanning mirror 52222 is a variable tilt angle mirror whose angle relative to the optical path of the measurement light ML#2-2 incident on the galvanomirror 5222 can be changed.
  • the X scanning mirror 52221 changes the traveling direction of the measurement light ML#2-2 so that the irradiation position of the measurement light ML#2-2 on the measurement object changes along the X-axis direction.
  • the Y scanning mirror 52222 changes the traveling direction of the measurement light ML#2-2 so that the irradiation position of the measurement light ML#2-2 on the measurement object changes along the Y-axis direction.
  • the measurement apparatus 5 can irradiate the measurement light ML#2-2 on a plurality of parts of the object to be measured. 2 can be irradiated in order.
  • the measuring device 5 can measure a plurality of parts of the object to be measured at relatively high speed. That is, the measuring device 5 can perform multi-point measurement of the object to be measured.
  • the galvanomirror 5222 changes the traveling direction of the measurement light ML#2-2 so that the scan area SA that can be irradiated with the measurement light ML#2-2 on the surface of the measurement object has a desired shape.
  • the traveling direction of the measurement light ML#2-2 may be changed so that For example, each of FIGS. 8A to 8C shows an example of the shape of the scan area SA.
  • the galvanomirror 5222 may change the traveling direction of the measurement light ML#2-2 so that the scan area SA has a rectangular shape.
  • the galvanomirror 5222 may change the traveling direction of the measurement light ML#2-2 so that the scan area SA has a slit shape.
  • the galvanomirror 5222 may change the traveling direction of the measurement light ML#2-2 so that the shape of the scan area SA becomes an annular shape.
  • the measurement light ML#2-2 emitted from the galvanomirror 5222 is incident on the mirror 5223 as shown in FIG.
  • the mirror 5223 reflects the measurement light ML# 2 - 2 incident on the mirror 5223 toward the optical system 532 . That is, the mirror 5223 is an optical member capable of deflecting the measurement light ML#2-2 so that the measurement light ML#2-2 entering the mirror 5223 enters the optical system 532.
  • mirror 5223 may be referred to as a deflection member.
  • the reflecting surface on which the mirror 5223 reflects the measurement light ML#2-2 is typically flat, but may include curved surfaces.
  • the measuring head 52 including the mirror 5223 is attached to the processing head 2 at a position separated from the rotation axis RX of the main shaft 21 along the direction intersecting the rotation axis RX. Therefore, the measurement light ML#2-2 emitted from the optical system 522 toward the optical system 532 is also positioned away from the rotation axis RX of the main shaft 21 along the direction intersecting the rotation axis RX (that is, the rotation (position different from axis RX).
  • a measurement head 53 having an optical system 532 on which the measurement light ML#2-2 emitted from the mirror 5223 is incident is attached to the main shaft 21.
  • the mirror 5223 directs the measurement light ML#2-2 so that the measurement light ML#2-2 emitted from a position different from the rotation axis RX enters the optical system 532 attached to the main shaft 21. can be deflected. Specifically, the mirror 5223 adjusts the travel direction of the measurement light ML#2-2 emitted from the optical system 522 (that is, the travel direction of the measurement light ML#2-2 between the optical system 522 and the optical system 532). ) intersects the rotation axis RX or has a twisted relationship.
  • the optical axis of the optical system 522 on the optical system 532 side (that is, a virtual ray representative of the light flux of the measurement light ML#2-2 emitted from the optical system 522 to the optical system 532) is the rotation axis. It may intersect RX or may be in a twisted relationship with the rotation axis RX.
  • the optical axis of the optical system 532 on the optical system 522 side (that is, a virtual ray representing the light beam of the measurement light ML#2-2 entering the optical system 532 from the optical system 522) is the rotation axis RX , or may be in a twisted relationship with the rotation axis RX.
  • the measurement light ML#2-2 reflected by the mirror 5223 enters the mirror 5321 of the optical system 532 via the aperture 5311.
  • the mirror 5321 reflects the measurement light ML# 2 - 2 incident on the mirror 5321 toward the f ⁇ lens 5322 . That is, the mirror 5321 is an optical member capable of deflecting the measurement light ML#2-2 so that the measurement light ML#2-2 entering the mirror 5321 enters the f ⁇ lens 5322.
  • mirror 5321 may be referred to as a deflection member.
  • the reflecting surface on which the mirror 5321 reflects the measurement light ML#2-2 is typically flat, but may include curved surfaces.
  • the traveling direction of the measurement light ML#2-2 incident on the mirror 5321 intersects with the rotation axis RX or has a twisted relationship.
  • the mirror 5321 reflects the measurement light ML#2-2 so that the traveling direction of the measurement light ML#2-2 reflected by the mirror 5321 is coaxial with the rotation axis RX.
  • the state in which "the traveling direction of the measurement light ML#2-2 is coaxial with the rotation axis RX" means the state in which the optical path of the principal ray of the measurement light ML#2-2 is positioned on the rotation axis RX.
  • the mirror 5321 may reflect the measurement light ML#2-2 so that the traveling direction of the measurement light ML#2-2 reflected by the mirror 5321 is parallel to the rotation axis RX.
  • the optical path of the principal ray of the measurement light ML#2-2 is not positioned on the rotation axis RX, but the optical path is rotated. It may also mean the state of being "parallel to the axis RX".
  • the mirror 5321 may reflect the measurement light ML#2-2 so that the traveling direction of the measurement light ML#2-2 reflected by the mirror 5321 intersects the rotation axis RX.
  • the measurement light ML#2-2 reflected by the mirror 5321 enters the f ⁇ lens 5322.
  • the f ⁇ lens 5322 irradiates the measurement object with the measurement light ML#2-2 through the aperture 5312.
  • the f ⁇ lens 5322 may focus the measurement light ML#2-2 on the measurement object. For this reason, the f ⁇ lens 5322 may be referred to as a condensing optical member.
  • the optical axis of the f ⁇ lens 5322 is coaxial with the rotation axis RX of the main shaft 21 .
  • the direction of the optical axis of the f ⁇ lens 5322 is the direction extending along the rotation axis RX.
  • the f ⁇ lens 5322 emits the measurement light ML#2-2 so that the traveling direction of the measurement light ML#2-2 emitted from the f ⁇ lens 5322 extends along the rotation axis RX.
  • the optical axis of the f ⁇ lens 5322 is the optical axis of the optical system 532 on the measurement object side (that is, the optical system 532 may be regarded as a virtual ray representative of the luminous flux of the measurement light ML#2-2 emitted toward the object to be measured.
  • the optical axis of the f ⁇ lens 5322 does not have to be coaxial with the rotation axis RX.
  • the optical axis of the f ⁇ lens 5322 may be parallel to the rotation axis RX.
  • the optical axis of the f ⁇ lens 5322 may intersect the rotation axis RX.
  • the optical axis of the f ⁇ lens 5322 may be in a twisted relationship with respect to the rotation axis RX.
  • the optical axis of the terminal optical element included in the measuring device 5 will be referred to as the measurement axis MX of the measuring device 5.
  • the terminal optical element included in the measurement apparatus 5 is the optical element closest to the measurement target among the one or more optical members having power included in the measurement apparatus 5 .
  • the optical element closest to the object to be measured is an optical element that does not have an optical member having power between it and the object to be measured on the optical paths of the measurement light ML and the return light RL.
  • the measurement axis MX is the optical axis of the f ⁇ lens 5322 and the optical axis of the optical system 532 on the measurement object side.
  • the measurement target When the measurement light ML is irradiated onto the measurement target (workpiece W in the example shown in FIG. 6), the measurement target emits a return light RL generated by the irradiation of the measurement light ML onto the measurement target. be done.
  • the return light RL enters the optical system 532 (specifically, the f ⁇ lens 5322) via the aperture 5312. As shown in FIG.
  • the optical path of the return light RL may overlap the optical path of the measurement light ML#2-2 between the optical system 532 (in particular, the f ⁇ lens 5322 having the final optical element) and the object to be measured.
  • the f ⁇ lens 5322 may irradiate the measurement target with the measurement light ML#2-2 so that the measurement light ML#2-2 is vertically incident on the measurement target.
  • the machine tool 1a controls at least one of the head drive system 3 and the stage drive system 42 so that the measurement light ML#2-2 is perpendicularly incident on the object to be measured. and the measurement object may be adjusted.
  • the optical path of the return light RL is the same as the optical path of the measurement light ML#2-2. Overlap.
  • the optical path of the return light RL and the optical path of the measurement light ML#2-2 are coaxial between the optical system 532 and the object to be measured.
  • the f ⁇ lens 5322 may irradiate the object to be measured with the measurement light ML#2-2 so that the measurement light ML#2-2 obliquely enters the object to be measured.
  • the machine tool 1a controls at least one of the head drive system 3 and the stage drive system 42 so that the measurement light ML#2-2 is obliquely incident on the measurement object, thereby adjusting the position of the f ⁇ lens 5322 and the measurement object. Relationships can be adjusted.
  • the optical path of the return light RL may overlap the optical path of the measurement light ML#2-2 between the optical system 532 and the object to be measured.
  • the return light RL includes the scattered light of the measurement light ML#2-2 at the measurement object, even if the measurement light ML#2-2 is obliquely incident on the measurement object, the optical system Between 532 and the object to be measured, there may be scattered light that overlaps the optical path of the measurement light ML#2-2.
  • the return light RL includes ⁇ N (where N is an integer equal to or greater than 2) order diffracted light of the measurement light ML#2-2, the measurement light ML#2-2 is obliquely incident on the object to be measured.
  • the optical path of the return light RL may overlap the optical path of the measurement light ML#2-2 between the optical system 532 and the object to be measured.
  • the measurement device 5 is placed at a position that is optically conjugate with the surface of the measurement object (the condensing surface of the f ⁇ lens 5322). , may be provided with a field stop (typically a pinhole).
  • a field stop typically a pinhole
  • the end of the optical fiber that transmits the measurement light ML#2-2 and the return light RL may be set at a position that is optically conjugate with the surface of the object to be measured. Between the optical system 532 and the object to be measured, the optical path of the return light RL does not necessarily overlap with the optical path of the measurement light ML#2-2.
  • the return light RL that has entered the f ⁇ lens 5322 enters the mirror 5321 via the f ⁇ lens 5322 .
  • the mirror 5321 reflects the measurement light ML2#2-3 incident on the mirror 5321 toward the optical system 522 (specifically, the mirror 5223).
  • the optical path of the return light RL may or may not overlap the optical path of the measurement light ML#2-2.
  • the optical path of the return light RL and the optical path of the measurement light ML#2-2 may or may not be coaxial.
  • the return light RL that has entered the mirror 5223 enters the optical system 5221 via the galvanomirror 5222 .
  • the return light RL that has entered the optical system 5221 enters the detection element 5232 via the beam splitters 52213 and 52212, as shown in FIG.
  • the measurement light beams ML#1-3 enter the detection element 5232 in addition to the return light beam RL.
  • the return light RL that travels toward the detection element 5232 via the measurement target and the measurement light ML#1-3 that travels toward the detection element 5232 without via the measurement target enter the detection element 5232 .
  • the detection element 5232 detects the measurement light ML#1-3 and the return light RL.
  • the detection element 5232 detects interference light generated by interference between the measurement light ML#1-3 and the return light RL.
  • the beam splitter 52212 that emits the measurement light beams ML#1-3 and the return light beam RL toward the detection element 5232 functions as an interference optical system that causes the measurement light beams ML#1-3 and the return light beam RL to interfere with each other.
  • the detection element 5232 detects the interference light by receiving the interference light. Therefore, the detection element 5232 may include a light receiving element capable of receiving light.
  • the detection result of the detection element 5232 is output to the control device 7 via the output interface 54 as part of the measurement result of the measuring device 5 .
  • the optical system 5221 Since the optical system 5221 is used for detecting the measurement light beams ML#1-3 and the return light beam RL, the optical system 5221 may be called a detection side optical system. Also, since the galvanomirror 5222 is used for detecting the return light RL, the galvanomirror 5222 may be referred to as a detection-side optical system. Also, since the mirror 5223 is used for detecting the return light RL, the mirror 5223 may be referred to as a detection-side optical system.
  • the optical system 522 is arranged closer to the detection side of the return light RL than the optical system 532, at least a part of the optical system 5221, the galvanomirror 5222, and the mirror 5223 included in the optical system 522 is the detection side optical system.
  • the detection-side optical system (at least part of the optical system 5221, the galvanomirror 5222, and the mirror 5223) and the detection element 5232 may constitute one optical system (which may be referred to as a measurement optical system). good.
  • the control device 7 acquires the detection result of the detection element 5231 and the detection result of the detection element 5232 via the output interface 54 .
  • a device including the output interface 54, the detection element 5231, and the detection element 5232 (that is, a device that detects the return light RL and outputs the detection result of the return light RL to the control device 7) is called a detection device.
  • the control device 7 Based on the detection result of the detection element 5231 and the detection result of the detection element 5232 (that is, the measurement result of the measurement device 5), the control device 7 generates measurement data of the measurement object (for example, data related to the shape of the measurement object). Generate.
  • the pulse frequency of the measurement light ML#1 and the pulse frequency of the measurement light ML#2 are different, the pulse frequency of the measurement light ML#1-1 and the pulse frequency of the measurement light ML#2-1 are different. different. Therefore, the interference light between the measurement light ML#1-1 and the measurement light ML#2-1 is the pulsed light that forms the measurement light ML#1-1 and the pulsed light that forms the measurement light ML2#2-1. At the same time, it becomes interference light in which pulsed light appears in synchronization with the timing of incidence on the detection element 5231 . Similarly, the pulse frequency of the measurement light ML#1-3 and the pulse frequency of the return light RL are different.
  • the interference light between the measurement light ML#1-3 and the return light RL is generated at the timing when the pulse light forming the measurement light ML#1-3 and the pulse light forming the return light RL simultaneously enter the detection element 5232. It becomes an interference light in which pulsed light appears in synchronization with .
  • the position (position on the time axis) of the pulsed light that generates the interference light detected by the detection element 5232 is the positional relationship between the measurement head 52 and the measurement object (that is, substantially, the processing head 2 and the measurement positional relationship with the object). This is because the interference light detected by the detection element 5232 is composed of the return light RL directed to the detection element 5232 via the measurement target and the measurement light ML#1-3 directed to the detection element 5232 without via the measurement target.
  • the position (position on the time axis) of the pulsed light that generates the interference light detected by the detection element 5231 is the positional relationship between the measurement head 52 and the measurement object (that is, substantially, the processing head 2 and the measurement positional relationship with the object). Therefore, the time difference between the pulsed light generating the interference light detected by the detection element 5232 and the pulsed light generating the interference light detected by the detection element 5231 depends on the positional relationship between the measurement head 52 and the object to be measured (typically, It can be said that it indirectly indicates the distance between the processing head 2 and the object to be measured.
  • the control device 7 generates measurement data of the object to be measured based on the time difference between the pulsed light generating the interference light detected by the detection element 5232 and the pulsed light generating the interference light detected by the detection element 5231. can be done. For example, the control device 7 determines the measurement light ML#2- 2 can generate measurement data indicating the position of the irradiated portion.
  • the control device 7 can generate measurement data indicating the positions of the multiple parts of the measurement object.
  • the control device 7 can generate measurement data indicating the shape of the object to be measured based on the measurement data indicating the positions of a plurality of parts.
  • the control device 7 calculates, as the shape of the object to be measured, a three-dimensional shape composed of virtual planes (or curved surfaces) connecting a plurality of parts whose positions are specified. Metrology data indicative of the shape can be generated.
  • the measuring device 5 irradiates the measurement target with the measurement light ML and detects the return light RL from the measurement target irradiated with the measurement light ML, thereby measuring the measurement target.
  • the measurement device 5 can measure the measurement object by detecting interference light between the return light RL and the measurement light ML#1-3, which is the reference light. Therefore, the measuring device 5 may be regarded as an interferometric measuring device.
  • the measuring device 5 does not have to be an interferometric measuring device as long as it can measure the object to be measured.
  • the measuring device 5 may be a triangulation measuring device.
  • the measurement device 5 may be a stereo measurement device.
  • the measurement device 5 may be a phase shift type measurement device.
  • the measuring device 5 may be a confocal measuring device.
  • the measurement head 53 when the measurement head 53 is attached to the main shaft 21, the measurement head 53 may be rotatable around the rotation axis RX as the main shaft 21 rotates.
  • the measurement device 5 may not be able to irradiate the measurement target with the measurement light ML and/or may not be able to detect the return light RL.
  • the measurement light ML emitted from the measurement head 52 enters the optical system 532 (in particular, the mirror 5321) of the measurement head 53 through the opening 5311 of the measurement head 53. do.
  • the opening 5311 may be positioned on the optical path of the measurement light ML emitted from the measurement head 52. may disappear. In this case, the measurement light ML emitted from the measurement head 52 cannot enter the mirror 5321 because it is blocked by the head housing 531 .
  • the mirror 5321 accommodated in the head housing 531 also rotates around the rotation axis RX, so the orientation of the reflecting surface of the mirror 5321 changes.
  • the mirror 5321 may direct the measurement light ML toward the f ⁇ lens 5322 depending on the orientation of the reflecting surface of the mirror 5321. May not be able to reflect.
  • the control device 7 controls the main shaft 21 to which the measurement head 53 is attached so that the measurement device 5 can irradiate the measurement target with the measurement light ML and detect the return light RL.
  • Rotation that is, rotation of the measurement head 53
  • the control device 7 rotates the main shaft 21 (in this case, head housing body 531) may be controlled.
  • the control device 7 rotates the main shaft 21 (in this case, head housing body 531) may be controlled.
  • the right side of FIG. rotation may be controlled.
  • the control device 7 controls the rotation of the main shaft 21 (in this case, the rotation of the mirror 5321) so that the measurement light ML reflected by the mirror 5321 is incident on the f ⁇ lens 5322.
  • the machining head 2 may be provided with a rotational position detection device for detecting the rotational position of the spindle 21 .
  • This rotational position detection device may be, for example, a rotary encoder.
  • the return light RL enters the detection element 5232 .
  • the measurement device 5 cannot irradiate the measurement target with the measurement light ML and/or cannot detect the return light RL
  • the return light RL is incident on the detection element 5232. or only part of the return light RL enters the detection element 5232 . Therefore, the intensity of the return light RL detected by the detection element 5232 is used to determine whether the measurement device 5 can irradiate the measurement target with the measurement light ML and detect the return light RL.
  • the control device 7 detects the intensity of the return light RL detected by the detection element 5232 (that is, the intensity of the return light RL detected by the detection element 5232, for example, the intensity of the interference light between the return light RL and the measurement light ML). ) is greater than or equal to a predetermined first intensity threshold, the rotation of the spindle 21 to which the measuring head 53 is attached may be controlled. As an example, the stronger the detected intensity of the return light RL, the more appropriate the optical paths of the measurement light ML and the return light RL are estimated. Therefore, the control device 7 may control the rotation of the main shaft 21 to which the measurement head 53 is attached so that the intensity of the return light RL detected by the detection element 5232 is maximized.
  • the measurement device 5 rotates the main shaft 21 to change the irradiation position of the measurement light ML on the object to be measured.
  • the operation of the galvanomirror 5222 may make the optical path of the principal ray of the measurement light ML parallel to the rotation axis RX even though the optical path is not positioned on the rotation axis RX.
  • the main shaft 21 rotates around the rotation axis RX in this state, the irradiation position of the measurement light ML on the object to be measured also rotates around the rotation axis RX.
  • the measurement apparatus 5 can change the irradiation position of the measurement light ML so that the irradiation position of the measurement light ML on the object to be measured rotates around the rotation axis RX. good.
  • the measurement device 5 may change the irradiation position of the measurement light ML in conjunction with the galvanomirror 5222 .
  • the measurement device 5 may change the irradiation position of the measurement light ML separately from the galvanomirror 5222 .
  • the measuring device 5 includes the measuring head 53 .
  • the measuring device 5 does not have to include the measuring head 53 .
  • the measuring head 53 is a measuring device different from the measuring device 5, and is detachably attachable to the processing head 2 together with the measuring device 5 (specifically, the measuring head 52). may be
  • FIG. A coordinate matching operation is a calibration operation for associating the measurement coordinate system and the stage coordinate system with each other.
  • the measurement coordinate system is a three-dimensional coordinate system used to specify the position of the measurement object measured by the measurement device 5 (for example, the position of the measurement object with reference to the measurement device 5).
  • the stage coordinate system is a three-dimensional coordinate system used to specify a position on stage 41 (for example, a position with stage 41 as a reference).
  • the stage coordinate system may be a three-dimensional coordinate system used to specify the position of stage 41 .
  • the stage drive system 42 may move the stage 41 based on information regarding the position of the stage 41 specified within the stage coordinate system.
  • the coordinate matching operation includes information (e.g., a transformation matrix) used to transform coordinates in the stage coordinate system to coordinates in the measurement coordinate system, and transforming coordinates in the measurement coordinate system to coordinates in the stage coordinate system. may be considered equivalent to an operation for obtaining information (eg, a transformation matrix) used to perform the transformation.
  • information e.g., a transformation matrix
  • the measuring device 5 may measure the coordinate reference member 411 under the control of the control device 7 in order to perform the coordinate matching operation.
  • the coordinate reference member 411 is a member whose position relative to the stage 41 is known to the control device 7 .
  • the coordinate reference member 411 is a member for which information regarding the relative positional relationship with the stage 41 is known to the control device 7 .
  • the coordinate reference member 411 may be formed at a predetermined position on the surface of the stage 41 as shown in FIG.
  • the information about the position where the coordinate reference member 411 is formed on the stage 41 is information known to the control device 7 as information about the position of the coordinate reference member 411 with respect to the stage 41 .
  • the coordinate reference member 411 may be formed on a surface (for example, a side surface) different from the surface of the stage 41 .
  • the coordinate reference member 411 may be formed on a member different from the stage 41 and mounted on the stage 41 .
  • the workpiece W may be held by a member different from the stage 41 and placed on the stage 41 .
  • the coordinate reference member 411 may be installed on the surface of the stage 41 in a state where the positional relationship between the stage 41 and the coordinate reference member 411 is fixed.
  • FIGS. 11(a) and 11(b) An example of the coordinate reference member 411 is shown in FIGS. 11(a) and 11(b).
  • a coordinate reference member 411 # 1 including a sphere that is, a spherical member
  • a coordinate reference member 411#2 including a member having a convex polyhedron (a cube in the example shown in FIG. 11B) may be used as the coordinate reference member 411.
  • the coordinate reference member 411 may be a member having a shape different from the shape shown in FIGS. 11(a) and 11(b).
  • the coordinate reference member 411 may include a member on which a predetermined mark (for example, grid mark) measurable by the measuring device 5 is formed.
  • a predetermined mark for example, a grid mark
  • a portion of the stage 41 on which a predetermined mark is formed may be used as the coordinate reference member 411 .
  • the control device 7 can generate measurement data indicating the position of the coordinate reference member 411 in the measurement coordinate system based on the measurement result of the coordinate reference member 411 by the measurement device 5 .
  • information about the position of the coordinate reference member 411 with respect to the stage 41 is known information to the control device 7, and the position of the stage 41 in the stage coordinate system is measured by a position measuring device (not shown) included in the stage device 4. Since it is possible, the control device 7 can calculate the position of the coordinate reference member 411 in the stage coordinate system.
  • the control device 7 can specify that the position of the coordinate reference member 411 in the measurement coordinate system indicated by the measurement data and the position of the coordinate reference member 411 in the stage coordinate system are positions to be associated with each other. .
  • control device 7 can specify that a specific position within the measurement coordinate system and a specific position within the stage coordinate system are positions that should be associated with each other. As a result, based on the identification result that a specific position in the measurement coordinate system and a specific position in the stage coordinate system are positions to be associated with each other, the control device 7 controls the measurement coordinate system and the stage. can be associated with a coordinate system.
  • each of the measurement coordinate system and the stage coordinate system is a three-dimensional coordinate system.
  • a plurality of (for example, at least three) coordinate reference members 411 may be formed on the stage 41 in order to associate the measurement coordinate system and the stage coordinate system, which are three-dimensional coordinate systems, with each other.
  • at least two coordinate reference members 411 having different positions in the X-axis direction may be formed on the stage 41 .
  • the control device 7 performs a coordinate matching operation based on the measurement results of at least two coordinate reference members 411, so that the X coordinate of a certain position in either one of the stage coordinate system and the measurement coordinate system is Either the stage coordinate system or the measurement coordinate system can be transformed into the X coordinate of a certain position.
  • the control device 7 performs a coordinate matching operation based on the measurement results of at least two coordinate reference members 411, so that the X coordinate of a certain position in either one of the stage coordinate system and the measurement coordinate system is Either the stage coordinate system or the measurement coordinate system can be transformed into the X coordinate of a certain position.
  • at least two coordinate reference members 411 whose positions in the Y-axis direction are different may be formed on the stage 41 .
  • the control device 7 performs a coordinate matching operation based on the measurement results of at least two coordinate reference members 411, so that the Y coordinate of a certain position in either one of the stage coordinate system and the measurement coordinate system is Either the stage coordinate system or the measurement coordinate system can be transformed into the Y coordinate of a certain position.
  • at least two coordinate reference members 411 having different positions in the Z-axis direction may be formed on the stage 41 .
  • the control device 7 performs a coordinate matching operation based on the measurement results of at least two coordinate reference members 411, so that the Z coordinate of a certain position in either one of the stage coordinate system and the measurement coordinate system is Either one of the stage coordinate system and the measurement coordinate system can be transformed into the Z coordinate of a certain position.
  • the stage 41 is moved so as to change the position of the coordinate reference member 411 within the stage coordinate system, and then the coordinates moved as the stage 41 is moved.
  • the measuring device 5 may measure the reference member 411 again.
  • the measurement device 5 may measure the coordinate reference member 411 that moves between a plurality of locations (for example, at least three locations) within the stage coordinate system.
  • the multiple coordinate reference members 411 may not be formed on the stage 41 .
  • a single coordinate reference member 411 may be formed on the stage 41 .
  • the measuring device 5 measures the coordinate reference member 411, and then the stage 41 includes a directional component along the X-axis direction so as to change the position of the coordinate reference member 411 in the X-axis direction within the stage coordinate system.
  • the measuring device 5 may measure the coordinate reference member 411 that moves along the movement direction and then moves along with the movement of the stage 41 .
  • the control device 7 performs a coordinate matching operation based on the measurement result of the coordinate reference member 411 to match the X coordinate of a certain position in either the stage coordinate system or the measurement coordinate system to the stage coordinate system. and the other of the measurement coordinate system can be transformed into the X coordinate of a certain position.
  • the measuring device 5 measures the coordinate reference member 411, and then the stage 41 includes a directional component along the Y-axis direction so as to change the position of the coordinate reference member 411 in the Y-axis direction within the stage coordinate system.
  • the measuring device 5 may measure the coordinate reference member 411 that moves along the movement direction and then moves along with the movement of the stage 41 .
  • the control device 7 performs a coordinate matching operation based on the measurement result of the coordinate reference member 411 to match the Y coordinate of a certain position in either one of the stage coordinate system and the measurement coordinate system to the stage coordinate system. and the Y coordinate of a certain position in the other of the measurement coordinate systems.
  • the measuring device 5 measures the coordinate reference member 411, and then the stage 41 includes a directional component along the Z-axis direction so as to change the position of the coordinate reference member 411 in the Z-axis direction within the stage coordinate system.
  • the measuring device 5 may measure the coordinate reference member 411 that moves along the movement direction and then moves along with the movement of the stage 41 .
  • the control device 7 performs a coordinate matching operation based on the measurement result of the coordinate reference member 411, so that the Z coordinate of a certain position in either one of the stage coordinate system and the measurement coordinate system is changed to the stage coordinate system. and the Z coordinate of a certain position in the other of the measurement coordinate systems.
  • the coordinate reference member 411 includes a member having a three-dimensional shape (for example, the sphere shown in FIG. 11A or the cube shown in FIG. Multiple sites (eg, at least three sites) may be measured.
  • the plurality of coordinate reference members 411 may not be formed on the stage 41 , and the stage 41 may not move each time the measuring device 5 measures the coordinate reference members 411 .
  • the measuring device 5 measures a first portion of the coordinate reference member 411, and then measures a second portion of the coordinate reference member 411 whose position in the X-axis direction in at least the stage coordinate system is different from that of the first portion. may be measured.
  • the control device 7 performs a coordinate matching operation based on the measurement result of the coordinate reference member 411 to match the X coordinate of a certain position in either the stage coordinate system or the measurement coordinate system to the stage coordinate system. and the other of the measurement coordinate system can be transformed into the X coordinate of a certain position.
  • the measuring device 5 measures a first portion of the coordinate reference member 411, and then measures a third portion of the coordinate reference member 411 whose position in at least the Y-axis direction in the stage coordinate system is different from that of the first portion. may be measured.
  • the control device 7 performs a coordinate matching operation based on the measurement result of the coordinate reference member 411 to match the Y coordinate of a certain position in either one of the stage coordinate system and the measurement coordinate system to the stage coordinate system. and the Y coordinate of a certain position in the other of the measurement coordinate systems.
  • the measuring device 5 measures a first portion of the coordinate reference member 411, and then measures a fourth portion of the coordinate reference member 411 whose position in the Z-axis direction in at least the stage coordinate system is different from that of the first portion. may be measured.
  • control device 7 performs a coordinate matching operation based on the measurement result of the coordinate reference member 411, so that the Z coordinate of a certain position in either one of the stage coordinate system and the measurement coordinate system is changed to the stage coordinate system. and the Z coordinate of a certain position in the other of the measurement coordinate systems.
  • the measuring device 5 measures a plurality of parts of the coordinate reference member 411
  • the measuring device 5 measures another part of the coordinate reference member 411 .
  • the relative positional relationship between the measuring device 5 and the coordinate reference member 411 may be changed so as to be able to.
  • a relative positional relationship between the measurement device 5 and the coordinate reference member 411 may be changed by the stage drive system 42 .
  • the stage drive system 42 may change the attitude of the stage 41 with respect to the measuring device 5 (for example, at least one of the measuring heads 52 and 53).
  • a relative positional relationship between the measurement device 5 and the coordinate reference member 411 may be changed by the head drive system 3 .
  • the head drive system 3 changes the attitude of the measuring device 5 (for example, at least one of the measuring heads 52 and 53) with respect to the stage 41 by changing the attitude of the processing head 2 with respect to the stage 41. You may
  • the measuring device 5 may be moved to the coordinate reference member 411 without changing the relative positional relationship between the measuring device 5 and the coordinate reference member 411. Other sites may be measured.
  • the measuring device 5 may measure a plurality of parts of the coordinate reference member 411 via an optical system 412 capable of changing the traveling direction of the measurement light ML.
  • FIG. 12 shows an example in which a coordinate reference member 411#2 including a cube is measured by the measuring device 5. As shown in FIG.
  • the measurement device 5 since the traveling direction of the measurement light ML emitted from the measurement head 53 is parallel to the Z-axis, the measurement device 5 faces upward (that is, faces the +Z side) without passing through the optical system 412. and the first surface 4111 of the coordinate reference member 411#2 facing the measurement head 53 can be irradiated with the measurement light ML.
  • the measurement device 5 moves the second surface 4112 (see FIG. 12, the surface facing the -X side) and the third surface 4113 facing the side of the coordinate reference member 411#2 (the surface facing the -Y side in the example shown in FIG. 12). ML cannot be irradiated.
  • the optical system 412 includes a mirror member 4121 that reflects the measurement light ML so as to change the traveling direction of the measurement light ML from the direction parallel to the Z axis to the direction parallel to the X axis. , and a mirror member 4122 that reflects the measurement light ML so as to change the traveling direction of the measurement light ML from the direction parallel to the Z axis to the direction parallel to the Y axis.
  • the second surface 4112 of the coordinate reference member 411#2 is irradiated with the measurement light ML reflected by the mirror member 4121, and the measurement light ML reflected by the mirror member 4122 is projected onto the third surface of the coordinate reference member 411#2.
  • the measuring device 5 measures the first surface 4111 to the third surface 4113 of the coordinate reference member 411#2 without changing the relative positional relationship between the measuring device 5 and the coordinate reference member 411. can do. More specifically, the measuring device 5 irradiates the first surface 4111 with the measurement light ML emitted from the galvanomirror 5222 in the first emission direction, and emits the measurement light ML from the galvanomirror 5222 in the second emission direction.
  • the second surface 4112 is irradiated with the measurement light ML emitted through the mirror member 4121, and the measurement light ML emitted from the galvanomirror 5222 in the third emission direction is emitted through the mirror member 4122 to the second surface 4112.
  • Three surfaces 4113 can be irradiated.
  • the optical system 412 changes the travel direction of the measurement light ML from a travel direction that allows the measurement light ML to irradiate one portion of the coordinate reference member 411, and directs the measurement light ML to another portion of the coordinate reference member 411.
  • a traveling direction changing member (mirror members 4121 and 4122 in the example shown in FIG.
  • the optical system 412 changes the traveling direction of the measurement light ML.
  • the optical path length i.e., optical distance, hereinafter the same
  • the optical path of the measurement light ML irradiated to the other portion of the coordinate reference member 411 There is a possibility that it will be different from the length.
  • the optical path length of the measurement light ML irradiated to one portion of the coordinate reference member 411 and the optical path length of the measurement light ML irradiated to another portion of the coordinate reference member 411 are It is difficult to say that the situation in which the Therefore, in addition to the traveling direction changing member described above, the optical system 412 has an optical path length of the measurement light ML irradiated to one portion of the coordinate reference member 411 and a measurement light irradiated to another portion of the coordinate reference member 411.
  • the optical path length of the measurement light ML irradiated to one portion of the coordinate reference member 411 and the optical path length of the measurement light ML irradiated to the other portion of the coordinate reference member 411 are equal to each other. At least one of the optical path length adjusting members may be included.
  • the optical system 412 has the optical path length of the measurement light ML that irradiates the first surface 4111 of the coordinate reference member 411#2 and the length of the measurement light ML that irradiates the second surface 4112 of the coordinate reference member 411#2.
  • the measurement light ML applied to the first surface 4111 is made equal to the optical path length of the measurement light ML applied to the third surface 4113 of the coordinate reference member 411#2.
  • the optical path length of the measurement light ML irradiated to the second surface 4112 of the coordinate reference member 411#2, and the measurement light ML irradiated to the third surface 4113 of the coordinate reference member 411#2. may be included as an optical path length adjusting member.
  • the machine tool 1a may use the measuring device 5 to perform a work measuring operation.
  • the work measuring operation is an operation for measuring the work W (for example, measuring the shape of the work W).
  • the machine tool 1a may perform a workpiece measurement operation before the machining head 2 starts machining the workpiece W with the tool 23.
  • the machine tool 1a uses the tool changer 6 to remove the measuring head 53 from the spindle 21 while the stage 41 is holding the workpiece W after completing the workpiece measuring operation, and attaches the tool 23 to the spindle 21. may be attached.
  • the machine tool 1a may process the work W held on the stage 41 based on the result of the work measuring operation.
  • the machine tool 1a may perform the workpiece measurement operation after the machining head 2 finishes machining the workpiece W.
  • the machine tool 1a may machine the workpiece W using the tool 23 attached to the spindle 21 before the workpiece measurement operation is performed.
  • the machine tool 1a may machine the workpiece W using a tool other than the tool 23 attached to the spindle 21 before the workpiece measurement operation is performed.
  • the machine tool 1a uses the tool changer 6 to remove the tool 23 from the spindle 21 while the stage 41 is holding the workpiece W, and attach the measuring head 53 to the spindle 21. may be attached.
  • the machine tool 1a is moved from the main spindle 21 using the tool changer 6 while the stage 41 holds the work W.
  • the measuring head 53 may be attached to the spindle 21 without removing the tool 23 .
  • the machine tool 1 a may perform a work measuring operation on the work W held on the stage 41 .
  • FIG. 13 is a flowchart showing the flow of work measuring operation.
  • the work W is placed on the stage 41 (S101).
  • the workpiece W to be machined by the machining head 2 may be placed on the stage 41 .
  • the workpiece W that the machining head 2 has finished machining may be placed on the stage 41 .
  • the workpiece W which the machining head 2 has finished machining is already placed on the stage 41 . Therefore, in this case, the operation of step S101 may not be performed.
  • step S102 the tool changer 6 attaches the measuring head 53 to the spindle 21 (step S102). However, if the measuring head 53 has already been attached to the spindle 21, the operation of step S102 may not be performed.
  • the control device 7 acquires measurement path information (step S103).
  • the measurement path information indicates a movement path (in other words, a movement locus) on the measurement object (workpiece W in this case) of the measurement position by the measuring device 5 .
  • the measurement device 5 measures the measurement object by irradiating the measurement light ML onto the measurement object. Therefore, the measurement path information may indicate the movement path of the irradiation position of the measurement light ML on the measurement object as the movement path of the measurement position on the measurement object by the measuring device 5 .
  • the measurement path information is a scan area SA (FIGS. 8A to 8C) that can be irradiated with the measurement light ML by the operation of the galvanomirror 5222 as a movement path on the measurement target of the measurement position by the measurement device 5. reference) may indicate the route of movement.
  • the control device 7 may generate measured path information from a path generation device that generates measured path information.
  • the path generation device may generate measurement path information based on, for example, a three-dimensional model of the measurement object (for example, a CAD (Computer Aided Design) model of the measurement object).
  • the path generation device may generate measurement path information based on, for example, a three-dimensional model of the measurement object and information on the position of the portion of the measurement object to be measured by the measurement device 5 .
  • the path generation device may generate measurement path information using CAM (Computer Aided Manufacturing).
  • a CAM is usually used to generate machining path information that indicates a movement path on a workpiece of a machining position by a machine tool that performs NC (Numerical Control) machining. Therefore, the path generation device may generate the measurement path information using the CAM by performing a process of regarding the positions measured by the measurement device 5 on the CAM as the machining positions by the machine tool.
  • the path generation device may generate the measurement path information by performing processing on the CAM that regards the measurement light ML as a virtual tool. good. For example, as shown in FIG. 14 showing measurement light ML regarded as a virtual tool, the path generation device irradiates the above-described scan area SA (annular scan area SA in the example shown in FIG. 14).
  • the measurement path information may be generated by performing processing on the CAM that regards an aggregate of the measurement light beams ML as a virtual tool attached to the spindle 21 .
  • the tool 23 since the tool 23 rotates around the rotation axis RX of the main shaft 21, the tool 23 normally has a rotationally symmetrical shape with respect to the rotation axis RX.
  • the path generation device can perform the measurement It is possible to relatively easily perform a process of regarding an aggregate of light ML as a tool. Therefore, the measurement device 5 may emit the measurement light ML so that the aggregate of the measurement light ML irradiated onto the scan area SA has a rotationally symmetrical shape with respect to the rotation axis RX.
  • the measurement device 5 has a shape in which the cross section (specifically, the cross section intersecting the traveling direction of the measurement light ML) of the aggregate of the measurement light ML irradiated onto the scan area SA is rotationally symmetrical with respect to the rotation axis RX.
  • the measurement light ML may be emitted so as to have
  • the measurement device 5 may emit the measurement light ML so that the scan area SA has a rotationally symmetrical shape with respect to the rotation axis RX.
  • the path generation device may generate measurement path information so that the measurement light ML emitted from the measurement device 5 is vertically incident on each part of the work W. That is, the path generation device generates the measurement path information so as not to cause a situation in which the measurement light ML is vertically incident on a certain portion of the work W while the measurement light ML is obliquely incident on another portion of the work W. may be generated.
  • the path generation device is the distance between the measuring device 5 and the work W (for example, the distance between the final optical element of the measuring device 5 and the work W. In the first embodiment, the f ⁇ lens 5322 and the work W The measured path information may be generated so that the distance between ) is constant.
  • control device 7 may generate the measured path information in addition to or instead of acquiring the measured path information from the path generation device.
  • the control device 7 may generate the measured path information using a method similar to the method used by the path generation device to generate the measured path information.
  • the control device 7 controls the measurement device 5 (and, if necessary, the head drive system 3 and the stage drive system) to measure the workpiece W based on the measurement path information acquired in step S103. 42) is controlled (step S104).
  • the measuring device 5 measures the workpiece W by irradiating the measurement object with the measurement light ML so that the irradiation position of the measurement light ML moves along the movement path indicated by the measurement path information on the workpiece W. do.
  • the control device 7 determines whether or not the measurement result of the workpiece W in step S104 is flawed (step S105). As described above, the control device 7 generates measurement data of the work W (for example, data regarding the shape of the work W) based on the measurement results of the work W. FIG. Therefore, the control device 7 may determine that the measurement result of the work W is incomplete when the measurement data cannot be generated from the measurement result of the work W. Although the control device 7 can generate measurement data from the measurement results of the work W, if the reliability of the measurement data is lower than a predetermined reliability threshold, the control device 7 determines that the measurement results of the work W are defective. may
  • the control device 7 may acquire the intensity of the return light RL detected by the detection element 5232 as the measurement result of the work W, as described above. In this case, the control device 7 may determine that the measurement result of the workpiece W is defective when the detected intensity of the returned light RL is smaller than a predetermined second intensity threshold. This is because the detection intensity of the return light RL should be equal to or higher than a certain intensity, but if the detection intensity of the return light RL is weak, the measuring device 5 may not be able to appropriately irradiate the workpiece W with the measurement light ML. It is because there is a nature. This is because, as a result, the control device 7 may not be able to generate reliable measurement data.
  • step S105 when it is determined that the measurement result of the work W is defective (step S105: Yes), the control device 7 changes the measurement conditions for measuring the work W (step S106 ). For example, the control device 7 changes the measurement conditions so that the control device 7 can generate reliable measurement data (for example, the reliability is higher than a predetermined reliability threshold) from the measurement results of the workpiece W. You may For example, when it is determined that the measurement result of the work W is defective because the detected intensity of the returned light RL is smaller than the predetermined second intensity threshold, the control device 7 detects the returned light RL. The measurement conditions may be changed so that the intensity is greater than or equal to the second predetermined intensity threshold.
  • the measurement conditions for the work W may include conditions for the measurement device 5 that irradiates the work W with the measurement light ML and detects the return light RL from the work W.
  • the conditions regarding the measurement device 5 may include conditions regarding the measurement light ML.
  • the conditions regarding the measurement light ML may include at least one of the intensity of the measurement light ML, the timing of irradiation of the measurement light ML, and the irradiation position of the measurement light ML.
  • the control device 7 may change the intensity of the measurement light ML so that the detected intensity of the return light RL is greater than or equal to a predetermined second intensity threshold.
  • At least one of the measuring device 5 (in particular, the measuring heads 52 and 53) and the stage 41 may move while the measuring device 5 measures the workpiece W.
  • the measurement conditions for the workpiece W may include conditions regarding movement of at least one of the measurement device 5 and the stage 41 .
  • the condition regarding movement may include at least one of movement speed, movement timing, movement amount, and movement direction. Since the measuring device 5 (especially the measuring heads 52 and 53) moves with the movement of the processing head 2, the conditions for the movement of the measuring device 5 (especially the measuring heads 52 and 53) are substantially is equivalent to the condition regarding the movement of the machining head 2.
  • the measuring device 5 measures the workpiece W again (step S104). Thereafter, similar operations (that is, the operations of steps S104 and S106) are repeated until it is determined that the measurement result of the work W is satisfactory (step S105).
  • step S105 if it is determined that there is no defect in the measurement result of the work W (step S105: No), the control device 7, based on the measurement result of the work W in step S104, Measured data of the workpiece W is generated.
  • the control device 7 may generate measurement data indicating the shape of the work W based on the measurement results of the work W, as described above.
  • the measurement result of the work W includes information regarding the positions of the plurality of parts of the work W.
  • the control device 7 may generate point cloud data including a plurality of points respectively corresponding to positions of a plurality of portions of the work W as measurement data indicating the shape of the work W.
  • the control device 7 may generate a three-dimensional model representing the shape of the workpiece W based on the point cloud data, and may generate measurement data representing the three-dimensional model.
  • noise components may be superimposed on the measurement results of the workpiece W.
  • a noise component caused by the temperature of the space in which the machine tool 1a and the work W are arranged is superimposed on the measurement result of the work W.
  • noise components caused by vibrations occurring in the machine tool 1a and the workpiece W are superimposed on the measurement result of the workpiece W.
  • the control device 7 may remove noise components from the measurement results of the work W, and generate measurement data based on the measurement results from which the noise components have been removed.
  • the control device 7 may generate measurement data from which the influence of noise components is eliminated based on the measurement result of the workpiece W.
  • control device 7 performs desired processing using the measurement data generated in step S107 (step S108).
  • the desired process performed by the control device 7 in step S108 may include alignment of the tool 23.
  • the alignment process of the tool 23 includes a process of moving the tool 23 so that the tool 23 is positioned at a desired position (for example, a machining start position) of the workpiece W whose shape (and position) can be specified by the measurement data. You can stay.
  • the desired process performed by the control device 7 in step S108 is to determine the position of the workpiece W placed on the stage 41 (hereinafter referred to as "mounting position").
  • a calibration process may also be included to configure the "placement position").
  • the process of calibrating the placement position of the work W includes a process of calculating a placement position error corresponding to the difference between the ideal placement position of the work W and the actual placement position of the work W indicated by the measurement data. You can
  • the process of calibrating the placement position of the work W includes a process of notifying the operator of the machine tool 1a of the calculated placement position error and prompting the operator to place the work W again on the stage 41.
  • the processing for calibrating the mounting position of the work W may include processing for automatically changing the mounting position of the work W on the stage 41 based on the calculated mounting position error.
  • the processing for calibrating the mounting position of the work W may include processing for controlling movement of at least one of the processing head 2 and the stage 41 so as to offset the calculated mounting position error. For example, in the process of calibrating the mounting position of the work W, the processing head 2 processes the work W in the same manner as when there is no mounting position error even in a situation where a mounting position error has occurred.
  • the measuring device 5 may include processing for controlling the movement of at least one of the processing head 2 and the stage 41 so that For example, in the process of calibrating the mounting position of the workpiece W, even under the condition where the mounting position error occurs, the measuring device 5 can detect the workpiece W (or an arbitrary measurement object) may include processing for controlling the movement of at least one of the processing head 2 and the stage 41 so as to be able to measure the object.
  • the head driving system 3 and the stage driving system 42 substantially move the processing head 2 and the stage 41, respectively, based on the information regarding the measurement result of the workpiece W.
  • the machine tool 1a can process and measure the workpiece W without being affected by the mounting position error.
  • the desired process performed by the control device 7 in step S108 is an evaluation process for evaluating the workpiece W machined by the machining head 2.
  • the desired process may include an evaluation process for evaluating the details of the machining of the workpiece W by the machining head 2 .
  • the evaluation process may include a process of calculating a machining error corresponding to the difference between the ideal shape of the work W and the actual shape of the work W indicated by the measurement data.
  • the evaluation process may include a process of notifying the operator of the machine tool 1a of information on the machining error.
  • the evaluation process may include a process of comparing the calculated machining error with a predetermined error threshold to determine the quality of the workpiece W machined by the machining head 2 .
  • the evaluation process may include a process of notifying the operator of the machine tool 1a of the determined quality of the workpiece W.
  • the evaluation process may include a process of causing the machining head 2 to process the workpiece W again so as to reduce or eliminate machining errors.
  • the machine tool 1a produces various types of workpieces by machining the workpiece W. Therefore, the ideal shape of the workpiece W also changes depending on the type of workpiece to be produced by the machine tool 1a. Therefore, the control device 7 may perform evaluation processing for each type of workpiece to be produced by the machine tool 1a. For example, when the machine tool 1a produces a first type of workpiece (for example, a gear), the controller 7 determines the difference between the ideal shape of the gear as the workpiece and the actual shape of the workpiece W.
  • a first type of workpiece for example, a gear
  • the machine tool 1a When the machine tool 1a generates a second type of workpiece (for example, a blade), the ideal shape of the blade as the workpiece and A second evaluation process is performed to calculate a machining error corresponding to a difference from the actual shape of the workpiece W, and when the machine tool 1a generates a third type of workpiece (for example, a mold), A third evaluation process of calculating a machining error corresponding to the difference between the ideal shape of the gear as an object and the actual shape of the workpiece W may be performed.
  • a second type of workpiece for example, a blade
  • a second evaluation process is performed to calculate a machining error corresponding to a difference from the actual shape of the workpiece W
  • a third type of workpiece for example, a mold
  • the control device 7 controls the measurement device 5 so that the measurement light ML can be applied to the measurement object and the return light RL can be detected.
  • the operation of controlling the rotation of the spindle 21 to which the measuring head 53 is attached (that is, the rotation of the measuring head 53) may be performed.
  • this operation will be referred to as azimuth calibration operation.
  • the control device 7 may perform an azimuth calibration operation between steps S103 and S104 in FIG.
  • the control device 7 may perform the orientation calibration operation after the measurement path information is acquired and before the workpiece W is actually measured based on the measurement path information.
  • control device 7 may perform an azimuth calibration operation between steps S102 and S104 in FIG. That is, the control device 7 may perform the orientation calibration operation after the measurement head 53 is attached to the spindle 21 and before the work W is actually measured based on the measurement path information.
  • control device 7 may perform the azimuth calibration operation as part of the series of operations from step S104 to step S106 in FIG.
  • step S104 the control device 7 controls the measurement device 5 to irradiate the workpiece W with the measurement light ML, and in step S105, when the intensity of the return light RL is less than the first intensity threshold, the measurement It may be determined that the result is incomplete, and in step S106, the rotation angle of the measurement head 53 (that is, the orientation of the measurement head 53 around the rotation axis RX) as the measurement condition may be changed.
  • the control device 7 performs the azimuth calibration operation. (that is, it is not necessary to rotate the measurement head 53 around the rotation axis RX). For example, when the intensity of the return light RL is less than the first intensity threshold, the control device 7 does not have to rotate the measurement head 53 around the rotation axis RX.
  • control device 7 may perform the azimuth calibration operation each time the measuring head 53 is attached to the spindle 21 .
  • the control device 7 does not have to perform the azimuth calibration operation each time the measuring head 53 is attached to the spindle 21 .
  • the machine tool 1a may use the measuring device 5 to perform the running error correction operation.
  • the running error calibrating operation is an operation for calibrating the running error of the machining head 2 .
  • a running error of the machining head 2 is a running error of the machining head 2 in a second direction crossing (typically orthogonal to) the first direction, which occurs when the machining head 2 moves along the first direction. Including unintended variations in position.
  • the running error of the machining head 2 intersects the first direction (typically may include an unintended variation in the position of the machining head 2 in a second (perpendicular) direction (for example, the direction in which the axis of rotation RX extends).
  • the machining head 2 is movable along the X-axis direction that intersects with the rotation axis RX. Therefore, the running error of the machining head 2 may include unintended positional variations of the machining head 2 in the Z-axis direction that occur when the machining head 2 moves along the X-axis direction. However, if the machining head 2 is movable along the Y-axis direction that intersects with the rotation axis RX, the running error of the machining head 2 is Z It may also include unintended variations in the position of the machining head 2 in the axial direction.
  • the running error correction operation will be described below with reference to FIG.
  • FIG. 15 is a flow chart showing the flow of the running error calibration operation.
  • the running error calibration member 91 which is an object used for calibrating the running error, is placed on the stage 41 (step S201).
  • An example of the running error correction member 91 is shown in FIG.
  • the running error calibration member 91 is a member provided with a reference surface 911.
  • the reference plane 911 is a plane whose shape information is known to the control device 7 .
  • the reference plane 911 is a plane.
  • the reference plane 911 is a plane parallel to the moving direction of the processing head 2 intersecting the rotation axis RX under the condition that the running error correction member 91 is placed on the stage 41 positioned at the reference position.
  • the reference plane 911 may be a plane parallel to the XY plane under the condition that the running error calibration member 91 is placed on the stage 41 positioned at the reference position.
  • the reference plane 911 intersects (typically, orthogonally) the rotation axis RX of the main shaft 21 under the condition that the running error correction member 91 is placed on the stage 41 positioned at the reference position. It may be flat. However, as long as the information about the shape of the reference surface 911 is known to the control device 7, the reference surface 911 may include a curved surface.
  • step S202 attaches the measuring head 53 to the spindle 21.
  • the operation of step S202 may not be performed.
  • the measuring device 5 starts measuring the running error calibration member 91 (step S203). In particular, the measuring device 5 starts measuring the reference surface 911 of the running error calibration member 91 (step S203). While the measuring device 5 is measuring the running error calibration member 91, the head drive system 3 moves the processing head 2 (step S203). That is, the measuring device 5 measures the running error calibration member 91 (in particular, the reference plane 911) while the head drive system 3 is moving the processing head 2.
  • step S203 the head drive system 3 moves the processing head 2 along the direction intersecting the rotation axis RX.
  • the head drive system 3 moves the processing head 2 along the X-axis direction that intersects the rotation axis RX. Therefore, the measuring device 5 measures the running error calibration member 91 (in particular, the reference plane 911) while the head drive system 3 is moving the machining head 2 along the X-axis direction.
  • the head drive system 3 does not perform control for moving the processing head 2 along the Z-axis direction along the rotation axis RX. That is, the head drive system 3 does not perform control for moving the Z slider member (not shown) to which the processing head 2 is attached along the Z guide member 35 .
  • the control device 7 calculates the running error based on the measurement result of the running error calibrating member 91 in step S203 (step S204).
  • the operation of calculating the running error will be described below with reference to FIG.
  • FIG. 17 shows, with a dotted line, the position of the reference plane 911 in the Z-axis direction calculated from the measurement results of the running error calibration member 91 obtained under the condition that there is no running error (that is, the running error is zero). ing. Further, in FIG. 17, the position of the reference plane 911 in the Z-axis direction calculated from the measurement results of the running error calibration member 91 obtained under the condition that there is a running error (that is, the running error is not zero) is shown by the solid line. is shown. As shown in FIG.
  • the position of the reference plane 911 in the Z-axis direction varies depending on the measurement position (that is, the position irradiated with the measurement light ML and the position in the X-axis direction). never. This is because the reference plane 911 is a plane.
  • the position of the reference plane 911 in the Z-axis direction when there is no running error corresponds to the ideal position of the reference plane 911 in the Z-axis direction, and is known information for the control device 7 .
  • the position of the reference plane 911 in the Z-axis direction changes depending on the measurement position, even though the reference plane 911 is flat.
  • the control device 7 calculates the actual position of the reference plane 911 in the Z-axis direction based on the measurement result of the running error calibration member 91, and the actual position of the reference plane 911 in the Z-axis direction and the control device 7
  • the running error can be calculated by calculating the difference from the ideal position in the Z-axis direction of the reference plane 911, which is known information for .
  • the reference surface 911 includes a curved surface or the like as described above. Specifically, when there is no running error, the position of the reference plane 911 in the Z-axis direction matches the position corresponding to the shape of the reference plane 911, which is information known to the control device 7, regardless of the measurement position. do. On the other hand, if there is a running error, the position of the reference plane 911 in the Z-axis direction differs from the position corresponding to the shape of the reference plane 911, which is information known to the control device 7, depending on the measurement position. .
  • control device 7 calculates the actual position of the reference plane 911 in the Z-axis direction based on the measurement result of the running error calibration member 91, and the actual position of the reference plane 911 in the Z-axis direction and the reference plane 911
  • the running error can be calculated by calculating the difference from the ideal position in the Z-axis direction.
  • the control device 7 may control the movement of at least one of the processing head 2 and the stage 41 so as to offset the calculated running error.
  • the control device 7 controls the processing head 2 and the stage so that the processing head 2 can process the workpiece W in the same manner as when there is no running error even under the condition where the running error occurs.
  • At least one movement of 41 may be controlled.
  • the control device 7 allows the measuring device 5 to measure the workpiece W (or any object to be measured) in the same manner as when no running error occurs even under a condition where a running error occurs. Movement of at least one of the processing head 2 and the stage 41 may be controlled so as to be possible.
  • the head driving system 3 and the stage driving system 42 substantially operate the processing head 2 and the stage 41 based on the information on the measurement result of the running error calibrating member 91. Each will be moved. As a result, the machine tool 1a can process and measure the workpiece W without being affected by running errors.
  • the work W machined by the machining head 2 may be used as the running error calibrating member 91 .
  • a running error calibrating operation performed by using the workpiece W machined by the machining head 2 as the running error calibrating member 91 will be described below with reference to FIG.
  • FIG. 18 is a flow chart showing the flow of the running error calibrating operation performed by using the workpiece W machined by the machining head 2 as the running error calibrating member 91 .
  • a workpiece W used for calibrating the running error is placed on the stage 41 (step S211).
  • the work W placed on the stage 41 in step S211 may be a work for test machining used for calibrating running errors, or may be a work for forming a work using the machine tool 1a. It may be a work for the main processing to be used.
  • the tool changer 6 attaches the tool 23 to the spindle 21 (step S212). However, if the tool 23 is already attached to the spindle 21, the operation of step S212 may not be performed.
  • the machining head 2 starts machining the workpiece W (step S213). While the machining head 2 is machining the workpiece W, the head drive system 3 moves the machining head 2 (step S213). That is, the processing head 2 processes the workpiece W during at least part of the period during which the head drive system 3 moves the processing head 2 .
  • step S213 the head drive system 3 moves the processing head 2 along the direction intersecting the rotation axis RX of the main shaft 21.
  • the head drive system 3 moves the machining head 2 along the X-axis direction intersecting the rotation axis RX of the spindle 21 . Therefore, the processing head 2 processes the workpiece W during at least part of the period during which the head drive system 3 moves the processing head 2 along the X-axis direction. In this case, the machining head 2 brings the upper surface of the workpiece W into contact with the tool 23, thereby performing machining for scraping off the upper surface of the workpiece W by a certain amount.
  • step S ⁇ b>213 the head drive system 3 does not perform control for moving the processing head 2 along the Z-axis direction along the rotation axis RX of the main shaft 21 . That is, the head drive system 3 does not perform control for moving the Z slider member (not shown) to which the processing head 2 is attached along the Z guide member 35 .
  • the tool changer 6 removes the tool 23 attached to the spindle 21 and attaches the measuring head 53 to the spindle 21 (step S214).
  • the measuring device 5 starts measuring the workpiece W (step S215).
  • the measuring device 5 starts measuring the machined surface (for example, the upper surface) of the workpiece W machined by the machining head 2 (step S215).
  • step S215 differs from the operation of step S203 of FIG. 15, in which the running error calibration member 91 is the object of measurement, in that the workpiece W processed in step S213 is the object of measurement.
  • Other features of the operation of step S215 may be the same as other features of the operation of step S203. Therefore, in step S215 as well, the head drive system 3 moves the machining head 2 along the X-axis direction intersecting the rotation axis RX of the main shaft 21, as in step S203. Therefore, the measuring device 5 measures the workpiece W (particularly, the surface to be machined) while the head drive system 3 is moving the machining head 2 along the X-axis direction.
  • the measuring device 5 uses the galvanomirror 5222 to irradiate the measuring light ML to a plurality of parts of the workpiece W under the condition that the processing head 2 is positioned at a certain position. You may change the advancing direction of ML. For example, as shown in the upper part of FIG. 19, under the condition that the processing head 2 is positioned at the first position, the measurement light ML is applied to a plurality of parts (three parts in the example shown in FIG. 19) of the workpiece W. The traveling direction of the measurement light ML may be changed using the galvanomirror 5222 so that the .
  • the measurement light beams ML that irradiate the three parts of the workpiece W are referred to as measurement light beams ML#a, measurement light beams ML#b, and measurement light beams ML#c, respectively.
  • the measuring device 5 does not irradiate the workpiece W with the three different measurement beams ML#a, ML#b, and ML#c at the same time.
  • the three measurement light beams ML that irradiate the three regions with different W are simply referred to as the measurement light beam ML#a, the measurement light beam ML#b, and the measurement light beam ML#c. After that, as shown in the lower part of FIG.
  • a galvanomirror 5222 may be used to change the traveling direction of the measurement light ML so that the measurement light ML#a, ML#b, and ML#c are sequentially irradiated onto a plurality of sites of W.
  • control device 7 calculates the running error based on the measurement result of the workpiece W in step S215 (step S216).
  • the operation of calculating the running error based on the measurement result of the workpiece W will be described below with reference to FIGS. 20 and 21.
  • the upper diagram of FIG. 20 shows the workpiece W machined under conditions where there is no running error.
  • the processing surface of the work W becomes a plane. This is because even if the machining head 2 moves in the X-axis direction, the distance in the Z-axis direction between the machining head 2 and the work W (in particular, the distance in the Z-axis direction between the tool 23 and the work W) is This is because they do not change.
  • the position in the Z-axis direction of the machined surface of the work W obtained from the measurement result of the work W does not change depending on the measurement position. More specifically, as shown in the lower part of FIG.
  • the position of the processing surface irradiated with the measurement light ML#a in the Z-axis direction, the position of the processing surface irradiated with the measurement light ML#b in the Z-axis direction , and the position in the Z-axis direction of the processing surface irradiated with the measurement light ML#c do not change depending on the measurement position.
  • the upper diagram of FIG. 21 shows the workpiece W machined under conditions where there is a running error.
  • the machined surface of the workpiece W may not be flat.
  • the machined surface of the workpiece W will be a curved surface having undulations corresponding to the running error.
  • the distance between the machining head 2 and the workpiece W in the Z-axis direction (in particular, the Z This is because the distance in the axial direction) fluctuates.
  • the position in the Z-axis direction of the machined surface of the work W obtained from the measurement result of the work W changes depending on the measurement position.
  • the control device 7 can determine the position of the machining surface irradiated with the measurement light ML#a in the Z-axis direction, the position of the machining surface irradiated with the measurement light ML#b in the Z-axis direction. and the position in the Z-axis direction of the machined surface irradiated with the measurement light ML#c, and by comparing the calculated positions, the running error can be calculated.
  • the machine tool 1a uses the measuring device 5 having the measuring head 53 detachably attached to the spindle 21 to measure An object (for example, work W) is measured. Attachment and detachment of the measuring head 53 to and from the spindle 21 are automatically performed by the tool changer 6 . Therefore, the load on the operator for attaching and detaching the measuring head 53 to and from the spindle 21 is reduced.
  • the measuring head 52 attached to the machining head 2 rather than the measuring head 53 detachably attached to the spindle 21 is provided with the galvanomirror 5222 which tends to occupy a large volume, the size of the measuring head 53 is determined by the tool. A size that can be handled by the exchange device 6 is possible.
  • the measurement device 5 can sequentially irradiate the measurement light ML onto multiple parts of the measurement object at a relatively high speed by changing the traveling direction of the measurement light ML using the galvanomirror 5222 . Therefore, the measuring device 5 can measure the properties (for example, positions) of a plurality of parts of the object to be measured at relatively high speed. As a result, the control device 7 can generate measurement data indicating the shape of the measurement object at a relatively high speed by integrating the positions of a plurality of parts of the measurement object.
  • the measurement axis MX of the measurement device 5 (specifically, the optical axis of the f ⁇ lens 5322) and the rotation axis RX of the main shaft 21 are coaxial. Therefore, the processing point PP (see FIG. 6), which is the intersection of the rotation axis RX and the work W, overlaps (that is, coincides with) the measurement point MP (see FIG. 6), which is the intersection of the measurement axis MX and the work W. ).
  • the machining head 2 uses a tool 23 attached to the spindle 21 to irradiate a portion of the workpiece W that can be irradiated with the measurement light ML by the measuring device 5 (that is, a portion of the workpiece W that can be measured by the measuring device 5). can be processed by Furthermore, the measuring device 5 can irradiate the portion of the work W that can be processed by the tool 23 attached to the spindle 21 with the measurement light ML (that is, can measure). Therefore, in the first embodiment, the machining range that can be processed by the machining head 2 and the measurement range that can be measured by the measuring device 5 match.
  • the measuring device 5 cannot measure the part of the workpiece W machined by the machining head 2 (as a result, the above-described workpiece measuring operation The evaluation processing described above cannot be performed), and the measuring device 5 cannot measure the portion of the work W that the processing head 2 wants to process (as a result, the processing head 2 cannot measure the portion of the work W that is not included in the measurement range). part of it cannot be processed). Further, for example, if part of the measurement range is not included in the processing range, there is a possibility that the processing head 2 cannot process the portion of the workpiece W measured by the measuring device 5 . However, in the first embodiment, such restrictions are eliminated.
  • Machine tool 1b of the second embodiment a machine tool 1 according to a second embodiment will be described.
  • the machine tool 1 of 2nd Embodiment is called “the machine tool 1b.”
  • a machine tool 1b of the second embodiment differs from the machine tool 1a of the first embodiment in that it is provided with a measuring device 5b instead of the measuring device 5.
  • FIG. Other features of machine tool 1b may be identical to other features of machine tool 1a.
  • the measuring device 5b of the second embodiment differs from the measuring device 5 of the first embodiment in that it includes a measuring head 52b instead of the measuring head 52. Furthermore, the measuring device 5b differs from the measuring device 5 in that the measuring head 53 attached to the spindle 21 may not be provided. Other features of the measuring device 5b may be the same as other features of the measuring device 5.
  • FIG. 22 is a cross-sectional view showing the structure of the measuring device 5b (in particular, the measuring head 52b) of the second embodiment.
  • the same reference numerals are given to the constituent elements that have already been described, and the detailed description thereof will be omitted.
  • the measurement head 52b of the second embodiment differs from the measurement head 52 of the first embodiment in that it includes an optical system 522b instead of the optical system 522.
  • Other features of measuring head 52 b may be the same as other features of measuring head 52 .
  • the optical system 522b of the second embodiment includes an optical system 5221 and a galvanomirror 5222, like the optical system 522 of the first embodiment.
  • the optical system 522b differs from the optical system 522 in that the mirror 5223 may not be provided.
  • the optical system 522b differs from the optical system 522 in that it includes an f ⁇ lens 5322 .
  • the optical system 522b may be regarded as functioning as an optical system in which the optical systems 522 and 523 of the first embodiment are substantially integrated.
  • Other features of optical system 522 b may be identical to other features of optical system 522 .
  • the measurement light ML emitted from the galvanomirror 5222 enters the f ⁇ lens 5322 .
  • the f ⁇ lens 5322 irradiates the measurement target (for example, the work W) with the measurement light ML through the opening 5211 .
  • the return light RL from the object to be measured enters the f ⁇ lens 5322 through the aperture 5211 .
  • the distance between the optical system 522b (particularly, the f ⁇ lens 5322 having the terminal optical element) that irradiates the measurement object with the measurement light ML and the measurement object , the optical path of the return light RL may overlap the optical path of the measurement light ML.
  • the measurement device 5b of the second embodiment can measure the measurement object, like the measurement device 5 of the first embodiment.
  • the f ⁇ lens 5322 is accommodated in the head housing 521 of the measurement head 52b attached to the processing head 2 at a position separated from the rotation axis RX of the main shaft 21 along the direction intersecting the rotation axis RX. . Therefore, in the second embodiment, the optical axis of the f ⁇ lens 5322 is not coaxial with the rotation axis RX. The optical axis of the f ⁇ lens 5322 is positioned away from the rotation axis RX along the direction intersecting the rotation axis RX.
  • the measuring axis MX is not coaxial with the rotation axis RX in the second embodiment.
  • the measurement axis MX is positioned away from the rotation axis RX along the direction intersecting the rotation axis RX.
  • the optical axis of the f ⁇ lens 5322 (that is, the optical axis of the optical system 522b on the measurement object side, the measurement axis MX) is parallel to the rotation axis RX.
  • the optical axis of the f ⁇ lens 5322 may intersect the rotation axis RX.
  • the optical axis of the f ⁇ lens 5322 may be in a twisted relationship with respect to the rotation axis RX.
  • the measurement axis MX and the rotation axis RX may be non-coaxial.
  • the machine tool 1b may use such a measuring device 5b to perform the above-described coordinate matching operation, workpiece measurement operation, and running error calibration operation.
  • the measurement results of the object to be measured by the measurement device 5b include measurement errors.
  • the measurement error caused by the non-coaxiality of the measurement axis MX and the rotation axis RX will be referred to as "axis deviation error".
  • axis deviation error occurs when the measurement axis MX and the rotation axis RX, which should be parallel, are not actually parallel. The axis deviation error will be described below with reference to FIGS. 23 and 24.
  • FIG. 23 shows a measurement head 52b attached to the processing head 2 so that the measurement axis MX and the rotation axis RX are parallel (both parallel to the Z-axis of the stage coordinate system in the example shown in FIG. 23).
  • the control device 7 generates measurement data representing the work W based on the measurement result of the work W by the measuring device 5 .
  • the control device 7 can move a portion of the work W from the measurement device 5b (for example, from the measurement head 52b) along the measurement axis MX (that is, along the Z axis of the stage coordinate system).
  • Measured data indicating that the distance is D1#1 is generated.
  • the control device 7 generates measurement data indicating the relative position of the workpiece W with respect to the measurement device 5b in the stage coordinate system. Furthermore, since the measuring device 5b (in particular, the measuring head 52b) is attached to the processing head 2, the measurement data substantially also indicates the relative position of the workpiece W with respect to the processing head 2 in the stage coordinate system. ing. For example, the measurement data indicates that a portion of the work W is separated from the processing head 2 by a distance D2#1 uniquely calculated according to the distance D1#1 along the rotation axis RX in the stage coordinate system. is shown.
  • FIG. 24 shows a measuring head 52b attached to the processing head 2 so that the measuring axis MX and the rotation axis RX are not parallel.
  • the rotation axis RX is parallel to the Z-axis of the stage coordinate system, while the measurement axis MX is tilted with respect to the Z-axis of the stage coordinate system.
  • the control device 7 generates measurement data indicating the work W based on the measurement result of the work W by the measuring device 5 .
  • the control device 7 outputs measurement data indicating that the part where the workpiece W is located is separated from the measuring device 5b (for example, from the measuring head 52b) by a distance D1#2 along the measurement axis MX. to generate
  • the distance D1#2 calculated by the control device 7 is between the portion of the workpiece W in the stage coordinate system and the measurement device 5b. will differ from the actual distance D1#1 along the Z-axis of .
  • the control device 7 controls the position of the work W and the measurement device 5b even though the position of the work W and the measurement device 5b are separated by a distance D1#1 along the Z-axis in the stage coordinate system. are separated by a distance D1#2 along the Z axis.
  • the measurement data indicates a position different from the actual position as the relative position of the workpiece W with respect to the machining head 2 .
  • the measurement data shows that the part where the work W is located and the machining head 2 are separated from each other.
  • the control device 7 As a result, as shown in FIG. 25 showing the apparent position of the work W calculated from the measurement results, the control device 7 generates measurement data indicating that the work W is positioned at a position different from the actual position. It may generate.
  • the machine tool 1b may perform a shaft misalignment error calibration operation using the measurement result of the measuring device 5b in order to configure the shaft misalignment error.
  • FIG. 26 is a flow chart showing the flow of the shaft misalignment error calibration operation.
  • the machine tool 1b first performs the running error calibration operation described with reference to FIG. 15 in order to perform the axis deviation error calibration operation. As a result, the running error of the machining head 2 is calculated. As described above, after the running error is calculated, the control device 7 controls movement of at least one of the machining head 2 and the stage 41 so as to offset the calculated running error. However, the measurement result of the running error calibration member 91 for calculating the running error still includes the axis deviation error. Therefore, the machine tool 1b further performs the operations described below.
  • the work W used for calibrating the axial misalignment error is placed on the stage 41 (step S301b).
  • the work W placed on the stage 41 in step S301b may be a work for test machining used to calibrate the axis misalignment error, or may be a work for forming a work using the machine tool 1b. It may be a work for main processing used for.
  • the tool changer 6 attaches the tool 23 to the spindle 21 (step S302b). However, if the tool 23 is already attached to the spindle 21, the operation of step S302b may not be performed.
  • step S303b the machining head 2 starts machining the workpiece W (step S303b). While the machining head 2 is machining the workpiece W, the head drive system 3 moves the machining head 2 (step S303b). That is, the processing head 2 processes the workpiece W during at least part of the period during which the head drive system 3 moves the processing head 2 .
  • the operation of step S303b may be the same as the operation of step S213 in FIG. 18 described above. Therefore, detailed description of step S303b is omitted. However, in step S213, the head driving system 3 moves the processing head 2 so as to cancel out the running error calculated in the running error calibrating operation.
  • step S304b another measuring device different from the measuring device 5 starts measuring the workpiece W.
  • Another measuring device different from the measuring device 5 may be a measuring device outside the machine tool 1b.
  • the workpiece W processed in step S303b may be transported from the stage 41 to another measuring device, and then the other measuring device may start measuring the workpiece W.
  • the machine tool 1 is equipped with another measuring device, the other measuring device may measure the workpiece W placed on the stage 41 .
  • step S304b another measuring device starts measuring the machined surface (for example, the upper surface) of the workpiece W machined by the machining head 2.
  • the operation of step S304b may be the same as the operation of step S215 in FIG. 18 described above. Therefore, detailed description of step S304b is omitted.
  • control device 7 calculates the axis deviation error based on the measurement result of the workpiece W by another measuring device in step S304b (step S305b).
  • step S304b the control device 7 calculates the axis deviation error based on the measurement result of the workpiece W by another measuring device in step S304b (step S305b).
  • step S305b the operation of calculating the axis deviation error based on the measurement result of the workpiece W by another measuring device will be described with reference to FIG. 27 .
  • FIG. 27 shows the position of the machined surface of the work W in the Z-axis direction calculated from the measurement results of the work W obtained under the condition that there is no axial misalignment error (that is, the axis misalignment error is zero). showing. Furthermore, FIG. 27 shows the position in the Z-axis direction of the machined surface of the workpiece W calculated from the measurement results of the workpiece W acquired under the condition where there is an axis deviation error (that is, the axis deviation error is not zero). It is indicated by a solid line. As shown in FIG. 27, when there is no axial deviation error, the position of the machined surface of the workpiece W in the Z-axis direction does not change depending on the measurement position.
  • the control device 7 calculates the actual position of the machining surface in the Z-axis direction based on the measurement result of the workpiece W, and calculates the actual position of the machining surface in the Z-axis direction and the ideal position of the machining surface ( That is, by calculating the difference (in the example shown in FIG. 27, the difference between the dotted line and the solid line) from the position of the machined surface when the machined surface is flat, the axis deviation error can be calculated.
  • the control device 7 may control the movement of at least one of the processing head 2 and the stage 41 so as to offset the calculated axis misalignment error.
  • the control device 7 controls the processing head 2 so that the processing head 2 can process the workpiece W in the same manner as when there is no axial misalignment error even under a situation where an axial misalignment error occurs. and a process of controlling the movement of at least one of the stage 41 .
  • the control device 7 causes the measuring device 5 to measure the work W (or any object to be measured) in the same manner as when no axis misalignment error occurs, even under a situation where an axis misalignment error occurs.
  • a process for controlling the movement of at least one of the processing head 2 and the stage 41 may be included.
  • the head driving system 3 and the stage driving system 42 can substantially provide information related to the measurement results of the running error calibration member 91 and the measurement results of the processed workpiece W.
  • the processing head 2 and the stage 41 are moved.
  • the machine tool 1b can process and measure the workpiece W without being affected by the axis deviation error.
  • the machine tool 1b uses the measuring device 5b having the measuring head 52b attached to the machining head 2 to measure the object to be measured (for example, the workpiece W). Therefore, it becomes unnecessary to attach and detach some components of the measuring device 5 to and from the spindle 21 .
  • the measuring device 5b changes the direction of travel of the measuring light ML using the galvanomirror 5222, thereby transmitting the measuring light ML to multiple parts of the object to be measured at a relatively high speed. They can be irradiated sequentially. Therefore, similarly to the measuring device 5, the measuring device 5b can measure the characteristics (for example, positions) of a plurality of parts of the measurement object at relatively high speed. As a result, the control device 7 can generate measurement data indicating the shape of the measurement object at a relatively high speed by integrating the positions of a plurality of parts of the measurement object.
  • the f ⁇ lens 5322 included in the measurement head 52b may be replaceable with another optical member.
  • the f ⁇ lens 5322 may be replaceable with the mirror 5223 described in the first embodiment.
  • the measurement head 53 described in the first embodiment may be attached to the spindle 21 .
  • the measuring device 5b in the second embodiment can function as the measuring device 5 in the first embodiment.
  • the measurement head 52b when the optical system 522b of the measurement head 52b includes the f ⁇ lens 5322, the measurement head 52b (particularly, the optical system 522b) functions as a device that emits the measurement light ML toward the object to be measured. good too.
  • the measurement head 52b when the optical system 522b of the measurement head 52b includes the f ⁇ lens 5322, the measurement head 52b (in particular, the optical system 522b) directs the measurement light ML toward the measurement object without the measurement head 53. It may function as a device that ejects.
  • the optical system 522b of the measurement head 52b when the optical system 522b of the measurement head 52b includes a mirror 5223 instead of the f ⁇ lens 5322, the measurement head 52b (in particular, the optical system 522b) emits the measurement light ML toward the measurement head 53.
  • the measurement head 52b (especially the optical system 522b) measures the measurement light ML via the measurement head 53. It may function as a device that injects toward an object.
  • other optical members included in the measurement head 52b may be replaceable.
  • the measurement head 53 attached to the spindle 21 may be replaced.
  • the f ⁇ lens 5322 or other optical member included in the measurement head 52b should be replaced.
  • the f ⁇ lens 5322 may not be replaced (that is, the optical system 532 may include the f ⁇ lens 5322)
  • the f ⁇ lens 5322 may be replaced (that is, the optical system 532 may be replaced with another optical member instead of the f ⁇ lens 5322). can also be used).
  • Machine tool 1c of the third embodiment a machine tool 1 according to a third embodiment will be described.
  • the machine tool 1 of 3rd Embodiment is called "the machine tool 1c.”
  • a machine tool 1c of the third embodiment differs from the machine tool 1b of the second embodiment in that it includes a measuring device 5c instead of the measuring device 5b. Other features of machine tool 1c may be identical to other features of machine tool 1b.
  • the measuring device 5c of the third embodiment differs from the measuring device 5b of the second embodiment in that it includes a measuring head 52c instead of the measuring head 52b.
  • Other features of the measuring device 5c may be the same as other features of the measuring device 5b. Therefore, the measuring device 5c (in particular, the measuring head 52c) of the third embodiment will be described below with reference to FIG.
  • FIG. 29 is a cross-sectional view showing the structure of a measuring device 5c (in particular, a measuring head 52c) according to the third embodiment.
  • the measurement head 52c of the third embodiment has the f ⁇ It differs from the measurement head 52b of the second embodiment in which the optical axis of the lens 5322 (that is, the measurement axis MX) does not have to intersect the rotation axis RX.
  • Other features of measuring head 52c may be the same as other features of measuring head 52b.
  • a machine tool 1c equipped with such a measuring device 5c can enjoy the effects that the machine tool 1b of the above-described second embodiment can enjoy.
  • the processing point PP which is the intersection of the rotation axis RX and the work W
  • overlaps the measurement point MP which is the intersection of the measurement axis MX and the work W. Therefore, in the third embodiment, similarly to the first embodiment, it is possible to enjoy the effect that the restrictions on the operation of the machine tool 1c are reduced.
  • the measuring device 5c can measure the processing point PP, which is the intersection of the rotation axis RX and the workpiece W. If the tool 23 attached to the spindle 21 can machine the machining point PP, the measuring device 5c may measure the tool 23 attached to the spindle 21 .
  • the measuring device 5c may measure the position of the tool 23 attached to the spindle 21.
  • the measuring device 5c may measure the shape of the tool 23 attached to the spindle 21.
  • the processing point PP and the measurement point MP do not have to overlap.
  • the machine tool 1c since the machining point PP and the measurement point MP overlap, the possibility of the axial misalignment error described in the second embodiment occurring is low. Therefore, in the third embodiment, the machine tool 1c does not need to perform the shaft misalignment error calibration operation described in the second embodiment. However, in a situation where the processing point PP and the measurement point MP should originally overlap, the processing point PP and the measurement point MP do not overlap due to at least one of the mounting error of the measuring head 52c and the mounting error of the optical system 522b. If not, the above-described axis misalignment error may occur also in the third embodiment. Therefore, the machine tool 1c may perform the shaft misalignment error correction operation described in the second embodiment.
  • the machining head 2 is arranged such that the rotation axis RX intersects (typically, orthogonally) the surface of the workpiece W. W may be processed.
  • the measuring device 5c has a measurement axis MX that intersects the surface of the work W (typically may be perpendicular to each other).
  • the rotation axis RX and the measurement axis MX intersect (that is, they are not parallel). no longer perpendicular to the surface.
  • the positional relationship between the machining head 2 and the workpiece W is rotated during at least a part of the machining period during which the machining head 2 machining the workpiece W, as shown in FIG.
  • the head drive system 3 may move the processing head 2 and/or the stage drive system 42 may move the stage 41 so that the axis RX is orthogonal to the surface of the workpiece W in the first relationship.
  • the positional relationship between the machining head 2 to which the measuring head 52c is attached and the workpiece W is as shown in FIG.
  • the head drive system 3 may move the processing head 2 so that the measurement axis MX is perpendicular to the surface of the workpiece W (that is, a second relationship different from the first relationship), and/or the stage
  • the drive system 42 may move the stage 41 .
  • FIG. 31 is a cross-sectional view showing the structure of the measuring device 5d of the fourth embodiment.
  • the measuring device 5d of the fourth embodiment differs from the measuring device 5 of the first embodiment in the following points.
  • Other features of measuring device 5d may be the same as other features of measuring device 5, except as described below.
  • the measuring device 5d differs from the measuring device 5 in that the measuring head 52 may not be provided.
  • the measuring device 5 d differs from the measuring device 5 in that an optical system 522 d including an optical system 5221 and a galvanomirror 5222 included in the measuring head 52 is accommodated inside the processing head 2 .
  • the optical system 522d may be housed inside the head housing 22 .
  • the optical system 522d may be housed inside the main shaft 21 .
  • the optical axis of the optical system 522d is coaxial with the rotation axis RX, it is not necessarily coaxial.
  • an optical path space 213d used as the optical paths of the measurement light ML and the return light RL may be formed inside the processing head 2.
  • the spindle 21 may include a coolant (for example, cutting oil, also called cutting fluid) for cooling the tool 23, reducing friction between the tool 23 and the workpiece W, and/or washing away cutting waste and the like. ) is formed to the tool 23 .
  • a coolant for example, cutting oil, also called cutting fluid
  • the optical path space 213d may be formed separately from the coolant channel.
  • the axis extending along the optical path space 213d is coaxial with the rotation axis RX, but it is not necessarily coaxial.
  • the measuring device 5d differs from the measuring device 5 in that it has a measuring head 53d instead of the measuring head 53.
  • the measurement head 53d differs from the measurement head 53 in that it has an optical system 532d instead of the optical system 532.
  • FIG. The optical system 532d differs from the optical system 532 in that the mirror 5321 may not be provided.
  • the optical system 532 d may include the mirror 5321 and the optical system 522 d may include the mirror 5223 .
  • the measurement light ML emitted from the optical system 522d enters the optical system 532d inside the measurement head 53 via the optical path space 213d. Therefore, the shank 530 of the measurement head 53d may be formed with an optical path space 5301d through which the measurement light ML entering from the optical path space 213d can pass. Further, the head housing 531 of the measurement head 53d may be formed with an opening 5313d through which the measurement light ML entering from the optical path space 5301d formed in the shank 530 can pass. Return light RL from the work W (or any object to be measured) enters the optical system 522d from the measurement head 53d via the opening 5313d, the optical path space 5301d, and the optical path space 213d.
  • a machine tool 1d equipped with such a measuring device 5d can enjoy the effects that the machine tool 1a of the first embodiment described above can enjoy.
  • the mirrors 5223 and 5321 of the first embodiment that is, the measurement light ML emitted from the optical system 522 is relayed to the optical system 532 and the return light RL emitted from the optical system 532 is (optical member for relaying to the optical system 522) is not necessarily required, the configuration of the measuring device 5d is further simplified.
  • FIG. 32 is a cross-sectional view showing the structure of the measuring device 5e of the fifth embodiment.
  • the measuring device 5e of the fifth embodiment differs from the measuring device 5d of the fourth embodiment in the following points.
  • Other features of measuring device 5e may be the same as other features of measuring device 5d, except as described below.
  • the measuring device 5e is different from the measuring device 5d in that the optical system 522d including the optical system 5221 and the galvanomirror 5222 does not have to be housed inside the processing head 2. different in that respect.
  • the optical system 522d is arranged outside the processing head 2 while being accommodated in the head housing 521 .
  • a measurement head 52e including an optical system 522d and a head housing 521 may be attached to the processing head 2 in the same manner as the measurement head 52 of the first embodiment.
  • the optical system 522d may not be housed in the head housing 521.
  • the optical axis of the optical system 522d is coaxial with the rotation axis RX, it is not necessarily coaxial.
  • the measurement light ML emitted from the optical system 522d enters the measurement head 53d via the optical path space 213d, the optical path space 5301d and the aperture 5313d. Furthermore, the return light RL from the workpiece W (or any object to be measured) enters the optical system 522d from the measurement head 53d via the opening 5313d, the optical path space 5301d and the optical path space 213d.
  • a machine tool 1e equipped with such a measuring device 5e can enjoy the effects that the machine tool 1d of the above-described fourth embodiment can enjoy.
  • the measurement device 5e may include a beam expander in order to adjust the beam diameter of the measurement light ML with respect to the size of the XY section of the optical path space 213d (for example, the diameter of the XY section).
  • the beam expander may be included in the optical system 5221, may be arranged between the optical system 5221 and the galvanomirror 5222, or may be arranged in the optical path space 213d. Further, another beam expander is arranged in the optical path space 213d in order to readjust the adjusted beam diameter to the original beam diameter after adjusting the beam diameter with respect to the size of the XY section of the optical path space 213d. may The same applies to the fourth embodiment in which the measurement light ML propagates through the optical path space 213d.
  • FIG. 32 shows a specific example in which at least part of the coolant flow path 214e for supplying coolant is used as part of the optical path space 213d. That is, FIG. 32 shows an optical path space 2131d that is at least part of the coolant channel 214e and an optical path space 2132d that connects the coolant channel 214e and the optical system 522d (that is, upstream of the optical path space 2131d). and an optical path space 2132d located on the side (the side closer to the optical system 522d).
  • the machine tool 1e may include a coolant supply device 81e, a gas supply device 82e, a valve 83e, and a valve 83e.
  • the coolant supply device 81e supplies coolant to the coolant flow path 214e via a coolant supply pipe 85e connected to the coolant flow path 214e.
  • the gas supply device 82e supplies gas to the optical path space 213d through a gas supply pipe 86e connected to the optical path space 2132d.
  • the gas supplied by the gas supply device 82e may be used to clean the coolant flow path 214e (for example, remove coolant adhering to the coolant flow path 214e).
  • the valve 83e is arranged between a connection point 851e where the coolant supply pipe 85e is connected to the coolant flow path 214e and a connection point 861e where the gas supply pipe 86e is connected to the optical path space 2132d.
  • the valve 84e is arranged upstream of the connection point 861e in the optical path space 2132d.
  • Both the valves 83e and 84e may be closed during the machining period in which the machining head 2 is machining the workpiece W.
  • the coolant supply device 81e can supply coolant to the coolant flow path 214e through the coolant supply pipe 85e.
  • the valve 83e since the valve 83e is closed, the coolant supplied to the coolant channel 214e does not flow into the gas supply device 82e and the optical system 522d through the optical path space 2132d.
  • the valve 83e may be opened and the valve 84e may be closed.
  • the gas supply device 82e can supply gas to the optical path space 213d (in particular, the coolant flow path 214e) through the gas supply pipe 86e.
  • the coolant channel 214e is cleaned.
  • both valves 83e and 84e may be opened during the measurement period in which the measurement device 5e measures the workpiece W.
  • the measurement light ML emitted from the optical system 522d irradiates the work W through the optical path space 213d, and the return light RL from the work W enters the optical system 522d through the optical path space 213d.
  • the coolant remained in the optical path space 213d (particularly the coolant channel 214e). Prevents measurement errors caused by coolant. Cutting waste and cutting fluid adhering to the workpiece W may be removed by the gas supplied from the gas supply device 82e to the optical path space 213d.
  • the machine tool 1d when at least part of the coolant flow path 214e is used as part of the optical path space 213d, the machine tool 1d includes the coolant supply device 81e and the gas A supply device 82e, a valve 83e, and a valve 83e may be provided.
  • FIG. 33 is a cross-sectional view showing the structure of the measuring device 5f of the sixth embodiment.
  • the measuring device 5f of the sixth embodiment differs from the measuring device 5e of the fifth embodiment in the following points.
  • Other features of measuring device 5f may be the same as other features of measuring device 5e, except as described below.
  • the optical path space 2132d on the upstream side of the coolant flow path 214e is different from the optical path space 21321d extending along the rotation axis RX of the main shaft 21 in comparison with the measuring device 5e. , and an optical path space 21322d extending along a direction intersecting the rotation axis RX.
  • the measurement light ML emitted from the optical system 522d enters the optical path space 21322d, enters the optical path space 21321d via the optical path space 21322d, and enters at least a part of the coolant channel 214e via the optical path space 21321d. It may enter the corresponding optical path space 2131d.
  • the return light RL from the workpiece W enters the optical path space 2131d from the measuring head 53, enters the optical path space 21321d through the optical path space 2131d, enters the optical path space 21322d through the optical path space 21321d, and enters the optical path space 21322d. It may enter the optical system 522d via 21322d.
  • a mirror 215f may be arranged at the connection point 2133d where the optical path space 21321d and the optical path space 21322d are connected.
  • the mirror 215f rotates the traveling direction of the measurement light ML incident on the mirror 215f from the optical path space 21322d from the direction in which the optical path space 21322d extends (that is, the direction intersecting the rotation axis RX) to the direction in which the optical path space 21321d extends (that is, rotates). direction along the axis RX), and reflects the measurement light ML toward the optical path space 21321d.
  • the mirror 215f changes the traveling direction of the return light RL incident on the mirror 215f from the optical path space 21321d from the direction in which the optical path space 21321d extends (that is, the direction along the rotation axis RX) to the direction in which the optical path space 21322d extends (that is, , a direction intersecting the rotation axis RX), the return light RL is reflected toward the optical path space 21322d.
  • the measurement device 5f irradiates the workpiece W (or any measurement object) with the measurement light ML and returns the light RL can be detected.
  • the optical path space 2132d includes not only the optical path space 21321d extending along the rotation axis RX, but also the optical path space 21322d extending along the direction intersecting the rotation axis RX. Therefore, in the sixth embodiment, compared with the fifth embodiment, the optical system 522d can be arranged even when there is no space for arranging the optical system 522d above the processing head 2. FIG. For example, the optical system 522d can be arranged on the side of the processing head 2.
  • the optical system 522d may be arranged in the arrangement mode described in the fifth embodiment, depending on the position with respect to the processing head 2 of the space in which the optical system 522d can be arranged in the periphery of the processing head 2. They may be arranged in the arrangement mode described in the sixth embodiment.
  • a connection point 851e at which a coolant supply pipe 85e to which the coolant supply device 81e supplies coolant and the coolant flow path 214e are connected is located inside the main shaft 21.
  • the coolant supply pipe 85e and the coolant flow channel 214e are connected by a rotary joint 2161f at a connection point 851e. may be connected via
  • the connection point 851e does not have to be positioned inside the spindle 21 .
  • a connection point 2133d where the optical path space 21322d is connected to the optical path space 21321d is located inside the main shaft 21 .
  • the optical path space 21322d and the optical path space 21321d are connected at the connection point 2133d.
  • the connection point 2133 d may be connected via a rotary joint 2162f at .
  • the connection point 2133 d does not have to be located inside the spindle 21 .
  • Machine tool 1g of the seventh embodiment a machine tool 1 according to a seventh embodiment will be described.
  • the machine tool 1 of 7th Embodiment is called "the machine tool 1g."
  • a machine tool 1g of the seventh embodiment differs from the machine tool 1a of the first embodiment in that it is provided with a measuring device 5g instead of the measuring device 5.
  • FIG. Other features of machine tool 1g may be the same as other features of machine tool 1a.
  • a measuring device 5g of the seventh embodiment differs from the measuring device 5 of the first embodiment in that a measuring head 53g is provided instead of the measuring head 53. Furthermore, the measuring device 5g differs from the measuring device 5 in that the measuring head 52 attached to the processing head 2 may not be provided. Other features of the measuring device 5g may be the same as other features of the measuring device 5.
  • FIG. 34 is a cross-sectional view showing the structure of a measuring device 5g (in particular, a measuring head 53g) according to the seventh embodiment.
  • the measurement head 53g of the seventh embodiment differs from the measurement head 53 of the first embodiment in that it includes an optical system 532g instead of the optical system 532.
  • Other features of the measuring head 53 g may be the same as other features of the measuring head 53 .
  • An optical system 532g of the seventh embodiment includes an f ⁇ lens 5322, like the optical system 532 of the first embodiment.
  • the optical system 532g differs from the optical system 532 in that the mirror 5321 may not be provided.
  • the opening 5311 through which the measurement light ML emitted from the measurement head 52 can pass may not be formed in the head housing 531 .
  • the optical system 532g differs from the optical system 532 in that it includes an optical system 5221 and a galvanomirror 5222 .
  • the optical system 532g may be regarded as functioning as an optical system in which the optical systems 522 and 523 of the first embodiment are substantially integrated.
  • Other features of optical system 532 g may be identical to other features of optical system 532 .
  • a machine tool 1g equipped with such a measuring device 5g can enjoy the effects that the machine tool 1a of the above-described first embodiment can enjoy.
  • the measurement head 53 attached to the main shaft 21 may be replaceable by utilizing the fact that the measurement head 53 is detachable from the main shaft 21. . Therefore, the first modification includes the machine tool 1a of the first embodiment in which the measuring head 53 is attached to the spindle 21, and the machine tool 1d of the fourth embodiment in which the measuring head 53d is attached to the spindle 21 to the machine tool 1d of the sixth embodiment. It can be adopted in at least one of the machine tools 1f.
  • the “measurement head 53" refers not only to the measurement head 53 of the first embodiment, but also to those of the fourth to sixth embodiments.
  • the measuring head 53d is also meant.
  • the “optical system 532” refers not only to the optical system 532 of the first embodiment, but also to the optical system 532 of the fourth to sixth embodiments. optical system 532d.
  • the “measuring device 5” refers not only to the measuring device 5 of the first embodiment, but also to the measuring device 5d of the fourth embodiment. It shall also mean the measuring device 5f of the sixth embodiment.
  • One measuring head 53 selected from among a plurality of types of measuring heads 53 may be attached to the spindle 21 .
  • the tool changer 6 may attach the first type measuring head 53 to the spindle 21 .
  • the tool changer 6 removes the first type measuring head 53 from the spindle 21 to which the first type measuring head 53 is attached, and then removes a second type measuring head 53 different from the first type measuring head 53 .
  • type of measuring head 53 may be attached to the spindle 21 .
  • the operator of the machine tool 1 may manually perform at least one of attachment and detachment of one measuring head 53 of the plurality of types of measuring heads 53 to and from the spindle 21 .
  • An operator of the machine tool 1 manually performs at least one of attaching and detaching the first type measuring head 53 to and from the spindle 21 and attaching and detaching the second type measuring head 53 to and from the spindle 21.
  • a plurality of types of measurement heads 53 may each include a plurality of different types of optical systems 532 .
  • An example of a plurality of types of measurement heads 53 that can be attached to the spindle 21 will be described below with reference to FIGS. 35(a) to 45(b).
  • 35(a) to 45(b) are cross-sectional views showing an example of the measurement head 53.
  • FIG. 35(a) to 45(b) are cross-sectional views showing an example of the measurement head 53.
  • the plurality of types of measurement heads 53 attachable to the spindle 21 may include at least two measurement heads 53#1.
  • the at least two measurement heads 53#1 may each include at least two optical systems 532#1 in which the f ⁇ lens 5322 has different optical characteristics.
  • the tool changer 6 may attach the measurement head 53#1 including the f ⁇ lens 5322 with optical characteristics suitable (typically, optimal) for measuring the measurement object to the spindle 21. .
  • the measurement device 5 can appropriately measure the measurement object.
  • An example of the optical characteristics of the f ⁇ lens 5322 is at least one of the f-number and focal length.
  • the plurality of types of measurement heads 53 that can be attached to the spindle 21 include an f ⁇ lens 5322 having a first f-number f#1.
  • FIG. 35(a) shows the measuring head 53#1 that can be used in the first embodiment
  • FIG. 35(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #1 is shown.
  • the tool changer 6 determines the distance between the object to be measured and the measuring head 53 (for example, the distance between the f ⁇ lens 5322 and the object to be measured; this distance may be called a working distance).
  • a measurement head 53 # 1 having an f ⁇ lens 5322 having an f value corresponding to ⁇ may be attached to the spindle 21 .
  • the measurement device 5 can appropriately measure the measurement object.
  • the f value of the f ⁇ lens 5322 may be replaced with the exit-side numerical aperture of the f ⁇ lens 5322 .
  • the plurality of types of measurement heads 53 attachable to the spindle 21 may include a measurement head 53#2.
  • the measurement head 53#2 does not need to include the f ⁇ lens 5322. If the measurement head 53 # 2 is attached to the spindle 21 , the measurement device 5 does not have to include the galvanomirror 5222 . Conversely, if the measuring device 5 does not have the galvanomirror 5222 , the tool changer 6 may attach the measuring head 53 # 2 that does not have the f ⁇ lens 5322 to the spindle 21 .
  • FIG. 36(a) shows the measuring head 53#2 that can be used in the first embodiment
  • FIG. 36(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #2 is shown.
  • the measurement head 53 # 2 that can be used in the first embodiment may have an optical system 532 # 2 that has a mirror 5321 .
  • the measurement head 53#2 that can be used in the fourth to sixth embodiments does not have to include the optical system 532.
  • FIG. In this case, the measuring head 53#2 does not have to be attached to the spindle 21 in the first place.
  • the measuring device 5 may measure the object to be measured while the measuring head 53#2 is not attached to the spindle 21.
  • the multiple types of measurement heads 53 that can be attached to the spindle 21 may include a measurement head 53#3.
  • the measurement head 53 # 3 may have an optical system 532 # 3 with a mirror 5323 .
  • the mirror 5323 is an optical member capable of emitting (in this case, reflecting) the measurement light ML emitted from the f ⁇ lens 5322 in a direction intersecting the optical axis of the f ⁇ lens 5322 .
  • the mirror 5323 is an optical member capable of emitting (reflecting in this case) the return light RL from the object to be measured in a direction along the optical axis of the f ⁇ lens 5322 .
  • the mirror 5323 lens 5322 may be arranged so that the measurement light ML emitted from the f.theta.
  • the angle of the mirror 5323 may be changed so that the direction in which the measurement light ML emitted from the f ⁇ lens 5322 is bent (the direction in which the measurement light ML is emitted from the mirror 5323) can be changed.
  • the angle of the mirror 5323 may be changed by a driving device such as a motor.
  • the measurement head 53#3 may be provided with not only the mirror 5323 but also other existing members capable of bending the optical path as the optical path bending member.
  • FIG. 37(a) shows the measuring head 53#3 that can be used in the first embodiment
  • FIG. 37(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #3 is shown.
  • the measurement light ML emitted from the mirror 5323 enters the object to be measured through the opening 5312 formed in the head housing 531 .
  • the return light RL from the object to be measured enters the mirror 5323 through the opening 5312 .
  • the aperture 5312 can be formed by, for example, the head housing 531 may be formed on the side surface of the
  • An example of a scene where the measurement head 53#3 is used is a scene of measuring a surface of an object to be measured that is parallel or inclined to the optical axis of the f ⁇ lens 5322.
  • the measurement head 53#3 can be positioned parallel to or along the Z-axis, for example. It may be used to measure a surface of a measurement object that is tilted with respect to the object. Therefore, when the measuring device 5 measures a surface of the object to be measured that is parallel to the Z-axis or tilted with respect to the Z-axis, the tool changer 6 may attach the measuring head 53#3 to the spindle 21. .
  • the measurement head 53#3 is the measurement of the surface of the measurement object facing the narrow space formed in the measurement object. For example, as shown in FIG. 38, when a concave portion (for example, a vertical hole Wh) corresponding to a narrow space is formed in the work W, the measurement head 53#3 is positioned on the inner surface of the work W facing the vertical hole Wh. It may be used to measure Wis (that is, the inner surface of the recess in the work W). Therefore, when the measuring device 5 measures the surface of the object to be measured facing a narrow space, the tool changing device 6 may attach the measuring head 53 # 3 to the spindle 21 .
  • a concave portion for example, a vertical hole Wh
  • Wis that is, the inner surface of the recess in the work W
  • the measurement device 5 directs the measurement light ML to the inner surface Wis (that is, the inner surface of the recess) while at least part of the measurement head 53#3 is arranged in the recess (for example, the vertical hole Wh) of the work W.
  • the shape and the like of the work W may be measured by irradiating the workpiece W and receiving (that is, detecting) the return light RL from the inner surface Wis (that is, the inner surface of the concave portion).
  • the head housing 531 includes a housing portion 5314 connected to the main shaft 21 and a housing portion 5315 connected to the housing portion 5314 and smaller in size than the housing portion 5314, as shown in FIG. may
  • the mirror 5323 may be housed in the housing portion 5315 and the opening 5312 may be formed in the housing portion 5315 .
  • the condensing position in the direction of travel of the measurement light ML may be changed according to the change in the diameter (size in the XY direction) of the vertical hole Wh corresponding to the narrow space.
  • the control device 7 rotates the main shaft 21 (that is, the measurement head 53#3) around the rotation axis RX, and as the main shaft 21 rotates, the measurement light ML is sequentially emitted from the measurement head 53#3 to the object to be measured. may be controlled to irradiate the entire narrow space (for example, acquisition of measurement data indicating the shape of the entire narrow space).
  • the plurality of types of measurement heads 53 attachable to the spindle 21 may include a measurement head 53#4.
  • the measurement head 53#4 may include an optical system 532#4 including a parallel plate 5324 instead of the f ⁇ lens 5322.
  • FIG. 39(a) shows the measuring head 53#4 that can be used in the first embodiment
  • FIG. 39(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #4 is shown.
  • the parallel plate 5324 is arranged such that its surface (optical surface) is inclined with respect to the traveling direction of the measurement light ML incident on the parallel plate 5324 .
  • the incident position of the measurement light ML on the parallel plate 5324 and the exit position of the measurement light ML from the parallel plate 5324 are in a direction intersecting the traveling direction of the measurement light ML (for example, intersecting the rotation axis RX of the main shaft 21). direction).
  • the measurement head 53#4 rotates around the rotation axis RX (that is, the parallel plate 5324 rotates) with the rotation of the main shaft 21, the emission position of the measurement light ML from the parallel plate 5324 is , change along the direction intersecting the traveling direction of the measurement light ML.
  • the parallel plate 5324 may be regarded as functioning as an emission position changing member that changes the emission position of the measurement light ML from the measurement head 53#4.
  • the irradiation position of the measurement light ML on the measurement object changes along the surface of the measurement object.
  • the emission position changing member is not limited to the parallel plate 5324 as long as it is a member capable of changing the emission position with respect to the incident position of the measurement light ML.
  • a plate-shaped optical member having a non-parallel light entrance surface and a light exit surface may be used as the light emission changing member, or an optical member having another shape may be used as the light emission changing member. good.
  • the measurement light ML emitted from the measurement head 52 enters the measurement head 53#4 through the opening 5311.
  • the opening 5311 may not be positioned on the optical path of the measurement light ML emitted from the measurement head 52 depending on the rotation angle of the main shaft 21 (that is, the rotation angle of the measurement head 53#4). Therefore, as shown in FIG. 39A, the measurement head 53#4 may be formed with an annular opening 5311 that surrounds the rotation axis RX over 360 degrees. However, if the ring-shaped opening 5311 that surrounds the rotation axis RX over 360 degrees is simply formed, the head housing 531 is physically separated vertically at the boundary of the opening 5311 .
  • a support member 5316 may be arranged to connect the .
  • the measurement head 53#4 having the parallel plate 5324 but also any measurement head 53 that can be used in the first embodiment has an annular opening 5311 that surrounds the rotation axis RX over 360 degrees.
  • a support member 5316 may be arranged in the opening 5311 .
  • the measurement head 53#4 that can be used in the first embodiment includes a mirror 5321 on which the measurement light ML emitted from the measurement head 52 is incident.
  • the measurement light ML that has entered the measurement head 53#4 through the opening 5311 may not enter the reflecting surface of the mirror 5321. have a nature. Therefore, as shown in FIG. 39A, instead of the mirror 5321, the measurement head 53#4 is equipped with a cone mirror 5325 whose reflection surface has a cone shape (for example, a cone shape or a pyramid shape). good too.
  • the conical mirror 5325 reflects the measurement light ML incident on the conical mirror 5325 toward the parallel plate 5324, and transmits the return light RL incident on the conical mirror 5325 to the optical system 522 can be reflected towards Note that any measurement head 53 that can be used in the first embodiment, not limited to the measurement head 53 #4 having the parallel plate 5324 , may have the cone mirror 5325 instead of the mirror 5321 .
  • the measurement device 5 does not have to include the galvanomirror 5222. Conversely, if the measuring device 5 does not have the galvanomirror 5222 , the tool changer 6 may attach the measuring head 53 # 4 having the parallel plate 5324 to the spindle 21 .
  • the parallel plate 5324 rotates as the main shaft 21 rotates.
  • the measuring device 5 may include a drive system for rotating the parallel plate 5324 regardless of whether the main shaft 21 is rotated.
  • the plurality of types of measurement heads 53 attachable to the spindle 21 may include a measurement head 53#5.
  • the measurement head 53#5 may include an optical system 532#5 including a conical mirror 5326 having a conical reflecting surface on the optical path of the measurement light ML emitted from the f ⁇ lens 5322.
  • FIG. 40(a) shows the measuring head 53#5 that can be used in the first embodiment
  • FIG. 40(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #5 is shown.
  • the cone mirror 5326 allows the measurement light ML emitted from the first region of the exit surface of the f ⁇ lens 5322 to enter the reflecting surface of the cone mirror 5326, while the measurement light ML emitted from the second region of the exit surface of the f ⁇ lens 5322 is measured. It is arranged so that the light ML does not enter the reflecting surface of the cone mirror 5326 . In this case, the measurement light ML emitted from the first region of the exit surface of the f ⁇ lens 5322 is reflected by the cone mirror 5326 . As a result, the cone mirror 5326 emits (in this case, reflects) the measurement light ML emitted from the f ⁇ lens 5322 in a direction intersecting the optical axis of the f ⁇ lens 5322 .
  • the conical mirror 5326 can function as the mirror 5323 included in the measurement head 53#3 described with reference to FIGS. 37(a) and 37(c).
  • the measurement light ML emitted from the second region of the exit surface of the f ⁇ lens 5322 is not reflected by the cone mirror 5326 .
  • the measurement light ML emitted from the f ⁇ lens 5322 is emitted from the measurement head 53 in the emission direction along the optical axis of the f ⁇ lens 5322 .
  • the measurement head 53#5 can measure the surface of the object to be measured perpendicular to the optical axis of the f ⁇ lens 5322 (for example, the surface along the XY plane) and the object to be measured parallel or inclined to the optical axis of the f ⁇ lens 5322. (for example, a surface parallel to the Z-axis or inclined with respect to the Z-axis) can be irradiated with the measurement light ML. Further, since the return light RL from the object to be measured returns to the optical system 522 through the same optical path as the measurement light ML, detailed description thereof will be omitted.
  • the head housing 531 has an aperture 5312-1 through which the measurement light ML emitted from the measurement head 53#5 can pass, and an aperture 5312-1 through which the measurement light ML can pass without passing through the cone mirror 5326.
  • An opening 5312-2 through which the measurement light ML passing through the mirror 5326 can pass may be formed.
  • the opening 5312-2 may have an annular shape surrounding the rotation axis RX over 360 degrees, as described with reference to FIG. 39(a).
  • the opening 5312-2 allows the measurement light ML to pass through, and the housing portion of the head housing 531 above the opening 5312-2 and the head.
  • a support member may be arranged to connect the housing portion of the housing 531 below the opening 5312-2.
  • the plurality of types of measurement heads 53 attachable to the spindle 21 may include a measurement head 53#6.
  • the measurement head 53 # 6 may have an optical system 532 # 6 having a mirror 5327 instead of the f ⁇ lens 5322 .
  • FIG. 41(a) shows the measuring head 53#6 that can be used in the first embodiment
  • FIG. 41(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #6 is shown.
  • the mirror 5327 reflects the measurement light ML that has entered the mirror 5327 .
  • the mirror 5327 reflects the measurement light ML so that the measurement light ML that has entered the mirror 5327 returns to the optical system 522 .
  • Such a measurement head 53#6 may be used, for example, to adjust the attitude of the optical system 522 (for example, the orientation of the optical axis). Therefore, when adjusting the attitude of the optical system 522 , the tool changer 6 may attach the measuring head 53 # 6 having the mirror 5327 to the spindle 21 .
  • the posture of the optical system 522 is an ideal posture
  • the measurement light ML emitted from the optical system 522 is incident on the mirror 5327
  • the measurement light ML reflected by the mirror 5327 is incident on the optical system 522 (and consequently on the detector element 5232).
  • the posture of the optical system 522 is not ideal, at least part of the measurement light ML emitted from the optical system 522 does not enter the mirror 5327 and/or the mirror 5327 reflects There is a possibility that at least part of the measured light ML that has been measured does not enter the optical system 522 (as a result, does not enter the detection element 5232).
  • the attitude of the optical system 522 can be adjusted based on the intensity of the measurement light ML detected by the detection element 5232 .
  • the plurality of types of measurement heads 53 attachable to the spindle 21 may include a measurement head 53#7.
  • the measurement head 53#7 may include an optical system 532#7 including a half mirror 5328 instead of the f ⁇ lens 5322.
  • FIG. 42(a) shows the measuring head 53#7 that can be used in the first embodiment
  • FIG. 42(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #7 is shown.
  • a part of the measurement light ML that has entered the half mirror 5328 passes through the half mirror 5328 .
  • the measurement light ML that has passed through the half mirror 5328 is irradiated onto the object to be measured.
  • another part of the measurement light ML that has entered the half mirror 5328 is reflected by the half mirror 5328 .
  • the measurement light ML reflected by the half mirror 5328 enters the detection element 5232 via the optical system 522 .
  • the measurement light ML that has entered the detection element 5232 may be used as reference light for interfering with the return light RL.
  • the optical system 522 is used for generating the reference light (for example, the measurement light ML#1-3 shown in FIG. 7).
  • the optical members for example, beam splitter 52213 and mirror 52214 shown in FIG. 7) may not be provided.
  • the plurality of types of measurement heads 53 attachable to the spindle 21 may include a measurement head 53#8.
  • the measurement head 53#8 may include an optical system 532#8 including an objective lens 5329 instead of the f ⁇ lens 5322.
  • the objective lens 5329 is an optical member for condensing the measurement light ML (for example, condensing it on the surface of the measurement object).
  • FIG. 43(a) shows the measuring head 53#8 that can be used in the first embodiment
  • FIG. 43(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #8 is shown.
  • the multiple types of measurement heads 53 that can be attached to the spindle 21 may include a measurement head 53#9.
  • the measurement head 53 # 9 may include an optical system 532 # 9 including a galvanomirror 5222 .
  • the galvanomirror 5222 is arranged on the optical path of the measurement light ML incident on the f ⁇ lens 5322 .
  • the optical system 522 does not have to include the galvanomirror 5222.
  • FIG. 44(a) shows the measuring head 53#9 that can be used in the first embodiment
  • FIG. 44(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #9 is shown.
  • the plurality of types of measurement heads 53 attachable to the spindle 21 may include a measurement head 53#10.
  • the measurement head 53 # 10 may include a measurement head 53 # 10 in which a cleaning member 533 is formed on the outer surface of a head housing 531 .
  • the cleaning member 533 is a member for cleaning the surface of the object to be measured (for example, removing cutting waste and the like).
  • Cleaning member 533 may include, for example, at least one of a blade and a brush.
  • 45(a) shows an example in which the cleaning member 533 is formed on the bottom surface of the head housing 531
  • FIG. 45(b) shows an example in which the cleaning member 533 is formed on the side surface of the head housing 531.
  • the formation position of the cleaning member 533 is not limited to this example.
  • 45(a) and 45(b) each show the measurement head 53#10 that can be used in the fourth to sixth embodiments, but the measurement head 53#10 that can be used in the first embodiment
  • a cleaning member 533 may be formed on the outer surface of the head housing 531 of the head 53 . Further, a cleaning member 533 may be formed on the outer surface of at least one of the head housings 531 of the measurement heads 53#1 to 53#9 described above.
  • the measurement head 53#10 When the measurement head 53#10 is attached to the main shaft 21, the measurement head 53#10 also rotates as the main shaft 21 rotates. As a result, the cleaning member 533 removes, scrapes off, or wipes off unnecessary substances such as cutting waste adhering to the surface of the object to be measured. As a result, the surface of the object to be measured is cleaned.
  • the measuring device 5 may change the position of at least one optical member included in the measuring head 52 in accordance with the replacement of the measuring head 53 .
  • the measuring device 5 has the first type of measuring head 53 attached to the main shaft 21 , one optical member included in the measuring head 52 is arranged at the first position, and the main shaft 21 has the second optical member.
  • the type of measurement head 53 is attached, one optical member provided in the measurement head 52 is positioned at a second position different from the first position. You can change it.
  • the measurement device 5 may change the position of at least one optical member included in the measurement head 52 so that the measurement target can be measured.
  • the measurement device 5 includes at least one optical element included in the measurement head 52 so that the measurement target is irradiated with the measurement light ML (for example, the measurement light ML is focused on the measurement target). You may change the position of a member. For example, when the first type of measurement head 53 is attached to the spindle 21 , the measurement device 5 measures the measurement light ML irradiated to the measurement object via the first type of measurement head 53 . When the measurement head 53 of the second type is attached to the spindle 21, the measurement light ML that is focused on the object and is irradiated onto the object to be measured through the measurement head 53 of the second type is measured. The position of at least one optical member included in the measurement head 52 may be changed so that the light is focused on the object.
  • the change of the position of the optical member includes the change of the position of the optical member in the direction along the optical axis of the optical system 522 provided in the measurement head 52, and the change of the position of the optical member in the direction intersecting the optical axis of the optical system 522. , and changing the orientation of the optical member.
  • the change of the posture of the optical member includes the change of the posture of the optical member around the rotation axis along the optical axis of the optical system 522 and the change of the posture of the optical member around the rotation axis along the direction intersecting the optical axis of the optical system 522. at least one of the modifications of
  • the measuring device 5 of the first embodiment to the measuring device 5g of the seventh embodiment under the control of the control device 7, controls the galvanomirror 5222.
  • the size of the scan area SA that can be irradiated with the measurement light ML may be changed by the operation.
  • the measurement device 5 may change the size of the scan area SA according to the shape of the measurement object.
  • the measurement device 5 may change the size of the scan area SA according to the size of the measurement object.
  • FIG. 46 shows a workpiece W in which grooves GRV with varying widths are formed.
  • the width of the groove GRV changes from width A to width B narrower than width A along the X-axis direction.
  • the measuring device 5 measures the width of the groove GRV.
  • the measurement device 5 makes the size of the scan area SA correspond to the width A at the position where the width of the groove GRV is width A, and the size of the scan area SA at the position where the width of the groove GRV is width B.
  • the size of the scan area SA may be changed so that the size of the width B corresponds to the size of the scan area SA.
  • an irradiation area SAp that is actually irradiated with the measurement light ML and a non-irradiation area SAn that is not actually irradiated with the measurement light ML are set. good too.
  • a specific example of the operation of setting the irradiation area SAp and the non-irradiation area SAn will be described below with reference to FIGS. 47 and 48.
  • FIG. 47 shows an example of a work W composed of members made of different materials.
  • the measurement device 5 may set the irradiation area SAp and the non-irradiation area SAn when measuring the workpiece W using the scan area SA spanning the first area WA1 and the second area WA2. For example, as shown in FIG.
  • the measuring device 5 determines that the ratio of the irradiation area SAp and the non-irradiation area SAn in the first scan area portion SA1 overlapping the first area WA1 of the scan area SA is
  • the irradiation area SAp and the non-irradiation area SAn may be set so as to differ from the ratio of the irradiation area SAp and the non-irradiation area SAn in the second scan area portion SA2 overlapping the second area WA2. In the example shown in FIG.
  • the measuring device 5 sets the non-irradiation area SAn in the first scan area portion SA1, but does not set the non-irradiation area SAn in the second scan area portion SA2 (that is, in the second scan).
  • the irradiation area SAp and the non-irradiation area SAn may be set such that the entire area portion SA2 becomes the irradiation area SAp.
  • the measurement device 5 may set the irradiation area SAp and the non-irradiation area SAn so that measurement data can be generated appropriately.
  • the measurement device 5 can perform multi-point measurement of the measurement object by changing the traveling direction of the measurement light ML using the galvanomirror 5222 .
  • the density of multi-point measurement (for example, the number of times of irradiation of the measurement light ML per unit area, and the number of points forming the point cloud data corresponding to the above-described measurement data) density) may differ.
  • the density of multi-point measurement for appropriately measuring the member of the first material forming the first area WA1 is the same as the density of multi-point measurement for appropriately measuring the member of the second material forming the second area WA2. It may differ from the point measurement density. Therefore, the measurement device 5 may set the irradiation area SAp and the non-irradiation area SAn according to the density of multi-point measurement required for appropriately measuring the measurement object.
  • the measurement device 5 determines that the ratio of the size of the non-irradiated area SAn to the size of the irradiated area SAp within the first scan area portion SA1 is equal to the irradiated area SAp within the second scan area portion SA2.
  • the irradiation area SAp and the non-irradiation area SAn may be set so as to be larger than the ratio of the size of the non-irradiation area SAn to the size of .
  • FIG. 48 shows the scanning area SA moving on the surface of the measurement object.
  • the measurement device 5 moves the scan area SA along the scan direction (the direction along the Y-axis in the example shown in FIG. 48) on the surface of the object to be measured.
  • a scanning operation for irradiating the measurement light ML on the SA and a step direction (in the example shown in FIG. 48, in the example shown in FIG. and the step operation of moving the scan area SA along the direction of movement of the scan area SA may be alternately performed. In this case, as shown in FIG.
  • the measuring device 5 determines that the scanned area SC#N of the measurement object, in which the scan area SA moves by the Nth (N is an integer equal to or greater than 2) scanning operation, is N ⁇ A part of the scanned area SC#N ⁇ 1 of the measurement object to which the scan area SA moves by the first scan operation and a scanned area SC#N+1 of the measurement object to which the scan area SA moves by the N+1th scan operation
  • the scan area SA may be moved so as to overlap with a part of . In the example shown in FIG.
  • the measuring device 5 determines that the ⁇ X side edge of the scanned area SC#N overlaps the +X side edge of the scanned area SC#N ⁇ 1, and the scanning area SC#N overlaps the -X side end of the scanned area SC#N+1.
  • the surface of the measurement object includes a non-overlapping area OP1 that overlaps the scan area SA only once, and an overlap area OP2 that overlaps the scan area SA twice.
  • the measurement device 5 determines that the ratio of the irradiation area SAp and the non-irradiation area SAn in the third scan area portion SA3 overlapping the non-overlapping area OP1 of the scan area SA is
  • the irradiation area SAp and the non-irradiation area SAn may be set so as to differ from the ratio of the irradiation area SAp and the non-irradiation area SAn in the fourth scan area portion SA4 overlapping the overlap area OP2. Specifically, as shown in FIG.
  • the measuring device 5 determines that the ratio of the irradiation area SAp and the non-irradiation area SAn in the fourth scan area portion SA4 is equal to the irradiation area SAp and the non-irradiation area SAp in the third scan area portion SA3.
  • the irradiation area SAp and the non-irradiation area SAn may be set so as to be larger than the ratio with the area SAn.
  • the measuring device 5 sets half of the fourth scan region portion SA4 to be the non-irradiation region SAn, while the non-irradiation region SAn is not set to the third scan region portion SA3 (that is, the third scan region portion SA3).
  • the irradiation area SAp and the non-irradiation area SAn are set so that the entire area portion SA3 becomes the irradiation area SAp.
  • the measurement device 5 determines that the number of irradiations of the measurement light ML per unit area within the fourth scan region portion SA4 overlapping the overlapping region OP2 is the unit within the third scanning region portion SA3 overlapping the non-overlapping region OP1.
  • the number of times of irradiation of the measurement light ML per area is approximately half.
  • the overlapping region OP2 overlaps the scanning region SA twice, the number of irradiations of the measurement light ML per unit area within the overlapping region OP2 is the same as that per unit area within the non-overlapping region OP1. It is almost the same as the number of irradiations of the measurement light ML. Therefore, the measurement of the object to be measured is hardly affected.
  • the galvanomirror 5222 is arranged in the non-irradiation area SAn compared to the case where the non-irradiation area SAn is not set within the scan area SA. It becomes unnecessary to perform the operation for irradiating the measurement light ML to the . That is, the driving amount (further driving time) of the galvanomirror 5222 required to irradiate the scan area SA with the measurement light ML is reduced. Therefore, the time required for measuring the measurement object is also reduced. As a result, the throughput for measuring the measurement object is improved.
  • the irradiation mode of the measurement light ML in the upstream scan area SAup and the irradiation mode of the measurement light ML in the downstream scan area SAdw of the scan area SA may be controlled separately.
  • the upstream scan area SAup is positioned forward of the downstream scan area SAdw in the movement direction of the scan area SA. That is, as shown in FIG. 49, the downstream scan area SAdw is located on the rear side in the moving direction of the scan area SA relative to the upstream scan area SAup.
  • the measurement device 5 measures the measurement light beams in each of the upstream scan area SAup and the downstream scan area SAdw so that the density of multipoint measurement in the upstream scan area SAup is lower than the density of multipoint measurement in the downstream scan area SAdw.
  • the ML irradiation mode may be controlled. Specifically, for example, the measurement apparatus 5 determines that the number of irradiations of the measurement light ML per unit area in the upstream scan area SAup is higher than the number of irradiations of the measurement light ML per unit area in the downstream scan area SAdw.
  • the irradiation mode of the measurement light ML in each of the upstream scan area SAup and the downstream scan area SAdw may be controlled so as to reduce it.
  • the measuring device 5 irradiates the upstream scan area SAup with the measurement light ML so as to give priority to improving the throughput for measuring the object to be measured rather than improving the measurement accuracy of the object to be measured.
  • the SAdw may be irradiated with the measurement light ML so that improvement of the measurement accuracy of the object to be measured is prioritized over improvement of the throughput for measurement of the object to be measured.
  • the measurement device 5 sets the exposure time of the measurement light ML in the upstream scan area SAup to be shorter than the exposure time of the measurement light ML in the downstream scan area SAdw.
  • the irradiation mode of the measurement light ML may be controlled. Note that the exposure time of the measurement light ML becomes longer as the moving speed of the measurement light ML on the measurement object by the galvanomirror 5222 becomes lower. That is, the exposure time of the measurement light ML becomes longer as the driving speed of the galvanomirror 5222 becomes lower. The longer the exposure time of the measurement light ML, the longer the time required to measure the object to be measured. Improves measurement accuracy.
  • the measurement device 5 directs the measurement light ML so as to prioritize improvement of throughput for measurement of the measurement object over improvement of measurement accuracy of the measurement object with respect to the upstream scan area SAup. It may be considered that the downstream scan area SAdw is irradiated with the measurement light ML so as to give priority to improving the measurement accuracy of the measurement object over improving the throughput for measuring the measurement object.
  • the measuring device 5 can control the measurement light irradiated to the upstream scan area SAup.
  • the irradiation mode of the measurement light ML in the downstream scan area SAdw may be controlled based on the measurement result using the ML. For example, when the measurement result using the measurement light ML irradiated to the upstream scan area SAup is incomplete (for example, appropriate measurement data cannot be generated), the measurement device 5 measures the downstream scan area SAdw.
  • the measurement light ML may be irradiated so as to give priority to improving the measurement accuracy of the object to be measured over improving the throughput for measuring the object.
  • the measurement device 5 adjusts the measurement light ML in the downstream scan area SAdw so that the density of multipoint measurement in the downstream scan area SAdw is higher than the density of multipoint measurement in the upstream scan area SAup.
  • the irradiation mode may be changed.
  • the measurement device 5 adjusts the irradiation mode of the measurement light ML in the downstream scan area SAdw so that the exposure time of the measurement light ML in the downstream scan area SAdw is longer than the exposure time of the measurement light ML in the upstream scan area SAup. You can change it. As a result, it is less likely that the measurement result using the measurement light ML irradiated to the downstream scan area SAdw will be flawed.
  • the control device 7 can perform an evaluation process for evaluating the details of machining of the workpiece W by the machining head 2. be.
  • the control device 7 calculates a machining error corresponding to the difference between the ideal shape of the work W and the actual shape of the work W indicated by the measurement data.
  • the control device 7 controls a three-dimensional model (for example, the above-described CAD model, hereinafter referred to as a “target model”) representing an ideal shape of the work W, and a model of the work W represented by the measurement data.
  • a three-dimensional model showing the actual shape (substantially a virtual model composed of a plurality of points included in point cloud data, hereinafter referred to as a "measurement model")
  • calculateate the machining error in order to specify which part of the measurement model corresponds to which part of the target model, it is necessary to specify the reference part of the measurement model and the reference part of the target model corresponding to the reference part of the measurement model.
  • the operator of the machine tool 1 must specify the reference portion of the measurement model and specify the reference portion of the target model corresponding to the reference portion of the measurement model.
  • the control device 7 compares the measurement model and the target model with reference to the designated reference portion.
  • At least one of the machine tool 1a of the first embodiment to the machine tool 1g of the seventh embodiment is configured as shown in FIG.
  • a workpiece W having a reference member 413 that can be used as a reference portion of a measurement model formed in advance may be processed.
  • Reference member 413 is a member whose shape is known to control device 7 .
  • the measuring device 5 measures the reference member 413 together with the workpiece W in order to perform the evaluation process.
  • the control device 7 generates measurement data (actually, point cloud data) representing a measurement model representing the shapes of the workpiece W and the reference member 413 .
  • the target model (CAD model) is a three-dimensional model showing not only the workpiece W but also the shape of the reference member 413 .
  • the control device 7 determines the model portion corresponding to the reference member 413 in the measurement model and the reference member 413 in the target model. It can be recognized that corresponding model parts are parts corresponding to each other.
  • the control device 7 can be used to perform evaluation processing in real time. Furthermore, in this case, if it is found that the processing details of the work W are not appropriate while the measuring device 5 is measuring the work W, the measuring device 5 may interrupt the measurement of the work W. . As a result, the time required to measure the work W that has already been evaluated is eliminated, leading to an improvement in throughput.
  • reference member 413 may be formed on a member different from the stage 41 .
  • reference member 413 may be formed in cradle 424 shown in FIG.
  • the reference member 413 may be formed on the workpiece W.
  • the processing head 2 may process the workpiece W on which the reference member 413 is formed. However, in this case, the processing head 2 does not have to process the reference member 413 itself.
  • the measuring head 52 (including the measuring heads 52b, 52c and 52e) may be attached to the processing head 2 as described above. In this case, temperature fluctuations of the processing head 2 may affect the measurement accuracy of the measuring device 5 .
  • At least one of the machine tool 1a of the first embodiment to the machine tool 1c of the third embodiment and the machine tool 1e of the fifth embodiment to the machine tool 1f of the sixth embodiment is 52, a temperature sensor 871 for measuring the temperature of the processing head 2, and a temperature effect reduction device for reducing the effect of the temperature fluctuation of the processing head 2 on the measurement head 52 based on the detection result of the temperature sensor 871.
  • a device 872 may also be provided.
  • the temperature effect reduction device 872 may include, for example, a heating device (for example, at least one of a heater and a heat pipe) for heating at least one of the processing head 2 and the measurement head 52.
  • the temperature effect reduction device 872 may include a cooling device (for example, at least one of a Peltier element, a heat sink and a heat pipe) for cooling at least one of the processing head 2 and the measurement head 52 .
  • the temperature sensor 871 may measure the temperature of the measurement head 52 .
  • the temperature effect reduction device 872 may include a heat insulating material that reduces heat directed from the processing head 2 to the measurement head 52 .
  • the measuring head 52 (including the measuring heads 52b, 52c and 52e) may be attached to the processing head 2 as described above. In this case, vibration of the processing head 2 may affect the measurement accuracy of the measuring device 5 .
  • At least one of the machine tool 1a of the first embodiment to the machine tool 1c of the third embodiment and the machine tool 1e of the fifth embodiment to the machine tool 1f of the sixth embodiment has a machining
  • a vibration sensor 881 for detecting vibration of the head 2 and a vibration effect reduction device 882 for reducing the effect of the vibration of the processing head 2 on the measurement head 52 based on the detection result of the vibration sensor 881 may be provided. good.
  • the vibration sensor 881 may detect vibration of the measurement head 52 .
  • the vibration sensor 881 detects acceleration of the machining head 2 (for example, acceleration in at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction) as an index value that quantitatively represents the vibration of the machining head 2.
  • a sensor may be included.
  • the vibration sensor 881 can detect the amount of displacement of the machining head 2 (for example, the amount of displacement in at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction) as an index value that quantitatively represents the vibration of the machining head 2.
  • displacement sensor for example, acceleration in at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction
  • the vibration influence reduction device 882 includes, for example, a vibration damping device (for example, at least one of a damper and a spring) capable of damping the vibration by absorbing the vibration of at least one of the processing head 2 and the measurement head 52. good too.
  • the vibration influence reduction device 882 is, for example, a drive device (for example, an actuator) capable of generating a force for canceling the vibration generated in at least one of the processing head 2 and the measurement head 52.
  • a VCM Vehicle Coil Motor
  • the measuring apparatus 5 is an interferometric measuring apparatus that uses the optical comb light source as the measuring light source 51 .
  • the measurement apparatus 5 may be an interferometric measurement apparatus that uses a light source different from the optical comb light source as the measurement light source 51 .
  • the measurement device 5 may be an optical coherence tomography (OCT) type measurement device.
  • OCT optical coherence tomography
  • An example of an OCT-type measuring device is described in Japanese Patent Application Laid-Open No. 2020-101499.
  • the measuring device 5 may be a measuring device with a white confocal displacement gauge.
  • An example of a white confocal displacement meter is described in JP-A-2020-085633.
  • the measurement device 5 may be a phase modulation type measurement device.
  • An example of the phase modulation type measuring device is described in Japanese Patent Application Laid-Open No. 2010-025922.
  • the measurement device 5 may be an intensity modulation type measurement device.
  • An example of the intensity modulation type measuring device is described in Japanese Patent Application Laid-Open No. 2016-510415 and US Patent Application Publication No. 2014/226145.
  • the space inside the head housing 521 of the measurement head 52 may be kept at a positive pressure using a utility force (not shown).
  • the machine tool 1 uses the tool 23 to process the workpiece W. That is, the machine tool 1 is machining the workpiece W. As shown in FIG. However, the machine tool 1 may machine the work W using means different from the tool 23 . For example, the machine tool 1 may process the work W by irradiating the work W with an energy beam. In this case, the machine tool 1 may additionally process the work W by irradiating the work W with an energy beam. The machine tool 1 may remove and process the workpiece W by irradiating the workpiece W with an energy beam. At least one of light, charged particle beams (eg, electron beams or ion beams), and electromagnetic waves may be used as the energy beam.
  • light charged particle beams (eg, electron beams or ion beams)
  • electromagnetic waves may be used as the energy beam.
  • the machine tool 1 uses the measuring device 5 for irradiating the work W with the measurement light ML to process the work W.
  • processing light may be irradiated onto the workpiece W.
  • the machine tool 1 may irradiate the workpiece W with the machining light via at least one of the optical systems 522 and 532 provided in the measuring device 5 .
  • the machine tool 1 may irradiate the workpiece W with the machining light emitted from the optical system 522 via the optical system 532 .
  • a processing device having a spindle on which a processing tool is attachable and detachable; a measuring device capable of measuring the object by irradiating the object with a first light and detecting a second light from the object irradiated with the first light,
  • the measuring device comprises a first optical system attached to the processing device, and a second optical system detachably attached to the spindle, A machine tool, wherein the first optical system emits the first light toward the second optical system and receives the second light from the second optical system.
  • [Appendix 2] The machine tool according to appendix 1, wherein the measuring device irradiates the object with the first light and detects the second light through the first and second optical systems.
  • the first optical system passes the first light and the second light, The second optical system emits the first light from the first optical system toward the object and emits the second light from the object toward the first optical system.
  • Appendix 4 The main shaft is rotatable around a rotation axis, The spindle rotates the tool around the rotation axis, 4.
  • the main shaft is rotatable around a rotation axis
  • the first light emitted from the first optical system to the second optical system is emitted from a position different from the rotation axis
  • the first optical system includes a first deflection member that deflects the first light so that the traveling direction of the first light emitted from the first optical system intersects with the rotation axis or has a twisted relationship.
  • the second optical system includes a second deflection member that deflects the first light so that the traveling direction of the first light from the first optical system is coaxial with or parallel to the rotation axis.
  • the machine tool according to any one of 1.
  • the main shaft is rotatable around a rotation axis
  • the second optical system includes a deflection member that deflects the first light emitted from the first optical system, the deflecting member is rotatable with the rotation of the main shaft;
  • the measurement device includes a detection element capable of detecting the second light, 6.
  • [Appendix 7] 7.
  • Appendix 8 8.
  • the condensing optical member includes an f-theta lens.
  • the first optical system includes a traveling direction changing member that changes a traveling direction of the first light so as to change an irradiation position of the first light on the object. machine tools.
  • the traveling direction changing member includes a galvanomirror.
  • Appendix 12 12.
  • Appendix 13 13
  • the measurement device includes a detection element capable of detecting the second light
  • the first optical system includes an interference optical system that interferes the second light and the third light
  • the detection element detects interference light between the second light and the third light.
  • the second optical system is a condensing optical member condensing the first light from the first optical system onto the object; 15.
  • the tool according to any one of appendices 1 to 14, comprising: an optical path bending member that emits the first light from the condensing optical member in a direction that intersects the optical axis direction of the condensing optical system. machine.
  • the second optical system includes an emission position changing member that changes the emission position of the first light so that the irradiation position of the first light on the object changes along the surface of the object.
  • the machine tool according to any one of 1. [Appendix 17] 17.
  • the second optical system comprises a second optical system of a first type and a second optical system of a second type different from the first type, 19.
  • the machine tool according to appendix 18, wherein the mounting device mounts one of the tool, the second optical system of the first type, and the second optical system of the second type to the spindle.
  • the mounting device mounts one of the tool, the second optical system of the first type, and the second optical system of the second type to the spindle.
  • the first optical system When the first optical system includes a first optical member as the replacement optical member, the first optical system emits the first light toward the second optical system, In the case where the first optical system includes a second optical member different from the first optical member as the replacement optical member, the first optical system does not pass through the second optical system. 23.
  • the first optical member includes a reflecting member that reflects the first light toward the second optical system; 24.
  • the second optical member includes a condensing optical member condensing the first light onto the emission target member.
  • the machine tool according to appendix 26 further comprising a detection device that detects the second light from the first optical system and outputs a detection result to an arithmetic device that generates measurement data of the object.
  • Appendix 28 28.
  • Appendix 29 The first optical system functions as part of a measuring device that measures the object, 29.
  • the first optical system passes the first light and the second light
  • the second optical system emits the first light from the first optical system toward the object and emits the second light from the object toward the first optical system.
  • the machine tool according to any one of 1.
  • the main shaft is rotatable around a rotation axis, The spindle rotates the tool around the rotation axis, 31.
  • the machine tool according to any one of appendices 25 to 30, wherein the direction of the object-side optical axis of the second optical system is a direction extending along the rotation axis.
  • the main shaft is rotatable around a rotation axis
  • the first light emitted from the first optical system to the second optical system is emitted from a position different from the rotation axis
  • the first optical system includes a first deflection member that deflects the first light so that the traveling direction of the first light emitted from the first optical system intersects with the rotation axis or has a twisted relationship.
  • 32. A machine tool according to any one of clauses 25-31.
  • Appendix 33 32. Described in Appendix 32, wherein the second optical system includes a second deflection member that deflects the first light so that the traveling direction of the first light from the first optical system is coaxial with or parallel to the rotation axis. machine tools.
  • the first optical system functions as part of a measuring device that measures the object, the second deflection member is rotatable with the rotation of the main shaft;
  • the measurement device includes a detection element capable of detecting the second light, 34.
  • Appendix 36 36.
  • the second optical system includes a condensing optical member condensing the first light from the first optical system onto the object.
  • the concentrating optic includes an f-theta lens.
  • the first optical system according to any one of appendices 25 to 37, wherein the first optical system includes a traveling direction changing member that changes a traveling direction of the first light so that an irradiation position of the first light on the object is changed. machine tools.
  • the traveling direction changing member includes a galvanomirror.
  • the first optical system functions as part of a measuring device that measures the object, 41.
  • the second optical system includes a detection element capable of detecting the second light
  • the first optical system includes an interference optical system that interferes the second light and the third light, 42.
  • the second optical system is a condensing optical member condensing the first light from the first optical system onto the object; 43.
  • the tool according to any one of appendices 25 to 42, comprising: an optical path bending member that emits the first light from the condensing optical member in a direction that intersects the optical axis direction of the condensing optical system. machine.
  • the second optical system includes an emission position changing member that changes the emission position of the first light so that the irradiation position of the first light on the object changes along the surface of the object.
  • the machine tool according to any one of 1.
  • machine. [Appendix 46] 46.
  • the second optical system comprises a second optical system of a first type and a second optical system of a second type different from the first type, 47.
  • Appendix 48 48.
  • the first optical system When the first optical system includes a first optical member as the replacement optical member, the first optical system emits the first light toward the second optical system, In the case where the first optical system includes a second optical member different from the first optical member as the replacement optical member, the first optical system does not pass through the second optical system. 51.
  • the machine tool of clause 50 wherein a first light is directed toward the object.
  • the first optical member includes a reflecting member that reflects the first light toward the second optical system; 52.
  • the second optical member includes a condensing optical member condensing the first light onto the emission target member.
  • Appendix 54 54. The machine tool according to appendix 53, wherein the optical system functions as part of a measuring device that measures the object by attaching the optical system to the spindle.
  • the measurement optical system is a detection-side optical system attached to the processing apparatus, emitting the first light toward the optical system, receiving the second light from the optical system, and emitting the second light toward a detection element; When, and the detection element that detects the second light from the detection-side optical system, 55.
  • the spindle rotates the tool around the axis of rotation of the spindle; 56.
  • Appendix 57 The first light emitted from the measurement optical system to the optical system is emitted from a position different from the rotation axis of the main shaft, 56.
  • the optical system includes a second deflection member that deflects the first light so that the traveling direction of the first light from the measurement optical system is coaxial with or parallel to the rotation axis.
  • the measurement optical system includes a first deflection member that deflects the first light so that the traveling direction of the first light emitted from the measurement optical system intersects the rotation axis or has a twisted relationship. 57.
  • the main shaft is rotatable around a rotation axis, comprising a deflection member that deflects the first light emitted from the measurement optical system; the deflecting member is rotatable with the rotation of the main shaft;
  • the measurement optical system includes a detection element capable of detecting the second light, 59.
  • optical system according to any one of appendices 53 to 62, wherein the optical path of the first light and the optical path of the second light overlap between the optical system and the object.
  • Appendix 64 a condensing optical member condensing the first light from the measurement optical system onto the object; 64.
  • Appendix 65 64.
  • the method according to any one of appendices 53 to 64 including an emission position changing member that changes the emission position of the first light so that the irradiation position of the first light on the object changes along the surface of the object. optics.
  • Appendix 66 66.
  • the optical system according to any one of appendices 53 to 65 including a reflecting member that reflects at least part of the first light from the measurement optical system toward the measurement optical system.
  • Appendix 67 67.
  • the optical system of any one of clauses 53-66 wherein each of the tool and the optical system is attachable to the spindle by a mounting device.
  • a machining tool is attachable to a machine tool having a machining apparatus having a detachable spindle, irradiates an object with a first light, and detects a second light from the object irradiated with the first light.
  • a measuring device capable of measuring the object by a first optical system attached to a portion different from the main axis of the processing device; a second optical system detachably attached to the main shaft, The first optical system emits the first light toward the second optical system and receives the second light from the second optical system.
  • Appendix 69 69. The measuring device according to appendix 68, wherein the measuring device irradiates the object with the first light and detects the second light via the first and second optical systems.
  • the first optical system passes the first light and the second light
  • the second optical system emits the first light from the first optical system toward the object and emits the second light from the object toward the first optical system.
  • the measuring device according to .
  • the spindle rotates the tool around the axis of rotation of the spindle; 71.
  • the measuring device according to any one of appendices 68 to 70, wherein the direction of the object-side optical axis of the second optical system is a direction extending along the rotation axis.
  • the first light emitted from the first optical system to the second optical system is emitted from a position different from the rotation axis of the main shaft,
  • the first optical system includes a first deflection member that deflects the first light so that the traveling direction of the first light emitted from the first optical system intersects with the rotation axis or has a twisted relationship.
  • the second optical system includes a second deflection member that deflects the first light so that the traveling direction of the first light from the first optical system is coaxial or parallel to the rotation axis.
  • the measuring device according to any one of 1.
  • the main shaft is rotatable around a rotation axis
  • the second optical system includes a deflection member that deflects the first light emitted from the first optical system, the deflecting member is rotatable with the rotation of the main shaft; Further comprising a detection element capable of detecting the second light, 73.
  • the measuring device according to any one of appendices 68 to 72, wherein rotation of the deflection member is controlled based on a detection result of the second light by the detection element.
  • Appendix 74 74.
  • the measurement apparatus according to appendix 73, wherein the rotation of the deflection member is controlled such that the intensity of the second light detected by the detection element is maximized.
  • Appendix 75 75.
  • the measuring device according to any one of appendices 68 to 74, wherein the second optical system includes a condensing optical member that condenses the first light from the first optical system onto the object.
  • the second optical system includes a condensing optical member that condenses the first light from the first optical system onto the object.
  • the condensing optical member includes an f-theta lens.
  • the first optical system includes a traveling direction changing member that changes a traveling direction of the first light so that an irradiation position of the first light on the object is changed. measuring device.
  • Appendix 78 78.
  • the measuring device according to appendix 77, wherein the traveling direction changing member includes a galvanomirror.
  • Appendix 79 79.
  • the measuring device according to any one of appendices 68 to 78, wherein the optical path of the first light and the optical path of the second light overlap between the second optical system and the object.
  • Appendix 80 79.
  • the measurement device according to any one of appendices 68 to 79, further comprising a detection element capable of detecting the second light.
  • Appendix 81 Further comprising a detection element capable of detecting the second light,
  • the first optical system includes an interference optical system that interferes the second light and the third light, 81.
  • the measuring device according to any one of appendices 68 to 80, wherein the detection element detects interference light between the second light and the third light.
  • the second optical system is a condensing optical member condensing the first light from the first optical system onto the object; 82.
  • the second optical system includes an emission position changing member that changes the emission position of the first light so that the irradiation position of the first light on the object changes along the surface of the object.
  • the measuring device according to any one of 1.
  • Appendix 84 84.
  • Device. [Appendix 85] 85.
  • Appendix 86 The second optical system comprises a second optical system of a first type and a second optical system of a second type different from the first type, 86.
  • the measuring device according to appendix 85 wherein the mounting device mounts one of the tool, the second optical system of the first type, and the second optical system of the second type to the spindle.
  • Appendix 87 87.
  • Appendix 88 88.
  • Appendix 89 89.
  • the measuring device according to any one of appendices 68 to 88, wherein the first optical system includes an exchangeable exchangeable optical member.
  • the first optical system includes a first optical member as the replacement optical member, the first optical system emits the first light toward the second optical system, In the case where the first optical system includes a second optical member different from the first optical member as the replacement optical member, the first optical system does not pass through the second optical system. 90.
  • the measuring device according to appendix 89, wherein a first light is emitted toward the object.
  • the first optical member includes a reflecting member that reflects the first light toward the second optical system; 91.
  • the measuring device wherein the second optical member includes a condensing optical member that condenses the first light onto the emission target member.
  • Appendix 92 a processing device having a spindle on which a processing tool is attachable and detachable; a measuring device capable of measuring the object by irradiating the object with a first light and detecting a second light from the object irradiated with the first light, The measuring device is attached to the processing device at a position away from the rotation axis along a direction intersecting the rotation axis of the main shaft, A machine tool, wherein the optical path of the first light and the optical path of the second light overlap between the measuring device and the object.
  • the measuring device irradiates the object with a first light and detects the second light from the object through an optical system; 93.
  • the relative positional relationship between the object and the machining device is a first relationship, and the measuring device measures the object. Further comprising a position changing device capable of changing the relative positional relationship such that the relative positional relationship becomes a second relationship different from the first relationship for at least part of the period Machine tools as described.
  • Appendix 97 further comprising a position changing device capable of changing the relative positional relationship between the object and the processing device along a first direction intersecting the rotation axis;
  • the measuring device moves the first measure an object
  • the position changing device changes the relative positional relationship between the second object as the object and the processing device along the first direction based on the information about the measurement result of the first object.
  • 96 Machine tool according to any one of clauses 96.
  • the position changing device changes a relative positional relationship between a second object as the object and the processing device along the first direction based on information about the measurement result of the first object.
  • the position changing device moves a third object as the object and the processing device along the first direction based on information about the measurement result of the first object and information about the measurement result of the second object.
  • 98. The machine tool according to Clause 97, wherein the relative positions are changed.
  • Appendix 99 The measuring device according to any one of appendices 1 to 52 and 92 to 98, wherein the measuring device is an interferometric measuring device capable of measuring the object by detecting interference light between the second light and the third light. machine tools.
  • the first light includes pulsed light having frequency components arranged at equal intervals on the frequency axis.
  • the measuring device according to any one of Claims 68 to 91 and 103, wherein the first light includes pulsed light having frequency components arranged at regular intervals on the frequency axis.
  • Appendix 105 a processing device having a spindle on which a processing tool is attachable and detachable; A first optical system attached to a portion different from the main axis of the processing device, machining an object with the tool attached to the spindle; The light from the first optical system is irradiated onto the object after being machined by the tool or the object before being machined by the tool through a second optical system detachably attached to the spindle. Do machine tools.
  • [Appendix 106] irradiating the object with the light from the first optical system as the first light through the second optical system, and the second light from the object with the first optical system through the second optical system; 106.
  • [Appendix 107] 107.
  • Appendix 110 further comprising a stage for holding the object; performing shape measurement of the object held on the stage by the measuring device using the second optical system attached to the main shaft; After the shape measurement is completed, removing the second optical system from the main shaft while holding the object from the stage, and attaching the tool to the main shaft; 109.
  • the machine tool according to any one of appendices 1 to 52 and 105 to 109, wherein the tool is used to machine the object held on the stage based on the result of the shape measurement.
  • Appendix 111 Before the shape measurement, Machining the object held on the stage with the tool or a tool different from the tool attached to the spindle; 111.
  • the machine tool according to appendix 110 wherein after the completion of the machining, the second optical system is attached to the spindle to measure the shape of the machined body.

