WO2024084694A1 - Optical device, optical processing device, optical processing method, and correction member - Google Patents

Optical device, optical processing device, optical processing method, and correction member Download PDF

Info

Publication number
WO2024084694A1
WO2024084694A1 PCT/JP2022/039339 JP2022039339W WO2024084694A1 WO 2024084694 A1 WO2024084694 A1 WO 2024084694A1 JP 2022039339 W JP2022039339 W JP 2022039339W WO 2024084694 A1 WO2024084694 A1 WO 2024084694A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavefront
processing
optical system
optical
workpiece
Prior art date
Application number
PCT/JP2022/039339
Other languages
French (fr)
Japanese (ja)
Inventor
武利 根岸
正範 荒井
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2022/039339 priority Critical patent/WO2024084694A1/en
Publication of WO2024084694A1 publication Critical patent/WO2024084694A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms

Definitions

  • the present invention relates to an optical device, an optical processing device, an optical processing method, and a correction member.
  • Optical devices that irradiate light beams are used, for example, in optical processing devices.
  • optical devices it is necessary to correct aberration.
  • wavefront aberration by using a deformable mirror (see, for example, Patent Document 1) to change the wavefront of the reflected light beam.
  • the first aspect of the present invention is an optical device used in an optical processing device that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system, the optical device comprising: a wavefront modification member into which the processing beam from the light source is incident and that modifies the wavefront of the processing beam in the beam cross section; and a deflection member that changes the traveling direction of the processing beam from the wavefront modification member and changes the irradiation position on the workpiece of the processing beam that is irradiated onto the workpiece through the objective optical system.
  • the second aspect of the present invention is an optical device used in an optical processing device that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system, and includes a wavefront modification member into which the processing beam from the light source is incident and which modifies the wavefront of the processing beam in the beam cross section, a relay optical system into which the processing beam emitted from the wavefront modification member is incident, and a deflection member that changes the traveling direction of the processing beam from the relay optical system to cause it to be incident on the objective optical system and change the irradiation position of the processing beam on the workpiece, and the relay optical system is an optical device that optically conjugates the wavefront modification surface of the wavefront modification member with the deflection member.
  • the third aspect of the present invention is an optical device used in an optical processing device that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system
  • the optical device comprising: a beam splitting member that splits the processing beam from the light source into multiple processing beams; a conjugate optical system on which the multiple processing beams emitted from the beam splitting member are incident and form a conjugate position optically conjugate with the beam splitting surface of the beam splitting member; and a wavefront changing member on which the multiple processing beams from the conjugate optical system are incident and that changes the wavefronts in the beam cross section of the multiple processing beams that are emitted and incident on the objective optical system, the wavefront changing surface of the wavefront changing member being located at the conjugate position of the beam splitting surface.
  • the fourth aspect of the present invention is an optical device used in an optical processing device that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system, the optical device comprising: a polarizing beam splitter onto which the processing beam from the light source is incident; a wavefront changing member into which the processing beam via the polarizing beam splitter is incident and which changes the wavefront of the exiting processing beam in the beam cross section and causes the processing beam to be incident on the polarizing beam splitter; and a quarter-wave plate arranged in the optical path of the processing beam with the wavefront changed.
  • the fifth aspect of the present invention is an optical device used in an optical processing device that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system, and includes a wavefront modification member into which the processing beam from the light source is incident and which modifies the wavefront of the processing beam in a beam cross section, and the wavefront modification member modifies the wavefront of the processing beam emitted from the wavefront modification member to correct a non-rotationally symmetric component of the wavefront of the processing beam from the objective optical system when changing the focusing position of the processing beam from the objective optical system in relation to the optical axis direction of the objective optical system.
  • the sixth aspect of the present invention is an optical processing device that processes a workpiece by irradiating a processing beam from a light source through an objective optical system onto the workpiece, and is an optical processing device that includes the optical device described above.
  • the seventh aspect of the present invention is an optical processing method for processing a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system, in which the processing beam from the light source is incident on the optical device described above, and the processing beam from the optical device is irradiated onto the workpiece via the objective optical system.
  • the eighth aspect of the present invention is a correction member used in an optical device that irradiates a light beam from a light source via a deflection member and an objective optical system onto a workpiece in a scannable manner, the correction member including a wavefront modification member disposed in an optical path between the light source and the deflection member, which modifies the wavefront in the beam cross section of the light beam heading toward the deflection member, the wavefront modification member being a correction member that corrects the change in the wavefront in the beam cross section of the light beam from the objective optical system that occurs with the operation of the deflection member.
  • the ninth aspect of the present invention is a correction member used in an optical device that irradiates a light beam from a light source via a deflection member and an objective optical system onto a workpiece in a scannable manner, and includes a wavefront modification member that is disposed in an optical path between the light source and the deflection member and modifies the wavefront in the beam cross section of the light beam heading toward the deflection member, and the wavefront modification member is a correction member that corrects the change in the wavefront in the beam cross section of the light beam from the objective optical system that occurs with the movement of the irradiation position of the light beam irradiated from the objective optical system onto the workpiece.
  • FIG. 1 is a schematic configuration diagram showing an example of an optical processing apparatus according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a configuration of the optical processing apparatus.
  • FIG. FIG. 2 is a schematic diagram showing a processing optical system, a deflection optical system, and an objective optical system.
  • FIG. 2 is a perspective view showing a processed shot area.
  • FIG. 2 is a perspective view showing a measurement shot area.
  • 1A to 1C are schematic diagrams showing the cross-sectional shape of a processing beam before and after correction.
  • 11 is a cross-sectional view showing a state in which a mapping tool is attached to a stage of an optical processing apparatus.
  • FIG. FIG. 2 is a cross-sectional view showing an example of a map tool.
  • 3 is a flowchart showing an optical processing method according to the present embodiment.
  • FIG. 1 is a cross-sectional view showing an example of a light receiving device.
  • the optical processing device will be described with reference to Figures 1 and 2.
  • the directions indicated by the arrows in Figure 1 may be referred to as the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively.
  • the rotation direction around the X-axis, the Y-axis, and the Z-axis may be referred to as the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction, respectively.
  • the X-axis direction and the Y-axis direction are each assumed to be horizontal directions
  • the Z-axis direction is assumed to be vertical.
  • the optical processing apparatus SYS includes a processing unit 1, a control unit 2, and a housing 3.
  • the housing 3 is formed in a box shape having an internal space SP.
  • the internal space SP of the housing 3 may be purged with a purge gas (i.e., gas) including an inert gas such as nitrogen gas or argon gas, or CDA (Clean Dry Air), or it may not be purged with a purge gas.
  • a purge gas i.e., gas
  • an inert gas such as nitrogen gas or argon gas, or CDA (Clean Dry Air)
  • the internal space SP of the housing 3 may be evacuated, or it may not be evacuated. At least a portion of the processing unit 1 is accommodated in the internal space SP of the housing 3.
  • the processing unit 1 is capable of processing the workpiece W, which is the object to be processed (which may also be referred to as the base material), under the control of the control unit 2.
  • the material of the workpiece W may be, for example, a metal, an alloy (e.g., duralumin, etc.), a semiconductor (e.g., silicon), or a resin.
  • the material of the workpiece W may also be a composite material such as CFRP (Carbon Fiber Reinforced Plastic), paint (one example being a paint layer applied to a substrate), glass, or any other material.
  • the processing unit 1 irradiates the workpiece W with a processing beam EL in order to process the workpiece W.
  • the processing beam EL may be referred to as processing light.
  • the processing beam EL is a laser beam.
  • the processing beam EL may be a type of light beam other than a laser beam.
  • the wavelength of the processing beam EL is set to, for example, 517 nm (or 515 nm), but may be any wavelength as long as it is possible to process the workpiece W by irradiating it.
  • the wavelength of the processing beam EL may be a wavelength of visible light or a wavelength of invisible light (for example, at least one of infrared light, ultraviolet light, and extreme ultraviolet light).
  • the processing beam EL may or may not include pulsed light.
  • the processing unit 1 may perform additional processing on the workpiece W. That is, the processing unit 1 may perform additional processing to form a shaped object on the workpiece W.
  • the processing unit 1 may perform removal processing on the workpiece W. That is, the processing unit 1 may perform removal processing to remove a part of the workpiece W.
  • the processing unit 1 may perform marking processing to form a desired mark on the surface of the workpiece W.
  • the processing unit 1 may perform peening processing to change the characteristics of the surface of the workpiece W.
  • the processing unit 1 may perform peeling processing to peel off the surface of the workpiece W.
  • the processing unit 1 may perform welding processing to join one workpiece W to another workpiece W.
  • the processing unit 1 may perform cutting processing to cut the workpiece W.
  • the processing unit 1 may perform flattening processing (in other words, remelt processing) to melt the surface of the workpiece W and solidify the melted surface to make the surface closer to a flat surface.
  • the processing unit 1 may process the workpiece W to form a desired structure on the surface of the workpiece W. However, the processing unit 1 may perform processing other than the processing for forming the desired structure on the surface of the workpiece W.
  • An example of a desired structure is a riblet structure.
  • the riblet structure may include a structure that can reduce the resistance of the surface of the workpiece W to the fluid (particularly, at least one of frictional resistance and turbulent frictional resistance). For this reason, the riblet structure may be formed on a portion of the workpiece W that is installed (in other words, located) in the fluid. Examples of the workpiece W on which a riblet structure is formed include aircraft, windmills, engine turbines, and power generation turbines.
  • the processing unit 1 can measure the measurement object M under the control of the control unit 2.
  • the processing unit 1 irradiates the measurement object M with a measurement beam ML for measuring the measurement object M.
  • the processing unit 1 measures the measurement object M by irradiating the measurement object M with the measurement beam ML and detecting (i.e., receiving) at least a portion of the light returning from the measurement object M irradiated with the measurement beam ML.
  • the light returning from the measurement object M irradiated with the measurement beam ML is light from the measurement object M generated by irradiation with the measurement beam ML.
  • the light returning from the measurement object M irradiated with the measurement beam ML is referred to as the return beam RL.
  • the return beam RL may also be referred to as return light.
  • the measurement beam ML may also be referred to as measurement light.
  • the measurement beam ML may be any type of light as long as it is capable of measuring the measurement object M by irradiating it on the measurement object M.
  • the description will be given using an example in which the measurement beam ML is laser light.
  • the measurement beam ML may be a type of light other than laser light.
  • the wavelength of the measurement beam ML is set to, for example, 1550 nm, but may be any wavelength as long as it is capable of measuring the measurement object M by irradiating it on the measurement object M.
  • the wavelength of the measurement beam ML may be the wavelength of visible light or the wavelength of invisible light (for example, at least one of infrared light, ultraviolet light, and extreme ultraviolet light).
  • the measurement beam ML may include pulsed light (for example, pulsed light having an emission time of picoseconds or less) or may not include pulsed light.
  • the processing unit 1 may be capable of measuring the characteristics of the measurement object M using the measurement beam ML.
  • the characteristics of the measurement object M may include, for example, at least one of the position of the measurement object M, the shape of the measurement object M, the reflectance of the measurement object M, the transmittance of the measurement object M, the temperature of the measurement object M, and the surface roughness of the measurement object M.
  • the measurement object M may include, for example, the workpiece W that is processed by the processing unit 1.
  • the measurement object M may include, for example, any object that is placed on the stage 50 described below.
  • the measurement object M may include, for example, the stage 50.
  • the processing unit 1 includes a processing light source 10, a measurement light source 20, a processing head 100, a head drive system 40, a position measurement device 45, a stage 50, a stage drive system 60, and a position measurement device 65.
  • the processing light source 10 generates a processing beam EL.
  • the processing beam EL is a laser beam
  • the processing light source 10 may include, for example, a laser diode.
  • the processing light source 10 may be a light source capable of pulse oscillation.
  • the processing light source 10 is capable of generating pulsed light as the processing beam EL.
  • the processing light source 10 may be a CW light source that generates a CW (continuous wave).
  • the measurement light source 20 generates a measurement beam ML.
  • the measurement beam ML is a laser beam
  • the measurement light source 20 may include, for example, a laser diode.
  • the measurement light source 20 may be a light source capable of pulse oscillation.
  • the measurement light source 20 is capable of generating pulsed light as the processing beam EL.
  • the measurement light source 20 may be a CW light source that generates a CW (continuous wave).
  • the processing head 100 is capable of irradiating the workpiece W with the processing beam EL generated by the processing light source 10 and irradiating the measurement beam ML generated by the measurement light source 20 to the measurement object M.
  • the processing head 100 includes a processing optical system 110, a measurement optical system 130, a synthesis optical system 150, a deflection optical system 160, and an objective optical system 170.
  • the processing head 100 irradiates the processing beam EL (more specifically, a plurality of processing beams EL1 to EL9 described later) to the workpiece W via the processing optical system 110, the synthesis optical system 150, the deflection optical system 160, and the objective optical system 170.
  • the processing head 100 also irradiates the measurement beam ML to the measurement object M via the measurement optical system 130, the synthesis optical system 150, the deflection optical system 160, and the objective optical system 170.
  • the detailed configuration of the processing head 100 will be described later.
  • the head drive system 40 moves the machining head 100.
  • the head drive system 40 moves the position of the machining head 100.
  • the head drive system 40 may be referred to as a moving device.
  • the head drive system 40 may, for example, move the machining head 100 linearly along a movement axis along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the head drive system 40 may, for example, move the machining head 100 rotationally along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction.
  • the head drive system 40 moves the machining head 100
  • the relative positional relationship between the machining head 100 and the stage 50 changes.
  • the relative positional relationship between the processing shot area PSA (see FIG. 5 described later) where the machining head 100 performs processing and the workpiece W changes.
  • the processing shot area PSA moves relative to the workpiece W.
  • the machining unit 1 may process the workpiece W while moving the machining head 100.
  • the machining unit 1 may set the processing shot area PSA at a desired position on the workpiece W by moving the machining head 100, and process the desired position on the workpiece W.
  • the head drive system 40 moves the processing head 100
  • the relative positional relationship between the measurement shot area MSA (see FIG. 6 described later) where the processing head 100 performs the measurement and the measurement object M changes.
  • the measurement shot area MSA moves with respect to the measurement object M.
  • the processing unit 1 may measure the measurement object M while moving the processing head 100. Specifically, the processing unit 1 may set the measurement shot area MSA at a desired position on the measurement object M by moving the processing head 100, and measure the desired position of the measurement object M.
  • the position measuring device 45 can measure the position of the machining head 100.
  • the position measuring device 45 may include, for example, an interferometer (e.g., a laser interferometer).
  • the position measuring device 45 may include, for example, an encoder (at least one of a linear encoder and a rotary encoder, for example).
  • the position measuring device 45 may include, for example, a potentiometer.
  • the position measuring device 45 may include, for example, an open-loop control type position detection device.
  • the open-loop control type position detection device is a position detection device that measures the position of the machining head 100 by estimating the amount of movement of the machining head 100 from the integrated value of the number of pulses for driving the stepping motor.
  • the workpiece W is placed on the stage 50.
  • the stage 50 may be referred to as a placement device.
  • the workpiece W is placed on a placement surface 51, which is at least a part of the upper surface of the stage 50.
  • the stage 50 is capable of supporting the workpiece W placed on the stage 50.
  • the stage 50 may be capable of holding the workpiece W placed on the stage 50.
  • the stage 50 may be equipped with at least one of a mechanical chuck, an electrostatic chuck, a vacuum chuck, and the like, in order to hold the workpiece W.
  • a jig for holding the workpiece W may hold the workpiece W, and the stage 50 may hold the jig that holds the workpiece W.
  • the stage 50 may not hold the workpiece W placed on the stage 50. In this case, the workpiece W may be placed on the stage 50 without being clamped.
  • the stage drive system 60 moves the stage 50. In other words, the stage drive system 60 moves the position of the stage 50. For this reason, the stage drive system 60 may be referred to as a moving device.
  • the stage drive system 60 may, for example, move the stage 50 linearly along a movement axis along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the stage drive system 60 may, for example, move the stage 50 rotationally along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction.
  • the processing unit 1 may process the workpiece W while moving the stage 50. Specifically, the processing unit 1 may set the processing shot area PSA at a desired position on the workpiece W by moving the stage 50, and process the desired position on the workpiece W.
  • the processing unit 1 may measure the measurement object M while moving the stage 50. Specifically, the processing unit 1 may set the measurement shot area MSA at a desired position on the measurement object M by moving the stage 50, and measure the desired position of the measurement object M.
  • the position measuring device 65 can measure the position of the stage 50.
  • the position measuring device 65 may include, for example, an interferometer (e.g., a laser interferometer).
  • the position measuring device 65 may include, for example, an encoder (at least one of a linear encoder and a rotary encoder, for example).
  • the position measuring device 65 may include, for example, a potentiometer.
  • the position measuring device 65 may include, for example, an open-loop control type position detection device.
  • the open-loop control type position detection device is a position detection device that measures the position of the stage 50 by estimating the amount of movement of the stage 50 from the integrated value of the number of pulses for driving the stepping motor.
  • the control unit 2 controls the operation of the processing unit 1.
  • the control unit 2 may control the operation of the processing head 100 provided in the processing unit 1.
  • the control unit 2 may control the operation of at least one of the processing optical system 110, the measurement optical system 130, the synthesis optical system 150, the deflection optical system 160, and the objective optical system 170 provided in the processing head 100.
  • the control unit 2 may control the operation of the head drive system 40 provided in the processing unit 1 (for example, the movement of the processing head 100).
  • the control unit 2 may control the operation of the stage drive system 60 provided in the processing unit 1 (for example, the movement of the stage 50).
  • the control unit 2 may control the operation of the processing unit 1 based on the measurement results of the measurement object M by the processing unit 1. Specifically, the control unit 2 may generate measurement data of the measurement object M (e.g., data related to at least one of the position and shape of the measurement object M) based on the measurement results of the measurement object M, and control the operation of the processing unit 1 based on the generated measurement data. For example, the control unit 2 may generate measurement data of at least a part of the workpiece W based on the measurement results of the workpiece W, which is an example of the measurement object M (e.g., calculate at least one of the position and shape of at least a part of the workpiece W), and control the operation of the processing unit 1 to process the workpiece W based on the measurement data.
  • the measurement object M e.g., data related to at least one of the position and shape of the measurement object M
  • the control unit 2 may generate measurement data of at least a part of the workpiece W based on the measurement results of the workpiece W, which is an example
  • the control unit 2 may include, for example, a calculation device and a storage device.
  • the calculation device may include, for example, at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • the storage device may include, for example, a memory.
  • the control unit 2 functions as a device that controls the operation of the machining unit 1 by the calculation device executing a computer program.
  • This computer program is a computer program for making the calculation device perform (i.e., execute) the operation to be performed by the control unit 2, which will be described later.
  • this computer program is a computer program for making the control unit 2 function so as to make the machining unit 1 perform the operation to be described later.
  • the computer program executed by the calculation device may be recorded in a storage device (i.e., a recording medium) included in the control unit 2, or may be recorded in any storage medium (e.g., a hard disk or a semiconductor memory) built into the control unit 2 or that can be externally attached to the control unit 2.
  • the calculation device may download the computer program to be executed from a device external to the control unit 2 via a network interface.
  • the control unit 2 does not have to be provided inside the processing unit 1.
  • the control unit 2 may be provided outside the processing unit 1 as a server or the like.
  • the control unit 2 and the processing unit 1 may be connected by a wired and/or wireless network (or a data bus and/or a communication line).
  • a wired network for example, a network using a serial bus type interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485, and USB may be used.
  • a network using a parallel bus type interface may be used.
  • a network using an interface compliant with Ethernet (registered trademark) represented by at least one of 10BASE-T, 100BASE-TX, and 1000BASE-T may be used.
  • a network using radio waves may be used.
  • An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of a wireless LAN and Bluetooth (registered trademark)).
  • a network using infrared rays may be used as a wireless network.
  • a network using optical communication may be used as a wireless network.
  • the control unit 2 and the processing unit 1 may be configured to be able to transmit and receive various information via the network.
  • the control unit 2 may also be able to transmit information such as commands and control parameters to the processing unit 1 via the network.
  • the processing unit 1 may be equipped with a receiving device that receives information such as commands and control parameters from the control unit 2 via the network.
  • the processing unit 1 may be equipped with a transmitting device (i.e., an output device that outputs information to the control unit 2) that transmits information such as commands and control parameters to the control unit 2 via the network.
  • a first control device that performs a part of the processing performed by the control unit 2 may be provided inside the processing unit 1, while a second control device that performs another part of the processing performed by the control unit 2 may be provided outside the processing unit 1.
  • a computation model that can be constructed by machine learning may be implemented by the computation device executing a computer program.
  • An example of a computation model that can be constructed by machine learning is, for example, a computation model including a neural network (so-called artificial intelligence (AI)).
  • learning of the computation model may include learning of parameters of the neural network (for example, at least one of weights and biases).
  • the control unit 2 may use the computation model to control the operation of the machining unit 1.
  • the operation of controlling the operation of the machining unit 1 may include the operation of controlling the operation of the machining unit 1 using the computation model.
  • the control unit 2 may be implemented with a computation model that has already been constructed by offline machine learning using teacher data.
  • control unit 2 may control the operation of the machining unit 1 using a computation model implemented in a device external to the control unit 2 (i.e., a device provided outside the machining unit 1) in addition to or instead of the computation model implemented in the control unit 2.
  • the recording medium for recording the computer program executed by the control unit 2 may be at least one of the following: CD-ROM, CD-R, CD-RW, flexible disk, MO, DVD-ROM, DVD-RAM, DVD-R, DVD+R, DVD-RW, DVD+RW, optical disks such as Blu-ray (registered trademark), magnetic media such as magnetic tape, magneto-optical disk, semiconductor memory such as USB memory, and any other medium capable of storing a program.
  • the recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which a computer program is implemented in a state in which it can be executed in at least one of the forms of software and firmware, etc.).
  • each process or function included in the computer program may be realized by a logical processing block realized in the control unit 2 by the control unit 2 (i.e., a computer) executing the computer program, or may be realized by hardware such as a predetermined gate array (FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit)) provided in the control unit 2, or may be realized in a form that combines logical processing blocks and partial hardware modules that realize some elements of the hardware.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • a processing beam EL in a linearly polarized state generated by a processing light source 10 is incident on the processing head 100 via an optical transmission member 11 such as an optical fiber.
  • the processing light source 10 may be disposed outside the processing head 100, or may be disposed inside the processing head 100.
  • the processing beam EL incident on the processing head 100 does not have to pass through an optical transmission member 11 such as an optical fiber.
  • the processing head 100 may also be equipped with the processing light source 10.
  • the processing head 100 includes the processing optical system 110, the measurement optical system 130, the synthesis optical system 150, the deflection optical system 160, and the objective optical system 170.
  • the processing optical system 110, the deflection optical system 160, and the control unit 2 may be referred to as the optical device 101 (see FIG. 2) or as an optical scanning device.
  • the optical device 101 may include the measurement optical system 130 and the synthesis optical system 150, or may not include the measurement optical system 130 and the synthesis optical system 150.
  • the processing optical system 110 is irradiated with the processing beam EL transmitted by the optical transmission member 11.
  • the processing optical system 110 splits the processing beam EL incident on the processing optical system 110 into multiple processing beams EL1 to EL9 (see FIG.
  • the multiple processing beams EL1 to EL9 emitted from the processing optical system 110 are irradiated onto the workpiece W via the synthesis optical system 150, the deflection optical system 160, and the objective optical system 170.
  • FIG. 3 to avoid complicating the diagram, only the first processing beam EL1 of the multiple processing beams EL1 to EL9 is shown.
  • the processing optical system 110 includes a diffractive optical element 111, a conjugate optical system 112, a wavefront changing unit 115, and a relay optical system 125.
  • a linearly polarized processing beam EL transmitted by the optical transmission member 11 is incident on the diffractive optical element 111.
  • the diffractive optical element 111 splits the processing beam EL incident on the diffractive optical element 111 into multiple processing beams (for example, nine processing beams) EL1 to EL9 by the diffraction phenomenon.
  • the diffractive optical element 111 is disposed so as to be insertable and detachable from the optical path from the processing light source 10 (first optical path described later) using a driving device (not shown).
  • the multiple processing beams from the diffractive optical element 111 may be multiple parallel beams traveling at a predetermined angle with respect to the perpendicular to the grating surface 111a of the diffractive optical element 111.
  • the predetermined angle of the first processing beam EL1 described later may be 0 degrees.
  • a correction optical system for correcting the anisotropy of the divergence angle (convergence angle) of the processing beam EL may be arranged in the optical path from the processing light source 10 to the diffractive optical element 111.
  • Such a correction optical system may be, for example, a cylinder zoom optical system equipped with a pair of cylindrical lenses with a variable spacing.
  • the processing light located in the center may be referred to as the first processing beam EL1.
  • the processing light separated from the first processing beam EL1 in the +Y direction may be referred to as the second processing beam EL2.
  • the processing light separated from the first processing beam EL1 in the -Y direction may be referred to as the third processing beam EL3.
  • the processing light separated from the first processing beam EL1 in the +X direction may be referred to as the fourth processing beam EL4.
  • the processing light separated from the first processing beam EL1 in the -X direction may be referred to as the fifth processing beam EL5.
  • the processing light separated from the second processing beam EL2 in the +X direction (and the +Y direction from the fourth processing beam EL4) may be referred to as the sixth processing beam EL6.
  • the processing light separated from the second processing beam EL2 in the -X direction (and the +Y direction from the fifth processing beam EL5) may be referred to as the seventh processing beam EL7.
  • the processing light separated from the third processing beam EL3 in the +X direction (and from the fourth processing beam EL4 in the -Y direction) may be referred to as the eighth processing beam EL8.
  • the processing light separated from the third processing beam EL3 in the -X direction (and from the fifth processing beam EL5 in the -Y direction) may be referred to as the ninth processing beam EL9.
  • the grating surface 111a of the diffractive optical element 111 may be referred to as a beam splitting surface.
  • multiple processing beams EL1 to EL9 are distributed in a portion of the processing shot area PSA, and these multiple processing beams EL1 to EL9 move within the processing shot area PSA, but multiple processing beams may be distributed throughout the entire processing shot area PSA.
  • the diffractive optical element 111 divides the incident processing beam EL into nine, but the number of processing beams divided by the diffractive optical element 111 is not limited to nine.
  • the diffractive optical element 111 only needs to divide the incident processing beam into two or more processing beams.
  • the divided processing beams are arranged in a matrix, but the divided processing beams may be arranged in a single row, i.e., in a single straight line, or in two rows or a cross shape.
  • the conjugate optical system 112 includes a first optical system 113 having a positive refractive power and a second optical system 114 having a positive refractive power.
  • the first optical system 113 and the second optical system 114 may be composed of one or more lens elements or one or more reflecting elements.
  • the conjugate optical system 112 forms a conjugate position CP that is optically conjugate with the grating surface 111a of the diffractive optical element 111 by the first optical system 113 and the second optical system 114.
  • the variable reflection surface 118 of the deformable mirror 117 that constitutes the wavefront changing unit 115 is disposed at the conjugate position CP that is optically conjugate with the grating surface 111a of the diffractive optical element 111.
  • a plurality of processing beams EL1 to EL9 emitted from the grating surface 111a of the diffractive optical element 111 are incident on the first optical system 113.
  • the front focal position of the first optical system 113 may be located on the grating surface 111a of the diffractive optical element 111.
  • the first optical system 113 makes the directions of travel of the multiple processing beams EL1 to EL9 that pass through the first optical system 113 parallel to each other.
  • the multiple processing beams EL1 to EL9 that pass through the first optical system 113 are incident on the second optical system 114.
  • the front focal position of the second optical system 114 may be located at the rear focal position of the first optical system 113.
  • the second optical system 114 collects the multiple processing beams EL1 to EL9 that pass through the second optical system 114 toward the conjugate position CP, that is, the variable reflecting surface 118 of the deformable mirror 117.
  • the multiple processing beams EL1 to EL9 from the grating surface 111a of the diffractive optical element 111 are each parallel light
  • the multiple processing beams EL1 to EL9 that are parallel light are incident on the variable reflecting surface 118 of the deformable mirror 117 at different angles of incidence.
  • the rear focal position of the second optical system 114 may be located at the conjugate position CP (the variable reflecting surface 118 of the deformable mirror 117).
  • the wavefront changing unit 115 includes a polarizing beam splitter 116, a deformable mirror 117, a beam dumper 119, a first half-wave plate 121, a first quarter-wave plate 122, a second half-wave plate 123, and a second quarter-wave plate 124.
  • the first half-wave plate 121 is disposed between the conjugate optical system 112 and the polarizing beam splitter 116 in the optical path from the processing light source 10 to the polarizing beam splitter 116.
  • the optical path from the processing light source 10 to the polarizing beam splitter 116 may be referred to as the first optical path.
  • a plurality of processing beams EL1 to EL9 that have passed through the second optical system 114 of the conjugate optical system 112 are incident on the first half-wave plate 121.
  • the multiple processing beams EL1 to EL9 incident on the first half-wave plate 121 pass through the first half-wave plate 121 and enter the polarizing beam splitter 116.
  • the first half-wave plate 121 adjusts the polarization direction of the multiple processing beams EL1 to EL9 so that the multiple processing beams EL1 to EL9 incident on the polarizing beam splitter 116 become s-polarized (s-polarized with respect to the polarization separation surface of the polarizing beam splitter 116).
  • the first half-wave plate 121 may also be referred to as a polarization direction adjustment member.
  • the polarizing beam splitter 116 can split the light incident along the first optical path (optical path from the processing light source 10 to the polarizing beam splitter 116) into light traveling along a second optical path that intersects with the first optical path, typically perpendicular to the first optical path, and light traveling along a third optical path that is an extension of the first optical path.
  • the polarizing beam splitter 116 can also split the light incident along the second optical path (light returning from the second optical path) into light traveling along the first optical path and light traveling along a fourth optical path that is an extension of the second optical path.
  • a first quarter-wave plate 122 and a deformable mirror 117 are arranged in this order from the polarizing beam splitter 116 side.
  • a beam damper 119 is arranged in the third optical path.
  • a second half-wave plate 123, a second quarter-wave plate 124, and a relay optical system 125 are arranged in this order from the polarizing beam splitter 116 side.
  • the multiple processing beams EL1 to EL9 that have passed through the first half-wave plate 121 are incident on the polarizing beam splitter 116.
  • the polarizing beam splitter 116 reflects the multiple processing beams EL1 to EL9 (s-polarized) that are incident along the first optical path toward the first quarter-wave plate 122 (i.e., the deformable mirror 117) that is arranged in the second optical path.
  • the first quarter-wave plate 122 is arranged between the polarizing beam splitter 116 and the deformable mirror 117 in the second optical path.
  • the multiple processing beams EL1 to EL9 (s-polarized) that have been reflected by the polarizing beam splitter 116 become circularly polarized when they pass through the first quarter-wave plate 122.
  • the deformable mirror 117 is incident on a plurality of processing beams EL1 to EL9 (circularly polarized) that are reflected by the polarizing beam splitter 116 and pass through the first quarter-wave plate 122.
  • the deformable mirror 117 has a deformable variable reflecting surface 118 and a number of actuators connected to the variable reflecting surface 118, and is capable of changing the shape of the variable reflecting surface 118 in response to a control signal from the control unit 2.
  • the deformable mirror 117 reflects the multiple processing beams EL1 to EL9 incident on the deformable mirror 117 at the variable reflecting surface 118, and causes the multiple processing beams EL1 to EL9 to be incident on the polarizing beam splitter 116 via the first quarter-wave plate 122. At this time, the deformable mirror 117 can change the wavefront of each beam cross section of the multiple processing beams EL1 to EL9 emitted from the variable reflecting surface 118 by deforming the variable reflecting surface 118.
  • the beam cross section may be a surface that crosses the beam traveling direction, typically a surface that is perpendicular to the beam traveling direction.
  • the deformable mirror 117 may be referred to as a wavefront changing member.
  • the variable reflecting surface 118 may be referred to as a wavefront changing surface.
  • the variable reflecting surface 118 of the deformable mirror 117 is optically conjugate with the grating surface 111a of the diffractive optical element 111.
  • the multiple processing beams EL1 to EL9 emitted from the grating surface 111a of the diffractive optical element 111 are each converted into parallel light by the first optical system 113 and the second optical system 114 of the conjugate optical system 112, and are incident on the variable reflecting surface 118 of the deformable mirror 117 so as to converge.
  • the multiple processing beams EL1 to EL9 (circularly polarized) reflected by the variable reflecting surface 118 of the deformable mirror 117 become p-polarized (p-polarized with respect to the polarization separation surface of the polarizing beam splitter 116) when they pass through the first quarter-wave plate 122 again.
  • the polarizing beam splitter 116 transmits the multiple processing beams EL1 to EL9 (p-polarized) incident along the second optical path toward the second half-wave plate 123 (i.e., the relay optical system 125) arranged in the fourth optical path.
  • the multiple processing beams EL1 to EL9 reflected by the variable reflecting surface 118 of the deformable mirror 117 are emitted along the fourth optical path via the polarizing beam splitter 116.
  • the multiple processing beams EL1 to EL9 (p-polarized) emitted along the fourth optical path become circularly polarized when they pass through the second half-wave plate 123 and the second quarter-wave plate 124.
  • the multiple processing beams EL1 to EL9 that pass through the second quarter-wave plate 124 are incident on the relay optical system 125.
  • the deformable mirror 117 is disposed on the side where the multiple processing beams EL1 to EL9 incident on the polarizing beam splitter 116 are reflected, but the deformable mirror 117 may also be disposed on the side where the multiple processing beams EL1 to EL9 incident on the polarizing beam splitter 116 are transmitted. In this case, the multiple processing beams EL1 to EL9 incident on the polarizing beam splitter 116 may be p-polarized with respect to the polarization separation surface of the polarizing beam splitter 116.
  • the processing beam (return light) returning from the workpiece W toward the polarizing beam splitter 116 becomes linearly polarized when it passes through the second 1/4 wavelength plate 124 after passing through the relay optical system 125.
  • the processing beam from the workpiece W that has passed through the second 1/4 wavelength plate 124 is incident on the second 1/2 wavelength plate 123.
  • the processing beam from the workpiece W that has entered the second 1/2 wavelength plate 123 passes through the second 1/2 wavelength plate 123 and enters the polarizing beam splitter 116.
  • the second 1/2 wavelength plate 123 adjusts the polarization direction of the processing beam from the workpiece W so that the processing beam from the workpiece W that enters the polarizing beam splitter 116 becomes s-polarized.
  • the second 1/2 wavelength plate 123 may be referred to as a second polarization direction adjustment member.
  • the polarizing beam splitter 116 reflects the processing beam (s-polarized) from the workpiece W that enters along the fourth optical path toward the beam damper 119 arranged on the third optical path.
  • the beam damper 119 blocks the processing beam (s-polarized light) from the workpiece W that is reflected by the polarizing beam splitter 116. This allows the beam damper 119 to absorb the processing beam (return light) from the workpiece W.
  • the beam damper 119 is also called a beam trap, beam diffuser, or beam pocket.
  • the relay optical system 125 includes a first relay lens 126 having a positive refractive power and a second relay lens 127 having a positive refractive power.
  • the relay optical system 125 optically conjugates the variable reflecting surface 118 of the deformable mirror 117 and the galvanometer mirror 161 of the deflection optical system 160 with the first relay lens 126 and the second relay lens 127.
  • the relay optical system 125 optically conjugates the variable reflecting surface 118 of the deformable mirror 117 and the entrance pupil PU of the objective optical system 170 with the first relay lens 126 and the second relay lens 127.
  • a plurality of processing beams EL1 to EL9 that have passed through the second 1/4 wavelength plate 124 are incident on the first relay lens 126.
  • the first relay lens 126 makes the traveling directions of the plurality of processing beams EL1 to EL9 that pass through the first relay lens 126 parallel to each other.
  • the second relay lens 127 is incident on the multiple processing beams EL1 to EL9 that have passed through the first relay lens 126.
  • the second relay lens 127 collects the multiple processing beams EL1 to EL9 that have passed through the second relay lens 127 toward the galvanometer mirror 161 of the deflection optical system 160, i.e., the entrance pupil PU of the objective optical system 170.
  • the first relay lens 126 and the second relay lens 127 may be composed of one or more lens elements, one or more reflecting elements, etc.
  • the multiple processing beams EL1 to EL9 emitted from the processing optical system 110 are incident on the synthesis optical system 150.
  • the synthesis optical system 150 emits the multiple processing beams EL1 to EL9 incident on the synthesis optical system 150 toward the deflection optical system 160.
  • the synthesis optical system 150 includes a dichroic mirror 151, a mirror 152, and a correction wavefront measuring device 153.
  • the dichroic mirror 151 reflects the multiple processing beams EL1 to EL9 emitted from the processing optical system 110 toward the mirror 152. Note that the dichroic mirror 151 passes a portion of the (unsplit) processing beam EL emitted from the processing optical system 110 when the diffractive optical element 111 is removed from the first optical path, toward the corrective wavefront measuring device 153 as leakage light.
  • the mirror 152 reflects the multiple processing beams EL1 to EL9 reflected by the dichroic mirror 151 toward the deflection optical system 160.
  • a part of the processing beam EL that passes through the dichroic mirror 151 with the diffractive optical element 111 removed from the first optical path is incident on the corrective wavefront measuring device 153.
  • a light attenuation member may be disposed between the dichroic mirror 151 and the corrective wavefront measuring device 153. The amount of light attenuation by this light attenuation member may be changeable.
  • the corrective wavefront measuring device 153 is disposed at a position where the pupil of the corrective wavefront measuring device 153 is optically conjugate with the variable reflecting surface 118 of the deformable mirror 117.
  • the corrective wavefront measuring device 153 is configured using a Shack-Hartmann sensor.
  • the corrective wavefront measuring device 153 measures the phase distribution of the wavefront of the light (i.e., the processing beam EL) that is incident on the corrective wavefront measuring device 153.
  • the measurement result of the phase distribution of the wavefront by the corrective wavefront measuring device 153 is output to the control unit 2.
  • the correction wavefront measuring device 153 may be incident with multiple processing beams EL that have passed through the dichroic mirror 151 with the diffractive optical element 111 inserted in the first optical path.
  • multiple light spot images are formed on the light detection surface of the photodetector of the correction wavefront measuring device 153, and when the separation distance between these multiple light spot images is small and they can essentially be considered as one spot, the average wavefront of the multiple processing beams EL can be measured. Also, when the separation distance between the multiple light spot images is large and each light spot image can be separated on the light detection surface, the wavefront of each of the multiple processing beams EL can be measured.
  • a light blocking member that passes one of the multiple processing beams EL and blocks the others may be provided at a position where the multiple processing beams EL from the diffractive optical element 111 are spatially separated, typically a position between the first optical system 113 and the second optical system 114 in the conjugate optical system 112, or a position between the first relay lens 126 and the second relay lens 127 in the relay optical system 125, and the wavefronts of the multiple processing beams EL may be measured one by one.
  • the light blocking member may be movable so that the processing beam EL to be passed can be selected.
  • a member that limits the incident angle of the processing beam incident on each array for example, a partition-like member along the boundary of each array, may be provided on the incident side of the lens array or DOE array, which is the wavefront division member of the Shack-Hartmann sensor.
  • multiple partition-like members may be prepared for each incident angle to be limited, and the wavefronts of each processing beam may be measured one by one by replacing the multiple partition-like members.
  • the deflection optical system 160 is incident on the multiple processing beams EL1 to EL9 emitted from the synthesis optical system 150.
  • the deflection optical system 160 emits the multiple processing beams EL1 to EL9 incident on the deflection optical system 160 toward the objective optical system 170.
  • the deflection optical system 160 is equipped with a galvanometer mirror 161 arranged at the position of the entrance pupil PU of the objective optical system 170.
  • the galvanometer mirror 161 deflects the multiple processing beams EL1 to EL9 from the synthesis optical system 150 (i.e., changes the traveling direction of the multiple processing beams EL1 to EL9).
  • the galvanometer mirror 161 changes the irradiation position on the workpiece W (in a plane along the XY plane) of the multiple processing beams EL1 to EL9 irradiated onto the workpiece W via the objective optical system 170.
  • the galvanometer mirror 161 may also be referred to as a deflection member.
  • the deflection member is not limited to the galvanometer mirror 161, but may be a polygon mirror or a resonant mirror.
  • the galvanometer mirror 161 includes an X-scanning mirror 162X and a Y-scanning mirror 162Y.
  • the X-scanning mirror 162X is a deflection mirror having a reflecting surface 163X that can rotate around the Y-axis.
  • the Y-axis may be referred to as the first axis.
  • the X-scanning mirror 162X deflects the multiple processing beams EL1 to EL9 so as to change the irradiation positions of the multiple processing beams EL1 to EL9 on the workpiece W along the X-axis direction.
  • the Y-scanning mirror 162Y is a deflection mirror having a reflecting surface 163Y that can rotate around the X-axis.
  • the X-axis may be referred to as the second axis that intersects with the first axis.
  • the Y-scanning mirror 162Y deflects the multiple processing beams EL1 to EL9 so as to change the irradiation positions of the multiple processing beams EL1 to EL9 on the workpiece W along the Y-axis direction.
  • the entrance pupil PU of the objective optical system 170 may be located between the X-scanning mirror 162X and the Y-scanning mirror 162Y in the galvanometer mirror 161.
  • the reflecting surfaces 163X and 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y may be referred to as beam deflection surfaces.
  • the galvanometer mirror 161 allows the multiple processing beams EL1 to EL9 to scan the processing shot area PSA, which is determined based on the processing head 100.
  • An example of the processing shot area PSA is shown in FIG. 5.
  • the processing shot area PSA indicates the area (range) where processing is performed by the processing head 100 with the positional relationship between the processing head 100 and the workpiece W fixed.
  • the processing shot area PSA is set to coincide with the scanning range of the multiple processing beams EL1 to EL9 deflected by the galvanometer mirror 161 with the positional relationship between the processing head 100 and the workpiece W fixed, or to be an area narrower than the scanning range. Note that in FIG.
  • the processing head 100 is moved by the head drive system 40, so that the processing shot area PSA can move relatively on the surface of the workpiece W.
  • the stage 50 is moved by the stage drive system 60, so that the processing shot area PSA can move relatively over the surface of the workpiece W.
  • the objective optical system 170 includes an f ⁇ lens 171.
  • the f ⁇ lens 171 is incident on the multiple processing beams EL1 to EL9 emitted from the deflection optical system 160.
  • the f ⁇ lens 171 irradiates the multiple processing beams EL1 to EL9 emitted from the deflection optical system 160 in parallel with each other onto the workpiece W.
  • the f ⁇ lens 171 emits the multiple processing beams EL1 to EL9 in a direction along the optical axis of the f ⁇ lens 171.
  • the f ⁇ lens 171 also focuses the multiple processing beams EL1 to EL9 onto the workpiece W.
  • the f ⁇ lens 171 is a workpiece-side telecentric optical system
  • the multiple processing beams EL1 to EL9 emitted from the f ⁇ lens 171 travel in a direction along the optical axis of the f ⁇ lens 171 in a parallel state with each other, and are focused and irradiated onto the workpiece W.
  • the f ⁇ lens 171 may be an optical system that is non-telecentric on the workpiece side.
  • the processing optical system 110, the measurement optical system 130, the synthesis optical system 150, and the deflection optical system 160 may be housed in a first head housing 106 in the processing head 100.
  • the objective optical system 170 may be housed in a second head housing 107 that is different from the first head housing 106.
  • the second head housing 107 housing the objective optical system 170 may be configured to be detachable from the first head housing 106.
  • the galvanometer mirror 161 of the deflection optical system 160 allows the multiple processing beams EL1 to EL9 to scan the processing shot area PSA, thereby improving the processing speed of the workpiece W. It is desirable that the cross-sectional shape of the multiple processing beams EL1 to EL9 irradiated onto the processing shot area PSA is circular. However, due to astigmatism and the like that occurs in the objective optical system 170, the cross-sectional shape of the processing beams passing through the periphery of the objective optical system 170 (f ⁇ lens 171) is easily deformed. For example, as illustrated in the diagram before correction in FIG.
  • the cross-sectional shapes of the second to ninth processing beams EL2 to EL9 located around the first processing beam EL1 are easily deformed into an elliptical shape rather than a circular shape.
  • the deformable mirror 117 is capable of changing the shape of the wavefront (typically, an equiphase wavefront) at each beam cross section of the multiple processing beams EL1 to EL9 emitted from the variable reflecting surface 118 by deforming the variable reflecting surface 118. Therefore, the deformable mirror 117 is capable of correcting the change in the wavefront at each beam cross section of the multiple processing beams EL1 to EL9 from the objective optical system 170 that occurs with the operation of the galvanometer mirror 161 by deforming the variable reflecting surface 118.
  • the deformable mirror 117 is capable of changing the shape of the wavefront (typically, an equiphase wavefront) at each beam cross section of the multiple processing beams EL1 to EL9 emitted from the variable reflecting surface 118 by deforming the variable reflecting surface 118. Therefore, the deformable mirror 117 is capable of correcting the change in the wavefront at each beam cross section of the multiple processing beams EL1 to EL9 from the objective optical system 170 that occurs with the operation
  • the deformable mirror 117 is capable of correcting the change in the wavefront, particularly the change in the shape of the wavefront, at each beam cross section of the multiple processing beams EL1 to EL9 from the objective optical system 170 that occurs with the movement of the irradiation position of the multiple processing beams EL1 to EL9 irradiated from the objective optical system 170 to the workpiece W.
  • the deformable mirror 117 can correct the non-rotationally symmetric components of the wavefront in the cross section of each of the multiple processing beams EL1 to EL9 from the objective optical system 170, and make the cross-sectional shapes of each of the multiple processing beams EL1 to EL9 circular, as shown in the post-correction diagram of FIG. 7.
  • the deformable mirror 117 may also be referred to as a correction member.
  • the deformable mirror 117 may change the focusing positions (in other words, the irradiation positions in the Z-axis direction) of the multiple processing beams EL1 to EL9 focused by the objective optical system 170 toward the workpiece W along the optical axis direction (Z-axis direction) of the objective optical system 170 by deforming the variable reflecting surface 118 to change the radius of curvature of the variable reflecting surface 118.
  • This makes it possible to change the irradiation positions (focusing positions) of the multiple processing beams EL1 to EL9 in the Z-axis direction at high speed.
  • the deformable mirror 117 may also correct the non-rotationally symmetric components of the wavefront in each beam cross section of the multiple processing beams EL1 to EL9 from the objective optical system 170 by deforming the variable reflecting surface 118 when changing the irradiation positions (focusing positions) of the multiple processing beams EL1 to EL9 in the Z-axis direction. This makes it possible to maintain the cross-sectional shapes of the multiple processing beams EL1 to EL9 in a circular shape when changing the irradiation positions (focusing positions) of the multiple processing beams EL1 to EL9 in the Z-axis direction.