Abstract

This machine tool comprises: a machining device provided with a main shaft to and from which a tool is attachable and detachable; and a measuring device capable of measuring the shape of an object by irradiating the object with first light and detecting second light from the object which was irradiated with the first light. The measuring device comprises: a first optical system, which is attached to a part that is different from the main shaft of the machining device and through which the first light and the second light pass; and a second optical system, which is detachably attached to the main shaft and which projects the first light from the first optical system towards the object as well as projecting the second light from the object towards the first optical system.

Description

工作機械、光学系及び計測装置Machine tools, optical systems and measuring equipment
 本発明は、例えば、工具を用いて物体を加工可能な工作機械、並びに、工作機械に用いられる光学系及び計測装置の技術分野に関する。 The present invention, for example, relates to the technical field of machine tools that can process objects using tools, and optical systems and measurement devices used in machine tools.
 特許文献1には、計測装置を備える工作機械が記載されている。このような工作機械では、計測装置を適切に配置することが技術的課題となる。 Patent Document 1 describes a machine tool equipped with a measuring device. In such a machine tool, it is a technical problem to properly arrange the measuring device.
米国特許公開第2008/0297472号公報U.S. Patent Publication No. 2008/0297472
 第1の態様によれば、加工用の工具が着脱可能な主軸を備える加工装置と、物体に第1光を照射し且つ前記第1光が照射された前記物体からの第2光を検出することで前記物体の形状を計測可能な計測装置とを備え、前記計測装置は、前記加工装置の前記主軸とは異なる部分に取り付けられ且つ前記第1光及び前記第2光が通過する第1光学系と、前記主軸に着脱可能に取り付けられ、前記第1光学系からの前記第1光を前記物体に向けて射出し且つ前記物体からの前記第2光を前記第1光学系に向けて射出する第2光学系とを備える工作機械が提供される。 According to a first aspect, a processing apparatus includes a spindle to which a processing tool is detachable, and a first light is irradiated onto an object, and a second light from the object irradiated with the first light is detected. and a measuring device capable of measuring the shape of the object by using a first optical system, wherein the measuring device is attached to a portion of the processing device different from the main axis and through which the first light and the second light pass. a system, which is detachably attached to the main shaft, emits the first light from the first optical system toward the object, and emits the second light from the object toward the first optical system; A machine tool is provided comprising a second optical system for
 第2の態様によれば、加工用の工具が着脱可能な主軸を備える加工装置と、物体に第1光を照射し且つ前記第1光が照射された前記物体からの第2光を検出することで前記物体を計測可能な計測装置とを備え、前記計測装置は、前記加工装置の前記主軸とは異なる部分に取り付けられる第1光学系と、前記主軸に着脱可能に取り付けられる第2光学系とを備え、前記第1光学系は、前記第2光学系に向けて前記第1光を射出し且つ前記第2光学系からの前記第2光を受光する工作機械が提供される。 According to the second aspect, the processing apparatus includes a spindle to which a processing tool can be attached and detached, and the object is irradiated with the first light and the second light from the object irradiated with the first light is detected. and a measuring device capable of measuring the object by means of a laser beam, wherein the measuring device includes a first optical system attached to a portion different from the main shaft of the processing device, and a second optical system detachably attached to the main shaft. and wherein the first optical system emits the first light toward the second optical system and receives the second light from the second optical system.
 第3の態様によれば、加工用の工具が着脱可能な主軸を備える加工装置と、前記加工装置の前記主軸とは異なる部分に取り付けられ物体の計測に用いられる第1光学系とを備え、前記第1光学系は、前記主軸に着脱可能に取り付けられる第2光学系に向けて第1光を射出し、前記第2光学系を介して前記第1光が照射された前記物体からの第2光を受光する工作機械が提供される。 According to a third aspect, a processing device comprising a main shaft to which a processing tool is attachable and detachable, and a first optical system attached to a portion of the processing device different from the main shaft and used for measuring an object, The first optical system emits a first light toward a second optical system detachably attached to the main axis, and emits a first light from the object irradiated with the first light via the second optical system. A machine tool is provided that receives two lights.
 第4の態様によれば、加工用の工具が着脱可能な主軸を備える加工装置を有する工作機械に用いられる光学系であって、前記主軸に着脱可能に取り付けられ、前記加工装置の前記主軸とは異なる部分に取り付けられた計測光学系から射出される第1光を受光し、受光した前記第1光を物体に向けて射出し、且つ、前記物体からの第2光を受光し、受光した前記第2光を前記計測光学系に向けて射出し、前記計測光学系は、前記光学系からの前記第2光を用いて前記物体を計測する光学系が提供される。 According to a fourth aspect, there is provided an optical system for use in a machine tool having a processing device having a main shaft to which a processing tool is attachable and detachable, wherein the optical system is detachably attached to the main shaft and connected to the main shaft of the processing device. receives a first light emitted from a measurement optical system attached to a different portion, emits the received first light toward an object, and receives and receives a second light from the object An optical system is provided that emits the second light toward the measurement optical system, and the measurement optical system measures the object using the second light from the optical system.
 第5の態様によれば、加工用の工具が着脱可能な主軸を備える加工装置を有する工作機械に取り付け可能であり、物体に第1光を照射し且つ前記第1光が照射された前記物体からの第2光を検出することで前記物体を計測可能な計測装置であって、前記加工装置の前記主軸とは異なる部分に取り付けられる第1光学系と、前記主軸に着脱可能に取り付けられる第2光学系とを備え、前記第1光学系は、前記第2光学系に向けて前記第1光を射出し且つ前記第2光学系からの前記第2光を受光する計測装置が提供される。 According to the fifth aspect, the tool for processing can be attached to a machine tool having a processing device having a detachable main shaft, irradiates the object with the first light, and the object irradiated with the first light A measuring device capable of measuring the object by detecting a second light from the first optical system attached to a portion different from the main shaft of the processing device, and a second optical system detachably attached to the main shaft 2 optical systems, wherein the first optical system emits the first light toward the second optical system and receives the second light from the second optical system. .
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The operation and other benefits of the present invention will be made clear from the following description of the embodiment.
図1は、第1実施形態の工作機械の外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of the machine tool of the first embodiment. 図2は、第1実施形態の工作機械のシステム構成を示すシステム構成図である。FIG. 2 is a system configuration diagram showing the system configuration of the machine tool of the first embodiment. 図3は、第1実施形態の加工ヘッドの構造を示す断面図である。FIG. 3 is a cross-sectional view showing the structure of the processing head of the first embodiment. 図4は、第1実施形態の加工ヘッドの構造を示す断面図である。FIG. 4 is a cross-sectional view showing the structure of the processing head of the first embodiment. 図5は、第1実施形態の計測装置(特に、計測ヘッド)が取り付けられた加工ヘッドを示す断面図である。FIG. 5 is a cross-sectional view showing a processing head to which the measuring device (particularly, the measuring head) of the first embodiment is attached. 図6は、第1実施形態の計測装置(特に、計測ヘッド)の構造を示す断面図である。FIG. 6 is a cross-sectional view showing the structure of the measuring device (in particular, the measuring head) of the first embodiment. 図7は、第1実施形態の光学系の構造を示す断面図である。FIG. 7 is a cross-sectional view showing the structure of the optical system of the first embodiment. 図8(a)から図8(c)のそれぞれは、計測対象物の表面において計測光が照射されるスキャン領域の形状を示す平面図である。Each of FIGS. 8(a) to 8(c) is a plan view showing the shape of the scan area irradiated with the measurement light on the surface of the object to be measured. 図9は、主軸の回転角度を変更することで計測光及び戻り光の光路が変わる様子を示す断面図である。FIG. 9 is a cross-sectional view showing how the optical paths of the measurement light and the return light are changed by changing the rotation angle of the main shaft. 図10は、座標基準部材が形成されたステージを示す断面図である。FIG. 10 is a cross-sectional view showing a stage on which a coordinate reference member is formed. 図11(a)及び図11(b)のそれぞれは、座標基準部材を示す断面図である。11(a) and 11(b) are cross-sectional views showing the coordinate reference member. 図12は、計測装置が座標基準部材を計測する際に利用可能な光学系の構造の一例を示す斜視図である。FIG. 12 is a perspective view showing an example of the structure of an optical system that can be used when the measuring device measures the coordinate reference member. 図13は、ワーク計測動作の流れを示すフローチャートである。FIG. 13 is a flow chart showing the flow of work measuring operation. 図14は、仮想的な工具とみなされる計測光MLを示す。FIG. 14 shows measurement light ML regarded as a virtual tool. 図15は、走り誤差校正動作の流れを示すフローチャートである。FIG. 15 is a flow chart showing the flow of the running error calibration operation. 図16は、走り誤差校正部材の一例を示す断面図である。FIG. 16 is a cross-sectional view showing an example of the running error correcting member. 図17は、走り誤差校正部材の計測結果から算出される、走り誤差校正部材の基準面のZ軸方向における位置を示すグラフである。FIG. 17 is a graph showing the position of the reference plane of the running error correcting member in the Z-axis direction calculated from the measurement result of the running error correcting member. 図18は、加工ヘッドが加工したワークを走り誤差校正部材として用いることで行われる走り誤差校正動作の流れを示すフローチャートである。FIG. 18 is a flow chart showing the flow of the running error calibrating operation performed by using the workpiece machined by the machining head as the running error calibrating member. 図19は、ワークWに照射される計測光MLを模式的に示す断面図である。FIG. 19 is a cross-sectional view schematically showing the measurement light ML with which the workpiece W is irradiated. 図20は、走り誤差がない状況下で加工されたワークWと、走り誤差がない状況下で計測されたワークWの加工面の位置とを示す。FIG. 20 shows the workpiece W machined under conditions with no running error and the position of the machined surface of the workpiece W measured under conditions without running error. 図21は、走り誤差がある状況下で加工されたワークの加工面の位置と、走り誤差がある状況下で計測されたワークの加工面の位置とを示す。FIG. 21 shows the position of the machined surface of the work machined under conditions with running error and the position of the machined surface of the work measured under conditions with running error. 図22は、第2実施形態の計測装置(特に、計測ヘッド)の構造を示す断面図である。FIG. 22 is a cross-sectional view showing the structure of the measuring device (in particular, the measuring head) of the second embodiment. 図23は、計測装置の計測軸と主軸の回転軸とが平行になるように加工ヘッドに取り付けられた計測ヘッドを示す断面図である。FIG. 23 is a cross-sectional view showing the measuring head attached to the machining head so that the measuring axis of the measuring device and the rotation axis of the spindle are parallel. 図24は、計測装置の計測軸と主軸の回転軸とが平行にならないように加工ヘッドに取り付けられた計測ヘッドを示す断面図である。FIG. 24 is a cross-sectional view showing the measuring head attached to the machining head so that the measuring axis of the measuring device and the rotation axis of the spindle are not parallel. 図25は、計測装置の計測軸と主軸の回転軸とが平行にならないように加工ヘッドに取り付けられた計測ヘッドを示す断面図である。FIG. 25 is a sectional view showing a measuring head attached to a machining head so that the measuring axis of the measuring device and the rotation axis of the spindle are not parallel. 図26は、軸ずれ誤差校正動作の流れを示すフローチャートである。FIG. 26 is a flow chart showing the flow of the shaft misalignment error calibration operation. 図27は、ワークの計測結果から算出されワークの加工面のZ軸方向における位置を示すグラフである。FIG. 27 is a graph showing the position of the machined surface of the work in the Z-axis direction calculated from the measurement result of the work. 図28は、第2実施形態の計測装置(特に、計測ヘッド)の構造を示す断面図である。FIG. 28 is a cross-sectional view showing the structure of the measuring device (in particular, the measuring head) of the second embodiment. 図29は、第3実施形態の計測装置(特に、計測ヘッド)の構造を示す断面図である。FIG. 29 is a cross-sectional view showing the structure of the measuring device (in particular, the measuring head) of the third embodiment. 図30(a)は、ワークを加工する加工ヘッドを示す断面図であり、図30(b)は、ワークを計測する計測装置(特に、計測ヘッド)を示す断面図である。FIG. 30(a) is a cross-sectional view showing a machining head for machining a work, and FIG. 30(b) is a cross-sectional view showing a measuring device (in particular, a measuring head) for measuring the work. 図31は、第4実施形態の計測装置の構造を示す断面図である。FIG. 31 is a cross-sectional view showing the structure of the measuring device of the fourth embodiment. 図32は、第5実施形態の計測装置の構造を示す断面図である。FIG. 32 is a cross-sectional view showing the structure of the measuring device of the fifth embodiment. 図33は、第6実施形態の計測装置の構造を示す断面図である。FIG. 33 is a cross-sectional view showing the structure of the measuring device of the sixth embodiment. 図34は、第7実施形態の計測装置(特に、計測ヘッド)の構造を示す断面図である。FIG. 34 is a cross-sectional view showing the structure of the measuring device (in particular, the measuring head) of the seventh embodiment. 図35(a)及び図35(b)のそれぞれは、主軸に取り付け可能な計測ヘッドの一例を示す断面図である。Each of FIGS. 35(a) and 35(b) is a cross-sectional view showing an example of a measuring head that can be attached to the spindle. 図36(a)及び図36(b)のそれぞれは、主軸に取り付け可能な計測ヘッドの一例を示す断面図である。Each of FIGS. 36(a) and 36(b) is a cross-sectional view showing an example of a measuring head that can be attached to the spindle. 図37(a)及び図37(b)のそれぞれは、主軸に取り付け可能な計測ヘッドの一例を示す断面図である。37(a) and 37(b) are cross-sectional views showing an example of a measuring head that can be attached to a spindle. 図38は、計測対象物に形成された狭小空間に面する計測対象物の面を計測する計測ヘッドを示す断面図である。FIG. 38 is a cross-sectional view showing a measuring head that measures a surface of a measurement object facing a narrow space formed in the measurement object. 図39(a)及び図39(b)のそれぞれは、主軸に取り付け可能な計測ヘッドの一例を示す断面図である。Each of FIGS. 39(a) and 39(b) is a cross-sectional view showing an example of a measuring head that can be attached to the spindle. 図40(a)及び図40(b)のそれぞれは、主軸に取り付け可能な計測ヘッドの一例を示す断面図である。Each of FIGS. 40(a) and 40(b) is a cross-sectional view showing an example of a measuring head that can be attached to the spindle. 図41(a)及び図41(b)のそれぞれは、主軸に取り付け可能な計測ヘッドの一例を示す断面図である。41(a) and 41(b) are cross-sectional views showing an example of a measuring head that can be attached to the spindle. 図42(a)及び図42(b)のそれぞれは、主軸に取り付け可能な計測ヘッドの一例を示す断面図である。Each of FIGS. 42(a) and 42(b) is a cross-sectional view showing an example of a measuring head that can be attached to the spindle. 図43(a)及び図43(b)のそれぞれは、主軸に取り付け可能な計測ヘッドの一例を示す断面図である。Each of FIGS. 43(a) and 43(b) is a cross-sectional view showing an example of a measuring head that can be attached to the spindle. 図44(a)及び図44(b)のそれぞれは、主軸に取り付け可能な計測ヘッドの一例を示す断面図である。44(a) and 44(b) are cross-sectional views showing an example of a measuring head that can be attached to the spindle. 図45(a)及び図45(b)のそれぞれは、主軸に取り付け可能な計測ヘッドの一例を示す断面図である。Each of FIGS. 45(a) and 45(b) is a cross-sectional view showing an example of a measuring head that can be attached to the spindle. 図46は、ワークを示す斜視図である。FIG. 46 is a perspective view showing a work. 図47は、異なる材質の部材から構成されるワークの一例を示す平面図である。FIG. 47 is a plan view showing an example of a work composed of members made of different materials. 図48は、計測対象物の表面上で移動するスキャン領域を示す平面図である。FIG. 48 is a plan view showing the scanning area moving on the surface of the object to be measured. 図49は、上流スキャン領域と下流スキャン領域とに分割されたスキャン領域を示す平面図である。FIG. 49 is a plan view showing a scan area divided into an upstream scan area and a downstream scan area. 図50は、基準部材が形成されたステージ41を示す断面図である。FIG. 50 is a cross-sectional view showing the stage 41 on which the reference member is formed. 図51は、基準部材に対応するモデル部分をそれぞれ含む計測モデル及び目標モデルを模式的に示す。FIG. 51 schematically shows a measurement model and a target model each including a model portion corresponding to a reference member. 図52は、温度センサ及び温度影響低減装置を備える工作機械を模式的に示す断面図である。FIG. 52 is a cross-sectional view that schematically shows a machine tool that includes a temperature sensor and a temperature effect reduction device. 図53は、振動センサ及び振動影響低減装置を備える工作機械を模式的に示す断面図である。が形成されたステージ41を示す断面図である。FIG. 53 is a cross-sectional view that schematically shows a machine tool that includes a vibration sensor and a vibration effect reduction device. is a cross-sectional view showing a stage 41 on which is formed.
 以下、図面を参照しながら、工作機械、光学系及び計測装置の実施形態について説明する。以下では、物体の一例であるワークWを加工可能な工作機械1を用いて、工作機械、光学系及び計測装置の実施形態を説明する。 Hereinafter, embodiments of machine tools, optical systems, and measuring devices will be described with reference to the drawings. Embodiments of a machine tool, an optical system, and a measuring device will be described below using a machine tool 1 capable of processing a work W, which is an example of an object.
 尚、以下の説明では、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系を用いて工作機械1を構成する各種構成要素の位置関係について説明する。尚、以下の説明では、説明の便宜上、X軸方向及びY軸方向のそれぞれが水平方向(つまり、水平面内の所定方向)であり、Z軸方向が鉛直方向(つまり、水平面に直交する方向であり、実質的には上下方向)である例を用いて説明を進める。また、X軸、Y軸及びZ軸周りの回転方向(言い換えれば、傾斜方向)を、それぞれ、θX方向、θY方向及びθZ方向と称してもよい。 In the following description, the positional relationship of various components constituting the machine tool 1 will be described using an XYZ orthogonal coordinate system defined by mutually orthogonal X-, Y-, and Z-axes. In the following description, for convenience of explanation, each of the X-axis direction and the Y-axis direction is the horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is the vertical direction (that is, the direction perpendicular to the horizontal plane). The description will proceed using an example in which the vertical direction is substantially vertical). Further, the directions of rotation (in other words, tilt directions) about the X-, Y-, and Z-axes may be referred to as the .theta.X direction, the .theta.Y direction, and the .theta.Z direction, respectively.
 (1)第1実施形態の工作機械1a
 初めに、第1実施形態の工作機械1について説明する。尚、以下では、第1実施形態の工作機械1を、“工作機械1a”と称する。
(1) Machine tool 1a of the first embodiment
First, the machine tool 1 of the first embodiment will be described. In addition, below, the machine tool 1 of 1st Embodiment is called "machine tool 1a."
 (1-1)工作機械1の全体構造
 初めに、図1及び図2を参照しながら、第1実施形態の工作機械1aの構造について説明する。図1は、第1実施形態の工作機械1aの外観を示す斜視図である。図2は、第1実施形態の工作機械1aのシステム構成の一例を示すシステム構成図である。
(1-1) Overall Structure of Machine Tool 1 First, the structure of the machine tool 1a of the first embodiment will be described with reference to FIGS. 1 and 2. FIG. FIG. 1 is a perspective view showing the appearance of a machine tool 1a according to the first embodiment. FIG. 2 is a system configuration diagram showing an example of the system configuration of the machine tool 1a of the first embodiment.
 図1及び図2に示すように、工作機械1aは、加工ヘッド2と、ヘッド駆動系3と、ステージ装置4と、計測装置5と、工具交換装置6と、制御装置7とを備えている。尚、図面を見やすくするために、図1には、工具交換装置6及び制御装置7の図示が省略されている。 As shown in FIGS. 1 and 2, the machine tool 1a includes a machining head 2, a head drive system 3, a stage device 4, a measuring device 5, a tool changer 6, and a control device 7. . In order to make the drawing easier to see, illustration of the tool changer 6 and the control device 7 is omitted in FIG.
 加工ヘッド2は、ワークWを加工するための加工装置である。加工ヘッド2は、主軸21と、ヘッド筐体22とを備えている。以下、加工ヘッド2について、図1及び図2に加えて、図3及び図4を参照しながら説明する。図3及び図4のそれぞれは、加工ヘッド2の構造を示す断面図である。 The processing head 2 is a processing device for processing the workpiece W. The machining head 2 has a spindle 21 and a head housing 22 . The processing head 2 will be described below with reference to FIGS. 3 and 4 in addition to FIGS. 3 and 4 are cross-sectional views showing the structure of the processing head 2. FIG.
 図1及び図3から図4に示すように、主軸21は、回転軸RX周りに回転可能な部材である。この場合、主軸21は、例えば、回転軸RXに沿って延びる部材(つまり、長手形状を有する部材)であってもよい。尚、図1に示す例では、主軸21の回転軸RXは、Z軸に平行である。しかしながら、主軸21は、Z軸に交差する回転軸RX(例えば、Z軸に直交する又はZ軸に対して傾斜する)回転軸RX周りに回転してもよい。 As shown in FIGS. 1 and 3 to 4, the main shaft 21 is a member rotatable around the rotation axis RX. In this case, the main shaft 21 may be, for example, a member extending along the rotation axis RX (that is, a member having a longitudinal shape). Incidentally, in the example shown in FIG. 1, the rotation axis RX of the main shaft 21 is parallel to the Z-axis. However, the main shaft 21 may rotate around a rotation axis RX that intersects the Z-axis (for example, orthogonal to the Z-axis or inclined with respect to the Z-axis).
 主軸21には、図4に示すように、ワークWを加工するための工具23(つまり、加工用の工具)が取り付け可能である。具体的には、図3及び図4に示すように、主軸21は、工具23を取り付けるための取付部211を備えている。工具23は、取付部211を介して主軸21に取り付けられる。取付部211に取り付けられた工具23は、取付部211から取り外し可能である。つまり、工具23は、主軸21に対して着脱可能に取り付けられる。 A tool 23 for machining the workpiece W (that is, a machining tool) can be attached to the spindle 21, as shown in FIG. Specifically, as shown in FIGS. 3 and 4, the spindle 21 has a mounting portion 211 for mounting the tool 23 thereon. The tool 23 is attached to the spindle 21 via the attachment portion 211 . The tool 23 attached to the attachment portion 211 is removable from the attachment portion 211 . That is, the tool 23 is detachably attached to the spindle 21 .
 尚、実施形態における「第1の物体が第2の物体に取り付けられる」という状態は、「第1の物体が第2の物体に直接的に取り付けられる(つまり、第1の物体と第2の物体とが接触するように第1の物体が第2の物体に取り付けられる)」という状態と、「第1の物体が第2の物体に間接的に取り付けられる(つまり、第1の物体と第2の物体とが接触することなく第1の物体が第2の物体に取り付けられる)」という状態との少なくとも一方を含んでいてもよい。「第1の物体が第2の物体に間接的に取り付けられる」という状態は、「第1の物体が、第1及び第2の物体とは異なる第3の物体を介して第2の物体に取り付けられる」という状態を含んでいてもよい。 It should be noted that the state "the first object is attached to the second object" in the embodiment means "the first object is directly attached to the second object (that is, the first object and the second object are The first object is attached to the second object so that the objects are in contact with each other) and the first object is indirectly attached to the second object (that is, the first object and the first object are attached to the second object). the first object is attached to the second object without the two objects coming into contact with each other)”. The condition ``the first object is indirectly attached to the second object'' is defined as ``the first object is attached to the second object through a third object that is different from the first and second objects. It may include the state "attached".
 図3及び図4に示す例では、主軸21は、主軸21の先端(具体的には、ワークW側の先端)に、工具23が嵌め込まれる(或いは、挿入される)穴212(例えば、テーパ状の穴)が形成された取付部211を備えている。この場合、穴212に対して相補な形状を有する工具23のシャンク231が取付部211の穴212に嵌め込まれる(或いは、挿入される)ことで、工具23が主軸21に取り付けられる。取付部211は、取付部211に取り付けられた工具23を保持してもよい。この場合、取付部211は、工具23を保持するために、機械的なチャック、静電チャック及び真空吸着チャック等の少なくとも一つを備えていてもよい。 In the example shown in FIGS. 3 and 4, the spindle 21 has a hole 212 (for example, a tapered hole) in which the tool 23 is fitted (or inserted) at the tip of the spindle 21 (specifically, the tip on the workpiece W side). It has a mounting portion 211 formed with a hole). In this case, the tool 23 is attached to the spindle 21 by fitting (or inserting) the shank 231 of the tool 23 having a shape complementary to the hole 212 into the hole 212 of the attachment portion 211 . The attachment portion 211 may hold the tool 23 attached to the attachment portion 211 . In this case, the mounting portion 211 may include at least one of a mechanical chuck, an electrostatic chuck, a vacuum chuck, and the like to hold the tool 23 .
 工具23が主軸21に取り付けられた状態で主軸21が回転すると、工具23もまた回転軸RX周りに回転する。その結果、回転する工具23がワークWに接触することで、ワークWが加工される。このように、工作機械1a(特に、加工ヘッド2)は、工具23を用いて、ワークWを機械加工することができる。 When the spindle 21 rotates while the tool 23 is attached to the spindle 21, the tool 23 also rotates around the rotation axis RX. As a result, the rotating tool 23 comes into contact with the work W, so that the work W is machined. Thus, the machine tool 1a (particularly, the machining head 2) can machine the workpiece W using the tool 23. FIG.
 ヘッド筐体22は、主軸21を収容する筐体である。ヘッド筐体22は、ヘッド筐体22の内部に形成される収容空間に主軸21を収容してもよい。ヘッド筐体22に収容された主軸21は、不図示の軸受部材(例えば、ベアリング)を介してヘッド筐体22によって支持されていてもよい。 The head housing 22 is a housing that accommodates the spindle 21 . The head housing 22 may accommodate the main shaft 21 in a housing space formed inside the head housing 22 . The main shaft 21 housed in the head housing 22 may be supported by the head housing 22 via bearing members (for example, bearings) not shown.
 再び図1及び図2において、ヘッド駆動系3は、加工ヘッド2を移動させる。ヘッド駆動系3は、例えば、X軸方向、Y軸方向及びZ軸方向のうちの少なくとも一つに沿って加工ヘッド2を移動させてもよい。ヘッド駆動系3は、例えば、X軸方向、Y軸方向及びZ軸方向のうちの少なくとも一つに加えて又は代えて、θX方向、θY方向及びθZ方向の少なくとも一つに沿って加工ヘッド2を移動させてもよい。つまり、ヘッド駆動系3は、X軸方向、Y軸方向及びZ軸方向のうちの少なくとも一つに沿って加工ヘッド2を移動させることに加えて又は代えて、X軸方向に沿った回転軸、Y軸方向に沿った回転軸及びZ軸方向に沿った回転軸のうちの少なくとも一つの軸の周りに加工ヘッド2を回転させてもよい。尚、θX方向、θY方向及びθZ方向の少なくとも一つに沿って加工ヘッド2を移動させる動作は、加工ヘッド2の姿勢を変更する動作と等価であるとみなしてもよい。  In FIGS. 1 and 2 again, the head drive system 3 moves the processing head 2. As shown in FIG. The head drive system 3 may move the processing head 2 along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction, for example. For example, the head drive system 3 moves the processing head 2 along at least one of the θX direction, θY direction and θZ direction in addition to or instead of at least one of the X-axis direction, Y-axis direction and Z-axis direction. can be moved. That is, the head drive system 3 moves the machining head 2 along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction. , the rotation axis along the Y-axis direction and the rotation axis along the Z-axis direction. Note that the operation of moving the processing head 2 along at least one of the θX direction, the θY direction, and the θZ direction may be considered equivalent to the operation of changing the attitude of the processing head 2 .
 図1に示す例では、ヘッド駆動系3は、X軸方向及びZ軸方向のそれぞれに沿って加工ヘッド2を移動させる。この場合、ヘッド駆動系3は、例えば、後述するステージ装置4の基台であるベッド40からZ軸方向に沿って上方に延びる壁状の部材であるコラム31と、コラム31に取り付けられ(或いは、形成され)且つX軸方向に沿って延びるXガイド部材32と、Xガイド部材32に取り付けられ且つXガイド部材32に沿って移動可能なXスライダ部材33と、Xスライダ部材33を移動させるための駆動力を発生するサーボモータ34と、Xスライダ部材33に取り付けられ(或いは、形成され)且つZ軸方向に沿って延びるZガイド部材35と、Zガイド部材35に取り付けられ且つZガイド部材35に沿って移動可能なZスライダ部材(図1では、不図示)と、Zスライダ部材を移動させるための駆動力を発生するサーボモータ36とを備えていてもよい。加工ヘッド2(特に、ヘッド筐体22)は、Zスライダ部材に取り付けられていてもよい。その結果、加工ヘッド2は、Xスライダ部材33の移動に合わせてX軸方向に移動し、Zスライダ部材の移動に合わせてZ軸方向に移動する。 In the example shown in FIG. 1, the head drive system 3 moves the processing head 2 along each of the X-axis direction and the Z-axis direction. In this case, the head drive system 3 is attached to (or , formed) and extending along the X-axis direction, an X-slider member 33 attached to the X-guide member 32 and movable along the X-guide member 32, and for moving the X-slider member 33 , a Z guide member 35 attached (or formed) to the X slider member 33 and extending along the Z axis direction, and a Z guide member 35 attached to the Z guide member 35 and extending along the Z axis direction. and a servo motor 36 that generates a driving force for moving the Z slider member (not shown in FIG. 1). The processing head 2 (in particular, the head housing 22) may be attached to the Z slider member. As a result, the processing head 2 moves in the X-axis direction along with the movement of the X-slider member 33, and moves in the Z-axis direction along with the movement of the Z-slider member.
 ヘッド駆動系3が加工ヘッド2を移動させると、加工ヘッド2と後述するステージ41(更には、ステージ41に載置されるワークW)との相対的な位置関係が変わる。このため、ヘッド駆動系3は、加工ヘッド2とステージ41及びワークWのそれぞれとの相対的な位置関係を変更可能な位置変更装置として機能してもよい。 When the head drive system 3 moves the processing head 2, the relative positional relationship between the processing head 2 and a stage 41 (furthermore, the work W placed on the stage 41) changes. Therefore, the head drive system 3 may function as a position changing device capable of changing the relative positional relationship between the processing head 2 and the stage 41 and the work W, respectively.
 ステージ装置4は、ベッド40と、ステージ41と、ステージ駆動系42とを備える。ステージ41及びステージ駆動系42は、ベッド40によって支持される。 The stage device 4 includes a bed 40 , a stage 41 and a stage drive system 42 . The stage 41 and stage drive system 42 are supported by the bed 40 .
 ステージ41には、ワークWが載置される。ステージ41は、ステージ41に載置されたワークWを支持可能である。ステージ41は、ステージ41に載置されたワークWを保持可能であってもよい。この場合、ステージ41は、ワークWを保持するために、機械的なチャック、静電チャック及び真空吸着チャック等の少なくとも一つを備えていてもよい。 A workpiece W is placed on the stage 41 . The stage 41 can support the work W placed on the stage 41 . The stage 41 may be capable of holding the work W placed on the stage 41 . In this case, the stage 41 may have at least one of a mechanical chuck, an electrostatic chuck, a vacuum chuck, and the like to hold the work W.
 ステージ41は、加工ヘッド2(特に、主軸21)と対向可能な位置に配置される。図1に示す例では、ステージ41は、加工ヘッド2(特に、主軸21)の下方に配置される。但し、ステージ41は、加工ヘッド2(特に、主軸21)の下方の位置とは異なる位置に配置されてもよい。 The stage 41 is arranged at a position where it can face the machining head 2 (especially the spindle 21). In the example shown in FIG. 1, the stage 41 is arranged below the machining head 2 (in particular, the spindle 21). However, the stage 41 may be arranged at a position different from the position below the machining head 2 (in particular, the spindle 21).
 ステージ駆動系42は、ステージ41を移動させる。ステージ駆動系42は、例えば、X軸方向、Y軸方向及びZ軸方向のうちの少なくとも一つに沿ってステージ41を移動させてもよい。ステージ駆動系42は、例えば、X軸方向、Y軸方向及びZ軸方向のうちの少なくとも一つに加えて又は代えて、θX方向、θY方向及びθZ方向の少なくとも一つに沿ってステージ41を移動させてもよい。つまり、ステージ駆動系42は、X軸方向、Y軸方向及びZ軸方向のうちの少なくとも一つに沿ってステージ41を移動させることに加えて又は代えて、X軸方向に沿った回転軸、Y軸方向に沿った回転軸及びZ軸方向に沿った回転軸のうちの少なくとも一つの軸の周りにステージ41を回転させてもよい。尚、θX方向、θY方向及びθZ方向の少なくとも一つに沿ってステージ41を移動させる動作は、ステージ41の姿勢を変更する動作と等価であるとみなしてもよい。 The stage drive system 42 moves the stage 41 . The stage drive system 42 may move the stage 41 along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction, for example. For example, the stage drive system 42 moves the stage 41 along at least one of the θX direction, θY direction and θZ direction in addition to or instead of at least one of the X-axis direction, Y-axis direction and Z-axis direction. You can move it. That is, the stage drive system 42 moves the stage 41 along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction. The stage 41 may be rotated around at least one of the rotation axis along the Y-axis direction and the rotation axis along the Z-axis direction. Note that the operation of moving the stage 41 along at least one of the θX direction, the θY direction, and the θZ direction may be considered equivalent to the operation of changing the attitude of the stage 41 .
 図1に示す例では、ステージ駆動系42は、Y軸方向、θX方向及びθZ方向のそれぞれに沿ってステージ41を移動させる。この場合、ステージ駆動系42は、例えば、ベッド40に取り付けられ(或いは、形成され)且つY軸方向に沿って延びるYガイド部材421と、Yガイド部材421に取り付けられ且つYガイド部材421に沿って移動可能なトラニオン(Yスライダ部材)422と、トラニオン422を移動させるための駆動力を発生するサーボモータ423と、トラニオン422に取り付けられ且つトラニオン422に対してX軸に沿った回転軸(A軸と称されてもよい)周りに回転可能なクレードル424と、クレードル424を回転させるための駆動力を発生する不図示のサーボモータとを備えていてもよい。ステージ41は、不図示のサーボモータが発生する駆動力を用いて、クレードル424に対してZ軸に沿った回転軸(C軸と称されてもよい)周りに回転可能となるように、クレードル424に取り付けられていてもよい。その結果、ステージ41は、トラニオン422の移動に合わせてY軸方向に移動し、クレードル424の回転に合わせてX軸周りに回転し、且つ、Z軸周りに回転する。 In the example shown in FIG. 1, the stage drive system 42 moves the stage 41 along each of the Y-axis direction, the θX direction, and the θZ direction. In this case, the stage drive system 42 includes, for example, a Y guide member 421 attached (or formed) to the bed 40 and extending along the Y-axis direction, and a Y guide member 421 attached to the Y guide member 421 and extending along the Y guide member 421. a trunnion (Y slider member) 422 that is movable by means of a trunnion 422; a servomotor 423 that generates a driving force for moving the trunnion 422; a cradle 424 rotatable about (which may be referred to as an axis) and a servomotor (not shown) that provides a driving force to rotate the cradle 424 . The stage 41 is mounted on the cradle 424 so as to be rotatable around a rotation axis (which may be referred to as a C axis) along the Z axis with respect to the cradle 424 using a driving force generated by a servomotor (not shown). 424 may be attached. As a result, the stage 41 moves in the Y-axis direction along with the movement of the trunnion 422, rotates around the X-axis along with the rotation of the cradle 424, and rotates around the Z-axis.
 ステージ駆動系42がステージ41を移動させると、加工ヘッド2とステージ41(更には、ステージ41に載置されるワークW)との相対的な位置関係が変わる。このため、ステージ駆動系42は、加工ヘッド2とステージ41及びワークWのそれぞれとの相対的な位置関係を変更可能な位置変更装置として機能してもよい。 When the stage drive system 42 moves the stage 41, the relative positional relationship between the processing head 2 and the stage 41 (furthermore, the workpiece W placed on the stage 41) changes. Therefore, the stage drive system 42 may function as a position changing device capable of changing the relative positional relationship between the processing head 2 and the stage 41 and the work W, respectively.
 計測装置5は、計測対象物を計測可能である。例えば、計測装置5は、計測対象物の特性を計測可能であってもよい。計測対象物の特性は、例えば、計測対象物の位置、計測対象物の形状、計測装置5と計測対象物との間の距離、計測対象物の反射率、計測対象物の透過率、計測対象物の温度、及び、計測対象物の表面粗さの少なくとも一つを含んでいてもよい。以下の説明では、計測装置5が計測対象物の形状を計測する例を用いて説明を進める。計測対象物の形状は、計測対象物の表面の形状を含んでいてもよい。計測対象物の表面の形状は、計測対象物の表面の少なくとも一部の形状を含んでいてもよい。 The measurement device 5 can measure the measurement object. For example, the measurement device 5 may be capable of measuring the properties of the measurement object. The characteristics of the object to be measured include, for example, the position of the object to be measured, the shape of the object to be measured, the distance between the measuring device 5 and the object to be measured, the reflectance of the object to be measured, the transmittance of the object to be measured, and the object to be measured. At least one of the temperature of the object and the surface roughness of the object to be measured may be included. In the following description, an example in which the measuring device 5 measures the shape of the object to be measured will be used. The shape of the measurement object may include the shape of the surface of the measurement object. The shape of the surface of the object to be measured may include the shape of at least part of the surface of the object to be measured.
 計測対象物は、例えば、加工ヘッド2が加工するワークWを含んでいてもよい。計測対象物は、例えば、ステージ41に載置される任意の物体を含んでいてもよい。ステージ41に載置される任意の物体は、例えば、ワークWを含んでいてもよい。ステージ41に載置される任意の物体は、基準となる部材を含んでいてもよい。基準となる部材は、例えば、後述する座標基準部材411、走り誤差校正部材91及び基準部材413のうちの少なくとも一つを含んでいてもよい。計測対象物は、例えば、ステージ41を含んでいてもよい。 The object to be measured may include, for example, the work W to be processed by the processing head 2. The object to be measured may include any object placed on the stage 41, for example. Any object placed on the stage 41 may include the work W, for example. Any object placed on the stage 41 may include a reference member. The reference member may include, for example, at least one of a coordinate reference member 411, a running error correction member 91, and a reference member 413, which will be described later. The measurement object may include the stage 41, for example.
 計測装置5は、計測対象物を非接触で計測可能であってもよい。計測装置5は、光学的に計測対象物を計測可能であってもよい。計測装置5は、電気的に計測対象物を計測可能であってもよい。計測装置5は、磁気的に計測対象物を計測可能であってもよい。計測装置5は、熱的に計測対象物を計測可能であってもよい。計測装置5は、計測対象物に物理的に接触するプローブを用いて計測対象物を計測可能であってもよい。 The measuring device 5 may be capable of measuring the object to be measured without contact. The measurement device 5 may be capable of optically measuring the measurement object. The measuring device 5 may be capable of electrically measuring the object to be measured. The measurement device 5 may be capable of magnetically measuring the measurement object. The measuring device 5 may be capable of thermally measuring the object to be measured. The measurement device 5 may be capable of measuring the measurement object using a probe that physically contacts the measurement object.
 以下の説明では、計測装置5が光学的に計測対象物を計測可能である例を用いて説明を進める。具体的には、計測装置5が、計測光ML(後述する図6等参照)を計測対象物に照射し、且つ、計測光MLが照射された計測対象物からの光(以降、“戻り光RL”と称する、図6参照)を検出することで、計測対象物を計測する例を用いて説明を進める。 In the following description, an example in which the measurement device 5 can optically measure the measurement object will be used. Specifically, the measurement device 5 irradiates the measurement light ML (see FIG. 6 and the like, which will be described later) to the measurement target, and the light from the measurement target irradiated with the measurement light ML (hereinafter referred to as “return light RL", see FIG. 6) to measure the object to be measured.
 第1実施形態では、計測対象物を光学的に計測するために、計測装置5は、例えば、計測光源51と、計測ヘッド52と、計測ヘッド53と、出力インタフェース54とを備える。尚、計測装置5の構造及び動作については、後に詳述するが、その概要についてここで簡単に説明する。計測光源51は、計測光MLを生成可能である。計測ヘッド52は、加工ヘッド2に取り付けられる。計測ヘッド52は、加工ヘッド2のうち主軸21とは異なる部分に取り付けられる。つまり、計測ヘッド52は、主軸21に取り付けられない。計測ヘッド53もまた、加工ヘッド2に取り付けられる。但し、計測ヘッド53は、加工ヘッド2の主軸21に取り付けられるという点で、加工ヘッド2の主軸21に取り付けられない計測ヘッド52とは異なる。尚、図1では、図面の簡略化のために、主軸21に取り付けられている計測ヘッド53が図示されていないが、主軸21に取り付けられている計測ヘッド53については、計測装置5の構造及び動作について後に詳述するための図5等に図示されている。計測装置5は、計測ヘッド52及び53を介して、計測光MLを計測対象物に照射する。更に、計測装置5は、計測ヘッド52及び53を介して、計測光MLが照射された計測対象物からの戻り光RLを検出する。出力インタフェース54は、計測装置5の計測結果(つまり、計測対象物からの戻り光RLの検出結果)を制御装置7に出力可能である。 In the first embodiment, the measurement device 5 includes, for example, a measurement light source 51, a measurement head 52, a measurement head 53, and an output interface 54 in order to optically measure the measurement object. The structure and operation of the measuring device 5 will be described in detail later, but the outline thereof will be briefly described here. The measurement light source 51 can generate measurement light ML. The measuring head 52 is attached to the machining head 2 . The measuring head 52 is attached to a portion of the machining head 2 different from the main shaft 21 . In other words, the measuring head 52 is not attached to the spindle 21 . A measuring head 53 is also attached to the machining head 2 . However, the measuring head 53 is different from the measuring head 52 which is not attached to the spindle 21 of the machining head 2 in that it is attached to the spindle 21 of the machining head 2 . Although FIG. 1 does not show the measuring head 53 attached to the main shaft 21 for the sake of simplification of the drawing, the measuring head 53 attached to the main shaft 21 does not show the structure of the measuring device 5 and the It is illustrated in FIG. 5 and the like for detailed description of the operation later. The measuring device 5 irradiates the measuring object with the measuring light ML via the measuring heads 52 and 53 . Furthermore, the measurement device 5 detects the return light RL from the measurement object irradiated with the measurement light ML via the measurement heads 52 and 53 . The output interface 54 can output the measurement result of the measurement device 5 (that is, the detection result of the return light RL from the object to be measured) to the control device 7 .
 工具交換装置6は、主軸21に取り付けられる工具23を交換可能な装置である。例えば、工具交換装置6は、複数の工具23が収容された不図示の工具マガジンから、主軸21に取り付けるべき一の工具23を取り出し、取り出した一の工具23を主軸21に取り付けてもよい。つまり、工具交換装置6は、主軸21に工具23を取り付け可能な取付装置として機能してもよい。工具交換装置6は、主軸21に取り付けられている工具23を主軸21から取り外し、取り外した工具23を不図示の工具マガジンに収容してもよい。つまり、工具交換装置6は、主軸21から工具23を取り外し可能な取外装置として機能してもよい。尚、マシニングセンタ等で用いられる自動工具交換装置(ATC:Automatic Tool Changer)が、工具交換装置6として用いられてもよい。 The tool changer 6 is a device that can change the tool 23 attached to the spindle 21 . For example, the tool changer 6 may take out one tool 23 to be attached to the main shaft 21 from a tool magazine (not shown) containing a plurality of tools 23 and attach the taken out one tool 23 to the main shaft 21 . That is, the tool changer 6 may function as a mounting device capable of mounting the tool 23 on the spindle 21 . The tool changer 6 may remove the tool 23 attached to the spindle 21 from the spindle 21 and store the removed tool 23 in a tool magazine (not shown). That is, the tool changer 6 may function as a removal device capable of removing the tool 23 from the spindle 21 . An automatic tool changer (ATC) used in a machining center or the like may be used as the tool changer 6 .
 第1実施形態では、上述したように、主軸21には、工具23に加えて、計測装置5が備える計測ヘッド53が取り付け可能である。このため、工具交換装置6は、主軸21に計測ヘッド53を取り付け可能な取付装置として機能してもよい。つまり、工具交換装置6は、工具23に加えて計測ヘッド53が収容された不図示の工具マガジン(或いは、工具23が収容された工具マガジンとは異なる、計測ヘッド53が収容された不図示のヘッドマガジン)から、計測ヘッド53を取り出し、取り出した計測ヘッド53を主軸21に取り付けてもよい。また、工具交換装置6は、主軸21から計測ヘッド53を取り外し可能な取外装置として機能してもよい。つまり、工具交換装置6は、主軸21に取り付けられている計測ヘッド53を主軸21から取り外し、取り外した計測ヘッド53を不図示の工具マガジン又は不図示のヘッドマガジンに収容してもよい。 In the first embodiment, as described above, the spindle 21 can be attached with the measuring head 53 included in the measuring device 5 in addition to the tool 23 . Therefore, the tool changer 6 may function as a mounting device capable of mounting the measuring head 53 on the spindle 21 . That is, the tool changer 6 includes a tool magazine (not shown) in which the measuring head 53 is accommodated in addition to the tool 23 (or a tool magazine (not shown) in which the measuring head 53 is accommodated, which is different from the tool magazine in which the tool 23 is accommodated. Alternatively, the measuring head 53 may be taken out from the head magazine) and attached to the spindle 21 . Moreover, the tool changer 6 may function as a removal device capable of removing the measuring head 53 from the spindle 21 . That is, the tool changer 6 may remove the measuring head 53 attached to the spindle 21 from the spindle 21 and store the removed measuring head 53 in a tool magazine (not shown) or a head magazine (not shown).
 制御装置7は、工作機械1aの動作を制御する。例えば、制御装置7は、工作機械1aが備える加工ヘッド2の動作(例えば、主軸21の回転)を制御してもよい。例えば、制御装置7は、工作機械1aが備えるヘッド駆動系3の動作(例えば、加工ヘッド2の移動)を制御してもよい。例えば、制御装置7は、工作機械1aが備えるステージ駆動系42の動作(例えば、ステージ41の移動)を制御してもよい。例えば、制御装置7は、工作機械1aが備える工具交換装置6の動作(つまり、主軸21に取り付けられる工具23及び計測ヘッド53の交換)を制御してもよい。 The control device 7 controls the operation of the machine tool 1a. For example, the control device 7 may control the operation of the machining head 2 provided in the machine tool 1a (for example, rotation of the spindle 21). For example, the control device 7 may control the operation of the head drive system 3 provided in the machine tool 1a (for example, movement of the machining head 2). For example, the control device 7 may control the operation of the stage drive system 42 provided in the machine tool 1a (for example, movement of the stage 41). For example, the control device 7 may control the operation of the tool changer 6 included in the machine tool 1a (that is, the change of the tool 23 attached to the spindle 21 and the measuring head 53).
 制御装置7は、計測装置5の出力インタフェース54から計測装置5の計測結果を取得し、取得した計測結果に基づいて、工作機械1aの動作を制御してもよい。例えば、制御装置7は、計測装置5の計測結果に基づいて、計測対象物の計測データ(例えば、計測対象物の形状に関するデータ)を生成し、生成した計測データに基づいて、工作機械1aの動作を制御してもよい。 The control device 7 may acquire the measurement result of the measuring device 5 from the output interface 54 of the measuring device 5 and control the operation of the machine tool 1a based on the acquired measurement result. For example, the control device 7 generates measurement data of the object to be measured (for example, data related to the shape of the object to be measured) based on the measurement result of the measuring device 5, and controls the machine tool 1a based on the generated measurement data. You can control the action.
 制御装置7は、例えば、演算装置と、記憶装置とを備えていてもよい。演算装置は、例えば、CPU(Central Processing Unit)及びGPU(Graphics Processing Unit)の少なくとも一方を含んでいてもよい。記憶装置は、例えば、メモリを含んでいてもよい。制御装置7は、演算装置がコンピュータプログラムを実行することで、工作機械1aの動作を制御する装置として機能する。このコンピュータプログラムは、制御装置7が行うべき後述する動作を演算装置に行わせる(つまり、実行させる)ためのコンピュータプログラムである。つまり、このコンピュータプログラムは、工作機械1aに後述する動作を行わせるように制御装置7を機能させるためのコンピュータプログラムである。演算装置が実行するコンピュータプログラムは、制御装置7が備える記憶装置(つまり、記録媒体)に記録されていてもよいし、制御装置7に内蔵された又は制御装置7に外付け可能な任意の記憶媒体(例えば、ハードディスクや半導体メモリ)に記録されていてもよい。或いは、演算装置は、実行するべきコンピュータプログラムを、ネットワークインタフェースを介して、制御装置7の外部の装置からダウンロードしてもよい。 The control device 7 may include, for example, an arithmetic device and a storage device. The computing device may include, for example, at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit). A storage device may include, for example, memory. The control device 7 functions as a device that controls the operation of the machine tool 1a as the arithmetic device executes a computer program. This computer program is a computer program for causing the arithmetic device to perform (that is, to execute) an operation to be performed by the control device 7, which will be described later. That is, this computer program is a computer program for causing the control device 7 to function so as to cause the machine tool 1a to perform the operations described later. The computer program executed by the arithmetic device may be recorded in a storage device (that is, a recording medium) included in the control device 7, or may be stored in any storage device built in the control device 7 or external to the control device 7. It may be recorded on a medium (for example, hard disk or semiconductor memory). Alternatively, the computing device may download the computer program to be executed from a device external to the control device 7 via the network interface.
 制御装置7は、工作機械1aの内部に設けられていなくてもよい。例えば、制御装置7は、工作機械1a外にサーバ等として設けられていてもよい。この場合、制御装置7と工作機械1aとは、有線及び/又は無線のネットワーク(或いは、データバス及び/又は通信回線)で接続されていてもよい。有線のネットワークとして、例えばIEEE1394、RS-232x、RS-422、RS-423、RS-485及びUSBの少なくとも一つに代表されるシリアルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、パラレルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、10BASE-T、100BASE-TX及び1000BASE-Tの少なくとも一つに代表されるイーサネット(登録商標)に準拠したインタフェースを用いるネットワークが用いられてもよい。無線のネットワークとして、電波を用いたネットワークが用いられてもよい。電波を用いたネットワークの一例として、IEEE802.1xに準拠したネットワーク(例えば、無線LAN及びBluetooth(登録商標)の少なくとも一方)があげられる。無線のネットワークとして、赤外線を用いたネットワークが用いられてもよい。無線のネットワークとして、光通信を用いたネットワークが用いられてもよい。この場合、制御装置7と工作機械1aとはネットワークを介して各種の情報の送受信が可能となるように構成されていてもよい。また、制御装置7は、ネットワークを介して工作機械1aにコマンドや制御パラメータ等の情報を送信可能であってもよい。工作機械1aは、制御装置7からのコマンドや制御パラメータ等の情報を、上記ネットワークを介して受信する受信装置を備えていてもよい。工作機械1aは、制御装置7に対してコマンドや制御パラメータ等の情報を、上記ネットワークを介して送信する送信装置(つまり、制御装置7に対して情報を出力する出力装置)を備えていてもよい。或いは、制御装置7が行う処理のうちの一部を行う第1制御装置が工作機械1aの内部に設けられている一方で、制御装置7が行う処理のうちの他の一部を行う第2制御装置が工作機械1aの外部に設けられていてもよい。 The control device 7 does not have to be provided inside the machine tool 1a. For example, the control device 7 may be provided as a server or the like outside the machine tool 1a. In this case, the controller 7 and the machine tool 1a may be connected via a wired and/or wireless network (or data bus and/or communication line). As a wired network, a network using a serial bus interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485 and USB may be used. A network using a parallel bus interface may be used as the wired network. As a wired network, a network using an Ethernet (registered trademark)-compliant interface represented by at least one of 10BASE-T, 100BASE-TX, and 1000BASE-T may be used. A network using radio waves may be used as the wireless network. An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of wireless LAN and Bluetooth (registered trademark)). A network using infrared rays may be used as the wireless network. A network using optical communication may be used as the wireless network. In this case, the controller 7 and the machine tool 1a may be configured to be able to transmit and receive various information via a network. Also, the control device 7 may be capable of transmitting information such as commands and control parameters to the machine tool 1a via a network. The machine tool 1a may include a receiving device that receives information such as commands and control parameters from the control device 7 via the network. The machine tool 1a may be equipped with a transmission device (that is, an output device that outputs information to the control device 7) that transmits information such as commands and control parameters to the control device 7 via the network. good. Alternatively, a first control device that performs part of the processing performed by the control device 7 is provided inside the machine tool 1a, while a second control device that performs another part of the processing performed by the control device 7 is provided inside the machine tool 1a. The control device may be provided outside the machine tool 1a.
 尚、制御装置7が実行するコンピュータプログラムを記録する記録媒体としては、CD-ROM、CD-R、CD-RWやフレキシブルディスク、MO、DVD-ROM、DVD-RAM、DVD-R、DVD+R、DVD-RW、DVD+RW及びBlu-ray(登録商標)等の光ディスク、磁気テープ等の磁気媒体、光磁気ディスク、USBメモリ等の半導体メモリ、及び、その他プログラムを格納可能な任意の媒体の少なくとも一つが用いられてもよい。記録媒体には、コンピュータプログラムを記録可能な機器(例えば、コンピュータプログラムがソフトウェア及びファームウェア等の少なくとも一方の形態で実行可能な状態に実装された汎用機器又は専用機器)が含まれていてもよい。更に、コンピュータプログラムに含まれる各処理や機能は、制御装置7(つまり、コンピュータ)がコンピュータプログラムを実行することで制御装置7内に実現される論理的な処理ブロックによって実現されてもよいし、制御装置7が備える所定のゲートアレイ(FPGA、ASIC)等のハードウェアによって実現されてもよいし、論理的な処理ブロックとハードウェアの一部の要素を実現する部分的ハードウェアモジュールとが混在する形式で実現してもよい。 Recording media for recording computer programs executed by the control device 7 include CD-ROMs, CD-Rs, CD-RWs, flexible disks, MOs, DVD-ROMs, DVD-RAMs, DVD-Rs, DVD+Rs, and DVDs. - At least one of optical discs such as RW, DVD+RW and Blu-ray (registered trademark), magnetic media such as magnetic tapes, magneto-optical discs, semiconductor memories such as USB memories, and other arbitrary media that can store programs may be The recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which a computer program is implemented in at least one form of software, firmware, etc., in an executable state). Furthermore, each process and function included in the computer program may be realized by a logical processing block realized in the control device 7 by the control device 7 (that is, computer) executing the computer program, It may be implemented by hardware such as a predetermined gate array (FPGA, ASIC) provided in the control device 7, or a mixture of logical processing blocks and partial hardware modules that implement some elements of hardware. It can be implemented in the form of
 (1-2)計測装置5の構造
 続いて、図5を参照しながら、計測装置5の構造について更に詳細に説明する。図5は、計測装置5(特に、計測ヘッド52及び53)が取り付けられた加工ヘッド2を示す断面図である。
(1-2) Structure of Measuring Device 5 Next, the structure of the measuring device 5 will be described in more detail with reference to FIG. FIG. 5 is a cross-sectional view showing the processing head 2 to which the measuring device 5 (in particular, measuring heads 52 and 53) is attached.
 図5に示すように、計測ヘッド52は、加工ヘッド2に取り付けられる。具体的には、計測ヘッド52は、ヘッド筐体521を備えており、ヘッド筐体521が加工ヘッド2に取り付けられる。図5に示す例では、ヘッド筐体521は、加工ヘッド2のヘッド筐体22に取り付けられている。ヘッド筐体521は、主軸21の回転軸RXから回転軸RXに交差する方向に沿って離れた位置において、加工ヘッド2に取り付けられてもよい。図5に示す例では、ヘッド筐体521は、ヘッド筐体22の側面に取り付けられている。但し、ヘッド筐体521の取り付け位置(つまり、計測ヘッド52の取り付け位置)が図5に示す位置に限定されることはない。 As shown in FIG. 5, the measuring head 52 is attached to the processing head 2. Specifically, the measurement head 52 includes a head housing 521 and the head housing 521 is attached to the processing head 2 . In the example shown in FIG. 5 , the head housing 521 is attached to the head housing 22 of the processing head 2 . The head housing 521 may be attached to the machining head 2 at a position separated from the rotation axis RX of the main shaft 21 along the direction intersecting the rotation axis RX. In the example shown in FIG. 5 , the head housing 521 is attached to the side surface of the head housing 22 . However, the mounting position of the head housing 521 (that is, the mounting position of the measurement head 52) is not limited to the position shown in FIG.
 計測ヘッド53もまた、加工ヘッド2に取り付けられる。具体的には、計測ヘッド53は、ヘッド筐体531を備えており、ヘッド筐体531が加工ヘッド2に取り付けられる。特に、ヘッド筐体531は、加工ヘッド2の主軸21に取り付けられる。具体的には、ヘッド筐体531は、主軸21が備える取付部211に取り付けられる。図5に示す例では、穴212が形成された取付部211を主軸21が備えているため、穴212に対して相補な形状を有するヘッド筐体531の突起部分に相当するシャンク530が取付部211の穴212に嵌め込まれる(或いは、挿入される)ことで、ヘッド筐体531が主軸21に取り付けられる。取付部211は、ヘッド筐体531を保持してもよい。この場合、取付部211は、ヘッド筐体531を保持するために、機械的なチャック、静電チャック及び真空吸着チャック等の少なくとも一つを備えていてもよい。 A measuring head 53 is also attached to the processing head 2 . Specifically, the measurement head 53 includes a head housing 531 and the head housing 531 is attached to the processing head 2 . In particular, the head housing 531 is attached to the spindle 21 of the machining head 2 . Specifically, the head housing 531 is attached to the attachment portion 211 provided on the main shaft 21 . In the example shown in FIG. 5, since the main shaft 21 is provided with the mounting portion 211 in which the hole 212 is formed, the shank 530 corresponding to the projecting portion of the head housing 531 having a shape complementary to the hole 212 is the mounting portion. The head housing 531 is attached to the main shaft 21 by being fitted (or inserted) into the hole 212 of 211 . The mounting portion 211 may hold the head housing 531 . In this case, the mounting portion 211 may include at least one of a mechanical chuck, an electrostatic chuck, a vacuum chuck, and the like to hold the head housing 531 .
 取付部211に取り付けられたヘッド筐体531(つまり、計測ヘッド53)は、取付部211から取り外し可能である。つまり、ヘッド筐体531(つまり、計測ヘッド53)は、主軸21に対して着脱可能に取り付けられる。例えば、計測ヘッド53が主軸21に取り付けられる場合は、工具23は、主軸21から取り外される。一方で、工具23が主軸21に取り付けられる場合は、計測ヘッド53は、主軸21から取り外される。尚、上述したように、ヘッド筐体531の取り付け及び取り外し、並びに、工具23の取り付け及び取り外しは、工具交換装置6によって行われる。但し、工作機械1aのオペレータが、主軸21に対する計測ヘッド53の取り付け及び取り外し、並びに、主軸21に対する工具23の取り付け及び取り外しのうちの少なくとも一つを手動で行ってもよい。 The head housing 531 (that is, the measurement head 53) attached to the attachment portion 211 is removable from the attachment portion 211. That is, the head housing 531 (that is, the measurement head 53) is detachably attached to the spindle 21. As shown in FIG. For example, if the measuring head 53 is attached to the spindle 21 , the tool 23 is removed from the spindle 21 . On the other hand, when the tool 23 is attached to the spindle 21 , the measuring head 53 is removed from the spindle 21 . As described above, attachment and detachment of the head housing 531 and attachment and detachment of the tool 23 are performed by the tool changer 6 . However, the operator of the machine tool 1 a may manually perform at least one of attaching and detaching the measuring head 53 to and from the spindle 21 and attaching and detaching the tool 23 to and from the spindle 21 .
 一方で、加工ヘッド2に取り付けられたヘッド筐体521(つまり、計測ヘッド52)は、加工ヘッド2から取り外し可能でなくてもよい。つまり、計測ヘッド52は、加工ヘッド2に着脱可能に取り付けられていなくてもよい。計測ヘッド52は、加工ヘッド2が工具23を用いてワークWを加工する加工期間中においても、加工ヘッド2に取り付けられたままであってもよい。但し、計測ヘッド52は、加工ヘッド2に着脱可能に取り付けられてもよい。 On the other hand, the head housing 521 (that is, the measurement head 52) attached to the processing head 2 does not have to be removable from the processing head 2. That is, the measurement head 52 does not have to be detachably attached to the processing head 2 . The measuring head 52 may remain attached to the machining head 2 even during the machining period in which the machining head 2 processes the workpiece W using the tool 23 . However, the measurement head 52 may be detachably attached to the processing head 2 .
 計測ヘッド52は、加工ヘッド2に対して固定された位置に取り付けられてもよい。つまり、計測ヘッド52は、加工ヘッド2と計測ヘッド52との位置関係が固定される(つまり、変化しない)ように加工ヘッド2に取り付けられてもよい。ヘッド筐体521(つまり、計測ヘッド52)は、ヘッド筐体22(つまり、加工ヘッド2)に直接的に固定して取り付けられていてもよい。ヘッド筐体521は、ヘッド筐体22に間接的に固定して取り付けられていてもよい。例えば、ヘッド筐体521は、一方がヘッド筐体22に直接的に固定された支持部材の他方に固定されていてもよい。ヘッド筐体521(つまり、計測ヘッド52)は、ヘッド筐体22に直接的に固定されていても間接的に固定されていても、加工ヘッド2に対して固定された位置に取り付けられているといえる。尚、計測ヘッド52が加工ヘッド2に取り付けられる場合には、加工ヘッド2とは独立して計測ヘッド52を移動させるための駆動系を計測装置5が備えていない限りは、通常は、加工ヘッド2と計測ヘッド52との位置関係が固定される。 The measuring head 52 may be attached at a fixed position with respect to the processing head 2 . That is, the measuring head 52 may be attached to the processing head 2 so that the positional relationship between the processing head 2 and the measuring head 52 is fixed (that is, does not change). The head housing 521 (that is, the measurement head 52) may be fixed and attached directly to the head housing 22 (that is, the processing head 2). The head housing 521 may be indirectly fixedly attached to the head housing 22 . For example, the head housing 521 may be fixed to the other of the support members, one of which is directly fixed to the head housing 22 . The head housing 521 (that is, the measurement head 52) is attached at a fixed position with respect to the processing head 2, whether directly or indirectly fixed to the head housing 22. It can be said. When the measuring head 52 is attached to the processing head 2, unless the measuring device 5 has a drive system for moving the measuring head 52 independently of the processing head 2, the processing head is normally 2 and the measuring head 52 are fixed.
 但し、計測ヘッド52は、加工ヘッド2との位置関係が固定された位置に取り付けられなくてもよい。加工ヘッド2と計測ヘッド52との位置関係が可変であってもよい。計測装置5は、加工ヘッド2とは独立して計測ヘッド52を移動させるための駆動系を備えていてもよい。例えば、この駆動系は、加工ヘッド2と計測ヘッド52とを回転軸RXに沿って相対移動させるように構成されていてもよい。例えば、加工ヘッド2が工具23でワークWを加工する加工期間中において、計測ヘッド52がワークWの加工を妨げる可能性がある。具体的には、例えば、工具23がワークWに接触する前に、計測ヘッド52がワークW(或いは、他の物体)に接触すると、工具23がワークWに接触することができず、結果として、計測ヘッド52がワークWの加工を妨げてしまう。そこで、計測装置5が計測対象物を計測する計測期間の少なくとも一部における加工ヘッド2と計測ヘッド52との位置関係と、加工ヘッド2がワークWを加工する加工期間の少なくとも一部における加工ヘッド2と計測ヘッド52との位置関係とが異なっていてもよい。例えば、加工期間の少なくとも一部において、加工ヘッド2と計測ヘッド52との位置関係が、計測ヘッド52がワークWの加工を妨げることがない第1の関係に設定され、計測期間の少なくとも一部において、加工ヘッド2と計測ヘッド52との位置関係が、第1の関係とは異なる第2の関係(例えば、計測装置5が計測ヘッド52を用いて計測対象物を計測することが可能な第2の関係)に設定されてもよい。 However, the measuring head 52 does not have to be attached at a position where the positional relationship with the processing head 2 is fixed. The positional relationship between the processing head 2 and the measuring head 52 may be variable. The measuring device 5 may have a drive system for moving the measuring head 52 independently of the processing head 2 . For example, this drive system may be configured to relatively move the processing head 2 and the measurement head 52 along the rotation axis RX. For example, the measuring head 52 may interfere with the machining of the workpiece W during the machining period in which the machining head 2 is machining the workpiece W with the tool 23 . Specifically, for example, if the measuring head 52 contacts the work W (or another object) before the tool 23 contacts the work W, the tool 23 cannot contact the work W, resulting in , the measuring head 52 interferes with the machining of the workpiece W. Therefore, the positional relationship between the machining head 2 and the measuring head 52 during at least part of the measurement period during which the measuring device 5 measures the object to be measured, and the machining head during at least part of the machining period during which the machining head 2 processes the workpiece W 2 and the measuring head 52 may be different. For example, during at least part of the machining period, the positional relationship between the machining head 2 and the measuring head 52 is set to the first relationship in which the measuring head 52 does not interfere with the machining of the workpiece W, and at least part of the measuring period. , the positional relationship between the processing head 2 and the measurement head 52 is a second relationship different from the first relationship (for example, a second relationship in which the measurement device 5 can measure the measurement object using the measurement head 52). 2 relationship).
 計測ヘッド52及び53が加工ヘッド2に取り付けられている場合には、加工ヘッド2の移動に伴い、計測ヘッド52及び53のそれぞれもまた移動する。つまり、計測ヘッド52及び53のそれぞれは、加工ヘッド2と同様に移動する。このため、加工ヘッド2を移動させるヘッド駆動系3は、計測ヘッド52及び53のそれぞれを移動させるためのヘッド駆動系として機能しているとみなしてもよい。更に、計測ヘッド53が主軸21に取り付けられている場合には、主軸21の回転に伴い、計測ヘッド53もまた回転軸RX周りに回転してもよい。 When the measuring heads 52 and 53 are attached to the processing head 2, each of the measuring heads 52 and 53 also moves as the processing head 2 moves. That is, each of the measuring heads 52 and 53 moves like the processing head 2 . Therefore, the head drive system 3 that moves the processing head 2 may be regarded as functioning as a head drive system that moves the measurement heads 52 and 53, respectively. Furthermore, when the measurement head 53 is attached to the main shaft 21, the measurement head 53 may also rotate around the rotation axis RX as the main shaft 21 rotates.
 計測ヘッド52は、光学系522を更に備える。光学系522は、ヘッド筐体521の内部の収容空間に収容される。このため、光学系522は、ヘッド筐体521を介して加工ヘッド2に取り付けられる。このようにヘッド筐体521に光学系522が収容されると、ワークWの加工によって生ずる不要物質(例えば、切削くずや切削液等)が光学系522に付着することが防止される。 The measurement head 52 further includes an optical system 522. The optical system 522 is housed in a housing space inside the head housing 521 . Therefore, the optical system 522 is attached to the processing head 2 via the head housing 521 . When the optical system 522 is accommodated in the head housing 521 in this manner, unwanted substances (eg, cutting waste, cutting fluid, etc.) generated by machining the workpiece W are prevented from adhering to the optical system 522 .
 計測ヘッド53は、光学系532を更に備える。光学系532は、ヘッド筐体531の内部の収容空間に収容される。このため、光学系532は、ヘッド筐体531を介して加工ヘッド2に取り付けられる。特に、光学系532は、ヘッド筐体531を介して加工ヘッド2の主軸21に着脱可能に取り付けられる。このようにヘッド筐体531に光学系532が収容されると、ワークWの加工によって生ずる不要物質(例えば、切削くずや切削液等)が光学系532に付着することが防止される。 The measurement head 53 further includes an optical system 532. The optical system 532 is housed in a housing space inside the head housing 531 . Therefore, the optical system 532 is attached to the processing head 2 via the head housing 531 . In particular, the optical system 532 is detachably attached to the spindle 21 of the machining head 2 via the head housing 531 . When the optical system 532 is accommodated in the head housing 531 in this manner, unnecessary substances (eg, cutting waste, cutting fluid, etc.) generated by machining the workpiece W are prevented from adhering to the optical system 532 .
 光学系522及び532は、計測光源51からの計測光MLを計測対象物に照射するために用いられる。更に、光学系522及び532は、計測対象物からの戻り光RLを検出するために用いられる。以下、図6を参照しながら、光学系522及び523の構造について更に説明する。図6は、光学系522及び532の構造を、計測光ML及び戻り光RLの光路と共に示す断面図である。 The optical systems 522 and 532 are used to irradiate the measurement object with the measurement light ML from the measurement light source 51 . Further, optical systems 522 and 532 are used to detect return light RL from the measurement object. The structure of the optical systems 522 and 523 will be further described below with reference to FIG. FIG. 6 is a cross-sectional view showing the structures of the optical systems 522 and 532 together with the optical paths of the measurement light ML and the return light RL.
 図6に示すように、計測光源51が生成した計測光MLは、計測光源51から、光ファイバ等の不図示の光伝送部材を介して、光学系522に入射する。つまり、光学系522は、計測光源51からの計測光MLを受け取る(受光する)。光学系522に入射した計測光MLは、光学系522を通過する。光学系522を通過した計測光MLは、光学系522から光学系532に向けて射出される。つまり、光学系522は、光学系522に入射した計測光MLを通過させ、且つ、光学系532に向けて計測光MLを射出する。尚、計測光源51は、計測ヘッド52の外部に設けられ、計測光源51からの計測光MLを不図示の光伝送部材を介して、光学系522に入射させてもよい。また、計測光源51は、計測ヘッド52の内部に設けられていてもよい。 As shown in FIG. 6, the measurement light ML generated by the measurement light source 51 enters the optical system 522 from the measurement light source 51 via an optical transmission member (not shown) such as an optical fiber. That is, the optical system 522 receives (receives) the measurement light ML from the measurement light source 51 . The measurement light ML that has entered the optical system 522 passes through the optical system 522 . The measurement light ML that has passed through the optical system 522 is emitted from the optical system 522 toward the optical system 532 . That is, the optical system 522 passes the measurement light ML that has entered the optical system 522 and emits the measurement light ML toward the optical system 532 . The measurement light source 51 may be provided outside the measurement head 52, and the measurement light ML from the measurement light source 51 may enter the optical system 522 via an optical transmission member (not shown). Also, the measurement light source 51 may be provided inside the measurement head 52 .
 光学系522がヘッド筐体521に収容されているため、ヘッド筐体521には、光学系522から光学系532に向けて射出される計測光MLが通過可能な開口5211が形成されていてもよい。但し、ワークWの加工によって生ずる不要物質が開口5211を介してヘッド筐体521の内部の収容空間に進入すると、不要物質が光学系522に付着する可能性がある。そこで、ヘッド筐体521は、開口5211を少なくとも部分的にふさぐ(つまり、閉じる)ことが可能な蓋部材5212を備えていてもよい。開口5211は、計測光MLが光学系522から射出される期間(つまり、計測装置5が計測対象物を計測する計測期間であり、計測ヘッド53が主軸21に取り付けられている期間)の少なくとも一部には、蓋部材5212によってふさがれていなくてもよい。開口5211は、工作機械1がワークWを加工する加工期間(つまり、工具23が主軸21に取り付けられている期間)の少なくとも一部には、蓋部材5212によってふさがれていてもよい。尚、蓋部材5212は、計測光ML及び戻り光RLに透過性を有する光透過部材であってもよい。例えば、蓋部材5212は、ガラス部材でもよいし、他の部材であってもよい。蓋部材5212が計測光ML及び戻り光RLに透過性を有する光透過部材の場合は、開口5211を蓋部材5212で常時、ふさいでいてもよい。蓋部材5212は、開口5211を常時、塞ぐ第1の蓋部材としての光透過部材と、第1の蓋部材(光透過部材)への不要物質の付着を防止する、開口5211(第1の蓋部材)に対して開閉可能な第2の蓋部材を含んでいてもよい。 Since the optical system 522 is accommodated in the head housing 521, the head housing 521 is formed with an opening 5211 through which the measurement light ML emitted from the optical system 522 toward the optical system 532 can pass. good. However, if unnecessary substances generated by processing the workpiece W enter the accommodation space inside the head housing 521 through the opening 5211 , the unnecessary substances may adhere to the optical system 522 . Therefore, the head housing 521 may include a lid member 5212 capable of at least partially covering (that is, closing) the opening 5211 . The opening 5211 is at least part of the period during which the measurement light ML is emitted from the optical system 522 (that is, the measurement period during which the measurement device 5 measures the object to be measured, and the measurement head 53 is attached to the spindle 21). The part may not be closed by the lid member 5212 . The opening 5211 may be closed by the lid member 5212 during at least a part of the machining period when the machine tool 1 machines the workpiece W (that is, the period during which the tool 23 is attached to the spindle 21). Note that the lid member 5212 may be a light transmitting member having transparency to the measurement light ML and the return light RL. For example, the lid member 5212 may be a glass member or another member. If the lid member 5212 is a light-transmitting member that transmits the measurement light ML and the return light RL, the opening 5211 may be closed with the lid member 5212 at all times. The lid member 5212 includes a light-transmitting member as a first lid member that always closes the opening 5211 and an opening 5211 (first lid member) that prevents unnecessary substances from adhering to the first lid member (light-transmitting member). member) that can be opened and closed.
 光学系522から光学系532に向けて射出された計測光MLは、光学系532に入射する。つまり、光学系532は、光学系522から射出される計測光MLを受け取る(受光する)。光学系532に入射した計測光MLは、光学系532を通過する。光学系532を通過した計測光MLは、光学系532から計測対象物に向けて射出される。つまり、光学系532は、光学系532に入射した計測光MLを通過させ、且つ、計測対象物に向けて計測光MLを射出する。 The measurement light ML emitted from the optical system 522 toward the optical system 532 enters the optical system 532 . That is, the optical system 532 receives (receives) the measurement light ML emitted from the optical system 522 . The measurement light ML that has entered the optical system 532 passes through the optical system 532 . The measurement light ML that has passed through the optical system 532 is emitted from the optical system 532 toward the object to be measured. That is, the optical system 532 allows the measurement light ML that has entered the optical system 532 to pass therethrough, and emits the measurement light ML toward the object to be measured.
 光学系532がヘッド筐体531に収容されているため、ヘッド筐体531には、光学系522から光学系532に入射する計測光MLが通過可能な開口5311と、光学系532から計測対象物に向けて射出される計測光MLが通過可能な開口5312とが形成されていてもよい。尚、上述したように、工作機械1がワークWを加工する加工期間は、工具23が主軸21に取り付けられるがゆえに、計測ヘッド53が主軸21に取り付けられない。このため、ワークWの加工によって生ずる不要物質(例えば、切削くずや切削液等)が開口5311及び5312の少なくとも一方を介してヘッド筐体531の内部空間に進入する可能性は低い。このため、ヘッド筐体531は、開口5311を少なくとも部分的にふさぐことが可能な蓋部材と、開口5312を少なくとも部分的にふさぐことが可能な蓋部材とを備えていなくてもよい。但し、ヘッド筐体531は、開口5311を少なくとも部分的にふさぐことが可能な蓋部材と、開口5312を少なくとも部分的にふさぐことが可能な蓋部材との少なくとも一方を備えていてもよい。尚、ヘッド筐体531は、開口5311の少なくとも一部をふさぐ蓋部材を有していてもよい。蓋部材は、計測光ML及び戻り光RLに透過性を有する光透過部材であってもよい。例えば、蓋部材は、ガラス部材でもよいし、他の部材であってもよい。蓋部材が光透過部材の場合は、開口5311を蓋部材で常時、ふさいでいてもよい。蓋部材は、開口5311を常時、塞ぐ第1の蓋部材としての光透過性部材と、第1の蓋部材への不要物質の付着を防止する、開口5311(第1の蓋部材)に対して開閉可能な第2の蓋部材を含んでいてもよい。 Since the optical system 532 is accommodated in the head housing 531, the head housing 531 has an aperture 5311 through which the measurement light ML that enters the optical system 532 from the optical system 522 can pass, and an opening 5311 that passes through the optical system 532 to the measurement object. An aperture 5312 may be formed through which the measurement light ML that is emitted toward the aperture 5312 can pass. As described above, the measuring head 53 is not attached to the spindle 21 during the machining period when the machine tool 1 is machining the workpiece W because the tool 23 is attached to the spindle 21 . Therefore, there is a low possibility that unnecessary substances (for example, cutting waste, cutting fluid, etc.) generated by machining the workpiece W enter the internal space of the head housing 531 through at least one of the openings 5311 and 5312 . Therefore, the head housing 531 may not include a lid member capable of at least partially covering the opening 5311 and a lid member capable of at least partially covering the opening 5312 . However, the head housing 531 may include at least one of a lid member capable of at least partially covering the opening 5311 and a lid member capable of at least partially covering the opening 5312 . Note that the head housing 531 may have a lid member that covers at least part of the opening 5311 . The lid member may be a light transmitting member that is transparent to the measurement light ML and the return light RL. For example, the lid member may be a glass member or another member. When the lid member is a light-transmitting member, the opening 5311 may always be covered with the lid member. The lid member consists of a light-transmitting member as a first lid member that always closes the opening 5311 and an opening 5311 (first lid member) that prevents unnecessary substances from adhering to the first lid member. A second lid member that can be opened and closed may be included.
 計測光MLが計測対象物(図6に示す例では、ワークW)に照射されると、計測対象物からは、計測光MLの照射に起因して発生する光が射出される。計測光MLの照射に起因して発生する光は、計測対象物に照射された計測光MLの反射光を含んでいてもよい。計測光MLの照射に起因して発生する光は、計測対象物に照射された計測光MLの散乱光を含んでいてもよい。計測光MLの照射に起因して発生する光は、計測対象物に照射された計測光MLの透過光を含んでいてもよい。計測光MLの照射に起因して発生する光は、計測対象物に照射された計測光MLの回折光を含んでいてもよい。 When the measurement light ML irradiates the measurement target (workpiece W in the example shown in FIG. 6), the measurement target emits light caused by the irradiation of the measurement light ML. The light generated due to the irradiation of the measurement light ML may include reflected light of the measurement light ML with which the object to be measured is irradiated. The light generated due to the irradiation of the measurement light ML may include scattered light of the measurement light ML irradiated to the measurement object. The light generated as a result of the irradiation of the measurement light ML may include transmitted light of the measurement light ML with which the object to be measured is irradiated. The light generated due to the irradiation of the measurement light ML may include the diffracted light of the measurement light ML with which the object to be measured is irradiated.
 計測光MLの照射に起因して発生する光の少なくとも一部は、計測対象物からの戻り光RLとして、開口5312を介して光学系532に入射する。つまり、光学系532は、計測対象物からの戻り光RLを受け取る(受光する)。光学系532に入射した戻り光RLは、光学系532を通過し、光学系532から光学系522に向けて開口5311を介して射出される。つまり、光学系532は、光学系532に入射した戻り光RLを通過させ、光学系522に向けて戻り光RLを射出する。 At least part of the light generated due to the irradiation of the measurement light ML enters the optical system 532 via the aperture 5312 as the return light RL from the measurement object. That is, the optical system 532 receives (receives) the return light RL from the object to be measured. The return light RL that has entered the optical system 532 passes through the optical system 532 and is emitted from the optical system 532 toward the optical system 522 through an aperture 5311 . In other words, the optical system 532 allows the return light RL incident on the optical system 532 to pass therethrough and emits the return light RL toward the optical system 522 .
 光学系532から光学系522に向けて射出された戻り光RLは、開口5211を介して光学系522に入射する。つまり、光学系522は、光学系532から射出される戻り光RLを受け取る(受光する)。光学系522に入射した戻り光RLは、光学系522を通過する。光学系522を通過した戻り光RLは、光学系522から検出素子5232(後述の図7参照)に向けて射出される。つまり、光学系522は、光学系522に入射した戻り光RLを通過させ、且つ、検出素子5232に向けて戻り光RLを射出する。 The return light RL emitted from the optical system 532 toward the optical system 522 enters the optical system 522 through the aperture 5211 . That is, the optical system 522 receives (receives) the return light RL emitted from the optical system 532 . The return light RL that has entered the optical system 522 passes through the optical system 522 . The return light RL that has passed through the optical system 522 is emitted from the optical system 522 toward the detection element 5232 (see FIG. 7 described later). That is, the optical system 522 allows the return light RL incident on the optical system 522 to pass therethrough, and emits the return light RL toward the detection element 5232 .
 光学系522は、計測光MLを光学系532に射出し且つ光学系532から戻り光RLを受け取るために、光学系5221と、ガルバノミラー5222と、ミラー5223とを備える。光学系522は、計測光MLを計測対象物に向けて射出し、計測対象物から戻り光RLを受け取り且つ戻り光RLを光学系532に向けて射出するために、ミラー5321と、fθレンズ5322とを備える。尚、計測装置5は、ガルバノミラー5222とfθレンズ5322の入射瞳とを光学的に共役にするリレー光学系を備えていてもよい。リレー光学系は、複数の光学部材を有していてもよい。複数の光学部材の一部は、光学系522に含まれていてもよい。複数の光学部材の他の一部は、光学系532に含まれていてもよい。例えば、複数の光学部材の一部は、ミラー5321からミラー5223への戻り光RLの光路に配置され且つ計測ヘッド52の内部に設けられていてもよい(光学系522に含まれていてもよい)。複数の光学部材の他の一部は、ミラー5321からミラー5223への戻り光RLの光路に配置され且つ計測ヘッド53の内部に設けられていてもよい(光学系532に含まれていてもよい)。
更に、光学系5221は、光学系5221の構造を示す断面図である図7に示すように、ビームスプリッタ52211と、ビームスプリッタ52212と、ビームスプリッタ52213と、ミラー52214とを備える。以下、図6に加えて図7を参照しながら、光学系522及び532について更に詳細に説明する。
The optical system 522 includes an optical system 5221 , a galvanomirror 5222 and a mirror 5223 to emit the measurement light ML to the optical system 532 and receive the return light RL from the optical system 532 . The optical system 522 includes a mirror 5321 and an fθ lens 5322 in order to emit the measurement light ML toward the measurement object, receive the return light RL from the measurement object, and emit the return light RL toward the optical system 532 . and The measurement device 5 may include a relay optical system that optically conjugates the galvanomirror 5222 and the entrance pupil of the fθ lens 5322 . The relay optical system may have multiple optical members. Some of the multiple optical members may be included in the optical system 522 . Other parts of the plurality of optical members may be included in the optical system 532 . For example, some of the plurality of optical members may be arranged in the optical path of the return light RL from the mirror 5321 to the mirror 5223 and provided inside the measurement head 52 (may be included in the optical system 522). ). Another part of the plurality of optical members may be arranged on the optical path of the return light RL from the mirror 5321 to the mirror 5223 and provided inside the measurement head 53 (may be included in the optical system 532). ).
Further, the optical system 5221 includes a beam splitter 52211, a beam splitter 52212, a beam splitter 52213, and a mirror 52214, as shown in FIG. 7, which is a cross-sectional view showing the structure of the optical system 5221. The optical systems 522 and 532 will be described in more detail below with reference to FIG. 7 in addition to FIG.
 図7に示すように、計測光源51からの計測光MLは、ビームスプリッタ52211に入射する。第1実施形態では、二つの計測光源51(具体的には、計測光源51#1及び51#2)がそれぞれ生成した二つの計測光MLがビームスプリッタ52211に入射する。このため、計測装置5は、計測光源51#1と、計測光源51#2とを備える。二つの計測光源51は、互いに位相同期され且つ干渉性のある二つの計測光MLをそれぞれ射出してもよい。但し、計測装置5は、単一の計測光源51を備えていてもよい。 As shown in FIG. 7, the measurement light ML from the measurement light source 51 is incident on the beam splitter 52211. In the first embodiment, two measurement light beams ML respectively generated by the two measurement light sources 51 (specifically, the measurement light sources 51 # 1 and 51 # 2 ) enter the beam splitter 52211 . Therefore, the measurement device 5 includes a measurement light source 51#1 and a measurement light source 51#2. The two measurement light sources 51 may each emit two measurement light beams ML that are phase-synchronized with each other and have coherence. However, the measurement device 5 may have a single measurement light source 51 .
 二つの計測光源51は、発振周波数が異なる。このため、二つの計測光源51がそれぞれ射出する二つの計測光MLは、周波数が異なる二つの計測光MLとなる。計測光源51がパルス光を計測光MLとして生成する場合には、二つの計測光源51がそれぞれ射出する二つの計測光MLは、パルス周波数(例えば、単位時間当たりのパルス光の数であり、パルス光の発光周期の逆数)が異なる二つの計測光MLとなる。一例として、計測光源51#1は、パルス周波数が25GHzとなる計測光MLを射出し、計測光源51#2は、パルス周波数が25GHz+α(例えば、+100kHz)となる計測光MLを射出してもよい。尚、以下の説明では、計測光源51#1が生成する計測光MLを、“計測光ML#1”と称し、計測光源51#2が生成する計測光MLを、“計測光ML#2”と称する。但し、二つの計測光源51は、発振周波数が同一であってもよい。 The two measurement light sources 51 have different oscillation frequencies. Therefore, the two measurement light beams ML emitted by the two measurement light sources 51 are two measurement light beams ML having different frequencies. When the measurement light source 51 generates pulsed light as the measurement light ML, the two measurement light beams ML emitted by the two measurement light sources 51 have a pulse frequency (for example, the number of pulsed light beams per unit time, and a pulse The two measurement lights ML differ in the reciprocal of the light emission period). As an example, the measurement light source 51#1 may emit measurement light ML with a pulse frequency of 25 GHz, and the measurement light source 51#2 may emit measurement light ML with a pulse frequency of 25 GHz+α (eg, +100 kHz). . In the following description, the measurement light ML generated by the measurement light source 51#1 is referred to as "measurement light ML#1", and the measurement light ML generated by the measurement light source 51#2 is referred to as "measurement light ML#2". called. However, the two measurement light sources 51 may have the same oscillation frequency.
 計測光源51は、光コム光源を含む。光コム光源は、周波数軸上で等間隔に並んだ周波数成分を含む光(以降、“光周波数コム”と称する)をパルス光として生成可能な光源である。この場合、計測光源51は、周波数軸上で等間隔に並んだ周波数成分を含むパルス光を、計測光MLとして射出する。但し、計測光源51は、光コム光源とは異なる光源を含んでいてもよい。 The measurement light source 51 includes an optical comb light source. The optical comb light source is a light source capable of generating light containing frequency components arranged at equal intervals on the frequency axis (hereinafter referred to as "optical frequency comb") as pulsed light. In this case, the measurement light source 51 emits, as the measurement light ML, pulsed light containing frequency components arranged at equal intervals on the frequency axis. However, the measurement light source 51 may include a light source different from the optical comb light source.
 ビームスプリッタ52211に入射した二つの計測光ML#1及びML#2は、ビームスプリッタ52212に向けて射出される。つまり、ビームスプリッタ52211は、夫々異なる方向からビームスプリッタ52211に入射した計測光ML2#1及びML#2を、同じ方向(つまり、ビームスプリッタ52212が配置されている方向)に向けて射出する。 The two measurement beams ML#1 and ML#2 that have entered the beam splitter 52211 are emitted toward the beam splitter 52212. That is, the beam splitter 52211 emits the measurement light beams ML2#1 and ML#2, which are incident on the beam splitter 52211 from different directions, in the same direction (that is, the direction in which the beam splitter 52212 is arranged).
 ビームスプリッタ52212は、ビームスプリッタ52212に入射した計測光ML#1の一部である計測光ML#1-1を、計測装置5が備える検出素子5231に向けて射出する。検出素子5231は、ヘッド筐体521に収容されていてもよい。検出素子5231は、光学系5221に含まれていてもよい。ビームスプリッタ52212は、ビームスプリッタ52212に入射した計測光ML#1の他の一部である計測光ML#1-2をビームスプリッタ52213に向けて射出する。ビームスプリッタ52212は、ビームスプリッタ52212に入射した計測光ML2#2の一部である計測光ML#2-1を検出素子5231に向けて射出する。ビームスプリッタ52212は、ビームスプリッタ52212に入射した計測光ML#2の他の一部である計測光ML#2-2をビームスプリッタ52213に向けて射出する。 The beam splitter 52212 emits the measurement light ML#1-1, which is part of the measurement light ML#1 incident on the beam splitter 52212, toward the detection element 5231 provided in the measurement device 5. The detection element 5231 may be housed in the head housing 521 . The detection element 5231 may be included in the optical system 5221 . The beam splitter 52212 emits, toward the beam splitter 52213, measurement light ML#1-2, which is another part of the measurement light ML#1 incident on the beam splitter 52212. FIG. The beam splitter 52212 emits the measurement light ML#2-1, which is part of the measurement light ML2#2 incident on the beam splitter 52212, toward the detection element 5231. FIG. The beam splitter 52212 emits, toward the beam splitter 52213, the measurement light ML#2-2, which is another part of the measurement light ML#2 incident on the beam splitter 52212.
 ビームスプリッタ52212から射出された計測光ML#1-1及びML#2-1は、検出素子5231に入射する。検出素子5231は、計測光ML#1-1と計測光ML#2-1とを検出する。特に、検出素子5231は、計測光ML#1-1と計測光ML#2-1とが干渉することで生成される干渉光を検出する。このため、計測光ML#1-1及びML#2-1を検出素子5231に向けて射出するビームスプリッタ52212は、計測光ML#1-1及びML#2-1を干渉させる干渉光学系として機能しているとみなしてもよい。具体的には、検出素子5231は、干渉光を受光することで、干渉光を検出する。このため、検出素子5231は、光を受光可能な受光素子(例えば、光電変換素子)を備えていてもよい。検出素子5231の検出結果は、計測装置5の計測結果の一部として、出力インタフェース54を介して、制御装置7に出力される。 The measurement light beams ML#1-1 and ML#2-1 emitted from the beam splitter 52212 enter the detection element 5231. The detection element 5231 detects the measurement light ML#1-1 and the measurement light ML#2-1. In particular, the detection element 5231 detects interference light generated by interference between the measurement light ML#1-1 and the measurement light ML#2-1. Therefore, the beam splitter 52212 that emits the measurement light beams ML#1-1 and ML#2-1 toward the detection element 5231 functions as an interference optical system that interferes the measurement light beams ML#1-1 and ML#2-1. You can assume it works. Specifically, the detection element 5231 detects the interference light by receiving the interference light. Therefore, the detection element 5231 may include a light receiving element (for example, a photoelectric conversion element) capable of receiving light. The detection result of the detection element 5231 is output to the control device 7 via the output interface 54 as part of the measurement result of the measurement device 5 .
 尚、光学系5221が計測光ML#1-1及びML#2-1の検出のために用いられるため、光学系5221は、検出側光学系と称されてもよい。また、検出側光学系と検出素子5231とが、一つの光学系(計測光学系と称されてもよい)を構成していてもよい。 Since the optical system 5221 is used for detecting the measurement light beams ML#1-1 and ML#2-1, the optical system 5221 may be called a detection side optical system. Also, the detection-side optical system and the detection element 5231 may constitute one optical system (which may be referred to as a measurement optical system).
 ビームスプリッタ52212から射出された計測光ML#1-2及びML#2-2は、ビームスプリッタ52213に入射する。ビームスプリッタ52213は、ビームスプリッタ52213に入射した計測光ML#1-2の少なくとも一部をミラー52214に向けて射出する。ビームスプリッタ52213は、ビームスプリッタ52213に入射した計測光ML#2-2の少なくとも一部をガルバノミラー5222に向けて射出する。 The measurement light beams ML#1-2 and ML#2-2 emitted from the beam splitter 52212 enter the beam splitter 52213. The beam splitter 52213 directs at least a part of the measurement light ML#1-2 incident on the beam splitter 52213 to the mirror 52214 and emits it. The beam splitter 52213 directs at least part of the measurement light ML#2-2 incident on the beam splitter 52213 toward the galvanomirror 5222 .
 ビームスプリッタ52213から射出された計測光ML#1-2は、ミラー52214に入射する。ミラー52214に入射した計測光ML#1-2は、ミラー52214の反射面(反射面は、参照面と称されてもよい)によって反射される。具体的には、ミラー52214は、ミラー52214に入射した計測光ML#1-2をビームスプリッタ52213に向けて反射する。つまり、ミラー52214は、ミラー52214に入射した計測光ML#1-2を、その反射光である計測光ML#1-3としてビームスプリッタ52213に向けて射出する。この場合、計測光ML#1-3は、参照光と称されてもよい。ミラー52214から射出された計測光ML#1-3は、ビームスプリッタ52213に入射する。ビームスプリッタ52213は、ビームスプリッタ52213に入射した計測光ML#1-3をビームスプリッタ52212に向けて射出する。ビームスプリッタ52213から射出された計測光ML#1-3は、ビームスプリッタ52212に入射する。ビームスプリッタ52212は、ビームスプリッタ52212に入射した計測光ML#1-3を、計測装置5が備える検出素子5232に向けて射出する。検出素子5232は、ヘッド筐体521に収容されていてもよい。検出素子5232は、光学系5221に含まれていてもよい。 The measurement light ML#1-2 emitted from the beam splitter 52213 is incident on the mirror 52214. The measurement light beams ML#1-2 that have entered the mirror 52214 are reflected by the reflecting surface of the mirror 52214 (the reflecting surface may also be referred to as a reference surface). Specifically, the mirror 52214 reflects the measurement light ML#1-2 incident on the mirror 52214 toward the beam splitter 52213 . That is, the mirror 52214 emits the measurement light ML#1-2 incident on the mirror 52214 toward the beam splitter 52213 as the measurement light ML#1-3 which is the reflected light. In this case, the measurement beams ML#1-3 may be referred to as reference beams. The measurement light beams ML#1-3 emitted from the mirror 52214 enter the beam splitter 52213. As shown in FIG. The beam splitter 52213 emits the measurement light beams ML#1-3 incident on the beam splitter 52213 toward the beam splitter 52212. FIG. The measurement light beams ML#1-3 emitted from the beam splitter 52213 enter the beam splitter 52212. As shown in FIG. The beam splitter 52212 emits the measurement light beams ML#1-3 incident on the beam splitter 52212 toward the detection element 5232 provided in the measurement device 5. FIG. The detection element 5232 may be housed in the head housing 521 . The detection element 5232 may be included in the optical system 5221 .
 一方で、ビームスプリッタ52213からガルバノミラー5222に向けて射出された計測光ML#2-2は、ガルバノミラー5222に入射する。ガルバノミラー5222は、計測対象物上での計測光ML(この場合、計測光ML#2-2)の照射位置が変化するように、ガルバノミラー5222から射出される計測光ML#2-2の進行方向を変える。このため、ガルバノミラー5222は、進行方向変更部材と称されてもよい。ガルバノミラー5222は、X走査ミラー52221と、Y走査ミラー52222とを含んでいてもよい。X走査ミラー52221及びY走査ミラー52222のそれぞれは、ガルバノミラー5222に入射する計測光ML#2-2の光路に対する角度が変更可能な傾斜角可変ミラーである。X走査ミラー52221は、計測対象物上での計測光ML#2-2の照射位置がX軸方向に沿って変化するよう、計測光ML#2-2の進行方向を変更する。Y走査ミラー52222は、計測対象物上での計測光ML#2-2の照射位置がY軸方向に沿って変化するよう、計測光ML#2-2の進行方向を変更する。 On the other hand, the measurement light ML#2-2 emitted from the beam splitter 52213 toward the galvanomirror 5222 enters the galvanomirror 5222. Galvanometer mirror 5222 adjusts measurement light ML#2-2 emitted from galvanometer mirror 5222 so that the irradiation position of measurement light ML (measurement light ML#2-2 in this case) on the object to be measured changes. change direction. Therefore, the galvanomirror 5222 may be called a traveling direction changing member. The galvanomirror 5222 may include an X scanning mirror 52221 and a Y scanning mirror 52222 . Each of the X scanning mirror 52221 and the Y scanning mirror 52222 is a variable tilt angle mirror whose angle relative to the optical path of the measurement light ML#2-2 incident on the galvanomirror 5222 can be changed. The X scanning mirror 52221 changes the traveling direction of the measurement light ML#2-2 so that the irradiation position of the measurement light ML#2-2 on the measurement object changes along the X-axis direction. The Y scanning mirror 52222 changes the traveling direction of the measurement light ML#2-2 so that the irradiation position of the measurement light ML#2-2 on the measurement object changes along the Y-axis direction.
 このようにガルバノミラー5222が計測対象物上での計測光ML#2-2の照射位置を変更可能であるがゆえに、計測装置5は、計測対象物の複数の部位に計測光ML#2-2を順に照射可能である。その結果、計測装置5は、計測対象物の複数の部位を相対的に高速に計測することができる。つまり、計測装置5は、計測対象物の多点計測が可能となる。 Since the galvanomirror 5222 can change the irradiation position of the measurement light ML#2-2 on the object to be measured in this way, the measurement apparatus 5 can irradiate the measurement light ML#2-2 on a plurality of parts of the object to be measured. 2 can be irradiated in order. As a result, the measuring device 5 can measure a plurality of parts of the object to be measured at relatively high speed. That is, the measuring device 5 can perform multi-point measurement of the object to be measured.
 ガルバノミラー5222は、ガルバノミラー5222が計測光ML#2-2の進行方向を変更することで計測対象物の表面において計測光ML#2-2が照射可能となるスキャン領域SAの形状が所望形状となるように、計測光ML#2-2の進行方向を変更してもよい。例えば、図8(a)から図8(c)のそれぞれは、スキャン領域SAの形状の一例を示している。例えば、図8(a)に示すように、ガルバノミラー5222は、スキャン領域SAの形状が矩形形状となるように、計測光ML#2-2の進行方向を変更してもよい。例えば、図8(b)に示すように、ガルバノミラー5222は、スキャン領域SAの形状がスリット形状となるように、計測光ML#2-2の進行方向を変更してもよい。例えば、図8(c)に示すように、ガルバノミラー5222は、スキャン領域SAの形状が輪帯形状となるように、計測光ML#2-2の進行方向を変更してもよい。 The galvanomirror 5222 changes the traveling direction of the measurement light ML#2-2 so that the scan area SA that can be irradiated with the measurement light ML#2-2 on the surface of the measurement object has a desired shape. The traveling direction of the measurement light ML#2-2 may be changed so that For example, each of FIGS. 8A to 8C shows an example of the shape of the scan area SA. For example, as shown in FIG. 8A, the galvanomirror 5222 may change the traveling direction of the measurement light ML#2-2 so that the scan area SA has a rectangular shape. For example, as shown in FIG. 8B, the galvanomirror 5222 may change the traveling direction of the measurement light ML#2-2 so that the scan area SA has a slit shape. For example, as shown in FIG. 8C, the galvanomirror 5222 may change the traveling direction of the measurement light ML#2-2 so that the shape of the scan area SA becomes an annular shape.
 ガルバノミラー5222から射出された計測光ML#2-2は、図6に示すように、ミラー5223に入射する。ミラー5223は、ミラー5223に入射する計測光ML#2-2を、光学系532に向けて反射する。つまり、ミラー5223は、ミラー5223に入射する計測光ML#2-2が光学系532に入射するように、計測光ML#2-2を偏向可能な光学部材である。このため、ミラー5223は、偏向部材と称されてもよい。ミラー5223が計測光ML#2-2を反射する反射面は、典型的には平面であるが、曲面を含んでいてもよい。 The measurement light ML#2-2 emitted from the galvanomirror 5222 is incident on the mirror 5223 as shown in FIG. The mirror 5223 reflects the measurement light ML# 2 - 2 incident on the mirror 5223 toward the optical system 532 . That is, the mirror 5223 is an optical member capable of deflecting the measurement light ML#2-2 so that the measurement light ML#2-2 entering the mirror 5223 enters the optical system 532. FIG. For this reason, mirror 5223 may be referred to as a deflection member. The reflecting surface on which the mirror 5223 reflects the measurement light ML#2-2 is typically flat, but may include curved surfaces.
 上述したように、ミラー5223を備える計測ヘッド52は、主軸21の回転軸RXから回転軸RXに交差する方向に沿って離れた位置において、加工ヘッド2に取り付けられる。このため、光学系522から光学系532に向けて射出される計測光ML#2-2もまた、主軸21の回転軸RXから回転軸RXに交差する方向に沿って離れた位置(つまり、回転軸RXとは異なる位置)から射出される。一方で、ミラー5223から射出された計測光ML#2-2が入射する光学系532を備える計測ヘッド53は、主軸21に取り付けられる。このため、ミラー5223は、回転軸RXとは異なる位置から射出される計測光ML#2-2が、主軸21に取り付けられた光学系532に入射するように、計測光ML#2-2を偏向してもよい。具体的には、ミラー5223は、光学系522から射出される計測光ML#2-2の進行方向(つまり、光学系522と光学系532との間における計測光ML#2-2の進行方向)が、回転軸RXと交差する又はねじれの関係になるように、計測光ML#2-2を偏向してもよい。この場合、光学系522の光学系532側の光軸(つまり、光学系522から光学系532に射出される計測光ML#2-2の光束の代表となる仮想的な光線)は、回転軸RXと交差していてもよいし、回転軸RXとねじれの関係になっていてもよい。同様に、光学系532の光学系522側の光軸(つまり、光学系522から光学系532に入射する計測光ML#2-2の光束の代表となる仮想的な光線)は、回転軸RXと交差していてもよいし、回転軸RXとねじれの関係になっていてもよい。 As described above, the measuring head 52 including the mirror 5223 is attached to the processing head 2 at a position separated from the rotation axis RX of the main shaft 21 along the direction intersecting the rotation axis RX. Therefore, the measurement light ML#2-2 emitted from the optical system 522 toward the optical system 532 is also positioned away from the rotation axis RX of the main shaft 21 along the direction intersecting the rotation axis RX (that is, the rotation (position different from axis RX). On the other hand, a measurement head 53 having an optical system 532 on which the measurement light ML#2-2 emitted from the mirror 5223 is incident is attached to the main shaft 21. FIG. Therefore, the mirror 5223 directs the measurement light ML#2-2 so that the measurement light ML#2-2 emitted from a position different from the rotation axis RX enters the optical system 532 attached to the main shaft 21. can be deflected. Specifically, the mirror 5223 adjusts the travel direction of the measurement light ML#2-2 emitted from the optical system 522 (that is, the travel direction of the measurement light ML#2-2 between the optical system 522 and the optical system 532). ) intersects the rotation axis RX or has a twisted relationship. In this case, the optical axis of the optical system 522 on the optical system 532 side (that is, a virtual ray representative of the light flux of the measurement light ML#2-2 emitted from the optical system 522 to the optical system 532) is the rotation axis. It may intersect RX or may be in a twisted relationship with the rotation axis RX. Similarly, the optical axis of the optical system 532 on the optical system 522 side (that is, a virtual ray representing the light beam of the measurement light ML#2-2 entering the optical system 532 from the optical system 522) is the rotation axis RX , or may be in a twisted relationship with the rotation axis RX.
 ミラー5223が反射した計測光ML#2-2は、開口5311を介して、光学系532のミラー5321に入射する。ミラー5321は、ミラー5321に入射する計測光ML#2-2を、fθレンズ5322に向けて反射する。つまり、ミラー5321は、ミラー5321に入射する計測光ML#2-2がfθレンズ5322に入射するように、計測光ML#2-2を偏向可能な光学部材である。このため、ミラー5321は、偏向部材と称されてもよい。ミラー5321が計測光ML#2-2を反射する反射面は、典型的には平面であるが、曲面を含んでいてもよい。 The measurement light ML#2-2 reflected by the mirror 5223 enters the mirror 5321 of the optical system 532 via the aperture 5311. The mirror 5321 reflects the measurement light ML# 2 - 2 incident on the mirror 5321 toward the fθ lens 5322 . That is, the mirror 5321 is an optical member capable of deflecting the measurement light ML#2-2 so that the measurement light ML#2-2 entering the mirror 5321 enters the fθ lens 5322. FIG. For this reason, mirror 5321 may be referred to as a deflection member. The reflecting surface on which the mirror 5321 reflects the measurement light ML#2-2 is typically flat, but may include curved surfaces.
 ミラー5321に入射する計測光ML#2-2の進行方向は、回転軸RXと交差する又はねじれの関係になっている。この場合、ミラー5321は、ミラー5321が反射した計測光ML#2-2の進行方向が、回転軸RXと同軸になるように、計測光ML#2-2を反射する。尚、「計測光ML#2-2の進行方向が、回転軸RXと同軸になる」状態は、計測光ML#2-2の主光線の光路が回転軸RX上に位置する」状態を意味していてもよい。但し、ミラー5321は、ミラー5321が反射した計測光ML#2-2の進行方向が、回転軸RXと平行になるように、計測光ML#2-2を反射してもよい。「計測光ML#2-2の進行方向が、回転軸RXと平行になる」状態は、計測光ML#2-2の主光線の光路が回転軸RX上に位置しないものの、当該光路が回転軸RXと平行になる」状態を意味していてもよい。或いは、ミラー5321は、ミラー5321が反射した計測光ML#2-2の進行方向が、回転軸RXに対して交差するように、計測光ML#2-2を反射してもよい。 The traveling direction of the measurement light ML#2-2 incident on the mirror 5321 intersects with the rotation axis RX or has a twisted relationship. In this case, the mirror 5321 reflects the measurement light ML#2-2 so that the traveling direction of the measurement light ML#2-2 reflected by the mirror 5321 is coaxial with the rotation axis RX. The state in which "the traveling direction of the measurement light ML#2-2 is coaxial with the rotation axis RX" means the state in which the optical path of the principal ray of the measurement light ML#2-2 is positioned on the rotation axis RX. You may have However, the mirror 5321 may reflect the measurement light ML#2-2 so that the traveling direction of the measurement light ML#2-2 reflected by the mirror 5321 is parallel to the rotation axis RX. In the state where "the traveling direction of the measurement light ML#2-2 is parallel to the rotation axis RX", the optical path of the principal ray of the measurement light ML#2-2 is not positioned on the rotation axis RX, but the optical path is rotated. It may also mean the state of being "parallel to the axis RX". Alternatively, the mirror 5321 may reflect the measurement light ML#2-2 so that the traveling direction of the measurement light ML#2-2 reflected by the mirror 5321 intersects the rotation axis RX.
 ミラー5321が反射した計測光ML#2-2は、fθレンズ5322に入射する。fθレンズ5322は、開口5312を介して、計測光ML#2-2を計測対象物に照射する。fθレンズ5322は、計測光ML#2-2を計測対象物に集光してもよい。このため、fθレンズ5322は、集光光学部材と称されてもよい。 The measurement light ML#2-2 reflected by the mirror 5321 enters the fθ lens 5322. The fθ lens 5322 irradiates the measurement object with the measurement light ML#2-2 through the aperture 5312. FIG. The fθ lens 5322 may focus the measurement light ML#2-2 on the measurement object. For this reason, the fθ lens 5322 may be referred to as a condensing optical member.
 fθレンズ5322の光軸は、主軸21の回転軸RXと同軸である。つまり、fθレンズ5322の光軸の方向は、回転軸RXに沿って延びる方向である。この場合、fθレンズ5322は、fθレンズ5322から射出される計測光ML#2-2の進行方向が回転軸RXに沿って延びる方向となるように、計測光ML#2-2を射出する。尚、fθレンズ5322から射出された計測光ML#22が光学系532から射出されるがゆえに、fθレンズ5322の光軸は、光学系532の計測対象物側の光軸(つまり、光学系532から計測象物に向けて射出される計測光ML#2-2の光束の代表となる仮想的な光線)であるとみなしてもよい。但し、fθレンズ5322の光軸は、回転軸RXと同軸でなくてもよい。例えば、fθレンズ5322の光軸は、回転軸RXと平行であってもよい。fθレンズ5322の光軸は、回転軸RXに交差していてもよい。fθレンズ5322の光軸は、回転軸RXに対してねじれの関係にあってもよい。 The optical axis of the fθ lens 5322 is coaxial with the rotation axis RX of the main shaft 21 . In other words, the direction of the optical axis of the fθ lens 5322 is the direction extending along the rotation axis RX. In this case, the fθ lens 5322 emits the measurement light ML#2-2 so that the traveling direction of the measurement light ML#2-2 emitted from the fθ lens 5322 extends along the rotation axis RX. Since the measurement light ML#22 emitted from the fθ lens 5322 is emitted from the optical system 532, the optical axis of the fθ lens 5322 is the optical axis of the optical system 532 on the measurement object side (that is, the optical system 532 may be regarded as a virtual ray representative of the luminous flux of the measurement light ML#2-2 emitted toward the object to be measured. However, the optical axis of the fθ lens 5322 does not have to be coaxial with the rotation axis RX. For example, the optical axis of the fθ lens 5322 may be parallel to the rotation axis RX. The optical axis of the fθ lens 5322 may intersect the rotation axis RX. The optical axis of the fθ lens 5322 may be in a twisted relationship with respect to the rotation axis RX.
 尚、以下の説明では、計測装置5が備える終端光学素子の光軸を、計測装置5の計測軸MXと称する。計測装置5が備える終端光学素子は、計測装置5が備えるパワーを有する1以上の光学部材のうち、計測対象物に最も近い光学素子である。計測対象物に最も近い光学素子は、計測光ML及び戻り光RLの光路上において、計測対象物との間にパワーを有する光学部材が存在しない光学素子である。第1実施形態では、計測軸MXは、fθレンズ5322の光軸であり、且つ、光学系532の計測対象物側の光軸である。 In the following description, the optical axis of the terminal optical element included in the measuring device 5 will be referred to as the measurement axis MX of the measuring device 5. The terminal optical element included in the measurement apparatus 5 is the optical element closest to the measurement target among the one or more optical members having power included in the measurement apparatus 5 . The optical element closest to the object to be measured is an optical element that does not have an optical member having power between it and the object to be measured on the optical paths of the measurement light ML and the return light RL. In the first embodiment, the measurement axis MX is the optical axis of the fθ lens 5322 and the optical axis of the optical system 532 on the measurement object side.
 計測光MLが計測対象物(図6に示す例では、ワークW)に照射されると、計測対象物からは、計測対象物に計測光MLが照射されることで発生する戻り光RLが射出される。戻り光RLは、開口5312を介して、光学系532(具体的には、fθレンズ5322)に入射する。ここで、光学系532(特に、終端光学素子を有するfθレンズ5322)と計測対象物との間において、戻り光RLの光路は、計測光ML#2-2の光路と重なっていてもよい。例えば、fθレンズ5322は、計測光ML#2-2が計測対象物に垂直入射するように、計測光ML#2-2を計測対象物に照射してもよい。工作機械1aは、計測光ML#2-2が計測対象物に垂直入射するように、ヘッド駆動系3及びステージ駆動系42の少なくとも一方を制御することでfθレンズ5322(つまり、計測ヘッド53)と計測対象物との位置関係を調整してもよい。計測光ML#2-2が計測対象物に垂直入射すると、典型的には、光学系532と計測対象物との間において、戻り光RLの光路は、計測光ML#2-2の光路と重なる。言い換えると、光学系532と計測対象物との間において、戻り光RLの光路と計測光ML#2-2の光路とは同軸である。但し、fθレンズ5322は、計測光ML#2-2が計測対象物に斜入射するように、計測光ML#2-2を計測対象物に照射してもよい。工作機械1aは、計測光ML#2-2が計測対象物に斜入射するように、ヘッド駆動系3及びステージ駆動系42の少なくとも一方を制御することでfθレンズ5322と計測対象物との位置関係を調整してもよい。この場合であっても、場合によっては、光学系532と計測対象物との間において、戻り光RLの光路は、計測光ML#2-2の光路と重なる。例えば、戻り光RLが計測光ML#2-2の計測対象物での散乱光を含む場合には、計測光ML#2-2が計測対象物に斜入射する場合であっても、光学系532と計測対象物との間において、散乱光のうち計測光ML#2-2の光路と重なる光が存在する場合がある。また、戻り光RLが計測光ML#2-2の±N(但し、Nは2以上の整数)次回折光を含む場合には、計測光ML#2-2が計測対象物に斜入射する場合であっても、光学系532と計測対象物との間において、戻り光RLの光路は、計測光ML#2-2の光路と重なる場合がある。このように戻り光RLの光路が計測光ML#2-2と重なる場合には、計測装置5は、計測対象物の表面(fθレンズ5322の集光面)と光学的に共役となる位置に、視野絞り(典型的にはピンホール)を備えていてもよい。このときには、計測光ML#2-2が計測対象物の計測対象位置に照射された後に計測対象物の別の位置で反射された多重反射光を視野絞りで遮光することができ、計測誤差を低減できる。ここで、視野絞りの代わりに、計測光ML#2-2及び戻り光RLを伝送する光ファイバの端部を計測対象物の表面と光学的に共役となる位置に設定してもよい。尚、光学系532と計測対象物との間において、戻り光RLの光路は、計測光ML#2-2の光路と必ずしも重なっていなくてもよい。 When the measurement light ML is irradiated onto the measurement target (workpiece W in the example shown in FIG. 6), the measurement target emits a return light RL generated by the irradiation of the measurement light ML onto the measurement target. be done. The return light RL enters the optical system 532 (specifically, the fθ lens 5322) via the aperture 5312. As shown in FIG. Here, the optical path of the return light RL may overlap the optical path of the measurement light ML#2-2 between the optical system 532 (in particular, the fθ lens 5322 having the final optical element) and the object to be measured. For example, the fθ lens 5322 may irradiate the measurement target with the measurement light ML#2-2 so that the measurement light ML#2-2 is vertically incident on the measurement target. The machine tool 1a controls at least one of the head drive system 3 and the stage drive system 42 so that the measurement light ML#2-2 is perpendicularly incident on the object to be measured. and the measurement object may be adjusted. When the measurement light ML#2-2 is perpendicularly incident on the measurement object, typically between the optical system 532 and the measurement object, the optical path of the return light RL is the same as the optical path of the measurement light ML#2-2. Overlap. In other words, the optical path of the return light RL and the optical path of the measurement light ML#2-2 are coaxial between the optical system 532 and the object to be measured. However, the fθ lens 5322 may irradiate the object to be measured with the measurement light ML#2-2 so that the measurement light ML#2-2 obliquely enters the object to be measured. The machine tool 1a controls at least one of the head drive system 3 and the stage drive system 42 so that the measurement light ML#2-2 is obliquely incident on the measurement object, thereby adjusting the position of the fθ lens 5322 and the measurement object. Relationships can be adjusted. Even in this case, the optical path of the return light RL may overlap the optical path of the measurement light ML#2-2 between the optical system 532 and the object to be measured. For example, when the return light RL includes the scattered light of the measurement light ML#2-2 at the measurement object, even if the measurement light ML#2-2 is obliquely incident on the measurement object, the optical system Between 532 and the object to be measured, there may be scattered light that overlaps the optical path of the measurement light ML#2-2. When the return light RL includes ±N (where N is an integer equal to or greater than 2) order diffracted light of the measurement light ML#2-2, the measurement light ML#2-2 is obliquely incident on the object to be measured. Even so, the optical path of the return light RL may overlap the optical path of the measurement light ML#2-2 between the optical system 532 and the object to be measured. When the optical path of the return light RL overlaps with the measurement light ML#2-2 in this manner, the measurement device 5 is placed at a position that is optically conjugate with the surface of the measurement object (the condensing surface of the fθ lens 5322). , may be provided with a field stop (typically a pinhole). At this time, after the measurement light ML#2-2 is applied to the measurement target position of the measurement target, the multiple reflected light reflected at another position of the measurement target can be shielded by the field stop, and the measurement error can be reduced. can be reduced. Here, instead of the field stop, the end of the optical fiber that transmits the measurement light ML#2-2 and the return light RL may be set at a position that is optically conjugate with the surface of the object to be measured. Between the optical system 532 and the object to be measured, the optical path of the return light RL does not necessarily overlap with the optical path of the measurement light ML#2-2.
 fθレンズ5322に入射した戻り光RLは、fθレンズ5322を介して、ミラー5321に入射する。ミラー5321は、ミラー5321に入射した計測光ML2#2-3を、光学系522(具体的には、ミラー5223)に向けて反射する。尚、光学系532と光学系522との間において、戻り光RLの光路は、計測光ML#2-2の光路と重なっていてもよいし、重なっていなくてもよい。言い換えると、光学系532と光学系522との間において、戻り光RLの光路と計測光ML#2-2の光路とは同軸であってもよいし、同軸でなくてもよい。 The return light RL that has entered the fθ lens 5322 enters the mirror 5321 via the fθ lens 5322 . The mirror 5321 reflects the measurement light ML2#2-3 incident on the mirror 5321 toward the optical system 522 (specifically, the mirror 5223). Between the optical system 532 and the optical system 522, the optical path of the return light RL may or may not overlap the optical path of the measurement light ML#2-2. In other words, between the optical system 532 and the optical system 522, the optical path of the return light RL and the optical path of the measurement light ML#2-2 may or may not be coaxial.
 ミラー5223に入射した戻り光RLは、ガルバノミラー5222を介して光学系5221に入射する。光学系5221に入射した戻り光RLは、図7に示すように、ビームスプリッタ52213及び52212を介して、検出素子5232に入射する。 The return light RL that has entered the mirror 5223 enters the optical system 5221 via the galvanomirror 5222 . The return light RL that has entered the optical system 5221 enters the detection element 5232 via the beam splitters 52213 and 52212, as shown in FIG.
 上述したように、検出素子5232には、戻り光RLに加えて、計測光ML#1-3が入射する。つまり、検出素子5232には、計測対象物を介して検出素子5232に向かう戻り光RLと、計測対象物を介することなく検出素子5232に向かう計測光ML#1-3とが入射する。検出素子5232は、計測光ML#1-3と戻り光RLとを検出する。特に、検出素子5232は、計測光ML#1-3と戻り光RLとが干渉することで生成される干渉光を検出する。このため、計測光ML#1-3及び戻り光RLを検出素子5232に向けて射出するビームスプリッタ52212は、計測光ML#1-3及び戻り光RLを干渉させる干渉光学系として機能しているとみなしてもよい。具体的には、検出素子5232は、干渉光を受光することで、干渉光を検出する。このため、検出素子5232は、光を受光可能な受光素子を備えていてもよい。検出素子5232の検出結果は、計測装置5の計測結果の一部として、出力インタフェース54を介して、制御装置7に出力される。 As described above, the measurement light beams ML#1-3 enter the detection element 5232 in addition to the return light beam RL. In other words, the return light RL that travels toward the detection element 5232 via the measurement target and the measurement light ML#1-3 that travels toward the detection element 5232 without via the measurement target enter the detection element 5232 . The detection element 5232 detects the measurement light ML#1-3 and the return light RL. In particular, the detection element 5232 detects interference light generated by interference between the measurement light ML#1-3 and the return light RL. Therefore, the beam splitter 52212 that emits the measurement light beams ML#1-3 and the return light beam RL toward the detection element 5232 functions as an interference optical system that causes the measurement light beams ML#1-3 and the return light beam RL to interfere with each other. may be regarded as Specifically, the detection element 5232 detects the interference light by receiving the interference light. Therefore, the detection element 5232 may include a light receiving element capable of receiving light. The detection result of the detection element 5232 is output to the control device 7 via the output interface 54 as part of the measurement result of the measuring device 5 .
 尚、光学系5221が計測光ML#1-3及び戻り光RLの検出のために用いられるため、光学系5221は、検出側光学系と称されてもよい。また、ガルバノミラー5222が戻り光RLの検出のために用いられているため、ガルバノミラー5222は、検出側光学系と称されてもよい。また、ミラー5223が戻り光RLの検出のために用いられているため、ミラー5223は、検出側光学系と称されてもよい。また、光学系522が光学系532よりも戻り光RLの検出側に配置されているため、光学系522に含まれる光学系5221とガルバノミラー5222とミラー5223の少なくとも一部は、検出側光学系と称されてもよい。また、検出側光学系(光学系5221とガルバノミラー5222とミラー5223の少なくとも一部)と検出素子5232とが、一つの光学系(計測光学系と称されてもよい)を構成していてもよい。 Since the optical system 5221 is used for detecting the measurement light beams ML#1-3 and the return light beam RL, the optical system 5221 may be called a detection side optical system. Also, since the galvanomirror 5222 is used for detecting the return light RL, the galvanomirror 5222 may be referred to as a detection-side optical system. Also, since the mirror 5223 is used for detecting the return light RL, the mirror 5223 may be referred to as a detection-side optical system. Further, since the optical system 522 is arranged closer to the detection side of the return light RL than the optical system 532, at least a part of the optical system 5221, the galvanomirror 5222, and the mirror 5223 included in the optical system 522 is the detection side optical system. may be called Further, the detection-side optical system (at least part of the optical system 5221, the galvanomirror 5222, and the mirror 5223) and the detection element 5232 may constitute one optical system (which may be referred to as a measurement optical system). good.
 制御装置7は、出力インタフェース54を介して、検出素子5231の検出結果及び検出素子5232の検出結果を取得する。尚、出力インタフェース54と、検出素子5231と、検出素子5232とを含む装置(つまり、戻り光RLを検出し、戻り光RLの検出結果を制御装置7に出力する装置)を、検出装置と称してもよい。制御装置7は、検出素子5231の検出結果及び検出素子5232の検出結果(つまり、計測装置5の計測結果)に基づいて、計測対象物の計測データ(例えば、計測対象物の形状に関するデータ)を生成する。 The control device 7 acquires the detection result of the detection element 5231 and the detection result of the detection element 5232 via the output interface 54 . A device including the output interface 54, the detection element 5231, and the detection element 5232 (that is, a device that detects the return light RL and outputs the detection result of the return light RL to the control device 7) is called a detection device. may Based on the detection result of the detection element 5231 and the detection result of the detection element 5232 (that is, the measurement result of the measurement device 5), the control device 7 generates measurement data of the measurement object (for example, data related to the shape of the measurement object). Generate.
 具体的には、計測光ML#1のパルス周波数と計測光ML#2のパルス周波数とが異なるため、計測光ML#1-1のパルス周波数と計測光ML#2-1のパルス周波数とが異なる。従って、計測光ML#1-1と計測光ML#2-1との干渉光は、計測光ML#1-1を構成するパルス光と計測光ML2#2-1を構成するパルス光とが同時に検出素子5231に入射したタイミングに同期してパルス光が現れる干渉光となる。同様に、計測光ML#1-3のパルス周波数と戻り光RLのパルス周波数とが異なる。従って、計測光ML#1-3と戻り光RLとの干渉光は、計測光ML#1-3を構成するパルス光と戻り光RLを構成するパルス光とが同時に検出素子5232に入射したタイミングに同期してパルス光が現れる干渉光となる。ここで、検出素子5232が検出する干渉光を作るパルス光の位置(時間軸上の位置)は、計測ヘッド52と計測対象物との位置関係(つまり、実質的には、加工ヘッド2と計測対象物との位置関係)に応じて変動する。なぜならば、検出素子5232が検出する干渉光は、計測対象物を介して検出素子5232に向かう戻り光RLと、計測対象物を介することなく検出素子5232に向かう計測光ML#1-3との干渉光であるからである。一方で、検出素子5231が検出する干渉光を作るパルス光の位置(時間軸上の位置)は、計測ヘッド52と計測対象物との位置関係(つまり、実質的には、加工ヘッド2と計測対象物との位置関係)に応じて変動することはない。このため、検出素子5232が検出する干渉光を作るパルス光と検出素子5231が検出する干渉光を作るパルス光との時間差は、計測ヘッド52と計測対象物との位置関係(典型的には、加工ヘッド2と計測対象物との間の距離)を間接的に示していると言える。このため、制御装置7は、検出素子5232が検出する干渉光を作るパルス光と検出素子5231が検出する干渉光を作るパルス光との時間差に基づいて、計測対象物の計測データを生成することができる。例えば、制御装置7は、検出素子5232が検出する干渉光を作るパルス光と検出素子5231が検出する干渉光を作るパルス光との時間差に基づいて、計測対象物のうち計測光ML#2-2が照射された被照射部分の位置を示す計測データを生成することができる。 Specifically, since the pulse frequency of the measurement light ML#1 and the pulse frequency of the measurement light ML#2 are different, the pulse frequency of the measurement light ML#1-1 and the pulse frequency of the measurement light ML#2-1 are different. different. Therefore, the interference light between the measurement light ML#1-1 and the measurement light ML#2-1 is the pulsed light that forms the measurement light ML#1-1 and the pulsed light that forms the measurement light ML2#2-1. At the same time, it becomes interference light in which pulsed light appears in synchronization with the timing of incidence on the detection element 5231 . Similarly, the pulse frequency of the measurement light ML#1-3 and the pulse frequency of the return light RL are different. Therefore, the interference light between the measurement light ML#1-3 and the return light RL is generated at the timing when the pulse light forming the measurement light ML#1-3 and the pulse light forming the return light RL simultaneously enter the detection element 5232. It becomes an interference light in which pulsed light appears in synchronization with . Here, the position (position on the time axis) of the pulsed light that generates the interference light detected by the detection element 5232 is the positional relationship between the measurement head 52 and the measurement object (that is, substantially, the processing head 2 and the measurement positional relationship with the object). This is because the interference light detected by the detection element 5232 is composed of the return light RL directed to the detection element 5232 via the measurement target and the measurement light ML#1-3 directed to the detection element 5232 without via the measurement target. This is because it is interference light. On the other hand, the position (position on the time axis) of the pulsed light that generates the interference light detected by the detection element 5231 is the positional relationship between the measurement head 52 and the measurement object (that is, substantially, the processing head 2 and the measurement positional relationship with the object). Therefore, the time difference between the pulsed light generating the interference light detected by the detection element 5232 and the pulsed light generating the interference light detected by the detection element 5231 depends on the positional relationship between the measurement head 52 and the object to be measured (typically, It can be said that it indirectly indicates the distance between the processing head 2 and the object to be measured. Therefore, the control device 7 generates measurement data of the object to be measured based on the time difference between the pulsed light generating the interference light detected by the detection element 5232 and the pulsed light generating the interference light detected by the detection element 5231. can be done. For example, the control device 7 determines the measurement light ML#2- 2 can generate measurement data indicating the position of the irradiated portion.
 計測光ML#2-2が計測対象物の複数の部位に照射されると、制御装置7は、計測対象物の複数の部位の位置を示す計測データを生成することができる。その結果、制御装置7は、複数の部位の位置を示す計測データに基づいて、計測対象物の形状を示す計測データを生成することができる。例えば、制御装置7は、位置が特定された複数の部位を結ぶ仮想的な平面(或いは、曲面)から構成される3次元形状を、計測対象物の形状として算出することで、計測対象物の形状を示す計測データを生成することができる。 When the measurement light ML#2-2 is irradiated onto multiple parts of the measurement object, the control device 7 can generate measurement data indicating the positions of the multiple parts of the measurement object. As a result, the control device 7 can generate measurement data indicating the shape of the object to be measured based on the measurement data indicating the positions of a plurality of parts. For example, the control device 7 calculates, as the shape of the object to be measured, a three-dimensional shape composed of virtual planes (or curved surfaces) connecting a plurality of parts whose positions are specified. Metrology data indicative of the shape can be generated.
 このように、計測装置5は、計測対象物に計測光MLを照射し、且つ、計測光MLが照射された計測対象物からの戻り光RLを検出することで、計測対象物を計測することができる。特に、上述した例では、計測装置5は、戻り光RLと参照光である計測光ML#1-3との干渉光を検出することで、計測対象物を計測することができる。このため、計測装置5は、干渉方式の計測装置であるとみなしてもよい。但し、計測装置5は、計測対象物を計測することができる限りは、干渉方式の計測装置でなくてもよい。例えば、計測装置5は、三角測量方式の計測装置であってもよい。計測装置5は、ステレオ方式の計測装置であってもよい。計測装置5は、位相シフト方式の計測装置であってもよい。計測装置5は、共焦点方式の計測装置であってもよい。 In this way, the measuring device 5 irradiates the measurement target with the measurement light ML and detects the return light RL from the measurement target irradiated with the measurement light ML, thereby measuring the measurement target. can be done. In particular, in the example described above, the measurement device 5 can measure the measurement object by detecting interference light between the return light RL and the measurement light ML#1-3, which is the reference light. Therefore, the measuring device 5 may be regarded as an interferometric measuring device. However, the measuring device 5 does not have to be an interferometric measuring device as long as it can measure the object to be measured. For example, the measuring device 5 may be a triangulation measuring device. The measurement device 5 may be a stereo measurement device. The measurement device 5 may be a phase shift type measurement device. The measuring device 5 may be a confocal measuring device.
 尚、主軸21に計測ヘッド53が取り付けられる場合には、計測ヘッド53は、主軸21の回転に伴って回転軸RX周りに回転可能であってもよいことは上述したとおりである。しかしながら、主軸21の回転角度によっては、計測装置5は、計測対象物に計測光MLを照射することができなくなる、及び/又は、戻り光RLを検出することができなくなる可能性がある。例えば、図9の右側の図に示すように、計測ヘッド52から射出される計測光MLは、計測ヘッド53の開口5311を介して、計測ヘッド53の光学系532(特に、ミラー5321)に入射する。しかしながら、図9の左側の図に示すように、主軸21の回転角度(つまり、計測ヘッド53の回転角度)によっては、計測ヘッド52から射出された計測光MLの光路上に開口5311が位置しなくなる可能性がある。この場合、計測ヘッド52から射出された計測光MLは、ヘッド筐体531によって遮られるがゆえに、ミラー5321に入射することができない。或いは、計測ヘッド53の回転に伴ってヘッド筐体531に収容されているミラー5321もまた回転軸RX周りに回転するがゆえに、ミラー5321の反射面の向きが変わる。その結果、計測ヘッド52から射出された計測光MLが開口5311を介してミラー5321に入射したとしても、ミラー5321の反射面の向きによっては、ミラー5321が計測光MLをfθレンズ5322に向けて反射することができない可能性がある。 As described above, when the measurement head 53 is attached to the main shaft 21, the measurement head 53 may be rotatable around the rotation axis RX as the main shaft 21 rotates. However, depending on the rotation angle of the main shaft 21, the measurement device 5 may not be able to irradiate the measurement target with the measurement light ML and/or may not be able to detect the return light RL. For example, as shown in the diagram on the right side of FIG. 9, the measurement light ML emitted from the measurement head 52 enters the optical system 532 (in particular, the mirror 5321) of the measurement head 53 through the opening 5311 of the measurement head 53. do. However, as shown in the left diagram of FIG. 9, depending on the rotation angle of the main shaft 21 (that is, the rotation angle of the measurement head 53), the opening 5311 may be positioned on the optical path of the measurement light ML emitted from the measurement head 52. may disappear. In this case, the measurement light ML emitted from the measurement head 52 cannot enter the mirror 5321 because it is blocked by the head housing 531 . Alternatively, as the measurement head 53 rotates, the mirror 5321 accommodated in the head housing 531 also rotates around the rotation axis RX, so the orientation of the reflecting surface of the mirror 5321 changes. As a result, even if the measurement light ML emitted from the measurement head 52 enters the mirror 5321 through the opening 5311, the mirror 5321 may direct the measurement light ML toward the fθ lens 5322 depending on the orientation of the reflecting surface of the mirror 5321. May not be able to reflect.
 そこで、計測装置5が、計測対象物に計測光MLを照射することができ、且つ、戻り光RLを検出することができるように、制御装置7は、計測ヘッド53が取り付けられた主軸21の回転(つまり、計測ヘッド53の回転)を制御してもよい。例えば、制御装置7は、図9の右側に示すように、計測ヘッド52から射出された計測光MLの光路上に開口5311が位置するように、主軸21の回転(この場合、ヘッド筐体531の回転)を制御してもよい。例えば、制御装置7は、図9の右側に示すように、ミラー5223が反射した戻り光RLの光路上に開口5311が位置するように、主軸21の回転(この場合、ヘッド筐体531の回転)を制御してもよい。例えば、制御装置7は、図9の右側に示すように、計測ヘッド52から射出された計測光MLが開口5311を介してミラー5321に入射するように、主軸21の回転(この場合、ヘッド筐体531の回転)を制御してもよい。例えば、制御装置7は、図9の右側に示すように、ミラー5321が反射した戻り光RLが開口5311を介してミラー5223に入射するように、主軸21の回転(この場合、ヘッド筐体531の回転)を制御してもよい。例えば、図9の右側に示すように、制御装置7は、ミラー5321が反射した計測光MLがfθレンズ5322に入射するように、主軸21の回転(この場合、ミラー5321の回転)を制御してもよい。このとき、加工ヘッド2は主軸21の回転位置を検出するための回転位置検出装置を備えていてもよい。この回転位置検出装置は、例えば、ロータリーエンコーダでもよい。 Therefore, the control device 7 controls the main shaft 21 to which the measurement head 53 is attached so that the measurement device 5 can irradiate the measurement target with the measurement light ML and detect the return light RL. Rotation (that is, rotation of the measurement head 53) may be controlled. For example, as shown on the right side of FIG. rotation) may be controlled. For example, as shown on the right side of FIG. ) may be controlled. For example, as shown in the right side of FIG. 9, the control device 7 rotates the main shaft 21 (in this case, head housing body 531) may be controlled. For example, as shown on the right side of FIG. rotation) may be controlled. For example, as shown on the right side of FIG. 9, the control device 7 controls the rotation of the main shaft 21 (in this case, the rotation of the mirror 5321) so that the measurement light ML reflected by the mirror 5321 is incident on the fθ lens 5322. may At this time, the machining head 2 may be provided with a rotational position detection device for detecting the rotational position of the spindle 21 . This rotational position detection device may be, for example, a rotary encoder.
 計測装置5が、計測対象物に計測光MLを照射することができ、且つ、戻り光RLを検出することができる場合には、戻り光RLが検出素子5232に入射する。一方で、計測装置5が、計測対象物に計測光MLを照射することができない、及び/又は、戻り光RLを検出することができない場合には、戻り光RLが検出素子5232に入射することはない又は戻り光RLの一部しか検出素子5232に入射しない。このため、検出素子5232が検出した戻り光RLの強度は、計測装置5が計測対象物に計測光MLを照射することができ且つ戻り光RLを検出することができるか否かを判定するための指標値として利用可能である。このため、制御装置7は、検出素子5232による戻り光RLの検出強度(つまり、検出素子5232が検出した戻り光RLの強度であり、例えば、戻り光RLと計測光MLとの干渉光の強度)が所定の第1強度閾値以上になるように、計測ヘッド53が取り付けられた主軸21の回転を制御してもよい。一例として、戻り光RLの検出強度が強くなればなるほど、計測光ML及び戻り光RLの光路が適切であると推定される。このため、制御装置7は、検出素子5232による戻り光RLの検出強度が最大となるように、計測ヘッド53が取り付けられた主軸21の回転を制御してもよい。 When the measurement device 5 can irradiate the measurement object with the measurement light ML and detect the return light RL, the return light RL enters the detection element 5232 . On the other hand, when the measurement device 5 cannot irradiate the measurement target with the measurement light ML and/or cannot detect the return light RL, the return light RL is incident on the detection element 5232. or only part of the return light RL enters the detection element 5232 . Therefore, the intensity of the return light RL detected by the detection element 5232 is used to determine whether the measurement device 5 can irradiate the measurement target with the measurement light ML and detect the return light RL. can be used as an index value for Therefore, the control device 7 detects the intensity of the return light RL detected by the detection element 5232 (that is, the intensity of the return light RL detected by the detection element 5232, for example, the intensity of the interference light between the return light RL and the measurement light ML). ) is greater than or equal to a predetermined first intensity threshold, the rotation of the spindle 21 to which the measuring head 53 is attached may be controlled. As an example, the stronger the detected intensity of the return light RL, the more appropriate the optical paths of the measurement light ML and the return light RL are estimated. Therefore, the control device 7 may control the rotation of the main shaft 21 to which the measurement head 53 is attached so that the intensity of the return light RL detected by the detection element 5232 is maximized.
 また、主軸21の回転に伴って計測ヘッド53が回転可能であることを利用して、計測装置5は、主軸21を回転させることで、計測対象物上での計測光MLの照射位置を変化させてもよい。例えば、上述したように、ガルバノミラー5222の動作により、計測光MLの主光線の光路が回転軸RX上に位置しないものの、当該光路が回転軸RXと平行になる場合がある。この状態において主軸21が回転軸RX周りに回転すると、計測対象物上での計測光MLの照射位置もまた、回転軸RX周りに回転する。このため、計測装置5は、主軸21を回転させることで、計測対象物上での計測光MLの照射位置が回転軸RX周りに回転するように、計測光MLの照射位置を変化させてもよい。この際、計測装置5は、ガルバノミラー5222と連動して、計測光MLの照射位置を変化させてもよい。計測装置5は、ガルバノミラー5222とは別に、計測光MLの照射位置を変化させてもよい。 In addition, by utilizing the fact that the measurement head 53 can rotate with the rotation of the main shaft 21, the measurement device 5 rotates the main shaft 21 to change the irradiation position of the measurement light ML on the object to be measured. You may let For example, as described above, the operation of the galvanomirror 5222 may make the optical path of the principal ray of the measurement light ML parallel to the rotation axis RX even though the optical path is not positioned on the rotation axis RX. When the main shaft 21 rotates around the rotation axis RX in this state, the irradiation position of the measurement light ML on the object to be measured also rotates around the rotation axis RX. Therefore, by rotating the main shaft 21, the measurement apparatus 5 can change the irradiation position of the measurement light ML so that the irradiation position of the measurement light ML on the object to be measured rotates around the rotation axis RX. good. At this time, the measurement device 5 may change the irradiation position of the measurement light ML in conjunction with the galvanomirror 5222 . The measurement device 5 may change the irradiation position of the measurement light ML separately from the galvanomirror 5222 .
 また、上述した説明では、計測装置5は、計測ヘッド53を備えている。しかしながら、計測装置5は、計測ヘッド53を備えていなくてもよい。この場合、計測ヘッド53は、計測装置5とは別の計測装置であって、計測装置5と共に(具体的には、計測ヘッド52)と共に加工ヘッド2に対して着脱可能に取り付け可能な計測装置であってもよい。 Also, in the above description, the measuring device 5 includes the measuring head 53 . However, the measuring device 5 does not have to include the measuring head 53 . In this case, the measuring head 53 is a measuring device different from the measuring device 5, and is detachably attachable to the processing head 2 together with the measuring device 5 (specifically, the measuring head 52). may be
 (1-3)計測装置5を用いた動作
 続いて、計測装置5を用いた動作について説明する。
(1-3) Operation using the measuring device 5 Next, the operation using the measuring device 5 will be described.
 (1-3-1)座標マッチング動作
 工作機械1aは、計測装置5を用いて座標マッチング動作を用いてもよい。座標マッチング動作は、計測座標系とステージ座標系とを互いに関連付けるための校正動作である。計測座標系は、計測装置5が計測した計測対象物の位置(例えば、計測装置5を基準とする計測対象物の位置)を特定するために用いられる3次元座標系である。ステージ座標系は、ステージ41上の位置(例えば、ステージ41を基準とする位置)を特定するために用いられる3次元座標系である。或いは、ステージ座標系は、ステージ41の位置を特定するために用いられる3次元座標系であってもよい。ステージ駆動系42によってステージ41が移動可能である場合には、ステージ駆動系42は、ステージ座標系内において特定されるステージ41の位置に関する情報に基づいて、ステージ41を移動させてもよい。
(1-3-1) Coordinate Matching Operation The machine tool 1a may use the coordinate matching operation using the measuring device 5. FIG. A coordinate matching operation is a calibration operation for associating the measurement coordinate system and the stage coordinate system with each other. The measurement coordinate system is a three-dimensional coordinate system used to specify the position of the measurement object measured by the measurement device 5 (for example, the position of the measurement object with reference to the measurement device 5). The stage coordinate system is a three-dimensional coordinate system used to specify a position on stage 41 (for example, a position with stage 41 as a reference). Alternatively, the stage coordinate system may be a three-dimensional coordinate system used to specify the position of stage 41 . When the stage 41 can be moved by the stage drive system 42, the stage drive system 42 may move the stage 41 based on information regarding the position of the stage 41 specified within the stage coordinate system.
 計測座標系とステージ座標系とが互いに関連付けられると、ステージ座標系及び計測座標系のうちのいずれか一方のある位置の座標を、ステージ座標系及び計測座標系のいずれか他方のある位置の座標に変換可能となる。従って、座標マッチング動作は、ステージ座標系内の座標を計測座標系の座標に変換するために用いられる情報(例えば、変換行列)、及び、計測座標系内の座標をステージ座標系の座標に変換するために用いられる情報(例えば、変換行列)を取得するための動作と等価であるとみなしてもよい。 When the measurement coordinate system and the stage coordinate system are associated with each other, the coordinates of a position in either one of the stage coordinate system and the measurement coordinate system are converted to the coordinates of a position in the other of the stage coordinate system and the measurement coordinate system. can be converted to Thus, the coordinate matching operation includes information (e.g., a transformation matrix) used to transform coordinates in the stage coordinate system to coordinates in the measurement coordinate system, and transforming coordinates in the measurement coordinate system to coordinates in the stage coordinate system. may be considered equivalent to an operation for obtaining information (eg, a transformation matrix) used to perform the transformation.
 座標マッチング動作を行うために、計測装置5は、制御装置7の制御下で、座標基準部材411を計測してもよい。座標基準部材411は、ステージ41に対する位置に関する情報が制御装置7にとって既知である部材である。つまり、座標基準部材411は、ステージ41との間の相対的な位置関係に関する情報が制御装置7にとって既知である部材である。 The measuring device 5 may measure the coordinate reference member 411 under the control of the control device 7 in order to perform the coordinate matching operation. The coordinate reference member 411 is a member whose position relative to the stage 41 is known to the control device 7 . In other words, the coordinate reference member 411 is a member for which information regarding the relative positional relationship with the stage 41 is known to the control device 7 .
 座標基準部材411は、例えば、図10に示すように、ステージ41の表面の所定位置に形成されていてもよい。この場合、ステージ41上において座標基準部材411が形成される位置に関する情報は、ステージ41に対する座標基準部材411の位置に関する情報として、制御装置7にとって既知の情報である。但し、座標基準部材411は、ステージ41の表面とは異なる面(例えば、側面)に形成されていてもよい。座標基準部材411は、ステージ41とは異なり且つステージ41上に載置される部材に形成されていてもよい。このとき、ステージ41とは異なり且つステージ41上に載置される部材によってワークWが保持されていてもよい。また、座標基準部材411は、ステージ41と座標基準部材411との位置関係が固定された状態でステージ41の表面に設置されていてもよい。 For example, the coordinate reference member 411 may be formed at a predetermined position on the surface of the stage 41 as shown in FIG. In this case, the information about the position where the coordinate reference member 411 is formed on the stage 41 is information known to the control device 7 as information about the position of the coordinate reference member 411 with respect to the stage 41 . However, the coordinate reference member 411 may be formed on a surface (for example, a side surface) different from the surface of the stage 41 . The coordinate reference member 411 may be formed on a member different from the stage 41 and mounted on the stage 41 . At this time, the workpiece W may be held by a member different from the stage 41 and placed on the stage 41 . Further, the coordinate reference member 411 may be installed on the surface of the stage 41 in a state where the positional relationship between the stage 41 and the coordinate reference member 411 is fixed.
 座標基準部材411の一例が図11(a)及び図11(b)に示されている。図11(a)に示すように、球体(つまり、球形の部材)を含む座標基準部材411#1が、座標基準部材411として用いられてもよい。図11(b)に示すように、凸多面体(図11(b)に示す例では、立方体)の形状を有する部材を含む座標基準部材411#2が、座標基準部材411として用いられてもよい。但し、座標基準部材411が図11(a)及び図11(b)に示す形状とは異なる形状を有する部材であってもよい。例えば、座標基準部材411は、計測装置5が計測可能な所定のマーク(例えば、格子マーク)が形成された部材を含んでいてもよい。或いは、計測装置5が計測可能な所定のマーク(例えば、格子マーク)がステージ41に形成されていてもよい。この場合、ステージ41のうち所定のマークが形成された部分が、座標基準部材411として用いられてもよい。 An example of the coordinate reference member 411 is shown in FIGS. 11(a) and 11(b). As shown in FIG. 11( a ), a coordinate reference member 411 # 1 including a sphere (that is, a spherical member) may be used as the coordinate reference member 411 . As shown in FIG. 11B, a coordinate reference member 411#2 including a member having a convex polyhedron (a cube in the example shown in FIG. 11B) may be used as the coordinate reference member 411. . However, the coordinate reference member 411 may be a member having a shape different from the shape shown in FIGS. 11(a) and 11(b). For example, the coordinate reference member 411 may include a member on which a predetermined mark (for example, grid mark) measurable by the measuring device 5 is formed. Alternatively, a predetermined mark (for example, a grid mark) measurable by the measuring device 5 may be formed on the stage 41 . In this case, a portion of the stage 41 on which a predetermined mark is formed may be used as the coordinate reference member 411 .
 制御装置7は、計測装置5による座標基準部材411の計測結果に基づいて、計測座標系における座標基準部材411の位置を示す計測データを生成することができる。一方で、ステージ41に対する座標基準部材411の位置に関する情報が制御装置7にとって既知の情報であり、且つ、ステージ座標系におけるステージ41の位置は、ステージ装置4が備える不図示の位置計測装置によって計測可能であるため、制御装置7は、ステージ座標系における座標基準部材411の位置を算出することができる。その結果、制御装置7は、計測データが示す計測座標系における座標基準部材411の位置と、ステージ座標系における座標基準部材411の位置とが、互いに関連付けられるべき位置であると特定することができる。つまり、制御装置7は、計測座標系内でのある特定の位置と、ステージ座標系内でのある特定の位置とが、互いに関連付けられるべき位置であると特定することができる。その結果、制御装置7は、計測座標系内でのある特定の位置とステージ座標系内でのある特定の位置とが互いに関連付けられるべき位置であるという特定結果に基づいて、計測座標系とステージ座標系とを関連付けることができる。 The control device 7 can generate measurement data indicating the position of the coordinate reference member 411 in the measurement coordinate system based on the measurement result of the coordinate reference member 411 by the measurement device 5 . On the other hand, information about the position of the coordinate reference member 411 with respect to the stage 41 is known information to the control device 7, and the position of the stage 41 in the stage coordinate system is measured by a position measuring device (not shown) included in the stage device 4. Since it is possible, the control device 7 can calculate the position of the coordinate reference member 411 in the stage coordinate system. As a result, the control device 7 can specify that the position of the coordinate reference member 411 in the measurement coordinate system indicated by the measurement data and the position of the coordinate reference member 411 in the stage coordinate system are positions to be associated with each other. . That is, the control device 7 can specify that a specific position within the measurement coordinate system and a specific position within the stage coordinate system are positions that should be associated with each other. As a result, based on the identification result that a specific position in the measurement coordinate system and a specific position in the stage coordinate system are positions to be associated with each other, the control device 7 controls the measurement coordinate system and the stage. can be associated with a coordinate system.
 上述したように、計測座標系及びステージ座標系のそれぞれは、3次元座標系である。この場合、それぞれが3次元座標系である計測座標系及びステージ座標系を互いに関連付けるために、ステージ41上には、複数の(例えば、少なくとも三つの)座標基準部材411が形成されていてもよい。例えば、ステージ41上には、少なくともX軸方向における位置が異なる少なくとも二つの座標基準部材411が形成されていてもよい。この場合、制御装置7は、少なくとも二つの座標基準部材411の計測結果に基づいて座標マッチング動作を行うことで、ステージ座標系及び計測座標系のうちのいずれか一方のある位置のX座標を、ステージ座標系及び計測座標系のいずれか他方のある位置のX座標に変換可能となる。例えば、ステージ41上には、少なくともY軸方向における位置が異なる少なくとも二つの座標基準部材411が形成されていてもよい。この場合、制御装置7は、少なくとも二つの座標基準部材411の計測結果に基づいて座標マッチング動作を行うことで、ステージ座標系及び計測座標系のうちのいずれか一方のある位置のY座標を、ステージ座標系及び計測座標系のいずれか他方のある位置のY座標に変換可能となる。例えば、ステージ41上には、少なくともZ軸方向における位置が異なる少なくとも二つの座標基準部材411が形成されていてもよい。この場合、制御装置7は、少なくとも二つの座標基準部材411の計測結果に基づいて座標マッチング動作を行うことで、ステージ座標系及び計測座標系のうちのいずれか一方のある位置のZ座標を、ステージ座標系及び計測座標系のいずれか他方のある位置のZ座標に変換可能となる。 As described above, each of the measurement coordinate system and the stage coordinate system is a three-dimensional coordinate system. In this case, a plurality of (for example, at least three) coordinate reference members 411 may be formed on the stage 41 in order to associate the measurement coordinate system and the stage coordinate system, which are three-dimensional coordinate systems, with each other. . For example, at least two coordinate reference members 411 having different positions in the X-axis direction may be formed on the stage 41 . In this case, the control device 7 performs a coordinate matching operation based on the measurement results of at least two coordinate reference members 411, so that the X coordinate of a certain position in either one of the stage coordinate system and the measurement coordinate system is Either the stage coordinate system or the measurement coordinate system can be transformed into the X coordinate of a certain position. For example, at least two coordinate reference members 411 whose positions in the Y-axis direction are different may be formed on the stage 41 . In this case, the control device 7 performs a coordinate matching operation based on the measurement results of at least two coordinate reference members 411, so that the Y coordinate of a certain position in either one of the stage coordinate system and the measurement coordinate system is Either the stage coordinate system or the measurement coordinate system can be transformed into the Y coordinate of a certain position. For example, at least two coordinate reference members 411 having different positions in the Z-axis direction may be formed on the stage 41 . In this case, the control device 7 performs a coordinate matching operation based on the measurement results of at least two coordinate reference members 411, so that the Z coordinate of a certain position in either one of the stage coordinate system and the measurement coordinate system is Either one of the stage coordinate system and the measurement coordinate system can be transformed into the Z coordinate of a certain position.
 或いは、計測装置5が座標基準部材411を計測する都度、ステージ座標系内での座標基準部材411の位置を変更するようにステージ41が移動し、その後、ステージ41の移動に伴って移動した座標基準部材411を計測装置5が再度計測してもよい。つまり、計測装置5は、ステージ座標系内での複数個所(例えば、少なくとも三個所)の間で移動する座標基準部材411を計測してもよい。この場合、ステージ41上には、複数の座標基準部材411が形成されていなくてもよい。ステージ41上には、単一の座標基準部材411が形成されていてもよい。例えば、計測装置5が座標基準部材411を計測し、その後、ステージ座標系内での座標基準部材411のX軸方向における位置を変更するようにステージ41がX軸方向に沿った方向成分を含む移動方向に沿って移動し、その後、ステージ41の移動に伴って移動した座標基準部材411を計測装置5が計測してもよい。この場合、制御装置7は、座標基準部材411の計測結果に基づいて座標マッチング動作を行うことで、ステージ座標系及び計測座標系のうちのいずれか一方のある位置のX座標を、ステージ座標系及び計測座標系のいずれか他方のある位置のX座標に変換可能となる。例えば、計測装置5が座標基準部材411を計測し、その後、ステージ座標系内での座標基準部材411のY軸方向における位置を変更するようにステージ41がY軸方向に沿った方向成分を含む移動方向に沿って移動し、その後、ステージ41の移動に伴って移動した座標基準部材411を計測装置5が計測してもよい。この場合、制御装置7は、座標基準部材411の計測結果に基づいて座標マッチング動作を行うことで、ステージ座標系及び計測座標系のうちのいずれか一方のある位置のY座標を、ステージ座標系及び計測座標系のいずれか他方のある位置のY座標に変換可能となる。例えば、計測装置5が座標基準部材411を計測し、その後、ステージ座標系内での座標基準部材411のZ軸方向における位置を変更するようにステージ41がZ軸方向に沿った方向成分を含む移動方向に沿って移動し、その後、ステージ41の移動に伴って移動した座標基準部材411を計測装置5が計測してもよい。この場合、制御装置7は、座標基準部材411の計測結果に基づいて座標マッチング動作を行うことで、ステージ座標系及び計測座標系のうちのいずれか一方のある位置のZ座標を、ステージ座標系及び計測座標系のいずれか他方のある位置のZ座標に変換可能となる。 Alternatively, each time the measuring device 5 measures the coordinate reference member 411, the stage 41 is moved so as to change the position of the coordinate reference member 411 within the stage coordinate system, and then the coordinates moved as the stage 41 is moved. The measuring device 5 may measure the reference member 411 again. In other words, the measurement device 5 may measure the coordinate reference member 411 that moves between a plurality of locations (for example, at least three locations) within the stage coordinate system. In this case, the multiple coordinate reference members 411 may not be formed on the stage 41 . A single coordinate reference member 411 may be formed on the stage 41 . For example, the measuring device 5 measures the coordinate reference member 411, and then the stage 41 includes a directional component along the X-axis direction so as to change the position of the coordinate reference member 411 in the X-axis direction within the stage coordinate system. The measuring device 5 may measure the coordinate reference member 411 that moves along the movement direction and then moves along with the movement of the stage 41 . In this case, the control device 7 performs a coordinate matching operation based on the measurement result of the coordinate reference member 411 to match the X coordinate of a certain position in either the stage coordinate system or the measurement coordinate system to the stage coordinate system. and the other of the measurement coordinate system can be transformed into the X coordinate of a certain position. For example, the measuring device 5 measures the coordinate reference member 411, and then the stage 41 includes a directional component along the Y-axis direction so as to change the position of the coordinate reference member 411 in the Y-axis direction within the stage coordinate system. The measuring device 5 may measure the coordinate reference member 411 that moves along the movement direction and then moves along with the movement of the stage 41 . In this case, the control device 7 performs a coordinate matching operation based on the measurement result of the coordinate reference member 411 to match the Y coordinate of a certain position in either one of the stage coordinate system and the measurement coordinate system to the stage coordinate system. and the Y coordinate of a certain position in the other of the measurement coordinate systems. For example, the measuring device 5 measures the coordinate reference member 411, and then the stage 41 includes a directional component along the Z-axis direction so as to change the position of the coordinate reference member 411 in the Z-axis direction within the stage coordinate system. The measuring device 5 may measure the coordinate reference member 411 that moves along the movement direction and then moves along with the movement of the stage 41 . In this case, the control device 7 performs a coordinate matching operation based on the measurement result of the coordinate reference member 411, so that the Z coordinate of a certain position in either one of the stage coordinate system and the measurement coordinate system is changed to the stage coordinate system. and the Z coordinate of a certain position in the other of the measurement coordinate systems.
 或いは、座標基準部材411が3次元形状を有する部材(例えば、図11(a)に示す球体又は図11(b)に示す立方体)を含む場合には、計測装置5は、座標基準部材411の複数の部位(例えば、少なくとも三つの部位)を計測してもよい。この場合、ステージ41上には、複数の座標基準部材411が形成されていなくてもよいし、計測装置5が座標基準部材411を計測する都度ステージ41が移動しなくてもよい。例えば、計測装置5は、座標基準部材411の第1の部位を計測し、その後、少なくともステージ座標系内でのX軸方向における位置が第1の部位と異なる座標基準部材411の第2の部位を計測してもよい。この場合、制御装置7は、座標基準部材411の計測結果に基づいて座標マッチング動作を行うことで、ステージ座標系及び計測座標系のうちのいずれか一方のある位置のX座標を、ステージ座標系及び計測座標系のいずれか他方のある位置のX座標に変換可能となる。例えば、計測装置5は、座標基準部材411の第1の部位を計測し、その後、少なくともステージ座標系内でのY軸方向における位置が第1の部位と異なる座標基準部材411の第3の部位を計測してもよい。この場合、制御装置7は、座標基準部材411の計測結果に基づいて座標マッチング動作を行うことで、ステージ座標系及び計測座標系のうちのいずれか一方のある位置のY座標を、ステージ座標系及び計測座標系のいずれか他方のある位置のY座標に変換可能となる。例えば、計測装置5は、座標基準部材411の第1の部位を計測し、その後、少なくともステージ座標系内でのZ軸方向における位置が第1の部位と異なる座標基準部材411の第4の部位を計測してもよい。この場合、制御装置7は、座標基準部材411の計測結果に基づいて座標マッチング動作を行うことで、ステージ座標系及び計測座標系のうちのいずれか一方のある位置のZ座標を、ステージ座標系及び計測座標系のいずれか他方のある位置のZ座標に変換可能となる。 Alternatively, when the coordinate reference member 411 includes a member having a three-dimensional shape (for example, the sphere shown in FIG. 11A or the cube shown in FIG. Multiple sites (eg, at least three sites) may be measured. In this case, the plurality of coordinate reference members 411 may not be formed on the stage 41 , and the stage 41 may not move each time the measuring device 5 measures the coordinate reference members 411 . For example, the measuring device 5 measures a first portion of the coordinate reference member 411, and then measures a second portion of the coordinate reference member 411 whose position in the X-axis direction in at least the stage coordinate system is different from that of the first portion. may be measured. In this case, the control device 7 performs a coordinate matching operation based on the measurement result of the coordinate reference member 411 to match the X coordinate of a certain position in either the stage coordinate system or the measurement coordinate system to the stage coordinate system. and the other of the measurement coordinate system can be transformed into the X coordinate of a certain position. For example, the measuring device 5 measures a first portion of the coordinate reference member 411, and then measures a third portion of the coordinate reference member 411 whose position in at least the Y-axis direction in the stage coordinate system is different from that of the first portion. may be measured. In this case, the control device 7 performs a coordinate matching operation based on the measurement result of the coordinate reference member 411 to match the Y coordinate of a certain position in either one of the stage coordinate system and the measurement coordinate system to the stage coordinate system. and the Y coordinate of a certain position in the other of the measurement coordinate systems. For example, the measuring device 5 measures a first portion of the coordinate reference member 411, and then measures a fourth portion of the coordinate reference member 411 whose position in the Z-axis direction in at least the stage coordinate system is different from that of the first portion. may be measured. In this case, the control device 7 performs a coordinate matching operation based on the measurement result of the coordinate reference member 411, so that the Z coordinate of a certain position in either one of the stage coordinate system and the measurement coordinate system is changed to the stage coordinate system. and the Z coordinate of a certain position in the other of the measurement coordinate systems.
 計測装置5が座標基準部材411の複数の部位を計測する際には、計測装置5が座標基準部材411の一の部位を計測した後に、計測装置5が座標基準部材411の他の部位を計測することができるように、計測装置5と座標基準部材411との相対的な位置関係が変更されてもよい。計測装置5と座標基準部材411との相対的な位置関係は、ステージ駆動系42によって変更されてもよい。この場合、典型的には、ステージ駆動系42は、計測装置5(例えば、計測ヘッド52及び53の少なくとも一方)に対するステージ41の姿勢を変更してもよい。計測装置5と座標基準部材411との相対的な位置関係は、ヘッド駆動系3によって変更されてもよい。この場合、典型的には、ヘッド駆動系3は、ステージ41に対する加工ヘッド2の姿勢を変更することで、ステージ41に対する計測装置5(例えば、計測ヘッド52及び53の少なくとも一方)の姿勢を変更してもよい。 When the measuring device 5 measures a plurality of parts of the coordinate reference member 411 , after the measuring device 5 measures one part of the coordinate reference member 411 , the measuring device 5 measures another part of the coordinate reference member 411 . The relative positional relationship between the measuring device 5 and the coordinate reference member 411 may be changed so as to be able to. A relative positional relationship between the measurement device 5 and the coordinate reference member 411 may be changed by the stage drive system 42 . In this case, typically, the stage drive system 42 may change the attitude of the stage 41 with respect to the measuring device 5 (for example, at least one of the measuring heads 52 and 53). A relative positional relationship between the measurement device 5 and the coordinate reference member 411 may be changed by the head drive system 3 . In this case, typically, the head drive system 3 changes the attitude of the measuring device 5 (for example, at least one of the measuring heads 52 and 53) with respect to the stage 41 by changing the attitude of the processing head 2 with respect to the stage 41. You may
 或いは、計測装置5が座標基準部材411の一の部位を計測した後に、計測装置5と座標基準部材411との相対的な位置関係が変更されることなく、計測装置5が座標基準部材411の他の部位を計測してもよい。この場合、計測装置5は、図12に示すように、計測光MLの進行方向を変更可能な光学系412を介して、座標基準部材411の複数の部位を計測してもよい。例えば、図12には、立方体を含む座標基準部材411#2が計測装置5によって計測される例が示されている。この場合、計測ヘッド53から射出された計測光MLの進行方向がZ軸に平行であるがゆえに、計測装置5は、光学系412を介することなく、上方を向いた(つまり、+Z側を向いており、且つ、計測ヘッド53に対向した)座標基準部材411#2の第1面4111に計測光MLを照射可能である。一方で、計測ヘッド53から射出された計測光MLの進行方向がZ軸に平行である場合には、計測装置5は、座標基準部材411#2の側方を向いた第2面4112(図12に示す例では、-X側を向いた面)及び座標基準部材411#2の側方を向いた第3面4113(図12に示す例では、-Y側を向いた面)に計測光MLを照射することができない。このため、図12に示す例では、光学系412は、計測光MLの進行方向をZ軸に平行な方向からX軸に平行な方向に変更するように計測光MLを反射するミラー部材4121と、計測光MLの進行方向をZ軸に平行な方向からY軸に平行な方向に変更するように計測光MLを反射するミラー部材4122とを含んでいてもよい。この場合、ミラー部材4121が反射した計測光MLが座標基準部材411#2の第2面4112に照射され、且つ、ミラー部材4122が反射した計測光MLが座標基準部材411#2の第3面4113に照射される。その結果、計測装置5は、計測装置5と座標基準部材411との相対的な位置関係の変更を必要とすることなく、座標基準部材411#2の第1面4111から第3面4113を計測することができる。より具体的には、計測装置5は、ガルバノミラー5222から第1の射出方向に向けて射出された計測光MLを、第1面4111に照射し、ガルバノミラー5222から第2の射出方向に向けて射出された計測光MLを、ミラー部材4121を介して第2面4112に照射し、ガルバノミラー5222から第3の射出方向に向けて射出された計測光MLを、ミラー部材4122を介して第3面4113に照射することができる。このように、光学系412は、計測光MLの進行方向を、座標基準部材411の一の部位に計測光MLを照射可能な進行方向から、座標基準部材411の他の部位に計測光MLを照射可能な進行方向へと変更可能な進行方向変更部材(図12に示す例では、ミラー部材4121及び4122)を備えていてもよい
 但し、光学系412が計測光MLの進行方向を変更する場合には、座標基準部材411の一の部位に照射される計測光MLの光路長(つまり、光学的距離、以下同じ)と、座標基準部材411の他の部位に照射される計測光MLの光路長とが異なるものになってしまう可能性がある。上述した計測装置5の計測原理を考慮すると、座標基準部材411の一の部位に照射される計測光MLの光路長と座標基準部材411の他の部位に照射される計測光MLの光路長とが異なるものとなる状況は好ましいとは言い難い。そこで、光学系412は、上述した進行方向変更部材に加えて、座標基準部材411の一の部位に照射される計測光MLの光路長と座標基準部材411の他の部位に照射される計測光MLの光路長とが同じになるように、座標基準部材411の一の部位に照射される計測光MLの光路長と座標基準部材411の他の部位に照射される計測光MLの光路長の少なくとも一方を調整可能な光路長調整部材を含んでいてもよい。例えば、図12に示すように、光学系412は、座標基準部材411#2の第1面4111に照射される計測光MLの光路長と、座標基準部材411#2の第2面4112に照射される計測光MLの光路長と、座標基準部材411#2の第3面4113に照射される計測光MLの光路長とが同じになるように、第1面4111に照射される計測光MLの光路長、座標基準部材411#2の第2面4112に照射される計測光MLの光路長及び座標基準部材411#2の第3面4113に照射される計測光MLのうちの少なくとも一つを調整可能なプリズム部材4123を、光路長調整部材として含んでいてもよい。
Alternatively, after measuring one portion of the coordinate reference member 411 by the measuring device 5, the measuring device 5 may be moved to the coordinate reference member 411 without changing the relative positional relationship between the measuring device 5 and the coordinate reference member 411. Other sites may be measured. In this case, as shown in FIG. 12, the measuring device 5 may measure a plurality of parts of the coordinate reference member 411 via an optical system 412 capable of changing the traveling direction of the measurement light ML. For example, FIG. 12 shows an example in which a coordinate reference member 411#2 including a cube is measured by the measuring device 5. As shown in FIG. In this case, since the traveling direction of the measurement light ML emitted from the measurement head 53 is parallel to the Z-axis, the measurement device 5 faces upward (that is, faces the +Z side) without passing through the optical system 412. and the first surface 4111 of the coordinate reference member 411#2 facing the measurement head 53 can be irradiated with the measurement light ML. On the other hand, when the traveling direction of the measurement light ML emitted from the measurement head 53 is parallel to the Z axis, the measurement device 5 moves the second surface 4112 (see FIG. 12, the surface facing the -X side) and the third surface 4113 facing the side of the coordinate reference member 411#2 (the surface facing the -Y side in the example shown in FIG. 12). ML cannot be irradiated. Therefore, in the example shown in FIG. 12, the optical system 412 includes a mirror member 4121 that reflects the measurement light ML so as to change the traveling direction of the measurement light ML from the direction parallel to the Z axis to the direction parallel to the X axis. , and a mirror member 4122 that reflects the measurement light ML so as to change the traveling direction of the measurement light ML from the direction parallel to the Z axis to the direction parallel to the Y axis. In this case, the second surface 4112 of the coordinate reference member 411#2 is irradiated with the measurement light ML reflected by the mirror member 4121, and the measurement light ML reflected by the mirror member 4122 is projected onto the third surface of the coordinate reference member 411#2. 4113 is irradiated. As a result, the measuring device 5 measures the first surface 4111 to the third surface 4113 of the coordinate reference member 411#2 without changing the relative positional relationship between the measuring device 5 and the coordinate reference member 411. can do. More specifically, the measuring device 5 irradiates the first surface 4111 with the measurement light ML emitted from the galvanomirror 5222 in the first emission direction, and emits the measurement light ML from the galvanomirror 5222 in the second emission direction. The second surface 4112 is irradiated with the measurement light ML emitted through the mirror member 4121, and the measurement light ML emitted from the galvanomirror 5222 in the third emission direction is emitted through the mirror member 4122 to the second surface 4112. Three surfaces 4113 can be irradiated. In this way, the optical system 412 changes the travel direction of the measurement light ML from a travel direction that allows the measurement light ML to irradiate one portion of the coordinate reference member 411, and directs the measurement light ML to another portion of the coordinate reference member 411. A traveling direction changing member ( mirror members 4121 and 4122 in the example shown in FIG. 12) that can be changed to a traveling direction that can be irradiated may be provided, provided, however, that the optical system 412 changes the traveling direction of the measurement light ML. is the optical path length (i.e., optical distance, hereinafter the same) of the measurement light ML irradiated to one portion of the coordinate reference member 411, and the optical path of the measurement light ML irradiated to the other portion of the coordinate reference member 411. There is a possibility that it will be different from the length. Considering the measurement principle of the measuring apparatus 5 described above, the optical path length of the measurement light ML irradiated to one portion of the coordinate reference member 411 and the optical path length of the measurement light ML irradiated to another portion of the coordinate reference member 411 are It is difficult to say that the situation in which the Therefore, in addition to the traveling direction changing member described above, the optical system 412 has an optical path length of the measurement light ML irradiated to one portion of the coordinate reference member 411 and a measurement light irradiated to another portion of the coordinate reference member 411. The optical path length of the measurement light ML irradiated to one portion of the coordinate reference member 411 and the optical path length of the measurement light ML irradiated to the other portion of the coordinate reference member 411 are equal to each other. At least one of the optical path length adjusting members may be included. For example, as shown in FIG. 12, the optical system 412 has the optical path length of the measurement light ML that irradiates the first surface 4111 of the coordinate reference member 411#2 and the length of the measurement light ML that irradiates the second surface 4112 of the coordinate reference member 411#2. The measurement light ML applied to the first surface 4111 is made equal to the optical path length of the measurement light ML applied to the third surface 4113 of the coordinate reference member 411#2. , the optical path length of the measurement light ML irradiated to the second surface 4112 of the coordinate reference member 411#2, and the measurement light ML irradiated to the third surface 4113 of the coordinate reference member 411#2. may be included as an optical path length adjusting member.
 (1-3-2)ワーク計測動作
 工作機械1aは、計測装置5を用いてワーク計測動作を行ってもよい。ワーク計測動作は、ワークWを計測する(例えば、ワークWの形状を計測する)ための動作である。
(1-3-2) Work Measuring Operation The machine tool 1a may use the measuring device 5 to perform a work measuring operation. The work measuring operation is an operation for measuring the work W (for example, measuring the shape of the work W).
 工作機械1aは、加工ヘッド2がワークWを工具23で加工し始める前に、ワーク計測動作を行ってもよい。この場合、工作機械1aは、ワーク計測動作を完了した後に、ステージ41がワークWを保持した状態で、工具交換装置6を用いて、主軸21から計測ヘッド53を取り外すと共に、主軸21に工具23を取り付けてもよい。その後、工作機械1aは、ワーク計測動作の結果に基づいて、ステージ41に保持されたワークWを加工してもよい。 The machine tool 1a may perform a workpiece measurement operation before the machining head 2 starts machining the workpiece W with the tool 23. In this case, the machine tool 1a uses the tool changer 6 to remove the measuring head 53 from the spindle 21 while the stage 41 is holding the workpiece W after completing the workpiece measuring operation, and attaches the tool 23 to the spindle 21. may be attached. After that, the machine tool 1a may process the work W held on the stage 41 based on the result of the work measuring operation.
 工作機械1aは、加工ヘッド2がワークWを加工し終えた後に、ワーク計測動作を行ってもよい。この場合、工作機械1aは、ワーク計測動作が行われる前に、主軸21に取り付けられた工具23を用いて、ワークWを加工してもよい。工作機械1aは、ワーク計測動作が行われる前に、主軸21に取り付けられた工具23とは異なる他の工具を用いて、ワークWを加工してもよい。その後、ワークWの加工が完了した後、工作機械1aは、ステージ41がワークWを保持した状態で、工具交換装置6を用いて、主軸21から工具23を取り外すと共に、主軸21に計測ヘッド53を取り付けてもよい。或いは、主軸21に取り付けられた工具23とは異なる他の工具を用いてワークWが加工された場合には、主軸21に工具23が取り付けられていない可能性がある。主軸21に工具23が取り付けられていない場合には、ワークWの加工が完了した後、工作機械1aは、ステージ41がワークWを保持した状態で、工具交換装置6を用いて、主軸21から工具23を取り外すことなく、主軸21に計測ヘッド53を取り付けてもよい。その後、工作機械1aは、ステージ41に保持されたワークWに対してワーク計測動作を行ってもよい。 The machine tool 1a may perform the workpiece measurement operation after the machining head 2 finishes machining the workpiece W. In this case, the machine tool 1a may machine the workpiece W using the tool 23 attached to the spindle 21 before the workpiece measurement operation is performed. The machine tool 1a may machine the workpiece W using a tool other than the tool 23 attached to the spindle 21 before the workpiece measurement operation is performed. Thereafter, after the machining of the workpiece W is completed, the machine tool 1a uses the tool changer 6 to remove the tool 23 from the spindle 21 while the stage 41 is holding the workpiece W, and attach the measuring head 53 to the spindle 21. may be attached. Alternatively, if the work W is machined using a tool different from the tool 23 attached to the main spindle 21 , there is a possibility that the tool 23 is not attached to the main spindle 21 . When the tool 23 is not attached to the main spindle 21, after the machining of the work W is completed, the machine tool 1a is moved from the main spindle 21 using the tool changer 6 while the stage 41 holds the work W. The measuring head 53 may be attached to the spindle 21 without removing the tool 23 . After that, the machine tool 1 a may perform a work measuring operation on the work W held on the stage 41 .
 以下、図13を参照しながら、ワーク計測動作について説明する。図13は、ワーク計測動作の流れを示すフローチャートである。 The workpiece measurement operation will be described below with reference to FIG. FIG. 13 is a flowchart showing the flow of work measuring operation.
 図13に示すように、まず、ステージ41にワークWが載置される(S101)。例えば、加工ヘッド2がワークWを加工し始める前にワーク計測動作が行われる場合には、加工ヘッド2が加工しようとしているワークWがステージ41に載置されてもよい。例えば、加工ヘッド2がワークWを加工し終えた後にワーク計測動作が行われる場合には、加工ヘッド2が加工し終えたワークWがステージ41に載置されてもよい。但し、加工ヘッド2がワークWを加工し終えた後にワーク計測動作が行われる場合には、ステージ41には、加工ヘッド2が加工し終えたワークWが既に載置されている。従って、この場合には、ステップS101の動作が行われなくてもよい。 As shown in FIG. 13, first, the work W is placed on the stage 41 (S101). For example, when the workpiece measuring operation is performed before the machining head 2 starts machining the workpiece W, the workpiece W to be machined by the machining head 2 may be placed on the stage 41 . For example, when the workpiece measurement operation is performed after the machining head 2 finishes machining the workpiece W, the workpiece W that the machining head 2 has finished machining may be placed on the stage 41 . However, when the workpiece measurement operation is performed after the machining head 2 finishes machining the workpiece W, the workpiece W which the machining head 2 has finished machining is already placed on the stage 41 . Therefore, in this case, the operation of step S101 may not be performed.
 ステップS101の動作と並行して又は相前後して、工具交換装置6は、主軸21に計測ヘッド53を取り付ける(ステップS102)。但し、主軸21に既に計測ヘッド53が既に取り付けられている場合には、ステップS102の動作が行われなくてもよい。 In parallel with or before or after the operation of step S101, the tool changer 6 attaches the measuring head 53 to the spindle 21 (step S102). However, if the measuring head 53 has already been attached to the spindle 21, the operation of step S102 may not be performed.
 その後、制御装置7は、計測パス情報を取得する(ステップS103)。計測パス情報は、計測装置5による計測位置の計測対象物(ここでは、ワークW)上での移動経路(言い換えれば、移動軌跡)を示す。上述したように、計測装置5は、計測光MLを計測対象物に照射することで、計測対象物を計測する。このため、計測パス情報は、計測装置5による計測位置の計測対象物上での移動経路として、計測対象物上での計測光MLの照射位置の移動経路を示していてもよい。計測パス情報は、計測装置5による計測位置の計測対象物上での移動経路として、ガルバノミラー5222の動作によって計測光MLが照射可能なスキャン領域SA(図8(a)から図8(c)参照)の移動経路を示していてもよい。 After that, the control device 7 acquires measurement path information (step S103). The measurement path information indicates a movement path (in other words, a movement locus) on the measurement object (workpiece W in this case) of the measurement position by the measuring device 5 . As described above, the measurement device 5 measures the measurement object by irradiating the measurement light ML onto the measurement object. Therefore, the measurement path information may indicate the movement path of the irradiation position of the measurement light ML on the measurement object as the movement path of the measurement position on the measurement object by the measuring device 5 . The measurement path information is a scan area SA (FIGS. 8A to 8C) that can be irradiated with the measurement light ML by the operation of the galvanomirror 5222 as a movement path on the measurement target of the measurement position by the measurement device 5. reference) may indicate the route of movement.
 制御装置7は、計測パス情報を生成するパス生成装置から計測パス情報を生成してもよい。パス生成装置は、例えば、計測対象物の3次元モデル(例えば、計測対象物のCAD(Computer Aided Design)モデル)に基づいて、計測パス情報を生成してもよい。パス生成装置は、例えば、計測対象物の3次元モデルと、計測対象物のうち計測装置5が計測するべき部位の位置に関する情報とに基づいて、計測パス情報を生成してもよい。 The control device 7 may generate measured path information from a path generation device that generates measured path information. The path generation device may generate measurement path information based on, for example, a three-dimensional model of the measurement object (for example, a CAD (Computer Aided Design) model of the measurement object). The path generation device may generate measurement path information based on, for example, a three-dimensional model of the measurement object and information on the position of the portion of the measurement object to be measured by the measurement device 5 .
 パス生成装置は、CAM(Computer Aided Manufacturing)を用いて、計測パス情報を生成してもよい。CAMは、通常、NC(Numerical Control)加工を行う工作機械による加工位置の加工対象物上での移動経路を示す加工パス情報を生成するために用いられる。このため、パス生成装置は、CAM上で計測装置5による計測位置を工作機械による加工位置とみなす処理を行うことで、CAMを用いて計測パス情報を生成してもよい。 The path generation device may generate measurement path information using CAM (Computer Aided Manufacturing). A CAM is usually used to generate machining path information that indicates a movement path on a workpiece of a machining position by a machine tool that performs NC (Numerical Control) machining. Therefore, the path generation device may generate the measurement path information using the CAM by performing a process of regarding the positions measured by the measurement device 5 on the CAM as the machining positions by the machine tool.
 パス生成装置がCAMを用いて計測パス情報を生成する場合には、パス生成装置は、計測光MLを仮想的な工具とみなす処理をCAM上で行うことで、計測パス情報を生成してもよい。例えば、仮想的な工具とみなす計測光MLを示す図14に示すように、パス生成装置は、上述したスキャン領域SA(図14に示す例では、輪帯形状のスキャン領域SA)に照射される計測光MLの集合体を、主軸21に取り付けられた仮想的な工具とみなす処理をCAM上で行うことで、計測パス情報を生成してもよい。ここで、工具23が主軸21の回転軸RX周りに回転するがゆえに、工具23は、通常、回転軸RXに対して回転対称な形状を有している。このため、計測光MLの集合体を仮想的な工具とみなす場合においても、計測光MLの集合体が回転軸RXに対して回転対称な形状を有していれば、パス生成装置は、計測光MLの集合体を工具とみなす処理を比較的容易に行うことができる。このため、計測装置5は、スキャン領域SAに照射される計測光MLの集合体が回転軸RXに対して回転対称な形状を有するように、計測光MLを射出してもよい。例えば、計測装置5は、スキャン領域SAに照射される計測光MLの集合体の断面(具体的には、計測光MLの進行方向に交差する断面)が回転軸RXに対して回転対称な形状を有するように、計測光MLを射出してもよい。計測装置5は、スキャン領域SAが回転軸RXに対して回転対称な形状を有するように、計測光MLを射出してもよい。 When the path generation device generates the measurement path information using the CAM, the path generation device may generate the measurement path information by performing processing on the CAM that regards the measurement light ML as a virtual tool. good. For example, as shown in FIG. 14 showing measurement light ML regarded as a virtual tool, the path generation device irradiates the above-described scan area SA (annular scan area SA in the example shown in FIG. 14). The measurement path information may be generated by performing processing on the CAM that regards an aggregate of the measurement light beams ML as a virtual tool attached to the spindle 21 . Here, since the tool 23 rotates around the rotation axis RX of the main shaft 21, the tool 23 normally has a rotationally symmetrical shape with respect to the rotation axis RX. Therefore, even when the assembly of the measurement light ML is regarded as a virtual tool, if the assembly of the measurement light ML has a rotationally symmetrical shape with respect to the rotation axis RX, the path generation device can perform the measurement It is possible to relatively easily perform a process of regarding an aggregate of light ML as a tool. Therefore, the measurement device 5 may emit the measurement light ML so that the aggregate of the measurement light ML irradiated onto the scan area SA has a rotationally symmetrical shape with respect to the rotation axis RX. For example, the measurement device 5 has a shape in which the cross section (specifically, the cross section intersecting the traveling direction of the measurement light ML) of the aggregate of the measurement light ML irradiated onto the scan area SA is rotationally symmetrical with respect to the rotation axis RX. The measurement light ML may be emitted so as to have The measurement device 5 may emit the measurement light ML so that the scan area SA has a rotationally symmetrical shape with respect to the rotation axis RX.
 パス生成装置は、計測装置5から射出される計測光MLがワークWの各部位に垂直入射するように、計測パス情報を生成してもよい。つまり、パス生成装置は、計測光MLがワークWのある部位には垂直入射する一方で、計測光MLがワークWの別の部位には斜入射する状況が生じないように、計測パス情報を生成してもよい。パス生成装置は、計測装置5とワークWとの間の距離(例えば、計測装置5の終端光学素子とワークWとの間の距離であり、第1実施形態では、fθレンズ5322とワークWとの間の距離)が一定になるように、計測パス情報を生成してもよい。 The path generation device may generate measurement path information so that the measurement light ML emitted from the measurement device 5 is vertically incident on each part of the work W. That is, the path generation device generates the measurement path information so as not to cause a situation in which the measurement light ML is vertically incident on a certain portion of the work W while the measurement light ML is obliquely incident on another portion of the work W. may be generated. The path generation device is the distance between the measuring device 5 and the work W (for example, the distance between the final optical element of the measuring device 5 and the work W. In the first embodiment, the fθ lens 5322 and the work W The measured path information may be generated so that the distance between ) is constant.