  • the multiple processing beams EL1 to EL9 are distributed in a portion of the processing shot area PSA, it is possible to make the cross-sectional shape of each of the multiple processing beams EL1 to EL9 circular even if the wavefront shape of each beam cross section of the multiple processing beams EL1 to EL9 is uniformly corrected.
  • the area in which the multiple processing beams are distributed may be 1/100 or less, 1/200 or less, or 1/800 or less of the area of the processing shot area PSA.
  • the measurement beam ML generated by the measurement light source 20 is incident on the processing head 100 via an optical transmission member 21 such as an optical fiber.
  • the measurement light source 20 may be disposed outside the processing head 100, or may be disposed inside the processing head 100.
  • the measurement beam ML incident on the processing head 100 does not have to pass through an optical transmission member 21 such as an optical fiber.
  • the optical transmission member 21 may be a polarization-preserving optical fiber.
  • the measurement light source 20 may include an optical comb light source.
  • An optical comb light source is a light source that can generate light containing frequency components that are evenly spaced on the frequency axis (this light is also called an optical frequency comb) as pulsed light.
  • the measurement light source 20 emits a light beam that contains pulsed light of frequency components that are evenly spaced on the frequency axis as the measurement beam ML.
  • the measurement light source 20 may include a light source other than the optical comb light source.
  • the optical processing device SYS includes a first measurement light source 20a and a second measurement light source 20b as the measurement light source 20.
  • the multiple measurement light sources 20a, 20b each emit multiple measurement beams ML that are phase-synchronized and coherent with each other.
  • the multiple measurement light sources 20a, 20b may have different oscillation frequencies. Therefore, the multiple measurement beams ML emitted from the multiple measurement light sources 20a, 20b become light beams that include multiple pulsed lights with different pulse frequencies (for example, the number of pulsed lights per unit time, which is the reciprocal of the emission period of the pulsed lights).
  • the optical processing device SYS may also include a single measurement light source 20.
  • the measurement optical system 130 is incident on the measurement optical system 130, which is transmitted by the optical transmission member 21.
  • the measurement optical system 130 emits the measurement beam ML incident on the measurement optical system 130 toward the synthesis optical system 150.
  • the measurement beam ML emitted from the measurement optical system 130 is irradiated onto the measurement object M via the synthesis optical system 150, the deflection optical system 160, and the objective optical system 170.
  • the measurement optical system 130 includes a first mirror 131, a first beam splitter 132, a second beam splitter 133, a third beam splitter 134, a second mirror 135, a third mirror 136, a galvanometer mirror 137, a first detector 141, and a second detector 142.
  • the measurement beam ML emitted from the measurement light source 20 is incident on the first beam splitter 132.
  • the measurement beam ML emitted from the first measurement light source 20a (hereinafter referred to as "measurement beam ML1") is incident on the first beam splitter 132.
  • the measurement beam ML emitted from the second measurement light source 20b (hereinafter referred to as "measurement beam ML2”) is incident on the first beam splitter 132 via the first mirror 131.
  • the first beam splitter 132 emits the measurement beam ML1 and measurement beam ML2 incident on the first beam splitter 132 toward the second beam splitter 133.
  • the second beam splitter 133 reflects a portion of the measurement beam ML1 incident on the second beam splitter 133, namely, measurement beam ML1-1, toward the first detector 141.
  • the second beam splitter 133 passes another portion of the measurement beam ML1 incident on the second beam splitter 133, namely, measurement beam ML1-2, toward the third beam splitter 134.
  • the second beam splitter 133 reflects a portion of the measurement beam ML2 incident on the second beam splitter 133, namely, measurement beam ML2-1, toward the first detector 141.
  • the second beam splitter 133 passes another portion of the measurement beam ML2 incident on the second beam splitter 133, namely, measurement beam ML2-2, toward the third beam splitter 134.
  • the measurement beam ML1-1 and measurement beam ML2-1 reflected by the second beam splitter 133 are incident on the first detector 141.
  • the first detector 141 detects interference light generated by the interference between the measurement beam ML1-1 and the measurement beam ML2-1. Specifically, the first detector 141 detects the interference light by receiving it. The detection result of the first detector 141 is output to the control unit 2.
  • the measurement beam ML1-2 and the measurement beam ML2-2 that pass through the second beam splitter 133 are incident on the third beam splitter 134.
  • the third beam splitter 134 reflects at least a portion of the measurement beam ML1-2 that is incident on the third beam splitter 134 toward the second mirror 135.
  • the third beam splitter 134 transmits at least a portion of the measurement beam ML2-2 that is incident on the third beam splitter 134 toward the third mirror 136.
  • the measurement beam ML1-2 reflected by the third beam splitter 134 is incident on the second mirror 135.
  • the measurement beam ML1-2 incident on the second mirror 135 is reflected by the reflecting surface of the second mirror 135 (the reflecting surface is also called the reference surface). That is, the second mirror 135 emits the measurement beam ML1-2 incident on the second mirror 135 as the reflected light, measurement beam ML1-3, toward the third beam splitter 134.
  • the measurement beam ML1-3 reflected light from the second mirror 135 is also called the reference light.
  • the measurement beam ML1-3 emitted from the second mirror 135 is incident on the third beam splitter 134.
  • the third beam splitter 134 reflects the measurement beam ML1-3 incident on the third beam splitter 134 toward the second beam splitter 133.
  • the measurement beam ML1-3 reflected by the second beam splitter 133 is incident on the first beam splitter 132.
  • the first beam splitter 132 reflects the measurement beam ML1-3 incident on the first beam splitter 132 toward the second detector
  • the measurement beam ML2-2 that passes through the third beam splitter 134 is incident on the third mirror 136.
  • the third mirror 136 reflects the measurement beam ML2-2 that is incident on the third mirror 136 toward the galvanometer mirror 137.
  • the galvanometer mirror 137 deflects the measurement beam ML2-2 (i.e., changes the traveling direction of the measurement beam ML2-2). By deflecting the measurement beam ML2-2, the galvanometer mirror 137 changes the irradiation position on the workpiece W (within a plane along the XY plane) of the measurement beam ML2-2 that is irradiated onto the workpiece W via the objective optical system 170.
  • the galvanometer mirror 137 includes an X-scanning mirror 138X and a Y-scanning mirror 138Y.
  • the X-scanning mirror 138X is a deflection mirror with a reflective surface that can rotate around the Y-axis.
  • the X-scanning mirror 138X deflects the measurement beam ML2-2 so as to change the irradiation position of the measurement beam ML2-2 on the workpiece W along the X-axis direction.
  • the Y-scanning mirror 138Y is a deflection mirror with a reflective surface that can rotate around the X-axis.
  • the Y-scanning mirror 138Y deflects the measurement beam ML2-2 so as to change the irradiation position of the measurement beam ML2-2 on the workpiece W along the Y-axis direction.
  • the measurement beam ML2-2 emitted from the measurement optical system 130 enters the synthesis optical system 150.
  • the wavelength of the measurement beam ML is different from the wavelength of the processing beam EL (multiple processing beams EL1 to EL9).
  • the dichroic mirror 151 of the synthesis optical system 150 passes the measurement beam ML2-2 emitted from the measurement optical system 130 toward the mirror 152 of the synthesis optical system 150.
  • the mirror 152 reflects the measurement beam ML2-2 that has passed through the dichroic mirror 151 toward the deflection optical system 160.
  • the measurement beam ML2-2 from the third mirror 136 may be directly incident on the synthesis optical system 150 without providing the galvanometer mirror 137.
  • multiple processing beams EL1 to EL9 are incident on the dichroic mirror 151 of the combining optical system 150.
  • the dichroic mirror 151 outputs the measurement beam ML2-2 and the multiple processing beams EL1 to EL9, which are incident from different directions, in the same direction (i.e., toward the same deflection optical system 160).
  • the optical path of the measurement beam ML2-2 merges with the optical paths of the multiple processing beams EL1 to EL9.
  • the measurement beam ML2-2 emitted from the synthesis optical system 150 enters the deflection optical system 160.
  • the deflection optical system 160 emits the measurement beam ML2-2 incident on the deflection optical system 160 toward the objective optical system 170.
  • the galvanometer mirror 161 of the deflection optical system 160 deflects the measurement beam ML2-2 from the synthesis optical system 150, thereby changing the irradiation position on the measurement object M (within a plane along the XY plane) of the measurement beam ML2-2 that is irradiated onto the workpiece W via the objective optical system 170.
  • the galvanometer mirror 161 of the deflection optical system 160 can change the irradiation position of the multiple processing beams EL1 to EL9 and the irradiation position of the measurement beam ML2-2 in synchronization (i.e., in conjunction with each other).
  • the measurement beam ML2-2 is irradiated onto the measurement object M via the galvanometer mirror 137 of the measurement optical system 130.
  • the multiple processing beams EL1 to EL9 are irradiated onto the workpiece W without passing through the galvanometer mirror 137. Therefore, the galvanometer mirror 137 of the measurement optical system 130 can independently move the irradiation position of the measurement beam ML2-2, regardless of the irradiation positions of the multiple processing beams EL1 to EL9. In other words, the galvanometer mirror 137 of the measurement optical system 130 can change the relative positional relationship between the irradiation positions of the multiple processing beams EL1 to EL9 and the irradiation position of the measurement beam ML2-2.
  • the measurement beam ML2-2 can scan the measurement shot area MSA, which is determined based on the processing head 100, by at least one of the galvanometer mirror 161 of the deflection optical system 160 and the galvanometer mirror 137 of the measurement optical system 130.
  • An example of the measurement shot area MSA is shown in FIG. 6. As shown in FIG. 6, the measurement shot area MSA indicates the area (range) where the measurement is performed by the processing head 100 with the positional relationship between the processing head 100 and the measurement object M fixed.
  • the measurement shot area MSA is set to coincide with the scanning range of the measurement beam ML2-2 deflected by at least one of the galvanometer mirror 161 of the deflection optical system 160 and the galvanometer mirror 137 of the measurement optical system 130 with the positional relationship between the processing head 100 and the measurement object M fixed, or to be an area narrower than the scanning range.
  • the measurement shot area MSA can be moved relatively on the surface of the measurement object M by the head drive system 40 moving the processing head 100.
  • the stage 50 is moved by the stage drive system 60, so that the measurement shot area MSA can be moved relatively on the surface of the measurement object M.
  • the measurement beam ML2-2 emitted from the deflection optical system 160 enters the objective optical system 170.
  • the f ⁇ lens 171 of the objective optical system 170 irradiates the measurement beam ML2-2 emitted from the deflection optical system 160 onto the measurement object M.
  • the f ⁇ lens 171 emits the measurement beam ML2-2 in a direction along the optical axis of the f ⁇ lens 171.
  • the f ⁇ lens 171 also focuses the measurement beam ML2-2 on the measurement object M.
  • the measurement beam ML2-2 emitted from the f ⁇ lens 171 travels in a direction along the optical axis of the f ⁇ lens 171 and is focused and irradiated onto the measurement object M.
  • the light emitted from the measurement object M due to the irradiation of the measurement beam ML2-2 may include at least one of the measurement beam ML2-2 reflected by the measurement object M (i.e., reflected light), the measurement beam ML2-2 scattered by the measurement object M (i.e., scattered light), the measurement beam ML2-2 diffracted by the measurement object M (i.e., diffracted light), and the measurement beam ML2-2 transmitted through the measurement object M (i.e., transmitted light).
  • the optical path of the measurement beam ML2-2 emitted from the objective optical system 170 and incident on the measurement object M may be the same as the optical path of the return beam RL emitted from the measurement object M and incident on the objective optical system 170.
  • the return beam RL incident on the objective optical system 170 enters the deflection optical system 160 via the f ⁇ lens 171.
  • the return beam RL incident on the deflection optical system 160 enters the synthesis optical system 150 via the galvanometer mirror 161.
  • the return beam RL that is incident on the synthesis optical system 150 is incident on the measurement optical system 130 via the mirror 152 and the dichroic mirror 151.
  • the dichroic mirror 151 of the synthesis optical system 150 passes the return beam RL that is incident on the dichroic mirror 151 toward the measurement optical system 130.
  • the return beam RL that passes through the dichroic mirror 151 of the synthesis optical system 150 is incident on the galvanometer mirror 137 of the measurement optical system 130.
  • the galvanometer mirror 137 emits the return beam RL that is incident on the galvanometer mirror 137 toward the third mirror 136.
  • the third mirror 136 reflects the return beam RL that is incident on the third mirror 136 toward the third beam splitter 134.
  • the third beam splitter 134 passes at least a portion of the return beam RL that is incident on the third beam splitter 134 toward the second beam splitter 133.
  • the second beam splitter 133 reflects at least a portion of the return beam RL that is incident on the second beam splitter 133 toward the second detector 142.
  • the measurement beams ML1-3 are incident on the second detector 142. That is, the return beam RL, which travels toward the second detector 142 via the measurement object M, and the measurement beams ML1-3, which travel toward the second detector 142 without passing through the measurement object M, are incident on the second detector 142.
  • the second detector 142 detects interference light generated by interference between the measurement beams ML1-3 and the return beam RL. Specifically, the second detector 142 detects the interference light by receiving it. The detection result of the second detector 142 is output to the control unit 2.
  • the control unit 2 acquires the detection results of the first detector 141 and the second detector 142.
  • the control unit 2 is capable of generating measurement data of the measurement object M (e.g., measurement data relating to at least one of the position and the shape of the measurement object M) based on the detection results of the first detector 141 and the detection results of the second detector 142.
  • the control unit 2 can calculate the distance between the processing head 100 and the measurement object M in a direction along the optical path of the measurement beam ML (for example, the Z-axis direction) based on the time difference between the pulsed light of the interference light detected by the second detector 142 and the pulsed light of the interference light detected by the first detector 141. In other words, the control unit 2 can calculate the position of the measurement object M in a direction along the optical path of the measurement beam ML (for example, the Z-axis direction). More specifically, the control unit 2 can calculate the distance between the irradiated portion of the measurement object M irradiated with the measurement beam ML2-2 and the processing head 100.
  • the control unit 2 can calculate the position of the irradiated portion in a direction along the optical path of the measurement beam ML (for example, the Z-axis direction). Furthermore, the control unit 2 can calculate the position of the irradiated portion in a direction intersecting the optical path of the measurement beam ML (for example, at least one of the X-axis direction and the Y-axis direction) based on the driving state of the galvanometer mirror 161 of the deflection optical system 160 and the galvanometer mirror 137 of the measurement optical system 130. As a result, the control unit 2 can generate measurement data that indicates the position of the irradiated portion in a measurement coordinate system based on the processing head 100 (e.g., the position in a three-dimensional coordinate space).
  • mapping tool 180 for generating an aberration map, which will be described later, will be described with reference to Fig. 8 and Fig. 9.
  • the mapping tool 180 is temporarily attached to the stage 50 when generating an aberration map, which will be described later.
  • the mapping tool 180 includes a mapping lens 181, a mapping wavefront measuring device 182, and a housing unit 183.
  • the housing 183 holds the map lens 181 and the map wavefront measuring device 182.
  • the housing 183 may be placed on the mounting surface 51 of the stage 50 without the workpiece W or measurement object M being placed thereon (see also FIG. 8).
  • the housing 183 may also be removably attached to the side of the stage 50. In either case, the head drive system 40 moves the machining head 100 to align the optical axis of the map lens 181 with the optical axis of the objective optical system 170 (f ⁇ lens 171).
  • the (unsplit) processing beam EL emitted from the f ⁇ lens 171 of the objective optical system 170 with the diffractive optical element 111 removed from the first optical path is incident on the map lens 181.
  • the map lens 181 optically conjugates the exit pupil of the objective optical system 170 with the pupil of the map wavefront measuring device 182.
  • the map lens 181 collects the processing beam EL that passes through the map lens 181 toward the map wavefront measuring device 182. Note that the map lens 181 may be incident on multiple processing beams EL emitted from the f ⁇ lens 171 of the objective optical system 170 with the diffractive optical element 111 inserted in the first optical path.
  • the processing beam EL that has passed through the map lens 181 is incident on the map wavefront measuring device 182.
  • the map wavefront measuring device 182 is configured using a Shack-Hartmann sensor.
  • the map wavefront measuring device 182 measures the phase distribution of the wavefront of the light (i.e., the processing beam EL) that is incident on the map wavefront measuring device 182.
  • the phase distribution of the wavefront measured by the map wavefront measuring device 182 and the correction wavefront measuring device 153 may be referred to as wavefront aberration or wavefront aberration distribution.
  • the measurement result of the phase distribution of the wavefront by the map wavefront measuring device 182, i.e., the measurement result of the wavefront aberration is output to the control unit 2.
  • the control unit 2 acquires the measurement results of the wavefront aberration by the wavefront measuring device for map 182. Based on the measurement results of the wavefront aberration by the wavefront measuring device for map 182, the control unit 2 can generate an aberration map showing the relationship between the irradiation positions of the processing beam EL (i.e., the multiple processing beams EL1 to EL9) and the wavefront aberration at the irradiation positions.
  • the control unit 2 can generate an aberration map showing the relationship between the irradiation positions of the processing beam EL (i.e., the multiple processing beams EL1 to EL9) and the wavefront aberration at the irradiation positions.
  • the control unit 2 can also generate a deformation map showing the relationship between the irradiation positions of the multiple processing beams EL1 to EL9 and the shape (deformation amount) of each part of the variable reflecting surface 118 of the deformable mirror 117 required to correct the wavefronts of the multiple processing beams EL1 to EL9 irradiated at the irradiation positions.
  • the aberration map and deformation map generated in the control unit 2 are stored in a memory unit 90 provided in the control unit 2.
  • the irradiation positions (within a plane along the XY plane) of the multiple processing beams EL1 to EL9 in the processing shot area PSA are determined according to the deflection angles of the reflecting surfaces 163X, 163Y of the X scanning mirror 162X and the Y scanning mirror 162Y in the galvanometer mirror 161. Therefore, the deflection angles of the reflecting surfaces 163X, 163Y of the X scanning mirror 162X and the Y scanning mirror 162Y may be stored in the memory unit 90 in association with the irradiation positions of the multiple processing beams EL1 to EL9.
  • the aberration map and deformation map stored in the memory unit 90 may also indicate the relationship between the deflection angles of the reflecting surfaces 163X, 163Y of the X scanning mirror 162X and the Y scanning mirror 162Y and the wavefront aberration at the deflection angles. Furthermore, the irradiation positions (focus positions) of the multiple processing beams EL1 to EL9 in the Z-axis direction are determined according to the radius of curvature of the variable reflecting surface 118 of the deformable mirror 117. Therefore, the storage unit 90 may store the radius of curvature of the variable reflecting surface 118 of the deformable mirror 117 in association with the irradiation positions of the multiple processing beams EL1 to EL9 in the Z-axis direction.
  • the storage unit 90 may store the radius of curvature of the variable reflecting surface 118 of the deformable mirror 117 in association with at least one of the irradiation positions of the multiple processing beams EL1 to EL9 in a plane along the XY plane and the deflection angles of the reflecting surfaces 163X, 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y.
  • the wavefront aberration may be expressed in terms of the fourth, fifth, sixth, and ninth terms of the fringe Zernike polynomial when the wavefront aberration is expressed as the fringe Zernike polynomial.
  • the shape (amount of deformation) of each portion of the variable reflecting surface 118 of the deformable mirror 117 may be the shape (amount of deformation) of each portion of the variable reflecting surface 118 required to reduce the fourth, fifth, sixth, and ninth terms of the fringe Zernike polynomial.
  • the fourth term of the fringe Zernike polynomial is the fourth term when the terms of the Zernike polynomials are arranged in a manner called the fringe order.
  • the fifth, sixth, and ninth terms of the fringe Zernike polynomial are the fifth, sixth, and ninth terms when the terms of the Zernike polynomials are arranged in an order called the fringe order.
  • the fourth term of the fringe Zernike polynomial is known to correspond to defocus.
  • the fifth and sixth terms of the fringe Zernike polynomial are known to correspond to astigmatism.
  • the ninth term of the fringe Zernike polynomial is known to correspond to spherical aberration.
  • the deformable mirror 117 can correct defocus, astigmatism, and spherical aberration by deforming the variable reflecting surface 118 to reduce the fourth, fifth, sixth, and ninth terms of the fringe Zernike polynomials, which represent the wavefront aberration.
  • the map wavefront measuring device 182 of the map tool 180 measures the wavefront aberration to generate an aberration map (step ST1).
  • the map tool 180 is temporarily attached to the stage 50 in a state where the workpiece W or the measurement object M is not placed on the stage 50.
  • the head drive system 40 moves the processing head 100 to align the optical axis of the map lens 181 with the optical axis of the objective optical system 170 (f ⁇ lens 171).
  • the diffractive optical element 111 is removed from the first optical path by the drive device of the processing optical system 110.
  • the processing head 100 irradiates the processing beam EL toward the map tool 180 via the processing optical system 110, the synthesis optical system 150, the deflection optical system 160, and the objective optical system 170. At this time, the variable reflecting surface 118 of the deformable mirror 117 of the processing optical system 110 is deformed into a predetermined initial shape.
  • the map wavefront measuring device 182 measures the phase distribution of the wavefront of the light (i.e., the processing beam EL) incident on the map wavefront measuring device 182.
  • the galvanometer mirror 161 of the deflection optical system 160 deflects the processing beam EL, so that the map wavefront measuring device 182 measures the phase distribution of the wavefront for multiple irradiation positions whose positions in the X-axis direction or the Y-axis direction in the processing shot area PSA differ by a predetermined interval.
  • the deformable mirror 117 deforms the variable reflecting surface 118 to change the radius of curvature of the variable reflecting surface 118, so that the map wavefront measuring device 182 measures the phase distribution of the wavefront for multiple irradiation positions whose positions in the Z-axis direction differ by a predetermined interval.
  • the predetermined interval between the multiple irradiation positions of the processing beam EL is set to, for example, 1 mm.
  • the irradiation positions of the processing beam EL (multiple processing beams EL1 to EL9) may be referred to as the measurement positions of the map wavefront measuring device 182.
  • the measurement results of the wavefront phase distribution by the map wavefront measuring device 182, i.e., the measurement results of the wavefront aberration, are output to the control unit 2.
  • the control unit 2 acquires the measurement results of the wavefront aberration by the wavefront measuring device for map 182. Based on the measurement results of the wavefront aberration by the wavefront measuring device for map 182, the control unit 2 generates an aberration map that indicates the relationship between the irradiation positions of the multiple processing beams EL1 to EL9 and the wavefront aberration measured at multiple irradiation positions that differ in three-dimensional positions in the X-axis, Y-axis, and Z-axis directions.
  • the aberration map generated in the control unit 2 is stored in the memory unit 90 of the control unit 2.
  • the storage unit 90 may store the deflection angles of the reflecting surfaces 163X and 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y in the galvanometer mirror 161 and the radius of curvature of the variable reflecting surface 118 of the deformable mirror 117 in association with a plurality of irradiation positions that are different in the three-dimensional directions of the X-axis, Y-axis, and Z-axis directions.
  • the wavefront aberration may be expressed in terms of the fourth, fifth, sixth, and ninth terms of the fringe Zernike polynomial when the wavefront aberration is expressed as a fringe Zernike polynomial.
  • the wavefront aberration at positions between the plurality of irradiation positions spaced apart by the predetermined intervals described above may be found by fitting based on the wavefront aberration measured by the map wavefront measuring device 182.
  • a deformation map of the deformable mirror 117 is generated (step ST2).
  • the control unit 2 Based on the aberration map generated in the previous step (ST1), the control unit 2 generates a deformation map indicating the relationship between the irradiation position of the processing beam EL (i.e., the multiple processing beams EL1 to EL9) and the shape (amount of deformation) of each part of the variable reflecting surface 118 of the deformable mirror 117 required to correct the wavefront of the multiple processing beams EL1 to EL9 irradiated at that irradiation position.
  • control unit 2 generates multiple deformation maps corresponding to multiple irradiation positions that differ in three-dimensional positions in the X-axis, Y-axis, and Z-axis directions.
  • the (multiple) deformation maps generated in the control unit 2 are stored in the memory unit 90 of the control unit 2.
  • the memory unit 90 may store the deflection angles of the reflecting surfaces 163X, 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y in the galvanometer mirror 161 and the radius of curvature of the variable reflecting surface 118 of the deformable mirror 117, linked to multiple irradiation positions that differ in three-dimensional positions in the X-axis direction, Y-axis direction, and Z-axis direction.
  • the shape (amount of deformation) of each part of the variable reflecting surface 118 of the deformable mirror 117 may be the shape (amount of deformation) of each part of the variable reflecting surface 118 required to reduce the fourth, fifth, sixth, and ninth terms of the fringe Zernike polynomial.
  • the step (ST1) of generating the aberration map and the step (ST2) of generating the deformation map are executed when the optical processing apparatus SYS is started up or during maintenance.
  • the map tool 180 is removed from the stage 50.
  • the diffractive optical element 111 is inserted into the first optical path by the drive device of the processing optical system 110.
  • the formable mirror 117 is deformed when machining the workpiece W (step ST3).
  • the workpiece W is placed on the mounting surface 51 of the stage 50.
  • the machining head 100 irradiates multiple processing beams EL1 to EL9 onto the workpiece W via the machining optical system 110, the synthesis optical system 150, the deflection optical system 160, and the objective optical system 170.
  • the galvanometer mirror 161 of the deflection optical system 160 deflects the multiple processing beams EL1 to EL9, thereby changing the irradiation positions of the multiple processing beams EL1 to EL9 irradiated onto the workpiece W via the objective optical system 170 along the direction perpendicular to the optical axis of the objective optical system 170 (the X-axis direction and the Y-axis direction).
  • the deformable mirror 117 of the processing optical system 110 changes the irradiation position (focus position) in the Z-axis direction of the multiple processing beams EL1 to EL9 along the optical axis direction (Z-axis direction) of the objective optical system 170 by deforming the variable reflecting surface 118 to change the radius of curvature of the variable reflecting surface 118.
  • the control unit 2 transmits a control signal to the galvanometer mirror 161 of the deflection optical system 160 to control the deflection angles of the reflecting surfaces 163X, 163Y (i.e., the beam deflection surfaces) of the X-scanning mirror 162X and the Y-scanning mirror 162Y in the galvanometer mirror 161. More specifically, the control unit 2 transmits a control signal including a command value for the deflection angle of the reflecting surfaces 163X, 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y to the galvanometer mirror 161.
  • control unit 2 also refers to the deformation map stored in the storage unit 90.
  • the control unit 2 transmits control signals based on the deformation map corresponding to the irradiation positions in the X-axis and Y-axis directions of the multiple processing beams EL1 to EL9 according to the command values of the deflection angles of the reflecting surfaces 163X and 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y and the irradiation positions (focusing positions) in the Z-axis direction of the multiple processing beams EL1 to EL9 to the deformable mirror 117 of the processing optical system 110.
  • control unit 2 controls the operation of the deformable mirror 117 based on the command value of the deflection angle.
  • the deformable mirror 117 changes the wavefront in each beam cross section of the multiple processing beams EL1 to EL9 emitted from the variable reflecting surface 118 by deforming the variable reflecting surface 118 according to the control signal from the control unit 2.
  • the deformable mirror 117 also changes the irradiation positions (focus positions) in the Z-axis direction of the multiple processing beams EL1 to EL9 along the optical axis direction (Z-axis direction) of the objective optical system 170 by deforming the variable reflecting surface 118 in response to a control signal from the control unit 2 to change the radius of curvature of the variable reflecting surface 118.
  • the deformable mirror 117 changes the irradiation positions (focus positions) in the Z-axis direction of the multiple processing beams EL1 to EL9, and also changes the wavefronts in the beam cross sections of the multiple processing beams EL1 to EL9 emitted from the variable reflecting surface 118.
  • the deformable mirror 117 can correct changes in the wavefront of each of the multiple processing beams EL1-EL9 from the objective optical system 170, which occurs as the irradiation positions of the multiple processing beams EL1-EL9 irradiated from the objective optical system 170 to the workpiece W move. Therefore, the deformable mirror 117 can correct the non-rotationally symmetric components of the wavefront of each of the multiple processing beams EL1-EL9 from the objective optical system 170 at their cross sections, and make the cross-sectional shapes of the multiple processing beams EL1-EL9 each circular.
  • the cross-sectional shapes of the multiple processing beams EL1-EL9 can be kept constant and circular, regardless of the irradiation positions of the multiple processing beams EL1-EL9, thereby improving the machining accuracy of the workpiece W.
  • the diffractive optical element 111 is temporarily removed from the first optical path by the driving device of the processing optical system 110, and the corrective wavefront measuring device 153 measures the phase distribution of the wavefront of the light (i.e., the processing beam EL) incident on the corrective wavefront measuring device 153.
  • the measurement result of the wavefront phase distribution by the corrective wavefront measuring device 153 i.e., the measurement result of the wavefront aberration, is output to the control unit 2.
  • the control unit 2 acquires the measurement result of the wavefront aberration by the corrective wavefront measuring device 153.
  • the control unit 2 determines the amount of change in the wavefront aberration over time after the deformation map is generated based on the measurement result of the wavefront aberration by the corrective wavefront measuring device 153. Note that the amount of change in the wavefront aberration over time may be determined in the fourth, fifth, sixth, and ninth terms of the fringe Zernike polynomial.
  • the control unit 2 transmits a control signal based on the (initial) deformation map plus a correction based on the amount of change in wavefront aberration over time to the deformable mirror 117 of the processing optical system 110.
  • the deformable mirror 117 is able to correct deformation of the variable reflecting surface 118 due to the heat emitted by the multiple processing beams EL1 to EL9, and changes in the wavefront of each beam cross section of the multiple processing beams EL1 to EL9 from the objective optical system 170 that occur due to fluctuations in the wavefront at the processing light source 10. Therefore, regardless of deformation of the variable reflecting surface 118 or fluctuations in the wavefront at the processing light source 10, the cross-sectional shapes of the multiple processing beams EL1 to EL9 can each be maintained at a constant circular shape, improving the processing accuracy of the workpiece W.
  • the optical device 101 used in the optical processing apparatus SYS includes a deformable mirror 117 that receives the multiple processing beams EL1 to EL9 from the processing light source 10 and changes the wavefront of each of the multiple processing beams EL1 to EL9 in a cross section, and a galvanometer mirror 161 that changes the traveling direction of the multiple processing beams EL1 to EL9 from the deformable mirror 117 and changes the irradiation position on the workpiece W of the multiple processing beams EL1 to EL9 irradiated onto the workpiece W via the objective optical system 170.
  • the deformable mirror 117 corrects the change in the wavefront of each of the multiple processing beams EL1 to EL9 in a cross section from the objective optical system 170 that occurs with the operation of the galvanometer mirror 161.
  • the deformable mirror 117 corrects the change in the wavefront of each of the multiple processing beams EL1 to EL9 in a cross section from the objective optical system 170 that occurs with the movement of the irradiation position of the multiple processing beams EL1 to EL9 irradiated onto the workpiece W from the objective optical system 170.
  • the cross-sectional shapes of the multiple processing beams EL1 to EL9 can each be maintained at a constant circular shape, thereby improving the processing accuracy of the workpiece W.
  • the optical device 101 used in the optical processing device SYS includes a deformable mirror 117 on which the multiple processing beams EL1 to EL9 from the processing light source 10 are incident and which changes the wavefront of each of the multiple processing beams EL1 to EL9 in their cross sections, a relay optical system 125 on which the multiple processing beams EL1 to EL9 emitted from the deformable mirror 117 are incident, and a galvanometer mirror 161 which changes the traveling direction of the multiple processing beams EL1 to EL9 from the relay optical system 125 to make them incident on the objective optical system 170 and change the irradiation position of the multiple processing beams EL1 to EL9 on the workpiece W.
  • the relay optical system 125 makes the variable reflection surface 118 of the deformable mirror 117 and the galvanometer mirror 161 conjugate with each other.
  • the cross-sectional shape of each of the multiple processing beams EL1 to EL9 can be maintained in a constant circular shape, thereby improving the processing accuracy of the workpiece W.
  • the optical device 101 used in the optical processing device SYS includes a diffractive optical element 111 that splits the processing beam EL from the processing light source 10 into multiple processing beams EL1 to EL9, a conjugate optical system 112 on which the multiple processing beams EL1 to EL9 emitted from the diffractive optical element 111 are incident and which forms a conjugate position CP that is optically conjugate with the grating surface 111a of the diffractive optical element 111, and a deformable mirror 117 on which the multiple processing beams EL1 to EL9 from the conjugate optical system 112 are incident and which changes the wavefront of each beam cross section of the multiple processing beams EL1 to EL9 that are emitted and then incident on the objective optical system 170.
  • variable reflecting surface 118 of the deformable mirror 117 is located at the conjugate position CP of the grating surface 111a.
  • the cross-sectional shapes of the multiple processing beams EL1 to EL9 can be maintained at a constant circular shape, thereby improving the processing accuracy of the workpiece W.
  • the optical device 101 used in the optical processing device SYS includes a polarized beam splitter 116 on which the multiple processing beams EL1 to EL9 from the processing light source 10 are incident, a deformable mirror 117 on which the multiple processing beams EL1 to EL9 are incident via the polarized beam splitter 116, which changes the wavefront of each beam cross section of the multiple processing beams EL1 to EL9 that are emitted and then incident on the polarized beam splitter 116, and a first quarter-wave plate 122 arranged in the optical path of the multiple processing beams EL1 to EL9 whose wavefronts have been changed.
  • the cross-sectional shapes of the multiple processing beams EL1 to EL9 can be kept constant and the processing accuracy of the workpiece W can be improved.
  • the multiple processing beams EL1 to EL9 that are incident on the deformable mirror 117 via the polarized beam splitter 116 can be emitted toward the workpiece W without returning to the processing light source 10.
  • the optical device 101 used in the optical processing device SYS is also configured to include a deformable mirror 117 that receives the multiple processing beams EL1 to EL9 from the processing light source 10 and changes the wavefront of each of the multiple processing beams EL1 to EL9 in their cross sections.
  • the deformable mirror 117 changes the wavefronts of the multiple processing beams EL1 to EL9 emitted from the deformable mirror 117, and corrects the non-rotationally symmetric components of the wavefronts of the multiple processing beams EL1 to EL9 from the objective optical system 170 when changing the focusing positions of the multiple processing beams EL1 to EL9 from the objective optical system 170 in the optical axis direction of the objective optical system 170.
  • the irradiation positions of the multiple processing beams EL1 to EL9 in the Z axis direction can be changed at high speed, and the cross-sectional shapes of the multiple processing beams EL1 to EL9 can be maintained as circular when changing the irradiation positions of the multiple processing beams EL1 to EL9 in the Z axis direction.
  • the entrance pupil PU of the objective optical system 170 is located between the X-scanning mirror 162X and the Y-scanning mirror 162Y in the galvanometer mirror 161, but is not limited thereto.
  • the X-scanning mirror 162X may be arranged at the position of the entrance pupil PU of the objective optical system 170
  • the Y-scanning mirror 162Y may be arranged at the position of the entrance pupil PU of the objective optical system 170.
  • the galvanometer mirror 161 may include a third scanning mirror in addition to the X-scanning mirror 162X and the Y-scanning mirror 162Y, and may include two or more scanning mirrors (deflection mirrors).
  • the entrance pupil PU of the objective optical system 170 may be located anywhere between the two or more scanning mirrors. Furthermore, one of the two or more scanning mirrors may be arranged at the position of the entrance pupil PU of the objective optical system 170. Furthermore, a relay optical system that makes the reflecting surface 163X of the X scanning mirror 162X and the reflecting surface 163Y of the Y scanning mirror 162Y optically conjugate with each other may be disposed between the X scanning mirror 162X and the Y scanning mirror 162Y.
  • the reflecting surface 163X of the X scanning mirror 162X and the reflecting surface 163Y of the Y scanning mirror 162Y may be located at the entrance pupil PU of the objective optical system 170 or at a position conjugate with the entrance pupil PU.
  • the galvanometer mirror 161 as a deflection member has a plurality of reflecting surfaces 163X, 163Y that can rotate around a first axis and a second axis that intersect with each other (or around a first axis and a second axis that are in a twisted relationship with each other), the plurality of processing beams EL are incident on the second or subsequent reflecting surface (reflecting surface 163Y in the example of FIG. 3) in a state in which the direction of the irradiation positions of the plurality of processing beams EL on the workpiece W deviates from the direction perpendicular to the rotation axis of the reflecting surface.
  • the arrangement direction of the irradiation positions of the plurality of processing beams EL on the workpiece W may rotate around the optical axis of the objective optical system 170 or an axis parallel to the optical axis. If the rotation of the arrangement direction of the irradiation positions exceeds the allowable range, the diffractive optical element 111 as a beam splitting member may be rotated around the optical axis according to the deflection angle of the reflecting surfaces 163X, 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y.
  • the direction in which the multiple processing beams EL are emitted from the diffractive optical element 111 as a beam splitting member may be changed according to the deflection angles of the reflecting surfaces 163X and 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y.
  • a rotary drive device for rotating the diffractive optical element 111 may be provided. The rotary drive amount of this rotary drive device may be controlled by the control unit 2 or the above-mentioned first control device or second control device.
  • the storage unit of the control unit 2 or the first control device or the second control device may store the relationship between the command value of the deflection angle sent to the deflection member and the command value of the rotation drive amount of the diffractive optical element 111, and the control unit 2 or the first control device or the second control device may control the deflection member and the rotary drive device using the command value of the deflection angle and the command value of the rotation drive amount.
  • the galvanometer mirror as the deflection member may be a two-axis galvanometer mirror with reflective surfaces that can rotate around two mutually intersecting (orthogonal) axes, thereby reducing the rotation in the arrangement direction of the above-mentioned irradiation positions.
  • the galvanometer mirror as the deflection member may be configured using multiple one-axis scanning mirrors whose reflective surfaces are positioned conjugate to each other by a relay optical system, thereby reducing the rotation in the arrangement direction of the above-mentioned irradiation positions.
  • control unit 2 controls the operation of the deformable mirror 117 based on the command value of the deflection angle of the reflecting surfaces 163X, 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y in the galvanometer mirror 161, but this is not limited to the above.
  • control unit 2 may control the operation of the deformable mirror 117 based on information on the deflection angle of the reflecting surfaces 163X, 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y output from a rotary encoder provided on the X-scanning mirror 162X and the Y-scanning mirror 162Y.
  • control unit 2 may transmit to the deformable mirror 117 a control signal based on a deformation map corresponding to the irradiation positions in the X-axis direction and the Y-axis direction of the multiple processing beams EL1 to EL9 according to the deflection angles output from the rotary encoders of the X-scanning mirror 162X and the Y-scanning mirror 162Y and the irradiation positions (focusing positions) in the Z-axis direction of the multiple processing beams EL1 to EL9.
  • control unit 2 determines the amount of change in wavefront aberration over time after the deformation map is generated based on the measurement result of the wavefront aberration by the corrective wavefront measuring device 153, and corrects the control signal to be output to the deformable mirror 117, but this is not limited to the above.
  • the control unit 2 may correct the control signal to be output to the deformable mirror 117 based on a first measurement result of the wavefront aberration by the corrective wavefront measuring device 153 and a second measurement result of the wavefront aberration measured by the corrective wavefront measuring device 153 before obtaining the first measurement result.
  • the map wavefront measuring device 182 and the correction wavefront measuring device 153 are configured using a Shack-Hartmann sensor, but this is not limited to this.
  • the map wavefront measuring device 182 and the correction wavefront measuring device 153 may be configured using a wavefront sensor that uses a shearing interference method.
  • the map wavefront measuring device 182 and the corrective wavefront measuring device 153 which are configured using a Shack-Hartmann sensor, measure the wavefront aberration with the diffractive optical element 111 removed from the first optical path, but this is not limited to the above.
  • the map wavefront measuring device 182 may measure the wavefront aberration for each of the multiple processing beams EL1 to EL9 by providing blinds that can individually block the multiple processing beams EL1 to EL9 at positions where the multiple processing beams EL1 to EL9 are spatially separated.
  • the position where the multiple processing beams EL1 to EL9 are spatially separated is typically a surface that optically undergoes a Fourier transform with respect to the grating surface 111a of the diffractive optical element 111 or the variable reflecting surface 118 of the deformable mirror 117, such as the pupil plane of the conjugate optical system 112 or the pupil plane of the relay optical system 125.
  • the measurement results for each spot of the multiple processing beams EL1 to EL9 may be averaged.
  • the multiple processing beams EL1 to EL9 may be separated by attaching a field-angle limiting member such as a lens hood that limits the field angle of the incident light beam to the incident side of the lens array (or DOE array) in the map wavefront measuring device 182 (corrective wavefront measuring device 153).
  • a field-angle limiting member such as a lens hood that limits the field angle of the incident light beam to the incident side of the lens array (or DOE array) in the map wavefront measuring device 182 (corrective wavefront measuring device 153).
  • the map tool 180 when generating the aberration map, the map tool 180 does not have to be temporarily attached to the stage 50.
  • a tool drive system for moving the map tool 180 may be provided.
  • the tool drive system may move the map tool 180 to a predetermined aberration measurement position between the processing head 100 and the stage 50.
  • the predetermined aberration measurement position is a position where the wavefront aberration can be measured by the map wavefront measurement device 182 of the map tool 180.
  • the map tool 180 may be permanently installed on the stage 50 of the optical processing device SYS. Note that the optical processing device SYS does not have to be equipped with the map tool 180.
  • the aberration map may be acquired using the map tool 180 at the manufacturing plant of the processing head 100 when the processing head 100 is manufactured.
  • the map tool 180 is temporarily attached to the stage 50, and the wavefront aberration is measured by the map wavefront measuring device 182 of the map tool 180, but this is not limited to the above.
  • a light receiving device 190 (see FIG. 11) disclosed in International Publication No. 2021/210104 etc. may be provided on the stage 50 to measure the cross-sectional shapes of the multiple processing beams EL1 to EL9 focused and irradiated onto a surface corresponding to a surface on the workpiece W.
  • control unit 2 may generate a cross-sectional shape map showing the relationship between the irradiation positions of the multiple processing beams EL1 to EL9 and the cross-sectional shapes of the multiple processing beams EL1 to EL9 measured at the irradiation positions based on the measurement results by the light receiving device 190.
  • control unit 2 may generate a deformation map that indicates the relationship between the irradiation positions of the multiple processing beams EL1 to EL9 and the shapes (deformation amounts) of each portion of the variable reflecting surface 118 of the deformable mirror 117 that are required to correct the cross-sectional shapes of the multiple processing beams EL1 to EL9 irradiated to the irradiation positions, based on the generated cross-sectional shape map.
  • the light receiving device 190 may be provided on the outer periphery 52 of the stage 50, which is off the mounting surface 51, as shown in FIG. 11, for example.
  • the light receiving device 190 includes a beam passing member 191 and a light receiving element 195.
  • the beam passing member 191 is provided above the light receiving element 195.
  • the beam passing member 191 includes a glass substrate 192 and an attenuation film 193 formed on at least a part of the surface of the glass substrate 192.
  • the attenuation film 193 attenuates the light beam (processing beam) incident on the attenuation film 193, and prevents it from being incident on the light receiving element 195.
  • the attenuation film 193 has an opening 194 formed therein through which at least one of the multiple processing beams EL1 to EL9 irradiated from the processing head 100 can pass.
  • the light receiving element 195 detects at least one of the multiple processing beams EL1 to EL9 that have passed through the opening 194 of the beam passing member 191 (attenuation film 193).
  • the above-mentioned light receiving device 190 may be provided on the stage 50 to measure the cross-sectional intensity distribution of the multiple processing beams EL1 to EL9 focused and irradiated on a surface corresponding to the surface on the workpiece W, and the cross-sectional intensity distribution of the multiple processing beams EL1 to EL9 at a defocused surface away from the surface corresponding to the surface on the workpiece W in the optical axis direction (Z-axis direction).
  • the control unit 2 may use the phase retrieval method disclosed in JP-A-10-284368 etc.
  • the control unit 2 can generate the above-mentioned aberration map based on the wavefront aberration obtained using the phase retrieval method.
  • the light receiving device 190 may be provided separately from the stage 50.
  • a device drive system for moving the light receiving device 190 may be provided.
  • the device drive system may move the light receiving device 190 to a predetermined cross-sectional measurement position or a predetermined defocus position between the processing head 100 and the stage 50.
  • the predetermined cross-sectional measurement position is a position where the light receiving device 190 can measure the cross-sectional shape or cross-sectional intensity distribution of the multiple processing beams EL1 to EL9 on a plane corresponding to a surface on the workpiece W.
  • the predetermined defocus position is a position where the light receiving device 190 can measure the cross-sectional intensity distribution of the multiple processing beams EL1 to EL9 on the defocus plane.
  • a deformable mirror 117 is used as the wavefront modification member, but this is not limited to this.
  • a reflective liquid crystal element such as a Liquid Crystal on Silicon-Spatial Light Modulator (LCOS-SLM) or a transmissive liquid crystal element may be used as the wavefront modification member.
  • LCOS-SLM Liquid Crystal on Silicon-Spatial Light Modulator
  • a transmissive liquid crystal element may be used as the wavefront modification member.
  • a mirror array consisting of multiple movable mirror elements arranged in an array may be used as the wavefront modification member.
  • the deformable mirror may be cooled to reduce the thermal effects caused by heat generation from the deformable mirror.
  • the deformable mirror 117 as a wavefront changing member may be housed in a housing with an optical window, and a fluid such as gas may be circulated within the housing to cool the deformable mirror 117.
  • the optical window of the housing may be located close to the light entrance side (light exit side) of the variable reflecting surface 118 of the deformable mirror 117.
  • a heat sink may also be provided on the back surface of the deformable mirror 117.
  • An optical device that irradiates a light beam from a light source onto a workpiece through an objective optical system, a beam splitter that splits the light beam from the light source into a plurality of light beams; a conjugate optical system onto which the plurality of light beams emitted from the beam splitting member are incident and which forms a conjugate position optically conjugate with a beam splitting surface of the beam splitting member; a wavefront changing member into which the plurality of light beams from the conjugate optical system are incident and which changes a wavefront of the plurality of light beams in a beam cross section to be emitted, and causes the plurality of light beams to be incident into the objective optical system; An optical device in which the wavefront modifying surface of the wavefront modifying member is located at the conjugate position of the beam splitting surface.
  • An optical device that irradiates a light beam from a light source onto a workpiece through an objective optical system, a polarizing beam splitter on which the light beam from the light source is incident; a wavefront changing member that changes a wavefront of the light beam in a beam cross section that is incident on the light beam passing through the polarizing beam splitter and that emits the light beam and causes the light beam to be incident on the polarizing beam splitter; and a quarter wave plate disposed in the path of the wavefront-modified light beam.
  • An optical device that irradiates a light beam from a light source onto a workpiece through an objective optical system, a wavefront modifying member onto which the light beam from the light source is incident and which modifies a wavefront of the light beam in a beam cross section
  • the wavefront changing member is an optical device that changes the non-rotationally symmetric component of the wavefront of the light beam from the objective optical system when changing the focusing position of the light beam from the objective optical system relative to the optical axis direction of the objective optical system by changing the wavefront of the light beam emitted from the wavefront changing member.
  • An optical processing method for processing a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system comprising: modifying a wavefront of the processing beam from the light source in a beam cross section; and changing a direction of travel of the processing beam whose wavefront has been changed, thereby changing an irradiation position on the workpiece of the processing beam irradiated onto the workpiece via the objective optical system.
  • Appendix 7 The optical processing method according to claim 6, wherein the state of the wavefront change is changed when the irradiation position is changed.
  • Appendix 9 9.
  • control unit controls a deflection angle of the beam deflection surface of the deflection member.
  • control unit controls the rotation of the beam splitting member by the rotary drive device based on information about the deflection angle from the deflection member.
  • control unit sends a command value of the deflection angle to the deflection member and controls the rotation of the beam splitting member by the rotary drive device based on the command value.
  • control unit includes a memory unit that stores the relationship between the deflection angle and the amount of rotation of the beam splitting member by the rotary drive device.
  • At least some of the constituent elements of the present embodiment described above can be appropriately combined with at least some of the other constituent elements of the present embodiment described above. Some of the constituent elements of the present embodiment described above may not be used.
  • SYS Optical processing device 1 Processing unit 2 Control unit 90 Memory unit 100 Processing head 101 Optical device 110 Processing optical system 111 Diffractive optical element (111a grating surface) 112 Conjugate optical system 115 Wavefront changing unit 116 Polarizing beam splitter 117 Deformable mirror 118 Variable reflecting surface 119 Beam dumper 121 First 1/2 wave plate 122 First 1/4 wave plate 123 Second 1/2 wave plate 124 Second 1/4 wave plate 125 Relay optical system 150 Synthesis optical system 153 Corrective wavefront measuring device 160 Deflection optical system 161 Galvanometer mirror 162X X-scanning mirror 162Y Y-scanning mirror 170 Objective optical system 171 f ⁇ lens

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

This optical device is used for an optical processing device and is provided with: a deformable mirror (117) that a plurality of processing beams (ELs) from a processing light source (10) enter and that modifies the wavefront of the beam cross section of each of the plurality of processing beams (ELs); and a galvanomirror (161) that changes the traveling direction of the plurality of processing beams (ELs) from the deformable mirror (117) to change the positions where the processing beams (ELs) passing through an objective optical system (170) hit a workpiece (W).

Description

光学装置、光加工装置、光加工方法、および補正部材Optical device, optical processing device, optical processing method, and correction member
 本発明は、光学装置、光加工装置、光加工方法、および補正部材に関する。 The present invention relates to an optical device, an optical processing device, an optical processing method, and a correction member.
 光ビームを照射する光学装置は、例えば光加工装置等に用いられる。光学装置では、収差を補正する必要がある。例えば、デフォーマブルミラー(例えば、特許文献1を参照)を用いて、反射する光ビームの波面を変化させることで、波面収差を補正することが可能である。 Optical devices that irradiate light beams are used, for example, in optical processing devices. In optical devices, it is necessary to correct aberration. For example, it is possible to correct wavefront aberration by using a deformable mirror (see, for example, Patent Document 1) to change the wavefront of the reflected light beam.
米国特許第6467915号明細書U.S. Pat. No. 6,467,915
 本発明の第1の態様は、光源からの加工ビームを対物光学系からワークに照射して前記ワークを加工する光加工装置に用いられる光学装置であって、前記光源からの前記加工ビームが入射し、前記加工ビームのビーム断面における波面を変更する波面変更部材と、前記波面変更部材からの前記加工ビームの進行方向を変化させ、前記対物光学系を介して前記ワーク上に照射される前記加工ビームの、前記ワーク上での照射位置を変える偏向部材とを備える光学装置である。 The first aspect of the present invention is an optical device used in an optical processing device that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system, the optical device comprising: a wavefront modification member into which the processing beam from the light source is incident and that modifies the wavefront of the processing beam in the beam cross section; and a deflection member that changes the traveling direction of the processing beam from the wavefront modification member and changes the irradiation position on the workpiece of the processing beam that is irradiated onto the workpiece through the objective optical system.
 本発明の第2の態様は、光源からの加工ビームを対物光学系からワークに照射して前記ワークを加工する光加工装置に用いられる光学装置であって、前記光源からの前記加工ビームが入射し、前記加工ビームのビーム断面における波面を変更する波面変更部材と、前記波面変更部材から射出された前記加工ビームが入射するリレー光学系と、前記リレー光学系からの前記加工ビームの進行方向を変化させて前記対物光学系に入射させ、前記ワーク上での前記加工ビームの照射位置を変える偏向部材とを備え、前記リレー光学系は、前記波面変更部材の波面変更面と前記偏向部材とを光学的に共役にする光学装置である。 The second aspect of the present invention is an optical device used in an optical processing device that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system, and includes a wavefront modification member into which the processing beam from the light source is incident and which modifies the wavefront of the processing beam in the beam cross section, a relay optical system into which the processing beam emitted from the wavefront modification member is incident, and a deflection member that changes the traveling direction of the processing beam from the relay optical system to cause it to be incident on the objective optical system and change the irradiation position of the processing beam on the workpiece, and the relay optical system is an optical device that optically conjugates the wavefront modification surface of the wavefront modification member with the deflection member.
 本発明の第3の態様は、光源からの加工ビームを対物光学系からワークに照射して前記ワークを加工する光加工装置に用いられる光学装置であって、前記光源からの前記加工ビームを複数の加工ビームに分割するビーム分割部材と、前記ビーム分割部材から射出された前記複数の加工ビームが入射し、前記ビーム分割部材のビーム分割面と光学的に共役な共役位置を形成する共役光学系と、前記共役光学系からの前記複数の加工ビームが入射し、射出する前記複数の加工ビームのビーム断面における波面を変更して前記対物光学系に入射させる波面変更部材とを備え、前記波面変更部材の波面変更面は、前記ビーム分割面の前記共役位置に位置する光学装置である。 The third aspect of the present invention is an optical device used in an optical processing device that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system, the optical device comprising: a beam splitting member that splits the processing beam from the light source into multiple processing beams; a conjugate optical system on which the multiple processing beams emitted from the beam splitting member are incident and form a conjugate position optically conjugate with the beam splitting surface of the beam splitting member; and a wavefront changing member on which the multiple processing beams from the conjugate optical system are incident and that changes the wavefronts in the beam cross section of the multiple processing beams that are emitted and incident on the objective optical system, the wavefront changing surface of the wavefront changing member being located at the conjugate position of the beam splitting surface.
 本発明の第4の態様は、光源からの加工ビームを対物光学系からワークに照射して前記ワークを加工する光加工装置に用いられる光学装置であって、前記光源からの前記加工ビームが入射する偏光ビームスプリッタと、前記偏光ビームスプリッタを介した前記加工ビームが入射し、射出する前記加工ビームのビーム断面における波面を変更して前記偏光ビームスプリッタに入射させる波面変更部材と、前記波面が変更された前記加工ビームの光路に配置される1/4波長板とを備える光学装置である。 The fourth aspect of the present invention is an optical device used in an optical processing device that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system, the optical device comprising: a polarizing beam splitter onto which the processing beam from the light source is incident; a wavefront changing member into which the processing beam via the polarizing beam splitter is incident and which changes the wavefront of the exiting processing beam in the beam cross section and causes the processing beam to be incident on the polarizing beam splitter; and a quarter-wave plate arranged in the optical path of the processing beam with the wavefront changed.
 本発明の第5の態様は、光源からの加工ビームを対物光学系からワークに照射して前記ワークを加工する光加工装置に用いられる光学装置であって、前記光源からの前記加工ビームが入射し、前記加工ビームのビーム断面における波面を変更する波面変更部材を備え、前記波面変更部材は、前記波面変更部材から射出される前記加工ビームの前記波面を変更して、前記対物光学系の光軸方向に関する前記対物光学系からの前記加工ビームの集光位置を変えるときに、前記対物光学系からの前記加工ビームの前記波面の非回転対称成分を補正する光学装置である。 The fifth aspect of the present invention is an optical device used in an optical processing device that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system, and includes a wavefront modification member into which the processing beam from the light source is incident and which modifies the wavefront of the processing beam in a beam cross section, and the wavefront modification member modifies the wavefront of the processing beam emitted from the wavefront modification member to correct a non-rotationally symmetric component of the wavefront of the processing beam from the objective optical system when changing the focusing position of the processing beam from the objective optical system in relation to the optical axis direction of the objective optical system.
 本発明の第6の態様は、光源からの加工ビームを対物光学系からワークに照射して前記ワークを加工する光加工装置であって、上述の光学装置を備える光加工装置である。 The sixth aspect of the present invention is an optical processing device that processes a workpiece by irradiating a processing beam from a light source through an objective optical system onto the workpiece, and is an optical processing device that includes the optical device described above.
 本発明の第7の態様は、光源からの加工ビームを対物光学系からワークに照射して前記ワークを加工する光加工方法であって、前記光源からの前記加工ビームを上述の光学装置に入射させ、前記光学装置からの前記加工ビームを前記対物光学系を介して前記ワークに照射する光加工方法である。 The seventh aspect of the present invention is an optical processing method for processing a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system, in which the processing beam from the light source is incident on the optical device described above, and the processing beam from the optical device is irradiated onto the workpiece via the objective optical system.
 本発明の第8の態様は、偏向部材および対物光学系を介した光源からの光ビームをワークに走査可能に照射する光学装置に用いられる補正部材であって、前記光源と前記偏向部材との間の光路に配置され、前記偏向部材へ向かう前記光ビームのビーム断面における波面を変更する波面変更部材を備え、前記波面変更部材は、前記偏向部材の動作に伴って生じる、前記対物光学系からの前記光ビームのビーム断面における波面の変化を補正する補正部材である。 The eighth aspect of the present invention is a correction member used in an optical device that irradiates a light beam from a light source via a deflection member and an objective optical system onto a workpiece in a scannable manner, the correction member including a wavefront modification member disposed in an optical path between the light source and the deflection member, which modifies the wavefront in the beam cross section of the light beam heading toward the deflection member, the wavefront modification member being a correction member that corrects the change in the wavefront in the beam cross section of the light beam from the objective optical system that occurs with the operation of the deflection member.
 本発明の第9の態様は、偏向部材および対物光学系を介した光源からの光ビームをワークに走査可能に照射する光学装置に用いられる補正部材であって、前記光源と前記偏向部材との間の光路に配置され、前記偏向部材へ向かう前記光ビームのビーム断面における波面を変更する波面変更部材を備え、前記波面変更部材は、前記対物光学系から前記ワークに照射される前記光ビームの照射位置の移動に伴って生じる、前記対物光学系からの前記光ビームのビーム断面における波面の変化を補正する補正部材である。 The ninth aspect of the present invention is a correction member used in an optical device that irradiates a light beam from a light source via a deflection member and an objective optical system onto a workpiece in a scannable manner, and includes a wavefront modification member that is disposed in an optical path between the light source and the deflection member and modifies the wavefront in the beam cross section of the light beam heading toward the deflection member, and the wavefront modification member is a correction member that corrects the change in the wavefront in the beam cross section of the light beam from the objective optical system that occurs with the movement of the irradiation position of the light beam irradiated from the objective optical system onto the workpiece.
本実施形態に係る光加工装置の一例を示す概略構成図である。1 is a schematic configuration diagram showing an example of an optical processing apparatus according to an embodiment of the present invention; 光加工装置の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of the optical processing apparatus. 加工ヘッドの断面図である。FIG. 加工光学系、偏向光学系、および対物光学系を示す模式図である。FIG. 2 is a schematic diagram showing a processing optical system, a deflection optical system, and an objective optical system. 加工ショット領域を示す斜視図である。FIG. 2 is a perspective view showing a processed shot area. 計測ショット領域を示す斜視図である。FIG. 2 is a perspective view showing a measurement shot area. 加工ビームの断面形状を補正する前後を示す模式図である。1A to 1C are schematic diagrams showing the cross-sectional shape of a processing beam before and after correction. マップ用工具が光加工装置のステージに取り付けられた状態を示す断面図である。11 is a cross-sectional view showing a state in which a mapping tool is attached to a stage of an optical processing apparatus. FIG. マップ用工具の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a map tool. 本実施形態に係る光加工方法を示すフローチャートである。3 is a flowchart showing an optical processing method according to the present embodiment. 受光装置の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a light receiving device.
 以下、本発明に係る好ましい実施形態について説明する。まず、本実施形態に係る光加工装置について図1および図2を参照して説明する。本実施形態において、図1の各矢印で示す方向をそれぞれ、X軸方向、Y軸方向、Z軸方向と称する場合がある。また、X軸周りの回転方向、Y軸周りの回転方向、Z軸周りの回転方向をそれぞれ、θX方向、θY方向、θZ方向と称する場合がある。なお、説明の便宜上、X軸方向およびY軸方向のそれぞれが水平方向であり、Z軸方向が鉛直方向であるものとする。 Below, a preferred embodiment of the present invention will be described. First, the optical processing device according to this embodiment will be described with reference to Figures 1 and 2. In this embodiment, the directions indicated by the arrows in Figure 1 may be referred to as the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively. Furthermore, the rotation direction around the X-axis, the Y-axis, and the Z-axis may be referred to as the θX direction, the θY direction, and the θZ direction, respectively. For ease of explanation, the X-axis direction and the Y-axis direction are each assumed to be horizontal directions, and the Z-axis direction is assumed to be vertical.
 図1および図2に示すように、本実施形態に係る光加工装置SYSは、加工ユニット1と、制御ユニット2と、筐体3とを備える。筐体3は、内部空間SPを有する箱状に形成される。筐体3の内部空間SPは、窒素ガスやアルゴンガス等の不活性ガスやCDA(Clean Dry Air)を含むパージガス(つまり、気体)でパージされてもよく、パージガスでパージされなくてもよい。また、筐体3の内部空間SPは、真空引きされてもよく、真空引きされなくてもよい。加工ユニット1の少なくとも一部は、筐体3の内部空間SPに収容される。 As shown in Figures 1 and 2, the optical processing apparatus SYS according to this embodiment includes a processing unit 1, a control unit 2, and a housing 3. The housing 3 is formed in a box shape having an internal space SP. The internal space SP of the housing 3 may be purged with a purge gas (i.e., gas) including an inert gas such as nitrogen gas or argon gas, or CDA (Clean Dry Air), or it may not be purged with a purge gas. In addition, the internal space SP of the housing 3 may be evacuated, or it may not be evacuated. At least a portion of the processing unit 1 is accommodated in the internal space SP of the housing 3.
 加工ユニット1は、制御ユニット2の制御下で、加工対象物(母材と称されてもよい)であるワークWを加工可能である。ワークWの材料は、例えば、金属であってもよく、合金(例えば、ジュラルミン等)であってもよく、半導体(例えば、シリコン)であってもよく、樹脂であってもよい。また、ワークWの材料は、CFRP(Carbon Fiber Reinforced Plastic)等の複合材料であってもよく、塗料(一例として基材に塗布された塗料層)であってもよく、ガラスであってもよく、それ以外の任意の材料であってもよい。 The processing unit 1 is capable of processing the workpiece W, which is the object to be processed (which may also be referred to as the base material), under the control of the control unit 2. The material of the workpiece W may be, for example, a metal, an alloy (e.g., duralumin, etc.), a semiconductor (e.g., silicon), or a resin. The material of the workpiece W may also be a composite material such as CFRP (Carbon Fiber Reinforced Plastic), paint (one example being a paint layer applied to a substrate), glass, or any other material.
 加工ユニット1は、ワークWを加工するために、ワークWに対して加工ビームELを照射する。なお、加工ビームELは、加工光と称されてもよい。本実施形態では、加工ビームELがレーザビームである例を用いて説明を進める。但し、加工ビームELは、レーザビームとは異なる種類の光ビームであってもよい。加工ビームELの波長は、例えば517nm(または515nm)に設定されるが、ワークWに照射されることでワークWを加工可能である限りは、どのような波長であってもよい。すなわち、加工ビームELの波長は、可視光の波長であってもよく、不可視光(例えば、赤外光、紫外光及び極端紫外光等の少なくとも一つ)の波長であってもよい。また、加工ビームELは、パルス光を含んでいてもよく、パルス光を含んでいなくてもよい。 The processing unit 1 irradiates the workpiece W with a processing beam EL in order to process the workpiece W. The processing beam EL may be referred to as processing light. In this embodiment, the processing beam EL is a laser beam. However, the processing beam EL may be a type of light beam other than a laser beam. The wavelength of the processing beam EL is set to, for example, 517 nm (or 515 nm), but may be any wavelength as long as it is possible to process the workpiece W by irradiating it. In other words, the wavelength of the processing beam EL may be a wavelength of visible light or a wavelength of invisible light (for example, at least one of infrared light, ultraviolet light, and extreme ultraviolet light). The processing beam EL may or may not include pulsed light.
 加工ユニット1は、ワークWに対して付加加工を行ってもよい。つまり、加工ユニット1は、ワークWに造形物を造形する付加加工を行ってもよい。加工ユニット1は、ワークWに対して除去加工を行ってもよい。つまり、加工ユニット1は、ワークWの一部を除去する除去加工を行ってもよい。加工ユニット1は、ワークWの表面に所望のマークを形成するマーキング加工を行ってもよい。加工ユニット1は、ワークWの表面の特性を変更するピーニング加工を行ってもよい。加工ユニット1は、ワークWの表面を剥離する剥離加工を行ってもよい。加工ユニット1は、一のワークWと他のワークWとを接合する溶接加工を行ってもよい。加工ユニット1は、ワークWを切断する切断加工を行ってもよい。加工ユニット1は、ワークWの表面を溶融する共に溶融させた表面を固化させることで表面を平面に近づけるための平面加工(言い換えれば、リメルト加工)を行ってもよい。 The processing unit 1 may perform additional processing on the workpiece W. That is, the processing unit 1 may perform additional processing to form a shaped object on the workpiece W. The processing unit 1 may perform removal processing on the workpiece W. That is, the processing unit 1 may perform removal processing to remove a part of the workpiece W. The processing unit 1 may perform marking processing to form a desired mark on the surface of the workpiece W. The processing unit 1 may perform peening processing to change the characteristics of the surface of the workpiece W. The processing unit 1 may perform peeling processing to peel off the surface of the workpiece W. The processing unit 1 may perform welding processing to join one workpiece W to another workpiece W. The processing unit 1 may perform cutting processing to cut the workpiece W. The processing unit 1 may perform flattening processing (in other words, remelt processing) to melt the surface of the workpiece W and solidify the melted surface to make the surface closer to a flat surface.
 加工ユニット1は、ワークWを加工することで、ワークWの表面に所望構造を形成してもよい。但し、加工ユニット1は、ワークWの表面に所望構造を形成するための加工とは異なる加工を行ってもよい。所望構造の一例として、リブレット構造があげられる。リブレット構造は、ワークWの表面の流体に対する抵抗(特に、摩擦抵抗及び乱流摩擦抵抗の少なくとも一方)を低減可能な構造を含んでいてもよい。このため、リブレット構造は、ワークWにおける流体中に設置される(言い換えれば、位置する)部分に形成されてもよい。リブレット構造が形成されるワークWの一例として、航空機、風車、エンジン用タービン、および発電用タービン等が挙げられる。このようなリブレット構造がワークWに形成される場合には、ワークWは、流体に対して相対的に移動しやすくなる。このため、流体に対するワークWの移動を妨げる抵抗が低減されるがゆえに、省エネルギー化につながる。つまり、環境にやさしいワークWの製造が可能となる。 The processing unit 1 may process the workpiece W to form a desired structure on the surface of the workpiece W. However, the processing unit 1 may perform processing other than the processing for forming the desired structure on the surface of the workpiece W. An example of a desired structure is a riblet structure. The riblet structure may include a structure that can reduce the resistance of the surface of the workpiece W to the fluid (particularly, at least one of frictional resistance and turbulent frictional resistance). For this reason, the riblet structure may be formed on a portion of the workpiece W that is installed (in other words, located) in the fluid. Examples of the workpiece W on which a riblet structure is formed include aircraft, windmills, engine turbines, and power generation turbines. When such a riblet structure is formed on the workpiece W, the workpiece W becomes easier to move relative to the fluid. This leads to energy savings because the resistance that hinders the movement of the workpiece W relative to the fluid is reduced. In other words, it becomes possible to manufacture an environmentally friendly workpiece W.
 さらに、加工ユニット1は、制御ユニット2の制御下で、計測対象物Mを計測可能である。加工ユニット1は、計測対象物Mを計測するために、計測対象物Mに対して、計測対象物Mを計測するための計測ビームMLを照射する。具体的には、加工ユニット1は、計測ビームMLを計測対象物Mに照射し、且つ、計測ビームMLが照射された計測対象物Mから戻ってくる光の少なくとも一部を検出する(つまり、受光する)ことで、計測対象物Mを計測する。計測ビームMLが照射された計測対象物Mから戻ってくる光は、計測ビームMLの照射によって生じる計測対象物Mからの光である。本実施形態において、計測ビームMLが照射された計測対象物Mから戻ってくる光を、戻りビームRLと称する。なお、戻りビームRLは、戻り光と称されてもよい。計測ビームMLは、計測光と称されてもよい。 Furthermore, the processing unit 1 can measure the measurement object M under the control of the control unit 2. In order to measure the measurement object M, the processing unit 1 irradiates the measurement object M with a measurement beam ML for measuring the measurement object M. Specifically, the processing unit 1 measures the measurement object M by irradiating the measurement object M with the measurement beam ML and detecting (i.e., receiving) at least a portion of the light returning from the measurement object M irradiated with the measurement beam ML. The light returning from the measurement object M irradiated with the measurement beam ML is light from the measurement object M generated by irradiation with the measurement beam ML. In this embodiment, the light returning from the measurement object M irradiated with the measurement beam ML is referred to as the return beam RL. The return beam RL may also be referred to as return light. The measurement beam ML may also be referred to as measurement light.
 計測ビームMLは、計測対象物Mに照射されることで計測対象物Mを計測可能である限りは、どのような種類の光であってもよい。本実施形態では、計測ビームMLがレーザ光である例を用いて説明を進める。但し、計測ビームMLは、レーザ光とは異なる種類の光であってもよい。計測ビームMLの波長は、例えば1550nmに設定されるが、計測対象物Mに照射されることで計測対象物Mを計測可能である限りは、どのような波長であってもよい。すなわち、計測ビームMLの波長は、可視光の波長であってもよいし、不可視光(例えば、赤外光、紫外光及び極端紫外光等の少なくとも一つ)の波長であってもよい。また、計測ビームMLは、パルス光(例えば、発光時間がピコ秒以下のパルス光)を含んでいてもよく、パルス光を含んでいなくてもよい。 The measurement beam ML may be any type of light as long as it is capable of measuring the measurement object M by irradiating it on the measurement object M. In this embodiment, the description will be given using an example in which the measurement beam ML is laser light. However, the measurement beam ML may be a type of light other than laser light. The wavelength of the measurement beam ML is set to, for example, 1550 nm, but may be any wavelength as long as it is capable of measuring the measurement object M by irradiating it on the measurement object M. In other words, the wavelength of the measurement beam ML may be the wavelength of visible light or the wavelength of invisible light (for example, at least one of infrared light, ultraviolet light, and extreme ultraviolet light). In addition, the measurement beam ML may include pulsed light (for example, pulsed light having an emission time of picoseconds or less) or may not include pulsed light.
 加工ユニット1は、計測ビームMLを用いて、計測対象物Mの特性を計測可能であってもよい。計測対象物Mの特性は、例えば、計測対象物Mの位置、計測対象物Mの形状、計測対象物Mの反射率、計測対象物Mの透過率、計測対象物Mの温度、および計測対象物Mの表面粗さの少なくとも一つを含んでいてもよい。 The processing unit 1 may be capable of measuring the characteristics of the measurement object M using the measurement beam ML. The characteristics of the measurement object M may include, for example, at least one of the position of the measurement object M, the shape of the measurement object M, the reflectance of the measurement object M, the transmittance of the measurement object M, the temperature of the measurement object M, and the surface roughness of the measurement object M.
 計測対象物Mは、例えば、加工ユニット1が加工するワークWを含んでいてもよい。計測対象物Mは、例えば、後述するステージ50に載置される任意の物体を含んでいてもよい。計測対象物Mは、例えば、ステージ50を含んでいてもよい。 The measurement object M may include, for example, the workpiece W that is processed by the processing unit 1. The measurement object M may include, for example, any object that is placed on the stage 50 described below. The measurement object M may include, for example, the stage 50.
 ワークWを加工し且つ計測対象物Mを計測するために、加工ユニット1は、加工光源10と、計測光源20と、加工ヘッド100と、ヘッド駆動系40と、位置計測装置45と、ステージ50と、ステージ駆動系60と、位置計測装置65とを備える。 In order to process the workpiece W and measure the measurement object M, the processing unit 1 includes a processing light source 10, a measurement light source 20, a processing head 100, a head drive system 40, a position measurement device 45, a stage 50, a stage drive system 60, and a position measurement device 65.
 加工光源10は、加工ビームELを生成する。加工ビームELがレーザビームである場合には、加工光源10は、例えば、レーザダイオードを含んでいてもよい。さらに、加工光源10は、パルス発振可能な光源であってもよい。この場合、加工光源10は、パルス光を加工ビームELとして生成可能である。なお、加工光源10は、CW(連続波)を生成するCW光源であってもよい。 The processing light source 10 generates a processing beam EL. When the processing beam EL is a laser beam, the processing light source 10 may include, for example, a laser diode. Furthermore, the processing light source 10 may be a light source capable of pulse oscillation. In this case, the processing light source 10 is capable of generating pulsed light as the processing beam EL. Note that the processing light source 10 may be a CW light source that generates a CW (continuous wave).
 計測光源20は、計測ビームMLを生成する。計測ビームMLがレーザビームである場合には、計測光源20は、例えば、レーザダイオードを含んでいてもよい。さらに、計測光源20は、パルス発振可能な光源であってもよい。この場合、計測光源20は、パルス光を加工ビームELとして生成可能である。なお、計測光源20は、CW(連続波)を生成するCW光源であってもよい。 The measurement light source 20 generates a measurement beam ML. When the measurement beam ML is a laser beam, the measurement light source 20 may include, for example, a laser diode. Furthermore, the measurement light source 20 may be a light source capable of pulse oscillation. In this case, the measurement light source 20 is capable of generating pulsed light as the processing beam EL. Note that the measurement light source 20 may be a CW light source that generates a CW (continuous wave).
 加工ヘッド100は、加工光源10が生成した加工ビームELをワークWに照射し、且つ計測光源20が生成した計測ビームMLを計測対象物Mに照射できるようになっている。加工ヘッド100は、加工光学系110と、計測光学系130と、合成光学系150と、偏向光学系160と、対物光学系170とを備える。加工ヘッド100は、加工光学系110、合成光学系150、偏向光学系160、および対物光学系170を介して、加工ビームEL(より具体的には、後述する複数の加工ビームEL1~EL9)をワークWに照射する。また、加工ヘッド100は、計測光学系130、合成光学系150、偏向光学系160、および対物光学系170を介して、計測ビームMLを計測対象物Mに照射する。加工ヘッド100の詳細な構成については、後で説明する。 The processing head 100 is capable of irradiating the workpiece W with the processing beam EL generated by the processing light source 10 and irradiating the measurement beam ML generated by the measurement light source 20 to the measurement object M. The processing head 100 includes a processing optical system 110, a measurement optical system 130, a synthesis optical system 150, a deflection optical system 160, and an objective optical system 170. The processing head 100 irradiates the processing beam EL (more specifically, a plurality of processing beams EL1 to EL9 described later) to the workpiece W via the processing optical system 110, the synthesis optical system 150, the deflection optical system 160, and the objective optical system 170. The processing head 100 also irradiates the measurement beam ML to the measurement object M via the measurement optical system 130, the synthesis optical system 150, the deflection optical system 160, and the objective optical system 170. The detailed configuration of the processing head 100 will be described later.
 ヘッド駆動系40は、加工ヘッド100を移動させる。つまり、ヘッド駆動系40は、加工ヘッド100の位置を動かす。このため、ヘッド駆動系40は、移動装置と称されてもよい。ヘッド駆動系40は、例えば、X軸方向、Y軸方向、およびZ軸方向の少なくとも一つに沿った移動軸に沿って加工ヘッド100を直線移動させてもよい。ヘッド駆動系40は、例えば、θX方向、θY方向、およびθZ方向の少なくとも一つに沿って加工ヘッド100を回転移動させてもよい。 The head drive system 40 moves the machining head 100. In other words, the head drive system 40 moves the position of the machining head 100. For this reason, the head drive system 40 may be referred to as a moving device. The head drive system 40 may, for example, move the machining head 100 linearly along a movement axis along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction. The head drive system 40 may, for example, move the machining head 100 rotationally along at least one of the θX direction, the θY direction, and the θZ direction.
 ヘッド駆動系40が加工ヘッド100を移動させると、加工ヘッド100とステージ50(さらには、ステージ50に載置されるワークW)との相対的な位置関係が変わる。このため、加工ヘッド100が加工を行う加工ショット領域PSA(後述する図5を参照)とワークWとの相対的な位置関係が変わる。つまり、ワークWに対して加工ショット領域PSAが移動する。加工ユニット1は、加工ヘッド100を移動させつつワークWを加工してもよい。具体的には、加工ユニット1は、加工ヘッド100を移動させることでワークWの所望位置に加工ショット領域PSAを設定し、ワークWの所望位置を加工してもよい。 When the head drive system 40 moves the machining head 100, the relative positional relationship between the machining head 100 and the stage 50 (and further the workpiece W placed on the stage 50) changes. As a result, the relative positional relationship between the processing shot area PSA (see FIG. 5 described later) where the machining head 100 performs processing and the workpiece W changes. In other words, the processing shot area PSA moves relative to the workpiece W. The machining unit 1 may process the workpiece W while moving the machining head 100. Specifically, the machining unit 1 may set the processing shot area PSA at a desired position on the workpiece W by moving the machining head 100, and process the desired position on the workpiece W.
 さらに、ヘッド駆動系40が加工ヘッド100を移動させると、加工ヘッド100が計測を行う計測ショット領域MSA(後述する図6を参照)と計測対象物Mとの相対的な位置関係が変わる。つまり、計測対象物Mに対して計測ショット領域MSAが移動する。加工ユニット1は、加工ヘッド100を移動させつつ計測対象物Mを計測してもよい。具体的には、加工ユニット1は、加工ヘッド100を移動させることで計測対象物Mの所望位置に計測ショット領域MSAを設定し、計測対象物Mの所望位置を計測してもよい。 Furthermore, when the head drive system 40 moves the processing head 100, the relative positional relationship between the measurement shot area MSA (see FIG. 6 described later) where the processing head 100 performs the measurement and the measurement object M changes. In other words, the measurement shot area MSA moves with respect to the measurement object M. The processing unit 1 may measure the measurement object M while moving the processing head 100. Specifically, the processing unit 1 may set the measurement shot area MSA at a desired position on the measurement object M by moving the processing head 100, and measure the desired position of the measurement object M.
 位置計測装置45は、加工ヘッド100の位置を計測可能である。位置計測装置45は、例えば、干渉計(例えば、レーザ干渉計)を含んでいてもよい。位置計測装置45は、例えば、エンコーダ(一例として、リニアエンコーダ及びロータリエンコーダの少なくとも一つ)を含んでいてもよい。位置計測装置45は、例えば、ポテンショメータを含んでいてもよい。ヘッド駆動系40がステッピングモータを駆動源として用いている場合には、位置計測装置45は、例えば、オープンループ制御方式の位置検出装置を含んでいてもよい。オープンループ制御方式の位置検出装置は、ステッピングモータを駆動するためのパルス数の積算値から、加工ヘッド100の移動量を推定することで、加工ヘッド100の位置を計測する位置検出装置である。 The position measuring device 45 can measure the position of the machining head 100. The position measuring device 45 may include, for example, an interferometer (e.g., a laser interferometer). The position measuring device 45 may include, for example, an encoder (at least one of a linear encoder and a rotary encoder, for example). The position measuring device 45 may include, for example, a potentiometer. When the head drive system 40 uses a stepping motor as a drive source, the position measuring device 45 may include, for example, an open-loop control type position detection device. The open-loop control type position detection device is a position detection device that measures the position of the machining head 100 by estimating the amount of movement of the machining head 100 from the integrated value of the number of pulses for driving the stepping motor.
 ステージ50には、ワークWが載置される。このため、ステージ50は、載置装置と称されてもよい。具体的には、ステージ50の上面の少なくとも一部である載置面51に、ワークWが載置される。ステージ50は、ステージ50に載置されたワークWを支持可能である。ステージ50は、ステージ50に載置されたワークWを保持可能であってもよい。この場合、ステージ50は、ワークWを保持するために、機械的なチャック、静電チャック、および真空吸着チャック等の少なくとも一つを備えていてもよい。また、ワークWを保持するための治具がワークWを保持し、ステージ50は、ワークWを保持した治具を保持してもよい。あるいは、ステージ50は、ステージ50に載置されたワークWを保持しなくてもよい。この場合、ワークWは、クランプレスでステージ50に載置されていてもよい。 The workpiece W is placed on the stage 50. For this reason, the stage 50 may be referred to as a placement device. Specifically, the workpiece W is placed on a placement surface 51, which is at least a part of the upper surface of the stage 50. The stage 50 is capable of supporting the workpiece W placed on the stage 50. The stage 50 may be capable of holding the workpiece W placed on the stage 50. In this case, the stage 50 may be equipped with at least one of a mechanical chuck, an electrostatic chuck, a vacuum chuck, and the like, in order to hold the workpiece W. Also, a jig for holding the workpiece W may hold the workpiece W, and the stage 50 may hold the jig that holds the workpiece W. Alternatively, the stage 50 may not hold the workpiece W placed on the stage 50. In this case, the workpiece W may be placed on the stage 50 without being clamped.
 ステージ駆動系60は、ステージ50を移動させる。つまり、ステージ駆動系60は、ステージ50の位置を動かす。このため、ステージ駆動系60は、移動装置と称されてもよい。ステージ駆動系60は、例えば、X軸方向、Y軸方向、およびZ軸方向のうちの少なくとも一つに沿った移動軸に沿ってステージ50を直線移動させてもよい。ステージ駆動系60は、例えば、θX方向、θY方向、およびθZ方向の少なくとも一つに沿ってステージ50を回転移動させてもよい。 The stage drive system 60 moves the stage 50. In other words, the stage drive system 60 moves the position of the stage 50. For this reason, the stage drive system 60 may be referred to as a moving device. The stage drive system 60 may, for example, move the stage 50 linearly along a movement axis along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction. The stage drive system 60 may, for example, move the stage 50 rotationally along at least one of the θX direction, the θY direction, and the θZ direction.
 ステージ駆動系60がステージ50を移動させると、加工ヘッド100とステージ50(さらには、ステージ50に載置されるワークW)との相対的な位置関係が変わる。このため、加工ヘッド100が加工を行う加工ショット領域PSA(後述する図5を参照)とワークWとの相対的な位置関係が変わる。つまり、ワークWに対して加工ショット領域PSAが移動する。加工ユニット1は、ステージ50を移動させつつワークWを加工してもよい。具体的には、加工ユニット1は、ステージ50を移動させることでワークWの所望位置に加工ショット領域PSAを設定し、ワークWの所望位置を加工してもよい。 When the stage drive system 60 moves the stage 50, the relative positional relationship between the processing head 100 and the stage 50 (and further the workpiece W placed on the stage 50) changes. As a result, the relative positional relationship between the processing shot area PSA (see FIG. 5 described later) where the processing head 100 performs processing and the workpiece W changes. In other words, the processing shot area PSA moves relative to the workpiece W. The processing unit 1 may process the workpiece W while moving the stage 50. Specifically, the processing unit 1 may set the processing shot area PSA at a desired position on the workpiece W by moving the stage 50, and process the desired position on the workpiece W.
 さらに、ステージ駆動系60がステージ50を移動させると、加工ヘッド100が計測を行う計測ショット領域MSA(後述する図6を参照)と計測対象物Mとの相対的な位置関係が変わる。つまり、計測対象物Mに対して計測ショット領域MSAが移動する。加工ユニット1は、ステージ50を移動させつつ計測対象物Mを計測してもよい。具体的には、加工ユニット1は、ステージ50を移動させることで計測対象物Mの所望位置に計測ショット領域MSAを設定し、計測対象物Mの所望位置を計測してもよい。 Furthermore, when the stage drive system 60 moves the stage 50, the relative positional relationship between the measurement shot area MSA (see FIG. 6 described later) where the processing head 100 performs the measurement and the measurement object M changes. In other words, the measurement shot area MSA moves with respect to the measurement object M. The processing unit 1 may measure the measurement object M while moving the stage 50. Specifically, the processing unit 1 may set the measurement shot area MSA at a desired position on the measurement object M by moving the stage 50, and measure the desired position of the measurement object M.
 位置計測装置65は、ステージ50の位置を計測可能である。位置計測装置65は、例えば、干渉計(例えば、レーザ干渉計)を含んでいてもよい。位置計測装置65は、例えば、エンコーダ(一例として、リニアエンコーダおよびロータリエンコーダの少なくとも一つ)を含んでいてもよい。位置計測装置65は、例えば、ポテンショメータを含んでいてもよい。ステージ駆動系60がステッピングモータを駆動源として用いている場合には、位置計測装置65は、例えば、オープンループ制御方式の位置検出装置を含んでいてもよい。オープンループ制御方式の位置検出装置は、ステッピングモータを駆動するためのパルス数の積算値から、ステージ50の移動量を推定することで、ステージ50の位置を計測する位置検出装置である。 The position measuring device 65 can measure the position of the stage 50. The position measuring device 65 may include, for example, an interferometer (e.g., a laser interferometer). The position measuring device 65 may include, for example, an encoder (at least one of a linear encoder and a rotary encoder, for example). The position measuring device 65 may include, for example, a potentiometer. When the stage drive system 60 uses a stepping motor as a drive source, the position measuring device 65 may include, for example, an open-loop control type position detection device. The open-loop control type position detection device is a position detection device that measures the position of the stage 50 by estimating the amount of movement of the stage 50 from the integrated value of the number of pulses for driving the stepping motor.
 制御ユニット2は、加工ユニット1の動作を制御する。例えば、制御ユニット2は、加工ユニット1が備える加工ヘッド100の動作を制御してもよい。例えば、制御ユニット2は、加工ヘッド100が備える加工光学系110、計測光学系130、合成光学系150、偏向光学系160、および対物光学系170の少なくとも一つの動作を制御してもよい。例えば、制御ユニット2は、加工ユニット1が備えるヘッド駆動系40の動作(例えば、加工ヘッド100の移動)を制御してもよい。例えば、制御ユニット2は、加工ユニット1が備えるステージ駆動系60の動作(例えば、ステージ50の移動)を制御してもよい。 The control unit 2 controls the operation of the processing unit 1. For example, the control unit 2 may control the operation of the processing head 100 provided in the processing unit 1. For example, the control unit 2 may control the operation of at least one of the processing optical system 110, the measurement optical system 130, the synthesis optical system 150, the deflection optical system 160, and the objective optical system 170 provided in the processing head 100. For example, the control unit 2 may control the operation of the head drive system 40 provided in the processing unit 1 (for example, the movement of the processing head 100). For example, the control unit 2 may control the operation of the stage drive system 60 provided in the processing unit 1 (for example, the movement of the stage 50).
 制御ユニット2は、加工ユニット1による計測対象物Mの計測結果に基づいて、加工ユニット1の動作を制御してもよい。具体的には、制御ユニット2は、計測対象物Mの計測結果に基づいて、計測対象物Mの計測データ(例えば、計測対象物Mの位置及び形状の少なくとも一方に関するデータ)を生成し、生成した計測データに基づいて、加工ユニット1の動作を制御してもよい。例えば、制御ユニット2は、計測対象物Mの一例であるワークWの計測結果に基づいて、ワークWの少なくとも一部の計測データを生成し(例えば、ワークWの少なくとも一部の位置及び形状の少なくとも一方を算出し)、計測データに基づいて、ワークWを加工するように加工ユニット1の動作を制御してもよい。 The control unit 2 may control the operation of the processing unit 1 based on the measurement results of the measurement object M by the processing unit 1. Specifically, the control unit 2 may generate measurement data of the measurement object M (e.g., data related to at least one of the position and shape of the measurement object M) based on the measurement results of the measurement object M, and control the operation of the processing unit 1 based on the generated measurement data. For example, the control unit 2 may generate measurement data of at least a part of the workpiece W based on the measurement results of the workpiece W, which is an example of the measurement object M (e.g., calculate at least one of the position and shape of at least a part of the workpiece W), and control the operation of the processing unit 1 to process the workpiece W based on the measurement data.
 制御ユニット2は、例えば、演算装置と、記憶装置とを備えていてもよい。演算装置は、例えば、CPU(Central Processing Unit)およびGPU(Graphics Processing Unit)の少なくとも一方を含んでいてもよい。記憶装置は、例えば、メモリを含んでいてもよい。制御ユニット2は、演算装置がコンピュータプログラムを実行することで、加工ユニット1の動作を制御する装置として機能する。このコンピュータプログラムは、制御ユニット2が行うべき後述する動作を演算装置に行わせる(つまり、実行させる)ためのコンピュータプログラムである。つまり、このコンピュータプログラムは、加工ユニット1に後述する動作を行わせるように制御ユニット2を機能させるためのコンピュータプログラムである。演算装置が実行するコンピュータプログラムは、制御ユニット2が備える記憶装置(つまり、記録媒体)に記録されていてもよいし、制御ユニット2に内蔵された又は制御ユニット2に外付け可能な任意の記憶媒体(例えば、ハードディスクや半導体メモリ)に記録されていてもよい。あるいは、演算装置は、実行するべきコンピュータプログラムを、ネットワークインタフェースを介して、制御ユニット2の外部の装置からダウンロードしてもよい。 The control unit 2 may include, for example, a calculation device and a storage device. The calculation device may include, for example, at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit). The storage device may include, for example, a memory. The control unit 2 functions as a device that controls the operation of the machining unit 1 by the calculation device executing a computer program. This computer program is a computer program for making the calculation device perform (i.e., execute) the operation to be performed by the control unit 2, which will be described later. In other words, this computer program is a computer program for making the control unit 2 function so as to make the machining unit 1 perform the operation to be described later. The computer program executed by the calculation device may be recorded in a storage device (i.e., a recording medium) included in the control unit 2, or may be recorded in any storage medium (e.g., a hard disk or a semiconductor memory) built into the control unit 2 or that can be externally attached to the control unit 2. Alternatively, the calculation device may download the computer program to be executed from a device external to the control unit 2 via a network interface.
 制御ユニット2は、加工ユニット1の内部に設けられていなくてもよい。例えば、制御ユニット2は、加工ユニット1外にサーバ等として設けられていてもよい。この場合、制御ユニット2と加工ユニット1とは、有線および/または無線のネットワーク(あるいは、データバスおよび/または通信回線)で接続されていてもよい。有線のネットワークとして、例えば、IEEE1394、RS-232x、RS-422、RS-423、RS-485、およびUSBの少なくとも一つに代表されるシリアルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、パラレルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、10BASE-T、100BASE-TX、および1000BASE-Tの少なくとも一つに代表されるイーサネット(登録商標)に準拠したインタフェースを用いるネットワークが用いられてもよい。無線のネットワークとして、電波を用いたネットワークが用いられてもよい。電波を用いたネットワークの一例として、IEEE802.1xに準拠したネットワーク(例えば、無線LANおよびBluetooth(登録商標)の少なくとも一方)があげられる。無線のネットワークとして、赤外線を用いたネットワークが用いられてもよい。無線のネットワークとして、光通信を用いたネットワークが用いられてもよい。この場合、制御ユニット2と加工ユニット1とはネットワークを介して各種の情報の送受信が可能となるように構成されていてもよい。また、制御ユニット2は、ネットワークを介して加工ユニット1にコマンドや制御パラメータ等の情報を送信可能であってもよい。加工ユニット1は、制御ユニット2からのコマンドや制御パラメータ等の情報を、上記ネットワークを介して受信する受信装置を備えていてもよい。加工ユニット1は、制御ユニット2に対してコマンドや制御パラメータ等の情報を、上記ネットワークを介して送信する送信装置(つまり、制御ユニット2に対して情報を出力する出力装置)を備えていてもよい。あるいは、制御ユニット2が行う処理のうちの一部を行う第1制御装置が加工ユニット1の内部に設けられている一方で、制御ユニット2が行う処理のうちの他の一部を行う第2制御装置が加工ユニット1の外部に設けられていてもよい。 The control unit 2 does not have to be provided inside the processing unit 1. For example, the control unit 2 may be provided outside the processing unit 1 as a server or the like. In this case, the control unit 2 and the processing unit 1 may be connected by a wired and/or wireless network (or a data bus and/or a communication line). As the wired network, for example, a network using a serial bus type interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485, and USB may be used. As the wired network, a network using a parallel bus type interface may be used. As the wired network, a network using an interface compliant with Ethernet (registered trademark) represented by at least one of 10BASE-T, 100BASE-TX, and 1000BASE-T may be used. As the wireless network, a network using radio waves may be used. An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of a wireless LAN and Bluetooth (registered trademark)). A network using infrared rays may be used as a wireless network. A network using optical communication may be used as a wireless network. In this case, the control unit 2 and the processing unit 1 may be configured to be able to transmit and receive various information via the network. The control unit 2 may also be able to transmit information such as commands and control parameters to the processing unit 1 via the network. The processing unit 1 may be equipped with a receiving device that receives information such as commands and control parameters from the control unit 2 via the network. The processing unit 1 may be equipped with a transmitting device (i.e., an output device that outputs information to the control unit 2) that transmits information such as commands and control parameters to the control unit 2 via the network. Alternatively, a first control device that performs a part of the processing performed by the control unit 2 may be provided inside the processing unit 1, while a second control device that performs another part of the processing performed by the control unit 2 may be provided outside the processing unit 1.
 制御ユニット2内には、演算装置がコンピュータプログラムを実行することで、機械学習によって構築可能な演算モデルが実装されてもよい。機械学習によって構築可能な演算モデルの一例として、例えば、ニューラルネットワークを含む演算モデル(いわゆる、人工知能(AI:Artificial Intelligence))があげられる。この場合、演算モデルの学習は、ニューラルネットワークのパラメータ(例えば、重み及びバイアスの少なくとも一つ)の学習を含んでいてもよい。制御ユニット2は、演算モデルを用いて、加工ユニット1の動作を制御してもよい。つまり、加工ユニット1の動作を制御する動作は、演算モデルを用いて加工ユニット1の動作を制御する動作を含んでいてもよい。なお、制御ユニット2には、教師データを用いたオフラインでの機械学習により構築済みの演算モデルが実装されてもよい。また、制御ユニット2に実装された演算モデルは、制御ユニット2上においてオンラインでの機械学習によって更新されてもよい。あるいは、制御ユニット2は、制御ユニット2に実装されている演算モデルに加えて又は代えて、制御ユニット2の外部の装置(つまり、加工ユニット1の外部に設けられる装置)に実装された演算モデルを用いて、加工ユニット1の動作を制御してもよい。 In the control unit 2, a computation model that can be constructed by machine learning may be implemented by the computation device executing a computer program. An example of a computation model that can be constructed by machine learning is, for example, a computation model including a neural network (so-called artificial intelligence (AI)). In this case, learning of the computation model may include learning of parameters of the neural network (for example, at least one of weights and biases). The control unit 2 may use the computation model to control the operation of the machining unit 1. In other words, the operation of controlling the operation of the machining unit 1 may include the operation of controlling the operation of the machining unit 1 using the computation model. Note that the control unit 2 may be implemented with a computation model that has already been constructed by offline machine learning using teacher data. In addition, the computation model implemented in the control unit 2 may be updated by online machine learning on the control unit 2. Alternatively, the control unit 2 may control the operation of the machining unit 1 using a computation model implemented in a device external to the control unit 2 (i.e., a device provided outside the machining unit 1) in addition to or instead of the computation model implemented in the control unit 2.
 なお、制御ユニット2が実行するコンピュータプログラムを記録する記録媒体としては、CD-ROM、CD-R、CD-RWや、フレキシブルディスク、MO、DVD-ROM、DVD-RAM、DVD-R、DVD+R、DVD-RW、DVD+RW、およびBlu-ray(登録商標)等の光ディスク、磁気テープ等の磁気媒体、光磁気ディスク、USBメモリ等の半導体メモリ、およびその他プログラムを格納可能な任意の媒体の少なくとも一つが用いられてもよい。記録媒体には、コンピュータプログラムを記録可能な機器(例えば、コンピュータプログラムがソフトウェアおよびファームウェア等の少なくとも一方の形態で実行可能な状態に実装された汎用機器又は専用機器)が含まれていてもよい。さらに、コンピュータプログラムに含まれる各処理や機能は、制御ユニット2(つまり、コンピュータ)がコンピュータプログラムを実行することで制御ユニット2内に実現される論理的な処理ブロックによって実現されてもよいし、制御ユニット2が備える所定のゲートアレイ(FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit))等のハードウェアによって実現されてもよいし、論理的な処理ブロックとハードウェアの一部の要素を実現する部分的ハードウェアモジュールとが混在する形式で実現してもよい。 Note that the recording medium for recording the computer program executed by the control unit 2 may be at least one of the following: CD-ROM, CD-R, CD-RW, flexible disk, MO, DVD-ROM, DVD-RAM, DVD-R, DVD+R, DVD-RW, DVD+RW, optical disks such as Blu-ray (registered trademark), magnetic media such as magnetic tape, magneto-optical disk, semiconductor memory such as USB memory, and any other medium capable of storing a program. The recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which a computer program is implemented in a state in which it can be executed in at least one of the forms of software and firmware, etc.). Furthermore, each process or function included in the computer program may be realized by a logical processing block realized in the control unit 2 by the control unit 2 (i.e., a computer) executing the computer program, or may be realized by hardware such as a predetermined gate array (FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit)) provided in the control unit 2, or may be realized in a form that combines logical processing blocks and partial hardware modules that realize some elements of the hardware.
 [加工ヘッドの構成]
 次に、加工ヘッド100について、図3~図7を参照して説明する。図3に示すように、加工ヘッド100には、光ファイバ等の光伝送部材11を介して、加工光源10が生成した直線偏光状態の加工ビームELが入射する。加工光源10は、加工ヘッド100の外部に配置されていてもよく、加工ヘッド100の内部に配置されていてもよい。なお、加工ヘッド100に入射する加工ビームELは、光ファイバ等の光伝送部材11を介さなくてもよい。また、加工ヘッド100が加工光源10を備えていてもよい。
[Configuration of processing head]
Next, the processing head 100 will be described with reference to Fig. 3 to Fig. 7. As shown in Fig. 3, a processing beam EL in a linearly polarized state generated by a processing light source 10 is incident on the processing head 100 via an optical transmission member 11 such as an optical fiber. The processing light source 10 may be disposed outside the processing head 100, or may be disposed inside the processing head 100. The processing beam EL incident on the processing head 100 does not have to pass through an optical transmission member 11 such as an optical fiber. The processing head 100 may also be equipped with the processing light source 10.