 尚、制御装置7は、パス生成装置から計測パス情報を取得することに加えて又は代えて、計測パス情報を生成してもよい。制御装置7は、パス生成装置が計測パス情報を生成する方法と同様の方法を用いて、計測パス情報を生成してもよい。 Note that the control device 7 may generate the measured path information in addition to or instead of acquiring the measured path information from the path generation device. The control device 7 may generate the measured path information using a method similar to the method used by the path generation device to generate the measured path information.
 再び図13において、その後、制御装置7は、ステップS103で取得した計測パス情報に基づいて、ワークWを計測するように計測装置5(更には、必要に応じてヘッド駆動系3及びステージ駆動系42)を制御する(ステップS104)。その結果、計測装置5は、ワークW上において計測パス情報が示す移動経路に沿って計測光MLの照射位置が移動するように計測対象物に計測光MLを照射することで、ワークWを計測する。 Referring back to FIG. 13, after that, the control device 7 controls the measurement device 5 (and, if necessary, the head drive system 3 and the stage drive system) to measure the workpiece W based on the measurement path information acquired in step S103. 42) is controlled (step S104). As a result, the measuring device 5 measures the workpiece W by irradiating the measurement object with the measurement light ML so that the irradiation position of the measurement light ML moves along the movement path indicated by the measurement path information on the workpiece W. do.
 その後、制御装置7は、ステップS104におけるワークWの計測結果に不備があるか否かを判定する(ステップS105)。上述したように、制御装置7は、ワークWの計測結果に基づいて、ワークWの計測データ(例えば、ワークWの形状に関するデータ)を生成する。このため、制御装置7は、ワークWの計測結果から計測データを生成することができない場合には、ワークWの計測結果に不備があると判定してもよい。制御装置7は、ワークWの計測結果から計測データを生成することができるものの、計測データの信頼性が所定の信頼閾値よりも低い場合には、ワークWの計測結果に不備があると判定してもよい。 After that, the control device 7 determines whether or not the measurement result of the workpiece W in step S104 is flawed (step S105). As described above, the control device 7 generates measurement data of the work W (for example, data regarding the shape of the work W) based on the measurement results of the work W. FIG. Therefore, the control device 7 may determine that the measurement result of the work W is incomplete when the measurement data cannot be generated from the measurement result of the work W. Although the control device 7 can generate measurement data from the measurement results of the work W, if the reliability of the measurement data is lower than a predetermined reliability threshold, the control device 7 determines that the measurement results of the work W are defective. may
 一例として、制御装置7は、ワークWの計測結果として、検出素子5232による戻り光RLの検出強度を取得してもよいことは、上述したとおりである。この場合、制御装置7は、戻り光RLの検出強度が所定の第2強度閾値よりも小さい場合に、ワークWの計測結果に不備があると判定してもよい。なぜならば、本来は戻り光RLの検出強度が一定強度以上になるべきところ、戻り光RLの検出強度が弱い場合には、計測装置5が計測光MLをワークWに適切に照射できていない可能性があるからである。その結果、制御装置7は、信頼性のある計測データを生成することができない可能性があるからである。 As an example, the control device 7 may acquire the intensity of the return light RL detected by the detection element 5232 as the measurement result of the work W, as described above. In this case, the control device 7 may determine that the measurement result of the workpiece W is defective when the detected intensity of the returned light RL is smaller than a predetermined second intensity threshold. This is because the detection intensity of the return light RL should be equal to or higher than a certain intensity, but if the detection intensity of the return light RL is weak, the measuring device 5 may not be able to appropriately irradiate the workpiece W with the measurement light ML. It is because there is a nature. This is because, as a result, the control device 7 may not be able to generate reliable measurement data.
 ステップS105における判定の結果、ワークWの計測結果に不備があると判定された場合には(ステップS105:Yes)、制御装置7は、ワークWを計測するための計測条件を変更する(ステップS106)。例えば、制御装置7は、制御装置7がワークWの計測結果から信頼性のある(例えば、信頼性が所定の信頼閾値よりも高い)計測データを生成することができるように、計測条件を変更してもよい。例えば、戻り光RLの検出強度が所定の第2強度閾値よりも小さいことに起因してワークWの計測結果に不備があると判定された場合には、制御装置7は、戻り光RLの検出強度が所定の第2強度閾値以上になるように、計測条件を変更してもよい。 As a result of the determination in step S105, when it is determined that the measurement result of the work W is defective (step S105: Yes), the control device 7 changes the measurement conditions for measuring the work W (step S106 ). For example, the control device 7 changes the measurement conditions so that the control device 7 can generate reliable measurement data (for example, the reliability is higher than a predetermined reliability threshold) from the measurement results of the workpiece W. You may For example, when it is determined that the measurement result of the work W is defective because the detected intensity of the returned light RL is smaller than the predetermined second intensity threshold, the control device 7 detects the returned light RL. The measurement conditions may be changed so that the intensity is greater than or equal to the second predetermined intensity threshold.
 ワークWの計測条件は、ワークWに計測光MLを照射し且つワークWからの戻り光RLを検出する計測装置5に関する条件を含んでいてもよい。計測装置5に関する条件は、計測光MLに関する条件を含んでいてもよい。計測光MLに関する条件は、計測光MLの強度、計測光MLの照射タイミング及び計測光MLの照射位置のうちの少なくとも一つを含んでいてもよい。例えば、制御装置7は、戻り光RLの検出強度が所定の第2強度閾値以上になるように、計測光MLの強度を変更してもよい。計測装置5がワークWを計測する期間中に計測装置5(特に、計測ヘッド52及び53)及びステージ41の少なくとも一方が移動する可能性がある。このため、ワークWの計測条件は、計測装置5及びステージ41の少なくとも一方の移動に関する条件を含んでいてもよい。移動に関する条件は、移動速度、移動タイミング、移動量及び移動方向の少なくとも一つを含んでいてもよい。尚、計測装置5(特に、計測ヘッド52及び53)は、加工ヘッド2の移動に伴って移動するがゆえに、計測装置5(特に、計測ヘッド52及び53)の移動に関する条件は、実質的には、加工ヘッド2の移動に関する条件と等価である。 The measurement conditions for the work W may include conditions for the measurement device 5 that irradiates the work W with the measurement light ML and detects the return light RL from the work W. The conditions regarding the measurement device 5 may include conditions regarding the measurement light ML. The conditions regarding the measurement light ML may include at least one of the intensity of the measurement light ML, the timing of irradiation of the measurement light ML, and the irradiation position of the measurement light ML. For example, the control device 7 may change the intensity of the measurement light ML so that the detected intensity of the return light RL is greater than or equal to a predetermined second intensity threshold. At least one of the measuring device 5 (in particular, the measuring heads 52 and 53) and the stage 41 may move while the measuring device 5 measures the workpiece W. FIG. For this reason, the measurement conditions for the workpiece W may include conditions regarding movement of at least one of the measurement device 5 and the stage 41 . The condition regarding movement may include at least one of movement speed, movement timing, movement amount, and movement direction. Since the measuring device 5 (especially the measuring heads 52 and 53) moves with the movement of the processing head 2, the conditions for the movement of the measuring device 5 (especially the measuring heads 52 and 53) are substantially is equivalent to the condition regarding the movement of the machining head 2.
 計測条件が変更された後、計測装置5は、ワークWを再度計測する(ステップS104)。以降同様の動作(つまり、ステップS104及びステップS106の動作)が、ワークWの計測結果に不備がないと判定されるまで繰り返される(ステップS105)。 After the measurement conditions are changed, the measuring device 5 measures the workpiece W again (step S104). Thereafter, similar operations (that is, the operations of steps S104 and S106) are repeated until it is determined that the measurement result of the work W is satisfactory (step S105).
 他方で、ステップS105における判定の結果、ワークWの計測結果に不備がないと判定された場合には(ステップS105:No)、制御装置7は、ステップS104におけるワークWの計測結果に基づいて、ワークWの計測データを生成する。例えば、上述したように、制御装置7は、ワークWの計測結果に基づいて、ワークWの形状を示す計測データを生成してもよい。具体的には、上述したように、ワークWの計測結果は、ワークWの複数の部位のそれぞれの位置に関する情報を含んでいる。この場合、制御装置7は、ワークWの複数の部位の位置にそれぞれ対応する複数の点を含む点群データを、ワークWの形状を示す計測データとして生成してもよい。或いは、制御装置7は、点群データに基づいて、ワークWの形状を示す3次元モデルを生成し、当該3次元モデルを示す計測データを生成してもよい。 On the other hand, as a result of the determination in step S105, if it is determined that there is no defect in the measurement result of the work W (step S105: No), the control device 7, based on the measurement result of the work W in step S104, Measured data of the workpiece W is generated. For example, the control device 7 may generate measurement data indicating the shape of the work W based on the measurement results of the work W, as described above. Specifically, as described above, the measurement result of the work W includes information regarding the positions of the plurality of parts of the work W. As shown in FIG. In this case, the control device 7 may generate point cloud data including a plurality of points respectively corresponding to positions of a plurality of portions of the work W as measurement data indicating the shape of the work W. FIG. Alternatively, the control device 7 may generate a three-dimensional model representing the shape of the workpiece W based on the point cloud data, and may generate measurement data representing the three-dimensional model.
 ワークWの計測結果には、様々なノイズ成分が重畳されている可能性がある。例えば、ワークWの計測結果には、工作機械1a及びワークWが配置された空間の温度に起因したノイズ成分が重畳されている可能性がある。例えば、ワークWの計測結果には、工作機械1a及びワークWに生ずる振動に起因したノイズ成分が重畳されている可能性がある。このため、制御装置7は、ワークWの計測結果からノイズ成分を除去し、ノイズ成分が除去された計測結果に基づいて、計測データを生成してもよい。或いは、制御装置7は、ワークWの計測結果に基づいて、ノイズ成分の影響が排除された計測データを生成してもよい。 Various noise components may be superimposed on the measurement results of the workpiece W. For example, there is a possibility that a noise component caused by the temperature of the space in which the machine tool 1a and the work W are arranged is superimposed on the measurement result of the work W. For example, there is a possibility that noise components caused by vibrations occurring in the machine tool 1a and the workpiece W are superimposed on the measurement result of the workpiece W. FIG. Therefore, the control device 7 may remove noise components from the measurement results of the work W, and generate measurement data based on the measurement results from which the noise components have been removed. Alternatively, the control device 7 may generate measurement data from which the influence of noise components is eliminated based on the measurement result of the workpiece W. FIG.
 その後、制御装置7は、ステップS107で生成された計測データを用いて、所望処理を行う(ステップS108)。 After that, the control device 7 performs desired processing using the measurement data generated in step S107 (step S108).
 加工ヘッド2がワークWを加工し始める前にワーク計測動作が行われる場合には、ステップS108において制御装置7が行う所望処理は、工具23の位置合わせ処理を含んでいてもよい。工具23の位置合わせ処理は、計測データによって形状(更には、位置)が特定可能なワークWの所望位置(例えば、加工開始位置)に工具23が位置するように工具23を移動させる処理を含んでいてもよい。 If the workpiece measurement operation is performed before the machining head 2 starts machining the workpiece W, the desired process performed by the control device 7 in step S108 may include alignment of the tool 23. The alignment process of the tool 23 includes a process of moving the tool 23 so that the tool 23 is positioned at a desired position (for example, a machining start position) of the workpiece W whose shape (and position) can be specified by the measurement data. You can stay.
 加工ヘッド2がワークWを加工し始める前にワーク計測動作が行われる場合には、ステップS108において制御装置7が行う所望処理は、ステージ41に載置されたワークWの位置(以降、“載置位置”と称する)を構成するための校正処理を含んでいてもよい。ワークWの載置位置の校正処理は、ワークWの理想的な載置位置と計測データが示すワークWの実際の載置位置との差分に相当する載置位置誤差を算出する処理を含んでいてもよい。ワークWの載置位置の校正処理は、算出された載置位置誤差を工作機械1aのオペレータに通知し、オペレータに対してステージ41上でワークWを載置し直すように促す処理を含んでいてもよい。ワークWの載置位置の校正処理は、算出された載置位置誤差に基づいてステージ41上でワークWの載置位置を自動的に変更する処理を含んでいてもよい。ワークWの載置位置の校正処理は、算出された載置位置誤差を相殺するように加工ヘッド2及びステージ41の少なくとも一方の移動を制御する処理を含んでいてもよい。例えば、ワークWの載置位置の校正処理は、載置位置誤差が生じている状況下であっても、載置位置誤差が生じていない場合と同様に加工ヘッド2がワークWを加工することができるように加工ヘッド2及びステージ41の少なくとも一方の移動を制御する処理を含んでいてもよい。例えば、ワークWの載置位置の校正処理は、載置位置誤差が生じている状況下であっても、載置位置誤差が生じていない場合と同様に計測装置5がワークW(或いは、任意の計測対象物)を計測することができるように加工ヘッド2及びステージ41の少なくとも一方の移動を制御する処理を含んでいてもよい。この場合、ヘッド駆動系3及びステージ駆動系42は、実質的には、ワークWの計測結果に関する情報に基づいて、加工ヘッド2及びステージ41をそれぞれ移動させることになる。その結果、工作機械1aは、載置位置誤差の影響を受けることなく、ワークWを加工し且つワークWを計測することができる。 When the workpiece measuring operation is performed before the machining head 2 starts machining the workpiece W, the desired process performed by the control device 7 in step S108 is to determine the position of the workpiece W placed on the stage 41 (hereinafter referred to as "mounting position"). A calibration process may also be included to configure the "placement position"). The process of calibrating the placement position of the work W includes a process of calculating a placement position error corresponding to the difference between the ideal placement position of the work W and the actual placement position of the work W indicated by the measurement data. You can The process of calibrating the placement position of the work W includes a process of notifying the operator of the machine tool 1a of the calculated placement position error and prompting the operator to place the work W again on the stage 41. You can The processing for calibrating the mounting position of the work W may include processing for automatically changing the mounting position of the work W on the stage 41 based on the calculated mounting position error. The processing for calibrating the mounting position of the work W may include processing for controlling movement of at least one of the processing head 2 and the stage 41 so as to offset the calculated mounting position error. For example, in the process of calibrating the mounting position of the work W, the processing head 2 processes the work W in the same manner as when there is no mounting position error even in a situation where a mounting position error has occurred. may include processing for controlling the movement of at least one of the processing head 2 and the stage 41 so that For example, in the process of calibrating the mounting position of the workpiece W, even under the condition where the mounting position error occurs, the measuring device 5 can detect the workpiece W (or an arbitrary measurement object) may include processing for controlling the movement of at least one of the processing head 2 and the stage 41 so as to be able to measure the object. In this case, the head driving system 3 and the stage driving system 42 substantially move the processing head 2 and the stage 41, respectively, based on the information regarding the measurement result of the workpiece W. As a result, the machine tool 1a can process and measure the workpiece W without being affected by the mounting position error.
 加工ヘッド2がワークWを加工し終えた後にワーク計測動作が行われる場合には、ステップS108において制御装置7が行う所望処理は、加工ヘッド2が加工し終えたワークWを評価する評価処理を含んでいてもよい。言い換えれば、所望処理は、加工ヘッド2によるワークWの加工内容を評価する評価処理を含んでいてもよい。評価処理は、ワークWの理想的な形状と計測データが示すワークWの実際の形状との差分に相当する加工誤差を算出する処理を含んでいてもよい。評価処理は、加工誤差に関する情報を工作機械1aのオペレータに通知する処理を含んでいてもよい。評価処理は、算出した加工誤差と所定の誤差閾値とを比較して加工ヘッド2により加工されたワークWの良否を判定する処理を含んでいてもよい。評価処理は、判定したワークWの良否を工作機械1aのオペレータに通知する処理を含んでいてもよい。評価処理は、加工誤差を少なくする又はなくすように加工ヘッド2にワークWを再度加工させる処理を含んでいてもよい。 When the workpiece measuring operation is performed after the machining head 2 finishes machining the workpiece W, the desired process performed by the control device 7 in step S108 is an evaluation process for evaluating the workpiece W machined by the machining head 2. may contain. In other words, the desired process may include an evaluation process for evaluating the details of the machining of the workpiece W by the machining head 2 . The evaluation process may include a process of calculating a machining error corresponding to the difference between the ideal shape of the work W and the actual shape of the work W indicated by the measurement data. The evaluation process may include a process of notifying the operator of the machine tool 1a of information on the machining error. The evaluation process may include a process of comparing the calculated machining error with a predetermined error threshold to determine the quality of the workpiece W machined by the machining head 2 . The evaluation process may include a process of notifying the operator of the machine tool 1a of the determined quality of the workpiece W. The evaluation process may include a process of causing the machining head 2 to process the workpiece W again so as to reduce or eliminate machining errors.
 工作機械1aは、ワークWを加工することで様々な種類の加工物を生成する。このため、ワークWの理想的な形状も、工作機械1aが生成するべき加工物の種類によって変わる。このため、制御装置7は、工作機械1aが生成するべき加工物の種類ごとに、評価処理を行ってもよい。例えば、制御装置7は、工作機械1aが第1の種類の加工物(例えば、ギヤ)を生成する場合には、加工物としてのギヤの理想的な形状とワークWの実際の形状との差分に相当する加工誤差を算出する第1の評価処理を行い、工作機械1aが第2の種類の加工物(例えば、ブレード)を生成する場合には、加工物としてのブレードの理想的な形状とワークWの実際の形状との差分に相当する加工誤差を算出する第2の評価処理を行い、工作機械1aが第3の種類の加工物(例えば、金型)を生成する場合には、加工物としてのギヤの理想的な形状とワークWの実際の形状との差分に相当する加工誤差を算出する第3の評価処理を行ってもよい。 The machine tool 1a produces various types of workpieces by machining the workpiece W. Therefore, the ideal shape of the workpiece W also changes depending on the type of workpiece to be produced by the machine tool 1a. Therefore, the control device 7 may perform evaluation processing for each type of workpiece to be produced by the machine tool 1a. For example, when the machine tool 1a produces a first type of workpiece (for example, a gear), the controller 7 determines the difference between the ideal shape of the gear as the workpiece and the actual shape of the workpiece W. When the machine tool 1a generates a second type of workpiece (for example, a blade), the ideal shape of the blade as the workpiece and A second evaluation process is performed to calculate a machining error corresponding to a difference from the actual shape of the workpiece W, and when the machine tool 1a generates a third type of workpiece (for example, a mold), A third evaluation process of calculating a machining error corresponding to the difference between the ideal shape of the gear as an object and the actual shape of the workpiece W may be performed.
 ワーク計測動作が行われている期間の少なくとも一部において、制御装置7は、計測装置5が計測対象物に計測光MLを照射することができ且つ戻り光RLを検出することができるように、上述したように、計測ヘッド53が取り付けられた主軸21の回転(つまり、計測ヘッド53の回転)を制御する動作を行ってもよい。尚、以下の説明では、この動作を、方位キャリブレーション動作と称する。例えば、制御装置7は、図13のステップS103とステップS104との間において、方位キャリブレーション動作を行ってもよい。例えば、つまり、制御装置7は、計測パス情報が取得された後であって且つ計測パス情報に基づいて実際にワークWが計測される前に、方位キャリブレーション動作を行ってもよい。例えば、制御装置7は、図13のステップS102とステップS104との間において、方位キャリブレーション動作を行ってもよい。つまり、制御装置7は、計測ヘッド53が主軸21に取り付けられた後であって且つ計測パス情報に基づいて実際にワークWが計測される前に、方位キャリブレーション動作を行ってもよい。 During at least part of the period during which the workpiece measurement operation is performed, the control device 7 controls the measurement device 5 so that the measurement light ML can be applied to the measurement object and the return light RL can be detected. As described above, the operation of controlling the rotation of the spindle 21 to which the measuring head 53 is attached (that is, the rotation of the measuring head 53) may be performed. In the following description, this operation will be referred to as azimuth calibration operation. For example, the control device 7 may perform an azimuth calibration operation between steps S103 and S104 in FIG. For example, the control device 7 may perform the orientation calibration operation after the measurement path information is acquired and before the workpiece W is actually measured based on the measurement path information. For example, the control device 7 may perform an azimuth calibration operation between steps S102 and S104 in FIG. That is, the control device 7 may perform the orientation calibration operation after the measurement head 53 is attached to the spindle 21 and before the work W is actually measured based on the measurement path information.
 或いは、制御装置7は、図13のステップS104からステップS106のまでの一連動作の一部として、方位キャリブレーション動作を行ってもよい。例えば、制御装置7は、ステップS104において、ワークWに計測光MLを照射するように計測装置5を制御し、ステップS105において、戻り光RLの強度が第1強度閾値未満である場合に、計測結果に不備があると判定し、ステップS106において、計測条件としての計測ヘッド53の回転角度(つまり、計測ヘッド53の回転軸RX周りの方位)を変更してもよい。 Alternatively, the control device 7 may perform the azimuth calibration operation as part of the series of operations from step S104 to step S106 in FIG. For example, in step S104, the control device 7 controls the measurement device 5 to irradiate the workpiece W with the measurement light ML, and in step S105, when the intensity of the return light RL is less than the first intensity threshold, the measurement It may be determined that the result is incomplete, and in step S106, the rotation angle of the measurement head 53 (that is, the orientation of the measurement head 53 around the rotation axis RX) as the measurement condition may be changed.
 但し、計測装置5の状態が、既に、計測対象物に計測光MLを照射することができ且つ戻り光RLを検出することができる状態にある場合には、制御装置7は、方位キャリブレーション動作を行わなくてもよい(つまり、計測ヘッド53を回転軸RX周りに回転させなくてもよい)。例えば、戻り光RLの強度が第1強度閾値未満である場合に、制御装置7は、計測ヘッド53を回転軸RX周りに回転させなくてもよい。 However, if the measurement device 5 is already in a state in which it is possible to irradiate the measurement target with the measurement light ML and detect the return light RL, the control device 7 performs the azimuth calibration operation. (that is, it is not necessary to rotate the measurement head 53 around the rotation axis RX). For example, when the intensity of the return light RL is less than the first intensity threshold, the control device 7 does not have to rotate the measurement head 53 around the rotation axis RX.
 尚、制御装置7は、計測ヘッド53が主軸21に取り付けられるたびに、方位キャリブレーション動作を行ってもよい。或いは、制御装置7は、計測ヘッド53が主軸21に取り付けられるたびに、方位キャリブレーション動作を行わなくてもよい。 It should be noted that the control device 7 may perform the azimuth calibration operation each time the measuring head 53 is attached to the spindle 21 . Alternatively, the control device 7 does not have to perform the azimuth calibration operation each time the measuring head 53 is attached to the spindle 21 .
 (1-3-3)走り誤差校正動作
 工作機械1aは、計測装置5を用いて走り誤差校正動作を行ってもよい。走り誤差校正動作は、加工ヘッド2の走り誤差を校正するための動作である。加工ヘッド2の走り誤差は、第1の方向に沿って加工ヘッド2が移動する場合に生ずる、第1の方向に交差する(典型的には、直交する)第2の方向における加工ヘッド2の位置の意図せぬ変動を含む。特に、加工ヘッド2の走り誤差は、主軸21の回転軸RXが延びる方向に交差する第1の方向に沿って加工ヘッド2が移動する場合に生ずる、第1の方向に交差する(典型的には、直交する)第2の方向(例えば、回転軸RXが延びる方向)における加工ヘッド2の位置の意図せぬ変動を含んでいてもよい。上述したように、加工ヘッド2は、回転軸RXに交差するX軸方向に沿って移動可能である。このため、加工ヘッド2の走り誤差は、X軸方向に沿って加工ヘッド2が移動する場合に生ずるZ軸方向における加工ヘッド2の位置の意図せぬ変動を含んでいてもよい。但し、加工ヘッド2が回転軸RXに交差するY軸方向に沿って移動可能である場合には、加工ヘッド2の走り誤差は、Y軸方向に沿って加工ヘッド2が移動する場合に生ずるZ軸方向における加工ヘッド2の位置の意図せぬ変動を含んでいてもよい。以下、図15を参照しながら、走り誤差校正動作について説明する。図15は、走り誤差校正動作の流れを示すフローチャートである。
(1-3-3) Running Error Correction Operation The machine tool 1a may use the measuring device 5 to perform the running error correction operation. The running error calibrating operation is an operation for calibrating the running error of the machining head 2 . A running error of the machining head 2 is a running error of the machining head 2 in a second direction crossing (typically orthogonal to) the first direction, which occurs when the machining head 2 moves along the first direction. Including unintended variations in position. In particular, the running error of the machining head 2 intersects the first direction (typically may include an unintended variation in the position of the machining head 2 in a second (perpendicular) direction (for example, the direction in which the axis of rotation RX extends). As described above, the machining head 2 is movable along the X-axis direction that intersects with the rotation axis RX. Therefore, the running error of the machining head 2 may include unintended positional variations of the machining head 2 in the Z-axis direction that occur when the machining head 2 moves along the X-axis direction. However, if the machining head 2 is movable along the Y-axis direction that intersects with the rotation axis RX, the running error of the machining head 2 is Z It may also include unintended variations in the position of the machining head 2 in the axial direction. The running error correction operation will be described below with reference to FIG. FIG. 15 is a flow chart showing the flow of the running error calibration operation.
 図15に示すように、まず、ステージ41に、走り誤差を校正するために用いられる物体である走り誤差校正部材91が載置される(ステップS201)。走り誤差校正部材91の一例が図16に示されている。図16に示すように、走り誤差校正部材91は、基準面911を備える部材である。基準面911は、その形状に関する情報が制御装置7にとって既知の情報である面である。図16に示すように、基準面911は、平面である。例えば、基準面911は、基準位置に位置しているステージ41に走り誤差校正部材91が載置されている状況下で、回転軸RXに交差する加工ヘッド2の移動方向に平行な平面であってもよい。例えば、基準面911は、基準位置に位置しているステージ41に走り誤差校正部材91が載置されている状況下で、XY平面に平行な平面であってもよい。例えば、基準面911は、基準位置に位置しているステージ41に走り誤差校正部材91が載置されている状況下で、主軸21の回転軸RXに交差する(典型的には、直交する)平面であってもよい。但し、基準面911の形状に関する情報が制御装置7にとって既知の情報である限りは、基準面911は、曲面を含んでいてもよい。 As shown in FIG. 15, first, the running error calibration member 91, which is an object used for calibrating the running error, is placed on the stage 41 (step S201). An example of the running error correction member 91 is shown in FIG. As shown in FIG. 16, the running error calibration member 91 is a member provided with a reference surface 911. As shown in FIG. The reference plane 911 is a plane whose shape information is known to the control device 7 . As shown in FIG. 16, the reference plane 911 is a plane. For example, the reference plane 911 is a plane parallel to the moving direction of the processing head 2 intersecting the rotation axis RX under the condition that the running error correction member 91 is placed on the stage 41 positioned at the reference position. may For example, the reference plane 911 may be a plane parallel to the XY plane under the condition that the running error calibration member 91 is placed on the stage 41 positioned at the reference position. For example, the reference plane 911 intersects (typically, orthogonally) the rotation axis RX of the main shaft 21 under the condition that the running error correction member 91 is placed on the stage 41 positioned at the reference position. It may be flat. However, as long as the information about the shape of the reference surface 911 is known to the control device 7, the reference surface 911 may include a curved surface.
 再び図15において、その後、工具交換装置6は、主軸21に計測ヘッド53を取り付ける(ステップS202)。但し、主軸21に既に計測ヘッド53が取り付けられている場合には、ステップS202の動作が行われなくてもよい。 Referring again to FIG. 15, the tool changer 6 then attaches the measuring head 53 to the spindle 21 (step S202). However, if the measuring head 53 is already attached to the spindle 21, the operation of step S202 may not be performed.
 その後、計測装置5は、走り誤差校正部材91の計測を開始する(ステップS203)。特に、計測装置5は、走り誤差校正部材91の基準面911の計測を開始する(ステップS203)。計測装置5が走り誤差校正部材91を計測している間は、ヘッド駆動系3は、加工ヘッド2を移動させる(ステップS203)。つまり、計測装置5は、ヘッド駆動系3が加工ヘッド2を移動させている期間中に、走り誤差校正部材91(特に、基準面911)を計測する。 After that, the measuring device 5 starts measuring the running error calibration member 91 (step S203). In particular, the measuring device 5 starts measuring the reference surface 911 of the running error calibration member 91 (step S203). While the measuring device 5 is measuring the running error calibration member 91, the head drive system 3 moves the processing head 2 (step S203). That is, the measuring device 5 measures the running error calibration member 91 (in particular, the reference plane 911) while the head drive system 3 is moving the processing head 2. FIG.
 ステップS203では、ヘッド駆動系3は、回転軸RXに交差する方向に沿って加工ヘッド2を移動させる。第1実施形態では、ヘッド駆動系3は、回転軸RXに交差するX軸方向に沿って加工ヘッド2を移動させる。このため、計測装置5は、ヘッド駆動系3が加工ヘッド2をX軸方向に沿って移動させている期間中に、走り誤差校正部材91(特に、基準面911)を計測する。一方で、ステップS203では、ヘッド駆動系3は、回転軸RXに沿ったZ軸方向に沿って加工ヘッド2を移動させるための制御を行わない。つまり、ヘッド駆動系3は、加工ヘッド2が取り付けられた不図示のZスライダ部材をZガイド部材35に沿って移動させるための制御を行わない。 In step S203, the head drive system 3 moves the processing head 2 along the direction intersecting the rotation axis RX. In the first embodiment, the head drive system 3 moves the processing head 2 along the X-axis direction that intersects the rotation axis RX. Therefore, the measuring device 5 measures the running error calibration member 91 (in particular, the reference plane 911) while the head drive system 3 is moving the machining head 2 along the X-axis direction. On the other hand, in step S203, the head drive system 3 does not perform control for moving the processing head 2 along the Z-axis direction along the rotation axis RX. That is, the head drive system 3 does not perform control for moving the Z slider member (not shown) to which the processing head 2 is attached along the Z guide member 35 .
 その後、制御装置7は、ステップS203における走り誤差校正部材91の計測結果に基づいて、走り誤差を算出する(ステップS204)。以下、図17を参照しながら、走り誤差を算出する動作について説明する。図17は、走り誤差がない(つまり、走り誤差がゼロである)状況下で取得された走り誤差校正部材91の計測結果から算出される基準面911のZ軸方向における位置を、点線で示している。更に、図17は、走り誤差が存在する(つまり、走り誤差がゼロでない)状況下で取得された走り誤差校正部材91の計測結果から算出される基準面911のZ軸方向における位置を、実線で示している。図17に示すように、走り誤差がない場合には、基準面911のZ軸方向における位置は、計測位置(つまり、計測光MLが照射される位置であり、X軸方向における位置)によって変わることはない。なぜならば、基準面911は、平面であるからである。尚、走り誤差がない場合における基準面911のZ軸方向における位置は、基準面911のZ軸方向における理想的な位置に相当し、制御装置7にとって既知の情報である。一方で、図17に示すように、走り誤差がある場合には、基準面911が平面であるにも関わらず、基準面911のZ軸方向における位置は、計測位置によって変わる。なぜならば、走り誤差に起因して加工ヘッド2の位置がZ軸方向に変動するがゆえに、計測装置5とワークWとの間のZ軸方向における距離(例えば、終端光学素子を有するfθレンズ5322とワークWとの間のZ軸方向における距離)が変動してしまうからである。このため、制御装置7は、走り誤差校正部材91の計測結果に基づいて、基準面911のZ軸方向における実際の位置を算出し、基準面911のZ軸方向における実際の位置と制御装置7にとって既知の情報である基準面911のZ軸方向における理想的な位置との差分(図17に示す例では、点線と実線との差分)を算出することで、走り誤差を算出することができる。 After that, the control device 7 calculates the running error based on the measurement result of the running error calibrating member 91 in step S203 (step S204). The operation of calculating the running error will be described below with reference to FIG. FIG. 17 shows, with a dotted line, the position of the reference plane 911 in the Z-axis direction calculated from the measurement results of the running error calibration member 91 obtained under the condition that there is no running error (that is, the running error is zero). ing. Further, in FIG. 17, the position of the reference plane 911 in the Z-axis direction calculated from the measurement results of the running error calibration member 91 obtained under the condition that there is a running error (that is, the running error is not zero) is shown by the solid line. is shown. As shown in FIG. 17, when there is no running error, the position of the reference plane 911 in the Z-axis direction varies depending on the measurement position (that is, the position irradiated with the measurement light ML and the position in the X-axis direction). never. This is because the reference plane 911 is a plane. The position of the reference plane 911 in the Z-axis direction when there is no running error corresponds to the ideal position of the reference plane 911 in the Z-axis direction, and is known information for the control device 7 . On the other hand, as shown in FIG. 17, when there is a running error, the position of the reference plane 911 in the Z-axis direction changes depending on the measurement position, even though the reference plane 911 is flat. This is because the position of the machining head 2 fluctuates in the Z-axis direction due to running errors, so the distance between the measuring device 5 and the workpiece W in the Z-axis direction (for example, the fθ lens 5322 having the terminal optical element and the workpiece W in the Z-axis direction) fluctuates. Therefore, the control device 7 calculates the actual position of the reference plane 911 in the Z-axis direction based on the measurement result of the running error calibration member 91, and the actual position of the reference plane 911 in the Z-axis direction and the control device 7 The running error can be calculated by calculating the difference from the ideal position in the Z-axis direction of the reference plane 911, which is known information for .
 尚、上述したように基準面911が曲面等を含む場合にも同様のことが言える。具体的には、走り誤差がない場合には、基準面911のZ軸方向における位置は、計測位置に関わらず、制御装置7にとって既知の情報である基準面911の形状に対応する位置と一致する。一方で、走り誤差がある場合には、基準面911のZ軸方向における位置は、計測位置によっては、制御装置7にとって既知の情報である基準面911の形状に対応する位置と異なるものとなる。このため、制御装置7は、走り誤差校正部材91の計測結果に基づいて、基準面911のZ軸方向における実際の位置を算出し、基準面911のZ軸方向における実際の位置と基準面911のZ軸方向における理想的な位置との差分を算出することで、走り誤差を算出することができる。 The same thing can be said when the reference surface 911 includes a curved surface or the like as described above. Specifically, when there is no running error, the position of the reference plane 911 in the Z-axis direction matches the position corresponding to the shape of the reference plane 911, which is information known to the control device 7, regardless of the measurement position. do. On the other hand, if there is a running error, the position of the reference plane 911 in the Z-axis direction differs from the position corresponding to the shape of the reference plane 911, which is information known to the control device 7, depending on the measurement position. . Therefore, the control device 7 calculates the actual position of the reference plane 911 in the Z-axis direction based on the measurement result of the running error calibration member 91, and the actual position of the reference plane 911 in the Z-axis direction and the reference plane 911 The running error can be calculated by calculating the difference from the ideal position in the Z-axis direction.
 走り誤差が算出された後には、制御装置7は、算出された走り誤差を相殺するように加工ヘッド2及びステージ41の少なくとも一方の移動を制御してもよい。例えば、制御装置7は、走り誤差が生じている状況下であっても、走り誤差が生じていない場合と同様に加工ヘッド2がワークWを加工することができるように、加工ヘッド2及びステージ41の少なくとも一方の移動を制御してもよい。例えば、制御装置7は、走り誤差が生じている状況下であっても、走り誤差が生じていない場合と同様に計測装置5がワークW(或いは、任意の計測対象物)を計測することができるように、加工ヘッド2及びステージ41の少なくとも一方の移動を制御してもよい。このように、走り誤差校正動作を行うことで、ヘッド駆動系3及びステージ駆動系42は、実質的には、走り誤差校正部材91の計測結果に関する情報に基づいて、加工ヘッド2及びステージ41をそれぞれ移動させることになる。その結果、工作機械1aは、走り誤差の影響を受けることなく、ワークWを加工し且つワークWを計測することができる。 After the running error is calculated, the control device 7 may control the movement of at least one of the processing head 2 and the stage 41 so as to offset the calculated running error. For example, the control device 7 controls the processing head 2 and the stage so that the processing head 2 can process the workpiece W in the same manner as when there is no running error even under the condition where the running error occurs. At least one movement of 41 may be controlled. For example, the control device 7 allows the measuring device 5 to measure the workpiece W (or any object to be measured) in the same manner as when no running error occurs even under a condition where a running error occurs. Movement of at least one of the processing head 2 and the stage 41 may be controlled so as to be possible. By performing the running error calibrating operation in this way, the head driving system 3 and the stage driving system 42 substantially operate the processing head 2 and the stage 41 based on the information on the measurement result of the running error calibrating member 91. Each will be moved. As a result, the machine tool 1a can process and measure the workpiece W without being affected by running errors.
 尚、加工ヘッド2が加工したワークWが走り誤差校正部材91として用いられてもよい。以下、加工ヘッド2が加工したワークWを走り誤差校正部材91として用いることで行われる走り誤差校正動作について、図18を参照しながら説明する。図18は、加工ヘッド2が加工したワークWを走り誤差校正部材91として用いることで行われる走り誤差校正動作の流れを示すフローチャートである。 The work W machined by the machining head 2 may be used as the running error calibrating member 91 . A running error calibrating operation performed by using the workpiece W machined by the machining head 2 as the running error calibrating member 91 will be described below with reference to FIG. FIG. 18 is a flow chart showing the flow of the running error calibrating operation performed by using the workpiece W machined by the machining head 2 as the running error calibrating member 91 .
 図18に示すように、まず、ステージ41に、走り誤差を校正するために用いられるワークWが載置される(ステップS211)。尚、ステップS211でステージ41に載置されるワークWは、走り誤差を校正するために用いられるテスト加工用のワークであってもよいし、工作機械1aを用いて加工物を形成するために用いられる本加工用のワークであってもよい。その後、工具交換装置6は、主軸21に工具23を取り付ける(ステップS212)。但し、主軸21に既に工具23が取り付けられている場合には、ステップS212の動作が行われなくてもよい。 As shown in FIG. 18, first, a workpiece W used for calibrating the running error is placed on the stage 41 (step S211). The work W placed on the stage 41 in step S211 may be a work for test machining used for calibrating running errors, or may be a work for forming a work using the machine tool 1a. It may be a work for the main processing to be used. After that, the tool changer 6 attaches the tool 23 to the spindle 21 (step S212). However, if the tool 23 is already attached to the spindle 21, the operation of step S212 may not be performed.
 その後、加工ヘッド2は、ワークWの加工を開始する(ステップS213)。加工ヘッド2がワークWを加工している間は、ヘッド駆動系3は、加工ヘッド2を移動させる(ステップS213)。つまり、加工ヘッド2は、ヘッド駆動系3が加工ヘッド2を移動させている期間の少なくとも一部において、ワークWを加工する。 After that, the machining head 2 starts machining the workpiece W (step S213). While the machining head 2 is machining the workpiece W, the head drive system 3 moves the machining head 2 (step S213). That is, the processing head 2 processes the workpiece W during at least part of the period during which the head drive system 3 moves the processing head 2 .
 ステップS213では、ヘッド駆動系3は、主軸21の回転軸RXに交差する方向に沿って加工ヘッド2を移動させる。第1実施形態では、ヘッド駆動系3は、主軸21の回転軸RXに交差するX軸方向に沿って加工ヘッド2を移動させる。このため、加工ヘッド2は、ヘッド駆動系3が加工ヘッド2をX軸方向に沿って移動させている期間の少なくとも一部において、ワークWを加工する。この場合、加工ヘッド2は、ワークWの上面に工具23を接触させることで、ワークWの上面を一定量削り取る加工を行うことになる。一方で、ステップS213では、ヘッド駆動系3は、主軸21の回転軸RXに沿ったZ軸方向に沿って加工ヘッド2を移動させるための制御を行わない。つまり、ヘッド駆動系3は、加工ヘッド2が取り付けられた不図示のZスライダ部材をZガイド部材35に沿って移動させるための制御を行わない。 In step S213, the head drive system 3 moves the processing head 2 along the direction intersecting the rotation axis RX of the main shaft 21. In the first embodiment, the head drive system 3 moves the machining head 2 along the X-axis direction intersecting the rotation axis RX of the spindle 21 . Therefore, the processing head 2 processes the workpiece W during at least part of the period during which the head drive system 3 moves the processing head 2 along the X-axis direction. In this case, the machining head 2 brings the upper surface of the workpiece W into contact with the tool 23, thereby performing machining for scraping off the upper surface of the workpiece W by a certain amount. On the other hand, in step S<b>213 , the head drive system 3 does not perform control for moving the processing head 2 along the Z-axis direction along the rotation axis RX of the main shaft 21 . That is, the head drive system 3 does not perform control for moving the Z slider member (not shown) to which the processing head 2 is attached along the Z guide member 35 .
 その後、工具交換装置6は、主軸21に取り付けられた工具23を取り外し、主軸21に計測ヘッド53を取り付ける(ステップS214)。その後、計測装置5は、ワークWの計測を開始する(ステップS215)。特に、計測装置5は、加工ヘッド2によって加工されたワークWの加工面(例えば、上面)の計測を開始する(ステップS215)。 After that, the tool changer 6 removes the tool 23 attached to the spindle 21 and attaches the measuring head 53 to the spindle 21 (step S214). After that, the measuring device 5 starts measuring the workpiece W (step S215). In particular, the measuring device 5 starts measuring the machined surface (for example, the upper surface) of the workpiece W machined by the machining head 2 (step S215).
 尚、ステップS215の動作は、ステップS213において加工されたワークWが計測対象物となるという点で、走り誤差校正部材91が計測対象物となる図15のステップS203の動作とは異なる。ステップS215の動作のその他の特徴は、ステップS203の動作のその他の特徴と同一であってもよい。このため、ステップS215においても、ステップS203と同様に、ヘッド駆動系3は、主軸21の回転軸RXに交差するX軸方向に沿って加工ヘッド2を移動させる。このため、計測装置5は、ヘッド駆動系3が加工ヘッド2をX軸方向に沿って移動させている期間中に、ワークW(特に、加工面)を計測する。 The operation of step S215 differs from the operation of step S203 of FIG. 15, in which the running error calibration member 91 is the object of measurement, in that the workpiece W processed in step S213 is the object of measurement. Other features of the operation of step S215 may be the same as other features of the operation of step S203. Therefore, in step S215 as well, the head drive system 3 moves the machining head 2 along the X-axis direction intersecting the rotation axis RX of the main shaft 21, as in step S203. Therefore, the measuring device 5 measures the workpiece W (particularly, the surface to be machined) while the head drive system 3 is moving the machining head 2 along the X-axis direction.
 但し、ステップS215では、計測装置5は、加工ヘッド2がある位置に位置している状況下で、ワークWの複数部位に計測光MLが照射されるように、ガルバノミラー5222を用いて計測光MLの進行方向を変更してもよい。例えば、図19の上部の図に示すように、加工ヘッド2が第1位置に位置している状況下で、ワークWの複数部位(図19に示す例では、三つの部位)に計測光MLが順に照射されるように、ガルバノミラー5222を用いて計測光MLの進行方向を変更してもよい。尚、以下の説明では、説明の便宜上、ワークWの三つの部位に照射される計測光MLを、それぞれ、計測光ML#a、計測光ML#b及び計測光ML#cと称する。但し、計測装置5が三つの異なる計測光ML#a、ML#b及びML#cを同時にワークWに照射しているのではなく、あくまで、ガルバノミラー5222によって進行方向が変更されることでワークWの異なる三つの部位に照射される三つの計測光MLを、便宜上、計測光ML#a、計測光ML#b及び計測光ML#cと称しているに過ぎない。その後、図19の下部の図に示すように、加工ヘッド2の移動に伴って加工ヘッド2が第1位置とは異なる第2位置に位置している状況下においても、計測装置5は、ワークWの複数部位に計測光ML#a、ML#b及びML#cが順に照射されるように、ガルバノミラー5222を用いて計測光MLの進行方向を変更してもよい。 However, in step S215, the measuring device 5 uses the galvanomirror 5222 to irradiate the measuring light ML to a plurality of parts of the workpiece W under the condition that the processing head 2 is positioned at a certain position. You may change the advancing direction of ML. For example, as shown in the upper part of FIG. 19, under the condition that the processing head 2 is positioned at the first position, the measurement light ML is applied to a plurality of parts (three parts in the example shown in FIG. 19) of the workpiece W. The traveling direction of the measurement light ML may be changed using the galvanomirror 5222 so that the . In the following description, for convenience of explanation, the measurement light beams ML that irradiate the three parts of the workpiece W are referred to as measurement light beams ML#a, measurement light beams ML#b, and measurement light beams ML#c, respectively. However, the measuring device 5 does not irradiate the workpiece W with the three different measurement beams ML#a, ML#b, and ML#c at the same time. For the sake of convenience, the three measurement light beams ML that irradiate the three regions with different W are simply referred to as the measurement light beam ML#a, the measurement light beam ML#b, and the measurement light beam ML#c. After that, as shown in the lower part of FIG. 19, even in a situation where the machining head 2 is positioned at the second position different from the first position as the machining head 2 moves, the measuring device 5 detects the workpiece. A galvanomirror 5222 may be used to change the traveling direction of the measurement light ML so that the measurement light ML#a, ML#b, and ML#c are sequentially irradiated onto a plurality of sites of W.
 その後、制御装置7は、ステップS215におけるワークWの計測結果に基づいて、走り誤差を算出する(ステップS216)。以下、図20及び図21を参照しながら、ワークWの計測結果に基づいて走り誤差を算出する動作について説明する。 After that, the control device 7 calculates the running error based on the measurement result of the workpiece W in step S215 (step S216). The operation of calculating the running error based on the measurement result of the workpiece W will be described below with reference to FIGS. 20 and 21. FIG.
 図20の上部の図は、走り誤差がない状況下で加工されたワークWを示している。この場合、ワークWの加工面は、平面となる。なぜならば、加工ヘッド2がX軸方向に移動したとしても、加工ヘッド2とワークWとの間のZ軸方向における距離(特に、工具23とワークWとの間のZ軸方向における距離)が変動することはないからである。その結果、図20の下部の図に示すように、ワークWの計測結果から取得されたワークWの加工面のZ軸方向における位置は、計測位置によって変わることはない。より具体的には、図20の下部の図に示すように、計測光ML#aが照射された加工面のZ軸方向における位置、計測光ML#bが照射された加工面のZ軸方向における位置、及び、計測光ML#cが照射された加工面のZ軸方向における位置のいずれもが、計測位置によって変わることはない。 The upper diagram of FIG. 20 shows the workpiece W machined under conditions where there is no running error. In this case, the processing surface of the work W becomes a plane. This is because even if the machining head 2 moves in the X-axis direction, the distance in the Z-axis direction between the machining head 2 and the work W (in particular, the distance in the Z-axis direction between the tool 23 and the work W) is This is because they do not change. As a result, as shown in the lower part of FIG. 20, the position in the Z-axis direction of the machined surface of the work W obtained from the measurement result of the work W does not change depending on the measurement position. More specifically, as shown in the lower part of FIG. 20, the position of the processing surface irradiated with the measurement light ML#a in the Z-axis direction, the position of the processing surface irradiated with the measurement light ML#b in the Z-axis direction , and the position in the Z-axis direction of the processing surface irradiated with the measurement light ML#c do not change depending on the measurement position.
 一方で、図21の上部の図は、走り誤差がある状況下で加工されたワークWを示している。この場合、ワークWの加工面は、平面とはならない可能性がある。具体的には、ワークWの加工面は、走り誤差に応じたうねりを持つ曲面となる可能性がある。なぜならば、走り誤差に起因して、加工ヘッド2のX軸方向における移動に伴い、加工ヘッド2とワークWとの間のZ軸方向における距離(特に、工具23とワークWとの間のZ軸方向における距離)が変動するからである。その結果、図21の下部の図に示すように、ワークWの計測結果から取得されたワークWの加工面のZ軸方向における位置は、計測位置によって変わる。より具体的には、図21の下部の図に示すように、計測光ML#aが照射された加工面のZ軸方向における位置、計測光ML#bが照射された加工面のZ軸方向における位置、及び、計測光ML#cが照射された加工面のZ軸方向における位置の少なくとも一つが、計測位置によって変わる。このため、制御装置7は、ワークWの計測結果に基づいて、計測光ML#aが照射された加工面のZ軸方向における位置、計測光ML#bが照射された加工面のZ軸方向における位置、及び、計測光ML#cが照射された加工面のZ軸方向における位置を算出し、算出した位置を比較することで、走り誤差を算出することができる。 On the other hand, the upper diagram of FIG. 21 shows the workpiece W machined under conditions where there is a running error. In this case, the machined surface of the workpiece W may not be flat. Specifically, there is a possibility that the machined surface of the workpiece W will be a curved surface having undulations corresponding to the running error. This is because, due to running errors, the distance between the machining head 2 and the workpiece W in the Z-axis direction (in particular, the Z This is because the distance in the axial direction) fluctuates. As a result, as shown in the lower diagram of FIG. 21, the position in the Z-axis direction of the machined surface of the work W obtained from the measurement result of the work W changes depending on the measurement position. More specifically, as shown in the lower part of FIG. 21, the position of the processing surface irradiated with the measurement light ML#a in the Z-axis direction, the position of the processing surface irradiated with the measurement light ML#b in the Z-axis direction and at least one of the position in the Z-axis direction of the processing surface irradiated with the measurement light ML#c changes depending on the measurement position. Therefore, based on the measurement result of the workpiece W, the control device 7 can determine the position of the machining surface irradiated with the measurement light ML#a in the Z-axis direction, the position of the machining surface irradiated with the measurement light ML#b in the Z-axis direction. and the position in the Z-axis direction of the machined surface irradiated with the measurement light ML#c, and by comparing the calculated positions, the running error can be calculated.
 (1-4)第1実施形態の工作機械1aの技術的効果
 以上説明したように、工作機械1aは、主軸21に着脱可能に取り付けられる計測ヘッド53を備えた計測装置5を用いて、計測対象物(例えば、ワークW)を計測する。計測ヘッド53の主軸21への取り付け及び取り外しは、工具交換装置6によって自動的にお行われる。このため、計測ヘッド53の主軸21への取り付け及び取り外しのためのオペレータの負荷が低減される。ここで、主軸21に着脱可能に取り付けられる計測ヘッド53ではなく加工ヘッド2に取り付けられる計測ヘッド52が、占有体積が大きくなりがちなガルバノミラー5222を備えているため、計測ヘッド53のサイズを工具交換装置6で扱うことのできるサイズにすることが可能である。
(1-4) Technical Effects of the Machine Tool 1a of the First Embodiment As described above, the machine tool 1a uses the measuring device 5 having the measuring head 53 detachably attached to the spindle 21 to measure An object (for example, work W) is measured. Attachment and detachment of the measuring head 53 to and from the spindle 21 are automatically performed by the tool changer 6 . Therefore, the load on the operator for attaching and detaching the measuring head 53 to and from the spindle 21 is reduced. Here, since the measuring head 52 attached to the machining head 2 rather than the measuring head 53 detachably attached to the spindle 21 is provided with the galvanomirror 5222 which tends to occupy a large volume, the size of the measuring head 53 is determined by the tool. A size that can be handled by the exchange device 6 is possible.
 また、計測装置5は、ガルバノミラー5222を用いて計測光MLの進行方向を変更することで、相対的に速い速度で、計測対象物の複数部位に計測光MLを順に照射することができる。従って、計測装置5は、計測対象物の複数部位の特性(例えば、位置)を相対的に高速に計測することができる。その結果、制御装置7は、計測対象物の複数部位の位置を統合することで、計測対象物の形状を示す計測データを相対的に高速に生成することができる。 In addition, the measurement device 5 can sequentially irradiate the measurement light ML onto multiple parts of the measurement object at a relatively high speed by changing the traveling direction of the measurement light ML using the galvanomirror 5222 . Therefore, the measuring device 5 can measure the properties (for example, positions) of a plurality of parts of the object to be measured at relatively high speed. As a result, the control device 7 can generate measurement data indicating the shape of the measurement object at a relatively high speed by integrating the positions of a plurality of parts of the measurement object.
 また、第1実施形態では、計測装置5の計測軸MX(具体的には、fθレンズ5322の光軸)と主軸21の回転軸RXとが同軸である。このため、回転軸RXとワークWとの交点である加工点PP(図6参照)が、計測軸MXとワークWとの交点である計測点MP(図6参照)と重なる(つまり、一致する)。このため、加工ヘッド2は、計測装置5が計測光MLを照射可能なワークWの部位(つまり、計測装置5が計測可能なワークWの部位)を、主軸21に取り付けられた工具23を用いて加工可能である。更に、計測装置5は、主軸21に取り付けられた工具23が加工可能なワークWの部位に計測光MLを照射可能である(つまり、計測可能である)。このため、第1実施形態では、加工ヘッド2が加工可能な加工範囲と、計測装置5が計測可能な計測範囲とが一致する。このため、加工範囲と計測範囲とが一致していない場合と比較して、工作機械1aの動作における制約が少なくなる。具体的には、例えば、加工範囲の一部が計測範囲に含まれない場合には、加工ヘッド2が加工したワークWの部位を計測装置5が計測できない(その結果、上述したワーク計測動作で説明した評価処理を行うことができない)という制約、及び、加工ヘッド2が加工したいワークWの部位を計測装置5が計測できない(その結果、加工ヘッド2は、計測範囲に含まれないワークWの一部を加工することができない)という制約が生ずる可能性がある。また、例えば、計測範囲の一部が加工範囲に含まれない場合には、計測装置5が計測したワークWの部位を加工ヘッド2が加工できないという制約が生ずる可能性がある。しかるに、第1実施形態では、このような制約はなくなる。 Also, in the first embodiment, the measurement axis MX of the measurement device 5 (specifically, the optical axis of the fθ lens 5322) and the rotation axis RX of the main shaft 21 are coaxial. Therefore, the processing point PP (see FIG. 6), which is the intersection of the rotation axis RX and the work W, overlaps (that is, coincides with) the measurement point MP (see FIG. 6), which is the intersection of the measurement axis MX and the work W. ). For this reason, the machining head 2 uses a tool 23 attached to the spindle 21 to irradiate a portion of the workpiece W that can be irradiated with the measurement light ML by the measuring device 5 (that is, a portion of the workpiece W that can be measured by the measuring device 5). can be processed by Furthermore, the measuring device 5 can irradiate the portion of the work W that can be processed by the tool 23 attached to the spindle 21 with the measurement light ML (that is, can measure). Therefore, in the first embodiment, the machining range that can be processed by the machining head 2 and the measurement range that can be measured by the measuring device 5 match. Therefore, compared with the case where the machining range and the measurement range do not match, restrictions on the operation of the machine tool 1a are reduced. Specifically, for example, if part of the machining range is not included in the measurement range, the measuring device 5 cannot measure the part of the workpiece W machined by the machining head 2 (as a result, the above-described workpiece measuring operation The evaluation processing described above cannot be performed), and the measuring device 5 cannot measure the portion of the work W that the processing head 2 wants to process (as a result, the processing head 2 cannot measure the portion of the work W that is not included in the measurement range). part of it cannot be processed). Further, for example, if part of the measurement range is not included in the processing range, there is a possibility that the processing head 2 cannot process the portion of the workpiece W measured by the measuring device 5 . However, in the first embodiment, such restrictions are eliminated.
 (2)第2実施形態の工作機械1b
 続いて、第2実施形態の工作機械1について説明する。尚、以下では、第2実施形態の工作機械1を、“工作機械1b”と称する。第2実施形態の工作機械1bは、第1実施形態の工作機械1aと比較して、計測装置5に代えて計測装置5bを備えているという点で異なる。工作機械1bのその他の特徴は、工作機械1aのその他の特徴と同一であってもよい。
(2) Machine tool 1b of the second embodiment
Next, a machine tool 1 according to a second embodiment will be described. In addition, below, the machine tool 1 of 2nd Embodiment is called "the machine tool 1b." A machine tool 1b of the second embodiment differs from the machine tool 1a of the first embodiment in that it is provided with a measuring device 5b instead of the measuring device 5. FIG. Other features of machine tool 1b may be identical to other features of machine tool 1a.
 第2実施形態の計測装置5bは、第1実施形態の計測装置5と比較して、計測ヘッド52に代えて計測ヘッド52bを備えているという点で異なる。更に、計測装置5bは、計測装置5と比較して、主軸21に取り付けられる計測ヘッド53を備えていなくてもよいという点で異なる。計測装置5bのその他の特徴は、計測装置5のその他の特徴と同一であってもよい。このため、以下、図22を参照しながら、第2実施形態の計測装置5b(特に、計測ヘッド52b)について説明する。図22は、第2実施形態の計測装置5b(特に、計測ヘッド52b)の構造を示す断面図である。尚、以降の説明では、既に説明済みの構成要件については、同一の参照符号を付することでその詳細な説明を省略する。 The measuring device 5b of the second embodiment differs from the measuring device 5 of the first embodiment in that it includes a measuring head 52b instead of the measuring head 52. Furthermore, the measuring device 5b differs from the measuring device 5 in that the measuring head 53 attached to the spindle 21 may not be provided. Other features of the measuring device 5b may be the same as other features of the measuring device 5. FIG. Therefore, the measuring device 5b (in particular, the measuring head 52b) of the second embodiment will be described below with reference to FIG. FIG. 22 is a cross-sectional view showing the structure of the measuring device 5b (in particular, the measuring head 52b) of the second embodiment. In addition, in the following description, the same reference numerals are given to the constituent elements that have already been described, and the detailed description thereof will be omitted.
 図22に示すように、第2実施形態の計測ヘッド52bは、第1実施形態の計測ヘッド52と比較して、光学系522に代えて光学系522bを備えているという点で異なる。計測ヘッド52bのその他の特徴は、計測ヘッド52のその他の特徴と同一であってもよい。 As shown in FIG. 22, the measurement head 52b of the second embodiment differs from the measurement head 52 of the first embodiment in that it includes an optical system 522b instead of the optical system 522. Other features of measuring head 52 b may be the same as other features of measuring head 52 .
 第2実施形態の光学系522bは、第1実施形態の光学系522と同様に、光学系5221及びガルバノミラー5222を備えている。一方で、光学系522bは、光学系522と比較して、ミラー5223を備えていなくてもよいという点で異なる。更に、光学系522bは、光学系522と比較して、fθレンズ5322を備えているという点で異なる。つまり、光学系522bは、第1実施形態の光学系522及び523が実質的に一体化された光学系として機能しているとみなしてもよい。光学系522bのその他の特徴は、光学系522のその他の特徴と同一であってもよい。 The optical system 522b of the second embodiment includes an optical system 5221 and a galvanomirror 5222, like the optical system 522 of the first embodiment. On the other hand, the optical system 522b differs from the optical system 522 in that the mirror 5223 may not be provided. Furthermore, the optical system 522b differs from the optical system 522 in that it includes an fθ lens 5322 . In other words, the optical system 522b may be regarded as functioning as an optical system in which the optical systems 522 and 523 of the first embodiment are substantially integrated. Other features of optical system 522 b may be identical to other features of optical system 522 .
 第2実施形態では、ガルバノミラー5222から射出された計測光MLは、fθレンズ5322に入射する。fθレンズ5322は、開口5211を介して、計測光MLを、計測対象物(例えば、ワークW)に照射する。また、計測対象物からの戻り光RLは、開口5211を介してfθレンズ5322に入射する。この際、第2実施形態においても、第1実施形態と同様に、計測対象物に計測光MLを照射する光学系522b(特に、終端光学素子を有するfθレンズ5322)と計測対象物との間において、戻り光RLの光路は、計測光MLの光路と重なっていてもよい。その結果、第2実施形態の計測装置5bは、第1実施形態の計測装置5と同様に、計測対象物を計測可能である。 In the second embodiment, the measurement light ML emitted from the galvanomirror 5222 enters the fθ lens 5322 . The fθ lens 5322 irradiates the measurement target (for example, the work W) with the measurement light ML through the opening 5211 . Also, the return light RL from the object to be measured enters the fθ lens 5322 through the aperture 5211 . At this time, also in the second embodiment, similarly to the first embodiment, the distance between the optical system 522b (particularly, the fθ lens 5322 having the terminal optical element) that irradiates the measurement object with the measurement light ML and the measurement object , the optical path of the return light RL may overlap the optical path of the measurement light ML. As a result, the measurement device 5b of the second embodiment can measure the measurement object, like the measurement device 5 of the first embodiment.
 第2実施形態では、fθレンズ5322が、主軸21の回転軸RXから回転軸RXに交差する方向に沿って離れた位置において加工ヘッド2に取り付けられる計測ヘッド52bのヘッド筐体521に収容される。このため、第2実施形態では、fθレンズ5322の光軸は、回転軸RXと同軸とはならない。fθレンズ5322の光軸は、回転軸RXから、回転軸RXに交差する方向に沿って離れた位置に位置する。上述したように、計測装置5bの終端光学素子の光軸が計測装置5bの計測軸MXとなるがゆえに、第2実施形態では、計測軸MXは、回転軸RXと同軸とはならない。計測軸MXは、回転軸RXから、回転軸RXに交差する方向に沿って離れた位置に位置する。 In the second embodiment, the fθ lens 5322 is accommodated in the head housing 521 of the measurement head 52b attached to the processing head 2 at a position separated from the rotation axis RX of the main shaft 21 along the direction intersecting the rotation axis RX. . Therefore, in the second embodiment, the optical axis of the fθ lens 5322 is not coaxial with the rotation axis RX. The optical axis of the fθ lens 5322 is positioned away from the rotation axis RX along the direction intersecting the rotation axis RX. As described above, since the optical axis of the terminal optical element of the measuring device 5b is the measuring axis MX of the measuring device 5b, the measuring axis MX is not coaxial with the rotation axis RX in the second embodiment. The measurement axis MX is positioned away from the rotation axis RX along the direction intersecting the rotation axis RX.
 第2実施形態では、fθレンズ5322の光軸(つまり、光学系522bの計測対象物側の光軸であり、計測軸MX)は、回転軸RXと平行である。但し、第3実施形態で詳細に説明するように、fθレンズ5322の光軸は、回転軸RXに交差していてもよい。fθレンズ5322の光軸は、回転軸RXに対してねじれの関係にあってもよい。言い変えると、計測軸MXと回転軸RXとは非同軸であってもよい。 In the second embodiment, the optical axis of the fθ lens 5322 (that is, the optical axis of the optical system 522b on the measurement object side, the measurement axis MX) is parallel to the rotation axis RX. However, as described in detail in the third embodiment, the optical axis of the fθ lens 5322 may intersect the rotation axis RX. The optical axis of the fθ lens 5322 may be in a twisted relationship with respect to the rotation axis RX. In other words, the measurement axis MX and the rotation axis RX may be non-coaxial.
 工作機械1bは、このような計測装置5bを用いて、上述した座標マッチング動作、ワーク計測動作及び走り誤差校正動作を行ってもよい。 The machine tool 1b may use such a measuring device 5b to perform the above-described coordinate matching operation, workpiece measurement operation, and running error calibration operation.
 第2実施形態では更に、fθレンズ5322の光軸(つまり、計測軸MX)が主軸21の回転軸RXと同軸でないがゆえに、計測装置5bによる計測対象物の計測結果には、計測誤差が含まれる可能性がある。以降、説明の便宜上、計測軸MXと回転軸RXが非同軸であることに起因した計測誤差を、“軸ずれ誤差”と称する。このような軸ずれ誤差は、本来は平行になるべき計測軸MX及び回転軸RXが実際には平行でない場合に生ずる。以下、軸ずれ誤差について、図23及び図24を参照しながら説明する。 In the second embodiment, since the optical axis of the fθ lens 5322 (that is, the measurement axis MX) is not coaxial with the rotation axis RX of the main shaft 21, the measurement results of the object to be measured by the measurement device 5b include measurement errors. There is a possibility that Hereinafter, for convenience of explanation, the measurement error caused by the non-coaxiality of the measurement axis MX and the rotation axis RX will be referred to as "axis deviation error". Such an axis deviation error occurs when the measurement axis MX and the rotation axis RX, which should be parallel, are not actually parallel. The axis deviation error will be described below with reference to FIGS. 23 and 24. FIG.
 図23は、計測軸MXと回転軸RXとが平行になる(図23に示す例では、共にステージ座標系のZ軸に平行になる)ように加工ヘッド2に取り付けられた計測ヘッド52bを示している。この場合、制御装置7は、計測装置5によるワークWの計測結果に基づいて、ワークWを示す計測データを生成する。例えば、制御装置7は、ステージ座標系において、計測軸MXに沿って(つまり、ステージ座標系のZ軸に沿って)、ワークWのある部位が計測装置5bから(例えば、計測ヘッド52bから)距離D1#1だけ離れていることを示す計測データを生成する。つまり、制御装置7は、ステージ座標系における計測装置5bに対するワークWの相対的な位置を示す計測データを生成する。更に、計測装置5b(特に、計測ヘッド52b)が加工ヘッド2に取り付けられているため、計測データは、実質的には、ステージ座標系における加工ヘッド2に対するワークWの相対的な位置をも示している。例えば、計測データは、ステージ座標系において、回転軸RXに沿って、ワークWのある部位が、加工ヘッド2から距離D1#1に応じて一意に算出される距離D2#1だけ離れていることを示している。 FIG. 23 shows a measurement head 52b attached to the processing head 2 so that the measurement axis MX and the rotation axis RX are parallel (both parallel to the Z-axis of the stage coordinate system in the example shown in FIG. 23). ing. In this case, the control device 7 generates measurement data representing the work W based on the measurement result of the work W by the measuring device 5 . For example, in the stage coordinate system, the control device 7 can move a portion of the work W from the measurement device 5b (for example, from the measurement head 52b) along the measurement axis MX (that is, along the Z axis of the stage coordinate system). Measured data indicating that the distance is D1#1 is generated. That is, the control device 7 generates measurement data indicating the relative position of the workpiece W with respect to the measurement device 5b in the stage coordinate system. Furthermore, since the measuring device 5b (in particular, the measuring head 52b) is attached to the processing head 2, the measurement data substantially also indicates the relative position of the workpiece W with respect to the processing head 2 in the stage coordinate system. ing. For example, the measurement data indicates that a portion of the work W is separated from the processing head 2 by a distance D2#1 uniquely calculated according to the distance D1#1 along the rotation axis RX in the stage coordinate system. is shown.
 一方で、図24は、計測軸MXと回転軸RXとが平行にならないように加工ヘッド2に取り付けられた計測ヘッド52bを示している。図24に示す例では、回転軸RXがステージ座標系のZ軸に平行である一方で、計測軸MXがステージ座標系のZ軸に対して傾斜している。この場合においても、制御装置7は、計測装置5によるワークWの計測結果に基づいて、ワークWを示す計測データを生成する。例えば、制御装置7は、ステージ座標系において、計測軸MXに沿って、ワークWのある部位が計測装置5bから(例えば、計測ヘッド52bから)距離D1#2だけ離れていることを示す計測データを生成する。しかしながら、計測軸MXがステージ座標系のZ軸に対して傾斜しているがゆえに、制御装置7が算出した距離D1#2は、ステージ座標系におけるワークWのある部位と計測装置5bとの間のZ軸に沿った実際の距離D1#1とは異なるものとなる。このため、制御装置7は、ステージ座標系においてワークWのある部位と計測装置5bとがZ軸に沿って距離D1#1だけ離れているにも関わらず、ワークWのある部位と計測装置5bとがZ軸に沿って距離D1#2だけ離れていることを示す計測データを生成してしまう。その結果、計測データは、加工ヘッド2に対するワークWの相対的な位置として、実際の位置とは異なる位置を示すことになる。例えば、ステージ座標系においてワークWのある部位と加工ヘッド2とがZ軸に沿って距離D2#1だけ離れているにも関わらず、計測データは、ワークWのある部位と加工ヘッド2とがZ軸に沿って距離D1#2に応じて一意に算出される距離D2#2(≠D2#1)だけ離れていることを示す。その結果、計測結果から算出されるワークWの見かけの位置を示す図25に示すように、制御装置7は、実際の位置とは異なる位置にワークWが位置していることを示す計測データを生成してしまう可能性がある。 On the other hand, FIG. 24 shows a measuring head 52b attached to the processing head 2 so that the measuring axis MX and the rotation axis RX are not parallel. In the example shown in FIG. 24, the rotation axis RX is parallel to the Z-axis of the stage coordinate system, while the measurement axis MX is tilted with respect to the Z-axis of the stage coordinate system. Also in this case, the control device 7 generates measurement data indicating the work W based on the measurement result of the work W by the measuring device 5 . For example, in the stage coordinate system, the control device 7 outputs measurement data indicating that the part where the workpiece W is located is separated from the measuring device 5b (for example, from the measuring head 52b) by a distance D1#2 along the measurement axis MX. to generate However, since the measurement axis MX is inclined with respect to the Z-axis of the stage coordinate system, the distance D1#2 calculated by the control device 7 is between the portion of the workpiece W in the stage coordinate system and the measurement device 5b. will differ from the actual distance D1#1 along the Z-axis of . Therefore, the control device 7 controls the position of the work W and the measurement device 5b even though the position of the work W and the measurement device 5b are separated by a distance D1#1 along the Z-axis in the stage coordinate system. are separated by a distance D1#2 along the Z axis. As a result, the measurement data indicates a position different from the actual position as the relative position of the workpiece W with respect to the machining head 2 . For example, in the stage coordinate system, the part where the work W is located and the machining head 2 are separated by a distance D2#1 along the Z-axis, but the measurement data shows that the part where the work W is located and the machining head 2 are separated from each other. It indicates that they are separated by a distance D2#2 (≠D2#1) that is uniquely calculated according to the distance D1#2 along the Z axis. As a result, as shown in FIG. 25 showing the apparent position of the work W calculated from the measurement results, the control device 7 generates measurement data indicating that the work W is positioned at a position different from the actual position. It may generate.
 そこで、第2実施形態では、工作機械1bは、軸ずれ誤差を構成するために、計測装置5bの計測結果を用いて軸ずれ誤差校正動作を行ってもよい。以下、図26を参照しながら、軸ずれ誤差校正動作について説明する。図26は、軸ずれ誤差校正動作の流れを示すフローチャートである。 Therefore, in the second embodiment, the machine tool 1b may perform a shaft misalignment error calibration operation using the measurement result of the measuring device 5b in order to configure the shaft misalignment error. Below, referring to FIG. 26, the shaft misalignment error calibration operation will be described. FIG. 26 is a flow chart showing the flow of the shaft misalignment error calibration operation.
 図26に示すように、軸ずれ誤差校正動作を行うために、工作機械1bは、まず、図15を参照しながら説明した走り誤差校正動作を行う。その結果、加工ヘッド2の走り誤差が算出される。上述したように、走り誤差が算出された後には、制御装置7は、算出された走り誤差を相殺するように加工ヘッド2及びステージ41の少なくとも一方の移動を制御する。但し、走り誤差を算出するための走り誤差校正部材91の計測結果には、依然として軸ずれ誤差が含まれている。このため、工作機械1bは、以下に説明する動作を更に行う。 As shown in FIG. 26, the machine tool 1b first performs the running error calibration operation described with reference to FIG. 15 in order to perform the axis deviation error calibration operation. As a result, the running error of the machining head 2 is calculated. As described above, after the running error is calculated, the control device 7 controls movement of at least one of the machining head 2 and the stage 41 so as to offset the calculated running error. However, the measurement result of the running error calibration member 91 for calculating the running error still includes the axis deviation error. Therefore, the machine tool 1b further performs the operations described below.
 具体的には、まず、ステージ41に、軸ずれ誤差を校正するために用いられるワークWが載置される(ステップS301b)。尚、ステップS301bでステージ41に載置されるワークWは、軸ずれ誤差を校正するために用いられるテスト加工用のワークであってもよいし、工作機械1bを用いて加工物を形成するために用いられる本加工用のワークであってもよい。その後、工具交換装置6は、主軸21に工具23を取り付ける(ステップS302b)。但し、主軸21に既に工具23が取り付けられている場合には、ステップS302bの動作が行われなくてもよい。 Specifically, first, the work W used for calibrating the axial misalignment error is placed on the stage 41 (step S301b). The work W placed on the stage 41 in step S301b may be a work for test machining used to calibrate the axis misalignment error, or may be a work for forming a work using the machine tool 1b. It may be a work for main processing used for. After that, the tool changer 6 attaches the tool 23 to the spindle 21 (step S302b). However, if the tool 23 is already attached to the spindle 21, the operation of step S302b may not be performed.
 その後、加工ヘッド2は、ワークWの加工を開始する(ステップS303b)。加工ヘッド2がワークWを加工している間は、ヘッド駆動系3は、加工ヘッド2を移動させる(ステップS303b)。つまり、加工ヘッド2は、ヘッド駆動系3が加工ヘッド2を移動させている期間の少なくとも一部において、ワークWを加工する。尚、ステップS303bの動作は、上述した図18のステップS213の動作と同一であってもよい。このため、ステップS303bの詳細な説明は省略する。但し、ステップS213では、ヘッド駆動系3は、走り誤差校正動作で算出された走り誤差を相殺するように加工ヘッド2を移動させる。 After that, the machining head 2 starts machining the workpiece W (step S303b). While the machining head 2 is machining the workpiece W, the head drive system 3 moves the machining head 2 (step S303b). That is, the processing head 2 processes the workpiece W during at least part of the period during which the head drive system 3 moves the processing head 2 . The operation of step S303b may be the same as the operation of step S213 in FIG. 18 described above. Therefore, detailed description of step S303b is omitted. However, in step S213, the head driving system 3 moves the processing head 2 so as to cancel out the running error calculated in the running error calibrating operation.
 その後、計測装置5とは異なる他の計測装置は、ワークWの計測を開始する(ステップS304b)。計測装置5とは異なる他の計測装置は、工作機械1bの外部の計測装置であってもよい。この場合、ステップS303bで加工されたワークWがステージ41から他の計測装置へと搬送され、その後、他の計測装置がワークWの計測を開始してもよい。但し、工作機械1が他の計測装置を備えている場合には、他の計測装置は、ステージ41に載置されたワークWを計測してもよい。 After that, another measuring device different from the measuring device 5 starts measuring the workpiece W (step S304b). Another measuring device different from the measuring device 5 may be a measuring device outside the machine tool 1b. In this case, the workpiece W processed in step S303b may be transported from the stage 41 to another measuring device, and then the other measuring device may start measuring the workpiece W. However, if the machine tool 1 is equipped with another measuring device, the other measuring device may measure the workpiece W placed on the stage 41 .
 ステップS304bでは、他の計測装置は、加工ヘッド2によって加工されたワークWの加工面(例えば、上面)の計測を開始する。尚、ステップS304bの動作は、上述した図18のステップS215の動作と同一であってもよい。このため、ステップS304bの詳細な説明は省略する。 In step S304b, another measuring device starts measuring the machined surface (for example, the upper surface) of the workpiece W machined by the machining head 2. The operation of step S304b may be the same as the operation of step S215 in FIG. 18 described above. Therefore, detailed description of step S304b is omitted.
 その後、制御装置7は、ステップS304bにおける他の計測装置によるワークWの計測結果に基づいて、軸ずれ誤差を算出する(ステップS305b)。以下、図27を参照しながら、他の計測装置によるワークWの計測結果に基づいて軸ずれ誤差を算出する動作について説明する。 After that, the control device 7 calculates the axis deviation error based on the measurement result of the workpiece W by another measuring device in step S304b (step S305b). Hereinafter, the operation of calculating the axis deviation error based on the measurement result of the workpiece W by another measuring device will be described with reference to FIG. 27 .
 図27は、軸ずれ誤差がない(つまり、軸ずれ誤差がゼロである)状況下で取得されたワークWの計測結果から算出されるワークWの加工面のZ軸方向における位置を、点線で示している。更に、図27は、軸ずれ誤差が存在する(つまり、軸ずれ誤差がゼロでない)状況下で取得されたワークWの計測結果から算出されるワークWの加工面のZ軸方向における位置を、実線で示している。図27に示すように、軸ずれ誤差がない場合には、ワークWの加工面のZ軸方向における位置は、計測位置によって変わることはない。なぜならば、図26のステップS303bにおいてワークWが加工される場合には既に走り誤差が相殺されているため、軸ずれ誤差がなければ、加工ヘッド2のX軸方向における移動(つまり、X軸に沿った平行移動)に伴って、ワークWの加工面もまた平面になるからである。一方で、図27に示すように、軸ずれ誤差がある場合には、ワークWの加工面のZ軸方向における位置は、計測位置によって変わる。なぜならば、図26のステップS303bにおいてワークWが加工される場合には既に走り誤差が相殺されるものの、軸ずれ誤差が相殺されていないがゆえに、計測データには依然として軸ずれ誤差が含まれているからである。このため、制御装置7は、ワークWの計測結果に基づいて、加工面のZ軸方向における実際の位置を算出し、加工面のZ軸方向における実際の位置と加工面の理想的な位置(つまり、加工面が平面となる場合の加工面の位置)との差分(図27に示す例では、点線と実線との差分)を算出することで、軸ずれ誤差を算出することができる。 FIG. 27 shows the position of the machined surface of the work W in the Z-axis direction calculated from the measurement results of the work W obtained under the condition that there is no axial misalignment error (that is, the axis misalignment error is zero). showing. Furthermore, FIG. 27 shows the position in the Z-axis direction of the machined surface of the workpiece W calculated from the measurement results of the workpiece W acquired under the condition where there is an axis deviation error (that is, the axis deviation error is not zero). It is indicated by a solid line. As shown in FIG. 27, when there is no axial deviation error, the position of the machined surface of the workpiece W in the Z-axis direction does not change depending on the measurement position. This is because when the workpiece W is machined in step S303b of FIG. 26, the running error has already been canceled, so if there is no axial deviation error, the machining head 2 must move in the X-axis direction (that is, move along the X-axis). This is because the machined surface of the work W also becomes flat as a result of parallel movement along the surface. On the other hand, as shown in FIG. 27, when there is an axis deviation error, the position of the machined surface of the workpiece W in the Z-axis direction changes depending on the measurement position. This is because, although the running error has already been canceled when the work W is machined in step S303b of FIG. 26, the axis misalignment error is not yet canceled, so the measurement data still contains the axis misalignment error. because there is Therefore, the control device 7 calculates the actual position of the machining surface in the Z-axis direction based on the measurement result of the workpiece W, and calculates the actual position of the machining surface in the Z-axis direction and the ideal position of the machining surface ( That is, by calculating the difference (in the example shown in FIG. 27, the difference between the dotted line and the solid line) from the position of the machined surface when the machined surface is flat, the axis deviation error can be calculated.
 軸ずれ誤差が算出された後には、制御装置7は、算出された軸ずれ誤差を相殺するように加工ヘッド2及びステージ41の少なくとも一方の移動を制御してもよい。例えば、制御装置7は、軸ずれ誤差が生じている状況下であっても、軸ずれ誤差が生じていない場合と同様に加工ヘッド2がワークWを加工することができるように、加工ヘッド2及びステージ41の少なくとも一方の移動を制御する処理を含んでいてもよい。例えば、制御装置7は、軸ずれ誤差が生じている状況下であっても、軸ずれ誤差が生じていない場合と同様に計測装置5がワークW(或いは、任意の計測対象物)を計測することができるように、加工ヘッド2及びステージ41の少なくとも一方の移動を制御する処理を含んでいてもよい。このように、軸ずれ誤差校正動作を行うことで、ヘッド駆動系3及びステージ駆動系42は、実質的には、走り誤差校正部材91の計測結果に関する情報と加工されたワークWの計測結果に関する情報とに基づいて、加工ヘッド2及びステージ41をそれぞれ移動させることになる。その結果、工作機械1bは、軸ずれ誤差の影響を受けることなく、ワークWを加工し且つワークWを計測することができる。 After the axis misalignment error is calculated, the control device 7 may control the movement of at least one of the processing head 2 and the stage 41 so as to offset the calculated axis misalignment error. For example, the control device 7 controls the processing head 2 so that the processing head 2 can process the workpiece W in the same manner as when there is no axial misalignment error even under a situation where an axial misalignment error occurs. and a process of controlling the movement of at least one of the stage 41 . For example, the control device 7 causes the measuring device 5 to measure the work W (or any object to be measured) in the same manner as when no axis misalignment error occurs, even under a situation where an axis misalignment error occurs. A process for controlling the movement of at least one of the processing head 2 and the stage 41 may be included. By performing the axis deviation error calibrating operation in this way, the head driving system 3 and the stage driving system 42 can substantially provide information related to the measurement results of the running error calibration member 91 and the measurement results of the processed workpiece W. Based on the information, the processing head 2 and the stage 41 are moved. As a result, the machine tool 1b can process and measure the workpiece W without being affected by the axis deviation error.
 以上説明したように、工作機械1bは、加工ヘッド2に取り付けられる計測ヘッド52bを備えた計測装置5bを用いて、計測対象物(例えば、ワークW)を計測する。このため、計測装置5の一部の構成要件の主軸21への取り付け及び取り外しが不要となる。 As described above, the machine tool 1b uses the measuring device 5b having the measuring head 52b attached to the machining head 2 to measure the object to be measured (for example, the workpiece W). Therefore, it becomes unnecessary to attach and detach some components of the measuring device 5 to and from the spindle 21 .
 また、計測装置5bは、計測装置5と同様に、ガルバノミラー5222を用いて計測光MLの進行方向を変更することで、相対的に速い速度で、計測対象物の複数部位に計測光MLを順に照射することができる。従って、計測装置5bは、計測装置5と同様に、計測対象物の複数部位の特性(例えば、位置)を相対的に高速に計測することができる。その結果、制御装置7は、計測対象物の複数部位の位置を統合することで、計測対象物の形状を示す計測データを相対的に高速に生成することができる。 Further, similarly to the measuring device 5, the measuring device 5b changes the direction of travel of the measuring light ML using the galvanomirror 5222, thereby transmitting the measuring light ML to multiple parts of the object to be measured at a relatively high speed. They can be irradiated sequentially. Therefore, similarly to the measuring device 5, the measuring device 5b can measure the characteristics (for example, positions) of a plurality of parts of the measurement object at relatively high speed. As a result, the control device 7 can generate measurement data indicating the shape of the measurement object at a relatively high speed by integrating the positions of a plurality of parts of the measurement object.
 尚、第2実施形態において、計測ヘッド52bが備えるfθレンズ5322が、他の光学部材と交換可能であってもよい。一例として、図28に示すように、fθレンズ5322は、第1実施形態で説明したミラー5223と交換可能であってもよい。この場合、主軸21に、第1実施形態で説明した計測ヘッド53が取り付けられてもよい。その結果、第2実施形態における計測装置5bは、第1実施形態における計測装置5として機能可能となる。つまり、計測ヘッド52bの光学系522bがfθレンズ5322を備えている場合には、計測ヘッド52b(特に、光学系522b)は、計測光MLを計測対象物に向けて射出する装置として機能してもよい。言い換えれば、計測ヘッド52bの光学系522bがfθレンズ5322を備えている場合には、計測ヘッド52b(特に、光学系522b)は、計測ヘッド53を介することなく計測光MLを計測対象物に向けて射出する装置として機能してもよい。一方で、計測ヘッド52bの光学系522bがfθレンズ5322に代えてミラー5223を備えている場合には、計測ヘッド52b(特に、光学系522b)は、計測光MLを計測ヘッド53に向けて射出する装置として機能してもよい。言い換えれば、計測ヘッド52bの光学系522bがfθレンズ5322に代えてミラー5223を備えている場合には、計測ヘッド52b(特に、光学系522b)は、計測ヘッド53を介して計測光MLを計測対象物に向けて射出する装置として機能してもよい。尚、fθレンズ5322に限らず、計測ヘッド52bが備えるその他の光学部材が交換可能であってもよい。 Incidentally, in the second embodiment, the fθ lens 5322 included in the measurement head 52b may be replaceable with another optical member. As an example, as shown in FIG. 28, the fθ lens 5322 may be replaceable with the mirror 5223 described in the first embodiment. In this case, the measurement head 53 described in the first embodiment may be attached to the spindle 21 . As a result, the measuring device 5b in the second embodiment can function as the measuring device 5 in the first embodiment. In other words, when the optical system 522b of the measurement head 52b includes the fθ lens 5322, the measurement head 52b (particularly, the optical system 522b) functions as a device that emits the measurement light ML toward the object to be measured. good too. In other words, when the optical system 522b of the measurement head 52b includes the fθ lens 5322, the measurement head 52b (in particular, the optical system 522b) directs the measurement light ML toward the measurement object without the measurement head 53. It may function as a device that ejects On the other hand, when the optical system 522b of the measurement head 52b includes a mirror 5223 instead of the fθ lens 5322, the measurement head 52b (in particular, the optical system 522b) emits the measurement light ML toward the measurement head 53. It may function as a device for In other words, when the optical system 522b of the measurement head 52b includes the mirror 5223 instead of the fθ lens 5322, the measurement head 52b (especially the optical system 522b) measures the measurement light ML via the measurement head 53. It may function as a device that injects toward an object. In addition to the fθ lens 5322, other optical members included in the measurement head 52b may be replaceable.
 また、後述する第1変形例で説明するように、主軸21に取り付けられる計測ヘッド53が交換されることがある。この場合、主軸21に取り付けられる計測ヘッド53の種類に応じて、計測ヘッド52bが備えるfθレンズ5322(或いは、その他の光学部材)を交換するべきか否かが決定されてもよい。例えば、主軸21に第1の種類の計測ヘッド53が取り付けられている場合には、fθレンズ5322が交換されなくてもよく(つまり、光学系532がfθレンズ5322を備えていてもよく)、主軸21に第2の種類の計測ヘッド53が取り付けられている場合には、fθレンズ5322が交換されてもよい(つまり、光学系532がfθレンズ5322に代えて他の光学部材を備えていてもよい)。 Also, as will be described later in the first modified example, the measurement head 53 attached to the spindle 21 may be replaced. In this case, depending on the type of the measurement head 53 attached to the spindle 21, it may be determined whether or not the fθ lens 5322 (or other optical member) included in the measurement head 52b should be replaced. For example, when the first type measurement head 53 is attached to the spindle 21, the fθ lens 5322 may not be replaced (that is, the optical system 532 may include the fθ lens 5322), When the second type of measurement head 53 is attached to the spindle 21, the fθ lens 5322 may be replaced (that is, the optical system 532 may be replaced with another optical member instead of the fθ lens 5322). can also be used).
 (3)第3実施形態の工作機械1c
 続いて、第3実施形態の工作機械1について説明する。尚、以下では、第3実施形態の工作機械1を、“工作機械1c”と称する。第3実施形態の工作機械1cは、第2実施形態の工作機械1bと比較して、計測装置5bに代えて計測装置5cを備えているという点で異なる。工作機械1cのその他の特徴は、工作機械1bのその他の特徴と同一であってもよい。
(3) Machine tool 1c of the third embodiment
Next, a machine tool 1 according to a third embodiment will be described. In addition, below, the machine tool 1 of 3rd Embodiment is called "the machine tool 1c." A machine tool 1c of the third embodiment differs from the machine tool 1b of the second embodiment in that it includes a measuring device 5c instead of the measuring device 5b. Other features of machine tool 1c may be identical to other features of machine tool 1b.
 第3実施形態の計測装置5cは、第2実施形態の計測装置5bと比較して、計測ヘッド52bに代えて計測ヘッド52cを備えているという点で異なる。計測装置5cのその他の特徴は、計測装置5bのその他の特徴と同一であってもよい。このため、以下、図29を参照しながら、第3実施形態の計測装置5c(特に、計測ヘッド52c)について説明する。図29は、第3実施形態の計測装置5c(特に、計測ヘッド52c)の構造を示す断面図である。 The measuring device 5c of the third embodiment differs from the measuring device 5b of the second embodiment in that it includes a measuring head 52c instead of the measuring head 52b. Other features of the measuring device 5c may be the same as other features of the measuring device 5b. Therefore, the measuring device 5c (in particular, the measuring head 52c) of the third embodiment will be described below with reference to FIG. FIG. 29 is a cross-sectional view showing the structure of a measuring device 5c (in particular, a measuring head 52c) according to the third embodiment.
 図29に示すように、第3実施形態の計測ヘッド52cは、fθレンズ5322の光軸(つまり、計測装置5cの計測軸MX)が、主軸21の回転軸RXに交差するという点で、fθレンズ5322の光軸(つまり、計測軸MX)が回転軸RXに対して交差していなくてもよい第2実施形態の計測ヘッド52bと異なる。計測ヘッド52cのその他の特徴は、計測ヘッド52bのその他の特徴と同一であってもよい。 As shown in FIG. 29, the measurement head 52c of the third embodiment has the fθ It differs from the measurement head 52b of the second embodiment in which the optical axis of the lens 5322 (that is, the measurement axis MX) does not have to intersect the rotation axis RX. Other features of measuring head 52c may be the same as other features of measuring head 52b.
 このような計測装置5cを備える工作機械1cは、上述した第2実施形態の工作機械1bが享受可能な効果を享受することができる。 A machine tool 1c equipped with such a measuring device 5c can enjoy the effects that the machine tool 1b of the above-described second embodiment can enjoy.
 第3実施形態では特に、第1実施形態と同様に、回転軸RXとワークWとの交点である加工点PPが、計測軸MXとワークWとの交点である計測点MPと重なる。このため、第3実施形態においても、第1実施形態と同様に、工作機械1cの動作における制約が少なくなるという効果が享受可能である。さらに、第3実施形態では、計測装置5cは、回転軸RXとワークWとの交点である加工点PPを計測可能である。主軸21に取り付けられた工具23が加工点PPを加工可能である場合には、計測装置5cは、主軸21に装着される工具23を計測してもよい。例えば、計測装置5cは、主軸21に装着される工具23の位置を計測してもよい。例えば、計測装置5cは、主軸21に装着される工具23の形状を計測してもよい。但し、第3実施形態において、加工点PPと計測点MPとが重なっていなくてもよい。 Especially in the third embodiment, similarly to the first embodiment, the processing point PP, which is the intersection of the rotation axis RX and the work W, overlaps the measurement point MP, which is the intersection of the measurement axis MX and the work W. Therefore, in the third embodiment, similarly to the first embodiment, it is possible to enjoy the effect that the restrictions on the operation of the machine tool 1c are reduced. Furthermore, in the third embodiment, the measuring device 5c can measure the processing point PP, which is the intersection of the rotation axis RX and the workpiece W. If the tool 23 attached to the spindle 21 can machine the machining point PP, the measuring device 5c may measure the tool 23 attached to the spindle 21 . For example, the measuring device 5c may measure the position of the tool 23 attached to the spindle 21. FIG. For example, the measuring device 5c may measure the shape of the tool 23 attached to the spindle 21. FIG. However, in the third embodiment, the processing point PP and the measurement point MP do not have to overlap.
 更に、第3実施形態では、加工点PPと計測点MPとが重なるがゆえに、第2実施形態で説明した軸ずれ誤差が生ずる可能性は低い。従って、第3実施形態では、工作機械1cは、第2実施形態で説明した軸ずれ誤差校正動作を行わなくてもよい。但し、加工点PPと計測点MPとが本来は重なるべき状況下において、計測ヘッド52cの取り付け誤差及び光学系522bの取り付け誤差の少なくとも一方に起因して加工点PPと計測点MPとが重なっていない場合には、第3実施形態においても、上述した軸ずれ誤差が生ずる可能性がある。このため、工作機械1cは、第2実施形態で説明した軸ずれ誤差校正動作を行ってもよい。 Furthermore, in the third embodiment, since the machining point PP and the measurement point MP overlap, the possibility of the axial misalignment error described in the second embodiment occurring is low. Therefore, in the third embodiment, the machine tool 1c does not need to perform the shaft misalignment error calibration operation described in the second embodiment. However, in a situation where the processing point PP and the measurement point MP should originally overlap, the processing point PP and the measurement point MP do not overlap due to at least one of the mounting error of the measuring head 52c and the mounting error of the optical system 522b. If not, the above-described axis misalignment error may occur also in the third embodiment. Therefore, the machine tool 1c may perform the shaft misalignment error correction operation described in the second embodiment.
 尚、ワークWを加工する加工ヘッド2を示す図30(a)に示すように、加工ヘッド2は、回転軸RXがワークWの表面に交差する(典型的には、直交する)状態でワークWを加工してもよい。一方で、ワークWを計測する計測装置5c(特に、計測ヘッド52c)を示す図30(b)に示すように、計測装置5cは、計測軸MXがワークWの表面に交差する(典型的には、直交する)状態でワークWを計測してもよい。一方で、第3実施形態では、回転軸RXと計測軸MXとが交差する(つまり、平行でない)がゆえに、回転軸RXがワークWの表面に直交する状態では、計測軸MXがワークWの表面に直交しなくなる。同様に、計測軸MXがワークWの表面に直交する状態では、回転軸RXがワークWの表面に直交しなくなる。このため、第3実施形態では、加工ヘッド2がワークWを加工する加工期間の少なくとも一部には、図30(a)に示すように、加工ヘッド2とワークWとの位置関係が、回転軸RXがワークWの表面に直交する第1関係となるように、ヘッド駆動系3が加工ヘッド2を移動させてもよい及び/又はステージ駆動系42がステージ41を移動させてもよい。一方で、計測装置5cがワークWを計測する計測期間の少なくとも一部には、図30(b)に示すように、計測ヘッド52cが取り付けられた加工ヘッド2とワークWとの位置関係が、計測軸MXがワークWの表面に直交する第2関係(つまり、第1関係とは異なる第2関係)となるように、ヘッド駆動系3が加工ヘッド2を移動させてもよい及び/又はステージ駆動系42がステージ41を移動させてもよい。 Incidentally, as shown in FIG. 30A showing the machining head 2 for machining the workpiece W, the machining head 2 is arranged such that the rotation axis RX intersects (typically, orthogonally) the surface of the workpiece W. W may be processed. On the other hand, as shown in FIG. 30(b) showing a measuring device 5c (in particular, a measuring head 52c) that measures the work W, the measuring device 5c has a measurement axis MX that intersects the surface of the work W (typically may be perpendicular to each other). On the other hand, in the third embodiment, the rotation axis RX and the measurement axis MX intersect (that is, they are not parallel). no longer perpendicular to the surface. Similarly, when the measurement axis MX is perpendicular to the surface of the work W, the rotation axis RX is no longer perpendicular to the surface of the work W. For this reason, in the third embodiment, the positional relationship between the machining head 2 and the workpiece W is rotated during at least a part of the machining period during which the machining head 2 machining the workpiece W, as shown in FIG. The head drive system 3 may move the processing head 2 and/or the stage drive system 42 may move the stage 41 so that the axis RX is orthogonal to the surface of the workpiece W in the first relationship. On the other hand, during at least part of the measurement period during which the measuring device 5c measures the workpiece W, the positional relationship between the machining head 2 to which the measuring head 52c is attached and the workpiece W is as shown in FIG. The head drive system 3 may move the processing head 2 so that the measurement axis MX is perpendicular to the surface of the workpiece W (that is, a second relationship different from the first relationship), and/or the stage The drive system 42 may move the stage 41 .
 (4)第4実施形態の工作機械1d
 続いて、第4実施形態の工作機械1について説明する。尚、以下では、第4実施形態の工作機械1を、“工作機械1d”と称する。第4実施形態の工作機械1dは、第1実施形態の工作機械1aと比較して、計測装置5に代えて計測装置5dを備えているという点で異なる。工作機械1dのその他の特徴は、工作機械1aのその他の特徴と同一であってもよい。このため、以下、図31を参照しながら、第4実施形態の計測装置5dについて説明する。図31は、第4実施形態の計測装置5dの構造を示す断面図である。
(4) Machine tool 1d of the fourth embodiment
Next, a machine tool 1 according to a fourth embodiment will be described. In addition, below, the machine tool 1 of 4th Embodiment is called "machine tool 1d." A machine tool 1d of the fourth embodiment differs from the machine tool 1a of the first embodiment in that it is provided with a measuring device 5d instead of the measuring device 5. FIG. Other features of machine tool 1d may be identical to other features of machine tool 1a. Therefore, the measurement device 5d of the fourth embodiment will be described below with reference to FIG. FIG. 31 is a cross-sectional view showing the structure of the measuring device 5d of the fourth embodiment.
 図31に示すように、第4実施形態の計測装置5dは、第1実施形態の計測装置5と比較して、以下に説明する点で異なる。以下に説明する点を除いて、計測装置5dのその他の特徴は、計測装置5のその他の特徴と同一であってもよい。 As shown in FIG. 31, the measuring device 5d of the fourth embodiment differs from the measuring device 5 of the first embodiment in the following points. Other features of measuring device 5d may be the same as other features of measuring device 5, except as described below.
 まず、図31に示すように、計測装置5dは、計測装置5と比較して、計測ヘッド52を備えていなくてもよいという点で異なる。計測装置5dは、計測装置5と比較して、計測ヘッド52が備えていた光学系5221及びガルバノミラー5222を含む光学系522dが、加工ヘッド2の内部に収容されているという点で異なる。例えば、光学系522dは、ヘッド筐体22の内部に収容されていてもよい。例えば、光学系522dは、主軸21の内部に収容されていてもよい。尚、光学系522dの光軸は、回転軸RXと同軸であるが、必ずしも同軸でなくてもよい。 First, as shown in FIG. 31, the measuring device 5d differs from the measuring device 5 in that the measuring head 52 may not be provided. The measuring device 5 d differs from the measuring device 5 in that an optical system 522 d including an optical system 5221 and a galvanomirror 5222 included in the measuring head 52 is accommodated inside the processing head 2 . For example, the optical system 522d may be housed inside the head housing 22 . For example, the optical system 522d may be housed inside the main shaft 21 . Although the optical axis of the optical system 522d is coaxial with the rotation axis RX, it is not necessarily coaxial.
 光学系522dが加工ヘッド2の内部に収容されている場合には、加工ヘッド2の内部には、計測光ML及び戻り光RLの光路として用いられる光路空間213dが形成されていてもよい。例えば、主軸21には、工具23を冷却し、工具23とワークWとの間の摩擦を低減し及び/又は切削くず等を洗い流すためのクーラント(例えば、切削油であり、切削液と称されてもよい)を工具23に供給するためのクーラント流路が形成されている。このクーラント流路の少なくとも一部が光路空間213dの少なくとも一部として用いられてもよい。但し、クーラント流路とは別に光路空間213dが形成されていてもよい。尚、光路空間213dに沿って延びる軸は、回転軸RXと同軸であるが、必ずしも同軸でなくてもよい。 When the optical system 522d is accommodated inside the processing head 2, an optical path space 213d used as the optical paths of the measurement light ML and the return light RL may be formed inside the processing head 2. For example, the spindle 21 may include a coolant (for example, cutting oil, also called cutting fluid) for cooling the tool 23, reducing friction between the tool 23 and the workpiece W, and/or washing away cutting waste and the like. ) is formed to the tool 23 . At least part of this coolant channel may be used as at least part of the optical path space 213d. However, the optical path space 213d may be formed separately from the coolant channel. The axis extending along the optical path space 213d is coaxial with the rotation axis RX, but it is not necessarily coaxial.
 更に、図31に示すように、計測装置5dは、計測装置5と比較して、計測ヘッド53に代えて計測ヘッド53dを備えているという点で異なる。計測ヘッド53dは、計測ヘッド53と比較して、光学系532に代えて光学系532dを備えているという点で異なる。光学系532dは、光学系532と比較して、ミラー5321を備えていなくてもよいという点で異なる。但し、光学系532dの光軸と光学系522dの光軸とが同軸でない場合には、光学系532dはミラー5321を備えていてもよいし、光学系522dはミラー5223を備えていてもよい。 Furthermore, as shown in FIG. 31, the measuring device 5d differs from the measuring device 5 in that it has a measuring head 53d instead of the measuring head 53. The measurement head 53d differs from the measurement head 53 in that it has an optical system 532d instead of the optical system 532. FIG. The optical system 532d differs from the optical system 532 in that the mirror 5321 may not be provided. However, when the optical axis of the optical system 532 d and the optical axis of the optical system 522 d are not coaxial, the optical system 532 d may include the mirror 5321 and the optical system 522 d may include the mirror 5223 .
 このような第4実施形態の計測装置5dでは、光学系522dから射出された計測光MLは、光路空間213dを介して、計測ヘッド53内の光学系532dに入射する。このため、計測ヘッド53dのシャンク530には、光路空間213dから入射してくる計測光MLが通過可能な光路空間5301dが形成されていてもよい。更に、計測ヘッド53dのヘッド筐体531には、シャンク530に形成された光路空間5301dから入射してくる計測光MLが通過可能な開口5313dが形成されていてもよい。また、ワークW(或いは、任意の計測対象物)からの戻り光RLは、計測ヘッド53dから、開口5313d、光路空間5301d及び光路空間213dを介して、光学系522dに入射する。 In the measurement apparatus 5d of the fourth embodiment, the measurement light ML emitted from the optical system 522d enters the optical system 532d inside the measurement head 53 via the optical path space 213d. Therefore, the shank 530 of the measurement head 53d may be formed with an optical path space 5301d through which the measurement light ML entering from the optical path space 213d can pass. Further, the head housing 531 of the measurement head 53d may be formed with an opening 5313d through which the measurement light ML entering from the optical path space 5301d formed in the shank 530 can pass. Return light RL from the work W (or any object to be measured) enters the optical system 522d from the measurement head 53d via the opening 5313d, the optical path space 5301d, and the optical path space 213d.
 このような計測装置5dを備える工作機械1dは、上述した第1実施形態の工作機械1aが享受可能な効果を享受することができる。加えて、第5実施形態では、第1実施形態のミラー5223及び5321(つまり、光学系522から射出される計測光MLを光学系532に中継し且つ光学系532から射出される戻り光RLを光学系522に中継するための光学部材)が必ずしも必要とされないため、計測装置5dの構成がより簡略化される。 A machine tool 1d equipped with such a measuring device 5d can enjoy the effects that the machine tool 1a of the first embodiment described above can enjoy. In addition, in the fifth embodiment, the mirrors 5223 and 5321 of the first embodiment (that is, the measurement light ML emitted from the optical system 522 is relayed to the optical system 532 and the return light RL emitted from the optical system 532 is (optical member for relaying to the optical system 522) is not necessarily required, the configuration of the measuring device 5d is further simplified.
 (5)第5実施形態の工作機械1e
 続いて、第5実施形態の工作機械1について説明する。尚、以下では、第5実施形態の工作機械1を、“工作機械1e”と称する。第5実施形態の工作機械1eは、第4実施形態の工作機械1dと比較して、計測装置5dに代えて計測装置5eを備えているという点で異なる。工作機械1eのその他の特徴は、工作機械1dのその他の特徴と同一であってもよい。このため、以下、図32を参照しながら、第5実施形態の計測装置5eについて説明する。図32は、第5実施形態の計測装置5eの構造を示す断面図である。
(5) Machine tool 1e of the fifth embodiment
Next, a machine tool 1 according to a fifth embodiment will be described. In addition, below, the machine tool 1 of 5th Embodiment is called "machine tool 1e." A machine tool 1e of the fifth embodiment differs from the machine tool 1d of the fourth embodiment in that a measuring device 5e is provided instead of the measuring device 5d. Other features of machine tool 1e may be the same as other features of machine tool 1d. Therefore, the measuring device 5e of the fifth embodiment will be described below with reference to FIG. FIG. 32 is a cross-sectional view showing the structure of the measuring device 5e of the fifth embodiment.
 図32に示すように、第5実施形態の計測装置5eは、第4実施形態の計測装置5dと比較して、以下に説明する点で異なる。以下に説明する点を除いて、計測装置5eのその他の特徴は、計測装置5dのその他の特徴と同一であってもよい。 As shown in FIG. 32, the measuring device 5e of the fifth embodiment differs from the measuring device 5d of the fourth embodiment in the following points. Other features of measuring device 5e may be the same as other features of measuring device 5d, except as described below.
 まず、図31に示すように、計測装置5eは、計測装置5dと比較して、光学系5221及びガルバノミラー5222を含む光学系522dが、加工ヘッド2の内部に収容されていなくてもよいという点で異なる。図32に示す例では、光学系522dは、ヘッド筐体521に収容された状態で加工ヘッド2の外部に配置されている。この場合、光学系522dとヘッド筐体521とを含む計測ヘッド52eが、第1実施形態の計測ヘッド52と同様に加工ヘッド2に取り付けられていてもよい。但し、光学系522dは、ヘッド筐体521に収容されていなくてもよい。尚、光学系522dの光軸は、回転軸RXと同軸であるが、必ずしも同軸でなくてもよい。 First, as shown in FIG. 31, the measuring device 5e is different from the measuring device 5d in that the optical system 522d including the optical system 5221 and the galvanomirror 5222 does not have to be housed inside the processing head 2. different in that respect. In the example shown in FIG. 32 , the optical system 522d is arranged outside the processing head 2 while being accommodated in the head housing 521 . In this case, a measurement head 52e including an optical system 522d and a head housing 521 may be attached to the processing head 2 in the same manner as the measurement head 52 of the first embodiment. However, the optical system 522d may not be housed in the head housing 521. Although the optical axis of the optical system 522d is coaxial with the rotation axis RX, it is not necessarily coaxial.
 第5実施形態においても、第4実施形態と同様に、光学系522dから射出される計測光MLは、光路空間213d、光路空間5301d及び開口5313dを介して計測ヘッド53dに入射する。更に、ワークW(或いは、任意の計測対象物)からの戻り光RLは、計測ヘッド53dから、開口5313d、光路空間5301d及び光路空間213dを介して、光学系522dに入射する。 Also in the fifth embodiment, similarly to the fourth embodiment, the measurement light ML emitted from the optical system 522d enters the measurement head 53d via the optical path space 213d, the optical path space 5301d and the aperture 5313d. Furthermore, the return light RL from the workpiece W (or any object to be measured) enters the optical system 522d from the measurement head 53d via the opening 5313d, the optical path space 5301d and the optical path space 213d.
 このような計測装置5eを備える工作機械1eは、上述した第4実施形態の工作機械1dが享受可能な効果を享受することができる。 A machine tool 1e equipped with such a measuring device 5e can enjoy the effects that the machine tool 1d of the above-described fourth embodiment can enjoy.
 尚、光路空間213dのXY断面のサイズ(例えば、XY断面の直径)に対して計測光MLの光束径を調整するため、計測装置5eは、ビームエクスパンダーを備えていてもよい。ビームエクスパンダーは、光学系5221に含まれていてもよいし、光学系5221とガルバノミラー5222との間に配置されていてもよいし、光路空間213dに配置されていてもよい。また、光路空間213dのXY断面のサイズに対して、光束径を調整した後、調整した光束径を元の光束径に再調整するため、更に他のビームエクスパンダーが光路空間213dに配置されていてもよい。計測光MLが光路空間213dを伝搬する第4実施形態においても同様である。 Note that the measurement device 5e may include a beam expander in order to adjust the beam diameter of the measurement light ML with respect to the size of the XY section of the optical path space 213d (for example, the diameter of the XY section). The beam expander may be included in the optical system 5221, may be arranged between the optical system 5221 and the galvanomirror 5222, or may be arranged in the optical path space 213d. Further, another beam expander is arranged in the optical path space 213d in order to readjust the adjusted beam diameter to the original beam diameter after adjusting the beam diameter with respect to the size of the XY section of the optical path space 213d. may The same applies to the fourth embodiment in which the measurement light ML propagates through the optical path space 213d.
 尚、図32は、クーラントを供給するためのクーラント流路214eの少なくとも一部が光路空間213dの一部として用いられる一具体例を示している。つまり、図32は、光路空間213dが、クーラント流路214eの少なくとも一部である光路空間2131dと、クーラント流路214eと光学系522dとを接続する光路空間2132d(つまり、光路空間2131dよりも上流側(光学系522dに近い側)に位置する光路空間2132d)とを含む例を示している。この場合、工作機械1eは、クーラント供給装置81eと、気体供給装置82eと、弁83eと、弁83eとを備えていてもよい。クーラント供給装置81eは、クーラント流路214eに接続されるクーラント供給管85eを介して、クーラント流路214eにクーラントを供給する。気体供給装置82eは、光路空間2132dに接続される気体供給管86eを介して、光路空間213dに気体を供給する。気体供給装置82eが供給する気体は、クーラント流路214eを洗浄する(例えば、クーラント流路214eに付着したクーラントを除去する)ために用いられてもよい。弁83eは、クーラント供給管85eがクーラント流路214eに接続される接続点851eと、気体供給管86eが光路空間2132dに接続される接続点861eとの間に配置される。弁84eは、光路空間2132dのうちの接続点861eよりも上流側に配置される。 Note that FIG. 32 shows a specific example in which at least part of the coolant flow path 214e for supplying coolant is used as part of the optical path space 213d. That is, FIG. 32 shows an optical path space 2131d that is at least part of the coolant channel 214e and an optical path space 2132d that connects the coolant channel 214e and the optical system 522d (that is, upstream of the optical path space 2131d). and an optical path space 2132d located on the side (the side closer to the optical system 522d). In this case, the machine tool 1e may include a coolant supply device 81e, a gas supply device 82e, a valve 83e, and a valve 83e. The coolant supply device 81e supplies coolant to the coolant flow path 214e via a coolant supply pipe 85e connected to the coolant flow path 214e. The gas supply device 82e supplies gas to the optical path space 213d through a gas supply pipe 86e connected to the optical path space 2132d. The gas supplied by the gas supply device 82e may be used to clean the coolant flow path 214e (for example, remove coolant adhering to the coolant flow path 214e). The valve 83e is arranged between a connection point 851e where the coolant supply pipe 85e is connected to the coolant flow path 214e and a connection point 861e where the gas supply pipe 86e is connected to the optical path space 2132d. The valve 84e is arranged upstream of the connection point 861e in the optical path space 2132d.
 加工ヘッド2がワークWを加工する加工期間中は、弁83e及び84eの双方が閉じられていてもよい。この場合、クーラント供給装置81eは、クーラント供給管85eを介してクーラント流路214eにクーラントを供給することができる。更に、弁83eが閉じられているため、クーラント流路214eに供給されたクーラントが光路空間2132dを介して気体供給装置82e及び光学系522dに流れ込むことはない。その後、加工ヘッド2がワークWを加工し終えた後には、弁83eが開けられ、弁84eが閉じられていてもよい。この場合、気体供給装置82eは、気体供給管86eを介して光路空間213d(特に、クーラント流路214e)に気体を供給することができる。その結果、クーラント流路214eが洗浄される。その後、計測装置5eがワークWを計測する計測期間中は、弁83e及び84eの双方が開けられてもよい。その結果、光学系522dから射出される計測光MLは、光路空間213dを介して、ワークWに照射され、ワークWからの戻り光RLは、光路空間213dを介して光学系522dに入射する。計測装置5eがワークWを計測する前に気体供給装置82eから供給された気体により光路空間213d(特にクーラント流路214e)が洗浄されるため、光路空間213d(特にクーラント流路214e)に残留したクーラントによる計測不良が防止できる。なお、気体供給装置82eから光路空間213dに供給された気体によって、ワークWに付着した切削くずや切削液が除去されてもよい。 Both the valves 83e and 84e may be closed during the machining period in which the machining head 2 is machining the workpiece W. In this case, the coolant supply device 81e can supply coolant to the coolant flow path 214e through the coolant supply pipe 85e. Furthermore, since the valve 83e is closed, the coolant supplied to the coolant channel 214e does not flow into the gas supply device 82e and the optical system 522d through the optical path space 2132d. After that, after the machining head 2 finishes machining the workpiece W, the valve 83e may be opened and the valve 84e may be closed. In this case, the gas supply device 82e can supply gas to the optical path space 213d (in particular, the coolant flow path 214e) through the gas supply pipe 86e. As a result, the coolant channel 214e is cleaned. After that, both valves 83e and 84e may be opened during the measurement period in which the measurement device 5e measures the workpiece W. As a result, the measurement light ML emitted from the optical system 522d irradiates the work W through the optical path space 213d, and the return light RL from the work W enters the optical system 522d through the optical path space 213d. Since the optical path space 213d (particularly the coolant channel 214e) is cleaned by the gas supplied from the gas supply device 82e before the measuring device 5e measures the workpiece W, the coolant remained in the optical path space 213d (particularly the coolant channel 214e). Prevents measurement errors caused by coolant. Cutting waste and cutting fluid adhering to the workpiece W may be removed by the gas supplied from the gas supply device 82e to the optical path space 213d.
 尚、第4実施形態においても、クーラント流路214eの少なくとも一部が光路空間213dの一部として用いられる場合には、工作機械1dは、工作機械1eと同様に、クーラント供給装置81eと、気体供給装置82eと、弁83eと、弁83eとを備えていてもよい。 Also in the fourth embodiment, when at least part of the coolant flow path 214e is used as part of the optical path space 213d, the machine tool 1d includes the coolant supply device 81e and the gas A supply device 82e, a valve 83e, and a valve 83e may be provided.
 (6)第6実施形態の工作機械1f
 続いて、第6実施形態の工作機械1について説明する。尚、以下では、第6実施形態の工作機械1を、“工作機械1f”と称する。第6実施形態の工作機械1fは、第5実施形態の工作機械1eと比較して、計測装置5eに代えて計測装置5fを備えているという点で異なる。工作機械1fのその他の特徴は、工作機械1eのその他の特徴と同一であってもよい。このため、以下、図33を参照しながら、第6実施形態の計測装置5fについて説明する。図33は、第6実施形態の計測装置5fの構造を示す断面図である。
(6) Machine tool 1f of the sixth embodiment
Next, a machine tool 1 according to a sixth embodiment will be described. In addition, below, the machine tool 1 of 6th Embodiment is called "machine tool 1f." The machine tool 1f of the sixth embodiment differs from the machine tool 1e of the fifth embodiment in that it is equipped with a measuring device 5f instead of the measuring device 5e. Other features of machine tool 1f may be the same as other features of machine tool 1e. Therefore, the measuring device 5f of the sixth embodiment will be described below with reference to FIG. FIG. 33 is a cross-sectional view showing the structure of the measuring device 5f of the sixth embodiment.
 図33に示すように、第6実施形態の計測装置5fは、第5実施形態の計測装置5eと比較して、以下に説明する点で異なる。以下に説明する点を除いて、計測装置5fのその他の特徴は、計測装置5eのその他の特徴と同一であってもよい。 As shown in FIG. 33, the measuring device 5f of the sixth embodiment differs from the measuring device 5e of the fifth embodiment in the following points. Other features of measuring device 5f may be the same as other features of measuring device 5e, except as described below.
 まず、図33に示すように、計測装置5fは、計測装置5eと比較して、クーラント流路214eよりも上流側の光路空間2132dが、主軸21の回転軸RXに沿って延びる光路空間21321dと、回転軸RXに交差する方向に沿って延びる光路空間21322dとを含むという点で異なる。この場合、光学系522dから射出される計測光MLは、光路空間21322dに入射し、光路空間21322dを介して光路空間21321dに入射し、光路空間21321dを介してクーラント流路214eの少なくとも一部に相当する光路空間2131dに入射してもよい。また、ワークWからの戻り光RLは、計測ヘッド53から光路空間2131dに入射し、光路空間2131dを介して光路空間21321dに入射し、光路空間21321dを介して光路空間21322dに入射し、光路空間21322dを介して光学系522dに入射してもよい。 First, as shown in FIG. 33, in the measuring device 5f, the optical path space 2132d on the upstream side of the coolant flow path 214e is different from the optical path space 21321d extending along the rotation axis RX of the main shaft 21 in comparison with the measuring device 5e. , and an optical path space 21322d extending along a direction intersecting the rotation axis RX. In this case, the measurement light ML emitted from the optical system 522d enters the optical path space 21322d, enters the optical path space 21321d via the optical path space 21322d, and enters at least a part of the coolant channel 214e via the optical path space 21321d. It may enter the corresponding optical path space 2131d. Further, the return light RL from the workpiece W enters the optical path space 2131d from the measuring head 53, enters the optical path space 21321d through the optical path space 2131d, enters the optical path space 21322d through the optical path space 21321d, and enters the optical path space 21322d. It may enter the optical system 522d via 21322d.
 光路空間2132dが光路空間21321dと光路空間21322dとを含む場合には、光路空間21321dと光路空間21322dとが接続される接続点2133dに、ミラー215fが配置されていてもよい。ミラー215fは、光路空間21322dからミラー215fに入射した計測光MLの進行方向を、光路空間21322dが延びる方向(つまり、回転軸RXに交差する方向)から、光路空間21321dが延びる方向(つまり、回転軸RXに沿った方向)へと変更するように、光路空間21321dに向けて計測光MLを反射する。更に、ミラー215fは、光路空間21321dからミラー215fに入射した戻り光RLの進行方向を、光路空間21321dが延びる方向(つまり、回転軸RXに沿った方向)から、光路空間21322dが延びる方向(つまり、回転軸RXに交差する方向)へと変更するように、光路空間21322dに向けて戻り光RLを反射する。その結果、光路空間2132dが光路空間21321dと光路空間21322dとを含む場合であっても、計測装置5fは、計測光MLをワークW(或いは、任意の計測対象物)に照射し且つ戻り光RLを検出することができる。 When the optical path space 2132d includes the optical path space 21321d and the optical path space 21322d, a mirror 215f may be arranged at the connection point 2133d where the optical path space 21321d and the optical path space 21322d are connected. The mirror 215f rotates the traveling direction of the measurement light ML incident on the mirror 215f from the optical path space 21322d from the direction in which the optical path space 21322d extends (that is, the direction intersecting the rotation axis RX) to the direction in which the optical path space 21321d extends (that is, rotates). direction along the axis RX), and reflects the measurement light ML toward the optical path space 21321d. Further, the mirror 215f changes the traveling direction of the return light RL incident on the mirror 215f from the optical path space 21321d from the direction in which the optical path space 21321d extends (that is, the direction along the rotation axis RX) to the direction in which the optical path space 21322d extends (that is, , a direction intersecting the rotation axis RX), the return light RL is reflected toward the optical path space 21322d. As a result, even when the optical path space 2132d includes the optical path space 21321d and the optical path space 21322d, the measurement device 5f irradiates the workpiece W (or any measurement object) with the measurement light ML and returns the light RL can be detected.
 このような計測装置5fを備える工作機械1fは、上述した第5実施形態の工作機械1fが享受可能な効果を享受することができる。更に、第6実施形態では、光路空間2132dが、回転軸RXに沿って延びる光路空間21321dのみならず、回転軸RXに交差する方向に沿って延びる光路空間21322dをも含む。このため、第6実施形態では、第5実施形態と比較して、加工ヘッド2の上方に光学系522dを配置するスペースがない場合においても、光学系522dを配置可能となる。例えば、加工ヘッド2の側方に光学系522dを配置可能となる。このため、加工ヘッド2の周辺において光学系522dを配置可能な空間の加工ヘッド2に対する位置に応じて、光学系522dは、第5実施形態で説明した配置態様で配置されてもよいし、第6実施形態で説明した配置態様で配置されてもよい。 A machine tool 1f equipped with such a measuring device 5f can enjoy the effects that the machine tool 1f of the fifth embodiment described above can enjoy. Furthermore, in the sixth embodiment, the optical path space 2132d includes not only the optical path space 21321d extending along the rotation axis RX, but also the optical path space 21322d extending along the direction intersecting the rotation axis RX. Therefore, in the sixth embodiment, compared with the fifth embodiment, the optical system 522d can be arranged even when there is no space for arranging the optical system 522d above the processing head 2. FIG. For example, the optical system 522d can be arranged on the side of the processing head 2. For this reason, the optical system 522d may be arranged in the arrangement mode described in the fifth embodiment, depending on the position with respect to the processing head 2 of the space in which the optical system 522d can be arranged in the periphery of the processing head 2. They may be arranged in the arrangement mode described in the sixth embodiment.
 尚、図33は、クーラント供給装置81eがクーラントを供給するクーラント供給管85eとクーラント流路214eとが接続される接続点851eが、主軸21の内部に位置している。この場合、主軸21が回転可能であることを考慮して、クーラント供給管85eとクーラント流路214e(具体的には、クーラント流路を形成する配管)とは、接続点851eにおいてロータリージョイント2161fを介して接続されてもよい。但し、接続点851eが、主軸21の内部に位置していなくてもよい。 Note that in FIG. 33, a connection point 851e at which a coolant supply pipe 85e to which the coolant supply device 81e supplies coolant and the coolant flow path 214e are connected is located inside the main shaft 21. As shown in FIG. In this case, considering that the main shaft 21 is rotatable, the coolant supply pipe 85e and the coolant flow channel 214e (specifically, the pipe forming the coolant flow channel) are connected by a rotary joint 2161f at a connection point 851e. may be connected via However, the connection point 851e does not have to be positioned inside the spindle 21 .
 また、図33は、光路空間21322dが光路空間21321dに接続される接続点2133dが、主軸21の内部に位置している。この場合、主軸21が回転可能であることを考慮して、光路空間21322d及び光路空間21321d(具体的には、光路空間21322dを形成する配管及び光路空間21322dを形成する配管)は、接続点2133dにおいてロータリージョイント2162fを介して接続されてもよい。但し、接続点2133dが、主軸21の内部に位置していなくてもよい。 In addition, in FIG. 33, a connection point 2133d where the optical path space 21322d is connected to the optical path space 21321d is located inside the main shaft 21 . In this case, considering that the main shaft 21 is rotatable, the optical path space 21322d and the optical path space 21321d (specifically, the piping forming the optical path space 21322d and the piping forming the optical path space 21322d) are connected at the connection point 2133d. may be connected via a rotary joint 2162f at . However, the connection point 2133 d does not have to be located inside the spindle 21 .
 (7)第7実施形態の工作機械1g
 続いて、第7実施形態の工作機械1について説明する。尚、以下では、第7実施形態の工作機械1を、“工作機械1g”と称する。第7実施形態の工作機械1gは、第1実施形態の工作機械1aと比較して、計測装置5に代えて計測装置5gを備えているという点で異なる。工作機械1gのその他の特徴は、工作機械1aのその他の特徴と同一であってもよい。
(7) Machine tool 1g of the seventh embodiment
Next, a machine tool 1 according to a seventh embodiment will be described. In addition, below, the machine tool 1 of 7th Embodiment is called "the machine tool 1g." A machine tool 1g of the seventh embodiment differs from the machine tool 1a of the first embodiment in that it is provided with a measuring device 5g instead of the measuring device 5. FIG. Other features of machine tool 1g may be the same as other features of machine tool 1a.
 第7実施形態の計測装置5gは、第1実施形態の計測装置5と比較して、計測ヘッド53に代えて計測ヘッド53gを備えているという点で異なる。更に、計測装置5gは、計測装置5と比較して、加工ヘッド2に取り付けられる計測ヘッド52を備えていなくてもよいという点で異なる。計測装置5gのその他の特徴は、計測装置5のその他の特徴と同一であってもよい。このため、以下、図34を参照しながら、第7実施形態の計測装置5g(特に、計測ヘッド53g)について説明する。図34は、第7実施形態の計測装置5g(特に、計測ヘッド53g)の構造を示す断面図である。 A measuring device 5g of the seventh embodiment differs from the measuring device 5 of the first embodiment in that a measuring head 53g is provided instead of the measuring head 53. Furthermore, the measuring device 5g differs from the measuring device 5 in that the measuring head 52 attached to the processing head 2 may not be provided. Other features of the measuring device 5g may be the same as other features of the measuring device 5. FIG. Therefore, the measuring device 5g (in particular, the measuring head 53g) of the seventh embodiment will be described below with reference to FIG. FIG. 34 is a cross-sectional view showing the structure of a measuring device 5g (in particular, a measuring head 53g) according to the seventh embodiment.
 図34に示すように、第7実施形態の計測ヘッド53gは、第1実施形態の計測ヘッド53と比較して、光学系532に代えて光学系532gを備えているという点で異なる。計測ヘッド53gのその他の特徴は、計測ヘッド53のその他の特徴と同一であってもよい。 As shown in FIG. 34, the measurement head 53g of the seventh embodiment differs from the measurement head 53 of the first embodiment in that it includes an optical system 532g instead of the optical system 532. Other features of the measuring head 53 g may be the same as other features of the measuring head 53 .
 第7実施形態の光学系532gは、第1実施形態の光学系532と同様に、fθレンズ5322を備えている。一方で、光学系532gは、光学系532と比較して、ミラー5321を備えていなくてもよいという点で異なる。この場合、ヘッド筐体531には、計測ヘッド52から射出される計測光MLが通過可能な開口5311(図6参照)が形成されていなくてもよい。更に、光学系532gは、光学系532と比較して、光学系5221及びガルバノミラー5222を備えているという点で異なる。つまり、光学系532gは、第1実施形態の光学系522及び523が実質的に一体化された光学系として機能しているとみなしてもよい。光学系532gのその他の特徴は、光学系532のその他の特徴と同一であってもよい。 An optical system 532g of the seventh embodiment includes an fθ lens 5322, like the optical system 532 of the first embodiment. On the other hand, the optical system 532g differs from the optical system 532 in that the mirror 5321 may not be provided. In this case, the opening 5311 (see FIG. 6) through which the measurement light ML emitted from the measurement head 52 can pass may not be formed in the head housing 531 . Furthermore, the optical system 532g differs from the optical system 532 in that it includes an optical system 5221 and a galvanomirror 5222 . In other words, the optical system 532g may be regarded as functioning as an optical system in which the optical systems 522 and 523 of the first embodiment are substantially integrated. Other features of optical system 532 g may be identical to other features of optical system 532 .
 このような計測装置5gを備える工作機械1gは、上述した第1実施形態の工作機械1aが享受可能な効果を享受することができる。 A machine tool 1g equipped with such a measuring device 5g can enjoy the effects that the machine tool 1a of the above-described first embodiment can enjoy.
 (8)変形例
 続いて、上述した第1実施形態の工作機械1aから第7実施形態の工作機械1gの少なくとも一つにおいて採用可能な変形例について説明する。
(8) Modifications Subsequently, modifications that can be employed in at least one of the machine tools 1a of the first embodiment to the machine tool 1g of the seventh embodiment will be described.
 (8-1)第1変形例
 第1変形例では、計測ヘッド53が主軸21に対して着脱可能であることを利用して、主軸21に取り付けられる計測ヘッド53が交換可能であってもよい。このため、第1変形例は、主軸21に計測ヘッド53が取り付けられる第1実施形態の工作機械1a及び主軸21に計測ヘッド53dが取り付けられる第4実施形態の工作機械1dから第6実施形態の工作機械1fの少なくとも一つにおいて採用可能である。
(8-1) First Modification In the first modification, the measurement head 53 attached to the main shaft 21 may be replaceable by utilizing the fact that the measurement head 53 is detachable from the main shaft 21. . Therefore, the first modification includes the machine tool 1a of the first embodiment in which the measuring head 53 is attached to the spindle 21, and the machine tool 1d of the fourth embodiment in which the measuring head 53d is attached to the spindle 21 to the machine tool 1d of the sixth embodiment. It can be adopted in at least one of the machine tools 1f.
 尚、変形例の説明では、説明の便宜上、特段の説明がない場合には、“計測ヘッド53”は、第1実施形態の計測ヘッド53のみならず、第4実施形態から第6実施形態の計測ヘッド53dをも意味するものとする。同様に、変形例の説明では、説明の便宜上、特段の説明がない場合には、“光学系532”は、第1実施形態の光学系532のみならず、第4実施形態から第6実施形態の光学系532dをも意味するものとする。同様に、変形例の説明では、説明の便宜上、特段の説明がない場合には、“計測装置5”は、第1実施形態の計測装置5のみならず、第4実施形態の計測装置5dから第6実施形態の計測装置5fをも意味するものとする。 In the description of the modified examples, for convenience of explanation, unless otherwise specified, the "measurement head 53" refers not only to the measurement head 53 of the first embodiment, but also to those of the fourth to sixth embodiments. The measuring head 53d is also meant. Similarly, in the description of the modifications, for convenience of description, unless otherwise specified, the “optical system 532” refers not only to the optical system 532 of the first embodiment, but also to the optical system 532 of the fourth to sixth embodiments. optical system 532d. Similarly, in the description of the modifications, for convenience of explanation, unless otherwise specified, the “measuring device 5” refers not only to the measuring device 5 of the first embodiment, but also to the measuring device 5d of the fourth embodiment. It shall also mean the measuring device 5f of the sixth embodiment.
 主軸21には、複数種類の計測ヘッド53の中から選択された一の計測ヘッド53が取り付けられてもよい。例えば、工具交換装置6は、第1の種類の計測ヘッド53を主軸21に取り付けてもよい。例えば、工具交換装置6は、第1の種類の計測ヘッド53が取り付けられている主軸21から第1の種類の計測ヘッド53を取り外し、その後、第1の種類の計測ヘッド53とは異なる第2の種類の計測ヘッド53を主軸21に取り付けてもよい。尚、工作機械1のオペレータが、複数種類の計測ヘッド53のうちの一の計測ヘッド53の主軸21に対する取り付け及び取り外しの少なくとも一つを手動で行ってもよい。工作機械1のオペレータが、主軸21に対する第1の種類の計測ヘッド53の取り付け及び取り外し、並びに、主軸21に対する第2の種類の計測ヘッド53の取り付け及び取り外しのうちの少なくとも一つを手動で行ってもよい。 One measuring head 53 selected from among a plurality of types of measuring heads 53 may be attached to the spindle 21 . For example, the tool changer 6 may attach the first type measuring head 53 to the spindle 21 . For example, the tool changer 6 removes the first type measuring head 53 from the spindle 21 to which the first type measuring head 53 is attached, and then removes a second type measuring head 53 different from the first type measuring head 53 . type of measuring head 53 may be attached to the spindle 21 . Note that the operator of the machine tool 1 may manually perform at least one of attachment and detachment of one measuring head 53 of the plurality of types of measuring heads 53 to and from the spindle 21 . An operator of the machine tool 1 manually performs at least one of attaching and detaching the first type measuring head 53 to and from the spindle 21 and attaching and detaching the second type measuring head 53 to and from the spindle 21. may
 複数種類の計測ヘッド53は、複数種類の異なる光学系532をそれぞれ備えていてもよい。以下、図35(a)から図45(b)を参照しながら、主軸21に取り付け可能な複数種類の計測ヘッド53の一例について説明する。図35(a)から図45(b)のそれぞれは、計測ヘッド53の一例を示す断面図である。 A plurality of types of measurement heads 53 may each include a plurality of different types of optical systems 532 . An example of a plurality of types of measurement heads 53 that can be attached to the spindle 21 will be described below with reference to FIGS. 35(a) to 45(b). 35(a) to 45(b) are cross-sectional views showing an example of the measurement head 53. FIG.
 図35(a)及び図35(b)に示すように、主軸21に取り付け可能な複数種類の計測ヘッド53は、少なくとも二つの計測ヘッド53#1を含んでいてもよい。少なくとも二つの計測ヘッド53#1は、fθレンズ5322の光学特性が異なる少なくとも二つの光学系532#1をそれぞれ備えていてもよい。この場合、工具交換装置6は、計測対象物を計測するために適した(典型的には、最適な)光学特性のfθレンズ5322を備える計測ヘッド53#1を、主軸21に取り付けてもよい。その結果、計測装置5は、計測対象物を適切に計測できる。 As shown in FIGS. 35(a) and 35(b), the plurality of types of measurement heads 53 attachable to the spindle 21 may include at least two measurement heads 53#1. The at least two measurement heads 53#1 may each include at least two optical systems 532#1 in which the fθ lens 5322 has different optical characteristics. In this case, the tool changer 6 may attach the measurement head 53#1 including the fθ lens 5322 with optical characteristics suitable (typically, optimal) for measuring the measurement object to the spindle 21. . As a result, the measurement device 5 can appropriately measure the measurement object.
 fθレンズ5322の光学特性の一例として、f値及び焦点距離の少なくとも一方があげられる。例えば、図35(a)及び図35(b)に示すように、主軸21に取り付け可能な複数種類の計測ヘッド53は、f値が第1の値f#1となるfθレンズ5322を含む光学系532#11を備える計測ヘッド53#11と、f値が第1の値f#1とは異なる第2の値f#2となるfθレンズ5322を含む光学系532#12を備える計測ヘッド53#12とを含んでいてもよい。尚、図35(a)は、第1実施形態で利用可能な計測ヘッド53#1を示しており、図35(b)は、第4実施形態から第6実施形態で利用可能な計測ヘッド53#1を示している。この場合、工具交換装置6は、計測対象物と計測ヘッド53との間の距離(例えば、fθレンズ5322と計測対象物との間の距離であり、この距離をワーキングディスタンスと称してもよい)に応じたf値を有するfθレンズ5322を備える計測ヘッド53#1を、主軸21に取り付けてもよい。その結果、計測対象物と計測ヘッド53との間の距離が変わる場合であっても、計測装置5は、計測対象物を適切に計測できる。尚、上述の説明において、fθレンズ5322のf値をfθレンズ5322の射出側開口数と言い替えてもよい。 An example of the optical characteristics of the fθ lens 5322 is at least one of the f-number and focal length. For example, as shown in FIGS. 35(a) and 35(b), the plurality of types of measurement heads 53 that can be attached to the spindle 21 include an fθ lens 5322 having a first f-number f#1. A measuring head 53#11 having a system 532#11 and an optical system 532#12 including an fθ lens 5322 having a second value f#2 different from the first value f#1. #12. Incidentally, FIG. 35(a) shows the measuring head 53#1 that can be used in the first embodiment, and FIG. 35(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #1 is shown. In this case, the tool changer 6 determines the distance between the object to be measured and the measuring head 53 (for example, the distance between the fθ lens 5322 and the object to be measured; this distance may be called a working distance). A measurement head 53 # 1 having an fθ lens 5322 having an f value corresponding to θ may be attached to the spindle 21 . As a result, even when the distance between the measurement object and the measurement head 53 changes, the measurement device 5 can appropriately measure the measurement object. In the above description, the f value of the fθ lens 5322 may be replaced with the exit-side numerical aperture of the fθ lens 5322 .
 続いて、図36(a)及び図36(b)に示すように、主軸21に取り付け可能な複数種類の計測ヘッド53は、計測ヘッド53#2を含んでいてもよい。計測ヘッド53#2は、fθレンズ5322を備えていないfθレンズ5322を備えていなくてもよい。計測ヘッド53#2が主軸21に取り付けられる場合には、計測装置5は、ガルバノミラー5222を備えていなくてもよい。逆に言えば、計測装置5がガルバノミラー5222を備えていない場合には、工具交換装置6は、fθレンズ5322を備えていない計測ヘッド53#2を、主軸21に取り付けてもよい。 Next, as shown in FIGS. 36(a) and 36(b), the plurality of types of measurement heads 53 attachable to the spindle 21 may include a measurement head 53#2. The measurement head 53#2 does not need to include the fθ lens 5322. If the measurement head 53 # 2 is attached to the spindle 21 , the measurement device 5 does not have to include the galvanomirror 5222 . Conversely, if the measuring device 5 does not have the galvanomirror 5222 , the tool changer 6 may attach the measuring head 53 # 2 that does not have the fθ lens 5322 to the spindle 21 .
 尚、図36(a)は、第1実施形態で利用可能な計測ヘッド53#2を示しており、図36(b)は、第4実施形態から第6実施形態で利用可能な計測ヘッド53#2を示している。図36(a)に示すように、第1実施形態で利用可能な計測ヘッド53#2は、ミラー5321を備える光学系532#2を備えていてもよい。一方で、図36(b)に示すように、第4実施形態から第6実施形態で利用可能な計測ヘッド53#2は、光学系532を備えていなくてもよい。この場合、そもそも計測ヘッド53#2が主軸21に取り付けられなくてもよい。計測ヘッド53#2が主軸21に取り付けられていない状態において、計測装置5は、計測対象物を計測してもよい。 Incidentally, FIG. 36(a) shows the measuring head 53#2 that can be used in the first embodiment, and FIG. 36(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #2 is shown. As shown in FIG. 36( a ), the measurement head 53 # 2 that can be used in the first embodiment may have an optical system 532 # 2 that has a mirror 5321 . On the other hand, as shown in FIG. 36(b), the measurement head 53#2 that can be used in the fourth to sixth embodiments does not have to include the optical system 532. FIG. In this case, the measuring head 53#2 does not have to be attached to the spindle 21 in the first place. The measuring device 5 may measure the object to be measured while the measuring head 53#2 is not attached to the spindle 21. FIG.
 続いて、図37(a)及び図37(b)に示すように、主軸21に取り付け可能な複数種類の計測ヘッド53は、計測ヘッド53#3を含んでいてもよい。計測ヘッド53#3は、ミラー5323を備える光学系532#3を備えていてもよい。ミラー5323は、fθレンズ5322から射出される計測光MLを、fθレンズ5322の光軸に交差する方向に向けて射出(この場合、反射)可能な光学部材である。更に、ミラー5323は、計測対象物からの戻り光RLを、fθレンズ5322の光軸に沿った方向に向けて射出(この場合、反射)可能な光学部材である。図37(a)及び図37(b)に示すミラー5323は、fθレンズ5322から射出される計測光MLを、fθレンズ5322の光軸に直交する方向に向けて射出しているが、ミラー5323は、fθレンズ5322から射出される計測光MLが、fθレンズ5322の光軸に直交する方向以外の交差する方向に向けて射出されるように配置されてもよい。また、fθレンズ5322から射出される計測光MLを折り曲げる方向(ミラー5323からの計測光MLの射出方向)が変更できるように、ミラー5323の角度が変更されてもよい。例えば、モーターなどの駆動装置でミラー5323の角度を変更するようにしてもよい。図37(a)及び図37(b)に示すミラー5323は、平面状の反射面を有しているが、その他の形状(例えば、円錐形状又は角錐形状)の反射面を有していてもよい。尚、ミラー5323は、計測光ML及び戻り光RLのそれぞれの光路を折り曲げているとみなしてもよい。このため、ミラー5323は、光路折り曲げ部材と称されてもよい。尚、計測ヘッド53#3は、ミラー5323に限らず、光路を折り曲げ可能な他の既存の部材を光路折り曲げ部材として備えていてもよい。尚、図37(a)は、第1実施形態で利用可能な計測ヘッド53#3を示しており、図37(b)は、第4実施形態から第6実施形態で利用可能な計測ヘッド53#3を示している。 Next, as shown in FIGS. 37(a) and 37(b), the multiple types of measurement heads 53 that can be attached to the spindle 21 may include a measurement head 53#3. The measurement head 53 # 3 may have an optical system 532 # 3 with a mirror 5323 . The mirror 5323 is an optical member capable of emitting (in this case, reflecting) the measurement light ML emitted from the fθ lens 5322 in a direction intersecting the optical axis of the fθ lens 5322 . Furthermore, the mirror 5323 is an optical member capable of emitting (reflecting in this case) the return light RL from the object to be measured in a direction along the optical axis of the fθ lens 5322 . The mirror 5323 shown in FIGS. 37A and 37B directs the measurement light ML emitted from the fθ lens 5322 in a direction orthogonal to the optical axis of the fθ lens 5322. However, the mirror 5323 lens 5322 may be arranged so that the measurement light ML emitted from the f.theta. Further, the angle of the mirror 5323 may be changed so that the direction in which the measurement light ML emitted from the fθ lens 5322 is bent (the direction in which the measurement light ML is emitted from the mirror 5323) can be changed. For example, the angle of the mirror 5323 may be changed by a driving device such as a motor. Although the mirror 5323 shown in FIGS. 37(a) and 37(b) has a planar reflective surface, it may have a reflective surface of another shape (for example, conical or pyramidal). good. Note that the mirror 5323 may be regarded as bending the respective optical paths of the measurement light ML and the return light RL. Therefore, the mirror 5323 may be called an optical path bending member. Incidentally, the measurement head 53#3 may be provided with not only the mirror 5323 but also other existing members capable of bending the optical path as the optical path bending member. Incidentally, FIG. 37(a) shows the measuring head 53#3 that can be used in the first embodiment, and FIG. 37(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #3 is shown.
 ミラー5323から射出された計測光MLは、ヘッド筐体531に形成された開口5312を介して、計測対象物に入射する。また、計測対象物からの戻り光RLは、開口5312を介して、ミラー5323に入射する。但し、ミラー5323と計測対象物との間における計測光ML及び戻り光RLのそれぞれの進行方向がfθレンズ5322の光軸に交差する方向であるがゆえに、開口5312は、例えば、ヘッド筐体531の側面に形成されていてもよい。 The measurement light ML emitted from the mirror 5323 enters the object to be measured through the opening 5312 formed in the head housing 531 . Also, the return light RL from the object to be measured enters the mirror 5323 through the opening 5312 . However, since the direction of travel of the measurement light ML and the return light RL between the mirror 5323 and the object to be measured is a direction that intersects the optical axis of the fθ lens 5322, the aperture 5312 can be formed by, for example, the head housing 531 may be formed on the side surface of the
 計測ヘッド53#3を利用する場面の一例として、fθレンズ5322の光軸に平行な又は傾斜した計測対象物の面を計測する場面があげられる。図37(a)及び図37(b)に示す例では、fθレンズ5322の光軸がZ軸に平行であるがゆえに、計測ヘッド53#3は、例えば、Z軸に平行な又はZ軸に対して傾斜した計測対象物の面を計測するために用いられてもよい。従って、計測装置5がZ軸に平行な又はZ軸に対して傾斜した計測対象物の面を計測する場面では、工具交換装置6は、計測ヘッド53#3を、主軸21に取り付けてもよい。 An example of a scene where the measurement head 53#3 is used is a scene of measuring a surface of an object to be measured that is parallel or inclined to the optical axis of the fθ lens 5322. In the example shown in FIGS. 37(a) and 37(b), since the optical axis of the fθ lens 5322 is parallel to the Z-axis, the measurement head 53#3 can be positioned parallel to or along the Z-axis, for example. It may be used to measure a surface of a measurement object that is tilted with respect to the object. Therefore, when the measuring device 5 measures a surface of the object to be measured that is parallel to the Z-axis or tilted with respect to the Z-axis, the tool changer 6 may attach the measuring head 53#3 to the spindle 21. .
 計測ヘッド53#3を利用する場面の他の一例として、計測対象物に形成された狭小空間に面する計測対象物の面を計測する場面があげられる。例えば、図38に示すように、狭小空間に相当する凹部(例えば、縦穴Wh)がワークWに形成されている場合には、計測ヘッド53#3は、縦穴Whに面するワークWの内側面Wis(つまり、ワークWにおける凹部の内面)を計測するために用いられてもよい。従って、計測装置5が狭小空間に面する計測対象物の面を計測する場面では、工具交換装置6は、計測ヘッド53#3を、主軸21に取り付けてもよい。この場合、計測装置5は、計測ヘッド53#3の少なくとも一部をワークWの凹部(例えば、縦穴Wh)内に配置した状態で、内側面Wis(つまり、凹部の内面)に計測光MLを照射し、内側面Wis(つまり、凹部の内面)からの戻り光RLを受光する(つまり、検出する)ことによって、ワークWの形状等を計測してもよい。 Another example of the use of the measurement head 53#3 is the measurement of the surface of the measurement object facing the narrow space formed in the measurement object. For example, as shown in FIG. 38, when a concave portion (for example, a vertical hole Wh) corresponding to a narrow space is formed in the work W, the measurement head 53#3 is positioned on the inner surface of the work W facing the vertical hole Wh. It may be used to measure Wis (that is, the inner surface of the recess in the work W). Therefore, when the measuring device 5 measures the surface of the object to be measured facing a narrow space, the tool changing device 6 may attach the measuring head 53 # 3 to the spindle 21 . In this case, the measurement device 5 directs the measurement light ML to the inner surface Wis (that is, the inner surface of the recess) while at least part of the measurement head 53#3 is arranged in the recess (for example, the vertical hole Wh) of the work W. The shape and the like of the work W may be measured by irradiating the workpiece W and receiving (that is, detecting) the return light RL from the inner surface Wis (that is, the inner surface of the concave portion).
 尚、計測ヘッド53#3を用いて狭小空間に面する計測対象物の面が計測される場合には、図38に示すように、計測ヘッド53#3(つまり、光学系#3)の少なくとも一部が狭小空間(例えば、縦穴Wh)に挿入された状態で、計測ヘッド53から計測対象物(例えば、内側面Wis)に計測光MLが照射されてもよい。この場合、ヘッド筐体531は、図38に示すように、主軸21につながる筐体部分5314と、筐体部分5314につながり且つ筐体部分5314よりもサイズが小さい筐体部分5315とを備えていてもよい。この場合、ミラー5323は、筐体部分5315に収容されていてもよいし、開口5312は、筐体部分5315に形成されていてもよい。ここで、狭小空間に相当する縦穴Whの径(XY方向のサイズ)が変更されるのに応じて、計測光MLの進行方向における集光位置が変更されてもよい。尚、制御装置7は、主軸21(つまり、計測ヘッド53#3)を回転軸RX周りに回転させ、且つ主軸21の回転に伴って順次、計測ヘッド53#3から計測対象物に計測光MLが照射されるように制御することで、狭小空間全体の計測(例えば、狭小空間全体の形状を示す計測データの取得)を行ってもよい。 When measuring the surface of the measurement object facing a narrow space using the measurement head 53#3, as shown in FIG. The measurement light ML may be irradiated from the measurement head 53 to the measurement target (eg, the inner surface Wis) while a portion of the measurement head 53 is inserted into the narrow space (eg, the vertical hole Wh). In this case, the head housing 531 includes a housing portion 5314 connected to the main shaft 21 and a housing portion 5315 connected to the housing portion 5314 and smaller in size than the housing portion 5314, as shown in FIG. may In this case, the mirror 5323 may be housed in the housing portion 5315 and the opening 5312 may be formed in the housing portion 5315 . Here, the condensing position in the direction of travel of the measurement light ML may be changed according to the change in the diameter (size in the XY direction) of the vertical hole Wh corresponding to the narrow space. Note that the control device 7 rotates the main shaft 21 (that is, the measurement head 53#3) around the rotation axis RX, and as the main shaft 21 rotates, the measurement light ML is sequentially emitted from the measurement head 53#3 to the object to be measured. may be controlled to irradiate the entire narrow space (for example, acquisition of measurement data indicating the shape of the entire narrow space).
 続いて、図39(a)及び図39(b)に示すように、主軸21に取り付け可能な複数種類の計測ヘッド53は、計測ヘッド53#4を含んでいてもよい。計測ヘッド53#4は、fθレンズ5322に代えて平行平板5324を備える光学系532#4を備えていてもよい。尚、図39(a)は、第1実施形態で利用可能な計測ヘッド53#4を示しており、図39(b)は、第4実施形態から第6実施形態で利用可能な計測ヘッド53#4を示している。 Next, as shown in FIGS. 39(a) and 39(b), the plurality of types of measurement heads 53 attachable to the spindle 21 may include a measurement head 53#4. The measurement head 53#4 may include an optical system 532#4 including a parallel plate 5324 instead of the fθ lens 5322. Incidentally, FIG. 39(a) shows the measuring head 53#4 that can be used in the first embodiment, and FIG. 39(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #4 is shown.
 平行平板5324は、その表面(光学面)が、平行平板5324に入射してくる計測光MLの進行方向に対して傾斜するように配置される。その結果、平行平板5324に対する計測光MLの入射位置と、平行平板5324からの計測光MLの射出位置とは、計測光MLの進行方向に交差する方向(例えば、主軸21の回転軸RXに交差する方向)に沿って離れる。このような状況下で主軸21の回転に伴って回転軸RX周りに計測ヘッド53#4が回転する(つまり、平行平板5324が回転する)と、平行平板5324からの計測光MLの射出位置は、計測光MLの進行方向に交差する方向に沿って変化する。つまり、計測ヘッド53#4からの計測光MLの射出位置は、計測光MLの進行方向に交差する方向に沿って変化する。このため、平行平板5324は、計測ヘッド53#4からの計測光MLの射出位置を変える射出位置変更部材として機能しているとみなしてもよい。その結果、計測対象物上での計測光MLの照射位置が、計測対象物の表面に沿って変化する。また、計測対象物からの戻り光RLは、計測光MLと同じ光路を介して光学系522へと戻るため、その詳細な説明は省略する。尚、射出位置変更部材は、計測光MLの入射位置に対して射出位置を変更できる部材である限りは、平行平板5324に限られない。例えば、光の入射面と光の射出面とが非平行な板状の光学部材が、射出変更部材として用いられてもよいし、他の形状の光学部材が、射出変更部材として用いられてもよい。 The parallel plate 5324 is arranged such that its surface (optical surface) is inclined with respect to the traveling direction of the measurement light ML incident on the parallel plate 5324 . As a result, the incident position of the measurement light ML on the parallel plate 5324 and the exit position of the measurement light ML from the parallel plate 5324 are in a direction intersecting the traveling direction of the measurement light ML (for example, intersecting the rotation axis RX of the main shaft 21). direction). Under such circumstances, when the measurement head 53#4 rotates around the rotation axis RX (that is, the parallel plate 5324 rotates) with the rotation of the main shaft 21, the emission position of the measurement light ML from the parallel plate 5324 is , change along the direction intersecting the traveling direction of the measurement light ML. That is, the emission position of the measurement light ML from the measurement head 53#4 changes along the direction intersecting the traveling direction of the measurement light ML. Therefore, the parallel plate 5324 may be regarded as functioning as an emission position changing member that changes the emission position of the measurement light ML from the measurement head 53#4. As a result, the irradiation position of the measurement light ML on the measurement object changes along the surface of the measurement object. Further, since the return light RL from the object to be measured returns to the optical system 522 through the same optical path as the measurement light ML, detailed description thereof will be omitted. Note that the emission position changing member is not limited to the parallel plate 5324 as long as it is a member capable of changing the emission position with respect to the incident position of the measurement light ML. For example, a plate-shaped optical member having a non-parallel light entrance surface and a light exit surface may be used as the light emission changing member, or an optical member having another shape may be used as the light emission changing member. good.
 但し、第1実施形態で利用可能な計測ヘッド53#4では、計測ヘッド52から射出される計測光MLが、開口5311を介して計測ヘッド53#4に入射する。上述したように、主軸21の回転角度(つまり、計測ヘッド53#4の回転角度)によっては、計測ヘッド52から射出される計測光MLの光路上に開口5311が位置しなくなる可能性がある。そこで、図39(a)に示すように、計測ヘッド53#4では、回転軸RXを360度にわたって取り囲む輪帯形状の開口5311が形成されてもよい。但し、単に回転軸RXを360度にわたって取り囲む輪帯形状の開口5311が形成されるだけでは、開口5311を境界にヘッド筐体531が物理的に上下に分離してしまう。そこで、開口5311には、計測光MLが通過可能であって且つヘッド筐体531のうちの開口5311よりも上方の筐体部分とヘッド筐体531のうちの開口5311よりも下方の筐体部分とを接続する支持部材5316が配置されていてもよい。尚、平行平板5324を備える計測ヘッド53#4に限らず、第1実施形態で利用可能な任意の計測ヘッド53において、回転軸RXを360度にわたって取り囲む輪帯形状の開口5311が形成されていてもよいし、開口5311に支持部材5316が配置されていてもよい。 However, in the measurement head 53#4 that can be used in the first embodiment, the measurement light ML emitted from the measurement head 52 enters the measurement head 53#4 through the opening 5311. As described above, the opening 5311 may not be positioned on the optical path of the measurement light ML emitted from the measurement head 52 depending on the rotation angle of the main shaft 21 (that is, the rotation angle of the measurement head 53#4). Therefore, as shown in FIG. 39A, the measurement head 53#4 may be formed with an annular opening 5311 that surrounds the rotation axis RX over 360 degrees. However, if the ring-shaped opening 5311 that surrounds the rotation axis RX over 360 degrees is simply formed, the head housing 531 is physically separated vertically at the boundary of the opening 5311 . Therefore, in the opening 5311, a housing portion of the head housing 531 above the opening 5311 and a housing portion of the head housing 531 below the opening 5311 through which the measurement light ML can pass. A support member 5316 may be arranged to connect the . Note that not only the measurement head 53#4 having the parallel plate 5324, but also any measurement head 53 that can be used in the first embodiment has an annular opening 5311 that surrounds the rotation axis RX over 360 degrees. Alternatively, a support member 5316 may be arranged in the opening 5311 .
 更に、第1実施形態で利用可能な計測ヘッド53#4は、計測ヘッド52から射出される計測光MLが入射するミラー5321を備えている。上述したように、主軸21の回転角度(つまり、ミラー5321の回転角度)によっては、開口5311を介して計測ヘッド53#4に入射した計測光MLが、ミラー5321の反射面に入射しなくなる可能性がある。そこで、図39(a)に示すように、計測ヘッド53#4は、ミラー5321に代えて、反射面の形状が錐形状(例えば、円錐形状又は角錐形状)となる錐ミラー5325を備えていてもよい。この場合、主軸21が回転したとしても、錐ミラー5325は、錐ミラー5325に入射した計測光MLを平行平板5324に向けて反射し、且つ、錐ミラー5325に入射した戻り光RLを光学系522に向けて反射することができる。尚、平行平板5324を備える計測ヘッド53#4に限らず、第1実施形態で利用可能な任意の計測ヘッド53は、ミラー5321に代えて錐ミラー5325を備えていてもよい。 Furthermore, the measurement head 53#4 that can be used in the first embodiment includes a mirror 5321 on which the measurement light ML emitted from the measurement head 52 is incident. As described above, depending on the rotation angle of the main shaft 21 (that is, the rotation angle of the mirror 5321), the measurement light ML that has entered the measurement head 53#4 through the opening 5311 may not enter the reflecting surface of the mirror 5321. have a nature. Therefore, as shown in FIG. 39A, instead of the mirror 5321, the measurement head 53#4 is equipped with a cone mirror 5325 whose reflection surface has a cone shape (for example, a cone shape or a pyramid shape). good too. In this case, even if the main axis 21 rotates, the conical mirror 5325 reflects the measurement light ML incident on the conical mirror 5325 toward the parallel plate 5324, and transmits the return light RL incident on the conical mirror 5325 to the optical system 522 can be reflected towards Note that any measurement head 53 that can be used in the first embodiment, not limited to the measurement head 53 #4 having the parallel plate 5324 , may have the cone mirror 5325 instead of the mirror 5321 .
 尚、平行平板5324を備えている計測ヘッド53#4が主軸21に取り付けられる場合には、計測装置5は、ガルバノミラー5222を備えていなくてもよい。逆に言えば、計測装置5がガルバノミラー5222を備えていない場合には、工具交換装置6は、平行平板5324を備えている計測ヘッド53#4を、主軸21に取り付けてもよい。 It should be noted that when the measurement head 53#4 including the parallel plate 5324 is attached to the spindle 21, the measurement device 5 does not have to include the galvanomirror 5222. Conversely, if the measuring device 5 does not have the galvanomirror 5222 , the tool changer 6 may attach the measuring head 53 # 4 having the parallel plate 5324 to the spindle 21 .
 また、上述した説明では、平行平板5324は、主軸21の回転に伴って回転している。しかしながら、計測装置5は、主軸21の回転の有無に関わらず平行平板5324を回転させるための駆動系を備えていてもよい。 Also, in the above description, the parallel plate 5324 rotates as the main shaft 21 rotates. However, the measuring device 5 may include a drive system for rotating the parallel plate 5324 regardless of whether the main shaft 21 is rotated.
 続いて、図40(a)及び図40(b)に示すように、主軸21に取り付け可能な複数種類の計測ヘッド53は、計測ヘッド53#5を含んでいてもよい。計測ヘッド53#5は、fθレンズ5322から射出される計測光MLの光路上に、反射面の形状が錐形状となる錐ミラー5326を備える光学系532#5を備えていてもよい。尚、図40(a)は、第1実施形態で利用可能な計測ヘッド53#5を示しており、図40(b)は、第4実施形態から第6実施形態で利用可能な計測ヘッド53#5を示している。 Next, as shown in FIGS. 40(a) and 40(b), the plurality of types of measurement heads 53 attachable to the spindle 21 may include a measurement head 53#5. The measurement head 53#5 may include an optical system 532#5 including a conical mirror 5326 having a conical reflecting surface on the optical path of the measurement light ML emitted from the fθ lens 5322. Incidentally, FIG. 40(a) shows the measuring head 53#5 that can be used in the first embodiment, and FIG. 40(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #5 is shown.
 錐ミラー5326は、fθレンズ5322の射出面の第1領域から射出される計測光MLが錐ミラー5326の反射面に入射する一方で、fθレンズ5322の射出面の第2領域から射出される計測光MLが錐ミラー5326の反射面に入射しないように、配置される。この場合、fθレンズ5322の射出面の第1領域から射出される計測光MLは、錐ミラー5326によって反射される。その結果、錐ミラー5326は、fθレンズ5322から射出される計測光MLを、fθレンズ5322の光軸に交差する方向に向けて射出(この場合、反射)する。従って、この場合には、錐ミラー5326は、図37(a)及び図37(c)で説明した計測ヘッド53#3が備えるミラー5323として機能可能である。一方で、fθレンズ5322の射出面の第2領域から射出される計測光MLは、錐ミラー5326によって反射されない。その結果、fθレンズ5322から射出される計測光MLは、fθレンズ5322の光軸に沿った射出方向に向けて計測ヘッド53から射出される。従って、計測ヘッド53#5は、fθレンズ5322の光軸に直交する計測対象物の面(例えば、XY平面に沿った面)と、fθレンズ5322の光軸に平行な又は傾斜する計測対象物の面(例えば、Z軸に平行な又はZ軸に対して傾斜した面)との双方に計測光MLを照射可能である。また、計測対象物からの戻り光RLは、計測光MLと同じ光路を介して光学系522へと戻るため、その詳細な説明は省略する。 The cone mirror 5326 allows the measurement light ML emitted from the first region of the exit surface of the fθ lens 5322 to enter the reflecting surface of the cone mirror 5326, while the measurement light ML emitted from the second region of the exit surface of the fθ lens 5322 is measured. It is arranged so that the light ML does not enter the reflecting surface of the cone mirror 5326 . In this case, the measurement light ML emitted from the first region of the exit surface of the fθ lens 5322 is reflected by the cone mirror 5326 . As a result, the cone mirror 5326 emits (in this case, reflects) the measurement light ML emitted from the fθ lens 5322 in a direction intersecting the optical axis of the fθ lens 5322 . Therefore, in this case, the conical mirror 5326 can function as the mirror 5323 included in the measurement head 53#3 described with reference to FIGS. 37(a) and 37(c). On the other hand, the measurement light ML emitted from the second region of the exit surface of the fθ lens 5322 is not reflected by the cone mirror 5326 . As a result, the measurement light ML emitted from the fθ lens 5322 is emitted from the measurement head 53 in the emission direction along the optical axis of the fθ lens 5322 . Therefore, the measurement head 53#5 can measure the surface of the object to be measured perpendicular to the optical axis of the fθ lens 5322 (for example, the surface along the XY plane) and the object to be measured parallel or inclined to the optical axis of the fθ lens 5322. (for example, a surface parallel to the Z-axis or inclined with respect to the Z-axis) can be irradiated with the measurement light ML. Further, since the return light RL from the object to be measured returns to the optical system 522 through the same optical path as the measurement light ML, detailed description thereof will be omitted.
 尚、計測ヘッド53#5からは、錐ミラー5326を介した計測光MLと、錐ミラー5326を介さない計測光MLとが射出される。このため、ヘッド筐体531には、計測ヘッド53#5から射出される計測光MLが通過可能な開口5312として、錐ミラー5326を介さない計測光MLが通過可能な開口5312-1と、錐ミラー5326を介した計測光MLが通過可能な開口5312-2とが形成されていてもよい。更に、開口5312-2は、図39(a)で説明したように、回転軸RXを360度にわたって取り囲む輪帯形状を有していてもよい。更に、図39(a)で説明したように、開口5312-2には、計測光MLが通過可能であって且つヘッド筐体531のうちの開口5312-2よりも上方の筐体部分とヘッド筐体531のうちの開口5312-2よりも下方の筐体部分とを接続する支持部材が配置されていてもよい。 Note that the measurement light ML that passes through the cone mirror 5326 and the measurement light ML that does not pass through the cone mirror 5326 are emitted from the measurement head 53#5. For this reason, the head housing 531 has an aperture 5312-1 through which the measurement light ML emitted from the measurement head 53#5 can pass, and an aperture 5312-1 through which the measurement light ML can pass without passing through the cone mirror 5326. An opening 5312-2 through which the measurement light ML passing through the mirror 5326 can pass may be formed. Furthermore, the opening 5312-2 may have an annular shape surrounding the rotation axis RX over 360 degrees, as described with reference to FIG. 39(a). Furthermore, as described with reference to FIG. 39(a), the opening 5312-2 allows the measurement light ML to pass through, and the housing portion of the head housing 531 above the opening 5312-2 and the head. A support member may be arranged to connect the housing portion of the housing 531 below the opening 5312-2.
 続いて、図41(a)及び図41(b)に示すように、主軸21に取り付け可能な複数種類の計測ヘッド53は、計測ヘッド53#6を含んでいてもよい。計測ヘッド53#6は、fθレンズ5322に代えてミラー5327を備える光学系532#6を備えていてもよい。尚、図41(a)は、第1実施形態で利用可能な計測ヘッド53#6を示しており、図41(b)は、第4実施形態から第6実施形態で利用可能な計測ヘッド53#6を示している。 Next, as shown in FIGS. 41(a) and 41(b), the plurality of types of measurement heads 53 attachable to the spindle 21 may include a measurement head 53#6. The measurement head 53 # 6 may have an optical system 532 # 6 having a mirror 5327 instead of the fθ lens 5322 . FIG. 41(a) shows the measuring head 53#6 that can be used in the first embodiment, and FIG. 41(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #6 is shown.
 ミラー5327は、ミラー5327に入射してきた計測光MLを反射する。特に、ミラー5327は、ミラー5327に入射してきた計測光MLが光学系522に戻るように、計測光MLを反射する。このような計測ヘッド53#6は、例えば、光学系522の姿勢(例えば、光軸の向き)を調整するために用いられてもよい。このため、工具交換装置6は、光学系522の姿勢を調整する場合に、ミラー5327を備える計測ヘッド53#6を主軸21に取り付けてもよい。 The mirror 5327 reflects the measurement light ML that has entered the mirror 5327 . In particular, the mirror 5327 reflects the measurement light ML so that the measurement light ML that has entered the mirror 5327 returns to the optical system 522 . Such a measurement head 53#6 may be used, for example, to adjust the attitude of the optical system 522 (for example, the orientation of the optical axis). Therefore, when adjusting the attitude of the optical system 522 , the tool changer 6 may attach the measuring head 53 # 6 having the mirror 5327 to the spindle 21 .
 具体的には、光学系522の姿勢が理想的な姿勢になっている場合には、光学系522から射出された計測光MLがミラー5327に入射し、且つ、ミラー5327が反射した計測光MLが光学系522に入射する(その結果、検出素子5232に入射する)。一方で、光学系522の姿勢が理想的な姿勢になっていない場合には、光学系522から射出された計測光MLの少なくとも一部がミラー5327に入射しない、及び/又は、ミラー5327が反射した計測光MLの少なくとも一部が光学系522に入射しない(その結果、検出素子5232に入射しない)可能性がある。このため、光学系522の姿勢が理想的な姿勢になっていない場合には、光学系522の姿勢が理想的な姿勢になっている場合と比較して、検出素子5232による計測光MLの検出強度が小さくなる可能性がある。このため、検出素子5232による計測光MLの検出強度に基づいて、光学系522の姿勢が調整可能となる。 Specifically, when the posture of the optical system 522 is an ideal posture, the measurement light ML emitted from the optical system 522 is incident on the mirror 5327, and the measurement light ML reflected by the mirror 5327 is incident on the optical system 522 (and consequently on the detector element 5232). On the other hand, when the posture of the optical system 522 is not ideal, at least part of the measurement light ML emitted from the optical system 522 does not enter the mirror 5327 and/or the mirror 5327 reflects There is a possibility that at least part of the measured light ML that has been measured does not enter the optical system 522 (as a result, does not enter the detection element 5232). Therefore, when the posture of the optical system 522 is not ideal, detection of the measurement light ML by the detection element 5232 is more difficult than when the posture of the optical system 522 is ideal. strength may be reduced. Therefore, the attitude of the optical system 522 can be adjusted based on the intensity of the measurement light ML detected by the detection element 5232 .
 続いて、図42(a)及び図42(b)に示すように、主軸21に取り付け可能な複数種類の計測ヘッド53は、計測ヘッド53#7を含んでいてもよい。計測ヘッド53#7は、fθレンズ5322に代えてハーフミラー5328を備える光学系532#7を備えていてもよい。尚、図42(a)は、第1実施形態で利用可能な計測ヘッド53#7を示しており、図42(b)は、第4実施形態から第6実施形態で利用可能な計測ヘッド53#7を示している。 Next, as shown in FIGS. 42(a) and 42(b), the plurality of types of measurement heads 53 attachable to the spindle 21 may include a measurement head 53#7. The measurement head 53#7 may include an optical system 532#7 including a half mirror 5328 instead of the fθ lens 5322. Incidentally, FIG. 42(a) shows the measuring head 53#7 that can be used in the first embodiment, and FIG. 42(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #7 is shown.
 ハーフミラー5328に入射した計測光MLの一部は、ハーフミラー5328を通過する。その結果、ハーフミラー5328を通過した計測光MLは、計測対象物に照射される。一方で、ハーフミラー5328に入射した計測光MLの他の一部は、ハーフミラー5328によって反射される。ハーフミラー5328によって反射された計測光MLは、光学系522を介して、検出素子5232に入射する。検出素子5232に入射した計測光MLは、戻り光RLと干渉するための参照光として用いられてもよい。このため、ハーフミラー5328を備える計測ヘッド53#7が主軸21に取り付けられる場合には、光学系522は、参照光(例えば、図7に示す計測光ML#1-3)を生成するための光学部材(例えば、図7に示すビームスプリッタ52213及びミラー52214)を備えていなくてもよい。 A part of the measurement light ML that has entered the half mirror 5328 passes through the half mirror 5328 . As a result, the measurement light ML that has passed through the half mirror 5328 is irradiated onto the object to be measured. On the other hand, another part of the measurement light ML that has entered the half mirror 5328 is reflected by the half mirror 5328 . The measurement light ML reflected by the half mirror 5328 enters the detection element 5232 via the optical system 522 . The measurement light ML that has entered the detection element 5232 may be used as reference light for interfering with the return light RL. Therefore, when the measurement head 53#7 including the half mirror 5328 is attached to the main shaft 21, the optical system 522 is used for generating the reference light (for example, the measurement light ML#1-3 shown in FIG. 7). The optical members (for example, beam splitter 52213 and mirror 52214 shown in FIG. 7) may not be provided.
 続いて、図43(a)及び図43(b)に示すように、主軸21に取り付け可能な複数種類の計測ヘッド53は、計測ヘッド53#8を含んでいてもよい。計測ヘッド53#8は、fθレンズ5322に代えて対物レンズ5329を備える光学系532#8を備えていてもよい。対物レンズ5329は、計測光MLを集光する(例えば、計測対象物の表面に集光する)ための光学部材である。尚、図43(a)は、第1実施形態で利用可能な計測ヘッド53#8を示しており、図43(b)は、第4実施形態から第6実施形態で利用可能な計測ヘッド53#8を示している。 Next, as shown in FIGS. 43(a) and 43(b), the plurality of types of measurement heads 53 attachable to the spindle 21 may include a measurement head 53#8. The measurement head 53#8 may include an optical system 532#8 including an objective lens 5329 instead of the fθ lens 5322. The objective lens 5329 is an optical member for condensing the measurement light ML (for example, condensing it on the surface of the measurement object). FIG. 43(a) shows the measuring head 53#8 that can be used in the first embodiment, and FIG. 43(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #8 is shown.
 続いて、図44(a)及び図44(b)に示すように、主軸21に取り付け可能な複数種類の計測ヘッド53は、計測ヘッド53#9を含んでいてもよい。計測ヘッド53#9は、ガルバノミラー5222を備える光学系532#9を備えていてもよい。ガルバノミラー5222は、fθレンズ5322に入射する計測光MLの光路上に配置される。尚、計測ヘッド53#9が主軸21に取り付けられる場合には、光学系522は、ガルバノミラー5222を備えていなくてもよい。尚、図44(a)は、第1実施形態で利用可能な計測ヘッド53#9を示しており、図44(b)は、第4実施形態から第6実施形態で利用可能な計測ヘッド53#9を示している。 Next, as shown in FIGS. 44(a) and 44(b), the multiple types of measurement heads 53 that can be attached to the spindle 21 may include a measurement head 53#9. The measurement head 53 # 9 may include an optical system 532 # 9 including a galvanomirror 5222 . The galvanomirror 5222 is arranged on the optical path of the measurement light ML incident on the fθ lens 5322 . Incidentally, when the measurement head 53#9 is attached to the spindle 21, the optical system 522 does not have to include the galvanomirror 5222. Incidentally, FIG. 44(a) shows the measuring head 53#9 that can be used in the first embodiment, and FIG. 44(b) shows the measuring head 53 that can be used in the fourth to sixth embodiments. #9 is shown.
 続いて、図45(a)及び図45(b)に示すように、主軸21に取り付け可能な複数種類の計測ヘッド53は、計測ヘッド53#10を含んでいてもよい。計測ヘッド53#10は、ヘッド筐体531の外面に洗浄部材533が形成されている計測ヘッド53#10を含んでいてもよい。洗浄部材533は、計測対象物の表面を洗浄する(例えば、切削くず等を除去する)ための部材である。洗浄部材533は、例えば、刃及びブラシの少なくとも一つを含んでいてもよい。図45(a)は、ヘッド筐体531の下面に洗浄部材533が形成される例を示しており、図45(b)は、ヘッド筐体531の側面に洗浄部材533が形成される例を示している。但し、洗浄部材533の形成位置がこの例に限定されることはない。また、図45(a)及び図45(b)のそれぞれは、第4実施形態から第6実施形態で利用可能な計測ヘッド53#10を示しているが、第1実施形態で利用可能な計測ヘッド53のヘッド筐体531の外面に洗浄部材533が形成されていてもよい。また、上述した計測ヘッド53#1から53#9の少なくとも一つのヘッド筐体531の外面に洗浄部材533が形成されていてもよい。 Next, as shown in FIGS. 45(a) and 45(b), the plurality of types of measurement heads 53 attachable to the spindle 21 may include a measurement head 53#10. The measurement head 53 # 10 may include a measurement head 53 # 10 in which a cleaning member 533 is formed on the outer surface of a head housing 531 . The cleaning member 533 is a member for cleaning the surface of the object to be measured (for example, removing cutting waste and the like). Cleaning member 533 may include, for example, at least one of a blade and a brush. 45(a) shows an example in which the cleaning member 533 is formed on the bottom surface of the head housing 531, and FIG. 45(b) shows an example in which the cleaning member 533 is formed on the side surface of the head housing 531. FIG. showing. However, the formation position of the cleaning member 533 is not limited to this example. 45(a) and 45(b) each show the measurement head 53#10 that can be used in the fourth to sixth embodiments, but the measurement head 53#10 that can be used in the first embodiment A cleaning member 533 may be formed on the outer surface of the head housing 531 of the head 53 . Further, a cleaning member 533 may be formed on the outer surface of at least one of the head housings 531 of the measurement heads 53#1 to 53#9 described above.
 計測ヘッド53#10が主軸21に取り付けられている場合には、主軸21の回転に伴って、計測ヘッド53#10もまた回転する。その結果、洗浄部材533が計測対象物の表面に付着した切削くず等の不要物質を除去する、削り取る又はぬぐい取る。その結果、計測対象物の表面が洗浄される。 When the measurement head 53#10 is attached to the main shaft 21, the measurement head 53#10 also rotates as the main shaft 21 rotates. As a result, the cleaning member 533 removes, scrapes off, or wipes off unnecessary substances such as cutting waste adhering to the surface of the object to be measured. As a result, the surface of the object to be measured is cleaned.
 尚、主軸21に取り付けられる計測ヘッド53が交換される場合には、計測装置5は、計測ヘッド53の交換に合わせて計測ヘッド52が備える少なくとも一つの光学部材の位置を変更してもよい。例えば、計測装置5は、主軸21に第1の種類の計測ヘッド53が取り付けられている場合には、計測ヘッド52が備える一の光学部材が第1の位置に配置され、主軸21に第2の種類の計測ヘッド53が取り付けられている場合には、計測ヘッド52が備える一の光学部材が第1の位置とは異なる第2の位置に配置されるように、一の光学部材の位置を変更してもよい。この場合、計測装置5は、計測対象物を計測できるように、計測ヘッド52が備える少なくとも一つの光学部材の位置を変更してもよい。より具体的には、計測装置5は、計測対象物に計測光MLが照射される(例えば、計測対象物に計測光MLが集光される)ように、計測ヘッド52が備える少なくとも一つの光学部材の位置を変更してもよい。例えば、計測装置5は、主軸21に第1の種類の計測ヘッド53が取り付けられている場合には、第1の種類の計測ヘッド53を介して計測対象物に照射される計測光MLが計測対象物に集光され、主軸21に第2の種類の計測ヘッド53が取り付けられている場合には、第2の種類の計測ヘッド53を介して計測対象物に照射される計測光MLが計測対象物に集光されるように、計測ヘッド52が備える少なくとも一つの光学部材の位置を変更してもよい。尚、光学部材の位置の変更は、計測ヘッド52が備える光学系522の光軸に沿った方向における光学部材の位置の変更、光学系522の光軸に交差する方向における光学部材の位置の変更、及び、光学部材の姿勢の変更のうちの少なくとも一つを含んでいてもよい。光学部材の姿勢の変更は、、光学系522の光軸に沿った回転軸周りの光学部材の姿勢の変更及び光学系522の光軸に交差する方向に沿った回転軸周りの光学部材の姿勢の変更の少なくとも一方)のうちの少なくとも一方を含んでいてもよい。 When the measuring head 53 attached to the spindle 21 is replaced, the measuring device 5 may change the position of at least one optical member included in the measuring head 52 in accordance with the replacement of the measuring head 53 . For example, when the measuring device 5 has the first type of measuring head 53 attached to the main shaft 21 , one optical member included in the measuring head 52 is arranged at the first position, and the main shaft 21 has the second optical member. When the type of measurement head 53 is attached, one optical member provided in the measurement head 52 is positioned at a second position different from the first position. You can change it. In this case, the measurement device 5 may change the position of at least one optical member included in the measurement head 52 so that the measurement target can be measured. More specifically, the measurement device 5 includes at least one optical element included in the measurement head 52 so that the measurement target is irradiated with the measurement light ML (for example, the measurement light ML is focused on the measurement target). You may change the position of a member. For example, when the first type of measurement head 53 is attached to the spindle 21 , the measurement device 5 measures the measurement light ML irradiated to the measurement object via the first type of measurement head 53 . When the measurement head 53 of the second type is attached to the spindle 21, the measurement light ML that is focused on the object and is irradiated onto the object to be measured through the measurement head 53 of the second type is measured. The position of at least one optical member included in the measurement head 52 may be changed so that the light is focused on the object. The change of the position of the optical member includes the change of the position of the optical member in the direction along the optical axis of the optical system 522 provided in the measurement head 52, and the change of the position of the optical member in the direction intersecting the optical axis of the optical system 522. , and changing the orientation of the optical member. The change of the posture of the optical member includes the change of the posture of the optical member around the rotation axis along the optical axis of the optical system 522 and the change of the posture of the optical member around the rotation axis along the direction intersecting the optical axis of the optical system 522. at least one of the modifications of
 (8-2)第2変形例
 第2変形例では、第1実施形態の計測装置5から第7実施形態の計測装置5gの少なくとも一つは、制御装置7の制御下で、ガルバノミラー5222の動作によって計測光MLが照射可能なスキャン領域SAのサイズを変更してもよい。この場合、例えば、計測装置5は、計測対象物の形状に応じて、スキャン領域SAのサイズを変更してもよい。例えば、計測装置5は、計測対象物のサイズに応じて、スキャン領域SAのサイズを変更してもよい。
(8-2) Second Modification In the second modification, at least one of the measuring device 5 of the first embodiment to the measuring device 5g of the seventh embodiment, under the control of the control device 7, controls the galvanomirror 5222. The size of the scan area SA that can be irradiated with the measurement light ML may be changed by the operation. In this case, for example, the measurement device 5 may change the size of the scan area SA according to the shape of the measurement object. For example, the measurement device 5 may change the size of the scan area SA according to the size of the measurement object.
 一例として、図46は、幅が変化する溝GRVが形成されたワークWを示している。図46に示す例では、溝GRVの幅は、X軸方向に沿って、幅Aから幅Aよりも細い幅Bに変化している。このような溝GRVを計測装置5が計測する(具体的には、溝GRVに面するワークWの表面を計測装置5が計測する)場合には、計測装置5は、溝GRVの幅に応じてスキャン領域SAのサイズを変更してもよい。例えば、計測装置5は、溝GRVの幅が幅Aとなる位置において、スキャン領域SAのサイズが幅Aに応じたサイズとなり、溝GRVの幅が幅Bとなる位置において、スキャン領域SAのサイズが幅Bに応じたサイズとなるように、スキャン領域SAのサイズを変更してもよい。 As an example, FIG. 46 shows a workpiece W in which grooves GRV with varying widths are formed. In the example shown in FIG. 46, the width of the groove GRV changes from width A to width B narrower than width A along the X-axis direction. When the measuring device 5 measures such a groove GRV (specifically, the measuring device 5 measures the surface of the workpiece W facing the groove GRV), the measuring device 5 measures the width of the groove GRV. may be used to change the size of the scan area SA. For example, the measurement device 5 makes the size of the scan area SA correspond to the width A at the position where the width of the groove GRV is width A, and the size of the scan area SA at the position where the width of the groove GRV is width B. The size of the scan area SA may be changed so that the size of the width B corresponds to the size of the scan area SA.
 (8-3)第3変形例
 第3変形例では、第1実施形態の計測装置5から第7実施形態の計測装置5gの少なくとも一つは、制御装置7の制御下で、スキャン領域SAのサイズを変更することに加えて又は代えて、スキャン領域SA内において、計測光MLが実際に照射される照射領域SApと、計測光MLが実際には照射されない非照射領域SAnとを設定してもよい。以下、図47から図48を参照しながら、照射領域SAp及び非照射領域SAnを設定する動作の具体例について説明する。
(8-3) Third Modification In the third modification, at least one of the measuring device 5 of the first embodiment to the measuring device 5g of the seventh embodiment, under the control of the control device 7, scans the scan area SA. In addition to or instead of changing the size, in the scan area SA, an irradiation area SAp that is actually irradiated with the measurement light ML and a non-irradiation area SAn that is not actually irradiated with the measurement light ML are set. good too. A specific example of the operation of setting the irradiation area SAp and the non-irradiation area SAn will be described below with reference to FIGS. 47 and 48. FIG.
 まず、照射領域SAp及び非照射領域SAnを設定する動作の第1具体例について説明する。図47は、異なる材質の部材から構成されるワークWの一例を示している。この場合、図47に示すワークWの表面は、ワークWを構成する第1の材質の部材(図47に示す例では、アルミ)の表面に相当する第1領域WA1と、ワークWを構成する第2の材質の部材(図47に示す例では、セラミック)の表面に相当する第2領域WA2とを含んでいる。計測装置5は、第1領域WA1及び第2領域WA2にまたがるスキャン領域SAを用いてワークWを計測する場合に、照射領域SAp及び非照射領域SAnを設定してもよい。例えば、図47に示すように、計測装置5は、スキャン領域SAのうちの第1領域WA1に重なる第1スキャン領域部分SA1における照射領域SApと非照射領域SAnとの比率が、スキャン領域SAのうちの第2領域WA2に重なる第2スキャン領域部分SA2における照射領域SApと非照射領域SAnとの比率と異なるものとなるように、照射領域SAp及び非照射領域SAnを設定してもよい。図47に示す例では、計測装置5は、第1スキャン領域部分SA1に非照射領域SAnが設定される一方で、第2スキャン領域部分SA2に非照射領域SAnが設定されない(つまり、第2スキャン領域部分SA2の全体が照射領域SApとなる)ように、照射領域SAp及び非照射領域SAnを設定してもよい。 First, a first specific example of the operation of setting the irradiation area SAp and the non-irradiation area SAn will be described. FIG. 47 shows an example of a work W composed of members made of different materials. In this case, the surface of the work W shown in FIG. and a second region WA2 corresponding to the surface of a member made of a second material (ceramic in the example shown in FIG. 47). The measurement device 5 may set the irradiation area SAp and the non-irradiation area SAn when measuring the workpiece W using the scan area SA spanning the first area WA1 and the second area WA2. For example, as shown in FIG. 47, the measuring device 5 determines that the ratio of the irradiation area SAp and the non-irradiation area SAn in the first scan area portion SA1 overlapping the first area WA1 of the scan area SA is The irradiation area SAp and the non-irradiation area SAn may be set so as to differ from the ratio of the irradiation area SAp and the non-irradiation area SAn in the second scan area portion SA2 overlapping the second area WA2. In the example shown in FIG. 47, the measuring device 5 sets the non-irradiation area SAn in the first scan area portion SA1, but does not set the non-irradiation area SAn in the second scan area portion SA2 (that is, in the second scan The irradiation area SAp and the non-irradiation area SAn may be set such that the entire area portion SA2 becomes the irradiation area SAp.