 加工ヘッド100は、上述したように、加工光学系110と、計測光学系130と、合成光学系150と、偏向光学系160と、対物光学系170とを備える。なお、加工光学系110、偏向光学系160、および制御ユニット2は、光学装置101(図2を参照)と称されてもよく、光走査装置と称されてもよい。また、光学装置101は、計測光学系130および合成光学系150を含んでもよく、計測光学系130および合成光学系150を含まなくてもよい。加工光学系110には、光伝送部材11により伝送された加工ビームELが入射する。加工光学系110は、加工光学系110に入射した加工ビームELを複数の加工ビームEL1~EL9(後述する図7を参照)に分割し、合成光学系150に向けて射出する。加工光学系110から射出された複数の加工ビームEL1~EL9は、合成光学系150、偏向光学系160、および対物光学系170を介してワークWに照射される。なお、図3においては、図が複雑になるのを防ぐため、複数の加工ビームEL1~EL9のうち第1の加工ビームEL1のみを示す。 As described above, the processing head 100 includes the processing optical system 110, the measurement optical system 130, the synthesis optical system 150, the deflection optical system 160, and the objective optical system 170. The processing optical system 110, the deflection optical system 160, and the control unit 2 may be referred to as the optical device 101 (see FIG. 2) or as an optical scanning device. The optical device 101 may include the measurement optical system 130 and the synthesis optical system 150, or may not include the measurement optical system 130 and the synthesis optical system 150. The processing optical system 110 is irradiated with the processing beam EL transmitted by the optical transmission member 11. The processing optical system 110 splits the processing beam EL incident on the processing optical system 110 into multiple processing beams EL1 to EL9 (see FIG. 7 described later) and emits them toward the synthesis optical system 150. The multiple processing beams EL1 to EL9 emitted from the processing optical system 110 are irradiated onto the workpiece W via the synthesis optical system 150, the deflection optical system 160, and the objective optical system 170. In FIG. 3, to avoid complicating the diagram, only the first processing beam EL1 of the multiple processing beams EL1 to EL9 is shown.
 加工光学系110は、図3および図4に示すように、回折光学素子111と、共役光学系112と、波面変更ユニット115と、リレー光学系125とを備える。回折光学素子111には、光伝送部材11により伝送された直線偏光状態の加工ビームELが入射する。回折光学素子111は、回折現象により、回折光学素子111に入射した加工ビームELを複数の加工光(例えば、9つの加工光)EL1~EL9に分割する。なお、回折光学素子111は、不図示の駆動装置を用いて、加工光源10からの光路(後述する第1光路)に挿脱可能に配設される。このとき、回折光学素子111からの複数の加工ビームは、回折光学素子111の格子面111aの垂線に対して所定の角度をなして進行する複数の平行光であってもよい。なお、後述する第1の加工ビームEL1は、上記所定の角度が0度であってもよい。 As shown in FIG. 3 and FIG. 4, the processing optical system 110 includes a diffractive optical element 111, a conjugate optical system 112, a wavefront changing unit 115, and a relay optical system 125. A linearly polarized processing beam EL transmitted by the optical transmission member 11 is incident on the diffractive optical element 111. The diffractive optical element 111 splits the processing beam EL incident on the diffractive optical element 111 into multiple processing beams (for example, nine processing beams) EL1 to EL9 by the diffraction phenomenon. The diffractive optical element 111 is disposed so as to be insertable and detachable from the optical path from the processing light source 10 (first optical path described later) using a driving device (not shown). At this time, the multiple processing beams from the diffractive optical element 111 may be multiple parallel beams traveling at a predetermined angle with respect to the perpendicular to the grating surface 111a of the diffractive optical element 111. The predetermined angle of the first processing beam EL1 described later may be 0 degrees.
 また、加工光源10から回折光学素子111までの光路に、加工ビームELの発散角(収斂角)の異方性を補正するための補正光学系が配置されていてもよい。このような補正光学系は、例えば間隔可変な一対のシリンドリカルレンズを備えたシリンダズーム光学系であってもよい。 A correction optical system for correcting the anisotropy of the divergence angle (convergence angle) of the processing beam EL may be arranged in the optical path from the processing light source 10 to the diffractive optical element 111. Such a correction optical system may be, for example, a cylinder zoom optical system equipped with a pair of cylindrical lenses with a variable spacing.
 図7に示すように、複数の加工ビームEL1~EL9のうち、中央に位置する加工光を第1の加工ビームEL1と称する場合がある。第1の加工ビームEL1から+Y方向に離れた加工光を第2の加工ビームEL2と称する場合がある。第1の加工ビームEL1から-Y方向に離れた加工光を第3の加工ビームEL3と称する場合がある。第1の加工ビームEL1から+X方向に離れた加工光を第4の加工ビームEL4と称する場合がある。第1の加工ビームEL1から-X方向に離れた加工光を第5の加工ビームEL5と称する場合がある。第2の加工ビームEL2から+X方向(且つ、第4の加工ビームEL4から+Y方向)に離れた加工光を第6の加工ビームEL6と称する場合がある。第2の加工ビームEL2から-X方向(且つ、第5の加工ビームEL5から+Y方向)に離れた加工光を第7の加工ビームEL7と称する場合がある。第3の加工ビームEL3から+X方向(且つ、第4の加工ビームEL4から-Y方向)に離れた加工光を第8の加工ビームEL8と称する場合がある。第3の加工ビームEL3から-X方向(且つ、第5の加工ビームEL5から-Y方向)に離れた加工光を第9の加工ビームEL9と称する場合がある。なお、回折光学素子111の格子面111aは、ビーム分割面と称されてもよい。 As shown in FIG. 7, among the multiple processing beams EL1 to EL9, the processing light located in the center may be referred to as the first processing beam EL1. The processing light separated from the first processing beam EL1 in the +Y direction may be referred to as the second processing beam EL2. The processing light separated from the first processing beam EL1 in the -Y direction may be referred to as the third processing beam EL3. The processing light separated from the first processing beam EL1 in the +X direction may be referred to as the fourth processing beam EL4. The processing light separated from the first processing beam EL1 in the -X direction may be referred to as the fifth processing beam EL5. The processing light separated from the second processing beam EL2 in the +X direction (and the +Y direction from the fourth processing beam EL4) may be referred to as the sixth processing beam EL6. The processing light separated from the second processing beam EL2 in the -X direction (and the +Y direction from the fifth processing beam EL5) may be referred to as the seventh processing beam EL7. The processing light separated from the third processing beam EL3 in the +X direction (and from the fourth processing beam EL4 in the -Y direction) may be referred to as the eighth processing beam EL8. The processing light separated from the third processing beam EL3 in the -X direction (and from the fifth processing beam EL5 in the -Y direction) may be referred to as the ninth processing beam EL9. The grating surface 111a of the diffractive optical element 111 may be referred to as a beam splitting surface.
 なお、図7に示した例では、加工ショット領域PSAにおいて複数の加工ビームEL1~EL9が加工ショット領域PSAの一部の領域に分布し、これら複数の加工ビームEL1~EL9が加工ショット領域PSA内で移動する例を示しているが、複数の加工ビームが加工ショット領域PSAの全体にわたって分布していてもよい。 In the example shown in FIG. 7, multiple processing beams EL1 to EL9 are distributed in a portion of the processing shot area PSA, and these multiple processing beams EL1 to EL9 move within the processing shot area PSA, but multiple processing beams may be distributed throughout the entire processing shot area PSA.
 本実施形態では、回折光学素子111が入射する加工ビームELを9分割する例を示したが、回折光学素子111が分割する加工ビームの数は9に限定されるものではない。回折光学素子111は入射する加工ビームを2以上の加工ビームに分割できればよい。また、図7に示した例では、分割された加工ビームがマトリクス配置となっているが、分割された加工ビームの配置は、1列、即ち1つの直線上に配置されていてもよく、2列や十字状に配置されていてもよい。 In this embodiment, an example has been shown in which the diffractive optical element 111 divides the incident processing beam EL into nine, but the number of processing beams divided by the diffractive optical element 111 is not limited to nine. The diffractive optical element 111 only needs to divide the incident processing beam into two or more processing beams. In the example shown in FIG. 7, the divided processing beams are arranged in a matrix, but the divided processing beams may be arranged in a single row, i.e., in a single straight line, or in two rows or a cross shape.
 図3および図4に戻って、共役光学系112は、正の屈折力を有する第1光学系113と、正の屈折力を有する第2光学系114とを備える。ここで、第1光学系113および第2光学系114は、1以上のレンズ素子や1以上の反射素子等で構成されていてもよい。共役光学系112は、第1光学系113および第2光学系114により、回折光学素子111の格子面111aと光学的に共役な共役位置CPを形成する。回折光学素子111の格子面111aと光学的に共役な共役位置CPに、波面変更ユニット115を構成するデフォーマブルミラー117の可変反射面118が配置される。第1光学系113には、回折光学素子111の格子面111aから射出された複数の加工ビームEL1~EL9が入射する。第1光学系113は、その前側焦点位置が回折光学素子111の格子面111aに位置していてもよい。第1光学系113は、第1光学系113を透過する複数の加工ビームEL1~EL9の進行方向を互いに平行にする。第2光学系114には、第1光学系113を透過した複数の加工ビームEL1~EL9が入射する。第2光学系114は、その前側焦点位置が第1光学系113の後側焦点位置に位置していてもよい。第2光学系114は、第2光学系114を透過する複数の加工ビームEL1~EL9を共役位置CP、すなわちデフォーマブルミラー117の可変反射面118に向けて集める。回折光学素子111の格子面111aからの複数の加工ビームEL1~EL9がそれぞれ平行光である場合、デフォーマブルミラー117の可変反射面118には、互いに異なる入射角で平行光である複数の加工ビームEL1~EL9が入射することになる。ここで、第2光学系114の後側焦点位置は、共役位置CP(デフォーマブルミラー117の可変反射面118)に位置していてもよい。 3 and 4, the conjugate optical system 112 includes a first optical system 113 having a positive refractive power and a second optical system 114 having a positive refractive power. Here, the first optical system 113 and the second optical system 114 may be composed of one or more lens elements or one or more reflecting elements. The conjugate optical system 112 forms a conjugate position CP that is optically conjugate with the grating surface 111a of the diffractive optical element 111 by the first optical system 113 and the second optical system 114. The variable reflection surface 118 of the deformable mirror 117 that constitutes the wavefront changing unit 115 is disposed at the conjugate position CP that is optically conjugate with the grating surface 111a of the diffractive optical element 111. A plurality of processing beams EL1 to EL9 emitted from the grating surface 111a of the diffractive optical element 111 are incident on the first optical system 113. The front focal position of the first optical system 113 may be located on the grating surface 111a of the diffractive optical element 111. The first optical system 113 makes the directions of travel of the multiple processing beams EL1 to EL9 that pass through the first optical system 113 parallel to each other. The multiple processing beams EL1 to EL9 that pass through the first optical system 113 are incident on the second optical system 114. The front focal position of the second optical system 114 may be located at the rear focal position of the first optical system 113. The second optical system 114 collects the multiple processing beams EL1 to EL9 that pass through the second optical system 114 toward the conjugate position CP, that is, the variable reflecting surface 118 of the deformable mirror 117. When the multiple processing beams EL1 to EL9 from the grating surface 111a of the diffractive optical element 111 are each parallel light, the multiple processing beams EL1 to EL9 that are parallel light are incident on the variable reflecting surface 118 of the deformable mirror 117 at different angles of incidence. Here, the rear focal position of the second optical system 114 may be located at the conjugate position CP (the variable reflecting surface 118 of the deformable mirror 117).
 波面変更ユニット115は、偏光ビームスプリッタ116と、デフォーマブルミラー117と、ビームダンパ119と、第1の1/2波長板121と、第1の1/4波長板122と、第2の1/2波長板123と、第2の1/4波長板124とを備える。第1の1/2波長板121は、加工光源10から偏光ビームスプリッタ116までの光路における共役光学系112と偏光ビームスプリッタ116との間に配置される。以降、加工光源10から偏光ビームスプリッタ116までの光路を第1光路と称する場合がある。第1の1/2波長板121には、共役光学系112の第2光学系114を透過した複数の加工ビームEL1~EL9が入射する。第1の1/2波長板121に入射した複数の加工ビームEL1~EL9は、当該第1の1/2波長板121を通って偏光ビームスプリッタ116に入射する。偏光ビームスプリッタ116に入射する複数の加工ビームEL1~EL9がs偏光(偏光ビームスプリッタ116の偏光分離面に対するs偏光)になるように、第1の1/2波長板121は、複数の加工ビームEL1~EL9の偏光方向を調整する。なお、第1の1/2波長板121は、偏光方向調整部材と称されてもよい。 The wavefront changing unit 115 includes a polarizing beam splitter 116, a deformable mirror 117, a beam dumper 119, a first half-wave plate 121, a first quarter-wave plate 122, a second half-wave plate 123, and a second quarter-wave plate 124. The first half-wave plate 121 is disposed between the conjugate optical system 112 and the polarizing beam splitter 116 in the optical path from the processing light source 10 to the polarizing beam splitter 116. Hereinafter, the optical path from the processing light source 10 to the polarizing beam splitter 116 may be referred to as the first optical path. A plurality of processing beams EL1 to EL9 that have passed through the second optical system 114 of the conjugate optical system 112 are incident on the first half-wave plate 121. The multiple processing beams EL1 to EL9 incident on the first half-wave plate 121 pass through the first half-wave plate 121 and enter the polarizing beam splitter 116. The first half-wave plate 121 adjusts the polarization direction of the multiple processing beams EL1 to EL9 so that the multiple processing beams EL1 to EL9 incident on the polarizing beam splitter 116 become s-polarized (s-polarized with respect to the polarization separation surface of the polarizing beam splitter 116). The first half-wave plate 121 may also be referred to as a polarization direction adjustment member.
 偏光ビームスプリッタ116は、第1光路(加工光源10から偏光ビームスプリッタ116までの光路)に沿って入射する光を、第1光路と交差する、典型的には直交する第2光路に沿って進行する光と、第1光路の延長線上の第3光路に沿って進行する光とに分割することが可能である。また、偏光ビームスプリッタ116は、第2光路に沿って入射する光(第2光路から戻る光)を、前述の第1光路に沿って進行する光と、第2光路の延長線上の第4光路に沿って進行する光とに分割することが可能である。第2光路には、偏光ビームスプリッタ116側から順に、第1の1/4波長板122と、デフォーマブルミラー117とが配置される。第3光路には、ビームダンパ119が配置される。第4光路には、偏光ビームスプリッタ116側から順に、第2の1/2波長板123と、第2の1/4波長板124と、リレー光学系125とが配置される。 The polarizing beam splitter 116 can split the light incident along the first optical path (optical path from the processing light source 10 to the polarizing beam splitter 116) into light traveling along a second optical path that intersects with the first optical path, typically perpendicular to the first optical path, and light traveling along a third optical path that is an extension of the first optical path. The polarizing beam splitter 116 can also split the light incident along the second optical path (light returning from the second optical path) into light traveling along the first optical path and light traveling along a fourth optical path that is an extension of the second optical path. In the second optical path, a first quarter-wave plate 122 and a deformable mirror 117 are arranged in this order from the polarizing beam splitter 116 side. A beam damper 119 is arranged in the third optical path. In the fourth optical path, a second half-wave plate 123, a second quarter-wave plate 124, and a relay optical system 125 are arranged in this order from the polarizing beam splitter 116 side.
 偏光ビームスプリッタ116には、第1の1/2波長板121を通った複数の加工ビームEL1~EL9が入射する。偏光ビームスプリッタ116は、第1光路に沿って入射する複数の加工ビームEL1~EL9(s偏光)を、第2光路に配置された第1の1/4波長板122(すなわち、デフォーマブルミラー117)に向けて反射させる。第1の1/4波長板122は、第2光路における偏光ビームスプリッタ116とデフォーマブルミラー117との間に配置される。偏光ビームスプリッタ116で反射した複数の加工ビームEL1~EL9(s偏光)は、第1の1/4波長板122を通ると円偏光になる。 The multiple processing beams EL1 to EL9 that have passed through the first half-wave plate 121 are incident on the polarizing beam splitter 116. The polarizing beam splitter 116 reflects the multiple processing beams EL1 to EL9 (s-polarized) that are incident along the first optical path toward the first quarter-wave plate 122 (i.e., the deformable mirror 117) that is arranged in the second optical path. The first quarter-wave plate 122 is arranged between the polarizing beam splitter 116 and the deformable mirror 117 in the second optical path. The multiple processing beams EL1 to EL9 (s-polarized) that have been reflected by the polarizing beam splitter 116 become circularly polarized when they pass through the first quarter-wave plate 122.
 デフォーマブルミラー117には、偏光ビームスプリッタ116で反射して第1の1/4波長板122を通った複数の加工ビームEL1~EL9(円偏光)が入射する。デフォーマブルミラー117は、変形可能な可変反射面118と、当該可変反射面118に繋がった多数のアクチュエーターとを有し、制御ユニット2からの制御信号に応じて可変反射面118の形状を変化させることが可能である。デフォーマブルミラー117として、例えば、米国特許第5521747号明細書、米国特許第7224504号明細書、米国特許第7336412号明細書、米国特許第7708415号明細書、米国特許出願公開第2002/0109894号明細書等に開示されたデフォーマブルミラーが用いられる。デフォーマブルミラー117は、デフォーマブルミラー117に入射した複数の加工ビームEL1~EL9を可変反射面118で反射し、第1の1/4波長板122を介して偏光ビームスプリッタ116に入射させる。このとき、デフォーマブルミラー117は、可変反射面118を変形させることで、可変反射面118から射出される複数の加工ビームEL1~EL9の各ビーム断面における波面を変更することが可能である。ここで、ビーム断面とは、ビームの進行方向を横切る面、典型的にはビーム進行方向と直交する面であってもよい。なお、デフォーマブルミラー117は、波面変更部材と称されてもよい。可変反射面118は、波面変更面と称されてもよい。 The deformable mirror 117 is incident on a plurality of processing beams EL1 to EL9 (circularly polarized) that are reflected by the polarizing beam splitter 116 and pass through the first quarter-wave plate 122. The deformable mirror 117 has a deformable variable reflecting surface 118 and a number of actuators connected to the variable reflecting surface 118, and is capable of changing the shape of the variable reflecting surface 118 in response to a control signal from the control unit 2. As the deformable mirror 117, for example, a deformable mirror disclosed in U.S. Pat. No. 5,521,747, U.S. Pat. No. 7,224,504, U.S. Pat. No. 7,336,412, U.S. Pat. No. 7,708,415, U.S. Patent Application Publication No. 2002/0109894, etc. may be used. The deformable mirror 117 reflects the multiple processing beams EL1 to EL9 incident on the deformable mirror 117 at the variable reflecting surface 118, and causes the multiple processing beams EL1 to EL9 to be incident on the polarizing beam splitter 116 via the first quarter-wave plate 122. At this time, the deformable mirror 117 can change the wavefront of each beam cross section of the multiple processing beams EL1 to EL9 emitted from the variable reflecting surface 118 by deforming the variable reflecting surface 118. Here, the beam cross section may be a surface that crosses the beam traveling direction, typically a surface that is perpendicular to the beam traveling direction. The deformable mirror 117 may be referred to as a wavefront changing member. The variable reflecting surface 118 may be referred to as a wavefront changing surface.
 デフォーマブルミラー117の可変反射面118は、回折光学素子111の格子面111aと光学的に共役である。回折光学素子111の格子面111aから射出された複数の加工ビームEL1~EL9は、共役光学系112の第1光学系113および第2光学系114により、それぞれ平行光となってデフォーマブルミラー117の可変反射面118に集まるように入射する。 The variable reflecting surface 118 of the deformable mirror 117 is optically conjugate with the grating surface 111a of the diffractive optical element 111. The multiple processing beams EL1 to EL9 emitted from the grating surface 111a of the diffractive optical element 111 are each converted into parallel light by the first optical system 113 and the second optical system 114 of the conjugate optical system 112, and are incident on the variable reflecting surface 118 of the deformable mirror 117 so as to converge.
 また、デフォーマブルミラー117の可変反射面118で反射した複数の加工ビームEL1~EL9(円偏光)は、再び第1の1/4波長板122を通ると、p偏光(偏光ビームスプリッタ116の偏光分離面に対するp偏光)になる。偏光ビームスプリッタ116は、第2光路に沿って入射する複数の加工ビームEL1~EL9(p偏光)を、第4光路に配置された第2の1/2波長板123(すなわち、リレー光学系125)に向けて透過させる。これにより、デフォーマブルミラー117の可変反射面118で反射した複数の加工ビームEL1~EL9は、偏光ビームスプリッタ116を介して第4光路に沿って射出される。第4光路に沿って射出された複数の加工ビームEL1~EL9(p偏光)は、第2の1/2波長板123と第2の1/4波長板124とを通ると、円偏光になる。第2の1/4波長板124を通った複数の加工ビームEL1~EL9は、リレー光学系125に入射する。 Furthermore, the multiple processing beams EL1 to EL9 (circularly polarized) reflected by the variable reflecting surface 118 of the deformable mirror 117 become p-polarized (p-polarized with respect to the polarization separation surface of the polarizing beam splitter 116) when they pass through the first quarter-wave plate 122 again. The polarizing beam splitter 116 transmits the multiple processing beams EL1 to EL9 (p-polarized) incident along the second optical path toward the second half-wave plate 123 (i.e., the relay optical system 125) arranged in the fourth optical path. As a result, the multiple processing beams EL1 to EL9 reflected by the variable reflecting surface 118 of the deformable mirror 117 are emitted along the fourth optical path via the polarizing beam splitter 116. The multiple processing beams EL1 to EL9 (p-polarized) emitted along the fourth optical path become circularly polarized when they pass through the second half-wave plate 123 and the second quarter-wave plate 124. The multiple processing beams EL1 to EL9 that pass through the second quarter-wave plate 124 are incident on the relay optical system 125.
 上述した例では、偏光ビームスプリッタ116に入射する複数の加工ビームEL1~EL9が反射される側にデフォーマブルミラー117が配置されているが、偏光ビームスプリッタ116に入射する複数の加工ビームEL1~EL9が透過する側にデフォーマブルミラー117を配置してもよい。この場合、偏光ビームスプリッタ116に入射する複数の加工ビームEL1~EL9は、偏光ビームスプリッタ116の偏光分離面に対してp偏光であってもよい。 In the above example, the deformable mirror 117 is disposed on the side where the multiple processing beams EL1 to EL9 incident on the polarizing beam splitter 116 are reflected, but the deformable mirror 117 may also be disposed on the side where the multiple processing beams EL1 to EL9 incident on the polarizing beam splitter 116 are transmitted. In this case, the multiple processing beams EL1 to EL9 incident on the polarizing beam splitter 116 may be p-polarized with respect to the polarization separation surface of the polarizing beam splitter 116.
 また、ワークWから偏光ビームスプリッタ116に向けて戻る加工ビーム(戻り光)は、リレー光学系125を透過して第2の1/4波長板124を通ると、直線偏光になる。第2の1/2波長板123には、第2の1/4波長板124を通ったワークWからの加工ビームが入射する。第2の1/2波長板123に入射したワークWからの加工ビームは、当該第2の1/2波長板123を通って偏光ビームスプリッタ116に入射する。偏光ビームスプリッタ116に入射するワークWからの加工ビームがs偏光になるように、第2の1/2波長板123は、ワークWからの加工ビームの偏光方向を調整する。なお、第2の1/2波長板123は、第2の偏光方向調整部材と称されてもよい。偏光ビームスプリッタ116は、第4光路に沿って入射するワークWからの加工ビーム(s偏光)を、第3光路に配置されたビームダンパ119に向けて反射させる。 Furthermore, the processing beam (return light) returning from the workpiece W toward the polarizing beam splitter 116 becomes linearly polarized when it passes through the second 1/4 wavelength plate 124 after passing through the relay optical system 125. The processing beam from the workpiece W that has passed through the second 1/4 wavelength plate 124 is incident on the second 1/2 wavelength plate 123. The processing beam from the workpiece W that has entered the second 1/2 wavelength plate 123 passes through the second 1/2 wavelength plate 123 and enters the polarizing beam splitter 116. The second 1/2 wavelength plate 123 adjusts the polarization direction of the processing beam from the workpiece W so that the processing beam from the workpiece W that enters the polarizing beam splitter 116 becomes s-polarized. The second 1/2 wavelength plate 123 may be referred to as a second polarization direction adjustment member. The polarizing beam splitter 116 reflects the processing beam (s-polarized) from the workpiece W that enters along the fourth optical path toward the beam damper 119 arranged on the third optical path.
 ビームダンパ119は、偏光ビームスプリッタ116で反射したワークWからの加工ビーム(s偏光)を遮蔽する。これにより、ワークWからの加工ビーム(戻り光)をビームダンパ119で吸収することができる。なお、ビームダンパ119は、ビームトラップ、ビームディフューザー、ビームポケットとも称される。 The beam damper 119 blocks the processing beam (s-polarized light) from the workpiece W that is reflected by the polarizing beam splitter 116. This allows the beam damper 119 to absorb the processing beam (return light) from the workpiece W. The beam damper 119 is also called a beam trap, beam diffuser, or beam pocket.
 リレー光学系125は、正の屈折力を有する第1リレーレンズ126と、正の屈折力を有する第2リレーレンズ127とを備える。リレー光学系125は、第1リレーレンズ126および第2リレーレンズ127により、デフォーマブルミラー117の可変反射面118と偏向光学系160のガルバノミラー161とを光学的に互いに共役にする。言い換えると、リレー光学系125は、第1リレーレンズ126および第2リレーレンズ127により、デフォーマブルミラー117の可変反射面118と対物光学系170の入射瞳PUとを光学的に互いに共役にする。第1リレーレンズ126には、第2の1/4波長板124を通った複数の加工ビームEL1~EL9が入射する。第1リレーレンズ126は、第1リレーレンズ126を透過する複数の加工ビームEL1~EL9の進行方向を互いに平行にする。第2リレーレンズ127には、第1リレーレンズ126を透過した複数の加工ビームEL1~EL9が入射する。第2リレーレンズ127は、第2リレーレンズ127を透過する複数の加工ビームEL1~EL9を、偏向光学系160のガルバノミラー161、すなわち対物光学系170の入射瞳PUに向けて集める。なお、第1リレーレンズ126および第2リレーレンズ127は、1以上のレンズ素子や1以上の反射素子等で構成されていてもよい。 The relay optical system 125 includes a first relay lens 126 having a positive refractive power and a second relay lens 127 having a positive refractive power. The relay optical system 125 optically conjugates the variable reflecting surface 118 of the deformable mirror 117 and the galvanometer mirror 161 of the deflection optical system 160 with the first relay lens 126 and the second relay lens 127. In other words, the relay optical system 125 optically conjugates the variable reflecting surface 118 of the deformable mirror 117 and the entrance pupil PU of the objective optical system 170 with the first relay lens 126 and the second relay lens 127. A plurality of processing beams EL1 to EL9 that have passed through the second 1/4 wavelength plate 124 are incident on the first relay lens 126. The first relay lens 126 makes the traveling directions of the plurality of processing beams EL1 to EL9 that pass through the first relay lens 126 parallel to each other. The second relay lens 127 is incident on the multiple processing beams EL1 to EL9 that have passed through the first relay lens 126. The second relay lens 127 collects the multiple processing beams EL1 to EL9 that have passed through the second relay lens 127 toward the galvanometer mirror 161 of the deflection optical system 160, i.e., the entrance pupil PU of the objective optical system 170. The first relay lens 126 and the second relay lens 127 may be composed of one or more lens elements, one or more reflecting elements, etc.
 図3に示すように、合成光学系150には、加工光学系110(第2リレーレンズ127)から射出された複数の加工ビームEL1~EL9が入射する。合成光学系150は、合成光学系150に入射した複数の加工ビームEL1~EL9を偏向光学系160に向けて射出する。合成光学系150は、ダイクロイックミラー151と、ミラー152と、補正用波面計測装置153とを備える。 As shown in FIG. 3, the multiple processing beams EL1 to EL9 emitted from the processing optical system 110 (second relay lens 127) are incident on the synthesis optical system 150. The synthesis optical system 150 emits the multiple processing beams EL1 to EL9 incident on the synthesis optical system 150 toward the deflection optical system 160. The synthesis optical system 150 includes a dichroic mirror 151, a mirror 152, and a correction wavefront measuring device 153.
 ダイクロイックミラー151は、加工光学系110から射出された複数の加工ビームEL1~EL9をミラー152に向けて反射させる。なお、ダイクロイックミラー151は、回折光学素子111が第1光路から離脱された状態で加工光学系110から射出された(分割されていない)加工ビームELの一部を、漏れ光として補正用波面計測装置153に向けて通過させる。ミラー152は、ダイクロイックミラー151で反射した複数の加工ビームEL1~EL9を偏向光学系160に向けて反射させる。 The dichroic mirror 151 reflects the multiple processing beams EL1 to EL9 emitted from the processing optical system 110 toward the mirror 152. Note that the dichroic mirror 151 passes a portion of the (unsplit) processing beam EL emitted from the processing optical system 110 when the diffractive optical element 111 is removed from the first optical path, toward the corrective wavefront measuring device 153 as leakage light. The mirror 152 reflects the multiple processing beams EL1 to EL9 reflected by the dichroic mirror 151 toward the deflection optical system 160.
 補正用波面計測装置153には、回折光学素子111が第1光路から離脱された状態でダイクロイックミラー151を通過した加工ビームELの一部が入射する。ここで、ダイクロイックミラー151を通過する漏れ光としての加工ビームELの光量が大きすぎる場合には、ダイクロイックミラー151と補正用波面計測装置153との間に光量減衰部材を配置してもよい。この光量減衰部材による光量減衰量は変更可能であってもよい。補正用波面計測装置153は、補正用波面計測装置153の瞳がデフォーマブルミラー117の可変反射面118と光学的に共役となる位置に配置される。補正用波面計測装置153は、シャックハルトマンセンサを用いて構成される。補正用波面計測装置153は、補正用波面計測装置153に入射した光(すなわち、加工ビームEL)の波面の位相分布を計測する。補正用波面計測装置153による波面の位相分布の計測結果は、制御ユニット2に出力される。なお、補正用波面計測装置153には、回折光学素子111が第1光路に挿入された状態でダイクロイックミラー151を通過した複数の加工ビームELが入射してもよい。この場合、補正用波面計測装置153の光検出器の光検出面には複数の光スポット像が形成されるが、これら複数の光スポット像の分離距離が小さく、実質的に1つのスポットとみなせるときには、複数の加工ビームELの平均的な波面を計測することができる。また、複数の光スポット像の分離距離が大きく、各光スポット像が光検出面上で分離できるときには、複数の加工ビームELのそれぞれの波面を計測することができる。 A part of the processing beam EL that passes through the dichroic mirror 151 with the diffractive optical element 111 removed from the first optical path is incident on the corrective wavefront measuring device 153. Here, if the amount of light of the processing beam EL as leakage light passing through the dichroic mirror 151 is too large, a light attenuation member may be disposed between the dichroic mirror 151 and the corrective wavefront measuring device 153. The amount of light attenuation by this light attenuation member may be changeable. The corrective wavefront measuring device 153 is disposed at a position where the pupil of the corrective wavefront measuring device 153 is optically conjugate with the variable reflecting surface 118 of the deformable mirror 117. The corrective wavefront measuring device 153 is configured using a Shack-Hartmann sensor. The corrective wavefront measuring device 153 measures the phase distribution of the wavefront of the light (i.e., the processing beam EL) that is incident on the corrective wavefront measuring device 153. The measurement result of the phase distribution of the wavefront by the corrective wavefront measuring device 153 is output to the control unit 2. In addition, the correction wavefront measuring device 153 may be incident with multiple processing beams EL that have passed through the dichroic mirror 151 with the diffractive optical element 111 inserted in the first optical path. In this case, multiple light spot images are formed on the light detection surface of the photodetector of the correction wavefront measuring device 153, and when the separation distance between these multiple light spot images is small and they can essentially be considered as one spot, the average wavefront of the multiple processing beams EL can be measured. Also, when the separation distance between the multiple light spot images is large and each light spot image can be separated on the light detection surface, the wavefront of each of the multiple processing beams EL can be measured.
 そして、複数の光スポット像の分離距離が上述の両者の中間の分離距離であるときには、回折光学素子111からの複数の加工ビームELが空間的に分離される位置、典型的には共役光学系112における第1光学系113と第2光学系114との間の位置や、リレー光学系125における第1リレーレンズ126と第2リレーレンズ127との間の位置に、複数の加工ビームELのうちの1つを通過させ他を遮光する遮光部材を設け、複数の加工ビームELの波面を1つずつ計測してもよい。この場合、遮光部材は、通過させる加工ビームELを選択することができるように移動可能であってもよい。また、シャックハルトマンセンサの波面分割部材であるレンズアレイ又はDOEアレイの入射側に、各アレイに入射する加工ビームの入射角を制限する部材、一例として各アレイの境界部に沿った衝立状の部材を設けてもよい。このとき、制限する入射角ごとに複数の衝立状の部材を準備しておき、複数の衝立状の部材を交換して各加工ビームの波面を1つずつ計測してもよい。 When the separation distance of the multiple light spot images is intermediate between the above two, a light blocking member that passes one of the multiple processing beams EL and blocks the others may be provided at a position where the multiple processing beams EL from the diffractive optical element 111 are spatially separated, typically a position between the first optical system 113 and the second optical system 114 in the conjugate optical system 112, or a position between the first relay lens 126 and the second relay lens 127 in the relay optical system 125, and the wavefronts of the multiple processing beams EL may be measured one by one. In this case, the light blocking member may be movable so that the processing beam EL to be passed can be selected. In addition, a member that limits the incident angle of the processing beam incident on each array, for example, a partition-like member along the boundary of each array, may be provided on the incident side of the lens array or DOE array, which is the wavefront division member of the Shack-Hartmann sensor. In this case, multiple partition-like members may be prepared for each incident angle to be limited, and the wavefronts of each processing beam may be measured one by one by replacing the multiple partition-like members.
 偏向光学系160には、合成光学系150から射出された複数の加工ビームEL1~EL9が入射する。偏向光学系160は、偏向光学系160に入射した複数の加工ビームEL1~EL9を対物光学系170に向けて射出する。偏向光学系160は、対物光学系170の入射瞳PUの位置に配置されたガルバノミラー161を備える。ガルバノミラー161は、合成光学系150からの複数の加工ビームEL1~EL9を偏向する(すなわち、複数の加工ビームEL1~EL9の進行方向を変化させる)。ガルバノミラー161は、複数の加工ビームEL1~EL9を偏向することにより、対物光学系170を介してワークW上に照射される複数の加工ビームEL1~EL9の、ワークW上での(XY平面に沿った面内での)照射位置を変える。なお、ガルバノミラー161は、偏向部材と称されてもよい。また、偏向部材としては、ガルバノミラー161に限定されるものではなく、ポリゴンミラーやレゾナントミラーであってもよい。 The deflection optical system 160 is incident on the multiple processing beams EL1 to EL9 emitted from the synthesis optical system 150. The deflection optical system 160 emits the multiple processing beams EL1 to EL9 incident on the deflection optical system 160 toward the objective optical system 170. The deflection optical system 160 is equipped with a galvanometer mirror 161 arranged at the position of the entrance pupil PU of the objective optical system 170. The galvanometer mirror 161 deflects the multiple processing beams EL1 to EL9 from the synthesis optical system 150 (i.e., changes the traveling direction of the multiple processing beams EL1 to EL9). By deflecting the multiple processing beams EL1 to EL9, the galvanometer mirror 161 changes the irradiation position on the workpiece W (in a plane along the XY plane) of the multiple processing beams EL1 to EL9 irradiated onto the workpiece W via the objective optical system 170. The galvanometer mirror 161 may also be referred to as a deflection member. Furthermore, the deflection member is not limited to the galvanometer mirror 161, but may be a polygon mirror or a resonant mirror.
 ガルバノミラー161は、X走査ミラー162Xと、Y走査ミラー162Yとを備える。X走査ミラー162Xは、Y軸周りに回転可能な反射面163Xを有する偏向ミラーである。ここで、Y軸は第1軸と称されてもよい。X走査ミラー162Xは、ワークW上での複数の加工ビームEL1~EL9の照射位置をX軸方向に沿って変更するよう、複数の加工ビームEL1~EL9を偏向する。Y走査ミラー162Yは、X軸周りに回転可能な反射面163Yを有する偏向ミラーである。ここで、X軸は第1軸と交差する第2軸と称されてもよい。Y走査ミラー162Yは、ワークW上での複数の加工ビームEL1~EL9の照射位置をY軸方向に沿って変更するよう、複数の加工ビームEL1~EL9を偏向する。なお、対物光学系170の入射瞳PUは、ガルバノミラー161におけるX走査ミラー162XとY走査ミラー162Yとの間に位置してもよい。X走査ミラー162XおよびY走査ミラー162Yの反射面163X,163Yは、ビーム偏向面と称されてもよい。 The galvanometer mirror 161 includes an X-scanning mirror 162X and a Y-scanning mirror 162Y. The X-scanning mirror 162X is a deflection mirror having a reflecting surface 163X that can rotate around the Y-axis. Here, the Y-axis may be referred to as the first axis. The X-scanning mirror 162X deflects the multiple processing beams EL1 to EL9 so as to change the irradiation positions of the multiple processing beams EL1 to EL9 on the workpiece W along the X-axis direction. The Y-scanning mirror 162Y is a deflection mirror having a reflecting surface 163Y that can rotate around the X-axis. Here, the X-axis may be referred to as the second axis that intersects with the first axis. The Y-scanning mirror 162Y deflects the multiple processing beams EL1 to EL9 so as to change the irradiation positions of the multiple processing beams EL1 to EL9 on the workpiece W along the Y-axis direction. The entrance pupil PU of the objective optical system 170 may be located between the X-scanning mirror 162X and the Y-scanning mirror 162Y in the galvanometer mirror 161. The reflecting surfaces 163X and 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y may be referred to as beam deflection surfaces.
 このようなガルバノミラー161により、複数の加工ビームEL1~EL9は、加工ヘッド100を基準に定まる加工ショット領域PSAを走査可能となる。加工ショット領域PSAの一例が、図5に示されている。図5に示すように、加工ショット領域PSAは、加工ヘッド100とワークWとの位置関係を固定した状態で加工ヘッド100による加工が行われる領域(範囲)を示す。例えば、加工ショット領域PSAは、加工ヘッド100とワークWとの位置関係を固定した状態でガルバノミラー161によって偏向される複数の加工ビームEL1~EL9の走査範囲と一致するか、もしくは当該走査範囲よりも狭い領域になるように設定される。なお、図5においては、図が複雑になるのを防ぐため、複数の加工ビームEL1~EL9のうち第1の加工ビームEL1のみを示す。前述したように、ヘッド駆動系40により加工ヘッド100が移動することで、加工ショット領域PSAがワークWの表面上を相対的に移動可能である。また、ステージ駆動系60によりステージ50が移動することで、加工ショット領域PSAがワークWの表面上を相対的に移動可能である。 The galvanometer mirror 161 allows the multiple processing beams EL1 to EL9 to scan the processing shot area PSA, which is determined based on the processing head 100. An example of the processing shot area PSA is shown in FIG. 5. As shown in FIG. 5, the processing shot area PSA indicates the area (range) where processing is performed by the processing head 100 with the positional relationship between the processing head 100 and the workpiece W fixed. For example, the processing shot area PSA is set to coincide with the scanning range of the multiple processing beams EL1 to EL9 deflected by the galvanometer mirror 161 with the positional relationship between the processing head 100 and the workpiece W fixed, or to be an area narrower than the scanning range. Note that in FIG. 5, only the first processing beam EL1 of the multiple processing beams EL1 to EL9 is shown to prevent the diagram from becoming complicated. As described above, the processing head 100 is moved by the head drive system 40, so that the processing shot area PSA can move relatively on the surface of the workpiece W. In addition, the stage 50 is moved by the stage drive system 60, so that the processing shot area PSA can move relatively over the surface of the workpiece W.
 対物光学系170は、fθレンズ171を備える。fθレンズ171には、偏向光学系160から射出された複数の加工ビームEL1~EL9が入射する。fθレンズ171は、偏向光学系160から射出された複数の加工ビームEL1~EL9を、互いに平行にしてワークWに照射する。具体的には、fθレンズ171は、fθレンズ171の光軸に沿った方向に向けて複数の加工ビームEL1~EL9を射出する。また、fθレンズ171は、複数の加工ビームEL1~EL9をそれぞれ、ワークW上に集光する。fθレンズ171がワーク側テレセントリックな光学系であるため、fθレンズ171から射出された複数の加工ビームEL1~EL9は、互いに平行な状態でfθレンズ171の光軸に沿った方向に進行してワークW上に集光して照射される。なお、fθレンズ171は、ワーク側に非テレセントリックな光学系であってもよい。 The objective optical system 170 includes an fθ lens 171. The fθ lens 171 is incident on the multiple processing beams EL1 to EL9 emitted from the deflection optical system 160. The fθ lens 171 irradiates the multiple processing beams EL1 to EL9 emitted from the deflection optical system 160 in parallel with each other onto the workpiece W. Specifically, the fθ lens 171 emits the multiple processing beams EL1 to EL9 in a direction along the optical axis of the fθ lens 171. The fθ lens 171 also focuses the multiple processing beams EL1 to EL9 onto the workpiece W. Since the fθ lens 171 is a workpiece-side telecentric optical system, the multiple processing beams EL1 to EL9 emitted from the fθ lens 171 travel in a direction along the optical axis of the fθ lens 171 in a parallel state with each other, and are focused and irradiated onto the workpiece W. The fθ lens 171 may be an optical system that is non-telecentric on the workpiece side.
 なお、加工光学系110、計測光学系130、合成光学系150、および偏向光学系160は、加工ヘッド100における第1のヘッド筐体106に収容されてもよい。一方で、対物光学系170は、第1のヘッド筐体106とは異なる第2のヘッド筐体107に収容されていてもよい。対物光学系170を収容した第2のヘッド筐体107は、第1のヘッド筐体106に対して着脱可能に構成されてもよい。 The processing optical system 110, the measurement optical system 130, the synthesis optical system 150, and the deflection optical system 160 may be housed in a first head housing 106 in the processing head 100. On the other hand, the objective optical system 170 may be housed in a second head housing 107 that is different from the first head housing 106. The second head housing 107 housing the objective optical system 170 may be configured to be detachable from the first head housing 106.
 前述したように、偏向光学系160のガルバノミラー161により、複数の加工ビームEL1~EL9が加工ショット領域PSAを走査可能であるため、ワークWに対する加工速度を向上させることができる。加工ショット領域PSAに照射される複数の加工ビームEL1~EL9の断面形状は、円形状であることが望ましい。しかしながら、対物光学系170で生じる非点収差等により、対物光学系170(fθレンズ171)の周辺側を通る加工ビームの断面形状は変形し易くなる。例えば、図7における補正前の図で例示するように、第1の加工ビームEL1の断面形状が円形状であっても、第1の加工ビームEL1の周辺に位置する第2~第9の加工ビームEL2~EL9の断面形状は、円形状にならずに楕円形状等に変形し易くなる。 As described above, the galvanometer mirror 161 of the deflection optical system 160 allows the multiple processing beams EL1 to EL9 to scan the processing shot area PSA, thereby improving the processing speed of the workpiece W. It is desirable that the cross-sectional shape of the multiple processing beams EL1 to EL9 irradiated onto the processing shot area PSA is circular. However, due to astigmatism and the like that occurs in the objective optical system 170, the cross-sectional shape of the processing beams passing through the periphery of the objective optical system 170 (fθ lens 171) is easily deformed. For example, as illustrated in the diagram before correction in FIG. 7, even if the cross-sectional shape of the first processing beam EL1 is circular, the cross-sectional shapes of the second to ninth processing beams EL2 to EL9 located around the first processing beam EL1 are easily deformed into an elliptical shape rather than a circular shape.
 本実施形態において、デフォーマブルミラー117は、可変反射面118を変形させることで、可変反射面118から射出される複数の加工ビームEL1~EL9の各ビーム断面における波面(典型的には、等位相波面)の形状を変更することが可能である。そのため、デフォーマブルミラー117は、可変反射面118を変形させることで、ガルバノミラー161の動作に伴って生じる、対物光学系170からの複数の加工ビームEL1~EL9の各ビーム断面における波面の変化を補正することが可能である。言い換えると、デフォーマブルミラー117は、可変反射面118を変形させることで、対物光学系170からワークWに照射される複数の加工ビームEL1~EL9の照射位置の移動に伴って生じる、対物光学系170からの複数の加工ビームEL1~EL9の各ビーム断面における波面の変化、特に波面の形状の変化を補正することが可能である。これにより、デフォーマブルミラー117は、対物光学系170からの複数の加工ビームEL1~EL9の各ビーム断面における波面の非回転対称成分を補正して、図7における補正後の図で例示するように、複数の加工ビームEL1~EL9の断面形状をそれぞれ円形状にすることが可能である。なお、デフォーマブルミラー117は、補正部材と称されてもよい。 In this embodiment, the deformable mirror 117 is capable of changing the shape of the wavefront (typically, an equiphase wavefront) at each beam cross section of the multiple processing beams EL1 to EL9 emitted from the variable reflecting surface 118 by deforming the variable reflecting surface 118. Therefore, the deformable mirror 117 is capable of correcting the change in the wavefront at each beam cross section of the multiple processing beams EL1 to EL9 from the objective optical system 170 that occurs with the operation of the galvanometer mirror 161 by deforming the variable reflecting surface 118. In other words, the deformable mirror 117 is capable of correcting the change in the wavefront, particularly the change in the shape of the wavefront, at each beam cross section of the multiple processing beams EL1 to EL9 from the objective optical system 170 that occurs with the movement of the irradiation position of the multiple processing beams EL1 to EL9 irradiated from the objective optical system 170 to the workpiece W. As a result, the deformable mirror 117 can correct the non-rotationally symmetric components of the wavefront in the cross section of each of the multiple processing beams EL1 to EL9 from the objective optical system 170, and make the cross-sectional shapes of each of the multiple processing beams EL1 to EL9 circular, as shown in the post-correction diagram of FIG. 7. The deformable mirror 117 may also be referred to as a correction member.
 また、デフォーマブルミラー117は、可変反射面118を変形させて可変反射面118の曲率半径を変えることで、対物光学系170によりワークWに向けて集光される複数の加工ビームEL1~EL9の集光位置(言い換えると、Z軸方向の照射位置)を、対物光学系170の光軸方向(Z軸方向)に沿って変えるようにしてもよい。これにより、複数の加工ビームEL1~EL9のZ軸方向の照射位置(集光位置)を高速に変えることが可能である。また、デフォーマブルミラー117は、可変反射面118を変形させることで、複数の加工ビームEL1~EL9のZ軸方向の照射位置(集光位置)を変えるときに、対物光学系170からの複数の加工ビームEL1~EL9の各ビーム断面における波面の非回転対称成分を補正してもよい。これにより、複数の加工ビームEL1~EL9のZ軸方向の照射位置(集光位置)を変えるときに、複数の加工ビームEL1~EL9の断面形状をそれぞれ円形状に保つことが可能である。 The deformable mirror 117 may change the focusing positions (in other words, the irradiation positions in the Z-axis direction) of the multiple processing beams EL1 to EL9 focused by the objective optical system 170 toward the workpiece W along the optical axis direction (Z-axis direction) of the objective optical system 170 by deforming the variable reflecting surface 118 to change the radius of curvature of the variable reflecting surface 118. This makes it possible to change the irradiation positions (focusing positions) of the multiple processing beams EL1 to EL9 in the Z-axis direction at high speed. The deformable mirror 117 may also correct the non-rotationally symmetric components of the wavefront in each beam cross section of the multiple processing beams EL1 to EL9 from the objective optical system 170 by deforming the variable reflecting surface 118 when changing the irradiation positions (focusing positions) of the multiple processing beams EL1 to EL9 in the Z-axis direction. This makes it possible to maintain the cross-sectional shapes of the multiple processing beams EL1 to EL9 in a circular shape when changing the irradiation positions (focusing positions) of the multiple processing beams EL1 to EL9 in the Z-axis direction.
 なお、本実施形態では、複数の加工ビームEL1~EL9が加工ショット領域PSAの一部に分布しているため、複数の加工ビームEL1~EL9の各ビーム断面における波面の形状を一律に補正しても各加工ビームEL1~EL9の断面形状をそれぞれ円形状にすることが可能である。ここで、各ビーム断面における波面の形状を一律に補正して各加工ビームのワークW上での断面形状を良好にするために、加工ショット領域PSAの面積に対して複数の加工ビームが分布する領域(複数の加工ビームのうち最外側のビーム位置を繋いだ外縁で定まる領域)は、1/100以下であってもよく、1/200以下であってもよく、1/800以下であってもよい。 In this embodiment, since the multiple processing beams EL1 to EL9 are distributed in a portion of the processing shot area PSA, it is possible to make the cross-sectional shape of each of the multiple processing beams EL1 to EL9 circular even if the wavefront shape of each beam cross section of the multiple processing beams EL1 to EL9 is uniformly corrected. Here, in order to improve the cross-sectional shape of each processing beam on the workpiece W by uniformly correcting the wavefront shape of each beam cross section, the area in which the multiple processing beams are distributed (the area determined by the outer edge connecting the outermost beam positions of the multiple processing beams) may be 1/100 or less, 1/200 or less, or 1/800 or less of the area of the processing shot area PSA.
 また、加工ヘッド100には、光ファイバ等の光伝送部材21を介して、計測光源20が生成した計測ビームMLが入射する。計測光源20は、加工ヘッド100の外部に配置されていてもよく、加工ヘッド100の内部に配置されていてもよい。なお、加工ヘッド100に入射する計測ビームMLは、光ファイバ等の光伝送部材21を介さなくてもよい。また、光伝送部材21は偏波面保存型の光ファイバであってもよい。 The measurement beam ML generated by the measurement light source 20 is incident on the processing head 100 via an optical transmission member 21 such as an optical fiber. The measurement light source 20 may be disposed outside the processing head 100, or may be disposed inside the processing head 100. The measurement beam ML incident on the processing head 100 does not have to pass through an optical transmission member 21 such as an optical fiber. The optical transmission member 21 may be a polarization-preserving optical fiber.
 計測光源20は、光コム光源を含んでいてもよい。光コム光源は、周波数軸上で等間隔に並んだ周波数成分を含む光(この光は光周波数コムとも称される)をパルス光として生成可能な光源である。この場合、計測光源20は、周波数軸上で等間隔に並んだ周波数成分のパルス光を含む光ビームを、計測ビームMLとして射出する。但し、計測光源20は、光コム光源とは異なる光源を含んでいてもよい。 The measurement light source 20 may include an optical comb light source. An optical comb light source is a light source that can generate light containing frequency components that are evenly spaced on the frequency axis (this light is also called an optical frequency comb) as pulsed light. In this case, the measurement light source 20 emits a light beam that contains pulsed light of frequency components that are evenly spaced on the frequency axis as the measurement beam ML. However, the measurement light source 20 may include a light source other than the optical comb light source.
 図3に示す例において、光加工装置SYSは、計測光源20として、第1の計測光源20aと、第2の計測光源20bとを備えている。複数の計測光源20a,20bは、互いに位相同期され且つ干渉性のある複数の計測ビームMLをそれぞれ射出する。例えば、複数の計測光源20a,20bは、発振周波数が異なっていてもよい。このため、複数の計測光源20a,20bから射出される複数の計測ビームMLは、パルス周波数(例えば、単位時間当たりのパルス光の数であり、パルス光の発光周期の逆数)が異なる複数のパルス光を含む光ビームとなる。但し、光加工装置SYSは、単一の計測光源20を備えていてもよい。 In the example shown in FIG. 3, the optical processing device SYS includes a first measurement light source 20a and a second measurement light source 20b as the measurement light source 20. The multiple measurement light sources 20a, 20b each emit multiple measurement beams ML that are phase-synchronized and coherent with each other. For example, the multiple measurement light sources 20a, 20b may have different oscillation frequencies. Therefore, the multiple measurement beams ML emitted from the multiple measurement light sources 20a, 20b become light beams that include multiple pulsed lights with different pulse frequencies (for example, the number of pulsed lights per unit time, which is the reciprocal of the emission period of the pulsed lights). However, the optical processing device SYS may also include a single measurement light source 20.