 計測装置5は、計測データを適切に生成することができるように、照射領域SAp及び非照射領域SAnを設定してもよい。例えば、上述したように、計測装置5は、ガルバノミラー5222を用いて計測光MLの進行方向を変更することで、計測対象物の多点計測を行うことが可能である。ここで、ワークWを構成する部材の材質によっては、多点計測の密度(例えば、単位面積当たりの計測光MLの照射回数であり、上述した計測データに相当する点群データを構成する点の密度)の許容下限値が異なる場合がある。例えば、第1領域WA1を構成する第1の材質の部材を適切に計測するための多点計測の密度は、第2領域WA2を構成する第2の材質の部材を適切に計測するための多点計測の密度と異なる可能性がある。そこで、計測装置5は、計測対象物を適切に計測するために必要な多点計測の密度に応じて、照射領域SAp及び非照射領域SAnを設定してもよい。例えば、第1領域WA1を適切に計測するために必要な多点計測の密度が、第2領域WA2を適切に計測するために必要な多点計測の密度よりも低ければ、第1領域WA1に重なる第1スキャン領域部分SA1内での単位面積当たりの計測光MLの照射回数は、第2領域WA2に重なる第2スキャン領域部分SA2内での単位面積当たりの計測光MLの照射回数よりも少なくなっても問題が生ずることはない。このため、この場合には、計測装置5は、第1スキャン領域部分SA1内での照射領域SApのサイズに対する非照射領域SAnのサイズの比率が、第2スキャン領域部分SA2内での照射領域SApのサイズに対する非照射領域SAnのサイズの比率よりも大きくなるように、照射領域SAp及び非照射領域SAnを設定してもよい。 The measurement device 5 may set the irradiation area SAp and the non-irradiation area SAn so that measurement data can be generated appropriately. For example, as described above, the measurement device 5 can perform multi-point measurement of the measurement object by changing the traveling direction of the measurement light ML using the galvanomirror 5222 . Here, depending on the material of the members forming the workpiece W, the density of multi-point measurement (for example, the number of times of irradiation of the measurement light ML per unit area, and the number of points forming the point cloud data corresponding to the above-described measurement data) density) may differ. For example, the density of multi-point measurement for appropriately measuring the member of the first material forming the first area WA1 is the same as the density of multi-point measurement for appropriately measuring the member of the second material forming the second area WA2. It may differ from the point measurement density. Therefore, the measurement device 5 may set the irradiation area SAp and the non-irradiation area SAn according to the density of multi-point measurement required for appropriately measuring the measurement object. For example, if the density of multi-point measurement required to properly measure the first area WA1 is lower than the density of multi-point measurement required to properly measure the second area WA2, the first area WA1 The number of times of irradiation of the measurement light ML per unit area within the overlapping first scan area portion SA1 is less than the number of times of irradiation of the measurement light ML per unit area within the second scan area portion SA2 overlapping the second area WA2. No problem will arise. Therefore, in this case, the measurement device 5 determines that the ratio of the size of the non-irradiated area SAn to the size of the irradiated area SAp within the first scan area portion SA1 is equal to the irradiated area SAp within the second scan area portion SA2. The irradiation area SAp and the non-irradiation area SAn may be set so as to be larger than the ratio of the size of the non-irradiation area SAn to the size of .
 続いて、照射領域SAp及び非照射領域SAnを設定する動作の第2具体例について説明する前に、第2具体例の前提について説明する。図48は、計測対象物の表面上で移動するスキャン領域SAを示している。計測装置5は、計測対象物を計測する際に、計測対象物の表面上をスキャン方向(図48に示す例では、Y軸に沿った方向)に沿ってスキャン領域SAを移動させながらスキャン領域SAに計測光MLを照射するスキャン動作と、スキャン領域SAに計測光MLを照射することなく、計測対象物の表面上をスキャン方向に交差するステップ方向(図48に示す例では、X軸に沿った方向)に沿ってスキャン領域SAを移動させるステップ動作とを交互に行ってもよい。この場合、図48に示すように、計測装置5は、N(Nは、2以上の整数)回目のスキャン動作によってスキャン領域SAが移動する計測対象物の被スキャン領域SC#Nが、N-1回目のスキャン動作によってスキャン領域SAが移動する計測対象物の被スキャン領域SC#N-1の一部及びN+1回目のスキャン動作によってスキャン領域SAが移動する計測対象物の被スキャン領域SC#N+1の一部と重なるように、スキャン領域SAを移動させてもよい。図48に示す例では、計測装置5は、被スキャン領域SC#Nの-X側の端部が、被スキャン領域SC#N-1の+X側の端部と重なり、被スキャン領域SC#Nの+X側の端部が、被スキャン領域SC#N+1の-X側の端部と重なっている。この場合、計測対象物の表面は、スキャン領域SAと1回だけ重なる非重複領域OP1と、スキャン領域SAと2回重なる重複領域OP2とを含む。 Next, before describing the second specific example of the operation of setting the irradiation area SAp and the non-irradiation area SAn, the premise of the second specific example will be described. FIG. 48 shows the scanning area SA moving on the surface of the measurement object. When measuring the object to be measured, the measurement device 5 moves the scan area SA along the scan direction (the direction along the Y-axis in the example shown in FIG. 48) on the surface of the object to be measured. A scanning operation for irradiating the measurement light ML on the SA and a step direction (in the example shown in FIG. 48, in the example shown in FIG. and the step operation of moving the scan area SA along the direction of movement of the scan area SA may be alternately performed. In this case, as shown in FIG. 48, the measuring device 5 determines that the scanned area SC#N of the measurement object, in which the scan area SA moves by the Nth (N is an integer equal to or greater than 2) scanning operation, is N− A part of the scanned area SC#N−1 of the measurement object to which the scan area SA moves by the first scan operation and a scanned area SC#N+1 of the measurement object to which the scan area SA moves by the N+1th scan operation The scan area SA may be moved so as to overlap with a part of . In the example shown in FIG. 48, the measuring device 5 determines that the −X side edge of the scanned area SC#N overlaps the +X side edge of the scanned area SC#N−1, and the scanning area SC#N overlaps the -X side end of the scanned area SC#N+1. In this case, the surface of the measurement object includes a non-overlapping area OP1 that overlaps the scan area SA only once, and an overlap area OP2 that overlaps the scan area SA twice.
 このような前提の下で、計測装置5は、スキャン領域SAのうちの非重複領域OP1に重なる第3スキャン領域部分SA3における照射領域SApと非照射領域SAnとの比率が、スキャン領域SAのうちの重複領域OP2に重なる第4スキャン領域部分SA4における照射領域SApと非照射領域SAnとの比率と異なるものとなるように、照射領域SAp及び非照射領域SAnを設定してもよい。具体的には、図48に示すように、計測装置5は、第4スキャン領域部分SA4における照射領域SApと非照射領域SAnとの比率が、第3スキャン領域部分SA3における照射領域SApと非照射領域SAnとの比率よりも大きくなるように、照射領域SAp及び非照射領域SAnを設定してもよい。図48に示す例では、計測装置5は、第4スキャン領域部分SA4の半分が非照射領域SAnとなる一方で、第3スキャン領域部分SA3に非照射領域SAnが設定されない(つまり、第3スキャン領域部分SA3の全体が照射領域SApとなる)ように、照射領域SAp及び非照射領域SAnを設定している。この場合、計測装置5は、重複領域OP2に重なる第4スキャン領域部分SA4内での単位面積当たりの計測光MLの照射回数は、非重複領域OP1に重なる第3スキャン領域部分SA3内での単位面積当たりの計測光MLの照射回数の概ね半分になる。この場合であっても、重複領域OP2がスキャン領域SAと2回重なるがゆえに、重複領域OP2内での単位面積当たりの計測光MLの照射回数は、非重複領域OP1内での単位面積当たりの計測光MLの照射回数と概ね同じになる。従って、計測対象物の計測に影響が生ずることは殆どない。 Under this premise, the measurement device 5 determines that the ratio of the irradiation area SAp and the non-irradiation area SAn in the third scan area portion SA3 overlapping the non-overlapping area OP1 of the scan area SA is The irradiation area SAp and the non-irradiation area SAn may be set so as to differ from the ratio of the irradiation area SAp and the non-irradiation area SAn in the fourth scan area portion SA4 overlapping the overlap area OP2. Specifically, as shown in FIG. 48, the measuring device 5 determines that the ratio of the irradiation area SAp and the non-irradiation area SAn in the fourth scan area portion SA4 is equal to the irradiation area SAp and the non-irradiation area SAp in the third scan area portion SA3. The irradiation area SAp and the non-irradiation area SAn may be set so as to be larger than the ratio with the area SAn. In the example shown in FIG. 48, the measuring device 5 sets half of the fourth scan region portion SA4 to be the non-irradiation region SAn, while the non-irradiation region SAn is not set to the third scan region portion SA3 (that is, the third scan region portion SA3). The irradiation area SAp and the non-irradiation area SAn are set so that the entire area portion SA3 becomes the irradiation area SAp. In this case, the measurement device 5 determines that the number of irradiations of the measurement light ML per unit area within the fourth scan region portion SA4 overlapping the overlapping region OP2 is the unit within the third scanning region portion SA3 overlapping the non-overlapping region OP1. The number of times of irradiation of the measurement light ML per area is approximately half. Even in this case, since the overlapping region OP2 overlaps the scanning region SA twice, the number of irradiations of the measurement light ML per unit area within the overlapping region OP2 is the same as that per unit area within the non-overlapping region OP1. It is almost the same as the number of irradiations of the measurement light ML. Therefore, the measurement of the object to be measured is hardly affected.
 このようにスキャン領域SA内に非照射領域SAnが設定される場合には、このようにスキャン領域SA内に非照射領域SAnが設定されない場合と比較して、ガルバノミラー5222は、非照射領域SAnに計測光MLを照射するための動作を行わなくてもよくなる。つまり、スキャン領域SAに計測光MLを照射するために必要なガルバノミラー5222の駆動量(更には、駆動時間)が減少する。このため、計測対象物の計測に要する時間もまた減少する。その結果、計測対象物の計測のためのスループットが向上する。 When the non-irradiation area SAn is set within the scan area SA in this manner, the galvanomirror 5222 is arranged in the non-irradiation area SAn compared to the case where the non-irradiation area SAn is not set within the scan area SA. It becomes unnecessary to perform the operation for irradiating the measurement light ML to the . That is, the driving amount (further driving time) of the galvanomirror 5222 required to irradiate the scan area SA with the measurement light ML is reduced. Therefore, the time required for measuring the measurement object is also reduced. As a result, the throughput for measuring the measurement object is improved.
 (8-4)第4変形例
 第4変形例では、第1実施形態の計測装置5から第7実施形態の計測装置5gの少なくとも一つは、制御装置7の制御下で、スキャン領域SAのうちの上流スキャン領域SAupにおける計測光MLの照射態様と、スキャン領域SAのうちの下流スキャン領域SAdwにおける計測光MLの照射態様とを別々に制御してもよい。上流スキャン領域SAupは、図49に示すように、下流スキャン領域SAdwよりも、スキャン領域SAの移動方向における前方側に位置する。つまり、下流スキャン領域SAdwは、図49に示すように、上流スキャン領域SAupよりも、スキャン領域SAの移動方向における後方側に位置する。
(8-4) Fourth Modification In the fourth modification, at least one of the measuring device 5 of the first embodiment to the measuring device 5g of the seventh embodiment, under the control of the control device 7, scans the scan area SA. The irradiation mode of the measurement light ML in the upstream scan area SAup and the irradiation mode of the measurement light ML in the downstream scan area SAdw of the scan area SA may be controlled separately. As shown in FIG. 49, the upstream scan area SAup is positioned forward of the downstream scan area SAdw in the movement direction of the scan area SA. That is, as shown in FIG. 49, the downstream scan area SAdw is located on the rear side in the moving direction of the scan area SA relative to the upstream scan area SAup.
 例えば、計測装置5は、上流スキャン領域SAupにおける多点計測の密度が、下流スキャン領域SAdwにおける多点計測の密度よりも低くなるように、上流スキャン領域SAup及び下流スキャン領域SAdwのそれぞれにおける計測光MLの照射態様を制御してもよい。具体的には、計測装置5は、例えば、上流スキャン領域SAup内での単位面積当たりの計測光MLの照射回数が、下流スキャン領域SAdw内での単位面積当たりの計測光MLの照射回数よりも少なくなるように、上流スキャン領域SAup及び下流スキャン領域SAdwのそれぞれにおける計測光MLの照射態様を制御してもよい。つまり、計測装置5は、上流スキャン領域SAupに対して計測対象物の計測精度の向上よりも計測対象物の計測のためのスループットの向上を優先するように計測光MLを照射し、下流スキャン領域SAdwに対して計測対象物の計測のためのスループットの向上よりも計測対象物の計測精度の向上を優先するように計測光MLを照射してもよい。 For example, the measurement device 5 measures the measurement light beams in each of the upstream scan area SAup and the downstream scan area SAdw so that the density of multipoint measurement in the upstream scan area SAup is lower than the density of multipoint measurement in the downstream scan area SAdw. The ML irradiation mode may be controlled. Specifically, for example, the measurement apparatus 5 determines that the number of irradiations of the measurement light ML per unit area in the upstream scan area SAup is higher than the number of irradiations of the measurement light ML per unit area in the downstream scan area SAdw. The irradiation mode of the measurement light ML in each of the upstream scan area SAup and the downstream scan area SAdw may be controlled so as to reduce it. In other words, the measuring device 5 irradiates the upstream scan area SAup with the measurement light ML so as to give priority to improving the throughput for measuring the object to be measured rather than improving the measurement accuracy of the object to be measured. The SAdw may be irradiated with the measurement light ML so that improvement of the measurement accuracy of the object to be measured is prioritized over improvement of the throughput for measurement of the object to be measured.
 例えば、計測装置5は、上流スキャン領域SAupにおける計測光MLの露光時間が、下流スキャン領域SAdwにおける計測光MLの露光時間よりも短くなるように、上流スキャン領域SAup及び下流スキャン領域SAdwのそれぞれにおける計測光MLの照射態様を制御してもよい。尚、計測光MLの露光時間は、ガルバノミラー5222による計測対象物上での計測光MLの移動速度が低くなればなるほど、長くなる。つまり、計測光MLの露光時間は、ガルバノミラー5222の駆動速度が低くなればなるほど、長くなる。計測光MLの露光時間が長くなるほど、計測対象物の計測に要する時間は長くなるものの、適切な強度の戻り光RLが計測対象物から戻ってくる可能性が高くなるがゆえに、計測対象物の計測精度が向上する。一方で、計測光MLの露光時間が短くなるほど、計測対象物の計測精度が悪化する可能性はあるものの、計測対象物の計測に要する時間は短くなる。このため、この場合には、計測装置5は、上流スキャン領域SAupに対して計測対象物の計測精度の向上よりも計測対象物の計測のためのスループットの向上を優先するように計測光MLを照射し、下流スキャン領域SAdwに対して計測対象物の計測のためのスループットの向上よりも計測対象物の計測精度の向上を優先するように計測光MLを照射しているとみなしてもよい。 For example, the measurement device 5 sets the exposure time of the measurement light ML in the upstream scan area SAup to be shorter than the exposure time of the measurement light ML in the downstream scan area SAdw. The irradiation mode of the measurement light ML may be controlled. Note that the exposure time of the measurement light ML becomes longer as the moving speed of the measurement light ML on the measurement object by the galvanomirror 5222 becomes lower. That is, the exposure time of the measurement light ML becomes longer as the driving speed of the galvanomirror 5222 becomes lower. The longer the exposure time of the measurement light ML, the longer the time required to measure the object to be measured. Improves measurement accuracy. On the other hand, the shorter the exposure time of the measurement light ML, the shorter the time required to measure the measurement target, although the measurement accuracy of the measurement target may deteriorate. Therefore, in this case, the measurement device 5 directs the measurement light ML so as to prioritize improvement of throughput for measurement of the measurement object over improvement of measurement accuracy of the measurement object with respect to the upstream scan area SAup. It may be considered that the downstream scan area SAdw is irradiated with the measurement light ML so as to give priority to improving the measurement accuracy of the measurement object over improving the throughput for measuring the measurement object.
 上流スキャン領域SAupにおける計測光MLの照射態様と下流スキャン領域SAdwにおける計測光MLの照射態様とが別々に制御可能である場合には、計測装置5は、上流スキャン領域SAupに照射された計測光MLを用いた計測結果に基づいて、下流スキャン領域SAdwにおける計測光MLの照射態様を制御してもよい。例えば、上流スキャン領域SAupに照射された計測光MLを用いた計測結果に不備がある(例えば、適切な計測データを生成できない)場合には、計測装置5は、下流スキャン領域SAdwに対して計測対象物の計測のためのスループットの向上よりも計測対象物の計測精度の向上を優先するように計測光MLを照射してもよい。具体的には、例えば、計測装置5は、下流スキャン領域SAdwにおける多点計測の密度が、上流スキャン領域SAupにおける多点計測の密度よりも高くなるように、下流スキャン領域SAdwにおける計測光MLの照射態様を変更してもよい。例えば、計測装置5は、下流スキャン領域SAdwにおける計測光MLの露光時間が、上流スキャン領域SAupにおける計測光MLの露光時間よりも長くなるように、下流スキャン領域SAdwにおける計測光MLの照射態様を変更してもよい。その結果、下流スキャン領域SAdwに照射された計測光MLを用いた計測結果に不備が生ずる可能性は低くなる。 When the irradiation mode of the measurement light ML in the upstream scan area SAup and the irradiation mode of the measurement light ML in the downstream scan area SAdw can be separately controlled, the measuring device 5 can control the measurement light irradiated to the upstream scan area SAup. The irradiation mode of the measurement light ML in the downstream scan area SAdw may be controlled based on the measurement result using the ML. For example, when the measurement result using the measurement light ML irradiated to the upstream scan area SAup is incomplete (for example, appropriate measurement data cannot be generated), the measurement device 5 measures the downstream scan area SAdw. The measurement light ML may be irradiated so as to give priority to improving the measurement accuracy of the object to be measured over improving the throughput for measuring the object. Specifically, for example, the measurement device 5 adjusts the measurement light ML in the downstream scan area SAdw so that the density of multipoint measurement in the downstream scan area SAdw is higher than the density of multipoint measurement in the upstream scan area SAup. The irradiation mode may be changed. For example, the measurement device 5 adjusts the irradiation mode of the measurement light ML in the downstream scan area SAdw so that the exposure time of the measurement light ML in the downstream scan area SAdw is longer than the exposure time of the measurement light ML in the upstream scan area SAup. You can change it. As a result, it is less likely that the measurement result using the measurement light ML irradiated to the downstream scan area SAdw will be flawed.
 (8-5)第5変形例
 上述したように、制御装置7は、加工ヘッド2がワークWを加工し終えた後に、加工ヘッド2によるワークWの加工内容を評価する評価処理を行うことがある。この場合、制御装置7は、ワークWの理想的な形状と、計測データが示すワークWの実際の形状との差分に相当する加工誤差を算出する。具体的には、制御装置7は、ワークWの理想的な形状を示す3次元モデル(例えば、上述したCADモデルであり、以降、“目標モデル”と称する)と、計測データが示すワークWの実際の形状を示す3次元モデル(実質的には、点群データに含まれる複数の点から構成される仮想的なモデルであり、以降、“計測モデル”と称する)とを比較することで、加工誤差を算出する。この場合、計測モデルのどの部位が目標モデルのどの部位に対応するかを特定するために、計測モデルの基準部位を指定し、計測モデルの基準部位に対応する目標モデルの基準部位を指定する必要がある。例えば、工作機械1のオペレータが、計測モデルの基準部位を指定し、計測モデルの基準部位に対応する目標モデルの基準部位を指定する必要がある。その後、制御装置7は、指定された基準部位を基準に計測モデルと目標モデルとを比較する。
(8-5) Fifth Modification As described above, after the machining head 2 finishes machining the workpiece W, the control device 7 can perform an evaluation process for evaluating the details of machining of the workpiece W by the machining head 2. be. In this case, the control device 7 calculates a machining error corresponding to the difference between the ideal shape of the work W and the actual shape of the work W indicated by the measurement data. Specifically, the control device 7 controls a three-dimensional model (for example, the above-described CAD model, hereinafter referred to as a “target model”) representing an ideal shape of the work W, and a model of the work W represented by the measurement data. By comparing a three-dimensional model showing the actual shape (substantially a virtual model composed of a plurality of points included in point cloud data, hereinafter referred to as a "measurement model"), Calculate the machining error. In this case, in order to specify which part of the measurement model corresponds to which part of the target model, it is necessary to specify the reference part of the measurement model and the reference part of the target model corresponding to the reference part of the measurement model. There is For example, the operator of the machine tool 1 must specify the reference portion of the measurement model and specify the reference portion of the target model corresponding to the reference portion of the measurement model. After that, the control device 7 compares the measurement model and the target model with reference to the designated reference portion.
 第5変形例では、計測モデルの基準部位を指定する動作を省略するために、第1実施形態の工作機械1aから第7実施形態の工作機械1gの少なくとも一つは、図50に示すように、計測モデルの基準部位として利用可能な基準部材413が予め形成されているワークWを加工してもよい。基準部材413は、形状が制御装置7にとって既知である部材である。 In the fifth modification, at least one of the machine tool 1a of the first embodiment to the machine tool 1g of the seventh embodiment is configured as shown in FIG. Alternatively, a workpiece W having a reference member 413 that can be used as a reference portion of a measurement model formed in advance may be processed. Reference member 413 is a member whose shape is known to control device 7 .
 この場合、評価処理を行うために、計測装置5は、ワークWと共に基準部材413も計測する。その結果、図51に示すように、制御装置7は、ワークWと基準部材413との形状を示す計測モデルを示す計測データ(実際には、点群データ)を生成する。更に、この場合には、目標モデル(CADモデル)は、ワークWのみならず基準部材413の形状をも示す3次元モデルを示す。その結果、制御装置7は、制御装置7にとって既知である基準部材413の形状に関する情報に基づいて、計測モデルのうちの基準部材413に対応するモデル部分と、目標モデルのうちの基準部材413に対応するモデル部分とが互いに対応する部分であると認識することができる。つまり、計測モデルの基準部位を指定し、計測モデルの基準部位に対応する目標モデルの基準部位を指定する動作が不要となる。このため、評価処理に要する時間の短縮が可能となる。つまり、評価処理のスループットが向上する。 In this case, the measuring device 5 measures the reference member 413 together with the workpiece W in order to perform the evaluation process. As a result, as shown in FIG. 51, the control device 7 generates measurement data (actually, point cloud data) representing a measurement model representing the shapes of the workpiece W and the reference member 413 . Furthermore, in this case, the target model (CAD model) is a three-dimensional model showing not only the workpiece W but also the shape of the reference member 413 . As a result, based on the information about the shape of the reference member 413 known to the control device 7, the control device 7 determines the model portion corresponding to the reference member 413 in the measurement model and the reference member 413 in the target model. It can be recognized that corresponding model parts are parts corresponding to each other. In other words, the operation of designating the reference portion of the measurement model and designating the reference portion of the target model corresponding to the reference portion of the measurement model becomes unnecessary. Therefore, it is possible to shorten the time required for the evaluation process. That is, the throughput of evaluation processing is improved.
 更には、制御装置7は、ワークWの計測結果に基準部材413に関する情報が含まれているがゆえに、計測装置5がワークWを計測している間に、計測装置5によるワークWの計測結果を用いて、リアルタイムに評価処理を行うことも可能となる。更に、この場合には、計測装置5がワークWを計測している途中でワークWの加工内容が適切でないと判明した場合には、計測装置5は、ワークWの計測を中断してもよい。その結果、既に評価済みのワークWを計測するために必要な時間がなくなるがゆえに、スループットの向上につながる。 Furthermore, since the measurement result of the workpiece W includes the information about the reference member 413, the control device 7 can can be used to perform evaluation processing in real time. Furthermore, in this case, if it is found that the processing details of the work W are not appropriate while the measuring device 5 is measuring the work W, the measuring device 5 may interrupt the measurement of the work W. . As a result, the time required to measure the work W that has already been evaluated is eliminated, leading to an improvement in throughput.
 尚、基準部材413は、ステージ41とは異なる部材に形成されていてもよい。例えば、基準部材413は、図1に示すクレードル424に形成されていてもよい。例えば、基準部材413は、ワークWに形成されていてもよい。この場合、加工ヘッド2は、基準部材413が形成されたワークWを加工してもよい。但し、この場合には、加工ヘッド2は、基準部材413そのものは加工しなくてもよい。 Note that the reference member 413 may be formed on a member different from the stage 41 . For example, reference member 413 may be formed in cradle 424 shown in FIG. For example, the reference member 413 may be formed on the workpiece W. In this case, the processing head 2 may process the workpiece W on which the reference member 413 is formed. However, in this case, the processing head 2 does not have to process the reference member 413 itself.
 (8-6)第6変形例
 第1実施形態の計測装置5から第3実施形態の計測装置5c及び第5実施形態の計測装置5eから第6実施形態の計測装置5fでは、計測ヘッド52(計測ヘッド52b、52c及び52eを含む)が加工ヘッド2に取り付けられてもよいことは、上述したとおりである。この場合、加工ヘッド2の温度変動が、計測装置5の計測精度に影響を与える可能性がある。
(8-6) Sixth Modification In the measuring device 5 of the first embodiment to the measuring device 5c of the third embodiment and the measuring device 5e of the fifth embodiment to the measuring device 5f of the sixth embodiment, the measuring head 52 ( (including the measuring heads 52b, 52c and 52e) may be attached to the processing head 2 as described above. In this case, temperature fluctuations of the processing head 2 may affect the measurement accuracy of the measuring device 5 .
 そこで、第6変形例では、第1実施形態の工作機械1aから第3実施形態の工作機械1c及び第5実施形態の工作機械1eから第6実施形態の工作機械1fの少なくとも一つは、図52に示すように、加工ヘッド2の温度を計測する温度センサ871と、温度センサ871の検出結果に基づいて、加工ヘッド2の温度変動が計測ヘッド52に与える影響を低減するための温度影響低減装置872とを備えていてもよい。 Therefore, in the sixth modification, at least one of the machine tool 1a of the first embodiment to the machine tool 1c of the third embodiment and the machine tool 1e of the fifth embodiment to the machine tool 1f of the sixth embodiment is 52, a temperature sensor 871 for measuring the temperature of the processing head 2, and a temperature effect reduction device for reducing the effect of the temperature fluctuation of the processing head 2 on the measurement head 52 based on the detection result of the temperature sensor 871. A device 872 may also be provided.
 温度影響低減装置872は、例えば、加工ヘッド2及び計測ヘッド52の少なくとも一方を加熱するための加熱装置(例えば、ヒータ及びヒートパイプの少なくとも一つ)を含んでいてもよい。温度影響低減装置872は、加工ヘッド2及び計測ヘッド52の少なくとも一方を冷却するための冷却装置(例えば、ペルチェ素子、ヒートシンク及びヒートパイプの少なくとも一つ)を含んでいてもよい。尚、温度センサ871は、計測ヘッド52の温度を計測してもよい。また、温度影響低減装置872は、加工ヘッド2から計測ヘッド52へ向かう熱を低減する断熱材を含んでいてもよい。 The temperature effect reduction device 872 may include, for example, a heating device (for example, at least one of a heater and a heat pipe) for heating at least one of the processing head 2 and the measurement head 52. The temperature effect reduction device 872 may include a cooling device (for example, at least one of a Peltier element, a heat sink and a heat pipe) for cooling at least one of the processing head 2 and the measurement head 52 . Note that the temperature sensor 871 may measure the temperature of the measurement head 52 . Moreover, the temperature effect reduction device 872 may include a heat insulating material that reduces heat directed from the processing head 2 to the measurement head 52 .
 (8-7)第7変形例
 第1実施形態の計測装置5から第3実施形態の計測装置5c及び第5実施形態の計測装置5eから第6実施形態の計測装置5fでは、計測ヘッド52(計測ヘッド52b、52c及び52eを含む)が加工ヘッド2に取り付けられてもよいことは、上述したとおりである。この場合、加工ヘッド2の振動が、計測装置5の計測精度に影響を与える可能性がある。
(8-7) Seventh Modification In the measuring device 5 of the first embodiment to the measuring device 5c of the third embodiment and the measuring device 5e of the fifth embodiment to the measuring device 5f of the sixth embodiment, the measuring head 52 ( (including the measuring heads 52b, 52c and 52e) may be attached to the processing head 2 as described above. In this case, vibration of the processing head 2 may affect the measurement accuracy of the measuring device 5 .
 そこで、第7変形例では、第1実施形態の工作機械1aから第3実施形態の工作機械1c及び第5実施形態の工作機械1eから第6実施形態の工作機械1fの少なくとも一つは、加工ヘッド2の振動を検出する振動センサ881と、振動センサ881の検出結果に基づいて、加工ヘッド2の振動が計測ヘッド52に与える影響を低減するための振動影響低減装置882とを備えていてもよい。尚、振動センサ881は、計測ヘッド52の振動を検出してもよい。 Therefore, in the seventh modification, at least one of the machine tool 1a of the first embodiment to the machine tool 1c of the third embodiment and the machine tool 1e of the fifth embodiment to the machine tool 1f of the sixth embodiment has a machining A vibration sensor 881 for detecting vibration of the head 2 and a vibration effect reduction device 882 for reducing the effect of the vibration of the processing head 2 on the measurement head 52 based on the detection result of the vibration sensor 881 may be provided. good. Note that the vibration sensor 881 may detect vibration of the measurement head 52 .
 振動センサ881は、加工ヘッド2の加速度(例えば、X軸方向、Y軸方向及びZ軸方向の少なくとも一つにおける加速度)を、加工ヘッド2の振動を定量的に表す指標値として検出可能な加速度センサを含んでいてもよい。振動センサ881は、加工ヘッド2の変位量(例えば、X軸方向、Y軸方向及びZ軸方向の少なくとも一つにおける変位量)を、加工ヘッド2の振動を定量的に表す指標値として検出可能な変位量センサを含んでいてもよい。 The vibration sensor 881 detects acceleration of the machining head 2 (for example, acceleration in at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction) as an index value that quantitatively represents the vibration of the machining head 2. A sensor may be included. The vibration sensor 881 can detect the amount of displacement of the machining head 2 (for example, the amount of displacement in at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction) as an index value that quantitatively represents the vibration of the machining head 2. displacement sensor.
 振動影響低減装置882は、例えば、加工ヘッド2及び計測ヘッド52の少なくとも一方の振動を吸収することで当該振動を減衰可能な振動減衰装置(例えば、ダンパ及びバネの少なくとも一つ)を含んでいてもよい。振動影響低減装置882は、例えば、加工ヘッド2及び計測ヘッド52の少なくとも一方に生ずる振動を打ち消すための力を生成可能な駆動装置(例えば、アクチュエータであり、一具体例として、VCM(Voice Coil Motor))を含んでいてもよい。 The vibration influence reduction device 882 includes, for example, a vibration damping device (for example, at least one of a damper and a spring) capable of damping the vibration by absorbing the vibration of at least one of the processing head 2 and the measurement head 52. good too. The vibration influence reduction device 882 is, for example, a drive device (for example, an actuator) capable of generating a force for canceling the vibration generated in at least one of the processing head 2 and the measurement head 52. As a specific example, a VCM (Voice Coil Motor )).
 (8-8)その他の変形例
 上述した説明では、計測装置5は、光コム光源を計測光源51として利用する干渉方式の計測装置である。しかしながら、計測装置5は、光コム光源とは異なる光源を計測光源51として利用する干渉方式の計測装置であってもよい。例えば、計測装置5は、光干渉断層撮影(OCT:Optical Coherence Tomography)方式の計測装置であってもよい。OCT方式の計測装置の一例は、特開2020-101499号公報に記載されている。例えば、計測装置5は、白色共焦点変位計を備える計測装置であってもよい。白色共焦点変位計の一例は、特開2020-085633号公報に記載されている。例えば、計測装置5は、位相変調方式の計測装置であってもよい。位相変調方式の計測装置の一例は、特開2010-025922号公報に記載されている。例えば、計測装置5は、強度変調方式の計測装置であってもよい。強度変調方式の計測装置の一例は、特開2016-510415号公報及び米国特許出願公開第2014/226145号明細書に記載されている。
(8-8) Other Modifications In the above description, the measuring apparatus 5 is an interferometric measuring apparatus that uses the optical comb light source as the measuring light source 51 . However, the measurement apparatus 5 may be an interferometric measurement apparatus that uses a light source different from the optical comb light source as the measurement light source 51 . For example, the measurement device 5 may be an optical coherence tomography (OCT) type measurement device. An example of an OCT-type measuring device is described in Japanese Patent Application Laid-Open No. 2020-101499. For example, the measuring device 5 may be a measuring device with a white confocal displacement gauge. An example of a white confocal displacement meter is described in JP-A-2020-085633. For example, the measurement device 5 may be a phase modulation type measurement device. An example of the phase modulation type measuring device is described in Japanese Patent Application Laid-Open No. 2010-025922. For example, the measurement device 5 may be an intensity modulation type measurement device. An example of the intensity modulation type measuring device is described in Japanese Patent Application Laid-Open No. 2016-510415 and US Patent Application Publication No. 2014/226145.
 上述した説明において、計測ヘッド52のヘッド筐体521内部の空間を図示無き用力を用いて陽圧にしておいてもよい。 In the above description, the space inside the head housing 521 of the measurement head 52 may be kept at a positive pressure using a utility force (not shown).
 上述した説明では、工作機械1は、工具23を用いてワークWを加工している。つまり、工作機械1は、ワークWを機械加工している。しかしながら、工作機械1は、工具23とは異なる手段を用いてワークWを加工してもよい。例えば、工作機械1は、エネルギビームをワークWに照射することで、ワークWを加工してもよい。この場合、工作機械1は、エネルギビームをワークWに照射することで、ワークWを付加加工してもよい。工作機械1は、エネルギビームをワークWに照射することで、ワークWを除去加工してもよい。エネルギビームとして、光、荷電粒子ビーム(例えば、電子ビーム又はイオンビーム)及び電磁波の少なくとも一つが用いられてもよい。ワークWを加工するためにエネルギビーム(例えば、光)が用いられる場合には、工作機械1は、計測光MLをワークWに照射する計測装置5を用いて、ワークWを加工するための光(以降、“加工光”と称する)をワークWに照射してもよい。例えば、工作機械1は、計測装置5が備える光学系522及び532の少なくとも一方を介して加工光をワークWに照射してもよい。例えば、工作機械1は、光学系522から射出される加工光を、光学系532を介してワークWに照射してもよい。 In the above description, the machine tool 1 uses the tool 23 to process the workpiece W. That is, the machine tool 1 is machining the workpiece W. As shown in FIG. However, the machine tool 1 may machine the work W using means different from the tool 23 . For example, the machine tool 1 may process the work W by irradiating the work W with an energy beam. In this case, the machine tool 1 may additionally process the work W by irradiating the work W with an energy beam. The machine tool 1 may remove and process the workpiece W by irradiating the workpiece W with an energy beam. At least one of light, charged particle beams (eg, electron beams or ion beams), and electromagnetic waves may be used as the energy beam. When an energy beam (for example, light) is used to process the work W, the machine tool 1 uses the measuring device 5 for irradiating the work W with the measurement light ML to process the work W. (hereinafter referred to as "processing light") may be irradiated onto the workpiece W. For example, the machine tool 1 may irradiate the workpiece W with the machining light via at least one of the optical systems 522 and 532 provided in the measuring device 5 . For example, the machine tool 1 may irradiate the workpiece W with the machining light emitted from the optical system 522 via the optical system 532 .
 (9)付記
 以上説明した実施形態に関して、更に以下の付記を開示する。
[付記1]
 加工用の工具が着脱可能な主軸を備える加工装置と、
 物体に第1光を照射し且つ前記第1光が照射された前記物体からの第2光を検出することで前記物体を計測可能な計測装置と
 を備え、
 前記計測装置は、前記加工装置に取り付けられる第1光学系と、前記主軸に着脱可能に取り付けられる第2光学系とを備え、
 前記第1光学系は、前記第2光学系に向けて前記第1光を射出し且つ前記第2光学系からの前記第2光を受光する
 工作機械。
[付記2]
 前記計測装置は、前記第1及び第2光学系を介して、前記第1光を前記物体に照射し且つ前記第2光を検出する
 付記1に記載の工作機械。
[付記3]
 前記第1光学系は、前記第1光と前記第2光を通過させ、
 前記第2光学系は、前記第1光学系からの前記第1光を前記物体に向けて射出し且つ前記物体からの前記第2光を前記第1光学系に向けて射出する
 付記1又は2に記載の工作機械。
[付記4]
 前記主軸は、回転軸周りに回転可能であり、
 前記主軸は、前記工具を前記回転軸周りに回転させ、
 前記第2光学系の前記物体側の光軸の方向は、前記回転軸に沿って延びる方向である
 付記1から3のいずれか一項に記載の工作機械。
[付記5]
 前記主軸は、回転軸周りに回転可能であり、
 前記第1光学系から前記第2光学系に射出される前記第1光は、前記回転軸とは異なる位置から射出され、
 前記第1光学系は、前記第1光学系から射出される前記第1光の進行方向が前記回転軸と交差する又はねじれの関係になるように前記第1光を偏向する第1偏向部材を備え、
 前記第2光学系は、前記第1光学系からの前記第1光の進行方向が前記回転軸と同軸又は平行になるように前記第1光を偏向する第2偏向部材を備える
 付記1から4のいずれか一項に記載の工作機械。
[付記6]
 前記主軸は、回転軸周りに回転可能であり、
 前記第2光学系は、前記第1光学系から射出される前記第1光を偏向する偏向部材を備え、
 前記偏向部材は、前記主軸の回転に伴って回転可能であり、
 前記計測装置は、前記第2光を検出可能な検出素子を含み、
 前記検出素子による前記第2光の検出結果に基づいて前記主軸の回転を制御する制御装置を更に備える
 付記1から5のいずれか一項に記載の工作機械。
[付記7]
 前記制御装置は、前記検出素子による前記第2光の検出強度が最大となるように、前記主軸の回転を制御する
 付記6に記載の工作機械。
[付記8]
 前記第2光学系は、前記第1光学系からの前記第1光を前記物体に集光する集光光学部材を含む
 付記1から7のいずれか一項に記載の工作機械。
[付記9]
 前記集光光学部材は、fθレンズを含む
 付記8に記載の工作機械。
[付記10]
 前記第1光学系は、前記物体上での前記第1光の照射位置が変化するように前記第1光の進行方向を変える進行方向変更部材を含む
 付記1から9のいずれか一項に記載の工作機械。
[付記11]
 前記進行方向変更部材は、ガルバノミラーを含む
 付記10に記載の工作機械。
[付記12]
 前記第2光学系と前記物体との間において、前記第1光の光路と前記第2光の光路とが重なっている
 付記1から11のいずれか一項に記載の工作機械。
[付記13]
 前記計測装置は、前記第2光を検出可能な検出素子を含む
 付記1から12のいずれか一項に記載の工作機械。
[付記14]
 前記計測装置は、前記第2光を検出可能な検出素子を含み、
 前記第1光学系は、前記第2光と第3光とを干渉させる干渉光学系を含み、
 前記検出素子は、前記第2光と前記第3光との干渉光を検出する
 付記1から13のいずれか一項に記載の工作機械。
[付記15]
 前記第2光学系は、
 前記第1光学系からの前記第1光を前記物体に集光する集光光学部材と、
 前記集光光学部材からの前記第1光を、前記集光光学系の光軸方向に交差する方向に向けて射出する光路折り曲げ部材と
 を含む付記1から14のいずれか一項に記載の工作機械。
[付記16]
 前記第2光学系は、前記物体上での前記第1光の照射位置が前記物体の表面に沿って変化するように前記第1光の射出位置を変える射出位置変更部材を含む
 付記1から15のいずれか一項に記載の工作機械。
[付記17]
 前記第2光学系は、前記第1光学系からの前記第1光の少なくとも一部を前記第1光学系に向けて反射する反射部材を含む
 付記1から16のいずれか一項に記載の工作機械。
[付記18]
 前記工具及び前記第2光学系のそれぞれを前記主軸に取り付け可能な取付装置を更に備える
 付記1から17のいずれか一項に記載の工作機械。
[付記19]
 前記第2光学系は、第1の種類の第2光学系と、前記第1の種類とは異なる第2の種類の第2光学系とを備え、
 前記取付装置は、前記工具と前記第1の種類の第2光学系と前記第2の種類の第2光学系とのうちの一つを前記主軸に取り付ける
 付記18に記載の工作機械。
[付記20]
 前記第1の種類の第2光学系が前記主軸から取り外された後に、前記第2の種類の第2光学系が前記主軸に取り付けられる
 付記19に記載の工作機械。
[付記21]
 前記取付装置は、前記第1の種類の第2光学系を前記主軸から取り外した後に、前記第2の種類の第2光学系を前記主軸に取り付ける
 付記19又は20に記載の工作機械。
[付記22]
 前記第1光学系は、交換可能な交換光学部材を含む
 付記1から21のいずれか一項に記載の工作機械。
[付記23]
 前記第1光学系が第1の光学部材を前記交換光学部材として含んでいる場合には、前記第1光学系は、前記第1光を前記第2光学系に向けて射出し、
 前記第1光学系が前記第1の光学部材とは異なる第2の光学部材を前記交換光学部材として含んでいる場合には、前記第1光学系は、前記第2光学系を介さずに前記第1光を前記物体に向けて射出する
 付記22に記載の工作機械。
[付記24]
 前記第1の光学部材は、前記第1光を前記第2光学系に向けて反射する反射部材を含み、
 第2の光学部材は、前記第1光を前記射出対象部材に集光する集光光学部材を含む
 付記23に記載の工作機械。
[付記25]
 加工用の工具が着脱可能な主軸を備える加工装置と、
 前記加工装置の前記主軸とは異なる部分に取り付けられ物体の計測に用いられる第1光学系と
 を備え、
 前記第1光学系は、前記主軸に着脱可能に取り付けられる第2光学系に向けて第1光を射出し、前記第2光学系を介して前記第1光が照射された前記物体からの第2光を受光する
 工作機械。
[付記26]
 前記第1光学系は、前記主軸に前記第2光学系が取り付けられることによって、前記物体を計測する計測装置の一部として機能する
 付記25に記載の工作機械。
[付記27]
 前記第1光学系からの前記第2光を検出し、検出結果を前記物体の計測データを生成する演算装置に出力する検出装置を更に備える
 付記26に記載の工作機械。
[付記28]
 前記検出装置の検出結果に基づいて前記物体の計測データを生成する前記演算装置を更に備える
 付記27に記載の工作機械。
[付記29]
 前記第1光学系は、前記物体を計測する計測装置の一部として機能し、
 前記計測装置は、前記第1及び第2光学系を介して、前記第1光を前記物体に照射し且つ前記第2光を検出する
 付記25から28のいずれか一項に記載の工作機械。
[付記30]
 前記第1光学系は、前記第1光と前記第2光を通過させ、
 前記第2光学系は、前記第1光学系からの前記第1光を前記物体に向けて射出し且つ前記物体からの前記第2光を前記第1光学系に向けて射出する
 付記25から29のいずれか一項に記載の工作機械。
[付記31]
 前記主軸は、回転軸周りに回転可能であり、
 前記主軸は、前記工具を前記回転軸周りに回転させ、
 前記第2光学系の前記物体側の光軸の方向は、前記回転軸に沿って延びる方向である
 付記25から30のいずれか一項に記載の工作機械。
[付記32]
 前記主軸は、回転軸周りに回転可能であり、
 前記第1光学系から前記第2光学系に射出される前記第1光は、前記回転軸とは異なる位置から射出され、
 前記第1光学系は、前記第1光学系から射出される前記第1光の進行方向が前記回転軸と交差する又はねじれの関係になるように前記第1光を偏向する第1偏向部材を備える
 付記25から31のいずれか一項に記載の工作機械。
[付記33]
 前記第2光学系は、前記第1光学系からの前記第1光の進行方向が前記回転軸と同軸又は平行になるように前記第1光を偏向する第2偏向部材を備える
 付記32に記載の工作機械。
[付記34]
 前記第1光学系は、前記物体を計測する計測装置の一部として機能し、
 前記第2偏向部材は、前記主軸の回転に伴って回転可能であり、
 前記計測装置は、前記第2光を検出可能な検出素子を含み、
 前記検出素子による前記第2光の検出結果に基づいて前記主軸の回転を制御する制御装置を更に備える
 付記32又は33に記載の工作機械。
[付記35]
 前記制御装置は、前記検出素子による前記第2光の検出強度が最大となるように、前記主軸の回転を制御する
 付記34に記載の工作機械。
[付記36]
 前記第2光学系は、前記第1光学系からの前記第1光を前記物体に集光する集光光学部材を含む
 付記25から35のいずれか一項に記載の工作機械。
[付記37]
 前記集光光学部材は、fθレンズを含む
 付記36に記載の工作機械。
[付記38]
 前記第1光学系は、前記物体上での前記第1光の照射位置が変化するように前記第1光の進行方向を変える進行方向変更部材を含む
 付記25から37のいずれか一項に記載の工作機械。
[付記39]
 前記進行方向変更部材は、ガルバノミラーを含む
 付記38に記載の工作機械。
[付記40]
 前記第2光学系と前記物体との間において、前記第1光の光路と前記第2光の光路とが重なっている
 付記25から39のいずれか一項に記載の工作機械。
[付記41]
 前記第1光学系は、前記物体を計測する計測装置の一部として機能し、
 前記計測装置は、前記第2光を検出可能な検出素子を含む
 付記25から40のいずれか一項に記載の工作機械。
[付記42]
 前記第2光学系は、前記第2光を検出可能な検出素子を含み、
 前記第1光学系は、前記第2光と第3光とを干渉させる干渉光学系を含み、
 前記検出素子は、前記第2光と前記第3光との干渉光を検出する
 付記25から41のいずれか一項に記載の工作機械。
[付記43]
 前記第2光学系は、
 前記第1光学系からの前記第1光を前記物体に集光する集光光学部材と、
 前記集光光学部材からの前記第1光を、前記集光光学系の光軸方向に交差する方向に向けて射出する光路折り曲げ部材と
 を含む付記25から42のいずれか一項に記載の工作機械。
[付記44]
 前記第2光学系は、前記物体上での前記第1光の照射位置が前記物体の表面に沿って変化するように前記第1光の射出位置を変える射出位置変更部材を含む
 付記25から43のいずれか一項に記載の工作機械。
[付記45]
 前記第2光学系は、前記第1光学系からの前記第1光の少なくとも一部を前記第1光学系に向けて反射する反射部材を含む
 付記25から44のいずれか一項に記載の工作機械。
[付記46]
 前記工具及び前記第2光学系のそれぞれを前記主軸に取り付け可能な取付装置を更に備える
 付記25から45のいずれか一項に記載の工作機械。
[付記47]
 前記第2光学系は、第1の種類の第2光学系と、前記第1の種類とは異なる第2の種類の第2光学系とを備え、
 前記取付装置は、前記工具と前記第1の種類の第2光学系と前記第2の種類の第2光学系とのうちの一つを前記主軸に取り付ける
 付記46に記載の工作機械。
[付記48]
 前記第1の種類の第2光学系が前記主軸から取り外された後に、前記第2の種類の第2光学系が前記主軸に取り付けられる
 付記47に記載の工作機械。
[付記49]
 前記取付装置は、前記第1の種類の第2光学系を前記主軸から取り外した後に、前記第2の種類の第2光学系を前記主軸に取り付ける
 付記47又は48に記載の工作機械。
[付記50]
 前記第1光学系は、交換可能な交換光学部材を含む
 付記25から49のいずれか一項に記載の工作機械。
[付記51]
 前記第1光学系が第1の光学部材を前記交換光学部材として含んでいる場合には、前記第1光学系は、前記第1光を前記第2光学系に向けて射出し、
 前記第1光学系が前記第1の光学部材とは異なる第2の光学部材を前記交換光学部材として含んでいる場合には、前記第1光学系は、前記第2光学系を介さずに前記第1光を前記物体に向けて射出する
 付記50に記載の工作機械。
[付記52]
 前記第1の光学部材は、前記第1光を前記第2光学系に向けて反射する反射部材を含み、
 第2の光学部材は、前記第1光を前記射出対象部材に集光する集光光学部材を含む
 付記51に記載の工作機械。
[付記53]
 加工用の工具が着脱可能な主軸を備える加工装置を有する工作機械に用いられる光学系であって、
 前記主軸に着脱可能に取り付けられ、
 前記加工装置の前記主軸とは異なる部分に取り付けられた計測光学系から射出される第1光を受光し、受光した前記第1光を物体に向けて射出し、且つ、前記物体からの第2光を受光し、受光した前記第2光を前記計測光学系に向けて射出し、
 前記第2光は、前記物体を計測するための光である、
 光学系。
[付記54]
 前記光学系は、前記光学系が前記主軸に取り付けられることによって、前記物体を計測する計測装置の一部として機能する
 付記53に記載の工作機械。
[付記55]
 前記計測光学系は、
 前記加工装置に取り付けられ、前記光学系に向けて前記第1光を射出し且つ前記光学系からの前記第2光を受光し、前記第2光を検出素子に向けて射出する検出側光学系と、
 前記検出側光学系からの前記第2光を検出する前記検出素子と
 を含み、
 前記検出素子における前記第2光の検出結果は、前記検出結果に基づいて前記物体の計測データを生成する演算装置に出力される
 付記53又は54に記載の光学系。
[付記56]
 前記主軸は、前記工具を前記主軸の回転軸周りに回転させ、
 前記光学系の前記物体側の光軸の方向は、前記回転軸に沿って延びる方向である
 付記53から55のいずれか一項に記載の光学系。
[付記57]
 前記計測光学系から前記光学系に射出される前記第1光は、前記主軸の回転軸とは異なる位置から射出され、
 前記光学系は、前記計測光学系からの前記第1光の進行方向が前記回転軸と同軸又は平行になるように前記第1光を偏向する第2偏向部材を備える
 付記53から56のいずれか一項に記載の光学系。
[付記58]
 前記計測光学系は、前記計測光学系から射出される前記第1光の進行方向が前記回転軸と交差する又はねじれの関係になるように前記第1光を偏向する第1偏向部材を備える
 付記57に記載の光学系。
[付記59]
 前記主軸は、回転軸周りに回転可能であり、
 前記計測光学系から射出される前記第1光を偏向する偏向部材を備え、
 前記偏向部材は、前記主軸の回転に伴って回転可能であり、
 前記計測光学系は、前記第2光を検出可能な検出素子を含み、
 前記第2光の検出結果に基づいて前記偏向部材の回転が制御される
 付記53から58のいずれか一項に記載の光学系。
[付記60]
 前記検出素子による前記第2光の検出強度が最大となるように、前記偏向部材の回転が制御される
 付記59に記載の光学系。
[付記61]
 前記計測光学系からの前記第1光を前記物体に集光する集光光学部材を含む
 付記53から60のいずれか一項に記載の光学系。
[付記62]
 前記集光光学部材は、fθレンズを含む
 付記61に記載の光学系。
[付記63]
 前記光学系と前記物体との間において、前記第1光の光路と前記第2光の光路とが重なっている
 付記53から62のいずれか一項に記載の光学系。
[付記64]
 前記計測光学系からの前記第1光を前記物体に集光する集光光学部材と、
 前記集光光学部材からの前記第1光を、前記集光光学系の光軸方向に交差する方向に向けて射出する光路折り曲げ部材と
 を含む付記53から63のいずれか一項に記載の光学系。
[付記65]
 前記物体上での前記第1光の照射位置が前記物体の表面に沿って変化するように前記第1光の射出位置を変える射出位置変更部材を含む
 付記53から64のいずれか一項に記載の光学系。
[付記66]
 前記計測光学系からの前記第1光の少なくとも一部を前記計測光学系に向けて反射する反射部材を含む
 付記53から65のいずれか一項に記載の光学系。
[付記67]
 前記工具及び前記光学系のそれぞれは、取付装置により前記主軸に取り付け可能である
 付記53から66のいずれか一項に記載の光学系。
[付記68]
 加工用の工具が着脱可能な主軸を備える加工装置を有する工作機械に取り付け可能であり、物体に第1光を照射し且つ前記第1光が照射された前記物体からの第2光を検出することで前記物体を計測可能な計測装置であって、
 前記加工装置の前記主軸とは異なる部分に取り付けられる第1光学系と、
 前記主軸に着脱可能に取り付けられる第2光学系と
 を備え、
 前記第1光学系は、前記第2光学系に向けて前記第1光を射出し且つ前記第2光学系からの前記第2光を受光する
 計測装置。
[付記69]
 前記計測装置は、前記第1及び第2光学系を介して、前記第1光を前記物体に照射し且つ前記第2光を検出する
 付記68に記載の計測装置。
[付記70]
 前記第1光学系は、前記第1光と前記第2光を通過させ、
 前記第2光学系は、前記第1光学系からの前記第1光を前記物体に向けて射出し且つ前記物体からの前記第2光を前記第1光学系に向けて射出する
 付記68又は69に記載の計測装置。
[付記71]
 前記主軸は、前記工具を前記主軸の回転軸周りに回転させ、
 前記第2光学系の前記物体側の光軸の方向は、前記回転軸に沿って延びる方向である
 付記68から70のいずれか一項に記載の計測装置。
[付記72]
 前記第1光学系から前記第2光学系に射出される前記第1光は、前記主軸の回転軸とは異なる位置から射出され、
 前記第1光学系は、前記第1光学系から射出される前記第1光の進行方向が前記回転軸と交差する又はねじれの関係になるように前記第1光を偏向する第1偏向部材を備え、
 前記第2光学系は、前記第1光学系からの前記第1光の進行方向が前記回転軸と同軸又は平行になるように前記第1光を偏向する第2偏向部材を備える
 付記68から71のいずれか一項に記載の計測装置。
[付記73]
 前記主軸は、回転軸周りに回転可能であり、
 前記第2光学系は、前記第1光学系から射出される前記第1光を偏向する偏向部材を備え、
 前記偏向部材は、前記主軸の回転に伴って回転可能であり、
 前記第2光を検出可能な検出素子を更に備え、
 前記検出素子による前記第2光の検出結果に基づいて前記偏向部材の回転が制御される
 付記68から72のいずれか一項に記載の計測装置。
[付記74]
 前記検出素子による前記第2光の検出強度が最大となるように、前記偏向部材の回転が制御される
 付記73に記載の計測装置。
[付記75]
 前記第2光学系は、前記第1光学系からの前記第1光を前記物体に集光する集光光学部材を含む
 付記68から74のいずれか一項に記載の計測装置。
[付記76]
 前記集光光学部材は、fθレンズを含む
 付記75に記載の計測装置。
[付記77]
 前記第1光学系は、前記物体上での前記第1光の照射位置が変化するように前記第1光の進行方向を変える進行方向変更部材を含む
 付記68から76のいずれか一項に記載の計測装置。
[付記78]
 前記進行方向変更部材は、ガルバノミラーを含む
 付記77に記載の計測装置。
[付記79]
 前記第2光学系と前記物体との間において、前記第1光の光路と前記第2光の光路とが重なっている
 付記68から78のいずれか一項に記載の計測装置。
[付記80]
 前記第2光を検出可能な検出素子を更に備える
 付記68から79のいずれか一項に記載の計測装置。
[付記81]
 前記第2光を検出可能な検出素子を更に備え、
 前記第1光学系は、前記第2光と第3光とを干渉させる干渉光学系を含み、
 前記検出素子は、前記第2光と前記第3光との干渉光を検出する
 付記68から80のいずれか一項に記載の計測装置。
[付記82]
 前記第2光学系は、
 前記第1光学系からの前記第1光を前記物体に集光する集光光学部材と、
 前記集光光学部材からの前記第1光を、前記集光光学系の光軸方向に交差する方向に向けて射出する光路折り曲げ部材と
 を含む付記68から81のいずれか一項に記載の計測装置。
[付記83]
 前記第2光学系は、前記物体上での前記第1光の照射位置が前記物体の表面に沿って変化するように前記第1光の射出位置を変える射出位置変更部材を含む
 付記68から82のいずれか一項に記載の計測装置。
[付記84]
 前記第2光学系は、前記第1光学系からの前記第1光の少なくとも一部を前記第1光学系に向けて反射する反射部材を含む
 付記68から83のいずれか一項に記載の計測装置。
[付記85]
 前記工具及び前記第2光学系のそれぞれを前記主軸に取り付け可能な取付装置を更に備える
 付記68から84のいずれか一項に記載の計測装置。
[付記86]
 前記第2光学系は、第1の種類の第2光学系と、前記第1の種類とは異なる第2の種類の第2光学系とを備え、
 前記取付装置は、前記工具と前記第1の種類の第2光学系と前記第2の種類の第2光学系とのうちの一つを前記主軸に取り付ける
 付記85に記載の計測装置。
[付記87]
 前記第1の種類の第2光学系が前記主軸から取り外された後に、前記第2の種類の第2光学系が前記主軸に取り付けられる
 付記86に記載の計測装置。
[付記88]
 前記取付装置は、前記第1の種類の第2光学系を前記主軸から取り外した後に、前記第2の種類の第2光学系を前記主軸に取り付ける
 付記86又は87に記載の計測装置。
[付記89]
 前記第1光学系は、交換可能な交換光学部材を含む
 付記68から88のいずれか一項に記載の計測装置。
[付記90]
 前記第1光学系が第1の光学部材を前記交換光学部材として含んでいる場合には、前記第1光学系は、前記第1光を前記第2光学系に向けて射出し、
 前記第1光学系が前記第1の光学部材とは異なる第2の光学部材を前記交換光学部材として含んでいる場合には、前記第1光学系は、前記第2光学系を介さずに前記第1光を前記物体に向けて射出する
 付記89に記載の計測装置。
[付記91]
 前記第1の光学部材は、前記第1光を前記第2光学系に向けて反射する反射部材を含み、
 第2の光学部材は、前記第1光を前記射出対象部材に集光する集光光学部材を含む
 付記90に記載の計測装置。
[付記92]
 加工用の工具が着脱可能な主軸を備える加工装置と、
 物体に第1光を照射し且つ前記第1光が照射された前記物体からの第2光を検出することで前記物体を計測可能な計測装置と
 を備え、
 前記計測装置は、前記主軸の回転軸に交差する方向に沿って前記回転軸から離れた位置において前記加工装置に取り付けられ、
 前記計測装置と前記物体との間において、前記第1光の光路と前記第2光の光路とが重なっている
 工作機械。
[付記93]
 前記計測装置は、光学系を介して、前記物体に第1光を照射し且つ前記物体からの前記第2光を検出し、
 前記光学系の光軸は、前記回転軸と平行である
 付記92に記載の工作機械。
[付記94]
 前記計測装置は、光学系を介して、前記物体に第1光を照射し且つ前記物体からの前記第2光を検出し、
 前記光学系の光軸は、前記回転軸と交差する
 付記92に記載の工作機械。
[付記95]
 前記光軸と前記物体との交点は、前記回転軸と前記物体との交点と重なる
 付記94に記載の工作機械。
[付記96]
 前記工具を用いて前記物体が加工される加工期間の少なくとも一部において、前記物体と前記加工装置との相対的な位置関係が第1関係となり、且つ、前記計測装置が前記物体を計測する計測期間の少なくとも一部において、前記相対的な位置関係が前記第1関係とは異なる第2関係となるように、前記相対的な位置関係を変更可能な位置変更装置を更に備える
 付記94又は95に記載の工作機械。
[付記97]
 前記回転軸に交差する第1方向に沿って前記物体と前記加工装置との相対的な位置関係を変更可能な位置変更装置を更に備え、
 前記計測装置は、前記位置変更装置が前記第1方向に沿って前記物体としての第1物体と前記加工装置との相対的な位置関係を変更している期間の少なくとも一部において、前記第1物体を計測し、
 前記位置変更装置は、前記第1物体の計測結果に関する情報に基づいて、前記第1方向に沿って前記物体としての第2物体と前記加工装置との相対的な位置関係を変更する
 付記92から96のいずれか一項に記載の工作機械。
[付記98]
 前記加工装置は、前記第1物体の計測結果に関する情報に基づいて、前記位置変更装置が前記第1方向に沿って前記物体としての第2物体と前記加工装置との相対的な位置関係を変更している期間の少なくとも一部において、前記第2物体を加工し、
 前記位置変更装置は、前記第1物体の計測結果に関する情報と前記第2物体の計測結果に関する情報とに基づいて、前記第1方向に沿って前記物体としての第3物体と前記加工装置との相対的な位置関係を変更する
 付記97に記載の工作機械。
[付記99]
 前記計測装置は、前記第2光と第3光との干渉光を検出することで前記物体を計測可能な干渉方式の計測装置である
 付記1から52及び92から98のいずれか一項に記載の工作機械。
[付記100]
 前記第1光は、周波数軸上で等間隔に並んだ周波数成分を有するパルス光を含む
 請求項1から52及び92から99のいずれか一項に記載の工作機械。
[付記101]
 前記光学系は、前記第2光と第3光との干渉光を検出することで前記物体を計測可能な干渉方式の計測装置に用いられる
 付記53から67のいずれか一項に記載の光学系。
[付記102]
 前記第1光は、周波数軸上で等間隔に並んだ周波数成分を有するパルス光を含む
 請求項53から67及び101のいずれか一項に記載の光学系。
[付記103]
 前記計測装置は、前記第2光と第3光との干渉光を検出することで前記物体を計測可能な干渉方式の計測装置である
 付記68から91のいずれか一項に記載の計測装置。
[付記104]
 前記第1光は、周波数軸上で等間隔に並んだ周波数成分を有するパルス光を含む
 請求項68から91及び103のいずれか一項に記載の計測装置。
[付記105]
 加工用の工具が着脱可能な主軸を備える加工装置と、
 前記加工装置の前記主軸とは異なる部分に取り付けられた第1光学系と
 を備え、
 前記主軸に取り付けられた前記工具で物体の加工を行い、
 前記第1光学系からの光を、前記主軸に着脱可能に取り付けられた第2光学系を介して、前記工具で加工された後の前記物体または前記工具で加工される前の前記物体に照射する
 工作機械。
[付記106]
 前記第1光学系からの前記光を第1光として前記第2光学系を介して前記物体に照射し、前記物体からの第2光を前記第2光学系を介して前記第1光学系で受光することにより前記第1光が照射される前記物体の計測を行う
 付記105に記載の工作機械。
[付記107]
 前記第1光学系からの前記光を加工光として前記第2光学系を介して前記物体に照射し、前記加工光が照射される物体を加工する
 付記105又は106に記載の工作機械。
[付記108]
 前記主軸に取り付けられた前記第2光学系の少なくとも一部を、前記物体の凹部内に配置した状態で、前記凹部内面に前記第1光を照射し、前記凹部内面からの第2光を受光することによって、前記計測装置による前記物体の形状計測が行われる
 付記1から52及び105から107のいずれか一項に記載の工作機械。
[付記109]
 前記主軸は、回転軸周りに回転可能であり、
 前記主軸に前記第2光学系が取り付けられた状態で前記主軸を回転させることによって、前記物体上での前記第1光の照射位置を変化させる
 付記1から52及び105から108のいずれか一項に記載の工作機械。
[付記110]
 前記物体を保持するステージを更に備え、
 前記主軸に取り付けられた前記第2光学系を用いて前記計測装置により前記ステージに保持された前記物体の形状計測を行い、
 前記形状計測が完了した後に、前記ステージから前記物体を保持した状態で、前記主軸から前記第2光学系を取り外すと共に、前記主軸に前記工具を取り付け、
 前記形状計測の結果に基づいて、前記ステージに保持された前記物体を前記工具で加工する
 付記1から52及び105から109のいずれか一項に記載の工作機械。
[付記111]
 前記形状計測の前に、
 前記主軸に取り付けられた、前記工具または前記工具とは別の工具で、前記ステージに保持された前記物体を加工し、
 前記加工完了後に、前記主軸に前記第2光学系を取り付けて、前記加工された後の前記
体の形状計測を行う
 付記110に記載の工作機械。
(9) Supplementary notes The following supplementary notes are disclosed with respect to the above-described embodiments.
[Appendix 1]
a processing device having a spindle on which a processing tool is attachable and detachable;
a measuring device capable of measuring the object by irradiating the object with a first light and detecting a second light from the object irradiated with the first light,
The measuring device comprises a first optical system attached to the processing device, and a second optical system detachably attached to the spindle,
A machine tool, wherein the first optical system emits the first light toward the second optical system and receives the second light from the second optical system.
[Appendix 2]
The machine tool according to appendix 1, wherein the measuring device irradiates the object with the first light and detects the second light through the first and second optical systems.
[Appendix 3]
The first optical system passes the first light and the second light,
The second optical system emits the first light from the first optical system toward the object and emits the second light from the object toward the first optical system. The machine tool described in .
[Appendix 4]
The main shaft is rotatable around a rotation axis,
The spindle rotates the tool around the rotation axis,
4. The machine tool according to any one of appendices 1 to 3, wherein the direction of the object-side optical axis of the second optical system is a direction extending along the rotation axis.
[Appendix 5]
The main shaft is rotatable around a rotation axis,
The first light emitted from the first optical system to the second optical system is emitted from a position different from the rotation axis,
The first optical system includes a first deflection member that deflects the first light so that the traveling direction of the first light emitted from the first optical system intersects with the rotation axis or has a twisted relationship. prepared,
The second optical system includes a second deflection member that deflects the first light so that the traveling direction of the first light from the first optical system is coaxial with or parallel to the rotation axis. The machine tool according to any one of 1.
[Appendix 6]
The main shaft is rotatable around a rotation axis,
The second optical system includes a deflection member that deflects the first light emitted from the first optical system,
the deflecting member is rotatable with the rotation of the main shaft;
The measurement device includes a detection element capable of detecting the second light,
6. The machine tool according to any one of appendices 1 to 5, further comprising a control device that controls rotation of the spindle based on a result of detection of the second light by the detection element.
[Appendix 7]
7. The machine tool according to appendix 6, wherein the control device controls the rotation of the main shaft so that the intensity of the second light detected by the detection element is maximized.
[Appendix 8]
8. The machine tool according to any one of appendices 1 to 7, wherein the second optical system includes a condensing optical member condensing the first light from the first optical system onto the object.
[Appendix 9]
9. The machine tool according to appendix 8, wherein the condensing optical member includes an f-theta lens.
[Appendix 10]
10. The first optical system according to any one of appendices 1 to 9, wherein the first optical system includes a traveling direction changing member that changes a traveling direction of the first light so as to change an irradiation position of the first light on the object. machine tools.
[Appendix 11]
11. The machine tool according to appendix 10, wherein the traveling direction changing member includes a galvanomirror.
[Appendix 12]
12. The machine tool according to any one of appendices 1 to 11, wherein the optical path of the first light and the optical path of the second light overlap between the second optical system and the object.
[Appendix 13]
13. The machine tool according to any one of appendices 1 to 12, wherein the measuring device includes a detection element capable of detecting the second light.
[Appendix 14]
The measurement device includes a detection element capable of detecting the second light,
The first optical system includes an interference optical system that interferes the second light and the third light,
14. The machine tool according to any one of appendices 1 to 13, wherein the detection element detects interference light between the second light and the third light.
[Appendix 15]
The second optical system is
a condensing optical member condensing the first light from the first optical system onto the object;
15. The tool according to any one of appendices 1 to 14, comprising: an optical path bending member that emits the first light from the condensing optical member in a direction that intersects the optical axis direction of the condensing optical system. machine.
[Appendix 16]
The second optical system includes an emission position changing member that changes the emission position of the first light so that the irradiation position of the first light on the object changes along the surface of the object. The machine tool according to any one of 1.
[Appendix 17]
17. The machine according to any one of appendices 1 to 16, wherein the second optical system includes a reflecting member that reflects at least part of the first light from the first optical system toward the first optical system. machine.
[Appendix 18]
18. The machine tool according to any one of appendices 1 to 17, further comprising a mounting device capable of mounting each of the tool and the second optical system to the spindle.
[Appendix 19]
The second optical system comprises a second optical system of a first type and a second optical system of a second type different from the first type,
19. The machine tool according to appendix 18, wherein the mounting device mounts one of the tool, the second optical system of the first type, and the second optical system of the second type to the spindle.
[Appendix 20]
20. The machine tool of clause 19, wherein the second optical system of the second type is attached to the spindle after the second optical system of the first type is removed from the spindle.
[Appendix 21]
21. The machine tool according to appendix 19 or 20, wherein the attachment device attaches the second optical system of the second type to the spindle after removing the second optical system of the first type from the spindle.
[Appendix 22]
22. The machine tool according to any one of appendices 1 to 21, wherein the first optical system includes an exchangeable exchangeable optical member.
[Appendix 23]
When the first optical system includes a first optical member as the replacement optical member, the first optical system emits the first light toward the second optical system,
In the case where the first optical system includes a second optical member different from the first optical member as the replacement optical member, the first optical system does not pass through the second optical system. 23. The machine tool of Claim 22, wherein a first light is directed toward the object.
[Appendix 24]
the first optical member includes a reflecting member that reflects the first light toward the second optical system;
24. The machine tool according to appendix 23, wherein the second optical member includes a condensing optical member condensing the first light onto the emission target member.
[Appendix 25]
a processing device having a spindle on which a processing tool is attachable and detachable;
a first optical system attached to a portion different from the main axis of the processing device and used for measuring an object,
The first optical system emits a first light toward a second optical system detachably attached to the main axis, and emits a first light from the object irradiated with the first light via the second optical system. 2 A machine tool that receives light.
[Appendix 26]
26. The machine tool according to appendix 25, wherein the first optical system functions as a part of a measuring device that measures the object by attaching the second optical system to the spindle.
[Appendix 27]
27. The machine tool according to appendix 26, further comprising a detection device that detects the second light from the first optical system and outputs a detection result to an arithmetic device that generates measurement data of the object.
[Appendix 28]
28. The machine tool according to appendix 27, further comprising the arithmetic device that generates measurement data of the object based on the detection result of the detection device.
[Appendix 29]
The first optical system functions as part of a measuring device that measures the object,
29. The machine tool according to any one of appendices 25 to 28, wherein the measuring device irradiates the object with the first light and detects the second light through the first and second optical systems.
[Appendix 30]
The first optical system passes the first light and the second light,
The second optical system emits the first light from the first optical system toward the object and emits the second light from the object toward the first optical system. The machine tool according to any one of 1.
[Appendix 31]
The main shaft is rotatable around a rotation axis,
The spindle rotates the tool around the rotation axis,
31. The machine tool according to any one of appendices 25 to 30, wherein the direction of the object-side optical axis of the second optical system is a direction extending along the rotation axis.
[Appendix 32]
The main shaft is rotatable around a rotation axis,
The first light emitted from the first optical system to the second optical system is emitted from a position different from the rotation axis,
The first optical system includes a first deflection member that deflects the first light so that the traveling direction of the first light emitted from the first optical system intersects with the rotation axis or has a twisted relationship. 32. A machine tool according to any one of clauses 25-31.
[Appendix 33]
32. Described in Appendix 32, wherein the second optical system includes a second deflection member that deflects the first light so that the traveling direction of the first light from the first optical system is coaxial with or parallel to the rotation axis. machine tools.
[Appendix 34]
The first optical system functions as part of a measuring device that measures the object,
the second deflection member is rotatable with the rotation of the main shaft;
The measurement device includes a detection element capable of detecting the second light,
34. The machine tool according to appendix 32 or 33, further comprising a control device that controls rotation of the spindle based on a result of detection of the second light by the detection element.
[Appendix 35]
35. The machine tool according to appendix 34, wherein the control device controls the rotation of the main shaft so that the intensity of the second light detected by the detection element is maximized.
[Appendix 36]
36. The machine tool according to any one of appendices 25 to 35, wherein the second optical system includes a condensing optical member condensing the first light from the first optical system onto the object.
[Appendix 37]
37. The machine tool of Clause 36, wherein the concentrating optic includes an f-theta lens.
[Appendix 38]
38. The first optical system according to any one of appendices 25 to 37, wherein the first optical system includes a traveling direction changing member that changes a traveling direction of the first light so that an irradiation position of the first light on the object is changed. machine tools.
[Appendix 39]
39. The machine tool according to appendix 38, wherein the traveling direction changing member includes a galvanomirror.
[Appendix 40]
40. The machine tool according to any one of appendices 25 to 39, wherein the optical path of the first light and the optical path of the second light overlap between the second optical system and the object.
[Appendix 41]
The first optical system functions as part of a measuring device that measures the object,
41. The machine tool according to any one of appendices 25 to 40, wherein the measuring device includes a detection element capable of detecting the second light.
[Appendix 42]
The second optical system includes a detection element capable of detecting the second light,
The first optical system includes an interference optical system that interferes the second light and the third light,
42. The machine tool according to any one of appendices 25 to 41, wherein the detection element detects interference light between the second light and the third light.
[Appendix 43]
The second optical system is
a condensing optical member condensing the first light from the first optical system onto the object;
43. The tool according to any one of appendices 25 to 42, comprising: an optical path bending member that emits the first light from the condensing optical member in a direction that intersects the optical axis direction of the condensing optical system. machine.
[Appendix 44]
The second optical system includes an emission position changing member that changes the emission position of the first light so that the irradiation position of the first light on the object changes along the surface of the object. The machine tool according to any one of 1.
[Appendix 45]
45. The machine according to any one of appendices 25 to 44, wherein the second optical system includes a reflecting member that reflects at least part of the first light from the first optical system toward the first optical system. machine.
[Appendix 46]
46. The machine tool according to any one of appendices 25 to 45, further comprising an attachment device capable of attaching each of the tool and the second optical system to the spindle.
[Appendix 47]
The second optical system comprises a second optical system of a first type and a second optical system of a second type different from the first type,
47. The machine tool of clause 46, wherein the mounting device mounts one of the tool, the second optical system of the first type, and the second optical system of the second type to the spindle.
[Appendix 48]
48. The machine tool of clause 47, wherein the second optical system of the second type is attached to the spindle after the second optical system of the first type is removed from the spindle.
[Appendix 49]
49. The machine tool according to appendix 47 or 48, wherein the mounting device mounts the second optical system of the second type on the spindle after removing the second optical system of the first type from the spindle.
[Appendix 50]
50. The machine tool of any one of Appendixes 25-49, wherein the first optical system includes an exchangeable exchangeable optical member.
[Appendix 51]
When the first optical system includes a first optical member as the replacement optical member, the first optical system emits the first light toward the second optical system,
In the case where the first optical system includes a second optical member different from the first optical member as the replacement optical member, the first optical system does not pass through the second optical system. 51. The machine tool of clause 50, wherein a first light is directed toward the object.
[Appendix 52]
the first optical member includes a reflecting member that reflects the first light toward the second optical system;
52. The machine tool according to appendix 51, wherein the second optical member includes a condensing optical member condensing the first light onto the emission target member.
[Appendix 53]
An optical system for use in a machine tool having a machining apparatus having a spindle to which a machining tool is detachable,
Detachably attached to the main shaft,
receiving a first light emitted from a measurement optical system attached to a portion different from the main axis of the processing apparatus, emitting the received first light toward an object, and emitting a second light from the object; receiving light and emitting the received second light toward the measurement optical system;
The second light is light for measuring the object,
Optical system.
[Appendix 54]
54. The machine tool according to appendix 53, wherein the optical system functions as part of a measuring device that measures the object by attaching the optical system to the spindle.
[Appendix 55]
The measurement optical system is
a detection-side optical system attached to the processing apparatus, emitting the first light toward the optical system, receiving the second light from the optical system, and emitting the second light toward a detection element; When,
and the detection element that detects the second light from the detection-side optical system,
55. The optical system according to appendix 53 or 54, wherein a detection result of the second light by the detection element is output to an arithmetic device that generates measurement data of the object based on the detection result.
[Appendix 56]
the spindle rotates the tool around the axis of rotation of the spindle;
56. The optical system according to any one of appendices 53 to 55, wherein the direction of the optical axis on the object side of the optical system is a direction extending along the rotation axis.
[Appendix 57]
The first light emitted from the measurement optical system to the optical system is emitted from a position different from the rotation axis of the main shaft,
56. Any one of Appendices 53 to 56, wherein the optical system includes a second deflection member that deflects the first light so that the traveling direction of the first light from the measurement optical system is coaxial with or parallel to the rotation axis. The optical system according to item 1.
[Appendix 58]
The measurement optical system includes a first deflection member that deflects the first light so that the traveling direction of the first light emitted from the measurement optical system intersects the rotation axis or has a twisted relationship. 57. The optical system according to 57.
[Appendix 59]
The main shaft is rotatable around a rotation axis,
comprising a deflection member that deflects the first light emitted from the measurement optical system;
the deflecting member is rotatable with the rotation of the main shaft;
The measurement optical system includes a detection element capable of detecting the second light,
59. The optical system according to any one of appendices 53 to 58, wherein rotation of the deflection member is controlled based on a detection result of the second light.
[Appendix 60]
60. The optical system according to appendix 59, wherein the rotation of the deflection member is controlled such that the intensity of the second light detected by the detection element is maximized.
[Appendix 61]
61. The optical system according to any one of appendices 53 to 60, including a condensing optical member that condenses the first light from the measurement optical system onto the object.
[Appendix 62]
62. The optical system according to appendix 61, wherein the condensing optical member includes an f-theta lens.
[Appendix 63]
63. The optical system according to any one of appendices 53 to 62, wherein the optical path of the first light and the optical path of the second light overlap between the optical system and the object.
[Appendix 64]
a condensing optical member condensing the first light from the measurement optical system onto the object;
64. The optical system according to any one of appendices 53 to 63, comprising: an optical path bending member that emits the first light from the condensing optical member in a direction that intersects the optical axis direction of the condensing optical system system.
[Appendix 65]
64. The method according to any one of appendices 53 to 64, including an emission position changing member that changes the emission position of the first light so that the irradiation position of the first light on the object changes along the surface of the object. optics.
[Appendix 66]
66. The optical system according to any one of appendices 53 to 65, including a reflecting member that reflects at least part of the first light from the measurement optical system toward the measurement optical system.
[Appendix 67]
67. The optical system of any one of clauses 53-66, wherein each of the tool and the optical system is attachable to the spindle by a mounting device.
[Appendix 68]
A machining tool is attachable to a machine tool having a machining apparatus having a detachable spindle, irradiates an object with a first light, and detects a second light from the object irradiated with the first light. A measuring device capable of measuring the object by
a first optical system attached to a portion different from the main axis of the processing device;
a second optical system detachably attached to the main shaft,
The first optical system emits the first light toward the second optical system and receives the second light from the second optical system.
[Appendix 69]
69. The measuring device according to appendix 68, wherein the measuring device irradiates the object with the first light and detects the second light via the first and second optical systems.
[Appendix 70]
The first optical system passes the first light and the second light,
The second optical system emits the first light from the first optical system toward the object and emits the second light from the object toward the first optical system. The measuring device according to .
[Appendix 71]
the spindle rotates the tool around the axis of rotation of the spindle;
71. The measuring device according to any one of appendices 68 to 70, wherein the direction of the object-side optical axis of the second optical system is a direction extending along the rotation axis.
[Appendix 72]
The first light emitted from the first optical system to the second optical system is emitted from a position different from the rotation axis of the main shaft,
The first optical system includes a first deflection member that deflects the first light so that the traveling direction of the first light emitted from the first optical system intersects with the rotation axis or has a twisted relationship. prepared,
The second optical system includes a second deflection member that deflects the first light so that the traveling direction of the first light from the first optical system is coaxial or parallel to the rotation axis. The measuring device according to any one of 1.
[Appendix 73]
The main shaft is rotatable around a rotation axis,
The second optical system includes a deflection member that deflects the first light emitted from the first optical system,
the deflecting member is rotatable with the rotation of the main shaft;
Further comprising a detection element capable of detecting the second light,
73. The measuring device according to any one of appendices 68 to 72, wherein rotation of the deflection member is controlled based on a detection result of the second light by the detection element.
[Appendix 74]
74. The measurement apparatus according to appendix 73, wherein the rotation of the deflection member is controlled such that the intensity of the second light detected by the detection element is maximized.
[Appendix 75]
75. The measuring device according to any one of appendices 68 to 74, wherein the second optical system includes a condensing optical member that condenses the first light from the first optical system onto the object.
[Appendix 76]
76. The measurement device according to appendix 75, wherein the condensing optical member includes an f-theta lens.
[Appendix 77]
77. According to any one of appendices 68 to 76, wherein the first optical system includes a traveling direction changing member that changes a traveling direction of the first light so that an irradiation position of the first light on the object is changed. measuring device.
[Appendix 78]
78. The measuring device according to appendix 77, wherein the traveling direction changing member includes a galvanomirror.
[Appendix 79]
79. The measuring device according to any one of appendices 68 to 78, wherein the optical path of the first light and the optical path of the second light overlap between the second optical system and the object.
[Appendix 80]
79. The measurement device according to any one of appendices 68 to 79, further comprising a detection element capable of detecting the second light.
[Appendix 81]
Further comprising a detection element capable of detecting the second light,
The first optical system includes an interference optical system that interferes the second light and the third light,
81. The measuring device according to any one of appendices 68 to 80, wherein the detection element detects interference light between the second light and the third light.
[Appendix 82]
The second optical system is
a condensing optical member condensing the first light from the first optical system onto the object;
82. The measurement according to any one of appendices 68 to 81, including: an optical path bending member that emits the first light from the condensing optical member in a direction that intersects the optical axis direction of the condensing optical system Device.
[Appendix 83]
The second optical system includes an emission position changing member that changes the emission position of the first light so that the irradiation position of the first light on the object changes along the surface of the object. The measuring device according to any one of 1.
[Appendix 84]
84. The measurement according to any one of appendices 68 to 83, wherein the second optical system includes a reflecting member that reflects at least part of the first light from the first optical system toward the first optical system. Device.
[Appendix 85]
85. The measuring device according to any one of appendices 68 to 84, further comprising a mounting device capable of mounting each of the tool and the second optical system on the spindle.
[Appendix 86]
The second optical system comprises a second optical system of a first type and a second optical system of a second type different from the first type,
86. The measuring device according to appendix 85, wherein the mounting device mounts one of the tool, the second optical system of the first type, and the second optical system of the second type to the spindle.
[Appendix 87]
87. The measuring device according to appendix 86, wherein the second optical system of the second type is attached to the main shaft after the second optical system of the first type is removed from the main shaft.
[Appendix 88]
88. The measuring device according to appendix 86 or 87, wherein the attachment device attaches the second optical system of the second type to the main shaft after removing the second optical system of the first type from the main shaft.
[Appendix 89]
89. The measuring device according to any one of appendices 68 to 88, wherein the first optical system includes an exchangeable exchangeable optical member.
[Appendix 90]
When the first optical system includes a first optical member as the replacement optical member, the first optical system emits the first light toward the second optical system,
In the case where the first optical system includes a second optical member different from the first optical member as the replacement optical member, the first optical system does not pass through the second optical system. 90. The measuring device according to appendix 89, wherein a first light is emitted toward the object.
[Appendix 91]
the first optical member includes a reflecting member that reflects the first light toward the second optical system;
91. The measuring device according to appendix 90, wherein the second optical member includes a condensing optical member that condenses the first light onto the emission target member.
[Appendix 92]
a processing device having a spindle on which a processing tool is attachable and detachable;
a measuring device capable of measuring the object by irradiating the object with a first light and detecting a second light from the object irradiated with the first light,
The measuring device is attached to the processing device at a position away from the rotation axis along a direction intersecting the rotation axis of the main shaft,
A machine tool, wherein the optical path of the first light and the optical path of the second light overlap between the measuring device and the object.
[Appendix 93]
the measuring device irradiates the object with a first light and detects the second light from the object through an optical system;
93. The machine tool according to appendix 92, wherein an optical axis of the optical system is parallel to the rotation axis.
[Appendix 94]
the measuring device irradiates the object with a first light and detects the second light from the object through an optical system;
93. The machine tool according to appendix 92, wherein an optical axis of the optical system intersects the rotation axis.
[Appendix 95]
95. The machine tool according to appendix 94, wherein the intersection of the optical axis and the object coincides with the intersection of the rotation axis and the object.
[Appendix 96]
During at least part of a machining period in which the object is machined using the tool, the relative positional relationship between the object and the machining device is a first relationship, and the measuring device measures the object. Further comprising a position changing device capable of changing the relative positional relationship such that the relative positional relationship becomes a second relationship different from the first relationship for at least part of the period Machine tools as described.
[Appendix 97]
further comprising a position changing device capable of changing the relative positional relationship between the object and the processing device along a first direction intersecting the rotation axis;
The measuring device moves the first measure an object,
The position changing device changes the relative positional relationship between the second object as the object and the processing device along the first direction based on the information about the measurement result of the first object. 96. Machine tool according to any one of clauses 96.
[Appendix 98]
In the processing device, the position changing device changes a relative positional relationship between a second object as the object and the processing device along the first direction based on information about the measurement result of the first object. processing the second object during at least part of the period of
The position changing device moves a third object as the object and the processing device along the first direction based on information about the measurement result of the first object and information about the measurement result of the second object. 98. The machine tool according to Clause 97, wherein the relative positions are changed.
[Appendix 99]
The measuring device according to any one of appendices 1 to 52 and 92 to 98, wherein the measuring device is an interferometric measuring device capable of measuring the object by detecting interference light between the second light and the third light. machine tools.
[Appendix 100]
The machine tool according to any one of claims 1 to 52 and 92 to 99, wherein the first light includes pulsed light having frequency components arranged at equal intervals on the frequency axis.
[Appendix 101]
68. The optical system according to any one of appendices 53 to 67, wherein the optical system is used in an interferometric measuring device capable of measuring the object by detecting interference light between the second light and the third light. .
[Appendix 102]
102. The optical system according to any one of Claims 53 to 67 and 101, wherein the first light includes pulsed light having frequency components arranged at equal intervals on the frequency axis.
[Appendix 103]
92. The measuring device according to any one of appendices 68 to 91, wherein the measuring device is an interferometric measuring device capable of measuring the object by detecting interference light between the second light and the third light.
[Appendix 104]
104. The measuring device according to any one of Claims 68 to 91 and 103, wherein the first light includes pulsed light having frequency components arranged at regular intervals on the frequency axis.
[Appendix 105]
a processing device having a spindle on which a processing tool is attachable and detachable;
A first optical system attached to a portion different from the main axis of the processing device,
machining an object with the tool attached to the spindle;
The light from the first optical system is irradiated onto the object after being machined by the tool or the object before being machined by the tool through a second optical system detachably attached to the spindle. Do machine tools.
[Appendix 106]
irradiating the object with the light from the first optical system as the first light through the second optical system, and the second light from the object with the first optical system through the second optical system; 106. The machine tool according to appendix 105, wherein the object irradiated with the first light is measured by receiving the light.
[Appendix 107]
107. The machine tool according to appendix 105 or 106, wherein the light from the first optical system is applied as processing light to the object via the second optical system, and the object irradiated with the processing light is processed.
[Appendix 108]
With at least part of the second optical system attached to the main shaft being placed in the recess of the object, the first light is applied to the inner surface of the recess, and the second light from the inner surface of the recess is received. 108. The machine tool according to any one of appendices 1 to 52 and 105 to 107, wherein the shape measurement of the object is performed by the measuring device.
[Appendix 109]
The main shaft is rotatable around a rotation axis,
The irradiation position of the first light on the object is changed by rotating the main shaft with the second optical system attached to the main shaft. The machine tool described in .
[Appendix 110]
further comprising a stage for holding the object;
performing shape measurement of the object held on the stage by the measuring device using the second optical system attached to the main shaft;
After the shape measurement is completed, removing the second optical system from the main shaft while holding the object from the stage, and attaching the tool to the main shaft;
109. The machine tool according to any one of appendices 1 to 52 and 105 to 109, wherein the tool is used to machine the object held on the stage based on the result of the shape measurement.
[Appendix 111]
Before the shape measurement,
Machining the object held on the stage with the tool or a tool different from the tool attached to the spindle;
111. The machine tool according to appendix 110, wherein after the completion of the machining, the second optical system is attached to the spindle to measure the shape of the machined body.
 上述の各実施形態の構成要件の少なくとも一部は、上述の各実施形態の構成要件の少なくとも他の一部と適宜組み合わせることができる。上述の各実施形態の構成要件のうちの一部が用いられなくてもよい。また、法令で許容される限りにおいて、上述の各実施形態で引用した全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。 At least part of the constituent elements of each embodiment described above can be appropriately combined with at least another part of the constituent elements of each embodiment described above. Some of the constituent requirements of each of the above-described embodiments may not be used. Further, to the extent permitted by law, the disclosures of all publications and US patents cited in each of the above embodiments are incorporated herein by reference.
 本発明は、上述した実施例に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う工作機械、光学系及び計測装置もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be modified as appropriate within the scope not contrary to the gist or idea of the invention that can be read from the scope of claims and the entire specification. Optical systems and metrology devices are also included within the scope of the present invention.
 1 工作機械
 2 加工ヘッド
 21 主軸
 23 工具
 3 ヘッド駆動系
 4 ステージ装置
 5 計測装置
 51 計測光源
 52 計測ヘッド
 521 ヘッド筐体
 522 光学系
 5221 光学系
 5222 ガルバノミラー
 5223 ミラー
 53 計測ヘッド
 531 ヘッド筐体
 532 光学系
 5321 ミラー
 5322 fθレンズ
 6 工具交換装置
 7 制御装置
 W ワーク
 RX 回転軸
 MX 計測軸
 ML 計測光
 RL 戻り光
1 machine tool 2 processing head 21 spindle 23 tool 3 head drive system 4 stage device 5 measurement device 51 measurement light source 52 measurement head 521 head housing 522 optical system 5221 optical system 5222 galvanomirror 5223 mirror 53 measurement head 531 head housing 532 optics System 5321 Mirror 5322 fθ lens 6 Tool changer 7 Control device W Work RX Rotation axis MX Measurement axis ML Measurement light RL Return light