 計測光学系130には、光伝送部材21により伝送された計測ビームMLが入射する。計測光学系130は、計測光学系130に入射した計測ビームMLを合成光学系150に向けて射出する。計測光学系130から射出された計測ビームMLは、合成光学系150、偏向光学系160、および対物光学系170を介して計測対象物Mに照射される。計測光学系130は、第1ミラー131と、第1ビームスプリッタ132と、第2ビームスプリッタ133と、第3ビームスプリッタ134と、第2ミラー135と、第3ミラー136と、ガルバノミラー137と、第1検出器141と、第2検出器142とを備える。 The measurement optical system 130 is incident on the measurement optical system 130, which is transmitted by the optical transmission member 21. The measurement optical system 130 emits the measurement beam ML incident on the measurement optical system 130 toward the synthesis optical system 150. The measurement beam ML emitted from the measurement optical system 130 is irradiated onto the measurement object M via the synthesis optical system 150, the deflection optical system 160, and the objective optical system 170. The measurement optical system 130 includes a first mirror 131, a first beam splitter 132, a second beam splitter 133, a third beam splitter 134, a second mirror 135, a third mirror 136, a galvanometer mirror 137, a first detector 141, and a second detector 142.
 計測光源20から射出された計測ビームMLは、第1ビームスプリッタ132に入射する。具体的には、第1の計測光源20aから射出された計測ビームML(以降、「計測ビームML1」と称する)は、第1ビームスプリッタ132に入射する。第2の計測光源20bから射出された計測ビームML(以降、「計測ビームML2」と称する)は、第1ミラー131を介して第1ビームスプリッタ132に入射する。第1ビームスプリッタ132は、第1ビームスプリッタ132に入射した計測ビームML1と計測ビームML2を第2ビームスプリッタ133に向けて射出する。 The measurement beam ML emitted from the measurement light source 20 is incident on the first beam splitter 132. Specifically, the measurement beam ML emitted from the first measurement light source 20a (hereinafter referred to as "measurement beam ML1") is incident on the first beam splitter 132. The measurement beam ML emitted from the second measurement light source 20b (hereinafter referred to as "measurement beam ML2") is incident on the first beam splitter 132 via the first mirror 131. The first beam splitter 132 emits the measurement beam ML1 and measurement beam ML2 incident on the first beam splitter 132 toward the second beam splitter 133.
 第2ビームスプリッタ133は、第2ビームスプリッタ133に入射した計測ビームML1のうち一部の計測ビームML1-1を、第1検出器141に向けて反射する。第2ビームスプリッタ133は、第2ビームスプリッタ133に入射した計測ビームML1のうち他の一部の計測ビームML1-2を、第3ビームスプリッタ134に向けて通過させる。第2ビームスプリッタ133は、第2ビームスプリッタ133に入射した計測ビームML2のうち一部の計測ビームML2-1を、第1検出器141に向けて反射する。第2ビームスプリッタ133は、第2ビームスプリッタ133に入射した計測ビームML2のうち他の一部の計測ビームML2-2を、第3ビームスプリッタ134に向けて通過させる。 The second beam splitter 133 reflects a portion of the measurement beam ML1 incident on the second beam splitter 133, namely, measurement beam ML1-1, toward the first detector 141. The second beam splitter 133 passes another portion of the measurement beam ML1 incident on the second beam splitter 133, namely, measurement beam ML1-2, toward the third beam splitter 134. The second beam splitter 133 reflects a portion of the measurement beam ML2 incident on the second beam splitter 133, namely, measurement beam ML2-1, toward the first detector 141. The second beam splitter 133 passes another portion of the measurement beam ML2 incident on the second beam splitter 133, namely, measurement beam ML2-2, toward the third beam splitter 134.
 第2ビームスプリッタ133で反射した計測ビームML1-1と計測ビームML2-1は、第1検出器141に入射する。第1検出器141は、計測ビームML1-1と計測ビームML2-1とが干渉することで生成される干渉光を検出する。具体的には、第1検出器141は、干渉光を受光することで、干渉光を検出する。第1検出器141の検出結果は、制御ユニット2に出力される。 The measurement beam ML1-1 and measurement beam ML2-1 reflected by the second beam splitter 133 are incident on the first detector 141. The first detector 141 detects interference light generated by the interference between the measurement beam ML1-1 and the measurement beam ML2-1. Specifically, the first detector 141 detects the interference light by receiving it. The detection result of the first detector 141 is output to the control unit 2.
 第2ビームスプリッタ133を通過した計測ビームML1-2と計測ビームML2-2は、第3ビームスプリッタ134に入射する。第3ビームスプリッタ134は、第3ビームスプリッタ134に入射した計測ビームML1-2の少なくとも一部を、第2ミラー135に向けて反射する。第3ビームスプリッタ134は、第3ビームスプリッタ134に入射した計測ビームML2-2の少なくとも一部を、第3ミラー136に向けて通過させる。 The measurement beam ML1-2 and the measurement beam ML2-2 that pass through the second beam splitter 133 are incident on the third beam splitter 134. The third beam splitter 134 reflects at least a portion of the measurement beam ML1-2 that is incident on the third beam splitter 134 toward the second mirror 135. The third beam splitter 134 transmits at least a portion of the measurement beam ML2-2 that is incident on the third beam splitter 134 toward the third mirror 136.
 第3ビームスプリッタ134で反射した計測ビームML1-2は、第2ミラー135に入射する。第2ミラー135に入射した計測ビームML1-2は、第2ミラー135の反射面(反射面は、参照面とも称される)によって反射される。すなわち、第2ミラー135は、第2ミラー135に入射した計測ビームML1-2を、その反射光である計測ビームML1-3として第3ビームスプリッタ134に向けて射出する。なお、第2ミラー135からの反射光である計測ビームML1-3は、参照光とも称される。第2ミラー135から射出された計測ビームML1-3は、第3ビームスプリッタ134に入射する。第3ビームスプリッタ134は、第3ビームスプリッタ134に入射した計測ビームML1-3を第2ビームスプリッタ133に向けて反射する。第2ビームスプリッタ133で反射した計測ビームML1-3は、第1ビームスプリッタ132に入射する。第1ビームスプリッタ132は、第1ビームスプリッタ132に入射した計測ビームML1-3を、第2検出器142に向けて反射する。 The measurement beam ML1-2 reflected by the third beam splitter 134 is incident on the second mirror 135. The measurement beam ML1-2 incident on the second mirror 135 is reflected by the reflecting surface of the second mirror 135 (the reflecting surface is also called the reference surface). That is, the second mirror 135 emits the measurement beam ML1-2 incident on the second mirror 135 as the reflected light, measurement beam ML1-3, toward the third beam splitter 134. The measurement beam ML1-3 reflected light from the second mirror 135 is also called the reference light. The measurement beam ML1-3 emitted from the second mirror 135 is incident on the third beam splitter 134. The third beam splitter 134 reflects the measurement beam ML1-3 incident on the third beam splitter 134 toward the second beam splitter 133. The measurement beam ML1-3 reflected by the second beam splitter 133 is incident on the first beam splitter 132. The first beam splitter 132 reflects the measurement beam ML1-3 incident on the first beam splitter 132 toward the second detector 142.
 一方、第3ビームスプリッタ134を通過した計測ビームML2-2は、第3ミラー136に入射する。第3ミラー136は、第3ミラー136に入射した計測ビームML2-2をガルバノミラー137に向けて反射する。 Meanwhile, the measurement beam ML2-2 that passes through the third beam splitter 134 is incident on the third mirror 136. The third mirror 136 reflects the measurement beam ML2-2 that is incident on the third mirror 136 toward the galvanometer mirror 137.
 ガルバノミラー137は、計測ビームML2-2を偏向する(すなわち、計測ビームML2-2の進行方向を変化させる)。ガルバノミラー137は、計測ビームML2-2を偏向することにより、対物光学系170を介してワークW上に照射される計測ビームML2-2の、ワークW上での(XY平面に沿った面内での)照射位置を変える。 The galvanometer mirror 137 deflects the measurement beam ML2-2 (i.e., changes the traveling direction of the measurement beam ML2-2). By deflecting the measurement beam ML2-2, the galvanometer mirror 137 changes the irradiation position on the workpiece W (within a plane along the XY plane) of the measurement beam ML2-2 that is irradiated onto the workpiece W via the objective optical system 170.
 ガルバノミラー137は、X走査ミラー138Xと、Y走査ミラー138Yとを備える。X走査ミラー138Xは、Y軸回りに回転可能な反射面を有する偏向ミラーである。X走査ミラー138Xは、ワークW上での計測ビームML2-2の照射位置をX軸方向に沿って変更するよう、計測ビームML2-2を偏向する。Y走査ミラー138Yは、X軸回りに回転可能な反射面を有する偏向ミラーである。Y走査ミラー138Yは、ワークW上での計測ビームML2-2の照射位置をY軸方向に沿って変更するよう、計測ビームML2-2を偏向する。 The galvanometer mirror 137 includes an X-scanning mirror 138X and a Y-scanning mirror 138Y. The X-scanning mirror 138X is a deflection mirror with a reflective surface that can rotate around the Y-axis. The X-scanning mirror 138X deflects the measurement beam ML2-2 so as to change the irradiation position of the measurement beam ML2-2 on the workpiece W along the X-axis direction. The Y-scanning mirror 138Y is a deflection mirror with a reflective surface that can rotate around the X-axis. The Y-scanning mirror 138Y deflects the measurement beam ML2-2 so as to change the irradiation position of the measurement beam ML2-2 on the workpiece W along the Y-axis direction.
 計測光学系130(ガルバノミラー137)から射出された計測ビームML2-2は、合成光学系150に入射する。なお、計測ビームML(計測ビームML2-2)の波長は、加工ビームEL(複数の加工ビームEL1~EL9)の波長と異なる。合成光学系150のダイクロイックミラー151は、計測光学系130から射出された計測ビームML2-2を、合成光学系150のミラー152に向けて通過させる。ミラー152は、ダイクロイックミラー151を通過した計測ビームML2-2を偏向光学系160に向けて反射させる。なお、ガルバノミラー137を設けず、第3ミラー136(あるいは、第3ビームスプリッタ134)からの計測ビームML2-2が直接的に合成光学系150に入射する構成であってもよい。 The measurement beam ML2-2 emitted from the measurement optical system 130 (galvanometer mirror 137) enters the synthesis optical system 150. The wavelength of the measurement beam ML (measurement beam ML2-2) is different from the wavelength of the processing beam EL (multiple processing beams EL1 to EL9). The dichroic mirror 151 of the synthesis optical system 150 passes the measurement beam ML2-2 emitted from the measurement optical system 130 toward the mirror 152 of the synthesis optical system 150. The mirror 152 reflects the measurement beam ML2-2 that has passed through the dichroic mirror 151 toward the deflection optical system 160. The measurement beam ML2-2 from the third mirror 136 (or the third beam splitter 134) may be directly incident on the synthesis optical system 150 without providing the galvanometer mirror 137.
 前述したように、合成光学系150のダイクロイックミラー151には、計測ビームML2-2に加えて複数の加工ビームEL1~EL9が入射する。ダイクロイックミラー151は、異なる方向から入射してきた計測ビームML2-2と複数の加工ビームEL1~EL9を、同じ方向に向けて(すなわち、同じ偏向光学系160に向けて)射出する。これにより、合成光学系150において、複数の加工ビームEL1~EL9の光路に計測ビームML2-2の光路が合流する。 As described above, in addition to the measurement beam ML2-2, multiple processing beams EL1 to EL9 are incident on the dichroic mirror 151 of the combining optical system 150. The dichroic mirror 151 outputs the measurement beam ML2-2 and the multiple processing beams EL1 to EL9, which are incident from different directions, in the same direction (i.e., toward the same deflection optical system 160). As a result, in the combining optical system 150, the optical path of the measurement beam ML2-2 merges with the optical paths of the multiple processing beams EL1 to EL9.
 合成光学系150から射出された計測ビームML2-2は、偏向光学系160に入射する。偏向光学系160は、偏向光学系160に入射した計測ビームML2-2を、対物光学系170に向けて射出する。偏向光学系160のガルバノミラー161は、合成光学系150からの計測ビームML2-2を偏向することにより、対物光学系170を介してワークW上に照射される計測ビームML2-2の、計測対象物M上での(XY平面に沿った面内での)照射位置を変える。 The measurement beam ML2-2 emitted from the synthesis optical system 150 enters the deflection optical system 160. The deflection optical system 160 emits the measurement beam ML2-2 incident on the deflection optical system 160 toward the objective optical system 170. The galvanometer mirror 161 of the deflection optical system 160 deflects the measurement beam ML2-2 from the synthesis optical system 150, thereby changing the irradiation position on the measurement object M (within a plane along the XY plane) of the measurement beam ML2-2 that is irradiated onto the workpiece W via the objective optical system 170.
 前述したように、偏向光学系160のガルバノミラー161には、計測ビームML2-2に加えて複数の加工ビームEL1~EL9が入射する。従って、計測ビームML2-2と複数の加工ビームEL1~EL9の双方が同じガルバノミラー161を通過する。そのため、偏向光学系160のガルバノミラー161は、複数の加工ビームEL1~EL9の照射位置と、計測ビームML2-2の照射位置とを同期して(すなわち、連動して)変更することが可能である。 As described above, in addition to the measurement beam ML2-2, multiple processing beams EL1 to EL9 are incident on the galvanometer mirror 161 of the deflection optical system 160. Therefore, both the measurement beam ML2-2 and the multiple processing beams EL1 to EL9 pass through the same galvanometer mirror 161. Therefore, the galvanometer mirror 161 of the deflection optical system 160 can change the irradiation position of the multiple processing beams EL1 to EL9 and the irradiation position of the measurement beam ML2-2 in synchronization (i.e., in conjunction with each other).
 また、前述したように、計測ビームML2-2は、計測光学系130のガルバノミラー137を介して計測対象物Mに照射される。一方、複数の加工ビームEL1~EL9は、このガルバノミラー137を介することなくワークWに照射される。そのため、計測光学系130のガルバノミラー137は、複数の加工ビームEL1~EL9の照射位置に拘わらず、計測ビームML2-2の照射位置を独立して移動させることができる。すなわち、計測光学系130のガルバノミラー137は、複数の加工ビームEL1~EL9の照射位置と、計測ビームML2-2の照射位置との相対的な位置関係を変更することができる。 As described above, the measurement beam ML2-2 is irradiated onto the measurement object M via the galvanometer mirror 137 of the measurement optical system 130. On the other hand, the multiple processing beams EL1 to EL9 are irradiated onto the workpiece W without passing through the galvanometer mirror 137. Therefore, the galvanometer mirror 137 of the measurement optical system 130 can independently move the irradiation position of the measurement beam ML2-2, regardless of the irradiation positions of the multiple processing beams EL1 to EL9. In other words, the galvanometer mirror 137 of the measurement optical system 130 can change the relative positional relationship between the irradiation positions of the multiple processing beams EL1 to EL9 and the irradiation position of the measurement beam ML2-2.
 偏向光学系160のガルバノミラー161および計測光学系130のガルバノミラー137の少なくとも一方により、計測ビームML2-2は、加工ヘッド100を基準に定まる計測ショット領域MSAを走査可能となる。計測ショット領域MSAの一例が、図6に示されている。図6に示すように、計測ショット領域MSAは、加工ヘッド100と計測対象物Mとの位置関係を固定した状態で加工ヘッド100による計測が行われる領域(範囲)を示す。例えば、計測ショット領域MSAは、加工ヘッド100と計測対象物Mとの位置関係を固定した状態で、偏向光学系160のガルバノミラー161および計測光学系130のガルバノミラー137の少なくとも一方によって偏向される計測ビームML2-2の走査範囲と一致するか、もしくは当該走査範囲よりも狭い領域になるように設定される。前述したように、ヘッド駆動系40により加工ヘッド100が移動することで、計測ショット領域MSAが計測対象物Mの表面上を相対的に移動可能である。また、ステージ駆動系60によりステージ50が移動することで、計測ショット領域MSAが計測対象物Mの表面上を相対的に移動可能である。 The measurement beam ML2-2 can scan the measurement shot area MSA, which is determined based on the processing head 100, by at least one of the galvanometer mirror 161 of the deflection optical system 160 and the galvanometer mirror 137 of the measurement optical system 130. An example of the measurement shot area MSA is shown in FIG. 6. As shown in FIG. 6, the measurement shot area MSA indicates the area (range) where the measurement is performed by the processing head 100 with the positional relationship between the processing head 100 and the measurement object M fixed. For example, the measurement shot area MSA is set to coincide with the scanning range of the measurement beam ML2-2 deflected by at least one of the galvanometer mirror 161 of the deflection optical system 160 and the galvanometer mirror 137 of the measurement optical system 130 with the positional relationship between the processing head 100 and the measurement object M fixed, or to be an area narrower than the scanning range. As described above, the measurement shot area MSA can be moved relatively on the surface of the measurement object M by the head drive system 40 moving the processing head 100. In addition, the stage 50 is moved by the stage drive system 60, so that the measurement shot area MSA can be moved relatively on the surface of the measurement object M.
 偏向光学系160から射出された計測ビームML2-2は、対物光学系170に入射する。対物光学系170のfθレンズ171は、偏向光学系160から射出された計測ビームML2-2を、計測対象物Mに照射する。具体的には、fθレンズ171は、fθレンズ171の光軸に沿った方向に向けて計測ビームML2-2を射出する。また、fθレンズ171は、計測ビームML2-2を計測対象物M上に集光する。その結果、fθレンズ171から射出された計測ビームML2-2は、fθレンズ171の光軸に沿った方向に進行して計測対象物M上に集光して照射される。 The measurement beam ML2-2 emitted from the deflection optical system 160 enters the objective optical system 170. The fθ lens 171 of the objective optical system 170 irradiates the measurement beam ML2-2 emitted from the deflection optical system 160 onto the measurement object M. Specifically, the fθ lens 171 emits the measurement beam ML2-2 in a direction along the optical axis of the fθ lens 171. The fθ lens 171 also focuses the measurement beam ML2-2 on the measurement object M. As a result, the measurement beam ML2-2 emitted from the fθ lens 171 travels in a direction along the optical axis of the fθ lens 171 and is focused and irradiated onto the measurement object M.
 計測対象物Mに計測ビームML2-2が照射されると、計測ビームML2-2の照射に起因した光が計測対象物Mから射出される。計測ビームML2-2の照射に起因して計測対象物Mから射出される光は、計測対象物Mで反射された計測ビームML2-2(つまり、反射光)、計測対象物Mで散乱された計測ビームML2-2(つまり、散乱光)、計測対象物Mで回折された計測ビームML2-2(つまり、回折光)、および計測対象物Mを透過した計測ビームML2-2(つまり、透過光)のうちの少なくとも一つを含んでいてもよい。 When the measurement object M is irradiated with the measurement beam ML2-2, light resulting from the irradiation of the measurement beam ML2-2 is emitted from the measurement object M. The light emitted from the measurement object M due to the irradiation of the measurement beam ML2-2 may include at least one of the measurement beam ML2-2 reflected by the measurement object M (i.e., reflected light), the measurement beam ML2-2 scattered by the measurement object M (i.e., scattered light), the measurement beam ML2-2 diffracted by the measurement object M (i.e., diffracted light), and the measurement beam ML2-2 transmitted through the measurement object M (i.e., transmitted light).
 計測ビームML2-2の照射に起因して計測対象物Mから射出される光の少なくとも一部は、戻りビームRLとして対物光学系170に入射する。具体的には、計測ビームML2-2の照射に起因して計測対象物Mから射出される光のうちの、計測対象物Mに入射する計測ビームML2-2の光路に沿って進行する光が、戻りビームRLとして対物光学系170に入射する。この場合、対物光学系170から射出されて計測対象物Mに入射する計測ビームML2-2の光路と、計測対象物Mから射出されて対物光学系170に入射する戻りビームRLの光路とは同じであってもよい。対物光学系170に入射した戻りビームRLは、fθレンズ171を介して、偏向光学系160に入射する。偏向光学系160に入射した戻りビームRLは、ガルバノミラー161を介して、合成光学系150に入射する。合成光学系150に入射した戻りビームRLは、ミラー152とダイクロイックミラー151とを介して、計測光学系130に入射する。このとき、合成光学系150のダイクロイックミラー151は、ダイクロイックミラー151に入射した戻りビームRLを計測光学系130に向けて通過させる。 At least a portion of the light emitted from the measurement object M due to irradiation with the measurement beam ML2-2 enters the objective optical system 170 as a return beam RL. Specifically, of the light emitted from the measurement object M due to irradiation with the measurement beam ML2-2, the light traveling along the optical path of the measurement beam ML2-2 incident on the measurement object M enters the objective optical system 170 as a return beam RL. In this case, the optical path of the measurement beam ML2-2 emitted from the objective optical system 170 and incident on the measurement object M may be the same as the optical path of the return beam RL emitted from the measurement object M and incident on the objective optical system 170. The return beam RL incident on the objective optical system 170 enters the deflection optical system 160 via the fθ lens 171. The return beam RL incident on the deflection optical system 160 enters the synthesis optical system 150 via the galvanometer mirror 161. The return beam RL that is incident on the synthesis optical system 150 is incident on the measurement optical system 130 via the mirror 152 and the dichroic mirror 151. At this time, the dichroic mirror 151 of the synthesis optical system 150 passes the return beam RL that is incident on the dichroic mirror 151 toward the measurement optical system 130.
 合成光学系150のダイクロイックミラー151を通過した戻りビームRLは、計測光学系130のガルバノミラー137に入射する。ガルバノミラー137は、ガルバノミラー137に入射した戻りビームRLを第3ミラー136に向けて射出する。第3ミラー136は、第3ミラー136に入射した戻りビームRLを第3ビームスプリッタ134に向けて反射する。第3ビームスプリッタ134は、第3ビームスプリッタ134に入射した戻りビームRLの少なくとも一部を第2ビームスプリッタ133に向けて通過させる。第2ビームスプリッタ133は、第2ビームスプリッタ133に入射した戻りビームRLの少なくとも一部を第2検出器142に向けて反射する。 The return beam RL that passes through the dichroic mirror 151 of the synthesis optical system 150 is incident on the galvanometer mirror 137 of the measurement optical system 130. The galvanometer mirror 137 emits the return beam RL that is incident on the galvanometer mirror 137 toward the third mirror 136. The third mirror 136 reflects the return beam RL that is incident on the third mirror 136 toward the third beam splitter 134. The third beam splitter 134 passes at least a portion of the return beam RL that is incident on the third beam splitter 134 toward the second beam splitter 133. The second beam splitter 133 reflects at least a portion of the return beam RL that is incident on the second beam splitter 133 toward the second detector 142.
 上述したように、第2検出器142には、戻りビームRLに加えて、計測ビームML1-3が入射する。すなわち、第2検出器142には、計測対象物Mを介して第2検出器142に向かう戻りビームRLと、計測対象物Mを介することなく第2検出器142に向かう計測ビームML1-3とが入射する。第2検出器142は、計測ビームML1-3と戻りビームRLとが干渉することで生成される干渉光を検出する。具体的には、第2検出器142は、干渉光を受光することで、干渉光を検出する。第2検出器142の検出結果は、制御ユニット2に出力される。 As described above, in addition to the return beam RL, the measurement beams ML1-3 are incident on the second detector 142. That is, the return beam RL, which travels toward the second detector 142 via the measurement object M, and the measurement beams ML1-3, which travel toward the second detector 142 without passing through the measurement object M, are incident on the second detector 142. The second detector 142 detects interference light generated by interference between the measurement beams ML1-3 and the return beam RL. Specifically, the second detector 142 detects the interference light by receiving it. The detection result of the second detector 142 is output to the control unit 2.
 制御ユニット2は、第1検出器141の検出結果および第2検出器142の検出結果を取得する。制御ユニット2は、第1検出器141の検出結果および第2検出器142の検出結果に基づいて、計測対象物Mの計測データ(例えば、計測対象物Mの位置および形状の少なくとも一方に関する計測データ)を生成することが可能である。 The control unit 2 acquires the detection results of the first detector 141 and the second detector 142. The control unit 2 is capable of generating measurement data of the measurement object M (e.g., measurement data relating to at least one of the position and the shape of the measurement object M) based on the detection results of the first detector 141 and the detection results of the second detector 142.
 具体的には、制御ユニット2は、第2検出器142が検出する干渉光のパルス光と第1検出器141が検出する干渉光のパルス光との時間差に基づいて、計測ビームMLの光路に沿った方向(例えば、Z軸方向)における加工ヘッド100と計測対象物Mとの間の距離を算出することができる。言い換えれば、制御ユニット2は、計測ビームMLの光路に沿った方向(例えば、Z軸方向)における計測対象物Mの位置を算出することができる。より具体的には、制御ユニット2は、計測対象物Mのうち計測ビームML2-2が照射された被照射部分と加工ヘッド100との間の距離を算出することができる。制御ユニット2は、計測ビームMLの光路に沿った方向(例えば、Z軸方向)における被照射部分の位置を算出することができる。さらに、制御ユニット2は、偏向光学系160のガルバノミラー161および計測光学系130のガルバノミラー137の駆動状態に基づいて、計測ビームMLの光路に交差する方向(例えば、X軸方向及びY軸方向の少なくとも一つ)における被照射部分の位置を算出することができる。その結果、制御ユニット2は、加工ヘッド100を基準とする計測座標系における被照射部分の位置(例えば、三次元座標空間内での位置)を示す計測データを生成することができる。 Specifically, the control unit 2 can calculate the distance between the processing head 100 and the measurement object M in a direction along the optical path of the measurement beam ML (for example, the Z-axis direction) based on the time difference between the pulsed light of the interference light detected by the second detector 142 and the pulsed light of the interference light detected by the first detector 141. In other words, the control unit 2 can calculate the position of the measurement object M in a direction along the optical path of the measurement beam ML (for example, the Z-axis direction). More specifically, the control unit 2 can calculate the distance between the irradiated portion of the measurement object M irradiated with the measurement beam ML2-2 and the processing head 100. The control unit 2 can calculate the position of the irradiated portion in a direction along the optical path of the measurement beam ML (for example, the Z-axis direction). Furthermore, the control unit 2 can calculate the position of the irradiated portion in a direction intersecting the optical path of the measurement beam ML (for example, at least one of the X-axis direction and the Y-axis direction) based on the driving state of the galvanometer mirror 161 of the deflection optical system 160 and the galvanometer mirror 137 of the measurement optical system 130. As a result, the control unit 2 can generate measurement data that indicates the position of the irradiated portion in a measurement coordinate system based on the processing head 100 (e.g., the position in a three-dimensional coordinate space).
 [マップ用工具の構成]
 次に、後述する収差マップを生成するためのマップ用工具180について、図8~図9を参照して説明する。図8に示すように、マップ用工具180は、後述する収差マップを生成する際、一時的にステージ50に取り付けられるようになっている。図9に示すように、マップ用工具180は、マップ用レンズ181と、マップ用波面計測装置182と、筐体部183とを備える。
[Map Tool Configuration]
Next, a mapping tool 180 for generating an aberration map, which will be described later, will be described with reference to Fig. 8 and Fig. 9. As shown in Fig. 8, the mapping tool 180 is temporarily attached to the stage 50 when generating an aberration map, which will be described later. As shown in Fig. 9, the mapping tool 180 includes a mapping lens 181, a mapping wavefront measuring device 182, and a housing unit 183.
 筐体部183は、マップ用レンズ181およびマップ用波面計測装置182を保持する。筐体部183は、ワークWまたは計測対象物Mが載置されていない状態で、ステージ50の載置面51に載置されてもよい(図8も参照)。また、筐体部183は、ステージ50の側部に着脱可能に装着されてもよい。いずれの場合も、ヘッド駆動系40が加工ヘッド100を移動させることにより、マップ用レンズ181の光軸と対物光学系170(fθレンズ171)の光軸との位置合わせが行われる。 The housing 183 holds the map lens 181 and the map wavefront measuring device 182. The housing 183 may be placed on the mounting surface 51 of the stage 50 without the workpiece W or measurement object M being placed thereon (see also FIG. 8). The housing 183 may also be removably attached to the side of the stage 50. In either case, the head drive system 40 moves the machining head 100 to align the optical axis of the map lens 181 with the optical axis of the objective optical system 170 (fθ lens 171).
 マップ用レンズ181には、回折光学素子111が第1光路から離脱された状態で対物光学系170のfθレンズ171から射出された(分割されていない)加工ビームELが入射する。マップ用レンズ181は、対物光学系170の射出瞳とマップ用波面計測装置182の瞳とを光学的に共役にする。マップ用レンズ181は、マップ用レンズ181を透過する加工ビームELをマップ用波面計測装置182に向けて集める。なお、マップ用レンズ181には、回折光学素子111が第1光路に挿入された状態で対物光学系170のfθレンズ171から射出された複数の加工ビームELが入射してもよい。 The (unsplit) processing beam EL emitted from the fθ lens 171 of the objective optical system 170 with the diffractive optical element 111 removed from the first optical path is incident on the map lens 181. The map lens 181 optically conjugates the exit pupil of the objective optical system 170 with the pupil of the map wavefront measuring device 182. The map lens 181 collects the processing beam EL that passes through the map lens 181 toward the map wavefront measuring device 182. Note that the map lens 181 may be incident on multiple processing beams EL emitted from the fθ lens 171 of the objective optical system 170 with the diffractive optical element 111 inserted in the first optical path.
 マップ用波面計測装置182には、マップ用レンズ181を透過した加工ビームELが入射する。マップ用波面計測装置182は、シャックハルトマンセンサを用いて構成される。マップ用波面計測装置182は、マップ用波面計測装置182に入射した光(すなわち、加工ビームEL)の波面の位相分布を計測する。なお、マップ用波面計測装置182および補正用波面計測装置153により計測される波面の位相分布は、波面収差または波面収差分布と称されてもよい。マップ用波面計測装置182による波面の位相分布の計測結果、すなわち波面収差の計測結果は、制御ユニット2に出力される。 The processing beam EL that has passed through the map lens 181 is incident on the map wavefront measuring device 182. The map wavefront measuring device 182 is configured using a Shack-Hartmann sensor. The map wavefront measuring device 182 measures the phase distribution of the wavefront of the light (i.e., the processing beam EL) that is incident on the map wavefront measuring device 182. The phase distribution of the wavefront measured by the map wavefront measuring device 182 and the correction wavefront measuring device 153 may be referred to as wavefront aberration or wavefront aberration distribution. The measurement result of the phase distribution of the wavefront by the map wavefront measuring device 182, i.e., the measurement result of the wavefront aberration, is output to the control unit 2.
 制御ユニット2は、マップ用波面計測装置182による波面収差の計測結果を取得する。制御ユニット2は、マップ用波面計測装置182による波面収差の計測結果に基づいて、加工ビームEL(すなわち、複数の加工ビームEL1~EL9)の照射位置と、当該照射位置での波面収差との関係を示す収差マップを生成することが可能である。また、制御ユニット2は、生成した収差マップに基づいて、複数の加工ビームEL1~EL9の照射位置と、当該照射位置に照射される複数の加工ビームEL1~EL9の波面を補正するのに必要な、デフォーマブルミラー117における可変反射面118の各部位の形状(変形量)との関係を示す変形マップを生成することが可能である。制御ユニット2において生成された収差マップおよび変形マップは、制御ユニット2に設けられた記憶部90に記憶される。 The control unit 2 acquires the measurement results of the wavefront aberration by the wavefront measuring device for map 182. Based on the measurement results of the wavefront aberration by the wavefront measuring device for map 182, the control unit 2 can generate an aberration map showing the relationship between the irradiation positions of the processing beam EL (i.e., the multiple processing beams EL1 to EL9) and the wavefront aberration at the irradiation positions. Based on the generated aberration map, the control unit 2 can also generate a deformation map showing the relationship between the irradiation positions of the multiple processing beams EL1 to EL9 and the shape (deformation amount) of each part of the variable reflecting surface 118 of the deformable mirror 117 required to correct the wavefronts of the multiple processing beams EL1 to EL9 irradiated at the irradiation positions. The aberration map and deformation map generated in the control unit 2 are stored in a memory unit 90 provided in the control unit 2.
 なお、収差マップおよび変形マップにおいて、加工ショット領域PSAにおける複数の加工ビームEL1~EL9の(XY平面に沿った面内での)照射位置は、ガルバノミラー161におけるX走査ミラー162XおよびY走査ミラー162Yの反射面163X,163Yの偏向角度に応じて定まる。そのため、記憶部90には、複数の加工ビームEL1~EL9の照射位置と紐づけて、X走査ミラー162XおよびY走査ミラー162Yの反射面163X,163Yの偏向角度が記憶されてもよい。また、記憶部90に記憶される収差マップおよび変形マップは、X走査ミラー162XおよびY走査ミラー162Yの反射面163X,163Yの偏向角度と、当該偏向角度での波面収差との関係を示すものであってもよい。また、複数の加工ビームEL1~EL9のZ軸方向の照射位置(集光位置)は、デフォーマブルミラー117の可変反射面118の曲率半径に応じて定まる。そのため、記憶部90には、複数の加工ビームEL1~EL9のZ軸方向の照射位置と紐づけて、デフォーマブルミラー117の可変反射面118の曲率半径が記憶されてもよい。 In the aberration map and deformation map, the irradiation positions (within a plane along the XY plane) of the multiple processing beams EL1 to EL9 in the processing shot area PSA are determined according to the deflection angles of the reflecting surfaces 163X, 163Y of the X scanning mirror 162X and the Y scanning mirror 162Y in the galvanometer mirror 161. Therefore, the deflection angles of the reflecting surfaces 163X, 163Y of the X scanning mirror 162X and the Y scanning mirror 162Y may be stored in the memory unit 90 in association with the irradiation positions of the multiple processing beams EL1 to EL9. The aberration map and deformation map stored in the memory unit 90 may also indicate the relationship between the deflection angles of the reflecting surfaces 163X, 163Y of the X scanning mirror 162X and the Y scanning mirror 162Y and the wavefront aberration at the deflection angles. Furthermore, the irradiation positions (focus positions) of the multiple processing beams EL1 to EL9 in the Z-axis direction are determined according to the radius of curvature of the variable reflecting surface 118 of the deformable mirror 117. Therefore, the storage unit 90 may store the radius of curvature of the variable reflecting surface 118 of the deformable mirror 117 in association with the irradiation positions of the multiple processing beams EL1 to EL9 in the Z-axis direction.
 なお、複数の加工ビームEL1~EL9のXY平面に沿った面内での照射位置に応じてZ軸方向の照射位置(集光位置)が変わるような場合、記憶部90には、複数の加工ビームEL1~EL9のXY平面に沿った面内での照射位置と、X走査ミラー162XおよびY走査ミラー162Yの反射面163X,163Yの偏向角度との少なくとも一方と対応づけて、デフォーマブルミラー117の可変反射面118の曲率半径が記憶されてもよい。 In addition, in cases where the irradiation position (focus position) in the Z-axis direction changes depending on the irradiation positions of the multiple processing beams EL1 to EL9 in a plane along the XY plane, the storage unit 90 may store the radius of curvature of the variable reflecting surface 118 of the deformable mirror 117 in association with at least one of the irradiation positions of the multiple processing beams EL1 to EL9 in a plane along the XY plane and the deflection angles of the reflecting surfaces 163X, 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y.
 また、収差マップにおいて、波面収差は、当該波面収差をフリンジツェルニケ多項式で表した場合における、フリンジツェルニケ多項式の第4項、第5項、第6項、および第9項について表すようにしてもよい。すなわち、変形マップにおいて、デフォーマブルミラー117における可変反射面118の各部位の形状(変形量)は、フリンジツェルニケ多項式の第4項、第5項、第6項、および第9項を低減させるのに必要な、可変反射面118の各部位の形状(変形量)であってもよい。 Furthermore, in the aberration map, the wavefront aberration may be expressed in terms of the fourth, fifth, sixth, and ninth terms of the fringe Zernike polynomial when the wavefront aberration is expressed as the fringe Zernike polynomial. In other words, in the deformation map, the shape (amount of deformation) of each portion of the variable reflecting surface 118 of the deformable mirror 117 may be the shape (amount of deformation) of each portion of the variable reflecting surface 118 required to reduce the fourth, fifth, sixth, and ninth terms of the fringe Zernike polynomial.
 フリンジツェルニケ多項式の第4項は、ツェルニケ多項式(Zernike polynomials)の各項をフリンジオーダーと称される並べ方で並べた場合の4番目の項である。同様に、フリンジツェルニケ多項式の第5項、第6項、および第9項は、ツェルニケ多項式の各項をフリンジオーダーと称される順番で並べた場合の5番目の項、6番目の項、および9番目の項である。フリンジツェルニケ多項式の第4項は、デフォーカスに対応することが知られている。フリンジツェルニケ多項式の第5項および第6項は、非点収差に対応することが知られている。フリンジツェルニケ多項式の第9項は、球面収差に対応することが知られている。デフォーマブルミラー117は、可変反射面118を変形させて、波面収差を表すフリンジツェルニケ多項式の第4項、第5項、第6項、および第9項を低減させることで、デフォーカス、非点収差、および球面収差を補正することが可能になる。 The fourth term of the fringe Zernike polynomial is the fourth term when the terms of the Zernike polynomials are arranged in a manner called the fringe order. Similarly, the fifth, sixth, and ninth terms of the fringe Zernike polynomial are the fifth, sixth, and ninth terms when the terms of the Zernike polynomials are arranged in an order called the fringe order. The fourth term of the fringe Zernike polynomial is known to correspond to defocus. The fifth and sixth terms of the fringe Zernike polynomial are known to correspond to astigmatism. The ninth term of the fringe Zernike polynomial is known to correspond to spherical aberration. The deformable mirror 117 can correct defocus, astigmatism, and spherical aberration by deforming the variable reflecting surface 118 to reduce the fourth, fifth, sixth, and ninth terms of the fringe Zernike polynomials, which represent the wavefront aberration.
 [光加工方法]
 次に、以上のように構成される光加工装置SYSを用いた光加工方法について、図10に示すフローチャートを用いて説明する。まず、マップ用工具180のマップ用波面計測装置182により波面収差を測定して収差マップを生成する(ステップST1)。このとき、ワークWまたは計測対象物Mがステージ50に載置されていない状態で、マップ用工具180を一時的にステージ50に取り付ける。マップ用工具180がステージ50に取り付けられた状態で、ヘッド駆動系40が加工ヘッド100を移動させることにより、マップ用レンズ181の光軸と対物光学系170(fθレンズ171)の光軸との位置合わせが行われる。また、加工光学系110の駆動装置により回折光学素子111が第1光路から離脱される。加工ヘッド100は、加工光学系110、合成光学系150、偏向光学系160、および対物光学系170を介して、加工ビームELをマップ用工具180に向けて照射する。なおこのとき、加工光学系110のデフォーマブルミラー117の可変反射面118は、所定の初期形状に変形している。
[Optical processing method]
Next, an optical processing method using the optical processing apparatus SYS configured as described above will be described with reference to the flowchart shown in FIG. 10. First, the map wavefront measuring device 182 of the map tool 180 measures the wavefront aberration to generate an aberration map (step ST1). At this time, the map tool 180 is temporarily attached to the stage 50 in a state where the workpiece W or the measurement object M is not placed on the stage 50. With the map tool 180 attached to the stage 50, the head drive system 40 moves the processing head 100 to align the optical axis of the map lens 181 with the optical axis of the objective optical system 170 (fθ lens 171). In addition, the diffractive optical element 111 is removed from the first optical path by the drive device of the processing optical system 110. The processing head 100 irradiates the processing beam EL toward the map tool 180 via the processing optical system 110, the synthesis optical system 150, the deflection optical system 160, and the objective optical system 170. At this time, the variable reflecting surface 118 of the deformable mirror 117 of the processing optical system 110 is deformed into a predetermined initial shape.
 マップ用波面計測装置182は、マップ用波面計測装置182に入射した光(すなわち、加工ビームEL)の波面の位相分布を計測する。なお、偏向光学系160のガルバノミラー161が加工ビームELを偏向することにより、加工ショット領域PSAにおけるX軸方向またはY軸方向の位置が所定間隔だけ異なる複数の照射位置について、マップ用波面計測装置182は波面の位相分布を計測する。また、デフォーマブルミラー117が可変反射面118を変形させて可変反射面118の曲率半径を変えることにより、Z軸方向の位置が所定間隔だけ異なる複数の照射位置について、マップ用波面計測装置182は波面の位相分布を計測する。加工ビームEL(複数の加工ビームEL1~EL9)の複数の照射位置同士の所定間隔は、例えば1mmに設定される。なお、加工ビームEL(複数の加工ビームEL1~EL9)の照射位置は、マップ用波面計測装置182の計測位置と称されてもよい。マップ用波面計測装置182による波面の位相分布の計測結果、すなわち波面収差の計測結果は、制御ユニット2に出力される。 The map wavefront measuring device 182 measures the phase distribution of the wavefront of the light (i.e., the processing beam EL) incident on the map wavefront measuring device 182. The galvanometer mirror 161 of the deflection optical system 160 deflects the processing beam EL, so that the map wavefront measuring device 182 measures the phase distribution of the wavefront for multiple irradiation positions whose positions in the X-axis direction or the Y-axis direction in the processing shot area PSA differ by a predetermined interval. The deformable mirror 117 deforms the variable reflecting surface 118 to change the radius of curvature of the variable reflecting surface 118, so that the map wavefront measuring device 182 measures the phase distribution of the wavefront for multiple irradiation positions whose positions in the Z-axis direction differ by a predetermined interval. The predetermined interval between the multiple irradiation positions of the processing beam EL (multiple processing beams EL1 to EL9) is set to, for example, 1 mm. The irradiation positions of the processing beam EL (multiple processing beams EL1 to EL9) may be referred to as the measurement positions of the map wavefront measuring device 182. The measurement results of the wavefront phase distribution by the map wavefront measuring device 182, i.e., the measurement results of the wavefront aberration, are output to the control unit 2.
 制御ユニット2は、マップ用波面計測装置182による波面収差の計測結果を取得する。制御ユニット2は、マップ用波面計測装置182による波面収差の計測結果に基づいて、X軸方向、Y軸方向、Z軸方向の3次元方向の位置が異なる複数の照射位置について、複数の加工ビームEL1~EL9の照射位置と、当該照射位置で計測される波面収差との関係を示す収差マップを生成する。制御ユニット2において生成された収差マップは、制御ユニット2の記憶部90に記憶される。 The control unit 2 acquires the measurement results of the wavefront aberration by the wavefront measuring device for map 182. Based on the measurement results of the wavefront aberration by the wavefront measuring device for map 182, the control unit 2 generates an aberration map that indicates the relationship between the irradiation positions of the multiple processing beams EL1 to EL9 and the wavefront aberration measured at multiple irradiation positions that differ in three-dimensional positions in the X-axis, Y-axis, and Z-axis directions. The aberration map generated in the control unit 2 is stored in the memory unit 90 of the control unit 2.
 前述したように、収差マップにおいて、記憶部90には、X軸方向、Y軸方向、Z軸方向の3次元方向の位置が異なる複数の照射位置と紐づけて、ガルバノミラー161におけるX走査ミラー162XおよびY走査ミラー162Yの反射面163X,163Yの偏向角度や、デフォーマブルミラー117の可変反射面118の曲率半径が記憶されてもよい。収差マップにおいて、波面収差は、当該波面収差をフリンジツェルニケ多項式で表した場合における、フリンジツェルニケ多項式の第4項、第5項、第6項、および第9項について表すようにしてもよい。また、収差マップにおいて、マップ用波面計測装置182により計測された波面収差に基づいて、前述の所定間隔を置いた複数の照射位置同士の間の位置での波面収差を、フィッティングにより求めるようにしてもよい。 As described above, in the aberration map, the storage unit 90 may store the deflection angles of the reflecting surfaces 163X and 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y in the galvanometer mirror 161 and the radius of curvature of the variable reflecting surface 118 of the deformable mirror 117 in association with a plurality of irradiation positions that are different in the three-dimensional directions of the X-axis, Y-axis, and Z-axis directions. In the aberration map, the wavefront aberration may be expressed in terms of the fourth, fifth, sixth, and ninth terms of the fringe Zernike polynomial when the wavefront aberration is expressed as a fringe Zernike polynomial. In addition, in the aberration map, the wavefront aberration at positions between the plurality of irradiation positions spaced apart by the predetermined intervals described above may be found by fitting based on the wavefront aberration measured by the map wavefront measuring device 182.
 次に、デフォーマブルミラー117の変形マップを生成する(ステップST2)。このとき、制御ユニット2は、先のステップ(ST1)で生成した収差マップに基づいて、加工ビームEL(すなわち、複数の加工ビームEL1~EL9)の照射位置と、当該照射位置に照射される複数の加工ビームEL1~EL9の波面を補正するのに必要な、デフォーマブルミラー117における可変反射面118の各部位の形状(変形量)との関係を示す変形マップを生成する。なお、制御ユニット2は、X軸方向、Y軸方向、Z軸方向の3次元方向の位置が異なる複数の照射位置に対応する、複数の変形マップを生成する。制御ユニット2において生成された(複数の)変形マップは、制御ユニット2の記憶部90に記憶される。 Next, a deformation map of the deformable mirror 117 is generated (step ST2). At this time, based on the aberration map generated in the previous step (ST1), the control unit 2 generates a deformation map indicating the relationship between the irradiation position of the processing beam EL (i.e., the multiple processing beams EL1 to EL9) and the shape (amount of deformation) of each part of the variable reflecting surface 118 of the deformable mirror 117 required to correct the wavefront of the multiple processing beams EL1 to EL9 irradiated at that irradiation position. Note that the control unit 2 generates multiple deformation maps corresponding to multiple irradiation positions that differ in three-dimensional positions in the X-axis, Y-axis, and Z-axis directions. The (multiple) deformation maps generated in the control unit 2 are stored in the memory unit 90 of the control unit 2.
 前述したように、変形マップにおいて、記憶部90には、X軸方向、Y軸方向、Z軸方向の3次元方向の位置が異なる複数の照射位置と紐づけて、ガルバノミラー161におけるX走査ミラー162XおよびY走査ミラー162Yの反射面163X,163Yの偏向角度や、デフォーマブルミラー117の可変反射面118の曲率半径が記憶されてもよい。変形マップにおいて、デフォーマブルミラー117における可変反射面118の各部位の形状(変形量)は、フリンジツェルニケ多項式の第4項、第5項、第6項、および第9項を低減させるのに必要な、可変反射面118の各部位の形状(変形量)であってもよい。 As described above, in the deformation map, the memory unit 90 may store the deflection angles of the reflecting surfaces 163X, 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y in the galvanometer mirror 161 and the radius of curvature of the variable reflecting surface 118 of the deformable mirror 117, linked to multiple irradiation positions that differ in three-dimensional positions in the X-axis direction, Y-axis direction, and Z-axis direction. In the deformation map, the shape (amount of deformation) of each part of the variable reflecting surface 118 of the deformable mirror 117 may be the shape (amount of deformation) of each part of the variable reflecting surface 118 required to reduce the fourth, fifth, sixth, and ninth terms of the fringe Zernike polynomial.
 なお、収差マップを生成するステップ(ST1)および変形マップを生成するステップ(ST2)は、光加工装置SYSの立ち上げ時またはメンテナンス時に実行される。収差マップを生成するステップ(ST1)および変形マップを生成するステップ(ST2)が実行された後、マップ用工具180は、ステージ50から取り外される。また、加工光学系110の駆動装置により回折光学素子111が第1光路に挿入される。 The step (ST1) of generating the aberration map and the step (ST2) of generating the deformation map are executed when the optical processing apparatus SYS is started up or during maintenance. After the step (ST1) of generating the aberration map and the step (ST2) of generating the deformation map are executed, the map tool 180 is removed from the stage 50. In addition, the diffractive optical element 111 is inserted into the first optical path by the drive device of the processing optical system 110.
 そして、ワークWの加工の際にフォーマブルミラー117を変形させる(ステップST3)。ワークWの加工の際、ワークWがステージ50の載置面51に載置される。加工ヘッド100は、加工光学系110、合成光学系150、偏向光学系160、および対物光学系170を介して、複数の加工ビームEL1~EL9をワークWに照射する。偏向光学系160のガルバノミラー161は、複数の加工ビームEL1~EL9を偏向することにより、対物光学系170を介してワークW上に照射される複数の加工ビームEL1~EL9の照射位置を、対物光学系170の光軸と垂直な方向(X軸方向およびY軸方向)に沿って変える。また、加工光学系110のデフォーマブルミラー117は、可変反射面118を変形させて可変反射面118の曲率半径を変えることで、複数の加工ビームEL1~EL9のZ軸方向の照射位置(集光位置)を、対物光学系170の光軸方向(Z軸方向)に沿って変える。 Then, the formable mirror 117 is deformed when machining the workpiece W (step ST3). When machining the workpiece W, the workpiece W is placed on the mounting surface 51 of the stage 50. The machining head 100 irradiates multiple processing beams EL1 to EL9 onto the workpiece W via the machining optical system 110, the synthesis optical system 150, the deflection optical system 160, and the objective optical system 170. The galvanometer mirror 161 of the deflection optical system 160 deflects the multiple processing beams EL1 to EL9, thereby changing the irradiation positions of the multiple processing beams EL1 to EL9 irradiated onto the workpiece W via the objective optical system 170 along the direction perpendicular to the optical axis of the objective optical system 170 (the X-axis direction and the Y-axis direction). In addition, the deformable mirror 117 of the processing optical system 110 changes the irradiation position (focus position) in the Z-axis direction of the multiple processing beams EL1 to EL9 along the optical axis direction (Z-axis direction) of the objective optical system 170 by deforming the variable reflecting surface 118 to change the radius of curvature of the variable reflecting surface 118.
 このとき、制御ユニット2は、偏向光学系160のガルバノミラー161に制御信号を送信し、ガルバノミラー161におけるX走査ミラー162XおよびY走査ミラー162Yの反射面163X,163Y(すなわち、ビーム偏向面)の偏向角度を制御する。より具体的には、制御ユニット2は、X走査ミラー162XおよびY走査ミラー162Yの反射面163X,163Yの偏向角度の指令値を含む制御信号を、ガルバノミラー161に送信する。 At this time, the control unit 2 transmits a control signal to the galvanometer mirror 161 of the deflection optical system 160 to control the deflection angles of the reflecting surfaces 163X, 163Y (i.e., the beam deflection surfaces) of the X-scanning mirror 162X and the Y-scanning mirror 162Y in the galvanometer mirror 161. More specifically, the control unit 2 transmits a control signal including a command value for the deflection angle of the reflecting surfaces 163X, 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y to the galvanometer mirror 161.
 またこのとき、制御ユニット2は、記憶部90に記憶された変形マップを参照する。制御ユニット2は、X走査ミラー162XおよびY走査ミラー162Yの反射面163X,163Yの偏向角度の指令値に応じた複数の加工ビームEL1~EL9のX軸方向およびY軸方向の照射位置と、複数の加工ビームEL1~EL9のZ軸方向の照射位置(集光位置)に対応する変形マップに基づく制御信号を、加工光学系110のデフォーマブルミラー117に送信する。このように、制御ユニット2は、偏向角度の指令値に基づいて、デフォーマブルミラー117の作動を制御する。デフォーマブルミラー117は、制御ユニット2からの制御信号に応じて可変反射面118を変形させることで、可変反射面118から射出される複数の加工ビームEL1~EL9の各ビーム断面における波面を変更する。 At this time, the control unit 2 also refers to the deformation map stored in the storage unit 90. The control unit 2 transmits control signals based on the deformation map corresponding to the irradiation positions in the X-axis and Y-axis directions of the multiple processing beams EL1 to EL9 according to the command values of the deflection angles of the reflecting surfaces 163X and 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y and the irradiation positions (focusing positions) in the Z-axis direction of the multiple processing beams EL1 to EL9 to the deformable mirror 117 of the processing optical system 110. In this way, the control unit 2 controls the operation of the deformable mirror 117 based on the command value of the deflection angle. The deformable mirror 117 changes the wavefront in each beam cross section of the multiple processing beams EL1 to EL9 emitted from the variable reflecting surface 118 by deforming the variable reflecting surface 118 according to the control signal from the control unit 2.
 また、デフォーマブルミラー117は、制御ユニット2からの制御信号に応じて可変反射面118を変形させて可変反射面118の曲率半径を変えることで、複数の加工ビームEL1~EL9のZ軸方向の照射位置(集光位置)を、対物光学系170の光軸方向(Z軸方向)に沿って変える。この場合、デフォーマブルミラー117は、複数の加工ビームEL1~EL9のZ軸方向の照射位置(集光位置)を変えるとともに、可変反射面118から射出される複数の加工ビームEL1~EL9の各ビーム断面における波面を変更する。 The deformable mirror 117 also changes the irradiation positions (focus positions) in the Z-axis direction of the multiple processing beams EL1 to EL9 along the optical axis direction (Z-axis direction) of the objective optical system 170 by deforming the variable reflecting surface 118 in response to a control signal from the control unit 2 to change the radius of curvature of the variable reflecting surface 118. In this case, the deformable mirror 117 changes the irradiation positions (focus positions) in the Z-axis direction of the multiple processing beams EL1 to EL9, and also changes the wavefronts in the beam cross sections of the multiple processing beams EL1 to EL9 emitted from the variable reflecting surface 118.
 これにより、デフォーマブルミラー117は、可変反射面118を変形させることで、対物光学系170からワークWに照射される複数の加工ビームEL1~EL9の照射位置の移動に伴って生じる、対物光学系170からの複数の加工ビームEL1~EL9の各ビーム断面における波面の変化を補正することが可能である。そのため、デフォーマブルミラー117は、対物光学系170からの複数の加工ビームEL1~EL9の各ビーム断面における波面の非回転対称成分を補正して、複数の加工ビームEL1~EL9の断面形状をそれぞれ円形状にすることができる。このように、本実施形態によれば、複数の加工ビームEL1~EL9の照射位置に拘わらず、複数の加工ビームEL1~EL9の断面形状をそれぞれ一定の円形状に保つことができ、ワークWの加工精度を向上させることができる。 As a result, by deforming the variable reflecting surface 118, the deformable mirror 117 can correct changes in the wavefront of each of the multiple processing beams EL1-EL9 from the objective optical system 170, which occurs as the irradiation positions of the multiple processing beams EL1-EL9 irradiated from the objective optical system 170 to the workpiece W move. Therefore, the deformable mirror 117 can correct the non-rotationally symmetric components of the wavefront of each of the multiple processing beams EL1-EL9 from the objective optical system 170 at their cross sections, and make the cross-sectional shapes of the multiple processing beams EL1-EL9 each circular. In this way, according to this embodiment, the cross-sectional shapes of the multiple processing beams EL1-EL9 can be kept constant and circular, regardless of the irradiation positions of the multiple processing beams EL1-EL9, thereby improving the machining accuracy of the workpiece W.
 なお、所定時間ごとに、加工光学系110の駆動装置により回折光学素子111が第1光路から一時的に離脱され、補正用波面計測装置153は、補正用波面計測装置153に入射した光(すなわち、加工ビームEL)の波面の位相分布を計測する。補正用波面計測装置153による波面の位相分布の計測結果、すなわち波面収差の計測結果は、制御ユニット2に出力される。制御ユニット2は、補正用波面計測装置153による波面収差の計測結果を取得する。制御ユニット2は、補正用波面計測装置153による波面収差の計測結果に基づいて、変形マップを生成してからの波面収差の時間的な変化量を求める。なお、波面収差の時間的な変化量として、フリンジツェルニケ多項式の第4項、第5項、第6項、および第9項の時間的な変化量を求めてもよい。制御ユニット2は、(当初の)変形マップに基づく制御信号に対して波面収差の時間的な変化量に基づく補正を加えた制御信号を、加工光学系110のデフォーマブルミラー117に送信する。 Note that at predetermined time intervals, the diffractive optical element 111 is temporarily removed from the first optical path by the driving device of the processing optical system 110, and the corrective wavefront measuring device 153 measures the phase distribution of the wavefront of the light (i.e., the processing beam EL) incident on the corrective wavefront measuring device 153. The measurement result of the wavefront phase distribution by the corrective wavefront measuring device 153, i.e., the measurement result of the wavefront aberration, is output to the control unit 2. The control unit 2 acquires the measurement result of the wavefront aberration by the corrective wavefront measuring device 153. The control unit 2 determines the amount of change in the wavefront aberration over time after the deformation map is generated based on the measurement result of the wavefront aberration by the corrective wavefront measuring device 153. Note that the amount of change in the wavefront aberration over time may be determined in the fourth, fifth, sixth, and ninth terms of the fringe Zernike polynomial. The control unit 2 transmits a control signal based on the (initial) deformation map plus a correction based on the amount of change in wavefront aberration over time to the deformable mirror 117 of the processing optical system 110.
 これにより、デフォーマブルミラー117は、複数の加工ビームEL1~EL9の照射熱による可変反射面118の変形や、加工光源10における波面の変動に伴って生じる、対物光学系170からの複数の加工ビームEL1~EL9の各ビーム断面における波面の変化を補正することが可能である。そのため、可変反射面118の変形や、加工光源10における波面の変動に拘わらず、複数の加工ビームEL1~EL9の断面形状をそれぞれ一定の円形状に保つことができ、ワークWの加工精度を向上させることができる。 As a result, the deformable mirror 117 is able to correct deformation of the variable reflecting surface 118 due to the heat emitted by the multiple processing beams EL1 to EL9, and changes in the wavefront of each beam cross section of the multiple processing beams EL1 to EL9 from the objective optical system 170 that occur due to fluctuations in the wavefront at the processing light source 10. Therefore, regardless of deformation of the variable reflecting surface 118 or fluctuations in the wavefront at the processing light source 10, the cross-sectional shapes of the multiple processing beams EL1 to EL9 can each be maintained at a constant circular shape, improving the processing accuracy of the workpiece W.
 [本実施形態の特徴構成]
 本実施形態では、光加工装置SYSに用いられる光学装置101として、加工光源10からの複数の加工ビームEL1~EL9が入射し、複数の加工ビームEL1~EL9の各ビーム断面における波面を変更するデフォーマブルミラー117と、デフォーマブルミラー117からの複数の加工ビームEL1~EL9の進行方向を変化させ、対物光学系170を介してワークW上に照射される複数の加工ビームEL1~EL9の、ワークW上での照射位置を変えるガルバノミラー161とを備える。これにより、デフォーマブルミラー117は、補正部材として、ガルバノミラー161の動作に伴って生じる、対物光学系170からの複数の加工ビームEL1~EL9の各ビーム断面における波面の変化を補正する。言い換えると、デフォーマブルミラー117は、補正部材として、対物光学系170からワークWに照射される複数の加工ビームEL1~EL9の照射位置の移動に伴って生じる、対物光学系170からの複数の加工ビームEL1~EL9の各ビーム断面における波面の変化を補正する。従って、前述したように、複数の加工ビームEL1~EL9の照射位置に拘わらず、複数の加工ビームEL1~EL9の断面形状をそれぞれ一定の円形状に保つことができ、ワークWの加工精度を向上させることができる。
[Characteristic configuration of this embodiment]
In this embodiment, the optical device 101 used in the optical processing apparatus SYS includes a deformable mirror 117 that receives the multiple processing beams EL1 to EL9 from the processing light source 10 and changes the wavefront of each of the multiple processing beams EL1 to EL9 in a cross section, and a galvanometer mirror 161 that changes the traveling direction of the multiple processing beams EL1 to EL9 from the deformable mirror 117 and changes the irradiation position on the workpiece W of the multiple processing beams EL1 to EL9 irradiated onto the workpiece W via the objective optical system 170. Thereby, the deformable mirror 117, as a correction member, corrects the change in the wavefront of each of the multiple processing beams EL1 to EL9 in a cross section from the objective optical system 170 that occurs with the operation of the galvanometer mirror 161. In other words, the deformable mirror 117, as a correction member, corrects the change in the wavefront of each of the multiple processing beams EL1 to EL9 in a cross section from the objective optical system 170 that occurs with the movement of the irradiation position of the multiple processing beams EL1 to EL9 irradiated onto the workpiece W from the objective optical system 170. Therefore, as described above, regardless of the irradiation positions of the multiple processing beams EL1 to EL9, the cross-sectional shapes of the multiple processing beams EL1 to EL9 can each be maintained at a constant circular shape, thereby improving the processing accuracy of the workpiece W.
 本実施形態では、光加工装置SYSに用いられる光学装置101として、加工光源10からの複数の加工ビームEL1~EL9が入射し、複数の加工ビームEL1~EL9の各ビーム断面における波面を変更するデフォーマブルミラー117と、デフォーマブルミラー117から射出された複数の加工ビームEL1~EL9が入射するリレー光学系125と、リレー光学系125からの複数の加工ビームEL1~EL9の進行方向を変化させて対物光学系170に入射させ、ワークW上での複数の加工ビームEL1~EL9の照射位置を変えるガルバノミラー161とを備える構成でもある。リレー光学系125は、デフォーマブルミラー117の可変反射面118とガルバノミラー161とを互いに共役にする。これにより、前述したように、複数の加工ビームEL1~EL9の照射位置に拘わらず、複数の加工ビームEL1~EL9の断面形状をそれぞれ一定の円形状に保つことができ、ワークWの加工精度を向上させることができる。また、デフォーマブルミラー117の可変反射面118を瞳共役位置に配置することが可能になり、可変反射面118に集まる複数の加工ビームEL1~EL9の波面を効率よく変更することができる。 In this embodiment, the optical device 101 used in the optical processing device SYS includes a deformable mirror 117 on which the multiple processing beams EL1 to EL9 from the processing light source 10 are incident and which changes the wavefront of each of the multiple processing beams EL1 to EL9 in their cross sections, a relay optical system 125 on which the multiple processing beams EL1 to EL9 emitted from the deformable mirror 117 are incident, and a galvanometer mirror 161 which changes the traveling direction of the multiple processing beams EL1 to EL9 from the relay optical system 125 to make them incident on the objective optical system 170 and change the irradiation position of the multiple processing beams EL1 to EL9 on the workpiece W. The relay optical system 125 makes the variable reflection surface 118 of the deformable mirror 117 and the galvanometer mirror 161 conjugate with each other. As a result, as described above, regardless of the irradiation position of the multiple processing beams EL1 to EL9, the cross-sectional shape of each of the multiple processing beams EL1 to EL9 can be maintained in a constant circular shape, thereby improving the processing accuracy of the workpiece W. In addition, it is possible to place the variable reflecting surface 118 of the deformable mirror 117 at a pupil conjugate position, and the wavefronts of the multiple processing beams EL1 to EL9 that converge on the variable reflecting surface 118 can be efficiently changed.
 本実施形態では、光加工装置SYSに用いられる光学装置101として、加工光源10からの加工ビームELを複数の加工ビームEL1~EL9に分割する回折光学素子111と、回折光学素子111から射出された複数の加工ビームEL1~EL9が入射し、回折光学素子111の格子面111aと光学的に共役な共役位置CPを形成する共役光学系112と、共役光学系112からの複数の加工ビームEL1~EL9が入射し、射出する複数の加工ビームEL1~EL9の各ビーム断面における波面を変更して対物光学系170に入射させるデフォーマブルミラー117とを備える構成でもある。デフォーマブルミラー117の可変反射面118は、格子面111aの共役位置CPに位置する。これにより、前述したように、複数の加工ビームEL1~EL9の断面形状をそれぞれ一定の円形状に保つことができ、ワークWの加工精度を向上させることができる。また、デフォーマブルミラー117の可変反射面118を瞳共役位置(共役位置CP)に配置することが可能になり、可変反射面118に集まる複数の加工ビームEL1~EL9の波面を効率よく変更することができる。 In this embodiment, the optical device 101 used in the optical processing device SYS includes a diffractive optical element 111 that splits the processing beam EL from the processing light source 10 into multiple processing beams EL1 to EL9, a conjugate optical system 112 on which the multiple processing beams EL1 to EL9 emitted from the diffractive optical element 111 are incident and which forms a conjugate position CP that is optically conjugate with the grating surface 111a of the diffractive optical element 111, and a deformable mirror 117 on which the multiple processing beams EL1 to EL9 from the conjugate optical system 112 are incident and which changes the wavefront of each beam cross section of the multiple processing beams EL1 to EL9 that are emitted and then incident on the objective optical system 170. The variable reflecting surface 118 of the deformable mirror 117 is located at the conjugate position CP of the grating surface 111a. As a result, as described above, the cross-sectional shapes of the multiple processing beams EL1 to EL9 can be maintained at a constant circular shape, thereby improving the processing accuracy of the workpiece W. In addition, it is possible to place the variable reflecting surface 118 of the deformable mirror 117 at the pupil conjugate position (conjugate position CP), and the wavefronts of the multiple processing beams EL1 to EL9 that converge on the variable reflecting surface 118 can be efficiently changed.
 本実施形態では、光加工装置SYSに用いられる光学装置101として、加工光源10からの複数の加工ビームEL1~EL9が入射する偏光ビームスプリッタ116と、偏光ビームスプリッタ116を介した複数の加工ビームEL1~EL9が入射し、射出する複数の加工ビームEL1~EL9の各ビーム断面における波面を変更して偏光ビームスプリッタ116に入射させるデフォーマブルミラー117と、波面が変更された複数の加工ビームEL1~EL9の光路に配置される第1の1/4波長板122とを備える構成でもある。これにより、前述したように、複数の加工ビームEL1~EL9の断面形状をそれぞれ一定の円形状に保つことができ、ワークWの加工精度を向上させることができる。また、第1の1/4波長板122を用いて、複数の加工ビームEL1~EL9の偏光状態を変えることで、偏光ビームスプリッタ116を介してデフォーマブルミラー117に入射した複数の加工ビームEL1~EL9を、加工光源10に戻ることなくワークWに向けて射出することができる。 In this embodiment, the optical device 101 used in the optical processing device SYS includes a polarized beam splitter 116 on which the multiple processing beams EL1 to EL9 from the processing light source 10 are incident, a deformable mirror 117 on which the multiple processing beams EL1 to EL9 are incident via the polarized beam splitter 116, which changes the wavefront of each beam cross section of the multiple processing beams EL1 to EL9 that are emitted and then incident on the polarized beam splitter 116, and a first quarter-wave plate 122 arranged in the optical path of the multiple processing beams EL1 to EL9 whose wavefronts have been changed. As a result, as described above, the cross-sectional shapes of the multiple processing beams EL1 to EL9 can be kept constant and the processing accuracy of the workpiece W can be improved. In addition, by changing the polarization state of the multiple processing beams EL1 to EL9 using the first quarter-wave plate 122, the multiple processing beams EL1 to EL9 that are incident on the deformable mirror 117 via the polarized beam splitter 116 can be emitted toward the workpiece W without returning to the processing light source 10.
 本実施形態では、光加工装置SYSに用いられる光学装置101として、加工光源10からの複数の加工ビームEL1~EL9が入射し、複数の加工ビームEL1~EL9の各ビーム断面における波面を変更するデフォーマブルミラー117を備える構成でもある。デフォーマブルミラー117は、デフォーマブルミラー117から射出される複数の加工ビームEL1~EL9の波面を変更して、対物光学系170の光軸方向に関する対物光学系170からの複数の加工ビームEL1~EL9の集光位置を変えるときに、対物光学系170からの複数の加工ビームEL1~EL9の波面の非回転対称成分を補正する。これにより、前述したように、複数の加工ビームEL1~EL9のZ軸方向の照射位置(対物光学系170の光軸方向の集光位置)を高速に変えることができ、複数の加工ビームEL1~EL9のZ軸方向の照射位置を変えるときに、複数の加工ビームEL1~EL9の断面形状をそれぞれ円形状に保つことが可能である。 In this embodiment, the optical device 101 used in the optical processing device SYS is also configured to include a deformable mirror 117 that receives the multiple processing beams EL1 to EL9 from the processing light source 10 and changes the wavefront of each of the multiple processing beams EL1 to EL9 in their cross sections. The deformable mirror 117 changes the wavefronts of the multiple processing beams EL1 to EL9 emitted from the deformable mirror 117, and corrects the non-rotationally symmetric components of the wavefronts of the multiple processing beams EL1 to EL9 from the objective optical system 170 when changing the focusing positions of the multiple processing beams EL1 to EL9 from the objective optical system 170 in the optical axis direction of the objective optical system 170. As a result, as described above, the irradiation positions of the multiple processing beams EL1 to EL9 in the Z axis direction (the focusing positions in the optical axis direction of the objective optical system 170) can be changed at high speed, and the cross-sectional shapes of the multiple processing beams EL1 to EL9 can be maintained as circular when changing the irradiation positions of the multiple processing beams EL1 to EL9 in the Z axis direction.
 [変形例]
 上述の実施形態において、対物光学系170の入射瞳PUは、ガルバノミラー161におけるX走査ミラー162XとY走査ミラー162Yとの間に位置するが、これに限られるものではない。例えば、X走査ミラー162Xが対物光学系170の入射瞳PUの位置に配置されるようにしてもよく、Y走査ミラー162Yが対物光学系170の入射瞳PUの位置に配置されるようにしてもよい。また、ガルバノミラー161は、X走査ミラー162XとY走査ミラー162Yに加えて、第3の走査ミラーを備えてもよく、2以上の走査ミラー(偏向ミラー)を備えていればよい。この場合、対物光学系170の入射瞳PUは、2以上の走査ミラー同士の間のいずれかに位置してもよい。また、2以上の走査ミラーのうち一の走査ミラーが、対物光学系170の入射瞳PUの位置に配置されてもよい。また、X走査ミラー162XとY走査ミラー162Yとの間に、X走査ミラー162Xの反射面163XとY走査ミラー162Yの反射面163Yとを光学的に共役にするリレー光学系を配置してもよい。このとき、X走査ミラー162Xの反射面163XとY走査ミラー162Yの反射面163Yとは、対物光学系170の入射瞳PUまたは入射瞳PUと共役な位置に位置していてもよい。
[Modification]
In the above embodiment, the entrance pupil PU of the objective optical system 170 is located between the X-scanning mirror 162X and the Y-scanning mirror 162Y in the galvanometer mirror 161, but is not limited thereto. For example, the X-scanning mirror 162X may be arranged at the position of the entrance pupil PU of the objective optical system 170, and the Y-scanning mirror 162Y may be arranged at the position of the entrance pupil PU of the objective optical system 170. Furthermore, the galvanometer mirror 161 may include a third scanning mirror in addition to the X-scanning mirror 162X and the Y-scanning mirror 162Y, and may include two or more scanning mirrors (deflection mirrors). In this case, the entrance pupil PU of the objective optical system 170 may be located anywhere between the two or more scanning mirrors. Furthermore, one of the two or more scanning mirrors may be arranged at the position of the entrance pupil PU of the objective optical system 170. Furthermore, a relay optical system that makes the reflecting surface 163X of the X scanning mirror 162X and the reflecting surface 163Y of the Y scanning mirror 162Y optically conjugate with each other may be disposed between the X scanning mirror 162X and the Y scanning mirror 162Y. In this case, the reflecting surface 163X of the X scanning mirror 162X and the reflecting surface 163Y of the Y scanning mirror 162Y may be located at the entrance pupil PU of the objective optical system 170 or at a position conjugate with the entrance pupil PU.
 偏向部材としてのガルバノミラー161が、互いに交差する第1軸および第2軸周り(あるいは、互いにひねりの関係にある第1軸および第2軸周り)に回転可能な複数の反射面163X、163Yを備える場合、複数の反射面のうち2番目以降に複数の加工ビームELが入射する反射面(図3の例では反射面163Y)に対して、複数の加工ビームELが当該反射面の回転軸に垂直な方向から外れる状態で入射する。そのため、反射面163Yの回転に応じて、複数の加工ビームELのワークW上での照射位置の並び方向が対物光学系170の光軸または当該光軸と平行な軸周りに回転することが生じ得る。この照射位置の並び方向の回転が許容範囲を超えるような場合には、X走査ミラー162XおよびY走査ミラー162Yの反射面163X,163Yの偏向角度に応じて、ビーム分割部材としての回折光学素子111を光軸周りに回転させてもよい。言い換えると、X走査ミラー162XおよびY走査ミラー162Yの反射面163X,163Yの偏向角度に応じて、ビーム分割部材としての回折光学素子111から複数の加工ビームELが射出される方向を変えてもよい。このとき、回折光学素子111を回転させる回転駆動装置を設けてもよい。この回転駆動装置は、制御ユニット2、あるいは前述の第1制御装置または第2制御装置によって、その回転駆動量が制御されていてもよい。そして、制御ユニット2、あるいは第1制御装置または第2制御装置の記憶部は、偏向部材に送る偏向角度の指令値と、回折光学素子111の回転駆動量の指令値との関係を記憶していてもよく、制御ユニット2、あるいは第1制御装置または第2制御装置は、偏向角度の指令値と回転駆動量の指令値とを用いて、偏向部材と回転駆動装置とを制御してもよい。 When the galvanometer mirror 161 as a deflection member has a plurality of reflecting surfaces 163X, 163Y that can rotate around a first axis and a second axis that intersect with each other (or around a first axis and a second axis that are in a twisted relationship with each other), the plurality of processing beams EL are incident on the second or subsequent reflecting surface (reflecting surface 163Y in the example of FIG. 3) in a state in which the direction of the irradiation positions of the plurality of processing beams EL on the workpiece W deviates from the direction perpendicular to the rotation axis of the reflecting surface. Therefore, depending on the rotation of the reflecting surface 163Y, the arrangement direction of the irradiation positions of the plurality of processing beams EL on the workpiece W may rotate around the optical axis of the objective optical system 170 or an axis parallel to the optical axis. If the rotation of the arrangement direction of the irradiation positions exceeds the allowable range, the diffractive optical element 111 as a beam splitting member may be rotated around the optical axis according to the deflection angle of the reflecting surfaces 163X, 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y. In other words, the direction in which the multiple processing beams EL are emitted from the diffractive optical element 111 as a beam splitting member may be changed according to the deflection angles of the reflecting surfaces 163X and 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y. In this case, a rotary drive device for rotating the diffractive optical element 111 may be provided. The rotary drive amount of this rotary drive device may be controlled by the control unit 2 or the above-mentioned first control device or second control device. The storage unit of the control unit 2 or the first control device or the second control device may store the relationship between the command value of the deflection angle sent to the deflection member and the command value of the rotation drive amount of the diffractive optical element 111, and the control unit 2 or the first control device or the second control device may control the deflection member and the rotary drive device using the command value of the deflection angle and the command value of the rotation drive amount.
 また、偏向部材としてのガルバノミラーを、互いに交差(直交)する2軸周りに回転可能な反射面を備える2軸ガルバノミラーとして、上述の照射位置の並び方向の回転を低減させてもよい。偏向部材としてのガルバノミラーを、リレー光学系によって反射面同士が互いに共役な位置にされた複数の1軸走査ミラーを用いて構成し、上述の照射位置の並び方向の回転を低減させてもよい。 Furthermore, the galvanometer mirror as the deflection member may be a two-axis galvanometer mirror with reflective surfaces that can rotate around two mutually intersecting (orthogonal) axes, thereby reducing the rotation in the arrangement direction of the above-mentioned irradiation positions. The galvanometer mirror as the deflection member may be configured using multiple one-axis scanning mirrors whose reflective surfaces are positioned conjugate to each other by a relay optical system, thereby reducing the rotation in the arrangement direction of the above-mentioned irradiation positions.
 上述の実施形態において、制御ユニット2は、ガルバノミラー161におけるX走査ミラー162XおよびY走査ミラー162Yの反射面163X,163Yの偏向角度の指令値に基づいて、デフォーマブルミラー117の作動を制御しているが、これに限られるものではない。例えば、制御ユニット2は、X走査ミラー162XおよびY走査ミラー162Yに設けられたロータリエンコーダから出力された、X走査ミラー162XおよびY走査ミラー162Yの反射面163X,163Yの偏向角度に関する情報に基づいて、デフォーマブルミラー117の作動を制御してもよい。具体的には、制御ユニット2は、X走査ミラー162XおよびY走査ミラー162Yのロータリエンコーダから出力される偏向角度に応じた複数の加工ビームEL1~EL9のX軸方向およびY軸方向の照射位置と、複数の加工ビームEL1~EL9のZ軸方向の照射位置(集光位置)に対応する変形マップに基づく制御信号を、デフォーマブルミラー117に送信してもよい。 In the above embodiment, the control unit 2 controls the operation of the deformable mirror 117 based on the command value of the deflection angle of the reflecting surfaces 163X, 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y in the galvanometer mirror 161, but this is not limited to the above. For example, the control unit 2 may control the operation of the deformable mirror 117 based on information on the deflection angle of the reflecting surfaces 163X, 163Y of the X-scanning mirror 162X and the Y-scanning mirror 162Y output from a rotary encoder provided on the X-scanning mirror 162X and the Y-scanning mirror 162Y. Specifically, the control unit 2 may transmit to the deformable mirror 117 a control signal based on a deformation map corresponding to the irradiation positions in the X-axis direction and the Y-axis direction of the multiple processing beams EL1 to EL9 according to the deflection angles output from the rotary encoders of the X-scanning mirror 162X and the Y-scanning mirror 162Y and the irradiation positions (focusing positions) in the Z-axis direction of the multiple processing beams EL1 to EL9.
 上述の実施形態において、制御ユニット2は、補正用波面計測装置153による波面収差の計測結果に基づいて、変形マップを生成してからの波面収差の時間的な変化量を求め、デフォーマブルミラー117に出力する制御信号を補正しているが、これに限られるものではない。例えば、制御ユニット2は、補正用波面計測装置153による波面収差の第1計測結果と、第1計測結果を得る前に補正用波面計測装置153によって計測された波面収差の第2計測結果とに基づいて、デフォーマブルミラー117に出力する制御信号を補正してもよい。 In the above embodiment, the control unit 2 determines the amount of change in wavefront aberration over time after the deformation map is generated based on the measurement result of the wavefront aberration by the corrective wavefront measuring device 153, and corrects the control signal to be output to the deformable mirror 117, but this is not limited to the above. For example, the control unit 2 may correct the control signal to be output to the deformable mirror 117 based on a first measurement result of the wavefront aberration by the corrective wavefront measuring device 153 and a second measurement result of the wavefront aberration measured by the corrective wavefront measuring device 153 before obtaining the first measurement result.
 上述の実施形態において、マップ用波面計測装置182および補正用波面計測装置153は、シャックハルトマンセンサを用いて構成されているが、これに限られるものではない。例えば、マップ用波面計測装置182および補正用波面計測装置153は、シアリング干渉方式の波面センサを用いて構成されてもよい。 In the above embodiment, the map wavefront measuring device 182 and the correction wavefront measuring device 153 are configured using a Shack-Hartmann sensor, but this is not limited to this. For example, the map wavefront measuring device 182 and the correction wavefront measuring device 153 may be configured using a wavefront sensor that uses a shearing interference method.
 上述の実施形態において、シャックハルトマンセンサを用いて構成されたマップ用波面計測装置182および補正用波面計測装置153は、回折光学素子111が第1光路から離脱された状態で、波面収差を計測しているが、これに限られるものではない。例えば、回折光学素子111が第1光路に挿入されたままの状態で、波面収差の計測を行う場合、マップ用波面計測装置182(補正用波面計測装置153)は、複数の加工ビームEL1~EL9が空間的に分離される位置に、複数の加工ビームEL1~EL9を個別に遮光可能なブラインドを設けることで、複数の加工ビームEL1~EL9について1つずつ波面収差を計測するようにしてもよい。なお、複数の加工ビームEL1~EL9が空間的に分離される位置は、典型的には、回折光学素子111の格子面111aやデフォーマブルミラー117の可変反射面118に対して光学的にフーリエ変換となる面、例えば、共役光学系112の瞳面や、リレー光学系125の瞳面である。 In the above embodiment, the map wavefront measuring device 182 and the corrective wavefront measuring device 153, which are configured using a Shack-Hartmann sensor, measure the wavefront aberration with the diffractive optical element 111 removed from the first optical path, but this is not limited to the above. For example, when measuring the wavefront aberration with the diffractive optical element 111 remaining inserted in the first optical path, the map wavefront measuring device 182 (corrective wavefront measuring device 153) may measure the wavefront aberration for each of the multiple processing beams EL1 to EL9 by providing blinds that can individually block the multiple processing beams EL1 to EL9 at positions where the multiple processing beams EL1 to EL9 are spatially separated. The position where the multiple processing beams EL1 to EL9 are spatially separated is typically a surface that optically undergoes a Fourier transform with respect to the grating surface 111a of the diffractive optical element 111 or the variable reflecting surface 118 of the deformable mirror 117, such as the pupil plane of the conjugate optical system 112 or the pupil plane of the relay optical system 125.
 また、回折光学素子111が第1光路に挿入されたままの状態で、波面収差の計測を行う場合、マップ用波面計測装置182(補正用波面計測装置153)における検出器上での複数の加工ビームEL1~EL9の各スポットの距離が小さいときには、複数の加工ビームEL1~EL9の各スポットについての計測結果を平均化するようにしてもよい。また、回折光学素子111が第1光路に挿入されたままの状態で、波面収差の計測を行う場合、マップ用波面計測装置182(補正用波面計測装置153)におけるレンズアレイ(もしくはDOEアレイ)の入射側に、入射光束の画角を制限するレンズフードのような画角制限部材を装着することで、複数の加工ビームEL1~EL9を切り分けてもよい。 In addition, when measuring wavefront aberration with the diffractive optical element 111 still inserted in the first optical path, if the distance between the spots of the multiple processing beams EL1 to EL9 on the detector in the map wavefront measuring device 182 (corrective wavefront measuring device 153) is small, the measurement results for each spot of the multiple processing beams EL1 to EL9 may be averaged. In addition, when measuring wavefront aberration with the diffractive optical element 111 still inserted in the first optical path, the multiple processing beams EL1 to EL9 may be separated by attaching a field-angle limiting member such as a lens hood that limits the field angle of the incident light beam to the incident side of the lens array (or DOE array) in the map wavefront measuring device 182 (corrective wavefront measuring device 153).
 上述の実施形態において、収差マップを生成する際、マップ用工具180を一時的にステージ50に取り付けるようにしなくてもよい。例えば、マップ用工具180を移動させる工具駆動系が設けられてもよい。この場合、工具駆動系は、収差マップを生成する際、マップ用工具180を加工ヘッド100とステージ50との間における所定の収差計測位置に移動させてもよい。なお、所定の収差計測位置は、マップ用工具180のマップ用波面計測装置182により波面収差を計測可能な位置である。また、光加工装置SYSのステージ50にマップ用工具180を常設する構成であってもよい。なお、光加工装置SYSは、マップ用工具180を備えていなくてもよい。この場合、加工ヘッド100の製造時に、加工ヘッド100の製造工場にあるマップ用工具180を用いて収差マップを取得してもよい。 In the above embodiment, when generating the aberration map, the map tool 180 does not have to be temporarily attached to the stage 50. For example, a tool drive system for moving the map tool 180 may be provided. In this case, when generating the aberration map, the tool drive system may move the map tool 180 to a predetermined aberration measurement position between the processing head 100 and the stage 50. Note that the predetermined aberration measurement position is a position where the wavefront aberration can be measured by the map wavefront measurement device 182 of the map tool 180. Also, the map tool 180 may be permanently installed on the stage 50 of the optical processing device SYS. Note that the optical processing device SYS does not have to be equipped with the map tool 180. In this case, the aberration map may be acquired using the map tool 180 at the manufacturing plant of the processing head 100 when the processing head 100 is manufactured.
 上述の実施形態において、マップ用工具180を一時的にステージ50に取り付けて、マップ用工具180のマップ用波面計測装置182により波面収差を計測しているが、これに限られるものではない。例えば、国際公開第2021/210104号等に開示された受光装置190(図11を参照)をステージ50に設け、ワークW上の面に相当する面に集光されて照射された複数の加工ビームEL1~EL9の断面形状を計測してもよい。この場合、制御ユニット2は、受光装置190による計測結果に基づいて、複数の加工ビームEL1~EL9の照射位置と、当該照射位置で計測される複数の加工ビームEL1~EL9の断面形状との関係を示す断面形状マップを生成してもよい。また、制御ユニット2は、生成した断面形状マップに基づいて、複数の加工ビームEL1~EL9の照射位置と、当該照射位置に照射される複数の加工ビームEL1~EL9の断面形状を補正するのに必要な、デフォーマブルミラー117における可変反射面118の各部位の形状(変形量)との関係を示す変形マップを生成してもよい。 In the above embodiment, the map tool 180 is temporarily attached to the stage 50, and the wavefront aberration is measured by the map wavefront measuring device 182 of the map tool 180, but this is not limited to the above. For example, a light receiving device 190 (see FIG. 11) disclosed in International Publication No. 2021/210104 etc. may be provided on the stage 50 to measure the cross-sectional shapes of the multiple processing beams EL1 to EL9 focused and irradiated onto a surface corresponding to a surface on the workpiece W. In this case, the control unit 2 may generate a cross-sectional shape map showing the relationship between the irradiation positions of the multiple processing beams EL1 to EL9 and the cross-sectional shapes of the multiple processing beams EL1 to EL9 measured at the irradiation positions based on the measurement results by the light receiving device 190. In addition, the control unit 2 may generate a deformation map that indicates the relationship between the irradiation positions of the multiple processing beams EL1 to EL9 and the shapes (deformation amounts) of each portion of the variable reflecting surface 118 of the deformable mirror 117 that are required to correct the cross-sectional shapes of the multiple processing beams EL1 to EL9 irradiated to the irradiation positions, based on the generated cross-sectional shape map.
 なお、受光装置190は、例えば図11に示すように、ステージ50の載置面51から外れた外周部52に設けられてもよい。受光装置190は、ビーム通過部材191と、受光素子195とを備える。ビーム通過部材191は、受光素子195の上方に設けられる。ビーム通過部材191は、ガラス基板192と、ガラス基板192の表面の少なくとも一部に形成された減衰膜193とを備える。減衰膜193は、減衰膜193に入射する光ビーム(加工ビーム)を減衰させ、受光素子195に入射するのを防ぐ。減衰膜193には、加工ヘッド100から照射される複数の加工ビームEL1~EL9のうち少なくとも一つが通過可能な開口部194が形成される。受光素子195は、ビーム通過部材191(減衰膜193)の開口部194を通過した複数の加工ビームEL1~EL9のうち少なくとも一つを検出する。 The light receiving device 190 may be provided on the outer periphery 52 of the stage 50, which is off the mounting surface 51, as shown in FIG. 11, for example. The light receiving device 190 includes a beam passing member 191 and a light receiving element 195. The beam passing member 191 is provided above the light receiving element 195. The beam passing member 191 includes a glass substrate 192 and an attenuation film 193 formed on at least a part of the surface of the glass substrate 192. The attenuation film 193 attenuates the light beam (processing beam) incident on the attenuation film 193, and prevents it from being incident on the light receiving element 195. The attenuation film 193 has an opening 194 formed therein through which at least one of the multiple processing beams EL1 to EL9 irradiated from the processing head 100 can pass. The light receiving element 195 detects at least one of the multiple processing beams EL1 to EL9 that have passed through the opening 194 of the beam passing member 191 (attenuation film 193).
 また例えば、上述の受光装置190をステージ50に設け、ワークW上の面に相当する面に集光されて照射された複数の加工ビームEL1~EL9の断面の強度分布と、ワークW上の面に相当する面から光軸方向(Z軸方向)に離れたデフォーカス面における複数の加工ビームEL1~EL9の断面の強度分布を計測してもよい。この場合、制御ユニット2は、特開平10-284368号公報等に開示された位相回復法を用いて、受光装置190により計測された、ワークW上の面に相当する面における複数の加工ビームEL1~EL9の断面の強度分布と、デフォーカス面における複数の加工ビームEL1~EL9の断面の強度分布から、波面収差を求めるようにしてもよい。制御ユニット2は、位相回復法を用いて求めた波面収差に基づいて、前述の収差マップを生成することができる。 Also, for example, the above-mentioned light receiving device 190 may be provided on the stage 50 to measure the cross-sectional intensity distribution of the multiple processing beams EL1 to EL9 focused and irradiated on a surface corresponding to the surface on the workpiece W, and the cross-sectional intensity distribution of the multiple processing beams EL1 to EL9 at a defocused surface away from the surface corresponding to the surface on the workpiece W in the optical axis direction (Z-axis direction). In this case, the control unit 2 may use the phase retrieval method disclosed in JP-A-10-284368 etc. to obtain the wavefront aberration from the cross-sectional intensity distribution of the multiple processing beams EL1 to EL9 at the surface corresponding to the surface on the workpiece W measured by the light receiving device 190 and the cross-sectional intensity distribution of the multiple processing beams EL1 to EL9 at the defocused surface. The control unit 2 can generate the above-mentioned aberration map based on the wavefront aberration obtained using the phase retrieval method.
 なお、上述の受光装置190は、ステージ50と別体に設けられてもよい。この場合、例えば、受光装置190を移動させる装置駆動系が設けられてもよい。装置駆動系は、断面形状マップまたは収差マップを生成する際、受光装置190を加工ヘッド100とステージ50との間における所定の断面計測位置または所定のデフォーカス位置に移動させてもよい。なお、所定の断面計測位置は、受光装置190により、ワークW上の面に相当する面における複数の加工ビームEL1~EL9の断面形状または断面の強度分布を計測可能な位置である。所定のデフォーカス位置は、受光装置190により、デフォーカス面における複数の加工ビームEL1~EL9の断面の強度分布を計測可能な位置である。 The light receiving device 190 may be provided separately from the stage 50. In this case, for example, a device drive system for moving the light receiving device 190 may be provided. When generating a cross-sectional shape map or an aberration map, the device drive system may move the light receiving device 190 to a predetermined cross-sectional measurement position or a predetermined defocus position between the processing head 100 and the stage 50. The predetermined cross-sectional measurement position is a position where the light receiving device 190 can measure the cross-sectional shape or cross-sectional intensity distribution of the multiple processing beams EL1 to EL9 on a plane corresponding to a surface on the workpiece W. The predetermined defocus position is a position where the light receiving device 190 can measure the cross-sectional intensity distribution of the multiple processing beams EL1 to EL9 on the defocus plane.
 上述の実施形態において、波面変更部材として、デフォーマブルミラー117が用いられているが、これに限られるものではない。例えば、波面変更部材として、LCOS-SLM(Liquid Crystal on Silicon-Spatial Light Modulator)等の反射型液晶素子や透過型液晶素子が用いられてもよい。また、波面変更部材として、アレイ状に配列された複数の可動ミラー素子で構成されたミラーアレイが用いられてもよい。 In the above embodiment, a deformable mirror 117 is used as the wavefront modification member, but this is not limited to this. For example, a reflective liquid crystal element such as a Liquid Crystal on Silicon-Spatial Light Modulator (LCOS-SLM) or a transmissive liquid crystal element may be used as the wavefront modification member. Also, a mirror array consisting of multiple movable mirror elements arranged in an array may be used as the wavefront modification member.
 なお、デフォーマブルミラーの発熱による熱影響を低減するために、デフォーマブルミラーを冷却してもよい。例えば、波面変更部材としてのデフォーマブルミラー117を、光学窓を備える筐体に収納し、その筐体内に気体等の流体を流通させてデフォーマブルミラー117を冷却してもよい。このとき、筐体の光学窓は、デフォーマブルミラー117の可変反射面118の光入射側(光射出側)に近接して配置されていてもよい。また、デフォーマブルミラー117の裏面に、ヒートシンクを設けてもよい。 The deformable mirror may be cooled to reduce the thermal effects caused by heat generation from the deformable mirror. For example, the deformable mirror 117 as a wavefront changing member may be housed in a housing with an optical window, and a fluid such as gas may be circulated within the housing to cool the deformable mirror 117. In this case, the optical window of the housing may be located close to the light entrance side (light exit side) of the variable reflecting surface 118 of the deformable mirror 117. A heat sink may also be provided on the back surface of the deformable mirror 117.
 以上説明した実施形態に関して、更に以下の付記を記載する。
[付記1]
 光源からの光ビームを対物光学系からワークに照射する光学装置に用いられる光走査装置であって、
 前記光源からの前記光ビームが入射し、前記光ビームのビーム断面における波面を変更する波面変更部材と、
 前記波面変更部材からの前記光ビームの進行方向を変化させて前記対物光学系に入射させ、前記ワーク上での前記光ビームの照射位置を変える偏向部材とを備える光走査装置。
[付記2]
 光源からの光ビームを対物光学系からワークに照射する光学装置に用いられる光走査装置であって、
 前記光源からの前記光ビームが入射し、前記光ビームのビーム断面における波面を変更する波面変更部材と、
 前記波面変更部材から射出された前記光ビームが入射するリレー光学系と、
 前記リレー光学系からの前記光ビームの進行方向を変化させて前記対物光学系に入射させ、前記ワーク上での前記光ビームの照射位置を変える偏向部材とを備え、
 前記リレー光学系は、前記波面変更部材の波面変更面と前記偏向部材とを互いに共役にする光走査装置。
[付記3]
 光源からの光ビームを対物光学系からワークに照射する光学装置であって、
 前記光源からの前記光ビームを複数の光ビームに分割するビーム分割部材と、
 前記ビーム分割部材から射出された前記複数の光ビームが入射し、前記ビーム分割部材のビーム分割面と光学的に共役な共役位置を形成する共役光学系と、
 前記共役光学系からの前記複数の光ビームが入射し、射出する前記複数の光ビームのビーム断面における波面を変更して前記対物光学系に入射させる波面変更部材とを備え、
 前記波面変更部材の波面変更面は、前記ビーム分割面の前記共役位置に位置する光学装置。
[付記4]
 光源からの光ビームを対物光学系からワークに照射する光学装置であって、
 前記光源からの前記光ビームが入射する偏光ビームスプリッタと、
 前記偏光ビームスプリッタを介した前記光ビームが入射し、射出する前記光ビームのビーム断面における波面を変更して前記偏光ビームスプリッタに入射させる波面変更部材と、
 前記波面が変更された前記光ビームの光路に配置される1/4波長板とを備える光学装置。
[付記5]
 光源からの光ビームを対物光学系からワークに照射する光学装置であって、
 前記光源からの前記光ビームが入射し、前記光ビームのビーム断面における波面を変更する波面変更部材を備え、
 前記波面変更部材は、前記波面変更部材から射出される前記光ビームの前記波面を変更して、前記対物光学系の光軸方向に関する前記対物光学系からの前記光ビームの集光位置を変えるときに、前記対物光学系からの前記光ビームの前記波面の非回転対称成分を変更する光学装置。
[付記6]
 光源からの加工ビームを対物光学系からワークに照射して前記ワークを加工する光加工方法であって、
 前記光源からの前記加工ビームのビーム断面における波面を変更することと、
 前記波面が変更された前記加工ビームの進行方向を変化させて、前記対物光学系を介して前記ワーク上に照射される前記加工ビームの、前記ワーク上での照射位置を変えることとを備える光加工方法。
[付記7]
 前記照射位置を変えるときに、前記波面の変更の状態を変える付記6に記載の光加工方法。
[付記8]
 光源からの加工ビームを対物光学系からワークに照射して前記ワークを加工する光加工装置に用いられる光学装置であって、
 前記光源からの前記加工ビームを複数の加工ビームに分割するビーム分割部材と、
 前記ビーム分割部材を回転させる回転駆動装置と、
 前記ビーム分割部材からの前記加工ビームの進行方向を変化させ、前記対物光学系を介して前記ワーク上に照射される前記加工ビームの、前記ワーク上での照射位置を変える偏向部材と、
 前記偏向部材の動作に基づいて、前記回転駆動装置による前記ビーム分割部材の回転を制御する制御部とを備える光学装置。
[付記9]
 前記制御部は、前記偏向部材のビーム偏向面の偏向角度を制御する付記8に記載の光学装置。
[付記10]
 前記制御部は、前記偏向部材からの前記偏向角度に関する情報に基づいて、前記回転駆動装置による前記ビーム分割部材の回転を制御する付記9に記載の光学装置。
[付記11]
 前記制御部は、前記偏向部材に前記偏向角度の指令値を送り、前記指令値に基づいて、前記回転駆動装置による前記ビーム分割部材の回転を制御する付記9に記載の光学装置。
[付記12]
 前記制御部は、前記偏向角度と、前記回転駆動装置による前記ビーム分割部材の回転量との関係を記憶する記憶部を備える付記9~11のいずれか一項に記載の光学装置。
[付記13]
 前記偏向部材は、回転軸周りに回転可能な反射面を有する2以上の偏向ミラーを備える付記8~12のいずれか一項に記載の光学装置。
[付記14]
 前記2以上の偏向ミラーのうちの少なくとも1つの偏向ミラーは、前記対物光学系の入射瞳から外れた位置に配置される付記13に記載の光学装置。
The following additional notes are provided regarding the above-described embodiment.
[Appendix 1]
An optical scanning device used in an optical device that irradiates a light beam from a light source onto a workpiece through an objective optical system,
a wavefront modifying member onto which the light beam from the light source is incident and which modifies a wavefront of the light beam in a beam cross section;
an optical scanning device comprising: a deflecting member that changes the traveling direction of the light beam from the wavefront changing member, causes the light beam to enter the objective optical system, and changes the irradiation position of the light beam on the workpiece;
[Appendix 2]
An optical scanning device used in an optical device that irradiates a light beam from a light source onto a workpiece through an objective optical system,
a wavefront modifying member onto which the light beam from the light source is incident and which modifies a wavefront of the light beam in a beam cross section;
a relay optical system into which the light beam emitted from the wavefront modifying member is incident;
a deflection member that changes a traveling direction of the light beam from the relay optical system to make the light beam incident on the objective optical system and changes an irradiation position of the light beam on the workpiece,
The relay optical system is an optical scanning device in which the wavefront changing surface of the wavefront changing member and the deflecting member are conjugated to each other.
[Appendix 3]
An optical device that irradiates a light beam from a light source onto a workpiece through an objective optical system,
a beam splitter that splits the light beam from the light source into a plurality of light beams;
a conjugate optical system onto which the plurality of light beams emitted from the beam splitting member are incident and which forms a conjugate position optically conjugate with a beam splitting surface of the beam splitting member;
a wavefront changing member into which the plurality of light beams from the conjugate optical system are incident and which changes a wavefront of the plurality of light beams in a beam cross section to be emitted, and causes the plurality of light beams to be incident into the objective optical system;
An optical device in which the wavefront modifying surface of the wavefront modifying member is located at the conjugate position of the beam splitting surface.
[Appendix 4]
An optical device that irradiates a light beam from a light source onto a workpiece through an objective optical system,
a polarizing beam splitter on which the light beam from the light source is incident;
a wavefront changing member that changes a wavefront of the light beam in a beam cross section that is incident on the light beam passing through the polarizing beam splitter and that emits the light beam and causes the light beam to be incident on the polarizing beam splitter;
and a quarter wave plate disposed in the path of the wavefront-modified light beam.
[Appendix 5]
An optical device that irradiates a light beam from a light source onto a workpiece through an objective optical system,
a wavefront modifying member onto which the light beam from the light source is incident and which modifies a wavefront of the light beam in a beam cross section,
The wavefront changing member is an optical device that changes the non-rotationally symmetric component of the wavefront of the light beam from the objective optical system when changing the focusing position of the light beam from the objective optical system relative to the optical axis direction of the objective optical system by changing the wavefront of the light beam emitted from the wavefront changing member.
[Appendix 6]
An optical processing method for processing a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system, comprising:
modifying a wavefront of the processing beam from the light source in a beam cross section;
and changing a direction of travel of the processing beam whose wavefront has been changed, thereby changing an irradiation position on the workpiece of the processing beam irradiated onto the workpiece via the objective optical system.
[Appendix 7]
The optical processing method according to claim 6, wherein the state of the wavefront change is changed when the irradiation position is changed.
[Appendix 8]
An optical device used in an optical processing device that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system,
a beam splitting member that splits the processing beam from the light source into a plurality of processing beams;
a rotary drive device that rotates the beam splitting member;
a deflection member that changes a traveling direction of the processing beam from the beam splitting member and changes an irradiation position on the workpiece of the processing beam that is irradiated onto the workpiece via the objective optical system;
a control unit that controls the rotation of the beam splitting member by the rotary drive device based on the operation of the deflection member.
[Appendix 9]
9. The optical device according to claim 8, wherein the control unit controls a deflection angle of the beam deflection surface of the deflection member.
[Appendix 10]
10. The optical device of claim 9, wherein the control unit controls the rotation of the beam splitting member by the rotary drive device based on information about the deflection angle from the deflection member.
[Appendix 11]
10. The optical device according to claim 9, wherein the control unit sends a command value of the deflection angle to the deflection member and controls the rotation of the beam splitting member by the rotary drive device based on the command value.
[Appendix 12]
12. The optical device according to claim 9, wherein the control unit includes a memory unit that stores the relationship between the deflection angle and the amount of rotation of the beam splitting member by the rotary drive device.
[Appendix 13]
13. The optical device according to any one of claims 8 to 12, wherein the deflection member comprises two or more deflection mirrors having reflective surfaces rotatable around a rotation axis.
[Appendix 14]
14. The optical device of claim 13, wherein at least one of the two or more deflection mirrors is positioned at a position away from an entrance pupil of the objective optical system.
 上述の本実施形態の構成要件の少なくとも一部は、上述の本実施形態の構成要件の少なくとも他の一部と適宜組み合わせることができる。上述の本実施形態の構成要件のうちの一部が用いられなくてもよい。 At least some of the constituent elements of the present embodiment described above can be appropriately combined with at least some of the other constituent elements of the present embodiment described above. Some of the constituent elements of the present embodiment described above may not be used.
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う光学装置、光加工装置、光加工方法、および補正部材もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, but may be modified as appropriate within the scope of the claims and the entire specification without violating the spirit or concept of the invention, and optical devices, optical processing devices, optical processing methods, and correction members that involve such modifications are also included within the technical scope of the present invention.
SYS 光加工装置
  1 加工ユニット
  2 制御ユニット         90 記憶部
100 加工ヘッド         101 光学装置
110 加工光学系
111 回折光学素子(111a 格子面)
112 共役光学系
115 波面変更ユニット
116 偏光ビームスプリッタ
117 デフォーマブルミラー    118 可変反射面
119 ビームダンパ
121 第1の1/2波長板     122 第1の1/4波長板
123 第2の1/2波長板     124 第2の1/4波長板
125 リレー光学系
150 合成光学系         153 補正用波面計測装置
160 偏向光学系         161 ガルバノミラー
162X X走査ミラー       162Y Y走査ミラー
170 対物光学系         171 fθレンズ
SYS Optical processing device 1 Processing unit 2 Control unit 90 Memory unit 100 Processing head 101 Optical device 110 Processing optical system 111 Diffractive optical element (111a grating surface)
112 Conjugate optical system 115 Wavefront changing unit 116 Polarizing beam splitter 117 Deformable mirror 118 Variable reflecting surface 119 Beam dumper 121 First 1/2 wave plate 122 First 1/4 wave plate 123 Second 1/2 wave plate 124 Second 1/4 wave plate 125 Relay optical system 150 Synthesis optical system 153 Corrective wavefront measuring device 160 Deflection optical system 161 Galvanometer mirror 162X X-scanning mirror 162Y Y-scanning mirror 170 Objective optical system 171 fθ lens

Claims (45)

  1.  光源からの加工ビームを対物光学系からワークに照射して前記ワークを加工する光加工装置に用いられる光学装置であって、
     前記光源からの前記加工ビームが入射し、前記加工ビームのビーム断面における波面を変更する波面変更部材と、
     前記波面変更部材からの前記加工ビームの進行方向を変化させ、前記対物光学系を介して前記ワーク上に照射される前記加工ビームの、前記ワーク上での照射位置を変える偏向部材とを備える光学装置。
    An optical device used in an optical processing device that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system,
    a wavefront modifying member onto which the processing beam from the light source is incident and which modifies a wavefront of the processing beam in a beam cross section;
    an optical device comprising: a deflection member that changes the direction of travel of the processing beam from the wavefront changing member and changes the irradiation position on the workpiece of the processing beam that is irradiated onto the workpiece via the objective optical system.
  2.  前記偏向部材の動作に基づいて、前記波面変更部材による前記波面の変更を制御する制御部をさらに備える請求項1に記載の光学装置。 The optical device of claim 1 further comprising a control unit that controls the change in the wavefront caused by the wavefront changing member based on the operation of the deflection member.
  3.  前記制御部は、前記偏向部材のビーム偏向面の偏向角度を制御する請求項2に記載の光学装置。 The optical device according to claim 2, wherein the control unit controls the deflection angle of the beam deflection surface of the deflection member.
  4.  前記制御部は、前記偏向部材からの前記偏向角度に関する情報に基づいて、前記波面変更部材による前記波面の変更を制御する請求項3に記載の光学装置。 The optical device according to claim 3, wherein the control unit controls the change in the wavefront by the wavefront changing member based on information about the deflection angle from the deflection member.
  5.  前記制御部は、前記偏向部材に前記偏向角度の指令値を送り、前記指令値に基づいて前記波面変更部材による前記波面の変更を制御する請求項3に記載の光学装置。 The optical device according to claim 3, wherein the control unit sends a command value of the deflection angle to the deflection member and controls the change in the wavefront by the wavefront changing member based on the command value.
  6.  前記制御部は、前記偏向角度と、前記波面変更部材により変更される前記加工ビームの前記波面の位相分布との関係を記憶する記憶部を備える請求項3~5のいずれか一項に記載の光学装置。 The optical device according to any one of claims 3 to 5, wherein the control unit includes a memory unit that stores the relationship between the deflection angle and the phase distribution of the wavefront of the processing beam that is changed by the wavefront changing member.
  7.  前記対物光学系を介した前記加工ビームの計測結果に基づいて、前記偏向角度と、前記波面変更部材により変更される前記加工ビームの前記波面の位相分布との前記関係を求める請求項6に記載の光学装置。 The optical device according to claim 6, which determines the relationship between the deflection angle and the phase distribution of the wavefront of the processing beam modified by the wavefront modifying member based on the measurement result of the processing beam through the objective optical system.
  8.  前記対物光学系の前記ワーク側の複数の計測位置での前記加工ビームの計測結果に基づいて、前記関係を求める請求項7に記載の光学装置。 The optical device according to claim 7, in which the relationship is determined based on the measurement results of the processing beam at multiple measurement positions on the workpiece side of the objective optical system.
  9.  前記複数の計測位置は、前記対物光学系の光軸と交差する面における複数の位置を含む請求項8に記載の光学装置。 The optical device of claim 8, wherein the plurality of measurement positions include a plurality of positions on a plane intersecting the optical axis of the objective optical system.
  10.  前記複数の計測位置は、前記対物光学系の光軸方向に沿った複数の位置を含む請求項8または9に記載の光学装置。 The optical device according to claim 8 or 9, wherein the plurality of measurement positions include a plurality of positions along the optical axis direction of the objective optical system.
  11.  前記波面変更部材は、前記波面の位相分布をフリンジツェルニケ多項式で表した場合における、前記フリンジツェルニケ多項式の第4項、第5項、第6項、および第9項を変更する請求項6~10のいずれか一項に記載の光学装置。 The optical device according to any one of claims 6 to 10, wherein the wavefront modification member modifies the fourth, fifth, sixth, and ninth terms of the fringe Zernike polynomial when the phase distribution of the wavefront is expressed as a fringe Zernike polynomial.
  12.  前記波面変更部材からの前記加工ビームのビーム断面における波面の位相分布を計測する波面計測装置をさらに備える請求項1~11のいずれか一項に記載の光学装置。 The optical device according to any one of claims 1 to 11, further comprising a wavefront measuring device that measures the phase distribution of the wavefront in the cross section of the processing beam from the wavefront changing member.
  13.  前記偏向部材の動作に基づいて、前記波面変更部材による前記波面の変更を制御する制御部をさらに備え、
     前記制御部は、前記波面計測装置による計測結果に基づいて、前記波面変更部材による前記波面の変更を制御する請求項12に記載の光学装置。
    a control unit that controls the change of the wavefront by the wavefront changing member based on the operation of the deflection member,
    The optical device according to claim 12 , wherein the control unit controls the modification of the wavefront by the wavefront modifying member based on a measurement result by the wavefront measuring device.
  14.  前記偏向部材の動作に基づいて、前記波面変更部材による前記波面の変更を制御する制御部をさらに備え、
     前記制御部は、前記波面計測装置による第1計測結果と、前記第1計測結果を得る前に前記波面計測装置によって計測された第2計測結果とに基づいて、前記波面変更部材による前記波面の変更を制御する請求項12に記載の光学装置。
    a control unit that controls the change of the wavefront by the wavefront changing member based on the operation of the deflection member,
    13. The optical device according to claim 12, wherein the control unit controls the modification of the wavefront by the wavefront modifying member based on a first measurement result by the wavefront measuring device and a second measurement result measured by the wavefront measuring device before obtaining the first measurement result.
  15.  前記波面変更部材は、前記光源からの前記加工ビームが入射する変形可能な可変反射面を有し、前記可変反射面の変形によって、前記可変反射面で反射する前記加工ビームの前記波面を変更する請求項1~14のいずれか一項に記載の光学装置。 The optical device according to any one of claims 1 to 14, wherein the wavefront changing member has a deformable variable reflecting surface on which the processing beam from the light source is incident, and the wavefront of the processing beam reflected by the variable reflecting surface is changed by deformation of the variable reflecting surface.
  16.  前記波面変更部材の波面変更面と前記偏向部材とを光学的に共役にするリレー光学系をさらに備える請求項1~15のいずれか一項に記載の光学装置。 The optical device according to any one of claims 1 to 15, further comprising a relay optical system that optically conjugates the wavefront changing surface of the wavefront changing member with the deflection member.
  17.  前記偏向部材は、前記対物光学系の入射瞳に配置される請求項16に記載の光学装置。 The optical device according to claim 16, wherein the deflection member is disposed at the entrance pupil of the objective optical system.
  18.  前記リレー光学系は、前記波面変更部材の前記波面変更面と前記対物光学系の前記入射瞳とを光学的に共役にする請求項17に記載の光学装置。 The optical device according to claim 17, wherein the relay optical system optically conjugates the wavefront changing surface of the wavefront changing member with the entrance pupil of the objective optical system.
  19.  前記偏向部材は、回転軸周りに回転可能な反射面を有する2以上の偏向ミラーを備える請求項16~18のいずれか一項に記載の光学装置。 The optical device according to any one of claims 16 to 18, wherein the deflection member comprises two or more deflection mirrors having reflective surfaces that can rotate around a rotation axis.
  20.  前記対物光学系の入射瞳は、前記2以上の前記偏向ミラーの間に位置する請求項19に記載の光学装置。 The optical device according to claim 19, wherein the entrance pupil of the objective optical system is located between the two or more deflection mirrors.
  21.  前記2以上の前記偏向ミラーのうち一の偏向ミラーは、前記対物光学系の入射瞳に位置する請求項19に記載の光学装置。 The optical device according to claim 19, wherein one of the two or more deflection mirrors is located at the entrance pupil of the objective optical system.
  22.  前記光源からの前記加工ビームを複数の加工ビームに分割するビーム分割部材をさらに備える請求項1~21のいずれか一項に記載の光学装置。 The optical device according to any one of claims 1 to 21, further comprising a beam splitting member that splits the processing beam from the light source into a plurality of processing beams.
  23.  前記ビーム分割部材から射出された前記複数の加工ビームが入射し、前記ビーム分割部材のビーム分割面と光学的に共役な共役位置を形成する共役光学系をさらに備え、
     前記波面変更部材の波面変更面は、前記ビーム分割面の前記共役位置に位置する請求項22に記載の光学装置。
    a conjugate optical system on which the plurality of processing beams emitted from the beam splitting member are incident and which forms a conjugate position optically conjugate with a beam splitting surface of the beam splitting member,
    23. The optical device of claim 22, wherein the wavefront modifying surface of the wavefront modifying member is located at the conjugate position of the beam splitting surface.
  24.  前記光源からの前記加工ビームが入射する偏光ビームスプリッタと、
     前記偏光ビームスプリッタと前記ワークとの間の光路に配置される1/4波長板とをさらに備え、
     前記波面変更部材は、前記偏光ビームスプリッタを介した前記加工ビームが入射し、射出する加工ビームのビーム断面における波面を変更して前記偏光ビームスプリッタに入射させる請求項1~23のいずれか一項に記載の光学装置。
    a polarizing beam splitter on which the processing beam from the light source is incident;
    Further comprising a quarter-wave plate disposed in an optical path between the polarizing beam splitter and the workpiece;
    An optical device described in any one of claims 1 to 23, wherein the wavefront changing member changes the wavefront of the processing beam in the beam cross section that is incident on and emerges from the processing beam via the polarizing beam splitter, and causes the processing beam to be incident on the polarizing beam splitter.
  25.  前記偏光ビームスプリッタは、第1光路に沿って入射する光を、第2光路および第3光路に沿って進行する光に分割し、
     前記波面変更部材は、前記第2光路に配置され、入射した前記加工ビームを前記偏光ビームスプリッタに戻し、
     前記偏光ビームスプリッタを介した前記波面変更部材からの前記加工ビームは第4光路に沿って射出される請求項24に記載の光学装置。
    the polarizing beam splitter splits light incident along a first optical path into light traveling along a second optical path and a third optical path;
    the wavefront modifying member is disposed in the second optical path and returns the processing beam incident thereon to the polarizing beam splitter;
    25. The optical device of claim 24, wherein the processing beam exits the wavefront modifying member via the polarizing beam splitter along a fourth optical path.
  26.  前記第4光路に配置された1/2波長板をさらに備える請求項25に記載の光学装置。 The optical device of claim 25, further comprising a half-wave plate disposed in the fourth optical path.
  27.  前記第3光路に配置されたビームダンパをさらに備える請求項25または26に記載の光学装置。 The optical device according to claim 25 or 26, further comprising a beam damper disposed in the third optical path.
  28.  前記偏光ビームスプリッタには、直線偏光状態の前記加工ビームが入射する請求項24~27のいずれか一項に記載の光学装置。 The optical device according to any one of claims 24 to 27, wherein the processing beam is linearly polarized and incident on the polarizing beam splitter.
  29.  前記光源から前記偏光ビームスプリッタまでの光路に配置され、前記偏光ビームスプリッタに入射する前記加工ビームの偏光方向を調整する偏光方向調整部材をさらに備える請求項24~28のいずれか一項に記載の光学装置。 The optical device according to any one of claims 24 to 28, further comprising a polarization direction adjustment member disposed in the optical path from the light source to the polarizing beam splitter, for adjusting the polarization direction of the processing beam incident on the polarizing beam splitter.
  30.  前記偏光ビームスプリッタと前記波面変更部材との間に配置される1/4波長板をさらに備える請求項24~29のいずれか一項に記載の光学装置。 The optical device according to any one of claims 24 to 29, further comprising a quarter-wave plate disposed between the polarizing beam splitter and the wavefront modifying member.
  31.  前記波面変更部材は、前記波面変更部材から射出される前記加工ビームの前記波面を変更して、前記対物光学系の光軸方向に関する前記対物光学系からの前記加工ビームの集光位置を変えるときに、前記対物光学系からの前記加工ビームの前記波面の非回転対称成分を補正する請求項1~30のいずれか一項に記載の光学装置。 The optical device according to any one of claims 1 to 30, wherein the wavefront modification member modifies the wavefront of the processing beam emitted from the wavefront modification member to correct a non-rotationally symmetric component of the wavefront of the processing beam from the objective optical system when changing the focusing position of the processing beam from the objective optical system in the optical axis direction of the objective optical system.
  32.  光源からの加工ビームを対物光学系からワークに照射して前記ワークを加工する光加工装置に用いられる光学装置であって、
     前記光源からの前記加工ビームが入射し、前記加工ビームのビーム断面における波面を変更する波面変更部材と、
     前記波面変更部材から射出された前記加工ビームが入射するリレー光学系と、
     前記リレー光学系からの前記加工ビームの進行方向を変化させて前記対物光学系に入射させ、前記ワーク上での前記加工ビームの照射位置を変える偏向部材とを備え、
     前記リレー光学系は、前記波面変更部材の波面変更面と前記偏向部材とを光学的に共役にする光学装置。
    An optical device used in an optical processing device that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system,
    a wavefront modifying member onto which the processing beam from the light source is incident and which modifies a wavefront of the processing beam in a beam cross section;
    a relay optical system into which the processing beam emitted from the wavefront modifying member is incident;
    a deflection member that changes a traveling direction of the processing beam from the relay optical system to make the processing beam incident on the objective optical system and changes an irradiation position of the processing beam on the workpiece,
    The relay optical system is an optical device that makes the wavefront changing surface of the wavefront changing member optically conjugate with the deflection member.
  33.  前記偏向部材は、前記対物光学系の入射瞳に配置される請求項32に記載の光学装置。 The optical device according to claim 32, wherein the deflection member is disposed at the entrance pupil of the objective optical system.
  34.  前記リレー光学系は、前記波面変更部材の前記波面変更面と前記対物光学系の前記入射瞳とを光学的に互いに共役にする請求項33に記載の光学装置。 The optical device according to claim 33, wherein the relay optical system optically conjugates the wavefront changing surface of the wavefront changing member and the entrance pupil of the objective optical system with each other.
  35.  前記偏向部材は、回転軸周りに回転可能な反射面を有する2以上の偏向ミラーを備える請求項32~34のいずれか一項に記載の光学装置。 The optical device according to any one of claims 32 to 34, wherein the deflection member comprises two or more deflection mirrors having reflective surfaces that can rotate around a rotation axis.
  36.  前記対物光学系の入射瞳は、前記2以上の前記偏向ミラーの間に位置する請求項35に記載の光学装置。 The optical device of claim 35, wherein the entrance pupil of the objective optical system is located between the two or more deflection mirrors.
  37.  前記2以上の前記偏向ミラーのうち一の偏向ミラーは、前記対物光学系の入射瞳に位置する請求項35に記載の光学装置。 The optical device according to claim 35, wherein one of the two or more deflection mirrors is located at the entrance pupil of the objective optical system.
  38.  光源からの加工ビームを対物光学系からワークに照射して前記ワークを加工する光加工装置に用いられる光学装置であって、
     前記光源からの前記加工ビームを複数の加工ビームに分割するビーム分割部材と、
     前記ビーム分割部材から射出された前記複数の加工ビームが入射し、前記ビーム分割部材のビーム分割面と光学的に共役な共役位置を形成する共役光学系と、
     前記共役光学系からの前記複数の加工ビームが入射し、射出する前記複数の加工ビームのビーム断面における波面を変更して前記対物光学系に入射させる波面変更部材とを備え、
     前記波面変更部材の波面変更面は、前記ビーム分割面の前記共役位置に位置する光学装置。
    An optical device used in an optical processing device that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system,
    a beam splitting member that splits the processing beam from the light source into a plurality of processing beams;
    a conjugate optical system onto which the plurality of processing beams emitted from the beam splitting member are incident and which forms a conjugate position optically conjugate with a beam splitting surface of the beam splitting member;
    a wavefront changing member on which the plurality of processing beams from the conjugate optical system are incident and which changes a wavefront of the plurality of processing beams in a beam cross section to be emitted and causes the plurality of processing beams to be incident on the objective optical system;
    An optical device in which the wavefront modifying surface of the wavefront modifying member is located at the conjugate position of the beam splitting surface.
  39.  光源からの加工ビームを対物光学系からワークに照射して前記ワークを加工する光加工装置に用いられる光学装置であって、
     前記光源からの前記加工ビームが入射する偏光ビームスプリッタと、
     前記偏光ビームスプリッタを介した前記加工ビームが入射し、射出する前記加工ビームのビーム断面における波面を変更して前記偏光ビームスプリッタに入射させる波面変更部材と、
     前記波面が変更された前記加工ビームの光路に配置される1/4波長板とを備える光学装置。
    An optical device used in an optical processing device that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system,
    a polarizing beam splitter on which the processing beam from the light source is incident;
    a wavefront changing member that changes a wavefront of the processing beam in a beam cross section that is incident on the processing beam via the polarizing beam splitter and that outputs the processing beam and causes the processing beam to be incident on the polarizing beam splitter;
    a quarter wave plate disposed in the optical path of the wavefront-modified processing beam.
  40.  光源からの加工ビームを対物光学系からワークに照射して前記ワークを加工する光加工装置に用いられる光学装置であって、
     前記光源からの前記加工ビームが入射し、前記加工ビームのビーム断面における波面を変更する波面変更部材を備え、
     前記波面変更部材は、前記波面変更部材から射出される前記加工ビームの前記波面を変更して、前記対物光学系の光軸方向に関する前記対物光学系からの前記加工ビームの集光位置を変えるときに、前記対物光学系からの前記加工ビームの前記波面の非回転対称成分を補正する光学装置。
    An optical device used in an optical processing device that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system,
    a wavefront modifying member onto which the processing beam from the light source is incident and which modifies a wavefront of the processing beam in a beam cross section,
    The wavefront changing member is an optical device that corrects non-rotationally symmetric components of the wavefront of the processing beam from the objective optical system when changing the focusing position of the processing beam from the objective optical system relative to the optical axis direction of the objective optical system by changing the wavefront of the processing beam emitted from the wavefront changing member.
  41.  前記波面変更部材は、前記波面変更部材から射出される前記加工ビームの前記波面の位相分布を変更する請求項1~40のいずれか一項に記載の光学装置。 The optical device according to any one of claims 1 to 40, wherein the wavefront modification member modifies the phase distribution of the wavefront of the processing beam emitted from the wavefront modification member.
  42.  光源からの加工ビームを対物光学系からワークに照射して前記ワークを加工する光加工装置であって、
     請求項1~請求項41のいずれか一項に記載の光学装置を備える光加工装置。
    An optical processing apparatus that processes a workpiece by irradiating a processing beam from a light source onto the workpiece through an objective optical system,
    An optical processing apparatus comprising the optical device according to any one of claims 1 to 41.
  43.  光源からの加工ビームを対物光学系からワークに照射して前記ワークを加工する光加工方法であって、
     前記光源からの前記加工ビームを請求項1~請求項41のいずれか一項に記載の光学装置に入射させ、
     前記光学装置からの前記加工ビームを前記対物光学系を介して前記ワークに照射する光加工方法。
    An optical processing method for processing a workpiece by irradiating a processing beam from a light source through an objective optical system onto the workpiece, comprising:
    The processing beam from the light source is made to be incident on the optical device according to any one of claims 1 to 41,
    An optical processing method in which the processing beam from the optical device is irradiated onto the workpiece via the objective optical system.
  44.  偏向部材および対物光学系を介した光源からの光ビームをワークに走査可能に照射する光学装置に用いられる補正部材であって、
     前記光源と前記偏向部材との間の光路に配置され、前記偏向部材へ向かう前記光ビームのビーム断面における波面を変更する波面変更部材を備え、
     前記波面変更部材は、前記偏向部材の動作に伴って生じる、前記対物光学系からの前記光ビームのビーム断面における波面の変化を補正する補正部材。
    A correction member used in an optical device that scanably irradiates a workpiece with a light beam from a light source via a deflection member and an objective optical system, comprising:
    a wavefront modifying member disposed in an optical path between the light source and the deflecting member, the wavefront modifying member modifying a wavefront of the light beam in a cross section directed toward the deflecting member;
    The wavefront modifying member is a correction member that corrects a change in the wavefront in the beam cross section of the light beam from the objective optical system, which change occurs due to the operation of the deflecting member.
  45.  偏向部材および対物光学系を介した光源からの光ビームをワークに走査可能に照射する光学装置に用いられる補正部材であって、
     前記光源と前記偏向部材との間の光路に配置され、前記偏向部材へ向かう前記光ビームのビーム断面における波面を変更する波面変更部材を備え、
     前記波面変更部材は、前記対物光学系から前記ワークに照射される前記光ビームの照射位置の移動に伴って生じる、前記対物光学系からの前記光ビームのビーム断面における波面の変化を補正する補正部材。
    A correction member used in an optical device that scanably irradiates a workpiece with a light beam from a light source via a deflection member and an objective optical system, comprising:
    a wavefront modifying member disposed in an optical path between the light source and the deflecting member, the wavefront modifying member modifying a wavefront of the light beam in a cross section directed toward the deflecting member;
    The wavefront changing member is a correction member that corrects changes in the wavefront in the beam cross section of the light beam from the objective optical system that occur as the irradiation position of the light beam irradiated from the objective optical system to the workpiece moves.
PCT/JP2022/039339 2022-10-21 2022-10-21 Optical device, optical processing device, optical processing method, and correction member WO2024084694A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039339 WO2024084694A1 (en) 2022-10-21 2022-10-21 Optical device, optical processing device, optical processing method, and correction member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039339 WO2024084694A1 (en) 2022-10-21 2022-10-21 Optical device, optical processing device, optical processing method, and correction member

Publications (1)

Publication Number Publication Date
WO2024084694A1 true WO2024084694A1 (en) 2024-04-25

Family

ID=90737240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039339 WO2024084694A1 (en) 2022-10-21 2022-10-21 Optical device, optical processing device, optical processing method, and correction member

Country Status (1)

Country Link
WO (1) WO2024084694A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213951A (en) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 Laser processing method, and laser processing apparatus
JP2019144426A (en) * 2018-02-21 2019-08-29 株式会社リコー Light irradiation device, optical processing device using the same, light irradiation method, and optical processing method
WO2020050379A1 (en) * 2018-09-05 2020-03-12 古河電気工業株式会社 Welding method and welding device
JP2020163472A (en) * 2019-03-29 2020-10-08 株式会社東京精密 Aberration adjustment method and aberration control method of laser processing apparatus
JP2021079394A (en) * 2019-11-15 2021-05-27 株式会社ディスコ Laser processing device and phase pattern adjustment method
WO2022180808A1 (en) * 2021-02-26 2022-09-01 株式会社ニコン Optical processing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213951A (en) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 Laser processing method, and laser processing apparatus
JP2019144426A (en) * 2018-02-21 2019-08-29 株式会社リコー Light irradiation device, optical processing device using the same, light irradiation method, and optical processing method
WO2020050379A1 (en) * 2018-09-05 2020-03-12 古河電気工業株式会社 Welding method and welding device
JP2020163472A (en) * 2019-03-29 2020-10-08 株式会社東京精密 Aberration adjustment method and aberration control method of laser processing apparatus
JP2021079394A (en) * 2019-11-15 2021-05-27 株式会社ディスコ Laser processing device and phase pattern adjustment method
WO2022180808A1 (en) * 2021-02-26 2022-09-01 株式会社ニコン Optical processing device

Similar Documents

Publication Publication Date Title
JP4204810B2 (en) Laser beam delivery system
JP6663045B2 (en) Device for monitoring a process during laser machining, comprising an optical distance measuring device and a prism polarization unit, and a laser processing head equipped with the device
JPWO2020090075A1 (en) Processing system and processing method
NL8002589A (en) METHOD FOR MANUFACTURING A COAXIAL HOLOGRAM LENS, AND LENS METHOD OBTAINED
JP2003057016A (en) High speed measuring method for shape of large caliber surface and measuring instrument therefor
US6255619B1 (en) Lens, semiconductor laser element, device for machining the lens and element, process for producing semiconductor laser element, optical element, and device and method for machining optical element
WO2024084694A1 (en) Optical device, optical processing device, optical processing method, and correction member
WO2021039881A1 (en) Processing system
JP7397317B2 (en) Aberration control method for laser processing equipment
TW202135965A (en) Laser processing device and method for laser-processing a workpiece
JP2010003399A (en) Optical disk device, method for activating optical disk device, and control circuit
JPWO2020090961A1 (en) Processing system and processing method
WO2024105852A1 (en) Processing system
JP2020006392A (en) Laser processing device
WO2024105851A1 (en) Processing system
RU2283738C1 (en) Device for laser working
JP2017219342A (en) Measuring device, measuring method, processing device, and method for producing workpiece
JPH11314184A (en) Optical device machining apparatus
WO2023233514A1 (en) Processing system
JP2002139628A (en) Method and device for manufacturing hologram microoptical element array
WO2024013930A1 (en) Modeling system, processing system, modeling method, and processing method
RU2795069C2 (en) Systems and methods for monitoring and/or control of wobbling processing using integrated coherent imaging (ici)
JP7368246B2 (en) Laser processing equipment and laser processing method
JP2024049687A (en) Optical device, processing device, and method for manufacturing article
JP5115882B2 (en) Window and laser processing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962801

Country of ref document: EP

Kind code of ref document: A1