Claims (26)

  1.  加工用の工具が着脱可能な主軸を備える加工装置と、
     物体に第1光を照射し且つ前記第1光が照射された前記物体からの第2光を検出することで前記物体の形状を計測可能な計測装置と
     を備え、
     前記計測装置は、前記加工装置の前記主軸とは異なる部分に取り付けられ且つ前記第1光及び前記第2光が通過する第1光学系と、前記主軸に着脱可能に取り付けられ、前記第1光学系からの前記第1光を前記物体に向けて射出し且つ前記物体からの前記第2光を前記第1光学系に向けて射出する第2光学系とを備える
     工作機械。
    a processing device having a spindle on which a processing tool is attachable and detachable;
    a measuring device capable of measuring the shape of the object by irradiating the object with a first light and detecting a second light from the object irradiated with the first light,
    The measuring device includes a first optical system attached to a portion of the processing device different from the main axis and through which the first light and the second light pass; a second optical system that emits the first light from the system toward the object and emits the second light from the object toward the first optical system.
  2.  前記第2光学系と前記物体との間において、前記第1光の光路と前記第2光の光路とが重なっている
     請求項1に記載の工作機械。
    The machine tool according to claim 1, wherein the optical path of the first light and the optical path of the second light overlap between the second optical system and the object.
  3.  前記主軸は、回転軸周りに回転可能であり、
     前記第1光学系から前記第2光学系に射出される前記第1光は、前記回転軸とは異なる位置から射出され、
     前記第1光学系は、前記第1光学系から射出される前記第1光の進行方向が前記回転軸と交差する又はねじれの関係になるように前記第1光を偏向する第1偏向部材を備え、
     前記第2光学系は、前記第1光学系からの前記第1光の進行方向が前記回転軸と同軸又は平行になるように前記第1光を偏向する第2偏向部材を備える
     請求項1又は2に記載の工作機械。
    The main shaft is rotatable around a rotation axis,
    The first light emitted from the first optical system to the second optical system is emitted from a position different from the rotation axis,
    The first optical system includes a first deflection member that deflects the first light so that the traveling direction of the first light emitted from the first optical system intersects with the rotation axis or has a twisted relationship. prepared,
    2. The second optical system comprises a second deflection member that deflects the first light so that the traveling direction of the first light from the first optical system is coaxial with or parallel to the rotation axis. 2. The machine tool according to 2.
  4.  前記第2偏向部材は、前記主軸の回転に伴って回転可能であり、
     前記計測装置は、前記第2光を検出可能な検出素子を備え、
     前記検出素子による前記第2光の検出結果に基づいて前記主軸の回転を制御する制御装置を更に備える
     請求項3に記載の工作機械。
    the second deflection member is rotatable with the rotation of the main shaft;
    The measurement device includes a detection element capable of detecting the second light,
    The machine tool according to claim 3, further comprising a control device that controls rotation of the spindle based on a detection result of the second light by the detection element.
  5.  前記制御装置は、前記検出素子による前記第2光の検出強度が最大となるように、前記主軸の回転を制御する
     請求項4に記載の工作機械。
    The machine tool according to claim 4, wherein the control device controls the rotation of the main shaft so that the intensity of the second light detected by the detection element is maximized.
  6.  前記第1光学系は、前記物体上での前記第1光の照射位置が変化するように前記第1光の進行方向を変える進行方向変更部材を含む
     請求項1から5のいずれか一項に記載の工作機械。
    6. The first optical system according to any one of claims 1 to 5, wherein the first optical system includes a traveling direction changing member that changes a traveling direction of the first light so as to change an irradiation position of the first light on the object. Machine tools as described.
  7.  前記主軸は、回転軸周りに回転可能であり、
     前記主軸は、前記工具を前記回転軸周りに回転させ、
     前記第2光学系の前記物体側の光軸の方向は、前記回転軸に沿って延びる方向である
     請求項1から6のいずれか一項に記載の工作機械。
    The main shaft is rotatable around a rotation axis,
    The spindle rotates the tool around the rotation axis,
    The machine tool according to any one of claims 1 to 6, wherein the direction of the object-side optical axis of the second optical system is a direction extending along the rotation axis.
  8.  前記第2光学系は、前記第1光学系からの前記第1光を前記物体に集光する集光光学部材を含む
     請求項1から7のいずれか一項に記載の工作機械。
    The machine tool according to any one of claims 1 to 7, wherein the second optical system includes a condensing optical member condensing the first light from the first optical system onto the object.
  9.  前記計測装置は、前記第2光を検出可能な検出素子を含む
     請求項1から8のいずれか一項に記載の工作機械。
    The machine tool according to any one of claims 1 to 8, wherein the measuring device includes a detection element capable of detecting the second light.
  10.  前記第1光学系は、前記第2光と第3光とを干渉させる干渉光学系を含み、
     前記検出素子は、前記第2光と前記第3光との干渉光を検出する
     請求項9に記載の工作機械。
    The first optical system includes an interference optical system that interferes the second light and the third light,
    The machine tool according to claim 9, wherein the detection element detects interference light between the second light and the third light.
  11.  前記第2光学系は、
     前記第1光学系からの前記第1光を前記物体に集光する集光光学部材と、
     前記集光光学部材からの前記第1光を、前記集光光学部材の光軸方向に交差する方向に向けて射出する光路折り曲げ部材と
     を含む
     請求項1から10のいずれか一項に記載の工作機械。
    The second optical system is
    a condensing optical member condensing the first light from the first optical system onto the object;
    The optical path bending member that emits the first light from the condensing optical member in a direction that intersects the optical axis direction of the condensing optical member. Machine Tools.
  12.  前記第2光学系は、前記物体上での前記第1光の照射位置が前記物体の表面に沿って変化するように前記第1光の射出位置を変える射出位置変更部材を含む
     請求項1から11のいずれか一項に記載の工作機械。
    The second optical system includes an emission position changing member that changes the emission position of the first light so that the irradiation position of the first light on the object changes along the surface of the object. 12. The machine tool according to any one of 11.
  13.  前記工具を前記主軸に取り付け可能な取付装置を更に備え、
     前記取付装置は、前記工具と前記第2光学系のそれぞれを前記主軸に取り付け可能である
     請求項1から12のいずれか一項に記載の工作機械。
    further comprising a mounting device capable of mounting the tool on the spindle;
    The machine tool according to any one of claims 1 to 12, wherein the mounting device can mount each of the tool and the second optical system on the spindle.
  14.  前記第2光学系は、第1の種類の第2光学系と、前記第1の種類とは異なる第2の種類の第2光学系とを備え、
     前記取付装置は、前記工具と前記第1の種類の第2光学系と前記第2の種類の第2光学系とのうちの一つを前記主軸に取り付ける
     請求項13に記載の工作機械。
    The second optical system comprises a second optical system of a first type and a second optical system of a second type different from the first type,
    14. The machine tool according to claim 13, wherein the mounting device mounts one of the tool, the second optical system of the first type, and the second optical system of the second type to the spindle.
  15.  前記取付装置は、前記第1の種類の第2光学系を前記主軸から取り外した後に、前記第2の種類の第2光学系を前記主軸に取り付ける
     請求項14に記載の工作機械。
    15. The machine tool according to claim 14, wherein the attachment device attaches the second optical system of the second type to the spindle after removing the second optical system of the first type from the spindle.
  16.  前記第1光学系は、交換可能な交換光学部材を含む
     請求項1から15のいずれか一項に記載の工作機械。
    16. A machine tool according to any one of claims 1 to 15, wherein the first optical system includes an exchangeable exchangeable optical member.
  17.  前記第1光学系が第1の光学部材を前記交換光学部材として含んでいる場合には、前記第1光学系は、前記第1光を前記第2光学系に向けて射出し、
     前記第1光学系が前記第1の光学部材とは異なる第2の光学部材を前記交換光学部材として含んでいる場合には、前記第1光学系は、前記第2光学系を介さずに前記第1光を前記物体に向けて射出する
     請求項16に記載の工作機械。
    When the first optical system includes a first optical member as the replacement optical member, the first optical system emits the first light toward the second optical system,
    In the case where the first optical system includes a second optical member different from the first optical member as the replacement optical member, the first optical system does not pass through the second optical system. 17. The machine tool of claim 16, wherein a first light is directed toward the object.
  18.  前記第1の光学部材は、前記第1光を前記第2光学系に向けて反射する反射部材を含み、
     第2の光学部材は、前記第1光を前記物体に集光する集光光学部材を含む
     請求項17に記載の工作機械。
    the first optical member includes a reflecting member that reflects the first light toward the second optical system;
    18. The machine tool of claim 17, wherein the second optical member includes a condensing optical member concentrating the first light onto the object.
  19.  前記主軸に取り付けられた前記第2光学系の少なくとも一部を、前記物体の凹部内に配置した状態で、前記凹部内面に前記第1光を照射し、前記凹部内面からの第2光を受光することによって、前記計測装置による前記物体の形状計測が行われる
     請求項1から18のいずれか一項に記載の工作機械。
    With at least part of the second optical system attached to the main shaft being placed in the recess of the object, the first light is applied to the inner surface of the recess, and the second light from the inner surface of the recess is received. The machine tool according to any one of claims 1 to 18, wherein the shape measurement of the object is performed by the measuring device.
  20.  前記主軸は、回転軸周りに回転可能であり、
     前記主軸に前記第2光学系が取り付けられた状態で前記主軸を回転させることによって、前記物体上での前記第1光の照射位置を変化させる
     請求項1から19のいずれか一項に記載の工作機械。
    The main shaft is rotatable around a rotation axis,
    The irradiation position of the first light on the object is changed by rotating the main shaft with the second optical system attached to the main shaft, according to any one of claims 1 to 19. Machine Tools.
  21.  前記物体を保持するステージを更に備え、
     前記主軸に取り付けられた前記第2光学系を用いて前記計測装置により前記ステージに保持された前記物体の形状計測を行い、
     前記形状計測が完了した後に、前記ステージが前記物体を保持した状態で、前記主軸から前記第2光学系を取り外すと共に、前記主軸に前記工具を取り付け、
     前記形状計測の結果に基づいて、前記ステージに保持された前記物体を前記工具で加工する
     請求項1から20のいずれか一項に記載の工作機械。
    further comprising a stage for holding the object;
    performing shape measurement of the object held on the stage by the measuring device using the second optical system attached to the main shaft;
    After the shape measurement is completed, with the stage holding the object, the second optical system is removed from the main shaft and the tool is attached to the main shaft;
    The machine tool according to any one of claims 1 to 20, wherein the tool is used to machine the object held on the stage based on the result of the shape measurement.
  22.  前記形状計測の前に、
     前記主軸に取り付けられた、前記工具または前記工具とは別の工具で、前記ステージに保持された前記物体を加工し、
     前記加工完了後に、前記主軸に前記第2光学系を取り付けて、前記加工された後の前記物体の形状計測を行う
     請求項21に記載の工作機械。
    Before the shape measurement,
    Machining the object held on the stage with the tool or a tool different from the tool attached to the spindle;
    22. The machine tool according to claim 21, wherein after the machining is completed, the second optical system is attached to the spindle to measure the shape of the machined object.
  23.  加工用の工具が着脱可能な主軸を備える加工装置と、
     物体に第1光を照射し且つ前記第1光が照射された前記物体からの第2光を検出することで前記物体を計測可能な計測装置と
     を備え、
     前記計測装置は、前記加工装置の主軸とは異なる部分に取り付けられる第1光学系と、前記主軸に着脱可能に取り付けられる第2光学系とを備え、
     前記第1光学系は、前記第2光学系に向けて前記第1光を射出し且つ前記第2光学系からの前記第2光を受光する
     工作機械。
    a processing device having a spindle on which a processing tool is attachable and detachable;
    a measuring device capable of measuring the object by irradiating the object with a first light and detecting a second light from the object irradiated with the first light,
    The measuring device comprises a first optical system attached to a portion different from the main shaft of the processing device, and a second optical system detachably attached to the main shaft,
    A machine tool, wherein the first optical system emits the first light toward the second optical system and receives the second light from the second optical system.
  24.  加工用の工具が着脱可能な主軸を備える加工装置と、
     前記加工装置の前記主軸とは異なる部分に取り付けられ物体の計測に用いられる第1光学系と
     を備え、
     前記第1光学系は、前記主軸に着脱可能に取り付けられる第2光学系に向けて第1光を射出し、前記第2光学系を介して前記第1光が照射された前記物体からの第2光を受光する
     工作機械。
    a processing device having a spindle on which a processing tool is attachable and detachable;
    a first optical system attached to a portion different from the main axis of the processing device and used for measuring an object,
    The first optical system emits a first light toward a second optical system detachably attached to the main axis, and emits a first light from the object irradiated with the first light via the second optical system. 2 A machine tool that receives light.
  25.  加工用の工具が着脱可能な主軸を備える加工装置を有する工作機械に用いられる光学系であって、
     前記主軸に着脱可能に取り付けられ、
     前記加工装置の前記主軸とは異なる部分に取り付けられた計測光学系から射出される第1光を受光し、受光した前記第1光を物体に向けて射出し、且つ、前記物体からの第2光を受光し、受光した前記第2光を前記計測光学系に向けて射出し、
     前記第2光は、前記物体を計測するための光である
     光学系。
    An optical system for use in a machine tool having a machining apparatus having a spindle to which a machining tool is detachable,
    Detachably attached to the main shaft,
    receiving a first light emitted from a measurement optical system attached to a portion different from the main axis of the processing apparatus, emitting the received first light toward an object, and emitting a second light from the object; receiving light and emitting the received second light toward the measurement optical system;
    The optical system, wherein the second light is light for measuring the object.
  26.  加工用の工具が着脱可能な主軸を備える加工装置を有する工作機械に取り付け可能であり、物体に第1光を照射し且つ前記第1光が照射された前記物体からの第2光を検出することで前記物体を計測可能な計測装置であって、
     前記加工装置の前記主軸とは異なる部分に取り付けられる第1光学系と、
     前記主軸に着脱可能に取り付けられる第2光学系と
     を備え、
     前記第1光学系は、前記第2光学系に向けて前記第1光を射出し且つ前記第2光学系からの前記第2光を受光する
     計測装置。
    A machining tool is attachable to a machine tool having a machining apparatus having a detachable spindle, irradiates an object with a first light, and detects a second light from the object irradiated with the first light. A measuring device capable of measuring the object by
    a first optical system attached to a portion different from the main axis of the processing device;
    a second optical system detachably attached to the main shaft,
    The first optical system emits the first light toward the second optical system and receives the second light from the second optical system.
PCT/JP2021/003343 2021-01-29 2021-01-29 Machine tool, optical systems, and measuring device WO2022162893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003343 WO2022162893A1 (en) 2021-01-29 2021-01-29 Machine tool, optical systems, and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003343 WO2022162893A1 (en) 2021-01-29 2021-01-29 Machine tool, optical systems, and measuring device

Publications (1)

Publication Number Publication Date
WO2022162893A1 true WO2022162893A1 (en) 2022-08-04

Family

ID=82654331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003343 WO2022162893A1 (en) 2021-01-29 2021-01-29 Machine tool, optical systems, and measuring device

Country Status (1)

Country Link
WO (1) WO2022162893A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658710A (en) * 1992-08-10 1994-03-04 Fuji Photo Optical Co Ltd Interferrometer
JPH07198316A (en) * 1993-12-28 1995-08-01 Asahi Optical Co Ltd Interferometer
JPH1144514A (en) * 1997-07-29 1999-02-16 Mitsutoyo Corp Light interference-type measuring device, working device provided with the measuring device, working tool applied to the working device and light interference-type measuring method
JPH1144517A (en) * 1997-07-29 1999-02-16 Olympus Optical Co Ltd Method and instrument for measurement of shape
JPH11295046A (en) * 1998-04-09 1999-10-29 Mitsutoyo Corp Machining tool, optical measuring apparatus using the same and machining equipment provided therewith
JP2014001966A (en) * 2012-06-15 2014-01-09 Keyence Corp Shape measuring apparatus and shape measuring method
JP2017515678A (en) * 2014-02-20 2017-06-15 ディーエムジー モリ アドバンスト ソリューションズ デベロップメントDmg Mori Advanced Solutions Development Processing head of hybrid addition / removal processing center
JP2020085717A (en) * 2018-11-28 2020-06-04 株式会社日立製作所 Shape measurement system, probe tip part, and method for measuring shape

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658710A (en) * 1992-08-10 1994-03-04 Fuji Photo Optical Co Ltd Interferrometer
JPH07198316A (en) * 1993-12-28 1995-08-01 Asahi Optical Co Ltd Interferometer
JPH1144514A (en) * 1997-07-29 1999-02-16 Mitsutoyo Corp Light interference-type measuring device, working device provided with the measuring device, working tool applied to the working device and light interference-type measuring method
JPH1144517A (en) * 1997-07-29 1999-02-16 Olympus Optical Co Ltd Method and instrument for measurement of shape
JPH11295046A (en) * 1998-04-09 1999-10-29 Mitsutoyo Corp Machining tool, optical measuring apparatus using the same and machining equipment provided therewith
JP2014001966A (en) * 2012-06-15 2014-01-09 Keyence Corp Shape measuring apparatus and shape measuring method
JP2017515678A (en) * 2014-02-20 2017-06-15 ディーエムジー モリ アドバンスト ソリューションズ デベロップメントDmg Mori Advanced Solutions Development Processing head of hybrid addition / removal processing center
JP2020085717A (en) * 2018-11-28 2020-06-04 株式会社日立製作所 Shape measurement system, probe tip part, and method for measuring shape

Similar Documents

Publication Publication Date Title
US6720567B2 (en) Apparatus and method for focal point control for laser machining
JP7409315B2 (en) Processing system and processing method
JP2020060770A (en) Systems and methods for improved focus tracking using a hybrid mode light source
US9772182B2 (en) Method and device for highly-precise measurement of surfaces
US10712147B2 (en) Measurement system and method of manufacturing shaft with hole
US20220355412A1 (en) Processing apparatus
JP2009166136A (en) Grinding device to manufacture optical element, manufacturing method of optical element and precision measuring device for precisely measuring shape/dimension of metallic mold to manufacture optical element or optical element
JP2024026496A (en) Processing systems and robot systems
CN112839765A (en) Method for determining characteristic variables of a machining process and machining device
WO2022162893A1 (en) Machine tool, optical systems, and measuring device
JP5450014B2 (en) Method and apparatus for measuring the edge of an optical lens
JP7310829B2 (en) Machining system and machining method
WO2023032054A1 (en) Movement error calculating system, machine tool, calculating device, calibration method, and optical measuring device
JP5358898B2 (en) Optical surface shape measuring method and apparatus, and recording medium
JP4027605B2 (en) Optical surface shape measuring method and apparatus, and recording medium
JP2004093192A (en) Measuring probe and optical measuring device
WO2023228401A1 (en) Machining system
JP2002250621A (en) Shape-measuring method and device for optical element, and its type
WO2023037541A1 (en) Processing system
CN117940735A (en) Movement error calculation system, machine tool, calculation device, calibration method, and optical measurement device
WO2021210104A1 (en) Processing system and measurement member
WO2023032053A1 (en) Machining system
WO2024084694A1 (en) Optical device, optical processing device, optical processing method, and correction member
WO2021220477A1 (en) Processing system
US20220347754A1 (en) System and method for controlled manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP