WO2022180808A1 - Optical processing device - Google Patents

Optical processing device Download PDF

Info

Publication number
WO2022180808A1
WO2022180808A1 PCT/JP2021/007455 JP2021007455W WO2022180808A1 WO 2022180808 A1 WO2022180808 A1 WO 2022180808A1 JP 2021007455 W JP2021007455 W JP 2021007455W WO 2022180808 A1 WO2022180808 A1 WO 2022180808A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
wavelength
optical
condensing
processing device
Prior art date
Application number
PCT/JP2021/007455
Other languages
French (fr)
Japanese (ja)
Inventor
健太 須藤
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2021/007455 priority Critical patent/WO2022180808A1/en
Priority to JP2023501970A priority patent/JPWO2022180808A1/ja
Priority to EP21927908.0A priority patent/EP4299233A1/en
Priority to CN202180094408.8A priority patent/CN116917078A/en
Publication of WO2022180808A1 publication Critical patent/WO2022180808A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing

Definitions

  • the present invention relates to an optical processing device.
  • Patent Document 1 describes a processing device that forms a structure by irradiating the surface of an object with a laser beam. This type of processing apparatus is required to appropriately process an object (Patent Document 1).
  • the optical processing device is a synthesizing element for synthesizing a first optical path of a first light flux having a first wavelength and a second optical path of a second light flux having a second wavelength longer than the first wavelength. and a condensing optical system having a positive refractive power and condensing the first light flux and the second light flux from the synthesizing element toward a workpiece, and a corrector having a negative refractive power. and an optical system, wherein the correcting optical system is arranged on the first optical path on the incident side of the combining element, and one of the first light flux and the second light flux processes the workpiece. and the other one of the first and second beams is a beam for measuring the workpiece.
  • the optical processing device is a synthesizing element for synthesizing a first optical path of a first light flux having a first wavelength and a second optical path of a second light flux having a second wavelength longer than the first wavelength. and a condensing optical system having a positive refractive power and condensing the first light flux and the second light flux from the synthesizing element toward an object to be processed, and a corrector having a positive refractive power. and an optical system, wherein the correcting optical system is arranged in the first optical path on the incident side of the combining element, and the back focus of the condensing optical system at the first wavelength is the converging optical system at the second wavelength.
  • the optical processing device is a synthesizing element for synthesizing a first optical path of a first light flux having a first wavelength and a second optical path of a second light flux having a second wavelength longer than the first wavelength. and a condensing optical system having a positive refractive power and condensing the first light flux and the second light flux from the synthesizing element toward an object to be processed, and a corrector having a positive refractive power.
  • the optical processing device is a synthesizing element that synthesizes a first optical path of a first light flux having a first wavelength and a second optical path of a second light flux having a second wavelength longer than the first wavelength. and a condensing optical system having a positive refractive power and condensing the first light flux and the second light flux from the synthesizing element toward a workpiece, and a corrector having a negative refractive power.
  • the correcting optical system is arranged in the second optical path on the incident side of the combining element, and the back focus of the condensing optical system at the first wavelength is the converging optical system at the second wavelength.
  • one of the first light flux and the second light flux is longer than the back focus of the optical optical system and is a light flux for processing the workpiece, and the other light flux of the first light flux and the second light flux is , the light flux for measuring the workpiece.
  • FIG. 4 is a diagram showing an optical design example of the optical device of the first embodiment; The figure which shows roughly the structure of the condensing optical system with which the optical apparatus of 2nd Embodiment is provided.
  • FIG. 10 is a diagram showing an optical design example of the optical device of the second embodiment; The figure which shows roughly the structure of the optical processing apparatus of a modification.
  • FIG. 1 is a diagram schematically showing the configuration of an optical processing device 1 of the first embodiment.
  • the X direction, Y direction, and Z direction indicated by arrows in FIG. 1 and each figure to be described later are directions orthogonal to each other, and each of the X direction, Y direction, and Z direction indicates the same direction in each figure.
  • the XZ direction indicated by the arrow in FIG. 1 is a direction intermediate between the X direction and the Z direction described above, that is, a direction perpendicular to the Y direction and separated from the X direction and the Z direction by 45°.
  • +X direction the directions indicated by the arrows
  • +Y direction the position in the X direction
  • +Z direction the position in the Z direction
  • Z position the position in the Z direction
  • the optical processing device 1 of the first embodiment includes an optical device 2, a guide 20, a sample stage 19, a control unit 22, a measurement unit 23, a calculation unit 24, position information and a correction unit 25 .
  • a first light beam R ⁇ b>1 having a first wavelength which is emitted from a light source 10 and is incident on the optical device 2 via a first optical path P ⁇ b>1 , is condensed onto an irradiated surface 17 by the optical device 2 .
  • a workpiece 18 is placed on a sample table 19 , and the workpiece 18 is placed on the sample table 19 so that a surface 18 s to be processed of the workpiece 18 coincides with the surface 17 to be irradiated of the optical device 2 .
  • the sample stage 19 has a driving member such as a linear motor, and moves on the guide 20 in at least one of the X direction and the Y direction.
  • the sample table 19 may move the workpiece 18 along the Z direction (the optical axis direction of the condensing optical system 16).
  • the optical device 2 may be movable along the Z direction.
  • a focus adjustment optical system (not shown) may be arranged to change the condensing positions of the first light beam R1 and the second light beam R2, which will be described later, on the workpiece 18 along the Z direction.
  • the focus adjustment optical system is a front-stage third optical path P3a (in other words, an optical path in which the first optical path P1 and the second optical path P2 are superimposed) between the synthesizing element 12 and the fixed mirror 13 (polarization scanning unit), which will be described later. ).
  • the focus adjustment optical system is positioned on at least one of a first optical path P1 (described later) between the light source 10 and the synthesizing element 12 and a second optical path P2 (described later) between the measuring unit 23 and the synthesizing element 12. may be placed.
  • the X-position, Y-position, and Z-position of the sample table 19 are measured by an optical encoder 21, for example, and the positional information of the sample table 19 is sent to the controller 22 as a measurement signal S1. Based on the measurement signal S1, the controller 22 sends a control signal S2 to the sample stage 19 to set the sample stage 19 at a desired position.
  • the sample table 19 can also be referred to as a holder that holds the sample. Details of the measurement unit 23, the calculation unit 24, and the position information correction unit 25 will be described later.
  • the optical device 2 includes, in order from the side of the light source 10 supplied with the first light flux R1 of the first wavelength, a correction optical system 11, a synthesizing element 12, a fixed mirror 13, an oscillating mirror 14, and a It has a condensing optical system 16 shown.
  • a first beam R1 which is supplied from the light source 10 as a parallel beam as an example and travels in the +Z direction, is made up of one or more lenses or mirrors and enters a correction optical system 11 having a predetermined refractive power (power).
  • the first light beam R ⁇ b>1 exiting the correction optical system 11 enters the combining element 12 .
  • the refractive power of an optical system or optical element can be the reciprocal of the focal length of the optical system or optical element.
  • the optical path of the first light beam R1 between the light source 10 and the combining element 12 is called the first optical path P1. Therefore, it can be said that the correction optical system 11 is arranged on the first optical path P1.
  • the first optical path P1 is not limited to between the light source 10 and the synthesizing element 12 .
  • the first optical path P1 of the first light flux R1 passes from the light source 10 through the combining element 12, the fixed mirror 13, the oscillating mirror 14, and the condensing optical system 16. It can also be said that this is the optical path of the first light beam R1 traveling toward the workpiece 18 .
  • the correction optical system 11 is arranged in the first optical path P1 on the incident side of the first beam R1 of the combining element 12 .
  • the measurement unit 23 includes a measurement light source 23a that emits a second light beam R2, a light receiving unit 23c that receives detection light (second light beam R2) returning from the workpiece 18 as will be described later, and light emitted from the measurement light source 23a. It has a beam splitter 23b that separates and combines the light and the light returning from the workpiece 18 . Note that the beam splitter 23b may be a half mirror.
  • the second optical path P2 is not limited to between the measurement unit 23 and the combining element 12.
  • the second optical path P2 of the second light beam R2 passes from the measurement light source 23a (measurement unit 23) to the combining element 12, the fixed mirror 13, the oscillating mirror 14, and the light condensing device 1 (optical device 2) in the optical processing device 1 (optical device 2). It can also be said that this is the optical path of the second light beam R2 traveling toward the workpiece 18 via the optical system 16 .
  • a second light beam R2 from the measurement light source 23a (measurement unit 23) to reach the combining element 12 through the second optical path P2 is also incident on the combining element 12.
  • the second light beam R2 is a light beam having a second wavelength different from the first wavelength of the first light beam R1. More specifically, the second wavelength of the second beam R2 is longer than the first wavelength of the first beam R1.
  • the first optical path P1 is synthesized with the second optical path P2 from the measurement light source 23a (measurement section 23). Therefore, the combining element 12 combines the first light flux R1 and the second light flux R2.
  • the synthesizing element 12 is, for example, a dichroic prism, and the dichroic reflecting surface 12r transmits a first light flux R1 of a first wavelength and reflects a second light flux R2 of a second wavelength different from the first wavelength.
  • the synthesizing element 12 is not limited to the dichroic prism described above, and may be composed of flat glass having a dichroic mirror.
  • a polarizing beam splitter may be used.
  • the first light flux R1 and the second light flux R2 combined by the synthesizing element 12 are both emitted from the synthesizing element 12 in the +Z direction and are incident on the fixed mirror 13 .
  • the fixed mirror 13 is, for example, a plane mirror arranged along a plane parallel to the XZ direction and the Y direction.
  • the first light flux R1 and the second light flux R2 that have traveled in the +Z direction and entered the fixed mirror 13 are reflected in the +X direction by the fixed mirror 13 and enter the oscillating mirror 14, which is a plane mirror.
  • the first light beam R1 and the second light beam R2 reflected approximately in the +Z direction by the oscillating mirror 14 enter the condensing optical system 16 .
  • the optical path between the synthesizing element 12 and the condensing optical system 16 is called a third optical path P3. Therefore, it can be said that the fixed mirror 13 and the oscillating mirror 14 are arranged in the third optical path P3. Further, in the third optical path P3, a front stage third optical path P3a is between the synthesizing element 12 and the fixed mirror 13, a middle stage third optical path P3b is between the fixed mirror 13 and the oscillating mirror 14, and the oscillating mirror 14 and the condensing optics are arranged.
  • the path to the system 16 is also referred to as a post-stage third optical path P3c.
  • the first optical path P1 of the first light beam R1 passes from the light source 10 through the combining element 12, the fixed mirror 13, the oscillating mirror 14, and the condensing optical system 16. It can also be said that this is the optical path of the first light beam R1 traveling toward the workpiece 18 .
  • the second optical path P2 of the second light flux R2 passes from the measurement light source 23a (measurement unit 23) through the combining element 12, the fixed mirror 13, the oscillating mirror 14, and the condensing optical system 16. can also be said to be the optical path of the second light flux R2 traveling toward the workpiece 18. Therefore, it can be said that the third optical path P3 is an optical path in which at least a part of the first optical path P1 of the first light flux R1 and the second optical path P2 of the second light flux R2 overlap.
  • the fixed mirror 13 and the oscillating mirror 14 are arranged on the first optical path P1 and the second optical path P2 between the combining element 12 and the condensing optical system 16 .
  • the condensing optical system 16 is an optical system including a plurality of lenses (L11 to L15).
  • An optical axis AX of the condensing optical system 16 is indicated by a dashed line in FIG.
  • the optical axis AX of the condensing optical system 16 may be referred to as the exit-side optical axis of the processing device 2 .
  • the lens L11 arranged on the most incident side is, for example, a lens having a negative refractive power.
  • the lens L11 is also called the first lens.
  • the lenses (L12 to L15) arranged closer to the irradiated surface 17 side (downstream side) than the lens L11 constitute the second lens group G20 and have positive refractive power as a whole.
  • the first light flux R ⁇ b>1 and the second light flux R ⁇ b>2 are generally condensed on the illuminated surface 17 by the refractive power of the condensing optical system 16 .
  • the first light flux R1 and the second light flux R2 are condensed on the surface to be illuminated 17. It does not have to be on the top (that is, on the irradiated surface 17).
  • the oscillating mirror 14 is held by the drive member 15 so as to be able to oscillate within a predetermined angle range, for example, about a rotation axis parallel to the Y direction.
  • a so-called galvanomirror may be used as an example of the swing mirror 14 and the driving member 15 .
  • the oscillating mirror 14 oscillates within a predetermined angular range about the Y direction as the center of rotation, the traveling directions of the first light flux R1 and the second light flux R2 reflected by the oscillating mirror 14 change from the +Z direction to the above-described predetermined direction. It changes (oscillates) between two directions separated in the ⁇ X direction by twice the angle.
  • the first light beam R1 and the second light beam R2 reflected by the rocking mirror 14 travel along the central optical path
  • the light generally converges on the central condensing point Fa on the surface 17 to be illuminated through P4a.
  • the oscillating mirror 14 rotates counterclockwise around the rotation axis parallel to the Y direction from the reference position
  • the first light flux R1 and the second light flux R2 reflected by the oscillating mirror 14 pass through the right optical path P4b and are irradiated.
  • the light is generally condensed on the right condensing point Fb located on the +X side of the central condensing point Fa on the surface 17 .
  • the swing mirror 14 rotates clockwise around the rotation axis parallel to the Y direction from the reference position, the first light beam R1 and the second light beam R2 reflected by the swing mirror 14 pass through the left optical path P4c.
  • the light generally converges on the left condensing point Fc located on the -X side of the central condensing point Fa on the illuminated surface 17 . Therefore, it can also be said that the swing mirror 14 is a deflection scanning unit that deflects the first light beam R1 and the second light beam R2 and causes the surface to be illuminated 17 to be scanned.
  • the deflection scanning unit is not limited to the galvanomirror.
  • the deflection scanning unit deflects the first light beam R1 and the second light beam R2 from the synthesizing element 12, and directs the first light beam R1 and the second light beam R2 toward the workpiece 18 via the condensing optical system 16.
  • An existing member capable of scanning each focal point of the light beam R2 may be used.
  • the deflection scanner may be a polygon mirror.
  • the control unit 22 sends a control signal S3 to the drive member 15 to set the orientation of the swing mirror 14 to a predetermined orientation.
  • the central optical path P4a, the right optical path P4b, and the left optical path P4c are also collectively or individually referred to as the fourth optical path P4.
  • the central condensing point Fa, the right condensing point Fb, and the left condensing point Fc are also collectively or individually referred to as the condensing point FP.
  • the condensing optical system 16 is a so-called f ⁇ lens system.
  • the distance from the central condensing point Fa on the illuminated surface 17 to the right condensing point Fb or the left condensing point Fc is the first light flux exiting the swing mirror 14. It is proportional to the deviation angle from the +Z direction of the traveling direction of R1 and the second light beam R2.
  • the X position of the focal point FP on the illuminated surface 17 is proportional to the rotation angle ⁇ of the swing mirror 14 from the above-described reference position about the Y direction.
  • the projection characteristic of the condensing optical system 16 is not limited to f ⁇ .
  • the projection characteristic of the condensing optical system 16 may be, for example, an equisolid angle projection characteristic or an orthogonal projection characteristic.
  • the first light beam R1 supplied from the light source 10 passes through the first optical path P1, the third optical path P3, and the fourth optical path P4, and reaches the processed surface 18s of the workpiece 18 arranged on the irradiated surface 17. be irradiated.
  • the second light beam R2 emitted from the measurement light source 23a (measurement unit 23) passes through the above-described second optical path P2, third optical path P3, and fourth optical path P4, and reaches the workpiece 18 placed on the irradiation surface 17. is applied to the surface 18s to be processed.
  • the fourth optical path P4 can also be said to be an optical path in which at least a portion of the first optical path P1 for the first light flux R1 and the second optical path P2 for the second light flux R2 overlap.
  • the first beam R1 is a beam for processing the surface 18s to be processed. That is, the first light beam R1 evaporates or melts the surface to be processed 18s itself (so-called removal processing), adds an object to the surface to be processed 18s (so-called additional processing), alters the surface to be processed 18s, Alternatively, the portion of the surface to be processed 18s irradiated with the first light flux R1 is processed by exposing, evaporating, or causing a chemical reaction in the film material formed on the surface to be processed 18s. Note that the first light beam R1 may not be a light beam for processing the surface 18s to be processed. The first beam R1 may be, for example, a beam for measuring the surface to be processed 18s.
  • the second light flux R2 of the second wavelength is, for example, a light flux for measuring the position of the surface to be processed 18s.
  • the second light flux R2 is applied to a portion of the surface 18s to be processed, and the second light flux R2 reflected or scattered by the surface 18s to be processed returns to the combining element 12 via the fourth optical path P4 and the third optical path P3. .
  • the second light beam R2 is reflected by the dichroic reflecting surface 12r of the synthesizing element 12, passes through the second optical path P2, and is received by the measuring section 23 (light receiving section 23c).
  • the second light beam R2 reflected or scattered by the surface 18s to be processed and received by the measurement unit 23 (light receiving unit 23c) can also be referred to as detection light.
  • the second light flux R2 may not be a light flux for measuring the surface to be processed 18s.
  • the second beam R2 may be, for example, a beam for processing the surface 18s to be processed.
  • the first light beam R1 is for measuring the surface 18s to be processed
  • the second light beam R2 may be for processing the surface 18s to be processed.
  • the second light beam R2 may also be for processing the surface 18s to be processed.
  • the second beam R2 may also be for measuring the surface 18s to be processed.
  • the second wavelength is longer than the first wavelength in this embodiment, the second wavelength may be shorter than the first wavelength.
  • Information about the intensity of the detected light detected by the measurement unit 23 is sent to the calculation unit 24.
  • the calculator 24 calculates position information about the portion of the surface to be processed 18s irradiated with the second beam R2 based on the information about the intensity of the detection light detected by the measuring unit 23 .
  • the position information calculated by the calculator 24 is one or more of information on the X position, information on the Y position, and information on the Z position of the surface 18s to be processed.
  • the measurement unit 23 may include an interferometer, for example.
  • a three-dimensional shape measuring device disclosed in Japanese Patent No. 5231883 may be applied as such a position measuring unit.
  • the calculation unit 24 also calculates the position information regarding the surface 18s to be processed based on the signal S6 including the information regarding the position information of the sample table 19 or the rotation angle of the oscillating mirror 14 transmitted from the control unit 22. Also good.
  • the position information of the workpiece 18s calculated by the calculator 24 is the coordinates of the workpiece 18s, a point group of a plurality of points included in the workpiece 18s, and a three-dimensional model representing the workpiece 18s. Also good.
  • the measurement unit 23 measures the shape of the surface 18s to be processed, the surface roughness of the surface 18s to be processed, the temperature of the surface 18s to be processed, the reflection of the surface 18s to be processed, At least one of the transmission rate and the transmittance of the surface 18s to be processed may be detected.
  • FIG. 2 is a conceptual diagram showing a fourth optical path P4 condensed on the surface 17 to be illuminated by the condensing optical system 16.
  • the condensing point FP of the light irradiated onto the illuminated surface 17 through the fourth optical path P4 is the first condensing point FP1 of the first light beam R1 of the first wavelength, and the light of the first wavelength different from the first wavelength. It is separated into a second condensing point FP2 of a second light flux R2 of two wavelengths.
  • the difference in Z position between the first focal point FP1 and the second focal point FP2 will be referred to as axial chromatic aberration D1, and the difference in position in the XY in-plane direction will be referred to as lateral chromatic aberration D2.
  • the surface on which the first focal point FP1 is formed is shown as the irradiated surface 17.
  • the plane on which the first condensing point FP1 is formed may be referred to as the image plane of the condensing optical system 16 .
  • the optical processing device 1 uses the second beam R2 to determine the irradiation position of the first beam R1 on the surface to be processed 18s based on the position information of the surface to be processed 18s detected and calculated by the measurement unit 23 and the calculation unit 24. , the number of times of irradiation, and irradiation conditions.
  • the number of times of irradiation of the first light beam R1 is the number of times of irradiation of the first light beam R1 per unit time, the number of times of irradiation of the first light beam R1 to a predetermined position on the surface 18s to be processed, and the like.
  • the conditions may include, for example, the intensity of the first light flux R1, the wavelength of the first light flux R1, and the like.
  • the positional information of the surface to be processed 18s detected and calculated by the measuring unit 23 and the calculating unit 24 is positional information measured using the second light beam R2 of the second wavelength. Therefore, this position information has an error corresponding to the above-described axial chromatic aberration D1 and chromatic aberration of magnification D2 with respect to the position of the surface to be processed 18s based on the first light flux R1 of the first wavelength used for optical processing. .
  • the correction optical system 11 arranged on the first optical path P1 of the optical device 2 is arranged at a condensing position (first condensing position) of the first light beam R1 near the surface 17 to be illuminated.
  • the position of the point FP1) is brought closer to the condensing position of the second light flux R2 (the position of the second condensing point FP2). Therefore, compared to the case where the correction optical system 11 is not provided, the magnitude of the longitudinal chromatic aberration D1 described above is reduced.
  • the focal length of the condensing optical system 16 is positive (positive refractive power) and the axial chromatic aberration of the condensing optical system 16 is insufficiently corrected (that is, the back focus of the condensing optical system 16 at the first wavelength is is shorter than the back focus of the condensing optical system 16 at the second wavelength)
  • the focal length of the correction optical system 11 arranged in the first optical path P1 of the optical device 2 negative (negative refractive power)
  • the absolute value of the difference between the back focus at the first wavelength of the combined optical system of the light optical system 16 and the correction optical system 11 and the back focus at the second wavelength of the condensing optical system 16 is It can be smaller than the absolute value of the difference between the back focus at the first wavelength and the back focus at the second wavelength of the condensing optical system 16 .
  • the focal length of the condensing optical system 16 is positive (positive refractive power) and the longitudinal chromatic aberration of the condensing optical system 16 is overcorrected (that is, the back focus of the condensing optical system 16 at the first wavelength is longer than the back focus of the condensing optical system 16 at the second wavelength)
  • the focal length of the correction optical system 11 arranged in the first optical path P1 of the optical device 2 positive (positive refractive power)
  • the absolute value of the difference between the back focus at the first wavelength of the combined optical system of the condensing optical system 16 and the correction optical system 11 and the back focus of the condensing optical system 16 at the second wavelength, 16 at the first wavelength and the back focus at the second wavelength of the condensing optical system 16 when the refractive power of the condensing optical system 16 is positive and the condensing optical system 16 is overcorrected, the optical device will be described in detail in the second embodiment).
  • the back focus of the optical system can be the distance along the optical axis of the optical system from the optical surface of the optical member closest to the emission side of the optical system to the rear focal position of the optical system. Therefore, the error due to the longitudinal chromatic aberration D1 included in the positional information of the surface to be processed 18s detected and calculated by the measuring unit 23 and the calculating unit 24 is reduced, and the positional information of the surface to be processed 18s is calculated more accurately. be able to.
  • the angle ⁇ 1 of the principal ray R1p of the first light beam R1 with respect to the normal N1 of the surface to be irradiated 17 and the second angle with respect to the normal N2 of the surface to be irradiated 17 may be different.
  • the absolute values of the angles ⁇ 1 and ⁇ 2 are both set to 1° or less. That is, even if the position of the fourth optical path P4 changes to the position of the central optical path P4a, the right optical path P4b, the left optical path P4c, etc. shown in FIG.
  • the light ray R2p is incident on the illuminated surface 17 at an incident angle of 1° or less.
  • the angles of the principal ray R1p of the first light beam R1 and the principal ray R2p of the second light beam R2 with respect to the normal line (Z direction) at the condensing positions are within 1°.
  • the object side (surface to be processed 18s side) of the optical device 2 (optical processing device 1) has telecentric characteristics.
  • the desired X and Y positions of the surface to be processed 18s can be obtained. It is possible to irradiate one light flux R1 and accurately process the surface 18s to be processed. Similarly, the desired X-position and Y-position of the surface 18s to be processed can be accurately measured.
  • the incidence of the principal ray R1p and the principal ray R2p on the surface to be irradiated 17 The angle may be 1° or more.
  • the “principal ray” may be a line connecting the center of gravity of light amount in the cross section of each light beam at different Z positions in each of the first light beam R1 and the second light beam R2.
  • the axial chromatic aberration D1 or the chromatic aberration of magnification D2 occurring between the first light flux R1 and the second light flux R2 is reduced.
  • the position information correction unit 25 described below may be used to further reduce the adverse effects of the longitudinal chromatic aberration D1 or the chromatic aberration of magnification D2 by numerical correction.
  • the position information correction unit 25 is a unit that numerically corrects the longitudinal chromatic aberration D1 or the chromatic aberration of magnification D2.
  • Information about the rotation angle of the oscillating mirror 14 or information about the X position of the focal point FP of the light beam traveling along the fourth optical path P4 determined by the rotation angle of the oscillating mirror 14 is sent from the control unit 22 to the position information correction unit 25.
  • a signal S8 is input, including:
  • the position information correction unit 25 provides numerical data indicating the relationship between the rotation angle of the swing mirror 14 or the X position of the focal point FP of the light beam traveling along the fourth optical path P4 and at least one of the longitudinal chromatic aberration D1 and the chromatic aberration of magnification D2.
  • the aberration information of the condensing optical system 16 is stored.
  • the position information correction unit 25 may also store information on the so-called telecentricity of the condensing optical system 16 .
  • the above-described aberration information and information on telecentricity may be collectively referred to as information on the characteristics of the condensing optical system 16 .
  • the position information correction unit 25 Based on the information on the rotation angle of the oscillating mirror 14 sent from the control unit 22 or the information on the X position of the focal point FP, the position information correction unit 25 corrects the information on the characteristics of the condensing optical system 16 to: At least one of the longitudinal chromatic aberration D1 and the lateral chromatic aberration D2 at the focal point FP is calculated.
  • the position information correction unit 25 corrects the position information of the surface to be processed 18s calculated by the calculation unit 24 and transmitted as the signal S9 based on at least one of the axial chromatic aberration D1 and the chromatic aberration of magnification D2 calculated as described above. Then, the position information correction unit 25 sends back the corrected position information of the surface 18s to be processed to the calculation unit 24 as a signal S10.
  • the position information correction unit 25 may return the amount by which the position information should be corrected as the signal S10 to the calculation unit 24 instead of correcting the position information itself of the surface to be processed 18s described above.
  • the calculation unit 24 may correct the position information of the surface to be processed 18s using the correction amount transmitted from the position information correction unit 25 .
  • the position information corrector 25 may not be provided. Further, when the longitudinal chromatic aberration D1 generated between the first light beam R1 and the second light beam R2 is sufficiently suppressed by the correction optical system 11 and the chromatic aberration of magnification D2 is large, the position information corrector 25 is used. may be used to correct the position information of the surface to be processed 18s.
  • FIG. 3 is a diagram showing an optical design example of the optical device 2. As shown in FIG. As an example, the optical device 2 of the design example shown in FIG. Light is generally condensed on the irradiation surface 17 .
  • the numerical table shown in FIG. 3 includes the radius of curvature R [mm] of each surface of optical parts such as lenses and mirrors constituting the optical device 2, which is defined by the surface number (Surface No.) shown on the left end, and It represents the surface distance D [mm] and the refractive index of the optical component.
  • the surface numbers shown in FIG. 3 are the surface numbers of the surfaces on which the light from the light source 10 or the measurement unit 23 is incident among the above-described optical components (correction optical system 11, synthesizing element 12, lenses L11 to L15). is a surface number obtained by adding a to the end of the reference numeral of the optical component.
  • the surface number 11a is the surface number of the surface of the correction optical system 11 on which the light from the light source 10 is incident.
  • the surface number of the surface from which the light from the light source 10 or the measurement unit 23 is emitted is the surface number obtained by adding b to the end of the reference numeral of the optical component.
  • the surface number L11b is the surface number of the surface of the lens L11 included in the condensing optical system 16 on the side of the lens L12.
  • Surface numbers 13 and 14 indicate reflecting surfaces of the fixed mirror 13 and the oscillating mirror 14, respectively.
  • the surface distance D represents the distance between the surface designated by the surface number and the next surface on the irradiated surface 17 side with respect to that surface. Note that the surface distance D shown in the row of the surface number L15b is the distance between the surface of the surface number L15b and the irradiated surface 17. FIG. Further, the surface distance D between the surface number 13 and the surface number 14 is expressed as a negative numerical value because the fixed mirror 13 is a mirror.
  • the refractive index represents the refractive index of an optical member arranged between the surface specified by the surface number and the next surface on the illuminated surface 17 side with respect to that surface.
  • the refractive index in the column labeled WL532 [nm] is the refractive index for light of 532 [nm], which is an example of the wavelength (first wavelength) of the first light flux R1.
  • the refractive index in the column labeled WL1550 [nm] is the refractive index for light of 1550 [nm], which is an example of the wavelength (second wavelength) of the second light flux R2.
  • the fixed mirror 13 and the oscillating mirror 14 have a refractive index of -1.
  • the correction optical system 11 that is, the surface numbers 11a and 11b, is refracted at the second wavelength. rate is not shown.
  • the optical device 2 shown in FIG. 1 in order to show the size of each optical member with a sufficient size necessary for explanation, of the third optical path P3, the front third optical path P3a and the middle third optical path P3a
  • the length of the optical path P3b is displayed shorter than the design example shown in FIG. The same applies to the distance between the correction optical system 11 and the synthesizing element 12 .
  • the transmitting members (the correcting optical system 11, the synthetic element 12, and the lenses L11 to L15) constituting the optical device 2 are all made of quartz glass, which is the same material. ing. Therefore, originally, it cannot be said that the optical system is suitable for correcting chromatic aberration, especially axial chromatic aberration D1.
  • the first converging point FP1 (condensing position) of the first light beam R1 in the vicinity of the surface to be illuminated 17 is caused by the correction optical system 11 arranged on the first optical path P1. can be brought closer to the second condensing point FP2 (condensing position) of the second light beam R2.
  • the correction optical system 11 has a negative refractive power, and the focal length fc at the first wavelength 532 [nm] is -1133.2 [mm].
  • the condensing optical system 16 includes a lens L11 (first lens) arranged on the incident side and having negative refractive power, and a second lens group G20 including a plurality of lenses L12 to L15 and having positive refractive power as a whole. have.
  • the condensing optical system 16 has positive refractive power as a whole, and the focal length fg at the first wavelength of 532 [nm] is 100.0 [mm].
  • the focal length fc of the correcting optical system 11 and the focal length fg of the condensing optical system 16 are in the relationship of the following formula (1).
  • the optical device 2 as a whole can appropriately correct chromatic aberration without causing the correcting optical system 11 to correct excessive chromatic aberration, and the longitudinal chromatic aberration D1 or the chromatic aberration of magnification D2 can be further reduced. It becomes possible.
  • the correction optical system 11 and the condensing optical system 16 do not necessarily have to satisfy the formula (1).
  • the back focus of the combined optical system of the condensing optical system 16 and the correction optical system 11 at the first wavelength is 144.7 mm
  • the back focus of the condensing optical system 16 at the second wavelength is 144.7 mm.
  • the back focus of the condensing optical system 16 at the first wavelength is 137.0 mm
  • the back focus of the condensing optical system 16 at the second wavelength is 144.7 mm. Therefore, the absolute value of the difference between the back focus of the combined optical system of the condensing optical system 16 and the correction optical system 11 at the first wavelength and the back focus of the condensing optical system 16 at the second wavelength is 0 mm. It is set to be smaller than the absolute value (7.7 mm) of the difference between the back focus of the condensing optical system 16 at one wavelength and the back focus of the condensing optical system 16 at the second wavelength.
  • the correction optical system 11 is not limited to an optical system having negative refractive power, as described above or later, and may be an optical system having positive refractive power.
  • the positive focal point is placed on the second optical path P2 (for example, It may be arranged in the second optical path P2) between the measurement unit 23 and the combining element 12).
  • the correction optical system 11 having a positive focal length may be arranged on the second optical path P2 between the measurement light source 23a and the synthesizing element 12.
  • the focal length of the condensing optical system 16 is positive (positive refractive power) and the axial chromatic aberration of the condensing optical system 16 is insufficiently corrected (that is, the back focus of the condensing optical system 16 at the second wavelength is longer than the back focus of the condensing optical system 16 at the first wavelength)
  • the focal length of the correcting optical system 11 arranged in the second optical path P2 on the incident side of the second light flux R2 of the combining element 12 is positive (refractive
  • the absolute value of the difference between the back focus at the first wavelength and the absolute value of the difference between the back focus at the second wavelength of the condensing optical system 16 and the back focus at the first wavelength of the condensing optical system 16 is greater than can be made smaller.
  • the condensing optical system 16 may be provided interchangeably with a second condensing optical system different from the illustrated condensing optical system 16 (hereinafter also referred to as "first condensing optical system”).
  • the correction optical system 11 may be provided interchangeably with a second correction optical system different from the illustrated correction optical system 11 (hereinafter also referred to as "first correction optical system”).
  • the first condensing optical system and the second condensing optical system are exchanged by a member exchange mechanism (not shown) such as a turret or an auto tool changer so that one of the optical systems is arranged in the optical path. It may be configured to be possible.
  • the first correction optical system and the second correction optical system can be exchanged so that one of them is placed in the optical path by a member exchange mechanism (not shown) such as a turret or an auto tool changer. may be configured.
  • the above-described second condensing optical system when used as the condensing optical system 16, the above-described second correcting optical system may be used as the correcting optical system 11.
  • FIG. Back focal lengths may be different between the first condensing optical system and the second condensing optical system, and focal lengths may be different between the first correcting optical system and the second correcting optical system.
  • the focal length of the second correcting optical system may be longer than the focal length of the first correcting optical system. If the back focus of the first condensing optical system is longer than the back focus of the second condensing optical system, the focal length of the second correcting optical system may be shorter than the focal length of the first correcting optical system.
  • the optical processing device 1 of the first embodiment described above has a first optical path P1 for the first light flux R1 of the first wavelength and a second light flux R2 for the second wavelength longer than the first wavelength.
  • the correction optical system 11 is arranged on the first optical path P1 on the incident side of the combining element 12, and one of the first light beam R1 and the second light beam R2 is a light beam for processing the workpiece 18.
  • the other one of the first light beam R1 and the second light beam R2 is a light beam for measuring the workpiece 18 .
  • FIG. 4 is a diagram schematically showing the configuration of the condensing optical system 16a of the optical device 2a provided in the optical processing apparatus of the second embodiment.
  • the optical device 2a includes the optical device 2 provided in the optical processing device 1 of the first embodiment described above, except that the condensing optical system 16 is replaced with the condensing optical system 16a and the design data of the correction optical system 11 is changed. , the same reference numerals are given to the same configurations, and the description thereof will be omitted as appropriate.
  • the optical processing device of the second embodiment is obtained by replacing the optical device 2 of the optical processing device 1 of the first embodiment with an optical device 2a.
  • FIG. 4 shows only the correction optical system 11S, the oscillating mirror 14, and the condensing optical system 16a of the optical device 2a, and the rest of the configuration is omitted.
  • the condensing optical system 16a is an optical system including a plurality of lenses (L21 to L28).
  • the lens L21 arranged on the most incident side is, for example, a lens having a negative refractive power.
  • the lens L21 is also called the first lens.
  • the lenses (L22 to L28) arranged closer to the irradiated surface 17 side (downstream side) than the lens L21 constitute the second lens group G21 and have positive refractive power as a whole.
  • the first light flux R1 and the second light flux R2 are generally condensed on the illuminated surface 17 by the refractive power of the condensing optical system 16a.
  • FIG. 5 is a diagram showing an optical design example of the optical device 2a included in the optical processing device of the second embodiment.
  • the items described in the numerical table shown in FIG. 5 are the same as the items shown in the numerical table shown in FIG.
  • the surface number on the left end of the numerical table shown in FIG. 5 is the same as the surface number in FIG. It is obtained by adding b if it is a surface on the exit side.
  • each of the transmitting members (the correction optical system 11, the synthetic element 12, and the lenses L11 to L15) constituting the optical device 2a is made of quartz glass and fluorite. made of any of the following materials:
  • the optical device 2a has a configuration in which the chromatic aberration of magnification D2 is corrected more by the condensing optical system 16a, and the longitudinal chromatic aberration D1 is overcorrected.
  • the correction optical system 11S arranged on the first optical path P1 can bring the overcorrection of the longitudinal chromatic aberration D1 of the condensing optical system 16a closer to a proper correction state. can be brought closer to the second condensing point FP2 (condensing position) of the second light flux R2. That is, in the optical processing device 1 (optical device 2a) of the second embodiment, the correction optical system 11S arranged in the first optical path P1 of the optical device 2a converges the first light flux R1 in the vicinity of the irradiated surface 17.
  • the light position (the position of the first condensing point FP1) is brought closer to the condensing position of the second light flux R2 (the position of the second condensing point FP2). Therefore, compared with the case where the correction optical system 11S is not provided, the magnitude of the longitudinal chromatic aberration D1 described above is reduced.
  • the focal length of the condensing optical system 16a is positive (positive refractive power) and the longitudinal chromatic aberration D1 of the condensing optical system 16a is overcorrected (that is, the back of the condensing optical system 16a at the first wavelength).
  • the focal length of the correction optical system 11S arranged in the first optical path P1 of the optical device 2a is made positive (the refractive power is positive).
  • the absolute value of the difference between the back focus at the first wavelength of the combined optical system of the condensing optical system 16a and the correcting optical system 11S and the back focus at the second wavelength of the condensing optical system 16a is It can be made smaller than the absolute value of the difference between the back focus of the optical system 16a at the first wavelength and the back focus of the condensing optical system 16a at the second wavelength.
  • the chromatic aberration of magnification D2 occurring between the first light flux R1 and the second light flux R2 is corrected by the condensing optical system 16a.
  • the chromatic aberration of magnification D2 can be easily corrected by overcorrecting the axial chromatic aberration D1 of the condensing optical system 16a.
  • the principal ray R1p and the principal ray R2p are incident on the irradiated surface 17 at an incident angle within 1°.
  • the angle of incidence of the principal ray R1p and the principal ray R2p on the irradiated surface 17 may be 1° or more. It can also be said that the angle of the principal ray R1p and the principal ray R2p with respect to the normal line (Z direction) at each condensing position is within 1°. It can also be said that the object side (the side of the processed surface 18s) of the optical device 2a has telecentric characteristics.
  • the optical design example of the optical device 2a shown in FIG. 5 will be described in further detail below.
  • the correction optical system 11S has positive refractive power
  • the focal length fc at the first wavelength 532 [nm] is 6361.5 [mm].
  • the condensing optical system 16a includes a lens L21 (first lens) arranged on the incident side and having negative refractive power, and a second lens group G21 including a plurality of lenses L22 to L28 and having positive refractive power as a whole. have.
  • the condensing optical system 16a as a whole has positive refractive power, and the focal length fg at the first wavelength of 532 [nm] is 100.0 [mm]. Therefore, also in the optical device 2a, the focal length fc of the correcting optical system 11 and the focal length fg of the condensing optical system 16a satisfy the relationship of the above-described formula (1).
  • the second lens group G21 has a positive refractive power and includes at least one positive lens such as a lens L28 made of fluorite, which is the first lens material. It includes at least one negative lens such as lens L27 made of some quartz glass.
  • the Abbe number .nu.1 of the first lens material (fluorite) and the Abbe number .nu.2 of the second lens material (quartz glass) satisfy the relationship of formula (2). ⁇ 1 > ⁇ 2 (2)
  • the chromatic aberration of the condensing optical system 16 can be satisfactorily corrected, and the axial chromatic aberration D1 or the chromatic aberration of magnification D2 can be further reduced.
  • the Abbe number ⁇ 1 and the Abbe number ⁇ 2 do not necessarily have to satisfy the formula (2).
  • the back focus of the combined optical system of the condensing optical system 16a and the correction optical system 11S at the first wavelength is 99.9 mm
  • the back focus of the condensing optical system 16 at the second wavelength is 99.9 mm.
  • the back focus of the condensing optical system 16 at the first wavelength is 101.5 mm
  • the back focus of the condensing optical system 16 at the second wavelength is 100.0 mm. Therefore, the absolute value of the difference between the back focus of the combined optical system of the condensing optical system 16a and the correction optical system 11S at the first wavelength and the back focus of the condensing optical system 1a at the second wavelength is 0.1 mm.
  • the condensing position of the first light flux R1 (the position of the first condensing point FP1) in the vicinity of the illuminated surface 17 is brought closer to the condensing position of the second light flux R2 (the position of the second condensing point FP2). becomes possible.
  • the correcting optical system 11S having a positive focal length is positioned on the first optical path on the incident side of the first light beam R1 of the synthesizing element 12 of the optical processing device 1 (optical device 2a).
  • the correction optical system 11S having a negative focal length is arranged in the second optical path P2 (for example, the measuring unit 23 and the combining element 12 in the second optical path P2).
  • the correction optical system 11S having a negative focal length may be arranged on the second optical path P2 between the measurement light source 23a and the synthesizing element 12.
  • the focal length of the condensing optical system 16a is positive (the refractive power is positive) and the axial chromatic aberration of the condensing optical system 16a is overcorrected (that is, the back focus of the condensing optical system 16a at the second wavelength is shorter than the back focus of the condensing optical system 16a at the first wavelength)
  • the focal length of the correcting optical system 11S arranged in the second optical path P2 on the incident side of the second light beam R2 of the combining element 12 is negative (
  • the back focus at the second wavelength of the combined optical system of the condensing optical system 16a and the correcting optical system 11S (correcting optical system having a negative focal length) and the condensing optical system 16a from the absolute value of the difference between the back focus at the first wavelength of the condensing optical system 16a and the back focus at the first wavelength of the condensing optical system 16a can be made smaller.
  • the chromatic aberration of magnification D2 occurring between the first light beam R1 and the second light beam R2 is corrected by the condensing optical system 16a. Therefore, there is an advantage that it becomes easy to correct the chromatic aberration of magnification D2.
  • the condensing optical system 16a may be provided interchangeably with a second condensing optical system different from the illustrated condensing optical system 16a (hereinafter also referred to as "first condensing optical system”).
  • the correction optical system 11S may be provided interchangeably with a second correction optical system different from the illustrated correction optical system 11S (hereinafter also referred to as "first correction optical system”).
  • the first condensing optical system and the second condensing optical system are exchanged by a member exchange mechanism (not shown) such as a turret or an auto tool changer so that one of the optical systems is arranged in the optical path. It may be configured to be possible.
  • the first correction optical system and the second correction optical system can be exchanged so that one of them is placed in the optical path by a member exchange mechanism (not shown) such as a turret or an auto tool changer. may be configured.
  • the second condensing optical system described above when used as the condensing optical system 16a, the second correcting optical system described above may be used as the correcting optical system 11S.
  • Back focal lengths may be different between the first condensing optical system and the second condensing optical system, and focal lengths may be different between the first correcting optical system and the second correcting optical system.
  • the focal length of the condensing optical system 16a is positive (the refractive power is positive), the axial chromatic aberration D1 of the condensing optical system 16a is overcorrected, and the first optical path P1 of the optical device 2a has
  • the focal length of the correction optical system 11S to be arranged is positive (positive refractive power)
  • the magnitude of the back focus at the first wavelength of the first condensing optical system at the first wavelength of the second condensing optical system is If it is shorter than the back focus, the focal length of the second correction optical system at the first wavelength may be longer than the focal length of the first correction optical system at the first wavelength.
  • the focal length at the first wavelength of the first correcting optical system is longer than the focal length of the second condensing optical system
  • the correction optical system may have a short focal length at the first wavelength
  • the first correction optical system at the first wavelength may be larger than the absolute value of the focal length.
  • the first correction optical system at the first wavelength may be smaller than the absolute value of the focal length.
  • the focusing optical system 16a has a positive focal length (positive refractive power) and the longitudinal chromatic aberration D1 of the focusing optical system 16a is overcorrected.
  • a correcting optical system 11S having a focal length (negative refractive power) is provided at the second beam R2 incident side of the combining element 12.
  • the back focus at the second wavelength of the first condensing optical system is the second wavelength of the second condensing optical system.
  • the focal length of the second correction optical system at the second wavelength may be longer than the focal length of the first correction optical system at the second wavelength.
  • the focal length of the first correction optical system at the second wavelength is longer than the focal length of the second The correction optical system may have a short focal length at the second wavelength.
  • the absolute value of the back focus at the second wavelength of the first condensing optical system is smaller than the absolute value of the back focus at the second wavelength of the second condensing optical system
  • the absolute value of the focal length of the second correction optical system at the second wavelength may be larger than the absolute value of the focal length.
  • the absolute value of the back focus at the second wavelength of the first condensing optical system is greater than the absolute value of the back focus at the second wavelength of the second condensing optical system
  • the absolute value of the focal length of the second correction optical system at the second wavelength may be smaller than the absolute value of the focal length.
  • the number of lenses constituting the condensing optical systems 16 and 16a is not limited to the number described above, and may be any other number. or may include mirrors or diffractive optical elements.
  • the condensing optical systems 16 and 16a do not have a cemented lens, but may be an optical system having a cemented lens.
  • the correction optical systems 11 and 11S may also have a plurality of lenses instead of a single lens, or may include mirrors or diffractive optical elements.
  • the wavelengths of the first wavelength used for optical processing and the second wavelength used for measurement are not limited to the wavelengths described above, and may be other wavelengths.
  • the first lens material and the second lens material are not limited to the above-described fluorite and quartz glass, respectively, and other translucent materials may be used.
  • the oscillating mirror 14 may oscillate not only about the rotation axis parallel to the Y direction, but also about the rotation axis parallel to the XZ direction as described above. In this case, the position of the focal point FP on the illuminated surface 17 can be moved not only in the X direction described above but also in the Y direction. Note that the oscillating mirror 14 may oscillate about a rotation axis parallel to the XZ direction instead of the Y direction. In this case, the position of the focal point FP on the illuminated surface 17 can be moved in the Y direction. If it is sufficient to move the sample stage 19 with respect to the guide 20 to move the workpiece 18 and the focal point FP relative to each other in the X and Y directions, the oscillating mirror 14 may not be provided. .
  • the swinging mirror 14 when the swinging mirror 14 is provided as described above, the X position (or further the Y position) of the focal point FP on the irradiated surface 17 can be moved at high speed. As a result, the focal point FP can be moved at high speed on the surface 18s to be processed of the workpiece 18, and the throughput of the optical processing apparatus 1 can be further improved.
  • the oscillating mirror instead of the fixed mirror 13 may oscillate around the rotation axis parallel to the XZ direction, and the oscillation mirror 14 may oscillate around the rotation axis parallel to the Y direction as described above. It can swing.
  • the first light beam R1 and the second light beam R2 are scanned in the X direction and the Y direction within the plane of the irradiated surface 17 .
  • a plurality of oscillating mirrors may be arranged in the third optical path P3 (that is, an optical path in which at least a portion of the first optical path P1 and the second optical path P2 overlap).
  • the fixed mirror 13 may be removed from the third optical path P3.
  • the optical processing device 1 and the optical processing device of the second embodiment may not include the position information correction section 25 . Further, the optical processing device 1 does not have to include the calculator 24 . If the calculation unit 24 is not provided, the measurement unit 23 transmits information about the detected light amount signal of the second light flux R2 to an external calculation unit (not shown), and the external calculation unit determines the position of the surface to be processed 18. information should be calculated. It should be noted that the optical processing device 1a of a modified example, which will be described later, does not have to include the position information corrector 25 either.
  • the optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) may not have the light source 10.
  • the first light beam L1 may be supplied via the .
  • the optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) may not have the measurement light source 23a.
  • the optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) from the light source provided outside the light guide member such as an optical fiber may receive the supply of the second light beam L2 via.
  • the optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) include a control unit 22, a calculation unit 24, and a position information correction unit. 25, for example, the optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) It may be provided outside.
  • At least one of the light source 10 and the measurement unit 23 may be included in the optical device 2 and the optical device 2a.
  • At least one of the control unit 22 and the calculation unit 24 may be included in the optical device 2 and the optical device 2a.
  • the measuring unit 23 may not be an interferometric measuring device as described above.
  • the measurement unit 23 may be an optical coherence tomography (OCT) type measurement device.
  • OCT optical coherence tomography
  • the measurement unit 23 may be a measurement device that includes a white confocal displacement meter.
  • a white confocal displacement meter is described in JP-A-2020-085633.
  • the measurement unit 23 may be a phase modulation type measurement device.
  • An example of the phase modulation type measuring device is described in Japanese Patent Application Laid-Open No. 2010-025922.
  • the measurement unit 23 may be an intensity modulation type measurement device.
  • An example of the intensity modulation type measuring device is described in Japanese Patent Application Laid-Open No. 2016-510415 and US Patent Application Publication No. 2014/226145.
  • the optical processing device 1 and the optical processing device of the second embodiment , the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) use the second beam R2 to detect and calculate the position information of the surface 18s to be processed by the measuring unit 23 and the calculating unit 24. At least one of the irradiation position of the first light flux R1 on the surface to be processed 18s, the number of times of irradiation, and irradiation conditions may be determined based on the above.
  • the optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the third embodiment After processing the surface 18s to be processed by the first light beam R1, the optical processing device (described later) measures the portion processed by the first light beam R1 by the second light beam R2, and determines the quality of the portion processed by the first light beam R1. and quality.
  • the optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) process the surface 18s to be processed by the first beam R1.
  • the position information of the portion processed by the first beam R1 is calculated, and the calculated position information and predetermined reference position information (for example, CAD data of the workpiece 18) are compared to obtain the first beam R1 It may be determined whether to re-process or finish the processing of the portion processed in .
  • the optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) are Based on the positional information of the portion processed by the first light beam R1, at least one of the irradiation position of the first light beam R1 on the surface 18s to be processed, the number of times of irradiation, and irradiation conditions is determined, and the portion processed by the first light beam R1 is determined. May be reworked.
  • the optical processing apparatuses 1 and 1a calculate the position information of the portion processed by the first light flux R1 after processing the surface 18s to be processed by the first light flux R1, and the calculated position information and the predetermined reference position information (for example, CAD data of the workpiece 18) may be compared to determine whether or not the portion processed by the first beam R1 has been processed into the desired shape.
  • the calculated position information and the predetermined reference position information For example, CAD data of the workpiece 18
  • the optical processing device 1, the optical processing device of the second embodiment, and the optical processing device of the third embodiment process the workpiece 18 with the first beam R1. Meanwhile, measurement of the workpiece 18 (detection of detection light from the workpiece surface 18s and calculation of position information, etc.) may be performed using the second light flux R2. In this case, machining and measurement of the workpiece 18 can be performed simultaneously.
  • the optical processing device 1, the optical processing device of the second embodiment, and the optical processing device of the third embodiment process the workpiece 18 with the first beam R1 and the workpiece with the second beam R2.
  • the object 18 is processed by the first beam R1 and the detection light from the surface 18s to be processed is processed. It may be performed after the processing of 18.
  • the optical processing apparatus of the second embodiment described above has a first optical path P1 for the first light flux R1 of the first wavelength and a second light path P1 for the second light flux R2 of the second wavelength longer than the first wavelength.
  • a synthesizing element 12 for synthesizing the optical path P2 It comprises a system 16a and a correction optical system 11S having positive refractive power.
  • the correction optical system 11S is arranged on the second optical path P2 on the incident side of the synthesizing element 12, and one of the first light flux R1 and the second light flux R2 is a light flux for processing the workpiece 18.
  • the other one of the first light beam R1 and the second light beam R2 is a light beam for measuring the workpiece 18 .
  • This configuration has the same effect as the optical processing device 1 of the first embodiment described above.
  • the optical processing apparatus 1a of the modified example differs from the above-described first and second embodiments in that the variable mirror 26 is arranged on the second optical path P2 between the measurement unit 23 and the combining element 12. It differs from the optical processing device 1 .
  • the second light flux R2 is second condensed at the first converging point FP1 of the first light flux R1 on the surface 18s of the workpiece 18 to be processed.
  • the position of the point FP2 can be shifted by a predetermined distance in the XY plane direction.
  • the variable mirror 26 may be configured such that the azimuth angle of the reflecting surface can be set to a predetermined angle around an axis parallel to the Y direction.
  • the information about the position or state of the surface 18s to be processed can be detected at a position different from the position processed by the first light beam R1, so that deterioration in measurement accuracy due to fumes or the like can be prevented. can be prevented.
  • the optical processing device 1a of the modified example may measure the workpiece 18 with the second beam R2 while machining the workpiece 18 with the first beam R1. In this case, machining and measurement of the workpiece 18 can be performed simultaneously while preventing deterioration of measurement accuracy due to fumes and the like.
  • the optical processing apparatus 1a of the modified example processes the workpiece 18 with the first beam R1 and measures the workpiece 18 with the second beam R2 (detection of the detection light from the workpiece surface 18s and position information etc.) are performed at the same time, the workpiece 18 is processed by the first beam R1 and the detection light from the workpiece surface 18s is processed. It may be performed after the processing of 18.
  • a relay lens system may be arranged in the second optical path P2, and parallel plate glass may be placed in the vicinity of the intermediate focal point formed by the relay lens system. Good to place.
  • the position of the second condensing point FP2 with respect to the first condensing point FP1 on the surface to be processed 18s can be shifted by a predetermined distance in the XY plane direction.
  • the position where the variable mirror 26 is arranged is not limited to the second optical path P2 between the measurement unit 23 and the combining element 12.
  • the deformable mirror 26 may be placed in the first optical path P1 between the light source 10 and the combining element 12.
  • FIG. 1 In addition to the variable mirror 26 arranged on the second optical path P2 between the measurement unit 23 and the combining element 12, another variable mirror is arranged on the first optical path P1 between the light source 10 and the combining element 12. may
  • optical processing device of the third embodiment The optical processing apparatus of the third embodiment will be described below.
  • the configuration of the optical processing apparatus of the third embodiment is substantially the same as the configuration of the optical processing apparatuses of the first and second embodiments shown in FIGS. 1 to 5.
  • FIG. Therefore, hereinafter, with reference to FIGS. 1 and 2, the differences of the optical processing apparatus of the third embodiment with respect to the optical processing apparatuses of the first and second embodiments will be described, and common configurations will be described as appropriate. Description is omitted.
  • the optical processing apparatus of the third embodiment does not have the correction optical system 11 . Therefore, the amount of longitudinal chromatic aberration D1 or chromatic aberration of magnification D2 in the vicinity of the illuminated surface 17 becomes a large value compared to the optical processing apparatuses of the first and second embodiments described above. Also in the optical processing apparatus of the third embodiment, the position of the surface to be processed 18s is calculated by the measuring unit 23 and the calculating unit 24 using the second light flux R2 of the second wavelength.
  • the optical processing device of the third embodiment includes the position information corrector 25 described above.
  • the position information correction unit 25 is a condensing optical system that is numerical data indicating the relationship between the rotation angle of the swing mirror 14 or the X position of the condensing point FP and at least one of the longitudinal chromatic aberration D1 and the chromatic aberration of magnification D2. 16 pieces of aberration information are stored.
  • the position information correction unit 25 may also store information on the so-called telecentricity of the condensing optical system 16 .
  • the position information correction unit 25 Based on the information on the rotation angle of the oscillating mirror 14 sent from the control unit 22 or the information on the X position of the focal point FP, the position information correction unit 25 corrects the information on the characteristics of the condensing optical system 16 to: At least one of the longitudinal chromatic aberration D1 and the lateral chromatic aberration D2 at the focal point FP is calculated.
  • the position information correction unit 25 corrects the position information of the surface to be processed 18s calculated by the calculation unit 24 and transmitted as the signal S9 based on at least one of the axial chromatic aberration D1 and the chromatic aberration of magnification D2 calculated as described above. Then, the position information correction unit 25 sends back the corrected position information of the surface 18s to be processed to the calculation unit 24 as a signal S10.
  • the optical processing apparatus of the third embodiment can accurately detect the position of the surface to be processed 18s even when using the optical apparatus 2 with relatively large longitudinal chromatic aberration D1 or chromatic aberration of magnification D2. 18s of surfaces to be processed can be processed with high precision. Note that, like the optical processing apparatuses of the first and second embodiments described above, both the position information correction unit 25 and the correction optical system 11 may be provided to correct chromatic aberration with higher accuracy.
  • the first light flux R1 having the first wavelength supplied along the first optical path P1 and the first light flux R1 having the first wavelength supplied along the second optical path P2 are different from each other.
  • a synthesizing element 12 for combining the second light flux R2 of two wavelengths, a condensing optical system 16 for condensing the first light flux R1 and the second light flux R2 combined by the synthesizing element 12 onto the illuminated surface 17;
  • a holding unit 19 that holds the workpiece 18 so that the surface 18s to be processed matches the surface 17 to be irradiated, and the second light beam R2 is reflected or scattered by the surface 18s to be processed, and is combined with the condensing optical system 16.
  • a measurement unit 23 that detects the detection light that has returned to the second optical path P2 via the element 12 .
  • the present invention is not limited to the above contents. Other aspects conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. This embodiment may combine all or part of the above aspects.
  • (Section 1) a synthesizing element for synthesizing a first optical path of a first light beam having a first wavelength and a second optical path of a second light beam having a second wavelength longer than the first wavelength;
  • a condensing optical system condensing the first light beam and the second light beam from the element, and a correction optical system having a negative refractive power, wherein the correction optical system is located on the incident side of the combining element.
  • optical device arranged in the first optical path in
  • (Section 2) a synthesizing element for synthesizing a first optical path of a first light beam having a first wavelength and a second optical path of a second light beam having a second wavelength longer than the first wavelength;
  • the back focus of the combined optical system of the condensing optical system and the correcting optical system at the first wavelength and the back focus of the condensing optical system at the second wavelength is smaller than the absolute value of the difference between the back focus of the condensing optical system at the first wavelength and the back focus of the condensing optical system at the second wavelength.
  • (Section 4) a synthesizing element for synthesizing a first optical path of a first light beam having a first wavelength and a second optical path of a second light beam having a second wavelength longer than the first wavelength;
  • optical device arranged in the second optical path in
  • (Section 5) a synthesizing element for synthesizing a first optical path of a first light beam having a first wavelength and a second optical path of a second light beam having a second wavelength longer than the first wavelength;
  • the first condensing optical system and the second condensing optical system have different back focal lengths
  • the first correcting optical system and the second correcting optical system are optical devices with different focal lengths.
  • (Section 15) 15. The optical device according to any one of items 1 to 14, wherein the condensing optical system includes, in order from the combining element side, a first lens having negative refractive power and a lens having positive refractive power as a whole. and a second lens group having a power, wherein the focal length fc of the correction optical system at the first wavelength and the focal length fg of the condensing optical system at the first wavelength are
  • the one beam is applied to the workpiece through the synthesizing element and the condensing optical system, and the other beam is applied to the synthesizing element and the condensing optical system.
  • the apparatus further comprises a measurement unit that irradiates the workpiece through an optical system and detects detection light generated by the other light flux that irradiates the workpiece through the condensing optical system and the synthesizing element. , optical processing equipment.
  • (Section 21) 21 The optical processing apparatus according to claim 20, further comprising a calculator that generates information about the measurement result of the workpiece based on the detected light detected by the measuring unit.
  • (Section 22) 22 The optical processing apparatus according to claim 21, wherein the other light flux is emitted based on information on the measurement result.
  • (Section 23) 23 The optical processing apparatus according to claim 22, wherein at least one of the irradiation position, the number of times of irradiation, and irradiation conditions of the other light beam on the workpiece is determined based on the information about the measurement result.
  • (Section 26) 26 The optical processing device according to claim 25, wherein the other light beam is applied based on the information regarding the position.
  • (Section 27) 27 The optical processing apparatus according to claim 26, wherein at least one of the irradiation position of the other light beam on the workpiece, the number of times of irradiation, and irradiation conditions is determined based on the information regarding the position.
  • (Section 30) a condensing optical system that converges the first light beam and the second light beam from the synthesizing element; and a correction optical system that is arranged in the optical path of the first light flux on the incident side of the synthesizing element.
  • the distance between the condensing position of the first light flux and the condensing position of the second light flux when the correction optical system is arranged in the optical path is equal to the distance between the convergence position of the first light flux and the convergence position of the second light flux when the correction optical system is not arranged in the optical path;
  • An optical device wherein a distance between a condensing position of one light flux and a condensing position of the second light flux is shorter.
  • the optical axis of the condensing optical system between the condensing position of the first light beam and the condensing position of the second light beam when the correction optical system is arranged in the optical path is shorter than the distance along the optical axis between the condensing position of the first light flux and the condensing position of the second light flux when the correcting optical system is not arranged in the optical path.
  • a calculation unit for calculating position information of a portion of the surface to be processed irradiated with the second beam based on information on the intensity of the detection light detected by the measurement unit; and a position information correction unit that corrects the position information calculated by the calculation unit based on information about characteristics.
  • (Section 33) 32 In the optical processing apparatus according to item 32, arranged on the first optical path, the condensing position of the first light flux in the vicinity of the surface to be illuminated is shifted in the optical axis direction of the condensing optical system to the second An optical processing device, further comprising a correction optical system that brings the light beam closer to the condensing position. (Section 34) 34.
  • configurations of the 32nd to 34th items described above may further include the configuration described in any of the 1st to 9th items described above.

Abstract

This optical processing device comprises a combining element that combines a first optical path of a first light beam of a first wavelength and a second optical path of a second light beam of a second wavelength which is longer than the first wavelength, a condensing optical system that has a positive refractive force and condenses each of the first light beam and the second light beam from the combining element toward a workpiece, and a correction optical system having a negative refractive force, wherein the correction optical system is arranged in the first optical path on the incident side of the combining element, one of the first and second light beams is for processing the workpiece and the other of the first and second light beams is for measuring the workpiece.

Description

光加工装置optical processing equipment
 本発明は、光加工装置に関する。 The present invention relates to an optical processing device.
 物体を加工可能な加工装置として、特許文献1には、物体の表面にレーザー光線を照射して構造を形成する加工装置が記載されている。この種の加工装置には、物体を適切に加工することが要求されている(特許文献1)。 As a processing device capable of processing an object, Patent Document 1 describes a processing device that forms a structure by irradiating the surface of an object with a laser beam. This type of processing apparatus is required to appropriately process an object (Patent Document 1).
米国特許第4994639号明細書U.S. Pat. No. 4,994,639
 第1の態様によると、光加工装置は、第1波長の第1光束の第1光路と、前記第1波長より長い波長の第2波長の第2光束の第2光路とを合成させる合成素子と、正の屈折力を有し、前記合成素子からの前記第1光束と前記第2光束とをそれぞれ、被加工物に向けて集光させる集光光学系と、負の屈折力を有する補正光学系と、を備え、前記補正光学系は、前記合成素子の入射側における前記第1光路に配置され、前記第1光束および前記第2光束の一方の光束は、前記被加工物を加工する光束であり、前記第1光束および前記第2光束の他方の光束は、前記被加工物を計測する光束である。
 第2の態様によると、光加工装置は、第1波長の第1光束の第1光路と、前記第1波長より長い波長の第2波長の第2光束の第2光路とを合成する合成素子と、正の屈折力を有し、前記合成素子からの前記第1光束と前記第2光束とをそれぞれ、被加工物に向けて集光させる集光光学系と、正の屈折力を有する補正光学系と、を備え、前記補正光学系は、前記合成素子の入射側における前記第1光路に配置され、前記第1波長における前記集光光学系のバックフォーカスは、前記第2波長における前記集光光学系のバックフォーカスよりも長く、前記第1光束及び前記第2光束の一方の光束は、前記被加工物を加工する光束であり、前記第1光束及び前記第2光束の他方の光束は、前記被加工物を計測する光束である。
 第3の態様によると、光加工装置は、第1波長の第1光束の第1光路と、前記第1波長より長い波長の第2波長の第2光束の第2光路とを合成させる合成素子と、正の屈折力を有し、前記合成素子からの前記第1光束と前記第2光束とをそれぞれ、被加工物に向けて集光させる集光光学系と、正の屈折力を有する補正光学系と、を備え、前記補正光学系は、前記合成素子の入射側における前記第2光路に配置され、前記第1光束および前記第2光束の一方の光束は、前記被加工物を加工する光束であり、前記第1光束および前記第2光束の他方の光束は、前記被加工物を計測する光束である。
 第4の態様によると、光加工装置は、第1波長の第1光束の第1光路と、前記第1波長より長い波長の第2波長の第2光束の第2光路とを合成する合成素子と、正の屈折力を有し、前記合成素子からの前記第1光束と前記第2光束とをそれぞれ、被加工物に向けて集光させる集光光学系と、負の屈折力を有する補正光学系と、を備え、前記補正光学系は、前記合成素子の入射側における前記第2光路に配置され、前記第1波長における前記集光光学系のバックフォーカスは、前記第2波長における前記集光光学系のバックフォーカスよりも長く、前記第1光束及び前記第2光束の一方の光束は、前記被加工物を加工する光束であり、前記第1光束及び前記第2光束の他方の光束は、前記被加工物を計測する光束である。
According to the first aspect, the optical processing device is a synthesizing element for synthesizing a first optical path of a first light flux having a first wavelength and a second optical path of a second light flux having a second wavelength longer than the first wavelength. and a condensing optical system having a positive refractive power and condensing the first light flux and the second light flux from the synthesizing element toward a workpiece, and a corrector having a negative refractive power. and an optical system, wherein the correcting optical system is arranged on the first optical path on the incident side of the combining element, and one of the first light flux and the second light flux processes the workpiece. and the other one of the first and second beams is a beam for measuring the workpiece.
According to the second aspect, the optical processing device is a synthesizing element for synthesizing a first optical path of a first light flux having a first wavelength and a second optical path of a second light flux having a second wavelength longer than the first wavelength. and a condensing optical system having a positive refractive power and condensing the first light flux and the second light flux from the synthesizing element toward an object to be processed, and a corrector having a positive refractive power. and an optical system, wherein the correcting optical system is arranged in the first optical path on the incident side of the combining element, and the back focus of the condensing optical system at the first wavelength is the converging optical system at the second wavelength. one of the first light flux and the second light flux is longer than the back focus of the optical optical system and is a light flux for processing the workpiece, and the other light flux of the first light flux and the second light flux is , the light flux for measuring the workpiece.
According to the third aspect, the optical processing device is a synthesizing element for synthesizing a first optical path of a first light flux having a first wavelength and a second optical path of a second light flux having a second wavelength longer than the first wavelength. and a condensing optical system having a positive refractive power and condensing the first light flux and the second light flux from the synthesizing element toward an object to be processed, and a corrector having a positive refractive power. and an optical system, wherein the correcting optical system is arranged on the second optical path on the incident side of the combining element, and one of the first light flux and the second light flux processes the workpiece. and the other one of the first and second beams is a beam for measuring the workpiece.
According to a fourth aspect, the optical processing device is a synthesizing element that synthesizes a first optical path of a first light flux having a first wavelength and a second optical path of a second light flux having a second wavelength longer than the first wavelength. and a condensing optical system having a positive refractive power and condensing the first light flux and the second light flux from the synthesizing element toward a workpiece, and a corrector having a negative refractive power. and an optical system, wherein the correcting optical system is arranged in the second optical path on the incident side of the combining element, and the back focus of the condensing optical system at the first wavelength is the converging optical system at the second wavelength. one of the first light flux and the second light flux is longer than the back focus of the optical optical system and is a light flux for processing the workpiece, and the other light flux of the first light flux and the second light flux is , the light flux for measuring the workpiece.
第1実施形態の光加工装置の構成を概略的に示す図。The figure which shows roughly the structure of the optical processing apparatus of 1st Embodiment. 第1光束および第2光束が、集光位置に集光する状態を説明する図。The figure explaining the state in which a 1st light flux and a 2nd light flux converge on a condensing position. 第1実施形態の光学装置の光学設計例を示す図。FIG. 4 is a diagram showing an optical design example of the optical device of the first embodiment; 第2実施形態の光学装置が備える集光光学系の構成を概略的に示す図。The figure which shows roughly the structure of the condensing optical system with which the optical apparatus of 2nd Embodiment is provided. 第2実施形態の光学装置の光学設計例を示す図。FIG. 10 is a diagram showing an optical design example of the optical device of the second embodiment; 変形例の光加工装置の構成を概略的に示す図。The figure which shows roughly the structure of the optical processing apparatus of a modification.
(第1実施形態の光加工装置)
 図1は、第1実施形態の光加工装置1の構成を概略的に示す図である。図1および後述する各図に矢印で示したX方向、Y方向およびZ方向はそれぞれ直交する方向であるとともに、X方向、Y方向およびZ方向のそれぞれは各図において同一の方向を示している。また、図1に矢印で示したXZ方向は、上述したX方向とZ方向との中間の方向であり、すなわちY方向と直交し、X方向およびZ方向からそれぞれ45°離れた方向を示している。以下では、各矢印の示す方向を、それぞれ+X方向、+Y方向、+Z方向、および+XZ方向と呼ぶ。また、X方向の位置をX位置、Y方向の位置をY位置、Z方向の位置をZ位置と呼ぶ。
(Optical processing device of the first embodiment)
FIG. 1 is a diagram schematically showing the configuration of an optical processing device 1 of the first embodiment. The X direction, Y direction, and Z direction indicated by arrows in FIG. 1 and each figure to be described later are directions orthogonal to each other, and each of the X direction, Y direction, and Z direction indicates the same direction in each figure. . Further, the XZ direction indicated by the arrow in FIG. 1 is a direction intermediate between the X direction and the Z direction described above, that is, a direction perpendicular to the Y direction and separated from the X direction and the Z direction by 45°. there is Hereinafter, the directions indicated by the arrows will be referred to as +X direction, +Y direction, +Z direction, and +XZ direction, respectively. The position in the X direction is called the X position, the position in the Y direction is called the Y position, and the position in the Z direction is called the Z position.
 第1実施形態の光加工装置1は、破線で囲った枠内に示す光学装置2と、ガイド20と、試料台19と、制御部22と、計測部23と、算出部24と、位置情報修正部25とを備えている。光加工装置1は、光源10から発せられ、第1光路P1を経て光学装置2に入射する第1波長の第1光束R1を、光学装置2により被照射面17に集光する。試料台19上には被加工物18が載置され、試料台19は被加工物18の被加工面18sが光学装置2の被照射面17と一致するように被加工物18を配置する。 The optical processing device 1 of the first embodiment includes an optical device 2, a guide 20, a sample stage 19, a control unit 22, a measurement unit 23, a calculation unit 24, position information and a correction unit 25 . In the optical processing device 1 , a first light beam R<b>1 having a first wavelength, which is emitted from a light source 10 and is incident on the optical device 2 via a first optical path P<b>1 , is condensed onto an irradiated surface 17 by the optical device 2 . A workpiece 18 is placed on a sample table 19 , and the workpiece 18 is placed on the sample table 19 so that a surface 18 s to be processed of the workpiece 18 coincides with the surface 17 to be irradiated of the optical device 2 .
 また、試料台19はリニアモータ等の駆動部材を備え、ガイド20上をX方向およびY方向の少なくとも一方に移動する。なお、試料台19は、被加工物18をZ方向(集光光学系16の光軸方向)に沿って移動させてもよい。また、光学装置2がZ方向に沿って可動であってもよい。なお、第1光束R1と後述する第2光束R2のそれぞれの被加工物18への集光位置をZ方向に沿って変化させるフォーカス調整光学系(不図示)を配置してもよい。 Also, the sample stage 19 has a driving member such as a linear motor, and moves on the guide 20 in at least one of the X direction and the Y direction. Note that the sample table 19 may move the workpiece 18 along the Z direction (the optical axis direction of the condensing optical system 16). Also, the optical device 2 may be movable along the Z direction. A focus adjustment optical system (not shown) may be arranged to change the condensing positions of the first light beam R1 and the second light beam R2, which will be described later, on the workpiece 18 along the Z direction.
 この場合、フォーカス調整光学系は、後述の、合成素子12と固定ミラー13(偏光走査部)の間における前段第3光路P3a(言い換えると、第1光路P1と第2光路P2とが重畳した光路)に配置してもよい。なお、フォーカス調整光学系は、光源10と合成素子12の間における第1光路P1(後述)と、計測部23と合成素子12の間における第2光路P2(後述)との少なくとも一方の光路に配置してもよい。 In this case, the focus adjustment optical system is a front-stage third optical path P3a (in other words, an optical path in which the first optical path P1 and the second optical path P2 are superimposed) between the synthesizing element 12 and the fixed mirror 13 (polarization scanning unit), which will be described later. ). The focus adjustment optical system is positioned on at least one of a first optical path P1 (described later) between the light source 10 and the synthesizing element 12 and a second optical path P2 (described later) between the measuring unit 23 and the synthesizing element 12. may be placed.
 試料台19のX位置、Y位置、およびZ位置は、一例として光学式エンコーダー21により計測され、試料台19の位置情報は、計測信号S1として制御部22に送られる。制御部22は、計測信号S1に基づいて、試料台19に制御信号S2を送り、試料台19を所望の位置に設定する。
 試料台19を、試料を保持する保持部ということもできる。
 計測部23、算出部24、および位置情報修正部25の詳細については、後述する。
The X-position, Y-position, and Z-position of the sample table 19 are measured by an optical encoder 21, for example, and the positional information of the sample table 19 is sent to the controller 22 as a measurement signal S1. Based on the measurement signal S1, the controller 22 sends a control signal S2 to the sample stage 19 to set the sample stage 19 at a desired position.
The sample table 19 can also be referred to as a holder that holds the sample.
Details of the measurement unit 23, the calculation unit 24, and the position information correction unit 25 will be described later.
 光学装置2は、第1波長の第1光束R1が供給される光源10の側から順に、補正光学系11、合成素子12、固定ミラー13、揺動ミラー14、および点線で囲った枠内に示す集光光学系16を備えている。
 光源10から一例として平行光束として供給され、+Z方向に進む第1光束R1は、1つまたは複数のレンズまたはミラーからなり、所定の屈折力(パワー)を有する補正光学系11に入射する。補正光学系11を射出した第1光束R1は、合成素子12に入射する。ここで、光学系又は光学素子の屈折力とは、その光学系又は光学素子の焦点距離の逆数とすることができる。
The optical device 2 includes, in order from the side of the light source 10 supplied with the first light flux R1 of the first wavelength, a correction optical system 11, a synthesizing element 12, a fixed mirror 13, an oscillating mirror 14, and a It has a condensing optical system 16 shown.
A first beam R1, which is supplied from the light source 10 as a parallel beam as an example and travels in the +Z direction, is made up of one or more lenses or mirrors and enters a correction optical system 11 having a predetermined refractive power (power). The first light beam R<b>1 exiting the correction optical system 11 enters the combining element 12 . Here, the refractive power of an optical system or optical element can be the reciprocal of the focal length of the optical system or optical element.
 本明細書では、光源10と合成素子12との間の第1光束R1の光路を第1光路P1と呼ぶ。従って、補正光学系11は、第1光路P1に配置されているということができる。なお、第1光路P1は、光源10と合成素子12との間に限られない。例えば、第1光束R1の第1光路P1は、光加工装置1(光学装置2)において、光源10から、合成素子12、固定ミラー13、揺動ミラー14、及び集光光学系16を介して被加工物18に向けて進行する第1光束R1の光路であるとも言える。つまり、補正光学系11は、合成素子12の、第1光束R1の入射側における第1光路P1に配置されていると言える。 In this specification, the optical path of the first light beam R1 between the light source 10 and the combining element 12 is called the first optical path P1. Therefore, it can be said that the correction optical system 11 is arranged on the first optical path P1. Note that the first optical path P1 is not limited to between the light source 10 and the synthesizing element 12 . For example, in the optical processing device 1 (optical device 2), the first optical path P1 of the first light flux R1 passes from the light source 10 through the combining element 12, the fixed mirror 13, the oscillating mirror 14, and the condensing optical system 16. It can also be said that this is the optical path of the first light beam R1 traveling toward the workpiece 18 . In other words, it can be said that the correction optical system 11 is arranged in the first optical path P1 on the incident side of the first beam R1 of the combining element 12 .
 また、本明細書では、計測部23と合成素子12との間の第2光束R2の光路を第2光路P2と呼ぶ。従って、補正光学系11は、第2光路P2に配置されていないということができる。計測部23は、第2光束R2を発する計測光源23aと、後述するように被加工物18から戻ってくる検出光(第2光束R2)を受光する受光部23cと、計測光源23aから発せられる光と、被加工物18から戻ってくる光とを、分離および合成するビームスプリッタ23bとを有している。なお、ビームスプリッタ23bは、ハーフミラーであってもよい。 Also, in this specification, the optical path of the second light flux R2 between the measurement unit 23 and the combining element 12 is called a second optical path P2. Therefore, it can be said that the correction optical system 11 is not arranged in the second optical path P2. The measurement unit 23 includes a measurement light source 23a that emits a second light beam R2, a light receiving unit 23c that receives detection light (second light beam R2) returning from the workpiece 18 as will be described later, and light emitted from the measurement light source 23a. It has a beam splitter 23b that separates and combines the light and the light returning from the workpiece 18 . Note that the beam splitter 23b may be a half mirror.
 なお、第2光路P2は、計測部23と合成素子12との間に限られない。例えば、第2光束R2の第2光路P2は、光加工装置1(光学装置2)において、計測光源23a(計測部23)から、合成素子12、固定ミラー13、揺動ミラー14、及び集光光学系16を介して被加工物18に向けて進行する第2光束R2の光路であるとも言える。 It should be noted that the second optical path P2 is not limited to between the measurement unit 23 and the combining element 12. For example, the second optical path P2 of the second light beam R2 passes from the measurement light source 23a (measurement unit 23) to the combining element 12, the fixed mirror 13, the oscillating mirror 14, and the light condensing device 1 (optical device 2) in the optical processing device 1 (optical device 2). It can also be said that this is the optical path of the second light beam R2 traveling toward the workpiece 18 via the optical system 16 .
 合成素子12には、計測光源23a(計測部23)から第2光路P2を通って合成素子12に至る第2光束R2も入射する。ここで、第2光束R2は、第1光束R1の第1波長とは異なる第2波長の光束である。より詳しくは、第2光束R2の第2波長は、第1光束R1の第1波長よりも長い。合成素子12において、第1光路P1は、計測光源23a(計測部23)からの第2光路P2と合成される。従って、第1光束R1と第2光束R2とは、合成素子12により合成される。合成素子12は、一例としてダイクロイックプリズムであり、ダイクロイック反射面12rは、第1波長の第1光束R1を透過し、第1波長とは異なる第2波長の第2光束R2を反射する。 A second light beam R2 from the measurement light source 23a (measurement unit 23) to reach the combining element 12 through the second optical path P2 is also incident on the combining element 12. Here, the second light beam R2 is a light beam having a second wavelength different from the first wavelength of the first light beam R1. More specifically, the second wavelength of the second beam R2 is longer than the first wavelength of the first beam R1. In the synthesizing element 12, the first optical path P1 is synthesized with the second optical path P2 from the measurement light source 23a (measurement section 23). Therefore, the combining element 12 combines the first light flux R1 and the second light flux R2. The synthesizing element 12 is, for example, a dichroic prism, and the dichroic reflecting surface 12r transmits a first light flux R1 of a first wavelength and reflects a second light flux R2 of a second wavelength different from the first wavelength.
 合成素子12は、上述したダイクロイックプリズムに限られるものではなく、ダイクロイックミラーを有する平板ガラスにより構成されていても良い。あるいは、第1光束R1と第2光束R2とが、その偏光面が相互に概ね直交する直線偏光光である場合には、偏光ビームスプリッタを用いても良い。 The synthesizing element 12 is not limited to the dichroic prism described above, and may be composed of flat glass having a dichroic mirror. Alternatively, when the first light flux R1 and the second light flux R2 are linearly polarized lights whose polarization planes are substantially perpendicular to each other, a polarizing beam splitter may be used.
 合成素子12により合流された第1光束R1と第2光束R2は、ともに合成素子12から+Z方向へと射出され、固定ミラー13に入射する。固定ミラー13は、一例として、XZ方向およびY方向に平行な面に沿って配置された平面鏡である。+Z方向に進行して固定ミラー13に入射した第1光束R1および第2光束R2は、固定ミラー13により+X方向に反射され、平面鏡である揺動ミラー14に入射する。揺動ミラー14により概ね+Z方向に反射した第1光束R1および第2光束R2は、集光光学系16に入射する。 The first light flux R1 and the second light flux R2 combined by the synthesizing element 12 are both emitted from the synthesizing element 12 in the +Z direction and are incident on the fixed mirror 13 . The fixed mirror 13 is, for example, a plane mirror arranged along a plane parallel to the XZ direction and the Y direction. The first light flux R1 and the second light flux R2 that have traveled in the +Z direction and entered the fixed mirror 13 are reflected in the +X direction by the fixed mirror 13 and enter the oscillating mirror 14, which is a plane mirror. The first light beam R1 and the second light beam R2 reflected approximately in the +Z direction by the oscillating mirror 14 enter the condensing optical system 16 .
 本明細書では、合成素子12と集光光学系16との間の光路を第3光路P3と呼ぶ。従って、固定ミラー13および揺動ミラー14は、第3光路P3に配置されているということができる。また、第3光路P3のうち、合成素子12と固定ミラー13の間を前段第3光路P3a、固定ミラー13と揺動ミラー14の間を中段第3光路P3b、揺動ミラー14と集光光学系16との間を後段第3光路P3cとも呼ぶ。なお、上述のように、第1光束R1の第1光路P1は、光加工装置1において、光源10から、合成素子12、固定ミラー13、揺動ミラー14、及び集光光学系16を介して被加工物18に向けて進行する第1光束R1の光路であるとも言える。 In this specification, the optical path between the synthesizing element 12 and the condensing optical system 16 is called a third optical path P3. Therefore, it can be said that the fixed mirror 13 and the oscillating mirror 14 are arranged in the third optical path P3. Further, in the third optical path P3, a front stage third optical path P3a is between the synthesizing element 12 and the fixed mirror 13, a middle stage third optical path P3b is between the fixed mirror 13 and the oscillating mirror 14, and the oscillating mirror 14 and the condensing optics are arranged. The path to the system 16 is also referred to as a post-stage third optical path P3c. As described above, in the optical processing device 1, the first optical path P1 of the first light beam R1 passes from the light source 10 through the combining element 12, the fixed mirror 13, the oscillating mirror 14, and the condensing optical system 16. It can also be said that this is the optical path of the first light beam R1 traveling toward the workpiece 18 .
 また、第2光束R2の第2光路P2は、光加工装置1において、計測光源23a(計測部23)から、合成素子12、固定ミラー13、揺動ミラー14、及び集光光学系16を介して被加工物18に向けて進行する第2光束R2の光路であるとも言える。したがって、第3光路P3は、第1光束R1の第1光路P1と第2光束R2の第2光路P2との少なくとも一部が重畳した光路であるとも言える。つまり、固定ミラー13及び揺動ミラー14(つまり、偏向走査部)は、合成素子12と集光光学系16との間の第1光路P1及び第2光路P2に配置されているとも言える。 In the optical processing device 1, the second optical path P2 of the second light flux R2 passes from the measurement light source 23a (measurement unit 23) through the combining element 12, the fixed mirror 13, the oscillating mirror 14, and the condensing optical system 16. can also be said to be the optical path of the second light flux R2 traveling toward the workpiece 18. Therefore, it can be said that the third optical path P3 is an optical path in which at least a part of the first optical path P1 of the first light flux R1 and the second optical path P2 of the second light flux R2 overlap. In other words, it can be said that the fixed mirror 13 and the oscillating mirror 14 (that is, deflection scanning unit) are arranged on the first optical path P1 and the second optical path P2 between the combining element 12 and the condensing optical system 16 .
 集光光学系16は、複数のレンズ(L11~L15)を含む光学系である。集光光学系16の光軸AXを、図1中に鎖線で示している。なお、集光光学系16の光軸AXを加工装置2の射出側の光軸と称してもよい。このうち、最も入射側に配置されているレンズL11は、一例として負の屈折力を持つレンズである。以下では、レンズL11を第1レンズとも呼ぶ。そして、レンズL11よりも被照射面17側(下流側)に配置されているレンズ(L12~L15)は、第2レンズ群G20を構成し、全体として正の屈折力を有している。第1光束R1および第2光束R2は、集光光学系16の屈折力により、概ね被照射面17上に集光する。なお、説明の便宜上、第1光束R1および第2光束R2が被照射面17に集光することとしたが、第1光束R1の集光位置と第2光束R2の集光位置は、同一平面上(つまり、被照射面17上)でなくてもよい。 The condensing optical system 16 is an optical system including a plurality of lenses (L11 to L15). An optical axis AX of the condensing optical system 16 is indicated by a dashed line in FIG. The optical axis AX of the condensing optical system 16 may be referred to as the exit-side optical axis of the processing device 2 . Among them, the lens L11 arranged on the most incident side is, for example, a lens having a negative refractive power. Below, the lens L11 is also called the first lens. The lenses (L12 to L15) arranged closer to the irradiated surface 17 side (downstream side) than the lens L11 constitute the second lens group G20 and have positive refractive power as a whole. The first light flux R<b>1 and the second light flux R<b>2 are generally condensed on the illuminated surface 17 by the refractive power of the condensing optical system 16 . For convenience of explanation, the first light flux R1 and the second light flux R2 are condensed on the surface to be illuminated 17. It does not have to be on the top (that is, on the irradiated surface 17).
 揺動ミラー14は、駆動部材15により、一例としてY方向に平行な回転軸を中心として、所定角度の範囲内で揺動可能に保持されている。揺動ミラー14および駆動部材15として、一例として、いわゆるガルバノミラーを用いても良い。揺動ミラー14がY方向を回転中心として所定の角度範囲内で揺動すると、揺動ミラー14により反射された第1光束R1および第2光束R2の進行方向は、+Z方向から上記の所定の角度の2倍の角度だけ±X方向に離れた2つの方向の間で変化(揺動)する。 The oscillating mirror 14 is held by the drive member 15 so as to be able to oscillate within a predetermined angle range, for example, about a rotation axis parallel to the Y direction. A so-called galvanomirror may be used as an example of the swing mirror 14 and the driving member 15 . When the oscillating mirror 14 oscillates within a predetermined angular range about the Y direction as the center of rotation, the traveling directions of the first light flux R1 and the second light flux R2 reflected by the oscillating mirror 14 change from the +Z direction to the above-described predetermined direction. It changes (oscillates) between two directions separated in the ±X direction by twice the angle.
 揺動ミラー14の反射面が基準位置にあるとき、すなわちその反射面がY方向およびXZ方向と平行であるとき、揺動ミラー14で反射した第1光束R1および第2光束R2は、中央光路P4aを通って被照射面17上の中央集光点Faに概ね集光する。
 揺動ミラー14が基準位置からY方向に平行な回転軸を中心として左回りに回転すると、揺動ミラー14で反射した第1光束R1および第2光束R2は、右側光路P4bを通って被照射面17上の中央集光点Faよりも+X側にある右側集光点Fbに概ね集光する。
When the reflecting surface of the rocking mirror 14 is at the reference position, that is, when the reflecting surface is parallel to the Y direction and the XZ direction, the first light beam R1 and the second light beam R2 reflected by the rocking mirror 14 travel along the central optical path The light generally converges on the central condensing point Fa on the surface 17 to be illuminated through P4a.
When the oscillating mirror 14 rotates counterclockwise around the rotation axis parallel to the Y direction from the reference position, the first light flux R1 and the second light flux R2 reflected by the oscillating mirror 14 pass through the right optical path P4b and are irradiated. The light is generally condensed on the right condensing point Fb located on the +X side of the central condensing point Fa on the surface 17 .
 一方、揺動ミラー14が基準位置からY方向に平行な回転軸を中心として右回りに回転すると、揺動ミラー14で反射した第1光束R1および第2光束R2は、左側光路P4cを通って被照射面17上の中央集光点Faよりも-X側にある左側集光点Fcに概ね集光する。
 従って、揺動ミラー14を、第1光束R1および第2光束R2を偏向し、被照射面17の面内で走査させる偏向走査部であるということもできる。
On the other hand, when the swing mirror 14 rotates clockwise around the rotation axis parallel to the Y direction from the reference position, the first light beam R1 and the second light beam R2 reflected by the swing mirror 14 pass through the left optical path P4c. The light generally converges on the left condensing point Fc located on the -X side of the central condensing point Fa on the illuminated surface 17 .
Therefore, it can also be said that the swing mirror 14 is a deflection scanning unit that deflects the first light beam R1 and the second light beam R2 and causes the surface to be illuminated 17 to be scanned.
 なお、偏向走査部は、ガルバノミラーに限られない。例えば、偏向走査部は、合成素子12からの第1光束R1と第2光束R2をそれぞれ偏向させて、集光光学系16を介して、被加工物18に向けて第1光束R1と第2光束R2のそれぞれの集光点を走査させることが可能な既存の部材であってもよい。例えば、偏向走査部は、ポリゴンミラーであってもよい。
 制御部22は、駆動部材15に対して制御信号S3を送り、揺動ミラー14の向きを所定の向きに設定する。
Note that the deflection scanning unit is not limited to the galvanomirror. For example, the deflection scanning unit deflects the first light beam R1 and the second light beam R2 from the synthesizing element 12, and directs the first light beam R1 and the second light beam R2 toward the workpiece 18 via the condensing optical system 16. An existing member capable of scanning each focal point of the light beam R2 may be used. For example, the deflection scanner may be a polygon mirror.
The control unit 22 sends a control signal S3 to the drive member 15 to set the orientation of the swing mirror 14 to a predetermined orientation.
 以下では、中央光路P4a、右側光路P4b、および左側光路P4cを、合わせてまたは個々に、第4光路P4とも呼ぶ。また、中央集光点Fa、右側集光点Fb、および左側集光点Fcを、合わせてまたは個々に、集光点FPとも呼ぶ。 Hereinafter, the central optical path P4a, the right optical path P4b, and the left optical path P4c are also collectively or individually referred to as the fourth optical path P4. Also, the central condensing point Fa, the right condensing point Fb, and the left condensing point Fc are also collectively or individually referred to as the condensing point FP.
 集光光学系16は一例として、いわゆるfθレンズ系である。集光光学系16の射影特性がfθの場合、被照射面17における中央集光点Faから右側集光点Fbまたは左側集光点Fcまでの距離は、揺動ミラー14を射出した第1光束R1および第2光束R2の進行方向の+Z方向からのずれ角度に比例する。換言すれば、被照射面17における集光点FPのX位置は、揺動ミラー14の上述した基準位置からのY方向を中心とする回転角度θに比例する。
 なお、集光光学系16の射影特性はfθには限定されない。集光光学系16の射影特性は、例えば、等立体角射影特性や正射影特性であってもよい。
As an example, the condensing optical system 16 is a so-called fθ lens system. When the projection characteristic of the condensing optical system 16 is fθ, the distance from the central condensing point Fa on the illuminated surface 17 to the right condensing point Fb or the left condensing point Fc is the first light flux exiting the swing mirror 14. It is proportional to the deviation angle from the +Z direction of the traveling direction of R1 and the second light beam R2. In other words, the X position of the focal point FP on the illuminated surface 17 is proportional to the rotation angle θ of the swing mirror 14 from the above-described reference position about the Y direction.
Note that the projection characteristic of the condensing optical system 16 is not limited to fθ. The projection characteristic of the condensing optical system 16 may be, for example, an equisolid angle projection characteristic or an orthogonal projection characteristic.
 光源10から供給された第1光束R1は、上述した第1光路P1、第3光路P3、および第4光路P4を経て、被照射面17に配置された被加工物18の被加工面18sに照射される。計測光源23a(計測部23)から発せられた第2光束R2は、上述した第2光路P2、第3光路P3、および第4光路P4を経て、被照射面17に配置された被加工物18の被加工面18sに照射される。なお、第4光路P4も、第3光路P4と同様に、第1光束R1の第1光路P1と第2光束R2の第2光路P2との少なくとも一部が重畳した光路であるとも言える。 The first light beam R1 supplied from the light source 10 passes through the first optical path P1, the third optical path P3, and the fourth optical path P4, and reaches the processed surface 18s of the workpiece 18 arranged on the irradiated surface 17. be irradiated. The second light beam R2 emitted from the measurement light source 23a (measurement unit 23) passes through the above-described second optical path P2, third optical path P3, and fourth optical path P4, and reaches the workpiece 18 placed on the irradiation surface 17. is applied to the surface 18s to be processed. As with the third optical path P4, the fourth optical path P4 can also be said to be an optical path in which at least a portion of the first optical path P1 for the first light flux R1 and the second optical path P2 for the second light flux R2 overlap.
 第1実施形態の光加工装置1においては、第1光束R1は、被加工面18sを加工するための光束である。すなわち、第1光束R1は、被加工面18s自体を蒸発、或いは溶融させる(所謂、除去加工)、被加工面18sに物体を付加させる(所謂、付加加工)、被加工面18sを変質させる、または、被加工面18s上に形成されている膜材料を感光させる、蒸発させる、もしくは化学反応を生じさせることにより、第1光束R1が照射された部分の被加工面18sを加工する。なお、第1光束R1は、被加工面18sを加工するための光束でなくてもよい。第1光束R1は、例えば、被加工面18sを計測するための光束であってもよい。 In the optical processing device 1 of the first embodiment, the first beam R1 is a beam for processing the surface 18s to be processed. That is, the first light beam R1 evaporates or melts the surface to be processed 18s itself (so-called removal processing), adds an object to the surface to be processed 18s (so-called additional processing), alters the surface to be processed 18s, Alternatively, the portion of the surface to be processed 18s irradiated with the first light flux R1 is processed by exposing, evaporating, or causing a chemical reaction in the film material formed on the surface to be processed 18s. Note that the first light beam R1 may not be a light beam for processing the surface 18s to be processed. The first beam R1 may be, for example, a beam for measuring the surface to be processed 18s.
 第1実施形態の光加工装置1においては、第2波長の第2光束R2は、一例として、被加工面18sの位置を計測するための光束である。第2光束R2は、被加工面18sの一部に照射され、被加工面18sで反射または散乱された第2光束R2は、第4光路P4および第3光路P3を経て、合成素子12に戻る。そして、第2光束R2は合成素子12のダイクロイック反射面12rで反射され、第2光路P2を通って、計測部23(受光部23c)により受光される。被加工面18sで反射または散乱され、計測部23(受光部23c)により受光される第2光束R2を、検出光と呼ぶこともできる。なお、第2光束R2は、被加工面18sを計測するための光束でなくてもよい。第2光束R2は、例えば、被加工面18sを加工するための光束であってもよい。なお、第1光束R1が被加工面18sを計測するための光束である場合、第2光束R2は、被加工面18sを加工するための光束であってもよい。なお、第1光束R1が被加工面18sを加工するための光束である場合、第2光束R2も、被加工面18sを加工するための光束であってもよい。なお、第1光束R1が被加工面18sを計測するための光束である場合、第2光束R2も、被加工面18sを計測するための光束であってもよい。
 なお、本実施形態では、第2波長は第1波長よりも長い波長ではあるが、第2波長が第1波長よりも短い波長であってもよい。
In the optical processing device 1 of the first embodiment, the second light flux R2 of the second wavelength is, for example, a light flux for measuring the position of the surface to be processed 18s. The second light flux R2 is applied to a portion of the surface 18s to be processed, and the second light flux R2 reflected or scattered by the surface 18s to be processed returns to the combining element 12 via the fourth optical path P4 and the third optical path P3. . Then, the second light beam R2 is reflected by the dichroic reflecting surface 12r of the synthesizing element 12, passes through the second optical path P2, and is received by the measuring section 23 (light receiving section 23c). The second light beam R2 reflected or scattered by the surface 18s to be processed and received by the measurement unit 23 (light receiving unit 23c) can also be referred to as detection light. In addition, the second light flux R2 may not be a light flux for measuring the surface to be processed 18s. The second beam R2 may be, for example, a beam for processing the surface 18s to be processed. When the first light beam R1 is for measuring the surface 18s to be processed, the second light beam R2 may be for processing the surface 18s to be processed. When the first light beam R1 is for processing the surface 18s to be processed, the second light beam R2 may also be for processing the surface 18s to be processed. If the first beam R1 is for measuring the surface 18s to be processed, the second beam R2 may also be for measuring the surface 18s to be processed.
Although the second wavelength is longer than the first wavelength in this embodiment, the second wavelength may be shorter than the first wavelength.
 計測部23(受光部23c)が検出した検出光の強度に関する情報は、算出部24に送られる。算出部24は、計測部23が検出した検出光の強度に関する情報に基づいて、被加工面18sのうちの第2光束R2が照射された部分に関する位置情報を算出する。算出部24が算出する位置情報は、被加工面18sのX位置に関する情報、Y位置に関する情報、またはZ位置に関する情報のいずれか1つ以上である。 Information about the intensity of the detected light detected by the measurement unit 23 (light receiving unit 23c) is sent to the calculation unit 24. The calculator 24 calculates position information about the portion of the surface to be processed 18s irradiated with the second beam R2 based on the information about the intensity of the detection light detected by the measuring unit 23 . The position information calculated by the calculator 24 is one or more of information on the X position, information on the Y position, and information on the Z position of the surface 18s to be processed.
 計測部23は、例えば干渉計を含んでいても良い。このような位置計測部として、日本国特許第5231883号に開示される三次元形状計測装置を適用してもよい。
 なお、算出部24は、制御部22から送信される試料台19の位置情報または揺動ミラー14の回転角度に関する情報を含む信号S6にも基づいて、被加工面18sに関する位置情報を算出しても良い。
The measurement unit 23 may include an interferometer, for example. A three-dimensional shape measuring device disclosed in Japanese Patent No. 5231883 may be applied as such a position measuring unit.
The calculation unit 24 also calculates the position information regarding the surface 18s to be processed based on the signal S6 including the information regarding the position information of the sample table 19 or the rotation angle of the oscillating mirror 14 transmitted from the control unit 22. Also good.
 なお、算出部24が算出する被加工物18sの位置情報は、被加工物18sの座標、被加工物18sに含まれる複数の点の点群、被加工物18sを表す三次元モデルであっても良い。
 計測部23は、被加工面18sの位置に関する情報に代えて、あるいは加えて、被加工面18sの形状、被加工面18sの表面粗さ、被加工面18sの温度、被加工面18sの反射率、被加工面18sの透過率のうちの、少なくとも一つを検出しても良い。
The position information of the workpiece 18s calculated by the calculator 24 is the coordinates of the workpiece 18s, a point group of a plurality of points included in the workpiece 18s, and a three-dimensional model representing the workpiece 18s. Also good.
Instead of or in addition to the information about the position of the surface 18s to be processed, the measurement unit 23 measures the shape of the surface 18s to be processed, the surface roughness of the surface 18s to be processed, the temperature of the surface 18s to be processed, the reflection of the surface 18s to be processed, At least one of the transmission rate and the transmittance of the surface 18s to be processed may be detected.
 図2は、集光光学系16により被照射面17に集光される第4光路P4を示す概念図である。なお、図2では、簡略化のために集光光学系16のうち、最も被照射面17に近い1枚のレンズL15のみを示している。
 集光光学系16には僅かではあるが色収差が残存する。このため、第4光路P4を通って被照射面17に照射される光の集光点FPは、第1波長の第1光束R1の第1集光点FP1と、第1波長とは異なる第2波長の第2光束R2の第2集光点FP2とに分離する。
FIG. 2 is a conceptual diagram showing a fourth optical path P4 condensed on the surface 17 to be illuminated by the condensing optical system 16. As shown in FIG. In FIG. 2, only one lens L15 closest to the illuminated surface 17 is shown in the condensing optical system 16 for simplification.
Chromatic aberration remains in the condensing optical system 16, although it is slight. Therefore, the condensing point FP of the light irradiated onto the illuminated surface 17 through the fourth optical path P4 is the first condensing point FP1 of the first light beam R1 of the first wavelength, and the light of the first wavelength different from the first wavelength. It is separated into a second condensing point FP2 of a second light flux R2 of two wavelengths.
 以下では、第1集光点FP1と第2集光点FP2とのZ位置の差を軸上色収差D1と呼び、XY面内方向の位置の差を倍率色収差D2と呼ぶ。
 なお、図2においては、一例として、第1集光点FP1が形成される面を、被照射面17として示している。なお、第1集光点FP1が形成される面を集光光学系16の像面と称してもよい。
Hereinafter, the difference in Z position between the first focal point FP1 and the second focal point FP2 will be referred to as axial chromatic aberration D1, and the difference in position in the XY in-plane direction will be referred to as lateral chromatic aberration D2.
In addition, in FIG. 2, as an example, the surface on which the first focal point FP1 is formed is shown as the irradiated surface 17. As shown in FIG. Note that the plane on which the first condensing point FP1 is formed may be referred to as the image plane of the condensing optical system 16 .
 光加工装置1は、第2光束R2を用いて計測部23および算出部24により検出および算出された被加工面18sの位置情報等に基づいて、被加工面18sに対する第1光束R1の照射位置、照射回数、照射条件の少なくとも一つを決定する。なお、第1光束R1の照射回数は、単位時間当たりの第1光束R1の照射回数や被加工面18sの所定位置に対する第1光束R1の照射回数などであり、なお、第1光束R1の照射条件は、例えば、第1光束R1の強度や第1光束R1の波長などを含んでいてもよい。 The optical processing device 1 uses the second beam R2 to determine the irradiation position of the first beam R1 on the surface to be processed 18s based on the position information of the surface to be processed 18s detected and calculated by the measurement unit 23 and the calculation unit 24. , the number of times of irradiation, and irradiation conditions. The number of times of irradiation of the first light beam R1 is the number of times of irradiation of the first light beam R1 per unit time, the number of times of irradiation of the first light beam R1 to a predetermined position on the surface 18s to be processed, and the like. The conditions may include, for example, the intensity of the first light flux R1, the wavelength of the first light flux R1, and the like.
 ただし、計測部23および算出部24により検出および算出する被加工面18sの位置情報は、第2波長の第2光束R2を用いて計測された位置情報である。従って、この位置情報は、光加工に用いる第1波長の第1光束R1を基準とする被加工面18sの位置に対し、上述した軸上色収差D1および倍率色収差D2分の誤差を有している。 However, the positional information of the surface to be processed 18s detected and calculated by the measuring unit 23 and the calculating unit 24 is positional information measured using the second light beam R2 of the second wavelength. Therefore, this position information has an error corresponding to the above-described axial chromatic aberration D1 and chromatic aberration of magnification D2 with respect to the position of the surface to be processed 18s based on the first light flux R1 of the first wavelength used for optical processing. .
 第1実施形態の光加工装置1においては、光学装置2の第1光路P1に配置された補正光学系11が、被照射面17の近傍における第1光束R1の集光位置(第1集光点FP1の位置)を、第2光束R2の集光位置(第2集光点FP2の位置)に近づける。従って、補正光学系11を設けない場合に比べ、上述した軸上色収差D1の大きさが低減される。 In the optical processing device 1 of the first embodiment, the correction optical system 11 arranged on the first optical path P1 of the optical device 2 is arranged at a condensing position (first condensing position) of the first light beam R1 near the surface 17 to be illuminated. The position of the point FP1) is brought closer to the condensing position of the second light flux R2 (the position of the second condensing point FP2). Therefore, compared to the case where the correction optical system 11 is not provided, the magnitude of the longitudinal chromatic aberration D1 described above is reduced.
 ここで、集光光学系16の焦点距離が正(屈折力が正)で集光光学系16の軸上色収差が補正不足の場合(つまり、第1波長における集光光学系16のバックフォーカスが第2波長における集光光学系16のバックフォーカスよりも短い場合)、光学装置2の第1光路P1に配置する補正光学系11の焦点距離を負(屈折力を負)にすることによって、集光光学系16と補正光学系11の合成光学系の第1波長でのバックフォーカスと、集光光学系16の第2波長でのバックフォーカスとの差の絶対値を、集光光学系16の第1波長でのバックフォーカスと集光光学系16の第2波長でのバックフォーカスとの差の絶対値よりも小さくできる。 Here, when the focal length of the condensing optical system 16 is positive (positive refractive power) and the axial chromatic aberration of the condensing optical system 16 is insufficiently corrected (that is, the back focus of the condensing optical system 16 at the first wavelength is is shorter than the back focus of the condensing optical system 16 at the second wavelength), by making the focal length of the correction optical system 11 arranged in the first optical path P1 of the optical device 2 negative (negative refractive power), The absolute value of the difference between the back focus at the first wavelength of the combined optical system of the light optical system 16 and the correction optical system 11 and the back focus at the second wavelength of the condensing optical system 16 is It can be smaller than the absolute value of the difference between the back focus at the first wavelength and the back focus at the second wavelength of the condensing optical system 16 .
 一方、集光光学系16の焦点距離が正(屈折力が正)で集光光学系16の軸上色収差が補正過剰である場合(つまり、第1波長における集光光学系16のバックフォーカスが第2波長における集光光学系16のバックフォーカスよりも長い場合)には、光学装置2の第1光路P1に配置する補正光学系11の焦点距離を正(屈折力を正)にすることによって、集光光学系16と補正光学系11の合成光学系の第1波長でのバックフォーカスと、集光光学系16の第2波長でのバックフォーカスとの差の絶対値を、集光光学系16の第1波長でのバックフォーカスと集光光学系16の第2波長でのバックフォーカスとの差の絶対値よりも小さくできる(集光光学系16の屈折力が正で集光光学系16の軸上色収差が補正過剰である場合の光学装置は、第2実施形態で詳述する)。
 なお、光学系のバックフォーカスは、当該光学系の最も射出側の光学部材の光学面から当該光学系の後側焦点位置までの、当該光学系の光軸に沿った距離とすることができる。
 従って、計測部23および算出部24により検出および算出する被加工面18sの位置情報に含まれる、軸上色収差D1に起因する誤差が低減され、被加工面18sの位置情報をより正確に算出することができる。
On the other hand, when the focal length of the condensing optical system 16 is positive (positive refractive power) and the longitudinal chromatic aberration of the condensing optical system 16 is overcorrected (that is, the back focus of the condensing optical system 16 at the first wavelength is longer than the back focus of the condensing optical system 16 at the second wavelength), by making the focal length of the correction optical system 11 arranged in the first optical path P1 of the optical device 2 positive (positive refractive power) , the absolute value of the difference between the back focus at the first wavelength of the combined optical system of the condensing optical system 16 and the correction optical system 11 and the back focus of the condensing optical system 16 at the second wavelength, 16 at the first wavelength and the back focus at the second wavelength of the condensing optical system 16 (when the refractive power of the condensing optical system 16 is positive and the condensing optical system 16 is overcorrected, the optical device will be described in detail in the second embodiment).
The back focus of the optical system can be the distance along the optical axis of the optical system from the optical surface of the optical member closest to the emission side of the optical system to the rear focal position of the optical system.
Therefore, the error due to the longitudinal chromatic aberration D1 included in the positional information of the surface to be processed 18s detected and calculated by the measuring unit 23 and the calculating unit 24 is reduced, and the positional information of the surface to be processed 18s is calculated more accurately. be able to.
 なお、一般的には集光光学系16に残存する色収差により、被照射面17の法線N1に対する第1光束R1の主光線R1pの角度φ1と、被照射面17の法線N2に対する第2光束R2の主光線R2pの角度φ2とは、異なる角度となる場合がある。 In general, due to the chromatic aberration remaining in the condensing optical system 16, the angle φ1 of the principal ray R1p of the first light beam R1 with respect to the normal N1 of the surface to be irradiated 17 and the second angle with respect to the normal N2 of the surface to be irradiated 17 The angle φ2 of the principal ray R2p of the luminous flux R2 may be different.
 第1実施形態の光加工装置1においては、光学装置2の光学設計を最適化することにより、角度φ1および角度φ2の絶対値が、ともに1°以下となるように設定されている。すなわち、揺動ミラー14の揺動により、第4光路P4の位置が、図1に示した中央光路P4a、右側光路P4b、および左側光路P4c等の位置に変化しても、主光線R1pおよび主光線R2pは、被照射面17に対して1°以内の入射角で入射する。なお、第1光束R1の主光線R1p、および第2光束R2の主光線R2pの、それぞれの集光位置での法線(Z方向)に対する角度は、1°以内であると言い換えることもできる。なお、光学装置2(光加工装置1)の物側(被加工面18s側)がテレセントリック特性を有すると言い換えることもできる。 In the optical processing device 1 of the first embodiment, by optimizing the optical design of the optical device 2, the absolute values of the angles φ1 and φ2 are both set to 1° or less. That is, even if the position of the fourth optical path P4 changes to the position of the central optical path P4a, the right optical path P4b, the left optical path P4c, etc. shown in FIG. The light ray R2p is incident on the illuminated surface 17 at an incident angle of 1° or less. It can also be said that the angles of the principal ray R1p of the first light beam R1 and the principal ray R2p of the second light beam R2 with respect to the normal line (Z direction) at the condensing positions are within 1°. It can also be said that the object side (surface to be processed 18s side) of the optical device 2 (optical processing device 1) has telecentric characteristics.
 これにより、被加工面18sが、その凹凸等により被照射面17からZ方向に多少位置ずれして配置されている場合であっても、被加工面18sの所望のX位置およびY位置に第1光束R1を照射することができ、被加工面18sを正確に加工することができる。同様に、被加工面18sの所望のX位置およびY位置を正確に計測することができる。 As a result, even if the surface to be processed 18s is slightly displaced in the Z direction from the surface to be irradiated 17 due to unevenness or the like, the desired X and Y positions of the surface to be processed 18s can be obtained. It is possible to irradiate one light flux R1 and accurately process the surface 18s to be processed. Similarly, the desired X-position and Y-position of the surface 18s to be processed can be accurately measured.
 なお、被加工面18sの凹凸が少ない場合等、被加工面18sを常に被照射面17に正確に合致させることができる場合には、主光線R1pおよび主光線R2pの被照射面17への入射角度は、1°以上であっても良い。
 なお、本明細書において、「主光線」とは、第1光束R1または第2光束R2のそれぞれにおいて、異なるZ位置における各光束の断面における光量重心を順次繋いだ線であっても良い。
In addition, when the surface to be processed 18s can always be accurately aligned with the surface to be irradiated 17, such as when the surface to be processed 18s has little unevenness, the incidence of the principal ray R1p and the principal ray R2p on the surface to be irradiated 17 The angle may be 1° or more.
In this specification, the “principal ray” may be a line connecting the center of gravity of light amount in the cross section of each light beam at different Z positions in each of the first light beam R1 and the second light beam R2.
 第1実施形態の光加工装置1および光学装置2においては、第1光束R1と第2光束R2との間に生じる軸上色収差D1または倍率色収差D2は低減されている。ただし、以下で説明する位置情報修正部25を用いて、軸上色収差D1または倍率色収差D2による悪影響を、数値的な補正によりさらに低減しても良い。 In the optical processing device 1 and the optical device 2 of the first embodiment, the axial chromatic aberration D1 or the chromatic aberration of magnification D2 occurring between the first light flux R1 and the second light flux R2 is reduced. However, the position information correction unit 25 described below may be used to further reduce the adverse effects of the longitudinal chromatic aberration D1 or the chromatic aberration of magnification D2 by numerical correction.
 位置情報修正部25は、軸上色収差D1または倍率色収差D2を数値的に補正するユニットである。位置情報修正部25には、制御部22から、揺動ミラー14の回転角度に関する情報、または揺動ミラー14の回転角度により決まる第4光路P4を進む光束の集光点FPのX位置に関する情報を含む、信号S8が入力される。 The position information correction unit 25 is a unit that numerically corrects the longitudinal chromatic aberration D1 or the chromatic aberration of magnification D2. Information about the rotation angle of the oscillating mirror 14 or information about the X position of the focal point FP of the light beam traveling along the fourth optical path P4 determined by the rotation angle of the oscillating mirror 14 is sent from the control unit 22 to the position information correction unit 25. A signal S8 is input, including:
 位置情報修正部25は、揺動ミラー14の回転角度または第4光路P4を進む光束の集光点FPのX位置と、軸上色収差D1または倍率色収差D2の少なくとも一方との関係を示す数値データである集光光学系16の収差情報を記憶している。また、位置情報修正部25は、集光光学系16のいわゆるテレセントリシティに関する情報も、記憶していてもよい。以下では、上記の収差情報とテレセントリシティに関する情報とを合わせて、集光光学系16の特性に関する情報と呼んでもよい。位置情報修正部25は、制御部22から送られた揺動ミラー14の回転角度に関する情報または集光点FPのX位置に関する情報に基づいて、上記の集光光学系16の特性に関する情報から、集光点FPにおける軸上色収差D1または倍率色収差D2の少なくとも一方を算出する。 The position information correction unit 25 provides numerical data indicating the relationship between the rotation angle of the swing mirror 14 or the X position of the focal point FP of the light beam traveling along the fourth optical path P4 and at least one of the longitudinal chromatic aberration D1 and the chromatic aberration of magnification D2. The aberration information of the condensing optical system 16 is stored. The position information correction unit 25 may also store information on the so-called telecentricity of the condensing optical system 16 . Hereinafter, the above-described aberration information and information on telecentricity may be collectively referred to as information on the characteristics of the condensing optical system 16 . Based on the information on the rotation angle of the oscillating mirror 14 sent from the control unit 22 or the information on the X position of the focal point FP, the position information correction unit 25 corrects the information on the characteristics of the condensing optical system 16 to: At least one of the longitudinal chromatic aberration D1 and the lateral chromatic aberration D2 at the focal point FP is calculated.
 位置情報修正部25は、算出部24が算出し、信号S9として送信された被加工面18sの位置情報を、上記により算出した軸上色収差D1または倍率色収差D2の少なくとも一方に基づいて修正する。そして、位置情報修正部25は、被加工面18sの修正後の位置情報を、信号S10として算出部24に返信する。 The position information correction unit 25 corrects the position information of the surface to be processed 18s calculated by the calculation unit 24 and transmitted as the signal S9 based on at least one of the axial chromatic aberration D1 and the chromatic aberration of magnification D2 calculated as described above. Then, the position information correction unit 25 sends back the corrected position information of the surface 18s to be processed to the calculation unit 24 as a signal S10.
 なお、位置情報修正部25は、上述した被加工面18sの位置情報自体の修正に代えて、信号S10として位置情報を修正すべき量を算出部24に返信しても良い。この場合、位置情報修正部25から伝達された修正すべき量を用いて、算出部24が被加工面18sの位置情報を修正すれば良い。 It should be noted that the position information correction unit 25 may return the amount by which the position information should be corrected as the signal S10 to the calculation unit 24 instead of correcting the position information itself of the surface to be processed 18s described above. In this case, the calculation unit 24 may correct the position information of the surface to be processed 18s using the correction amount transmitted from the position information correction unit 25 .
 なお、補正光学系11により集光光学系16を含む光学装置2の色収差が十分に小さく抑えられている場合には、位置情報修正部25を設けなくても良い。
 また、第1光束R1と第2光束R2との間に生じる軸上色収差D1が補正光学系11によって十分に小さく抑えられており且つ倍率色収差D2が大きい場合には、位置情報修正部25を用いて被加工面18sの位置情報を修正しても良い。
Note that if the chromatic aberration of the optical device 2 including the condensing optical system 16 is sufficiently suppressed by the correcting optical system 11, the position information corrector 25 may not be provided.
Further, when the longitudinal chromatic aberration D1 generated between the first light beam R1 and the second light beam R2 is sufficiently suppressed by the correction optical system 11 and the chromatic aberration of magnification D2 is large, the position information corrector 25 is used. may be used to correct the position information of the surface to be processed 18s.
(光学装置の光学設計例)
 図3は、光学装置2の光学設計例を示す図である。図3に示した設計例の光学装置2は、一例として、光源10および計測部23からそれぞれ供給される、直径10[mm]の平行光である第1光束R1および第2光束R2を、被照射面17上に概ね集光するものである。
(Example of optical design of optical device)
FIG. 3 is a diagram showing an optical design example of the optical device 2. As shown in FIG. As an example, the optical device 2 of the design example shown in FIG. Light is generally condensed on the irradiation surface 17 .
 図3に示した数表は、その左端に示す面番号(Surface No.)で規定される、光学装置2を構成するレンズ、ミラー等の光学部品の各面の曲率半径R[mm]、および面間隔D[mm]と、その光学部品の屈折率(Refractive Index)とを表している。 The numerical table shown in FIG. 3 includes the radius of curvature R [mm] of each surface of optical parts such as lenses and mirrors constituting the optical device 2, which is defined by the surface number (Surface No.) shown on the left end, and It represents the surface distance D [mm] and the refractive index of the optical component.
 図3に示した面番号は、上述した各光学部品(補正光学系11、合成素子12、レンズL11~L15)のうち、光源10または計測部23からの光が入射する側の面の面番号を、その光学部品の符号の末尾にaを付加した面番号としている。例えば、面番号11aは、補正光学系11の光源10からの光が入射する側の面の面番号である。 The surface numbers shown in FIG. 3 are the surface numbers of the surfaces on which the light from the light source 10 or the measurement unit 23 is incident among the above-described optical components (correction optical system 11, synthesizing element 12, lenses L11 to L15). is a surface number obtained by adding a to the end of the reference numeral of the optical component. For example, the surface number 11a is the surface number of the surface of the correction optical system 11 on which the light from the light source 10 is incident.
 また、光源10または計測部23からの光が射出する側の面の面番号を、その光学部品の符号の末尾にbを付加した面番号としている。例えば、面番号L11bは、集光光学系16に含まれるレンズL11のレンズL12の側の面の面番号である。
 なお、面番号13および面番号14は、それぞれ固定ミラー13、揺動ミラー14の反射面を示している。
The surface number of the surface from which the light from the light source 10 or the measurement unit 23 is emitted is the surface number obtained by adding b to the end of the reference numeral of the optical component. For example, the surface number L11b is the surface number of the surface of the lens L11 included in the condensing optical system 16 on the side of the lens L12.
Surface numbers 13 and 14 indicate reflecting surfaces of the fixed mirror 13 and the oscillating mirror 14, respectively.
 面間隔Dは、面番号で指定した面と、その面に対して被照射面17側の次の面との間の間隔を表している。なお、面番号L15bの行に示した面間隔Dは、面番号L15bの面と被照射面17との間隔である。
 また、面番号13と面番号14との間の面間隔Dは、固定ミラー13がミラーであるため、負の数値として表している。
The surface distance D represents the distance between the surface designated by the surface number and the next surface on the irradiated surface 17 side with respect to that surface. Note that the surface distance D shown in the row of the surface number L15b is the distance between the surface of the surface number L15b and the irradiated surface 17. FIG.
Further, the surface distance D between the surface number 13 and the surface number 14 is expressed as a negative numerical value because the fixed mirror 13 is a mirror.
 屈折率は、面番号で指定した面と、その面に対して被照射面17側の次の面との間に配置される光学部材の屈折率を表している。
 WL532[nm]と記載された列における屈折率は、第1光束R1の波長(第1波長)の一例である532[nm]の光に対する屈折率である。
 WL1550[nm]と記載された列における屈折率は、第2光束R2の波長(第2波長)の一例である1550[nm]の光に対する屈折率である。
The refractive index represents the refractive index of an optical member arranged between the surface specified by the surface number and the next surface on the illuminated surface 17 side with respect to that surface.
The refractive index in the column labeled WL532 [nm] is the refractive index for light of 532 [nm], which is an example of the wavelength (first wavelength) of the first light flux R1.
The refractive index in the column labeled WL1550 [nm] is the refractive index for light of 1550 [nm], which is an example of the wavelength (second wavelength) of the second light flux R2.
 固定ミラー13および揺動ミラー14については、その屈折率を-1としている。
 なお、第2波長の第2光束R2は、補正光学系11が配置されている第1光路P1を通らないため、補正光学系11、すなわち面番号11a、11bについては、第2波長での屈折率を示していない。
The fixed mirror 13 and the oscillating mirror 14 have a refractive index of -1.
In addition, since the second light beam R2 of the second wavelength does not pass through the first optical path P1 in which the correction optical system 11 is arranged, the correction optical system 11, that is, the surface numbers 11a and 11b, is refracted at the second wavelength. rate is not shown.
 なお、図1に示した光学装置2においては、各光学部材の大きさを説明に必要な十分な大きさで示すために、第3光路P3のうち、前段第3光路P3a、および中段第3光路P3bの長さを、図3に示した設計例に比べて短く表示している。補正光学系11と合成素子12との間隔についても同様である。 In the optical device 2 shown in FIG. 1, in order to show the size of each optical member with a sufficient size necessary for explanation, of the third optical path P3, the front third optical path P3a and the middle third optical path P3a The length of the optical path P3b is displayed shorter than the design example shown in FIG. The same applies to the distance between the correction optical system 11 and the synthesizing element 12 .
 図3に示した屈折率から判るとおり、光学装置2は、それを構成する透過部材(補正光学系11、合成素子12、レンズL11~L15)は、すべて同一の材料である石英ガラスにより形成されている。従って、本来であれば、色収差、特に軸上色収差D1の補正には適した光学系とは言えない。
 ただし、図3に示した光学設計例においては、第1光路P1に配置された補正光学系11により、被照射面17の近傍における第1光束R1の第1集光点FP1(集光位置)を、第2光束R2の第2集光点FP2(集光位置)に近づけることができる。
As can be seen from the refractive index shown in FIG. 3, in the optical device 2, the transmitting members (the correcting optical system 11, the synthetic element 12, and the lenses L11 to L15) constituting the optical device 2 are all made of quartz glass, which is the same material. ing. Therefore, originally, it cannot be said that the optical system is suitable for correcting chromatic aberration, especially axial chromatic aberration D1.
However, in the optical design example shown in FIG. 3, the first converging point FP1 (condensing position) of the first light beam R1 in the vicinity of the surface to be illuminated 17 is caused by the correction optical system 11 arranged on the first optical path P1. can be brought closer to the second condensing point FP2 (condensing position) of the second light beam R2.
 以下、図3に示した光学設計例についてさらに詳述する。
 補正光学系11は負の屈折力を有し、第1波長532[nm]における焦点距離fcは-1133.2[mm]である。集光光学系16は、入射側に配置され負の屈折力を有するレンズL11(第1レンズ)と、複数のレンズL12~L15を含み全体として正の屈折力を有する第2レンズ群G20とを有している。集光光学系16は、全体としては正の屈折力を有し、第1波長532[nm]における焦点距離fgは、100.0[mm]である。
The optical design example shown in FIG. 3 will be described in further detail below.
The correction optical system 11 has a negative refractive power, and the focal length fc at the first wavelength 532 [nm] is -1133.2 [mm]. The condensing optical system 16 includes a lens L11 (first lens) arranged on the incident side and having negative refractive power, and a second lens group G20 including a plurality of lenses L12 to L15 and having positive refractive power as a whole. have. The condensing optical system 16 has positive refractive power as a whole, and the focal length fg at the first wavelength of 532 [nm] is 100.0 [mm].
 よって、補正光学系11の焦点距離fcと集光光学系16の焦点距離fgとの間には、以下の式(1)の関係が成り立っている。
    |fc| > 10×fg  ・・・(1)
 すなわち、補正光学系11の焦点距離fcの絶対値は、集光光学系16の焦点距離fgの10倍以上に設定されており、換言すれば、補正光学系11の屈折力の絶対値(|1/fc|)は、集光光学系16の屈折力の1/10以下に設定されている。
Therefore, the focal length fc of the correcting optical system 11 and the focal length fg of the condensing optical system 16 are in the relationship of the following formula (1).
|fc| > 10×fg (1)
That is, the absolute value of the focal length fc of the correction optical system 11 is set to be ten times or more the focal length fg of the condensing optical system 16. In other words, the absolute value of the refractive power of the correction optical system 11 (| 1/fc|) is set to 1/10 or less of the refractive power of the condensing optical system 16 .
 これにより、補正光学系11に過度な色収差の補正を行わせることなく、光学装置2の全体として適度な色収差の補正を行うことができ、軸上色収差D1または倍率色収差D2を一層低減することが可能となる。
 なお、軸上色収差D1または倍率色収差D2がある程度残存していても良い場合には、補正光学系11および集光光学系16は、必ずしも式(1)を満たさなくても良い。
As a result, the optical device 2 as a whole can appropriately correct chromatic aberration without causing the correcting optical system 11 to correct excessive chromatic aberration, and the longitudinal chromatic aberration D1 or the chromatic aberration of magnification D2 can be further reduced. It becomes possible.
In addition, when the longitudinal chromatic aberration D1 or the chromatic aberration of magnification D2 may remain to some extent, the correction optical system 11 and the condensing optical system 16 do not necessarily have to satisfy the formula (1).
 図3に示した光学設計例では、第1波長における集光光学系16および補正光学系11の合成光学系のバックフォーカスは144.7mmであり、第2波長における集光光学系16のバックフォーカスは144.7mmである。そして、第1波長における集光光学系16のバックフォーカスは137.0であり、第2波長における集光光学系16のバックフォーカスは144.7mmである。従って、第1波長における集光光学系16および補正光学系11の合成光学系のバックフォーカスと、第2波長における集光光学系16のバックフォーカスとの差の絶対値は、0mmであり、第1波長における集光光学系16のバックフォーカスと第2波長における集光光学系16のバックフォーカスとの差の絶対値(7.7mm)よりも小さく設定されている。 In the optical design example shown in FIG. 3, the back focus of the combined optical system of the condensing optical system 16 and the correction optical system 11 at the first wavelength is 144.7 mm, and the back focus of the condensing optical system 16 at the second wavelength is 144.7 mm. is 144.7 mm. The back focus of the condensing optical system 16 at the first wavelength is 137.0 mm, and the back focus of the condensing optical system 16 at the second wavelength is 144.7 mm. Therefore, the absolute value of the difference between the back focus of the combined optical system of the condensing optical system 16 and the correction optical system 11 at the first wavelength and the back focus of the condensing optical system 16 at the second wavelength is 0 mm. It is set to be smaller than the absolute value (7.7 mm) of the difference between the back focus of the condensing optical system 16 at one wavelength and the back focus of the condensing optical system 16 at the second wavelength.
 これにより、被照射面17の近傍における第1光束R1の集光位置(第1集光点FP1の位置)を、第2光束R2の集光位置(第2集光点FP2の位置)に近づけることが可能となる。
 なお、補正光学系11は、上述した、或いは後述するように、負の屈折力を有する光学系には限られず、正の屈折力を有する光学系であっても良い。
As a result, the condensing position of the first light flux R1 (the position of the first condensing point FP1) in the vicinity of the illuminated surface 17 is brought closer to the condensing position of the second light flux R2 (the position of the second condensing point FP2). becomes possible.
The correction optical system 11 is not limited to an optical system having negative refractive power, as described above or later, and may be an optical system having positive refractive power.
 なお、第1実施形態において、負の焦点距離(負の屈折力)を有する補正光学系11を合成素子12の第1光束R1の入射側における第1光路P1に配置する代わりに、正の焦点距離(正の屈折力)を有する補正光学系11を、合成素子12の第2光束R2の入射側(言い換えると、被加工物18からの検出光の射出側)における第2光路P2(例えば、計測部23と合成素子12との間の第2光路P2)に配置してもよい。なお、正の焦点距離(正の屈折力)を有する補正光学系11を、計測光源23aと合成素子12との間の第2光路P2に配置してもよい。 In the first embodiment, instead of arranging the correction optical system 11 having a negative focal length (negative refractive power) in the first optical path P1 on the incident side of the first light beam R1 of the synthesizing element 12, the positive focal point The correction optical system 11 having a distance (positive refractive power) is placed on the second optical path P2 (for example, It may be arranged in the second optical path P2) between the measurement unit 23 and the combining element 12). Note that the correction optical system 11 having a positive focal length (positive refractive power) may be arranged on the second optical path P2 between the measurement light source 23a and the synthesizing element 12. FIG.
 ここで、集光光学系16の焦点距離が正(屈折力が正)で集光光学系16の軸上色収差が補正不足の場合(つまり、第2波長における集光光学系16のバックフォーカスが第1波長における集光光学系16のバックフォーカスよりも長い場合)には、合成素子12の第2光束R2の入射側における第2光路P2に配置する補正光学系11の焦点距離を正(屈折力を正)にすることによって、集光光学系16と補正光学系11(正の焦点距離を有する補正光学系)の合成光学系の第2波長でのバックフォーカスと、集光光学系16の第1波長でのバックフォーカスとの差の絶対値を、集光光学系16の第2波長でのバックフォーカスと集光光学系16の第1波長でのバックフォーカスとの差の絶対値よりも小さくできる。
 なお、補正光学系11は、第1光路P1ではなく、第2光路P2に配置される場合には、補正光学系は、第1光路P1に配置されない、ということができる。
Here, when the focal length of the condensing optical system 16 is positive (positive refractive power) and the axial chromatic aberration of the condensing optical system 16 is insufficiently corrected (that is, the back focus of the condensing optical system 16 at the second wavelength is longer than the back focus of the condensing optical system 16 at the first wavelength), the focal length of the correcting optical system 11 arranged in the second optical path P2 on the incident side of the second light flux R2 of the combining element 12 is positive (refractive By making the power positive, the back focus at the second wavelength of the combined optical system of the condensing optical system 16 and the correcting optical system 11 (correcting optical system having a positive focal length) and the back focus of the condensing optical system 16 The absolute value of the difference between the back focus at the first wavelength and the absolute value of the difference between the back focus at the second wavelength of the condensing optical system 16 and the back focus at the first wavelength of the condensing optical system 16 is greater than can be made smaller.
In addition, when the correction optical system 11 is arranged in the second optical path P2 instead of the first optical path P1, it can be said that the correction optical system is not arranged in the first optical path P1.
 なお、集光光学系16は、図示した集光光学系16(以下では、「第1集光光学系」とも呼ぶ)とは異なる第2集光光学系と交換可能に設けられていても良い。また、補正光学系11は、図示した補正光学系11(以下では、「第1補正光学系」とも呼ぶ)とは異なる第2補正光学系と交換可能に設けられていても良い。この場合、第1集光光学系と第2集光光学系とは、ターレットやオート・ツール・チェンジャーなどの不図示の部材交換機構によってどちらか一方の光学系が光路に配置されるように交換可能に構成されていてもよい。また、第1補正光学系と第2補正光学系も同様に、ターレットやオート・ツール・チェンジャーなどの不図示の部材交換機構によってどちらか一方の光学系が光路に配置されるように交換可能に構成されていてもよい。 Note that the condensing optical system 16 may be provided interchangeably with a second condensing optical system different from the illustrated condensing optical system 16 (hereinafter also referred to as "first condensing optical system"). . Further, the correction optical system 11 may be provided interchangeably with a second correction optical system different from the illustrated correction optical system 11 (hereinafter also referred to as "first correction optical system"). In this case, the first condensing optical system and the second condensing optical system are exchanged by a member exchange mechanism (not shown) such as a turret or an auto tool changer so that one of the optical systems is arranged in the optical path. It may be configured to be possible. Similarly, the first correction optical system and the second correction optical system can be exchanged so that one of them is placed in the optical path by a member exchange mechanism (not shown) such as a turret or an auto tool changer. may be configured.
 この場合において、集光光学系16として上述した第2集光光学系が使われるときには、補正光学系11として上述した第2補正光学系を使っても良い。
 第1集光光学系と第2集光光学系とはバックフォーカスが異なっていても良く、第1補正光学系と第2補正光学系とは焦点距離が異なっていても良い。
In this case, when the above-described second condensing optical system is used as the condensing optical system 16, the above-described second correcting optical system may be used as the correcting optical system 11. FIG.
Back focal lengths may be different between the first condensing optical system and the second condensing optical system, and focal lengths may be different between the first correcting optical system and the second correcting optical system.
 また、第1集光光学系のバックフォーカスが第2集光光学系のバックフォーカスよりも短い場合、第1補正光学系の焦点距離よりも第2補正光学系の焦点距離が長くても良い。
 そして、第1集光光学系のバックフォーカスが第2集光光学系のバックフォーカスよりも長い場合、第1補正光学系の焦点距離よりも第2補正光学系の焦点距離が短くても良い。
Further, when the back focus of the first condensing optical system is shorter than the back focus of the second condensing optical system, the focal length of the second correcting optical system may be longer than the focal length of the first correcting optical system.
If the back focus of the first condensing optical system is longer than the back focus of the second condensing optical system, the focal length of the second correcting optical system may be shorter than the focal length of the first correcting optical system.
(第1実施形態の光加工装置の効果)
(1)以上で説明した第1実施形態の光加工装置1は、第1波長の第1光束R1の第1光路P1と、第1波長より長い波長の第2波長の第2光束R2の第2光路P2とを合成させる合成素子12と、正の屈折力を有し、合成素子12からの第1光束R1と第2光束R2とをそれぞれ、被加工物18に向けて集光させる集光光学系16と、負の屈折力を有する補正光学系11と、を備えている。そして、補正光学系11は、合成素子12の入射側における第1光路P1に配置され、第1光束R1および第2光束R2の一方の光束は、被加工物18を加工する光束であり、第1光束R1および第2光束R2の他方の光束は、被加工物18を計測する光束である。
 この構成により、第2波長の第2光束R2で被加工物18の被加工面18sの位置を検出し、第1波長の第1光束R1により被加工面18sを加工することができる。従って、被加工面18sの位置を高精度に検出し、高精度な検出結果に基づいて被加工面18sを高精度に加工することができる。
(Effect of the optical processing device of the first embodiment)
(1) The optical processing device 1 of the first embodiment described above has a first optical path P1 for the first light flux R1 of the first wavelength and a second light flux R2 for the second wavelength longer than the first wavelength. A synthesizing element 12 for synthesizing the two optical paths P2, and a condensing element having positive refractive power for converging the first light flux R1 and the second light flux R2 from the synthesizing element 12 toward the workpiece 18. It has an optical system 16 and a correction optical system 11 having a negative refractive power. The correction optical system 11 is arranged on the first optical path P1 on the incident side of the combining element 12, and one of the first light beam R1 and the second light beam R2 is a light beam for processing the workpiece 18. The other one of the first light beam R1 and the second light beam R2 is a light beam for measuring the workpiece 18 .
With this configuration, the position of the surface 18s to be processed of the workpiece 18 can be detected by the second light beam R2 of the second wavelength, and the surface 18s to be processed can be processed by the first light beam R1 of the first wavelength. Therefore, the position of the surface to be processed 18s can be detected with high accuracy, and the surface to be processed 18s can be processed with high accuracy based on the highly accurate detection result.
(第2実施形態の光加工装置)
 図4は、第2実施形態の光加工装置が備える光学装置2aの集光光学系16aの構成を概略的に示す図である。なお、光学装置2aは、集光光学系16を集光光学系16aに置き換え、補正光学系11の設計データを変更する以外は、上述した第1実施形態の光加工装置1が備える光学装置2の同様であるので、同一の構成については同一の符号を付し、適宜説明を省略する。
 なお、第2実施形態の光加工装置は、第1実施形態の光加工装置1の光学装置2を、光学装置2aに置き換えたものである。
(Optical processing device of the second embodiment)
FIG. 4 is a diagram schematically showing the configuration of the condensing optical system 16a of the optical device 2a provided in the optical processing apparatus of the second embodiment. The optical device 2a includes the optical device 2 provided in the optical processing device 1 of the first embodiment described above, except that the condensing optical system 16 is replaced with the condensing optical system 16a and the design data of the correction optical system 11 is changed. , the same reference numerals are given to the same configurations, and the description thereof will be omitted as appropriate.
The optical processing device of the second embodiment is obtained by replacing the optical device 2 of the optical processing device 1 of the first embodiment with an optical device 2a.
 図1に示した第1実施形態の光加工装置1が備える光学装置2と同様に、光学装置2aにおいても、第1光束R1が通過する第1光路P1上には補正光学系11Sが配置されている。第1光束R1と計測部23からの第2光束R2とは合成素子12により合流された後、固定ミラー13および揺動ミラー14で反射され、集光光学系16aに入射する。そして、第1光束R1と第2光束R2とは集光光学系16により、被照射面17上に概ね集光する。なお、第2実施形態の光加工装置1(光学装置2a)においても、第1実施形態と同様に、第1光束R1の第1波長と第2光束R2の第2波長とは異なり、第2波長の方が第1波長よりも長い。
 図4には、光学装置2aのうちの、補正光学系11S、揺動ミラー14、集光光学系16aのみを示し、それ以外の構成については図示を省略している。
Similar to the optical device 2 provided in the optical processing device 1 of the first embodiment shown in FIG. ing. After the first light beam R1 and the second light beam R2 from the measurement unit 23 are merged by the combining element 12, they are reflected by the fixed mirror 13 and the swing mirror 14, and enter the condensing optical system 16a. Then, the first light flux R1 and the second light flux R2 are generally condensed on the illuminated surface 17 by the condensing optical system 16 . Also in the optical processing device 1 (optical device 2a) of the second embodiment, as in the first embodiment, the first wavelength of the first light beam R1 and the second wavelength of the second light beam R2 are different from each other. The wavelength is longer than the first wavelength.
FIG. 4 shows only the correction optical system 11S, the oscillating mirror 14, and the condensing optical system 16a of the optical device 2a, and the rest of the configuration is omitted.
 集光光学系16aは、複数のレンズ(L21~L28)を含む光学系である。このうち、最も入射側に配置されているレンズL21は、一例として負の屈折力を持つレンズである。以下では、レンズL21を第1レンズとも呼ぶ。そして、レンズL21よりも被照射面17側(下流側)に配置されているレンズ(L22~L28)は、第2レンズ群G21を構成し、全体として正の屈折力を有している。第1光束R1および第2光束R2は、集光光学系16aの屈折力により、概ね被照射面17上に集光する。 The condensing optical system 16a is an optical system including a plurality of lenses (L21 to L28). Among them, the lens L21 arranged on the most incident side is, for example, a lens having a negative refractive power. Below, the lens L21 is also called the first lens. The lenses (L22 to L28) arranged closer to the irradiated surface 17 side (downstream side) than the lens L21 constitute the second lens group G21 and have positive refractive power as a whole. The first light flux R1 and the second light flux R2 are generally condensed on the illuminated surface 17 by the refractive power of the condensing optical system 16a.
(第2実施形態の光加工装置が備える光学装置の光学設計例)
 図5は、第2実施形態の光加工装置が備える光学装置2aの光学設計例を示す図である。図5に示した数表に記載された項目は、図3に示した数表に示した項目と同様である。図5に示した数表の左端の面番号は、図3での面番号と同様に、各レンズの符号の末尾に、光源10または計測部23からの光が入射する側の面であればaを、射出する側の面であればbを付加したものである。
(Example of optical design of an optical device included in the optical processing device of the second embodiment)
FIG. 5 is a diagram showing an optical design example of the optical device 2a included in the optical processing device of the second embodiment. The items described in the numerical table shown in FIG. 5 are the same as the items shown in the numerical table shown in FIG. The surface number on the left end of the numerical table shown in FIG. 5 is the same as the surface number in FIG. It is obtained by adding b if it is a surface on the exit side.
 図5に示した屈折率から判るとおり、光学装置2aは、それを構成する透過部材(補正光学系11、合成素子12、レンズL11~L15)のそれぞれが、石英ガラスおよび蛍石の2種類の材料のうちのいずれかで形成されている。光学装置2aでは、上述した光学装置2に比べて、集光光学系16aにより、より倍率色収差D2が補正され、軸上色収差D1が補正過剰である構成となっている。 As can be seen from the refractive index shown in FIG. 5, in the optical device 2a, each of the transmitting members (the correction optical system 11, the synthetic element 12, and the lenses L11 to L15) constituting the optical device 2a is made of quartz glass and fluorite. made of any of the following materials: Compared to the optical device 2 described above, the optical device 2a has a configuration in which the chromatic aberration of magnification D2 is corrected more by the condensing optical system 16a, and the longitudinal chromatic aberration D1 is overcorrected.
 これに加えて、第1光路P1に配置された補正光学系11Sにより、集光光学系16aの軸上色収差D1の補正過剰を適正な補正状態に近づけることができるので、被照射面17の近傍における第1光束R1の第1集光点FP1(集光位置)を、第2光束R2の第2集光点FP2(集光位置)に、より一層近づけることができる。
 つまり、第2実施形態の光加工装置1(光学装置2a)においては、光学装置2aの第1光路P1に配置された補正光学系11Sが、被照射面17の近傍における第1光束R1の集光位置(第1集光点FP1の位置)を、第2光束R2の集光位置(第2集光点FP2の位置)に近づける。従って、補正光学系11Sを設けない場合に比べ、上述した軸上色収差D1の大きさが低減される。
In addition, the correction optical system 11S arranged on the first optical path P1 can bring the overcorrection of the longitudinal chromatic aberration D1 of the condensing optical system 16a closer to a proper correction state. can be brought closer to the second condensing point FP2 (condensing position) of the second light flux R2.
That is, in the optical processing device 1 (optical device 2a) of the second embodiment, the correction optical system 11S arranged in the first optical path P1 of the optical device 2a converges the first light flux R1 in the vicinity of the irradiated surface 17. The light position (the position of the first condensing point FP1) is brought closer to the condensing position of the second light flux R2 (the position of the second condensing point FP2). Therefore, compared with the case where the correction optical system 11S is not provided, the magnitude of the longitudinal chromatic aberration D1 described above is reduced.
 ここで、集光光学系16aの焦点距離が正(屈折力が正)で集光光学系16aの軸上色収差D1が補正過剰である場合(つまり、第1波長における集光光学系16aのバックフォーカスが第2波長における集光光学系16aのバックフォーカスよりも長い場合)には、光学装置2aの第1光路P1に配置する補正光学系11Sの焦点距離を正(屈折力を正)にすることによって、集光光学系16aと補正光学系11Sの合成光学系の第1波長でのバックフォーカスと、集光光学系16aの第2波長でのバックフォーカスとの差の絶対値を、集光光学系16aの第1波長でのバックフォーカスと集光光学系16aの第2波長でのバックフォーカスとの差の絶対値よりも小さくできる。 Here, when the focal length of the condensing optical system 16a is positive (positive refractive power) and the longitudinal chromatic aberration D1 of the condensing optical system 16a is overcorrected (that is, the back of the condensing optical system 16a at the first wavelength). When the focus is longer than the back focus of the condensing optical system 16a at the second wavelength), the focal length of the correction optical system 11S arranged in the first optical path P1 of the optical device 2a is made positive (the refractive power is positive). Thus, the absolute value of the difference between the back focus at the first wavelength of the combined optical system of the condensing optical system 16a and the correcting optical system 11S and the back focus at the second wavelength of the condensing optical system 16a is It can be made smaller than the absolute value of the difference between the back focus of the optical system 16a at the first wavelength and the back focus of the condensing optical system 16a at the second wavelength.
 なお、第2実施形態の光加工装置1および光学装置2aにおいては、第1光束R1と第2光束R2との間に生じる倍率色収差D2は、集光光学系16aによって補正されている。このとき、集光光学系16aの軸上色収差D1を補正過剰にすることによって、倍率色収差D2を補正することが容易になる利点がある。 Incidentally, in the optical processing device 1 and the optical device 2a of the second embodiment, the chromatic aberration of magnification D2 occurring between the first light flux R1 and the second light flux R2 is corrected by the condensing optical system 16a. At this time, there is an advantage that the chromatic aberration of magnification D2 can be easily corrected by overcorrecting the axial chromatic aberration D1 of the condensing optical system 16a.
 また、光学装置2aを備えた第2実施形態の光加工装置1においても、主光線R1pおよび主光線R2p(図2参照)は、被照射面17に対して1°以内の入射角で入射するように設計されている。なお、主光線R1pおよび主光線R2pの被照射面17への入射角度は、1°以上であっても良い。なお、主光線R1p、および主光線R2pの、それぞれの集光位置での法線(Z方向)に対する角度は、1°以内であると言い換えることもできる。なお、光学装置2aの物側(被加工面18s側)がテレセントリック特性を有すると言い換えることもできる。 Also in the optical processing device 1 of the second embodiment provided with the optical device 2a, the principal ray R1p and the principal ray R2p (see FIG. 2) are incident on the irradiated surface 17 at an incident angle within 1°. is designed to The angle of incidence of the principal ray R1p and the principal ray R2p on the irradiated surface 17 may be 1° or more. It can also be said that the angle of the principal ray R1p and the principal ray R2p with respect to the normal line (Z direction) at each condensing position is within 1°. It can also be said that the object side (the side of the processed surface 18s) of the optical device 2a has telecentric characteristics.
 以下、図5に示した光学装置2aの光学設計例についてさらに詳述する。光学装置2aにおいては、補正光学系11Sは正の屈折力を有し、第1波長532[nm]における焦点距離fcは6361.5[mm]である。集光光学系16aは、入射側に配置され負の屈折力を有するレンズL21(第1レンズ)と、複数のレンズL22~L28を含み全体として正の屈折力を有する第2レンズ群G21とを有している。 The optical design example of the optical device 2a shown in FIG. 5 will be described in further detail below. In the optical device 2a, the correction optical system 11S has positive refractive power, and the focal length fc at the first wavelength 532 [nm] is 6361.5 [mm]. The condensing optical system 16a includes a lens L21 (first lens) arranged on the incident side and having negative refractive power, and a second lens group G21 including a plurality of lenses L22 to L28 and having positive refractive power as a whole. have.
 集光光学系16aは、全体としては正の屈折力を有し、第1波長532[nm]における焦点距離fgは、100.0[mm]である。
 従って、光学装置2aにおいても、補正光学系11の焦点距離fcと集光光学系16aの焦点距離fgとは、上述した式(1)の関係を満たしている。
The condensing optical system 16a as a whole has positive refractive power, and the focal length fg at the first wavelength of 532 [nm] is 100.0 [mm].
Therefore, also in the optical device 2a, the focal length fc of the correcting optical system 11 and the focal length fg of the condensing optical system 16a satisfy the relationship of the above-described formula (1).
 第2レンズ群G21は、正の屈折力を有し、第1レンズ材料である蛍石からなるレンズL28等の正レンズを少なくとも1枚と、負の屈折力を有し、第2レンズ材料である石英ガラスからなるレンズL27等の負レンズを少なくとも1枚を含んでいる。以下では、レンズ材料のアッベ数νを、レンズ材料の第1波長(533[nm])に対する屈折率n1と、第2波長(1550[nm])に対する屈折率n2を用いて、ν=(n2-1)/(n2-n1)と定義する。 The second lens group G21 has a positive refractive power and includes at least one positive lens such as a lens L28 made of fluorite, which is the first lens material. It includes at least one negative lens such as lens L27 made of some quartz glass. Below, the Abbe number ν of the lens material is calculated using the refractive index n1 for the first wavelength (533 [nm]) and the refractive index n2 for the second wavelength (1550 [nm]) of the lens material, ν=(n2 -1)/(n2-n1).
 光学装置2aにおいては、第1レンズ材料(蛍石)のアッベ数ν1と、第2レンズ材料(石英ガラス)のアッベ数ν2とは、式(2)の関係を満たしている。
    ν1 > ν2   ・・・(2)
 これにより、集光光学系16の色収差を良好に補正することができ、軸上色収差D1または倍率色収差D2を一層低減することが可能となる。
 なお、軸上色収差D1または倍率色収差D2がある程度残存していても良い場合には、アッベ数ν1とアッベ数ν2は、必ずしも式(2)を満たさなくても良い。
In the optical device 2a, the Abbe number .nu.1 of the first lens material (fluorite) and the Abbe number .nu.2 of the second lens material (quartz glass) satisfy the relationship of formula (2).
ν1 > ν2 (2)
As a result, the chromatic aberration of the condensing optical system 16 can be satisfactorily corrected, and the axial chromatic aberration D1 or the chromatic aberration of magnification D2 can be further reduced.
In addition, when the axial chromatic aberration D1 or the chromatic aberration of magnification D2 may remain to some extent, the Abbe number ν1 and the Abbe number ν2 do not necessarily have to satisfy the formula (2).
 図5に示した光学設計例では、第1波長における集光光学系16aおよび補正光学系11Sの合成光学系のバックフォーカスは99.9mmであり、第2波長における集光光学系16のバックフォーカスは100.0mmである。そして、第1波長における集光光学系16のバックフォーカスは101.5mmであり、第2波長における集光光学系16のバックフォーカスは100.0mmである。従って、第1波長における集光光学系16aおよび補正光学系11Sの合成光学系のバックフォーカスと、第2波長における集光光学系1aのバックフォーカスとの差の絶対値は、0.1mmであり、第1波長における集光光学系16aのバックフォーカスと第2波長における集光光学系16aのバックフォーカスとの差の絶対値(1.5mm)よりも小さく設定されている。
 これにより、被照射面17の近傍における第1光束R1の集光位置(第1集光点FP1の位置)を、第2光束R2の集光位置(第2集光点FP2の位置)に近づけることが可能となる。
In the optical design example shown in FIG. 5, the back focus of the combined optical system of the condensing optical system 16a and the correction optical system 11S at the first wavelength is 99.9 mm, and the back focus of the condensing optical system 16 at the second wavelength is 99.9 mm. is 100.0 mm. The back focus of the condensing optical system 16 at the first wavelength is 101.5 mm, and the back focus of the condensing optical system 16 at the second wavelength is 100.0 mm. Therefore, the absolute value of the difference between the back focus of the combined optical system of the condensing optical system 16a and the correction optical system 11S at the first wavelength and the back focus of the condensing optical system 1a at the second wavelength is 0.1 mm. , is set smaller than the absolute value (1.5 mm) of the difference between the back focus of the condensing optical system 16a for the first wavelength and the back focus of the condensing optical system 16a for the second wavelength.
As a result, the condensing position of the first light flux R1 (the position of the first condensing point FP1) in the vicinity of the illuminated surface 17 is brought closer to the condensing position of the second light flux R2 (the position of the second condensing point FP2). becomes possible.
 なお、第2実施形態において、正の焦点距離(正の屈折力)を有する補正光学系11Sを光加工装置1(光学装置2a)の合成素子12の第1光束R1の入射側における第1光路P1に配置する代わりに、負の焦点距離(負の屈折力)を有する補正光学系11Sを、合成素子12の第2光束R2の入射側における第2光路P2(例えば、計測部23と合成素子12との間の第2光路P2)に配置してもよい。なお、負の焦点距離(負の屈折力)を有する補正光学系11Sを、計測光源23aと合成素子12との間の第2光路P2に配置してもよい。 In the second embodiment, the correcting optical system 11S having a positive focal length (positive refractive power) is positioned on the first optical path on the incident side of the first light beam R1 of the synthesizing element 12 of the optical processing device 1 (optical device 2a). Instead of arranging it in P1, the correction optical system 11S having a negative focal length (negative refractive power) is arranged in the second optical path P2 (for example, the measuring unit 23 and the combining element 12 in the second optical path P2). Note that the correction optical system 11S having a negative focal length (negative refractive power) may be arranged on the second optical path P2 between the measurement light source 23a and the synthesizing element 12. FIG.
 ここで、集光光学系16aの焦点距離が正(屈折力が正)で集光光学系16aの軸上色収差が補正過剰である場合(つまり、第2波長における集光光学系16aのバックフォーカスが第1波長における集光光学系16aのバックフォーカスよりも短い場合)には、合成素子12の第2光束R2の入射側における第2光路P2に配置する補正光学系11Sの焦点距離を負(屈折力を負)にすることによって、集光光学系16aと補正光学系11S(負の焦点距離を有する補正光学系)の合成光学系の第2波長でのバックフォーカスと、集光光学系16aの第1波長でのバックフォーカスとの差の絶対値を、集光光学系16aの第2波長でのバックフォーカスと集光光学系16aの第1波長でのバックフォーカスとの差の絶対値よりも小さくできる。 Here, when the focal length of the condensing optical system 16a is positive (the refractive power is positive) and the axial chromatic aberration of the condensing optical system 16a is overcorrected (that is, the back focus of the condensing optical system 16a at the second wavelength is shorter than the back focus of the condensing optical system 16a at the first wavelength), the focal length of the correcting optical system 11S arranged in the second optical path P2 on the incident side of the second light beam R2 of the combining element 12 is negative ( By making the refractive power negative, the back focus at the second wavelength of the combined optical system of the condensing optical system 16a and the correcting optical system 11S (correcting optical system having a negative focal length) and the condensing optical system 16a from the absolute value of the difference between the back focus at the first wavelength of the condensing optical system 16a and the back focus at the first wavelength of the condensing optical system 16a can be made smaller.
 なお、第1光束R1と第2光束R2との間に生じる倍率色収差D2は、集光光学系16aによって補正されるが、このとき、集光光学系16aの軸上色収差D1を補正過剰にすることによって、倍率色収差D2を補正することが容易になる利点がある。 The chromatic aberration of magnification D2 occurring between the first light beam R1 and the second light beam R2 is corrected by the condensing optical system 16a. Therefore, there is an advantage that it becomes easy to correct the chromatic aberration of magnification D2.
 なお、集光光学系16aは、図示した集光光学系16a(以下では、「第1集光光学系」とも呼ぶ)とは異なる第2集光光学系と交換可能に設けられていても良い。また、補正光学系11Sは、図示した補正光学系11S(以下では、「第1補正光学系」とも呼ぶ)とは異なる第2補正光学系と交換可能に設けられていても良い。この場合、第1集光光学系と第2集光光学系とは、ターレットやオート・ツール・チェンジャーなどの不図示の部材交換機構によってどちらか一方の光学系が光路に配置されるように交換可能に構成されていてもよい。また、第1補正光学系と第2補正光学系も同様に、ターレットやオート・ツール・チェンジャーなどの不図示の部材交換機構によってどちらか一方の光学系が光路に配置されるように交換可能に構成されていてもよい。 Note that the condensing optical system 16a may be provided interchangeably with a second condensing optical system different from the illustrated condensing optical system 16a (hereinafter also referred to as "first condensing optical system"). . Further, the correction optical system 11S may be provided interchangeably with a second correction optical system different from the illustrated correction optical system 11S (hereinafter also referred to as "first correction optical system"). In this case, the first condensing optical system and the second condensing optical system are exchanged by a member exchange mechanism (not shown) such as a turret or an auto tool changer so that one of the optical systems is arranged in the optical path. It may be configured to be possible. Similarly, the first correction optical system and the second correction optical system can be exchanged so that one of them is placed in the optical path by a member exchange mechanism (not shown) such as a turret or an auto tool changer. may be configured.
 この場合において、集光光学系16aとして上述した第2集光光学系が使われるときには、補正光学系11Sとして上述した第2補正光学系を使っても良い。
 第1集光光学系と第2集光光学系とはバックフォーカスが異なっていても良く、第1補正光学系と第2補正光学系とは焦点距離が異なっていても良い。
In this case, when the second condensing optical system described above is used as the condensing optical system 16a, the second correcting optical system described above may be used as the correcting optical system 11S.
Back focal lengths may be different between the first condensing optical system and the second condensing optical system, and focal lengths may be different between the first correcting optical system and the second correcting optical system.
 第2実施形態のように、集光光学系16aの焦点距離が正(屈折力が正)で集光光学系16aの軸上色収差D1が補正過剰であり、光学装置2aの第1光路P1に配置する補正光学系11Sの焦点距離を正(屈折力を正)とする場合において、第1集光光学系の第1波長におけるバックフォーカスの大きさが第2集光光学系の第1波長におけるバックフォーカスよりも短い場合、第1補正光学系の第1波長における焦点距離よりも第2補正光学系の第1波長における焦点距離が長くてもよい。 As in the second embodiment, the focal length of the condensing optical system 16a is positive (the refractive power is positive), the axial chromatic aberration D1 of the condensing optical system 16a is overcorrected, and the first optical path P1 of the optical device 2a has When the focal length of the correction optical system 11S to be arranged is positive (positive refractive power), the magnitude of the back focus at the first wavelength of the first condensing optical system at the first wavelength of the second condensing optical system is If it is shorter than the back focus, the focal length of the second correction optical system at the first wavelength may be longer than the focal length of the first correction optical system at the first wavelength.
 一方、第1集光光学系の第1波長におけるバックフォーカスが第2集光光学系の第1波長におけるバックフォーカスよりも長い場合、第1補正光学系の第1波長における焦点距離よりも第2補正光学系の第1波長における焦点距離が短くてもよい。 On the other hand, when the back focus at the first wavelength of the first condensing optical system is longer than the back focus at the first wavelength of the second condensing optical system, the focal length at the first wavelength of the first correcting optical system is longer than the focal length of the second The correction optical system may have a short focal length at the first wavelength.
 なお、第1集光光学系の第1波長におけるバックフォーカスの絶対値が第2集光光学系の第1波長におけるバックフォーカスの絶対値よりも小さい場合、第1補正光学系の第1波長における焦点距離の絶対値よりも第2補正光学系の第1波長における焦点距離の絶対値が大きくてもよい。
 一方、第1集光光学系の第1波長におけるバックフォーカスの絶対値が第2集光光学系の第1波長におけるバックフォーカスの絶対値よりも大きい場合、第1補正光学系の第1波長における焦点距離の絶対値よりも第2補正光学系の第1波長における焦点距離の絶対値が小さくてもよい。
Note that when the absolute value of the back focus at the first wavelength of the first condensing optical system is smaller than the absolute value of the back focus at the first wavelength of the second condensing optical system, the first correction optical system at the first wavelength The absolute value of the focal length at the first wavelength of the second correction optical system may be larger than the absolute value of the focal length.
On the other hand, when the absolute value of the back focus at the first wavelength of the first condensing optical system is greater than the absolute value of the back focus at the first wavelength of the second condensing optical system, the first correction optical system at the first wavelength The absolute value of the focal length of the second correction optical system at the first wavelength may be smaller than the absolute value of the focal length.
 なお、第2実施形態のように、集光光学系16aの焦点距離が正(屈折力が正)で集光光学系16aの軸上色収差D1が補正過剰であり、第2実施形態における正の焦点距離(負の屈折力)を有する補正光学系11Sの代わりに、負の焦点距離(負の屈折力)を有する補正光学系11Sを、合成素子12の第2光束R2の入射側における第2光路P2(例えば、計測部23と合成素子12との間の第2光路P2)に配置する場合において、第1集光光学系の第2波長におけるバックフォーカスが第2集光光学系の第2波長におけるバックフォーカスよりも短い場合、第1補正光学系の第2波長における焦点距離よりも第2補正光学系の第2波長における焦点距離が長くてもよい。
 一方、第1集光光学系の第2波長におけるバックフォーカスが第2集光光学系の第2波長におけるバックフォーカスよりも長い場合、第1補正光学系の第2波長における焦点距離よりも第2補正光学系の第2波長における焦点距離が短くてもよい。
As in the second embodiment, the focusing optical system 16a has a positive focal length (positive refractive power) and the longitudinal chromatic aberration D1 of the focusing optical system 16a is overcorrected. Instead of the correcting optical system 11S having a focal length (negative refractive power), a correcting optical system 11S having a negative focal length (negative refractive power) is provided at the second beam R2 incident side of the combining element 12. When arranged on the optical path P2 (for example, the second optical path P2 between the measurement unit 23 and the synthesizing element 12), the back focus at the second wavelength of the first condensing optical system is the second wavelength of the second condensing optical system. If the wavelength is shorter than the back focus, the focal length of the second correction optical system at the second wavelength may be longer than the focal length of the first correction optical system at the second wavelength.
On the other hand, when the back focus at the second wavelength of the first condensing optical system is longer than the back focus at the second wavelength of the second condensing optical system, the focal length of the first correction optical system at the second wavelength is longer than the focal length of the second The correction optical system may have a short focal length at the second wavelength.
 なお、第1集光光学系の第2波長におけるバックフォーカスの絶対値が第2集光光学系の第2波長におけるバックフォーカスの絶対値よりも小さい場合、第1補正光学系の第2波長における焦点距離の絶対値よりも第2補正光学系の第2波長における焦点距離の絶対値が大きくてもよい。
 一方、第1集光光学系の第2波長におけるバックフォーカスの絶対値が第2集光光学系の第2波長におけるバックフォーカスの絶対値よりも大きい場合、第1補正光学系の第2波長における焦点距離の絶対値よりも第2補正光学系の第2波長における焦点距離の絶対値が小さくてもよい。
Note that when the absolute value of the back focus at the second wavelength of the first condensing optical system is smaller than the absolute value of the back focus at the second wavelength of the second condensing optical system, at the second wavelength of the first correction optical system The absolute value of the focal length of the second correction optical system at the second wavelength may be larger than the absolute value of the focal length.
On the other hand, when the absolute value of the back focus at the second wavelength of the first condensing optical system is greater than the absolute value of the back focus at the second wavelength of the second condensing optical system, The absolute value of the focal length of the second correction optical system at the second wavelength may be smaller than the absolute value of the focal length.
 以上で説明した各実施形態、後述の変形例、及び後述の実施形態において、集光光学系16、16aを構成するレンズの枚数は、上述した枚数に限られるわけではなく、他の任意の枚数のレンズを有するものであっても良く、あるいは、ミラーまたは回折光学素子を含んでいても良い。
 また、集光光学系16、16aは、張合わせレンズを有していないが、張合わせレンズを有する光学系であってもよい。
 補正光学系11、11Sについても、1枚のレンズではなく、複数枚のレンズを有するものであっても良く、あるいは、ミラーまたは回折光学素子を含んでいても良い。
In each of the embodiments described above, modified examples described later, and embodiments described later, the number of lenses constituting the condensing optical systems 16 and 16a is not limited to the number described above, and may be any other number. or may include mirrors or diffractive optical elements.
Also, the condensing optical systems 16 and 16a do not have a cemented lens, but may be an optical system having a cemented lens.
The correction optical systems 11 and 11S may also have a plurality of lenses instead of a single lens, or may include mirrors or diffractive optical elements.
 光加工に使用する第1波長、および計測に使用する第2波長の波長は、上述した波長に限定されるものではなく、それぞれ他の波長であっても良い。
 また、第1レンズ材料および第2レンズ材料も、上述した蛍石および石英ガラスのそれぞれに限定されるものではなく、他の透光性の材料であっても良い。
The wavelengths of the first wavelength used for optical processing and the second wavelength used for measurement are not limited to the wavelengths described above, and may be other wavelengths.
Also, the first lens material and the second lens material are not limited to the above-described fluorite and quartz glass, respectively, and other translucent materials may be used.
 揺動ミラー14は、上述したようにY方向に平行な回転軸を中心として揺動するのみではなく、さらにXZ方向に平行な回転軸を中心として揺動しても良い。この場合、被照射面17上の集光点FPの位置を、上述したX方向だけでなく、Y方向についても移動させることができる。なお、揺動ミラー14は、Y方向に代えて、XZ方向に平行な回転軸を中心として揺動しても良い。この場合、この場合、被照射面17上の集光点FPの位置を、Y方向について移動させることができる。
 なお、被加工物18と集光点FPのX方向およびY方向の相対位置を、試料台19のガイド20に対する移動により行えば十分である場合には、揺動ミラー14は設けなくても良い。
The oscillating mirror 14 may oscillate not only about the rotation axis parallel to the Y direction, but also about the rotation axis parallel to the XZ direction as described above. In this case, the position of the focal point FP on the illuminated surface 17 can be moved not only in the X direction described above but also in the Y direction. Note that the oscillating mirror 14 may oscillate about a rotation axis parallel to the XZ direction instead of the Y direction. In this case, the position of the focal point FP on the illuminated surface 17 can be moved in the Y direction.
If it is sufficient to move the sample stage 19 with respect to the guide 20 to move the workpiece 18 and the focal point FP relative to each other in the X and Y directions, the oscillating mirror 14 may not be provided. .
 なお、上述したように揺動ミラー14を設けている場合には、被照射面17上での集光点FPのX位置(またはさらにY位置)を、高速で移動させることができる。これにより、被加工物18の被加工面18s上で、集光点FPを高速に移動させることができ、光加工装置1の処理能力を一層向上させることができる。 It should be noted that when the swinging mirror 14 is provided as described above, the X position (or further the Y position) of the focal point FP on the irradiated surface 17 can be moved at high speed. As a result, the focal point FP can be moved at high speed on the surface 18s to be processed of the workpiece 18, and the throughput of the optical processing apparatus 1 can be further improved.
 なお、固定ミラー13に代えて、揺動可能な揺動ミラーを配置してもよい。この場合、固定ミラー13に代わる揺動ミラーは、XZ方向に平行な回転軸を中心として揺動してもよく、揺動ミラー14は、上述のようにY方向に平行な回転軸を中心として揺動してもよい。この場合、第1光束R1及び第2光束R2は、被照射面17の面内においてX方向とY方向に走査される。 Note that instead of the fixed mirror 13, a rocking mirror that can rock may be arranged. In this case, the oscillating mirror instead of the fixed mirror 13 may oscillate around the rotation axis parallel to the XZ direction, and the oscillation mirror 14 may oscillate around the rotation axis parallel to the Y direction as described above. It can swing. In this case, the first light beam R1 and the second light beam R2 are scanned in the X direction and the Y direction within the plane of the irradiated surface 17 .
 なお、揺動ミラー14の他に複数の揺動ミラーを第3光路P3(つまり、第1光路P1と第2光路P2との少なくとも一部が重畳した光路)に配置してもよい。この場合、固定ミラー13は第3光路P3から除いてもよい。 In addition to the oscillating mirror 14, a plurality of oscillating mirrors may be arranged in the third optical path P3 (that is, an optical path in which at least a portion of the first optical path P1 and the second optical path P2 overlap). In this case, the fixed mirror 13 may be removed from the third optical path P3.
 上述したとおり、光加工装置1及び第2実施形態の光加工装置は位置情報修正部25を備えていなくても良い。
 また、光加工装置1は、算出部24を備えていなくても良い。算出部24を備えていない場合、計測部23は、検出した第2光束R2の光量信号に関する情報を、外部の算出部(不図示)に送信し、外部の算出部が被加工面18の位置情報を算出すれば良い。なお、後述の変形例の光加工装置1aも位置情報修正部25を備えていなくても良い。
As described above, the optical processing device 1 and the optical processing device of the second embodiment may not include the position information correction section 25 .
Further, the optical processing device 1 does not have to include the calculator 24 . If the calculation unit 24 is not provided, the measurement unit 23 transmits information about the detected light amount signal of the second light flux R2 to an external calculation unit (not shown), and the external calculation unit determines the position of the surface to be processed 18. information should be calculated. It should be noted that the optical processing device 1a of a modified example, which will be described later, does not have to include the position information corrector 25 either.
 なお、光加工装置1、第2実施形態の光加工装置、光加工装置1a(後述)、及び第3実施形態の光加工装置(後述)は、光源10を有していなくても良く、例えば、光加工装置1、第2実施形態の光加工装置、光加工装置1a(後述)、及び第3実施形態の光加工装置(後述)の外部に設けられている光源から光ファイバー等の導光部材を経由して第1光束L1の供給を受けるものであっても良い。なお、光加工装置1、第2実施形態の光加工装置、光加工装置1a(後述)、第3実施形態の光加工装置(後述)は、計測光源23aを有していなくても良く、例えば、光加工装置1、第2実施形態の光加工装置、光加工装置1a(後述)、及び第3実施形態の光加工装置(後述)の外部に設けられている光源から光ファイバー等の導光部材を経由して第2光束L2の供給を受けるものであっても良い。なお、光加工装置1、第2実施形態の光加工装置、光加工装置1a(後述)、及び第3実施形態の光加工装置(後述)は、制御部22と算出部24と位置情報修正部25の少なくとも一方を有していなくても良く、例えば、光加工装置1、第2実施形態の光加工装置、光加工装置1a(後述)、及び第3実施形態の光加工装置(後述)の外部に設けられていてもよい。なお、光源10と計測部23の少なくとも一方は、光学装置2及び光学装置2aに含まれていてもよい。なお、制御部22と算出部24の少なくとも一方は、光学装置2及び光学装置2aに含まれていてもよい。 The optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) may not have the light source 10. For example, , the optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) from the light source provided outside the light guide member such as an optical fiber The first light beam L1 may be supplied via the . The optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) may not have the measurement light source 23a. , the optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) from the light source provided outside the light guide member such as an optical fiber may receive the supply of the second light beam L2 via. The optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) include a control unit 22, a calculation unit 24, and a position information correction unit. 25, for example, the optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) It may be provided outside. At least one of the light source 10 and the measurement unit 23 may be included in the optical device 2 and the optical device 2a. At least one of the control unit 22 and the calculation unit 24 may be included in the optical device 2 and the optical device 2a.
 なお、以上で説明した各実施形態、後述の変形例、及び後述の実施形態において、計測部23は、上述のような干渉方式の計測装置でなくてもよい。例えば、計測部23は、光干渉断層撮影(OCT:Optical Coherence Tomography)方式の計測装置であってもよい。OCT方式の計測装置の一例は、特開2020-101499号公報に記載されている。例えば、計測部23は、白色共焦点変位計を備える計測装置であってもよい。白色共焦点変位計の一例は、特開2020-085633号公報に記載されている。例えば、計測部23は、位相変調方式の計測装置であってもよい。位相変調方式の計測装置の一例は、特開2010-025922号公報に記載されている。例えば、計測部23は、強度変調方式の計測装置であってもよい。強度変調方式の計測装置の一例は、特開2016-510415号公報及び米国特許出願公開第2014/226145号明細書に記載されている。 It should be noted that in each of the embodiments described above, modified examples described later, and embodiments described later, the measuring unit 23 may not be an interferometric measuring device as described above. For example, the measurement unit 23 may be an optical coherence tomography (OCT) type measurement device. An example of an OCT-type measuring device is described in Japanese Patent Application Laid-Open No. 2020-101499. For example, the measurement unit 23 may be a measurement device that includes a white confocal displacement meter. An example of a white confocal displacement meter is described in JP-A-2020-085633. For example, the measurement unit 23 may be a phase modulation type measurement device. An example of the phase modulation type measuring device is described in Japanese Patent Application Laid-Open No. 2010-025922. For example, the measurement unit 23 may be an intensity modulation type measurement device. An example of the intensity modulation type measuring device is described in Japanese Patent Application Laid-Open No. 2016-510415 and US Patent Application Publication No. 2014/226145.
 なお、以上で説明した各実施形態、後述の変形例、及び後述の実施形態において、第1光束R1で被加工物18を加工する前に、光加工装置1、第2実施形態の光加工装置、光加工装置1a(後述)、及び第3実施形態の光加工装置(後述)は、第2光束R2を用いて計測部23および算出部24により検出および算出された被加工面18sの位置情報等に基づいて、被加工面18sに対する第1光束R1の照射位置、照射回数、照射条件の少なくとも一つを決定してもよい。 In each of the embodiments described above, modified examples described later, and embodiments described later, before processing the workpiece 18 with the first beam R1, the optical processing device 1 and the optical processing device of the second embodiment , the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) use the second beam R2 to detect and calculate the position information of the surface 18s to be processed by the measuring unit 23 and the calculating unit 24. At least one of the irradiation position of the first light flux R1 on the surface to be processed 18s, the number of times of irradiation, and irradiation conditions may be determined based on the above.
 また、以上で説明した各実施形態、後述の変形例、及び後述の実施形態において、光加工装置1、第2実施形態の光加工装置、光加工装置1a(後述)、及び第3実施形態の光加工装置(後述)は、第1光束R1による被加工面18sの加工の後に、第1光束R1で加工した部分を第2光束R2により計測を行い、第1光束R1で加工した部分の良否や品質を判断してもよい。例えば、光加工装置1、第2実施形態の光加工装置、及び光加工装置1a(後述)、及び第3実施形態の光加工装置(後述)は、第1光束R1による被加工面18sの加工の後に、第1光束R1で加工した部分の位置情報を算出し、算出した位置情報と所定の基準位置情報(例えば、被加工物18のCADデータなど)とを比較して、第1光束R1で加工した部分について再加工するか加工を終えるかどうかを判断してもよい。 Further, in each embodiment described above, modifications described later, and embodiments described later, the optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the third embodiment After processing the surface 18s to be processed by the first light beam R1, the optical processing device (described later) measures the portion processed by the first light beam R1 by the second light beam R2, and determines the quality of the portion processed by the first light beam R1. and quality. For example, the optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) process the surface 18s to be processed by the first beam R1. After that, the position information of the portion processed by the first beam R1 is calculated, and the calculated position information and predetermined reference position information (for example, CAD data of the workpiece 18) are compared to obtain the first beam R1 It may be determined whether to re-process or finish the processing of the portion processed in .
 第1光束R1で加工した部分を再加工する場合、光加工装置1、第2実施形態の光加工装置、光加工装置1a(後述)、及び第3実施形態の光加工装置(後述)は、第1光束R1で加工した部分の位置情報に基づいて、被加工面18sに対する第1光束R1の照射位置、照射回数、照射条件の少なくとも一つを決定し、第1光束R1で加工した部分を再加工してもよい。また、光加工装置1、1aは、第1光束R1による被加工面18sの加工の後に、第1光束R1で加工した部分の位置情報を算出し、算出した位置情報と所定の基準位置情報(例えば、被加工物18のCADデータなど)とを比較して、第1光束R1で加工した部分が所望の形状に加工できているか否かを判定してもよい。 When reprocessing the portion processed by the first beam R1, the optical processing device 1, the optical processing device of the second embodiment, the optical processing device 1a (described later), and the optical processing device of the third embodiment (described later) are Based on the positional information of the portion processed by the first light beam R1, at least one of the irradiation position of the first light beam R1 on the surface 18s to be processed, the number of times of irradiation, and irradiation conditions is determined, and the portion processed by the first light beam R1 is determined. May be reworked. Further, the optical processing apparatuses 1 and 1a calculate the position information of the portion processed by the first light flux R1 after processing the surface 18s to be processed by the first light flux R1, and the calculated position information and the predetermined reference position information ( For example, CAD data of the workpiece 18) may be compared to determine whether or not the portion processed by the first beam R1 has been processed into the desired shape.
 なお、以上で説明した各実施形態において、光加工装置1、第2実施形態の光加工装置、及び第3実施形態の光加工装置(後述)は、第1光束R1により被加工物18を加工しつつ、第2光束R2により被加工物18の計測(被加工面18sからの検出光の検出、及び位置情報等の算出)を行ってもよい。この場合、被加工物18の加工と計測を同時に行うことができる。 In each of the embodiments described above, the optical processing device 1, the optical processing device of the second embodiment, and the optical processing device of the third embodiment (described later) process the workpiece 18 with the first beam R1. Meanwhile, measurement of the workpiece 18 (detection of detection light from the workpiece surface 18s and calculation of position information, etc.) may be performed using the second light flux R2. In this case, machining and measurement of the workpiece 18 can be performed simultaneously.
 なお、光加工装置1、第2実施形態の光加工装置、及び第3実施形態の光加工装置(後述)は、第1光束R1による被加工物18の加工と、第2光束R2による被加工物18の計測を同時に行う場合、第1光束R1による被加工物18の加工と共に被加工面18sからの検出光を行い、検出光に基づく位置情報等の算出を第1光束R1による被加工物18の加工後に行ってもよい。 The optical processing device 1, the optical processing device of the second embodiment, and the optical processing device of the third embodiment (described later) process the workpiece 18 with the first beam R1 and the workpiece with the second beam R2. When measuring the object 18 at the same time, the object 18 is processed by the first beam R1 and the detection light from the surface 18s to be processed is processed. It may be performed after the processing of 18.
(第2実施形態の光加工装置の効果)
(2)以上で説明した第2実施形態の光加工装置は、第1波長の第1光束R1の第1光路P1と、第1波長より長い波長の第2波長の第2光束R2の第2光路P2とを合成させる合成素子12と、正の屈折力を有し、合成素子12からの第1光束R1と第2光束R2とをそれぞれ、被加工物18に向けて集光させる集光光学系16aと、正の屈折力を有する補正光学系11Sと、を備えている。そして、補正光学系11Sは、合成素子12の入射側における第2光路P2に配置され、第1光束R1および第2光束R2の一方の光束は、被加工物18を加工する光束であり、第1光束R1および第2光束R2の他方の光束は、被加工物18を計測する光束である。
 この構成により、上述した第1実施形態の光加工装置1と同様の効果を有している。
(Effect of the optical processing device of the second embodiment)
(2) The optical processing apparatus of the second embodiment described above has a first optical path P1 for the first light flux R1 of the first wavelength and a second light path P1 for the second light flux R2 of the second wavelength longer than the first wavelength. a synthesizing element 12 for synthesizing the optical path P2; It comprises a system 16a and a correction optical system 11S having positive refractive power. The correction optical system 11S is arranged on the second optical path P2 on the incident side of the synthesizing element 12, and one of the first light flux R1 and the second light flux R2 is a light flux for processing the workpiece 18. The other one of the first light beam R1 and the second light beam R2 is a light beam for measuring the workpiece 18 .
This configuration has the same effect as the optical processing device 1 of the first embodiment described above.
(変形例の光加工装置)
 以下、図6を参照して、変形例の光加工装置1aについて説明する。光加工装置1aの構成は、上述した第1実施形態および第2実施形態の光加工装置1と概ね共通しているため、同一の構成には同一の符号を付して、適宜説明を省略する。
(Modified optical processing device)
Hereinafter, the optical processing device 1a of the modified example will be described with reference to FIG. Since the configuration of the optical processing device 1a is generally common to the optical processing device 1 of the first embodiment and the second embodiment described above, the same reference numerals are given to the same configurations, and the description is omitted as appropriate. .
 変形例の光加工装置1aは、計測部23と合成素子12との間の第2光路P2上に、可変ミラー26が配置されている点が、上述した第1実施形態および第2実施形態の光加工装置1とは異なっている。可変ミラー26の反射面の方位角を所定に角度に設定することにより、被加工物18の被加工面18sにおける第1光束R1の第1集光点FP1に対する第2光束R2の第2集光点FP2の位置を、XY面内方向に所定の距離だけずらすことができる。なお、可変ミラー26は、Y方向に平行な軸を中心に反射面の方位角を所定の角度に設定可能に構成されていてもよい。 The optical processing apparatus 1a of the modified example differs from the above-described first and second embodiments in that the variable mirror 26 is arranged on the second optical path P2 between the measurement unit 23 and the combining element 12. It differs from the optical processing device 1 . By setting the azimuth angle of the reflecting surface of the variable mirror 26 to a predetermined angle, the second light flux R2 is second condensed at the first converging point FP1 of the first light flux R1 on the surface 18s of the workpiece 18 to be processed. The position of the point FP2 can be shifted by a predetermined distance in the XY plane direction. Note that the variable mirror 26 may be configured such that the azimuth angle of the reflecting surface can be set to a predetermined angle around an axis parallel to the Y direction.
 第1光束R1が照射されて加工が行なわれている部分では、被加工面18sから発生するヒュームなどにより、第2光束R2により計測を高精度で行えない恐れがある。
 変形例の光加工装置1aでは、被加工面18sの位置または状態に関する情報を、第1光束R1により加工される位置とは異なる位置で検出することができるため、ヒュームなどによる計測精度の低下を防ぐことができる。
In the portion being processed by being irradiated with the first beam R1, there is a fear that high-precision measurement cannot be performed with the second beam R2 due to fumes generated from the surface to be processed 18s.
In the optical processing apparatus 1a of the modified example, the information about the position or state of the surface 18s to be processed can be detected at a position different from the position processed by the first light beam R1, so that deterioration in measurement accuracy due to fumes or the like can be prevented. can be prevented.
 なお、変形例の光加工装置1aは、第1光束R1により被加工物18を加工しつつ、第2光束R2により被加工物18の計測を行ってもよい。この場合、ヒュームなどによる計測精度の低下を防ぎつつ、被加工物18の加工と計測を同時に行うことができる。なお、変形例の光加工装置1aは、第1光束R1による被加工物18の加工と、第2光束R2による被加工物18の計測(被加工面18sからの検出光の検出、及び位置情報等の算出)を同時に行う場合、第1光束R1による被加工物18の加工と共に被加工面18sからの検出光を行い、検出光に基づく位置情報等の算出を第1光束R1による被加工物18の加工後に行ってもよい。 The optical processing device 1a of the modified example may measure the workpiece 18 with the second beam R2 while machining the workpiece 18 with the first beam R1. In this case, machining and measurement of the workpiece 18 can be performed simultaneously while preventing deterioration of measurement accuracy due to fumes and the like. The optical processing apparatus 1a of the modified example processes the workpiece 18 with the first beam R1 and measures the workpiece 18 with the second beam R2 (detection of the detection light from the workpiece surface 18s and position information etc.) are performed at the same time, the workpiece 18 is processed by the first beam R1 and the detection light from the workpiece surface 18s is processed. It may be performed after the processing of 18.
 なお、上述した可変ミラー26による第2光束R2の偏向に代えて、例えば、第2光路P2にリレーレンズ系を配置し、リレーレンズ系により形成される中間集光点の近傍に平行平板ガラスを配置して良い。この場合、平行平板ガラスの入射面および射出面の法線方向を、第2光束R2の進行方向から傾けることにより、被加工面18sにおける第1集光点FP1に対する第2集光点FP2の位置を、XY面内方向に所定の距離だけずらすことができる。 Instead of deflecting the second light beam R2 by the variable mirror 26, for example, a relay lens system may be arranged in the second optical path P2, and parallel plate glass may be placed in the vicinity of the intermediate focal point formed by the relay lens system. Good to place. In this case, by inclining the normal direction of the incident surface and the exit surface of the parallel plate glass from the traveling direction of the second light beam R2, the position of the second condensing point FP2 with respect to the first condensing point FP1 on the surface to be processed 18s can be shifted by a predetermined distance in the XY plane direction.
 なお、光加工装置1aにおいて、可変ミラー26が配置される位置は、計測部23と合成素子12との間の第2光路P2に限られない。例えば、可変ミラー26は、光源10と合成素子12との間の第1光路P1に配置されていてもよい。また、計測部23合成素子12との間の第2光路P2に配置される可変ミラー26に加えて、他の可変ミラーが光源10と合成素子12との間の第1光路P1に配置されていてもよい。 In addition, in the optical processing device 1a, the position where the variable mirror 26 is arranged is not limited to the second optical path P2 between the measurement unit 23 and the combining element 12. For example, the deformable mirror 26 may be placed in the first optical path P1 between the light source 10 and the combining element 12. FIG. In addition to the variable mirror 26 arranged on the second optical path P2 between the measurement unit 23 and the combining element 12, another variable mirror is arranged on the first optical path P1 between the light source 10 and the combining element 12. may
(第3実施形態の光加工装置)
 以下、第3実施形態の光加工装置について説明する。
 ただし、第3実施形態の光加工装置の構成は、図1から図5に示した、第1実施形態および第2実施形態の光加工装置の構成と概ね同様である。そこで、以下では、図1および図2を参照して、第1実施形態および第2実施形態の光加工装置に対する第3実施形態の光加工装置の相違点について説明し、共通する構成については適宜説明を省略する。
(Optical processing device of the third embodiment)
The optical processing apparatus of the third embodiment will be described below.
However, the configuration of the optical processing apparatus of the third embodiment is substantially the same as the configuration of the optical processing apparatuses of the first and second embodiments shown in FIGS. 1 to 5. FIG. Therefore, hereinafter, with reference to FIGS. 1 and 2, the differences of the optical processing apparatus of the third embodiment with respect to the optical processing apparatuses of the first and second embodiments will be described, and common configurations will be described as appropriate. Description is omitted.
 第3実施形態の光加工装置は、補正光学系11を備えていない。このため、被照射面17の近傍における軸上色収差D1または倍率色収差D2の量は、上述した第1実施形態および第2実施形態の光加工装置に比べて、大きな値となる。
 第3実施形態の光加工装置においても、第2波長の第2光束R2を用いて計測部23および算出部24により、被加工面18sの位置を算出する。
The optical processing apparatus of the third embodiment does not have the correction optical system 11 . Therefore, the amount of longitudinal chromatic aberration D1 or chromatic aberration of magnification D2 in the vicinity of the illuminated surface 17 becomes a large value compared to the optical processing apparatuses of the first and second embodiments described above.
Also in the optical processing apparatus of the third embodiment, the position of the surface to be processed 18s is calculated by the measuring unit 23 and the calculating unit 24 using the second light flux R2 of the second wavelength.
 第3実施形態の光加工装置は、上述した位置情報修正部25を備えている。そして、位置情報修正部25は、揺動ミラー14の回転角度または集光点FPのX位置と、軸上色収差D1または倍率色収差D2の少なくとも一方との関係を示す数値データである集光光学系16の収差情報を記憶している。また、位置情報修正部25は、集光光学系16のいわゆるテレセントリシティに関する情報も、記憶していてもよい。 The optical processing device of the third embodiment includes the position information corrector 25 described above. Then, the position information correction unit 25 is a condensing optical system that is numerical data indicating the relationship between the rotation angle of the swing mirror 14 or the X position of the condensing point FP and at least one of the longitudinal chromatic aberration D1 and the chromatic aberration of magnification D2. 16 pieces of aberration information are stored. The position information correction unit 25 may also store information on the so-called telecentricity of the condensing optical system 16 .
 位置情報修正部25は、制御部22から送られた揺動ミラー14の回転角度に関する情報または集光点FPのX位置に関する情報に基づいて、上記の集光光学系16の特性に関する情報から、集光点FPにおける軸上色収差D1または倍率色収差D2の少なくとも一方を算出する。位置情報修正部25は、算出部24が算出し、信号S9として送信された被加工面18sの位置情報を、上記により算出した軸上色収差D1または倍率色収差D2の少なくとも一方に基づいて修正する。そして、位置情報修正部25は、被加工面18sの修正後の位置情報を、信号S10として算出部24に返信する。 Based on the information on the rotation angle of the oscillating mirror 14 sent from the control unit 22 or the information on the X position of the focal point FP, the position information correction unit 25 corrects the information on the characteristics of the condensing optical system 16 to: At least one of the longitudinal chromatic aberration D1 and the lateral chromatic aberration D2 at the focal point FP is calculated. The position information correction unit 25 corrects the position information of the surface to be processed 18s calculated by the calculation unit 24 and transmitted as the signal S9 based on at least one of the axial chromatic aberration D1 and the chromatic aberration of magnification D2 calculated as described above. Then, the position information correction unit 25 sends back the corrected position information of the surface 18s to be processed to the calculation unit 24 as a signal S10.
 位置情報修正部25を備えることにより、第3実施形態の光加工装置は、軸上色収差D1または倍率色収差D2が比較的大きな光学装置2を用いても、被加工面18sの位置を正確に検出することができ、被加工面18sを高精度に加工することができる。
 なお、上述した第1実施形態および第2実施形態の光加工装置のように、位置情報修正部25と補正光学系11との両方を備え、より高精度に色収差の補正を行っても良い。
By providing the position information correction unit 25, the optical processing apparatus of the third embodiment can accurately detect the position of the surface to be processed 18s even when using the optical apparatus 2 with relatively large longitudinal chromatic aberration D1 or chromatic aberration of magnification D2. 18s of surfaces to be processed can be processed with high precision.
Note that, like the optical processing apparatuses of the first and second embodiments described above, both the position information correction unit 25 and the correction optical system 11 may be provided to correct chromatic aberration with higher accuracy.
(第3実施形態の光加工装置の効果)
(3)第3実施形態の光加工装置は、第1光路P1に沿って供給される第1波長の第1光束R1と、第2光路P2に沿って供給される第1波長とは異なる第2波長の第2光束R2とを合流させる合成素子12と、合成素子12により合流された第1光束R1と第2光束R2とをそれぞれ被照射面17に集光させる集光光学系16と、被加工物18をその被加工面18sが被照射面17に合致するように保持する保持部19と、第2光束R2のうち、被加工面18sで反射または散乱され集光光学系16および合成素子12を介して第2光路P2に戻った検出光を検出する計測部23と、を備えている。そして、計測部23が検出した検出光の強度に関する情報に基づいて、被加工面18sのうちの第2光束R2が照射された部分の位置情報を算出する算出部24と、集光光学系16の収差情報に基づいて、算出部24が算出した位置情報を修正する位置情報修正部25と、を備えている。
 この構成により、軸上色収差D1または倍率色収差D2が比較的大きな光学装置2を用いても、被加工面18sの位置を正確に検出することができ、被加工面18sを高精度に加工することができる。
(Effect of the optical processing device of the third embodiment)
(3) In the optical processing apparatus of the third embodiment, the first light flux R1 having the first wavelength supplied along the first optical path P1 and the first light flux R1 having the first wavelength supplied along the second optical path P2 are different from each other. a synthesizing element 12 for combining the second light flux R2 of two wavelengths, a condensing optical system 16 for condensing the first light flux R1 and the second light flux R2 combined by the synthesizing element 12 onto the illuminated surface 17; A holding unit 19 that holds the workpiece 18 so that the surface 18s to be processed matches the surface 17 to be irradiated, and the second light beam R2 is reflected or scattered by the surface 18s to be processed, and is combined with the condensing optical system 16. and a measurement unit 23 that detects the detection light that has returned to the second optical path P2 via the element 12 . Then, based on information about the intensity of the detection light detected by the measurement unit 23, a calculation unit 24 for calculating position information of a portion of the surface to be processed 18s irradiated with the second beam R2; and a position information correction unit 25 for correcting the position information calculated by the calculation unit 24 based on the aberration information.
With this configuration, even if an optical device 2 with a relatively large longitudinal chromatic aberration D1 or a relatively large chromatic aberration of magnification D2 is used, the position of the surface 18s to be processed can be accurately detected, and the surface 18s to be processed can be processed with high accuracy. can be done.
 本発明は以上の内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。本実施形態は、上記した態様の全て又は一部を組み合わせてもよい。 The present invention is not limited to the above contents. Other aspects conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. This embodiment may combine all or part of the above aspects.
(付記)
 上述した複数の実施形態またはその変形例は、以下の態様の具体例であることが当業者により理解される。
(Appendix)
It will be appreciated by those skilled in the art that the above-described multiple embodiments or variations thereof are specific examples of the following aspects.
(第1項)
 第1波長の第1光束の第1光路と、前記第1波長より長い波長の第2波長の第2光束の第2光路とを合成させる合成素子と、正の屈折力を有し、前記合成素子からの前記第1光束と前記第2光束とをそれぞれ集光させる集光光学系と、負の屈折力を有する補正光学系と、を備え、前記補正光学系は、前記合成素子の入射側における前記第1光路に配置される、光学装置。
(Section 1)
a synthesizing element for synthesizing a first optical path of a first light beam having a first wavelength and a second optical path of a second light beam having a second wavelength longer than the first wavelength; A condensing optical system condensing the first light beam and the second light beam from the element, and a correction optical system having a negative refractive power, wherein the correction optical system is located on the incident side of the combining element. optical device arranged in the first optical path in
(第2項)
 第1波長の第1光束の第1光路と、前記第1波長より長い波長の第2波長の第2光束の第2光路とを合成する合成素子と、正の屈折力を有し、前記合成素子からの前記第1光束と前記第2光束とをそれぞれ、被加工物に向けて集光させる集光光学系と、正の屈折力を有する補正光学系と、を備え、前記補正光学系は、前記合成素子の入射側における前記第1光路に配置され、前記第1波長における前記集光光学系のバックフォーカスは、前記第2波長における前記集光光学系のバックフォーカスよりも長い、光学装置。
(Section 2)
a synthesizing element for synthesizing a first optical path of a first light beam having a first wavelength and a second optical path of a second light beam having a second wavelength longer than the first wavelength; A condensing optical system for condensing the first light beam and the second light beam from the element toward a workpiece, and a correcting optical system having a positive refractive power, wherein the correcting optical system is , an optical device arranged in the first optical path on the incident side of the combining element, wherein the back focus of the condensing optical system at the first wavelength is longer than the back focus of the condensing optical system at the second wavelength. .
(第3項)
 第1項または第2項に記載の光学装置において、前記第1波長における前記集光光学系及び前記補正光学系の合成光学系のバックフォーカスと前記第2波長における前記集光光学系のバックフォーカスとの差の絶対値は、前記第1波長における前記集光光学系のバックフォーカスと前記第2波長における前記集光光学系のバックフォーカスとの差の絶対値よりも小さい、光学装置。
(Section 3)
In the optical device according to item 1 or item 2, the back focus of the combined optical system of the condensing optical system and the correcting optical system at the first wavelength and the back focus of the condensing optical system at the second wavelength is smaller than the absolute value of the difference between the back focus of the condensing optical system at the first wavelength and the back focus of the condensing optical system at the second wavelength.
(第4項)
 第1波長の第1光束の第1光路と、前記第1波長より長い波長の第2波長の第2光束の第2光路とを合成させる合成素子と、正の屈折力を有し、前記合成素子からの前記第1光束と前記第2光束とをそれぞれ集光させる集光光学系と、正の屈折力を有する補正光学系と、を備え、前記補正光学系は、前記合成素子の入射側における前記第2光路に配置される、光学装置。
(Section 4)
a synthesizing element for synthesizing a first optical path of a first light beam having a first wavelength and a second optical path of a second light beam having a second wavelength longer than the first wavelength; A condensing optical system for condensing the first light beam and the second light beam from the element, and a correction optical system having a positive refractive power, wherein the correction optical system is located on the incident side of the combining element. optical device arranged in the second optical path in
(第5項)
 第1波長の第1光束の第1光路と、前記第1波長より長い波長の第2波長の第2光束の第2光路とを合成する合成素子と、正の屈折力を有し、前記合成素子からの前記第1光束と前記第2光束とをそれぞれ、被加工物に向けて集光させる集光光学系と、負の屈折力を有する補正光学系と、を備え、前記補正光学系は、前記合成素子の入射側における前記第2光路に配置され、前記第1波長における前記集光光学系のバックフォーカスは、前記第2波長における前記集光光学系のバックフォーカスよりも長い、光学装置。
(Section 5)
a synthesizing element for synthesizing a first optical path of a first light beam having a first wavelength and a second optical path of a second light beam having a second wavelength longer than the first wavelength; A condensing optical system for condensing the first light beam and the second light beam from the element toward a workpiece, and a correction optical system having a negative refractive power, wherein the correction optical system is , an optical device arranged in the second optical path on the incident side of the combining element, wherein the back focus of the condensing optical system at the first wavelength is longer than the back focus of the condensing optical system at the second wavelength. .
(第6項)
 第4項または第5項に記載の光学装置において、前記第2波長における前記集光光学系及び前記補正光学系の合成光学系のバックフォーカスと前記第1波長における前記集光光学系のバックフォーカスとの差の絶対値は、前記第2波長における前記集光光学系のバックフォーカスと前記第1波長における前記集光光学系のバックフォーカスとの差の絶対値よりも小さい、光学装置。
(Section 6)
6. In the optical device according to item 4 or 5, the back focus of the combined optical system of the condensing optical system and the correcting optical system at the second wavelength and the back focus of the condensing optical system at the first wavelength is smaller than the absolute value of the difference between the back focus of the condensing optical system at the second wavelength and the back focus of the condensing optical system at the first wavelength.
(第7項)
 第1項から第6項までのいずれか一項に記載の光学装置において、前記集光光学系を第1集光光学系とし、前記補正光学系を第1補正光学系とするとき、前記第1集光光学系は、前記第1集光光学系と異なる第2集光光学系と交換可能に設けられ、前記第1補正光学系は、前記第1補正光学系と異なる第2補正光学系と交換可能に設けられる、光学装置。
(Section 7)
In the optical device according to any one of items 1 to 6, when the condensing optical system is the first condensing optical system and the correcting optical system is the first correcting optical system, the first The first condensing optical system is exchangeably provided with a second condensing optical system different from the first condensing optical system, and the first correcting optical system is a second correcting optical system different from the first correcting optical system. optical device provided interchangeably with
(第8項)
 第7項に記載の光学装置において、前記集光光学系として前記第2集光光学系が使われるとき、前記補正光学系として前記第2補正光学系が使われる、光学装置。
(Section 8)
8. The optical apparatus according to claim 7, wherein when the second condensing optical system is used as the condensing optical system, the second correcting optical system is used as the correcting optical system.
(第9項)
 第7項または第8項に記載の光学装置において、前記第1集光光学系と前記第2集光光学系とはバックフォーカスが異なり、前記第1補正光学系と前記第2補正光学系とは焦点距離が異なる、光学装置。
(Section 9)
9. In the optical device according to item 7 or 8, the first condensing optical system and the second condensing optical system have different back focal lengths, and the first correcting optical system and the second correcting optical system are optical devices with different focal lengths.
(第10項)
 第1項から第3項のいずれか一項を引用する第7項から第9項のいずれか一項に記載の光学装置において、前記第1集光光学系のバックフォーカスが第2集光光学系のバックフォーカスよりも短い場合、前記第1補正光学系の焦点距離よりも前記第2補正光学系の焦点距離が長く、前記第1集光光学系のバックフォーカスが前記第2集光光学系のバックフォーカスよりも長い場合、前記第1補正光学系の焦点距離よりも前記第2補正光学系の焦点距離が短い、光学装置。
(Section 10)
9. The optical device according to any one of items 7 to 9 quoting any one of items 1 to 3, wherein the back focus of the first light collecting optical system is the second light collecting optical system system, the focal length of the second correcting optical system is longer than the focal length of the first correcting optical system, and the back focus of the first condensing optical system is the second condensing optical system. is longer than the back focus of the second correction optical system, the focal length of the second correction optical system is shorter than the focal length of the first correction optical system.
(第11項)
 第2項を引用する第7項から第9項のいずれか一項に記載の光学装置において、前記第1集光光学系の前記第1波長におけるバックフォーカスが前記第2集光光学系の前記第1波長におけるバックフォーカスよりも短い場合、前記第1補正光学系の前記第1波長における焦点距離よりも前記第2補正光学系の前記第1波長における焦点距離が長く、前記第1集光光学系の前記第1波長におけるバックフォーカスが前記第2集光光学系の前記第1波長におけるバックフォーカスよりも長い場合、前記第1補正光学系の前記第1波長における焦点距離よりも前記第2補正光学系の前記第1波長における焦点距離が短い、光学装置。
(Section 11)
9. The optical device according to any one of items 7 to 9, citing item 2, wherein the back focus of the first light collecting optical system at the first wavelength is the when the back focus at the first wavelength is shorter than the focal length at the first wavelength of the first correction optical system, the focal length at the first wavelength of the second correction optical system is longer than the focal length at the first wavelength of the first correction optical system; if the back focus at the first wavelength of the system is longer than the back focus at the first wavelength of the second condensing optical system, the second correction is longer than the focal length at the first wavelength of the first correcting optical system. An optical device, wherein the optical system has a short focal length at the first wavelength.
(第12項)
 第5項を引用する第7項から第9項のいずれか一項に記載の光学装置において、前記第1集光光学系の前記第2波長におけるバックフォーカスが前記第2集光光学系の前記第2波長におけるバックフォーカスよりも短い場合、前記第1補正光学系の前記第2波長における焦点距離よりも前記第2補正光学系の前記第2波長における焦点距離が長く、前記第1集光光学系の前記第2波長におけるバックフォーカスが前記第2集光光学系の前記第2波長におけるバックフォーカスよりも長い場合、前記第1補正光学系の前記第2波長における焦点距離よりも前記第2補正光学系の前記第2波長における焦点距離が短い、光学装置。
(Section 12)
9. The optical device according to any one of items 7 to 9, citing item 5, wherein the back focus at the second wavelength of the first condensing optical system is the when the back focus at the second wavelength is shorter than the focal length at the second wavelength of the first correction optical system, the focal length at the second wavelength of the second correction optical system is longer than the focal length at the second wavelength of the first condensing optical system; if the back focus at the second wavelength of the system is longer than the back focus at the second wavelength of the second collection optical system, the second correction is longer than the focal length at the second wavelength of the first correction optical system. The optical device, wherein the optical system has a short focal length at the second wavelength.
(第13項)
 第1項から第3項のいずれか一項、または第1項から第3項のいずれか一項を引用する第7項から第11項のいずれか一項に記載の光学装置において、前記補正光学系は、前記第2光路に配置されない、光学装置。
(Section 13)
In the optical device according to any one of items 1 to 3, or any one of items 7 to 11 quoting any one of items 1 to 3, the correction The optical device, wherein the optical system is not arranged in the second optical path.
(第14項)
 第4項から第6項のいずれか一項、または第4項から第6項のいずれか一項を引用する第7項から第10項、第12項のいずれか一項に記載の光学装置において、前記補正光学系は、前記第1光路に配置されない、光学装置。
(Section 14)
The optical device according to any one of items 4 to 6, or any one of items 7 to 10 and 12 quoting any one of items 4 to 6. 3. The optical device according to claim 1, wherein the correcting optical system is not arranged in the first optical path.
(第15項)
 第1項から第14項までのいずれか一項に記載の光学装置において、前記集光光学系は、前記合成素子側から順に、負の屈折力を有する第1レンズと、全体として正の屈折力を有する第2レンズ群とを有し、前記第1波長における前記補正光学系の焦点距離fcと前記第1波長における前記集光光学系の焦点距離fgとは、|fc| > 10×fg の関係を満たす、光学装置。
(Section 15)
15. The optical device according to any one of items 1 to 14, wherein the condensing optical system includes, in order from the combining element side, a first lens having negative refractive power and a lens having positive refractive power as a whole. and a second lens group having a power, wherein the focal length fc of the correction optical system at the first wavelength and the focal length fg of the condensing optical system at the first wavelength are |fc|>10×fg An optical device that satisfies the relationship of
(第16項)
 第1項から第15項までのいずれか一項に記載の光学装置において、前記集光光学系は、前記合成素子側から順に、負の屈折力を有する第1レンズと、全体として正の屈折力を有する第2レンズ群とを有し、前記第2レンズ群は、正の屈折力を有し、第1レンズ材料からなる1以上の正レンズと、負の屈折力を有し、第2レンズ材料からなる1以上の負レンズと、を含み、レンズ材料のアッベ数νを、レンズ材料の前記第1波長に対する屈折率n1と、前記第2波長に対する屈折率n2に対して、ν=(n2-1)/(n2-n1)とするとき、前記第1レンズ材料のアッベ数ν1と、前記第2レンズ材料のアッベ数ν2とは、ν1 > ν2 の関係を満たす、光学装置。
(Section 16)
16. The optical device according to any one of items 1 to 15, wherein the condensing optical system includes, in order from the combining element side, a first lens having negative refractive power and a lens having positive refractive power as a whole. a second lens group having positive refractive power, said second lens group having positive refractive power, one or more positive lenses made of the first lens material, having negative refractive power; and one or more negative lenses made of a lens material, wherein the Abbe number ν of the lens material is defined as ν=( The optical device, wherein when n2−1)/(n2−n1), the Abbe number ν1 of the first lens material and the Abbe number ν2 of the second lens material satisfy the relationship ν1>ν2.
(第17項)
 第1項から第16項までのいずれか一項に記載の光学装置において、前記合成素子と前記集光光学系との間の第1光路及び第2光路に配置され、前記第1光束および前記第2光束を偏向させて、前記集光光学系から射出された前記第1光束および前記第2光束の集光位置を前記集光光学系の光軸に交差する軸に沿って移動させる偏向走査部を備える、光学装置。
(Section 17)
17. The optical device according to any one of items 1 to 16, wherein the first light flux and the Deflection scanning in which the second light flux is deflected to move the condensing positions of the first light flux and the second light flux emitted from the condensing optical system along an axis intersecting the optical axis of the condensing optical system. An optical device, comprising:
(第18項)
 第1項から第17項までのいずれか一項に記載の光学装置において、前記第1光束および前記第2光束の主光線の、それぞれの集光位置での法線に対する角度は、1°以内である、光学装置。
(Section 18)
18. The optical device according to any one of items 1 to 17, wherein the angles of the principal rays of the first light beam and the second light beam with respect to the normal line at each condensing position are within 1°. is an optical device.
(第19項)
 第1項から第18項までのいずれか一項に記載の光学装置と、被加工物を支持する支持部と、を備え、前記第1光束及び前記第2光束の一方の光束は、前記被加工物を加工する光束であり、前記第1光束及び前記第2光束の他方の光束は、前記被加工物を計測する光束である、光加工装置。
(Section 19)
19. The optical device according to any one of items 1 to 18, and a support for supporting a workpiece, wherein one of the first light flux and the second light flux The optical processing device, wherein the light flux is for processing a workpiece, and the other light flux of the first light flux and the second light flux is a light flux for measuring the workpiece.
(第20項)
 第19項に記載の光加工装置において、前記一方の光束は、前記合成素子および前記集光光学系を介して前記被加工物に照射され、前記他方の光束は、前記合成素子および前記集光光学系を介して前記被加工物に照射され、前記被加工物に照射される前記他方の光束によって生じる検出光を、前記集光光学系および前記合成素子を介して検出する計測部をさらに備える、光加工装置。
(Section 20)
20. In the optical processing apparatus according to item 19, the one beam is applied to the workpiece through the synthesizing element and the condensing optical system, and the other beam is applied to the synthesizing element and the condensing optical system. The apparatus further comprises a measurement unit that irradiates the workpiece through an optical system and detects detection light generated by the other light flux that irradiates the workpiece through the condensing optical system and the synthesizing element. , optical processing equipment.
(第21項)
 第20項に記載の光加工装置において、前記計測部が検出した検出光に基づいて、前記被加工物の計測結果に関する情報を生成する算出部をさらに備える、光加工装置。
(第22項)
 第21項に記載の光加工装置において、前記計測結果に関する情報に基づいて前記他方の光束を照射する、光加工装置。
(Section 21)
21. The optical processing apparatus according to claim 20, further comprising a calculator that generates information about the measurement result of the workpiece based on the detected light detected by the measuring unit.
(Section 22)
22. The optical processing apparatus according to claim 21, wherein the other light flux is emitted based on information on the measurement result.
(第23項)
 第22項に記載の光加工装置において、前記計測結果に関する情報に基づいて、前記被加工物に対する前記他方の光束の照射位置、照射回数、照射条件の少なくとも一つを決定する、光加工装置。
(Section 23)
23. The optical processing apparatus according to claim 22, wherein at least one of the irradiation position, the number of times of irradiation, and irradiation conditions of the other light beam on the workpiece is determined based on the information about the measurement result.
(第24項)
 第23項に記載の光加工装置において、前記照射条件は、前記被加工物に照射する前記他方の光束の強度と波長の少なくとも一方の条件である、光加工装置。
(第25項)
 第21項に記載の光加工装置において、前記計測結果に関する情報は、前記被加工物のうちの前記一方の光束が照射された部分の位置に関する情報を含む、光加工装置。
(Section 24)
24. The optical processing apparatus according to claim 23, wherein the irradiation condition is at least one of intensity and wavelength of the other light flux with which the workpiece is irradiated.
(Section 25)
22. The optical processing apparatus according to claim 21, wherein the information on the measurement result includes information on the position of the portion of the workpiece irradiated with the one light flux.
(第26項)
 第25項に記載の光加工装置において、前記位置に関する情報に基づいて前記他方の光束を照射する、光加工装置。
(第27項)
 第26項に記載の光加工装置において、前記位置に関する情報に基づいて、前記被加工物に対する前記他方の光束の照射位置、照射回数、照射条件の少なくとも一つを決定する、光加工装置。
(Section 26)
26. The optical processing device according to claim 25, wherein the other light beam is applied based on the information regarding the position.
(Section 27)
27. The optical processing apparatus according to claim 26, wherein at least one of the irradiation position of the other light beam on the workpiece, the number of times of irradiation, and irradiation conditions is determined based on the information regarding the position.
(第28項)
 第27項に記載の光加工装置において、前記照射条件は、前記被加工物に照射する前記他方の光束の強度と波長の少なくとも一方の条件である、光加工装置。
(第29項)
 第19項から第28項までのいずれか一項に記載の光加工装置において、前記一方の光束は、第2光束であり、前記他方の光束は、第1光束である、光加工装置。
(Section 28)
28. The optical processing apparatus according to item 27, wherein the irradiation condition is at least one of intensity and wavelength of the other light flux with which the workpiece is irradiated.
(Section 29)
29. The optical processing device according to any one of items 19 to 28, wherein the one light flux is the second light flux and the other light flux is the first light flux.
(第30項)
 前記合成素子からの前記第1光束と前記第2光束とをそれぞれ集光させる集光光学系と、 前記合成素子の入射側における前記第1光束の光路に配置される補正光学系と、を備え、前記補正光学系が前記光路に配置される場合の前記第1光束の集光位置と前記第2光束の集光位置との距離は、前記補正光学系が前記光路に配置されない場合の前記第1光束の集光位置と前記第2光束の集光位置との距離よりも短い、光学装置。
(Section 30)
a condensing optical system that converges the first light beam and the second light beam from the synthesizing element; and a correction optical system that is arranged in the optical path of the first light flux on the incident side of the synthesizing element. , the distance between the condensing position of the first light flux and the condensing position of the second light flux when the correction optical system is arranged in the optical path is equal to the distance between the convergence position of the first light flux and the convergence position of the second light flux when the correction optical system is not arranged in the optical path; An optical device, wherein a distance between a condensing position of one light flux and a condensing position of the second light flux is shorter.
(第31項)
 第30項に記載の光学装置において、前記補正光学系が前記光路に配置される場合の前記第1光束の集光位置と前記第2光束の集光位置との前記集光光学系の光軸に沿う距離は、前記補正光学系が前記光路に配置されない場合の前記第1光束の集光位置と前記第2光束の集光位置との前記光軸に沿う距離よりも短い、光学装置。
(Section 31)
31. In the optical device according to item 30, the optical axis of the condensing optical system between the condensing position of the first light beam and the condensing position of the second light beam when the correction optical system is arranged in the optical path is shorter than the distance along the optical axis between the condensing position of the first light flux and the condensing position of the second light flux when the correcting optical system is not arranged in the optical path.
(第32項)
 第1光路に沿って供給される第1波長の第1光束と、第2光路に沿って供給される前記第1波長とは異なる第2波長の第2光束とを合成させる合成素子と、前記合成素子により合成された前記第1光束と前記第2光束とを、それぞれ被照射面に集光させる集光光学系と、被加工物をその被加工面が前記被照射面に合致するように保持する保持部と、前記第2光束のうち、前記被加工面で反射または散乱され、前記集光光学系および前記合成素子を介して、前記第2光路に戻った検出光を検出する計測部と、前記計測部が検出した検出光の強度に関する情報に基づいて、前記被加工面のうちの前記第2光束が照射された部分の位置情報を算出する算出部と、前記集光光学系の特性に関する情報に基づいて、前記算出部が算出した前記位置情報を修正する位置情報修正部と、を備える、光加工装置。
(Section 32)
a synthesizing element for synthesizing a first luminous flux of a first wavelength supplied along a first optical path and a second luminous flux of a second wavelength different from the first wavelength supplied along a second optical path; a condensing optical system for condensing the first light flux and the second light flux synthesized by a synthesizing element onto a surface to be irradiated; a holding unit that holds the second light beam; and a measuring unit that detects the detection light that is reflected or scattered by the surface to be processed and returned to the second optical path via the condensing optical system and the synthesizing element, out of the second light flux. a calculation unit for calculating position information of a portion of the surface to be processed irradiated with the second beam based on information on the intensity of the detection light detected by the measurement unit; and a position information correction unit that corrects the position information calculated by the calculation unit based on information about characteristics.
(第33項)
 第32項に記載の光加工装置において、前記第1光路に配置され、前記被照射面の近傍における前記第1光束の集光位置を、前記集光光学系の光軸方向に、前記第2光束の集光位置に近づける補正光学系をさらに備える、光加工装置。
(第34項)
 第32項または第33項に記載の光加工装置において、前記被加工面の前記位置情報に基づいて、前記被加工面に対する前記第1光束の照射位置を決定する、光加工装置。
(Section 33)
32. In the optical processing apparatus according to item 32, arranged on the first optical path, the condensing position of the first light flux in the vicinity of the surface to be illuminated is shifted in the optical axis direction of the condensing optical system to the second An optical processing device, further comprising a correction optical system that brings the light beam closer to the condensing position.
(Section 34)
34. The optical processing apparatus according to item 32 or 33, wherein the irradiation position of the first light flux on the surface to be processed is determined based on the position information of the surface to be processed.
 なお、上述した第32項から第34項までの形態については、さらに上述した第1項から第9項までのいずれかに記載される構成を備えるものであっても良い。 It should be noted that the configurations of the 32nd to 34th items described above may further include the configuration described in any of the 1st to 9th items described above.
1:光加工装置、2,2a:光学装置、P1:第1光路、P2:第2光路、P3:第3光路、P4:第4光路、R1:第1光束、R2:第2光束、10:光源、11:補正光学系、12:合成素子、13:固定ミラー、14:揺動ミラー、16:集光光学系、L11,L21:第1レンズ、G20,G21:第2レンズ群、17:被照射面、18:被加工物、18s:被加工面、19:試料台、20:ガイド、22:制御部、23:計測部、24:算出部、25:位置情報修正部 1: optical processing device, 2, 2a: optical device, P1: first optical path, P2: second optical path, P3: third optical path, P4: fourth optical path, R1: first light flux, R2: second light flux, 10 : Light source 11: Correction optical system 12: Synthesis element 13: Fixed mirror 14: Oscillating mirror 16: Condensing optical system L11, L21: First lens G20, G21: Second lens group 17 : irradiated surface, 18: workpiece, 18s: processed surface, 19: sample stage, 20: guide, 22: control unit, 23: measurement unit, 24: calculation unit, 25: position information correction unit

Claims (22)

  1.  第1波長の第1光束の第1光路と、前記第1波長より長い波長の第2波長の第2光束の第2光路とを合成させる合成素子と、
     正の屈折力を有し、前記合成素子からの前記第1光束と前記第2光束とをそれぞれ、被加工物に向けて集光させる集光光学系と、
     負の屈折力を有する補正光学系と、を備え、
     前記補正光学系は、前記合成素子の入射側における前記第1光路に配置され、
     前記第1光束および前記第2光束の一方の光束は、前記被加工物を加工する光束であり、
     前記第1光束および前記第2光束の他方の光束は、前記被加工物を計測する光束である、光加工装置。
    a synthesizing element for synthesizing a first optical path of a first light beam having a first wavelength and a second optical path of a second light beam having a second wavelength longer than the first wavelength;
    a condensing optical system that has a positive refractive power and converges the first light flux and the second light flux from the synthesizing element toward an object to be processed;
    a correction optical system having negative refractive power,
    The correction optical system is arranged on the first optical path on the incident side of the combining element,
    one of the first light flux and the second light flux is a light flux for processing the workpiece;
    The optical processing device, wherein the other one of the first and second beams is a beam for measuring the workpiece.
  2.  第1波長の第1光束の第1光路と、前記第1波長より長い波長の第2波長の第2光束の第2光路とを合成する合成素子と、
     正の屈折力を有し、前記合成素子からの前記第1光束と前記第2光束とをそれぞれ、被加工物に向けて集光させる集光光学系と、
     正の屈折力を有する補正光学系と、を備え、
     前記補正光学系は、前記合成素子の入射側における前記第1光路に配置され、
     前記第1波長における前記集光光学系のバックフォーカスは、前記第2波長における前記集光光学系のバックフォーカスよりも長く、
     前記第1光束及び前記第2光束の一方の光束は、前記被加工物を加工する光束であり、
     前記第1光束及び前記第2光束の他方の光束は、前記被加工物を計測する光束である、光加工装置。
    a synthesizing element for synthesizing a first optical path of a first light beam having a first wavelength and a second optical path of a second light beam having a second wavelength longer than the first wavelength;
    a condensing optical system that has a positive refractive power and converges the first light flux and the second light flux from the synthesizing element toward an object to be processed;
    a correction optical system having a positive refractive power,
    The correction optical system is arranged on the first optical path on the incident side of the combining element,
    the back focus of the condensing optical system at the first wavelength is longer than the back focus of the condensing optical system at the second wavelength;
    one of the first light flux and the second light flux is a light flux for processing the workpiece,
    The optical processing device, wherein the other of the first and second light beams is a light beam for measuring the workpiece.
  3.  請求項1または請求項2に記載の光加工装置において、
     前記第1波長における前記集光光学系および前記補正光学系の合成光学系のバックフォーカスと前記第2波長における前記集光光学系のバックフォーカスとの差の絶対値は、前記第1波長における前記集光光学系のバックフォーカスと前記第2波長における前記集光光学系のバックフォーカスとの差の絶対値よりも小さい、光加工装置。
    In the optical processing device according to claim 1 or claim 2,
    The absolute value of the difference between the back focus of the combining optical system of the condensing optical system and the correcting optical system at the first wavelength and the back focus of the condensing optical system at the second wavelength is the An optical processing device, wherein the absolute value of the difference between the back focus of the light collecting optical system and the back focus of the light collecting optical system at the second wavelength is smaller.
  4.  第1波長の第1光束の第1光路と、前記第1波長より長い波長の第2波長の第2光束の第2光路とを合成させる合成素子と、
     正の屈折力を有し、前記合成素子からの前記第1光束と前記第2光束とをそれぞれ、被加工物に向けて集光させる集光光学系と、
     正の屈折力を有する補正光学系と、を備え、
     前記補正光学系は、前記合成素子の入射側における前記第2光路に配置され、
     前記第1光束および前記第2光束の一方の光束は、前記被加工物を加工する光束であり、
     前記第1光束および前記第2光束の他方の光束は、前記被加工物を計測する光束である、光加工装置。
    a synthesizing element for synthesizing a first optical path of a first light beam having a first wavelength and a second optical path of a second light beam having a second wavelength longer than the first wavelength;
    a condensing optical system that has a positive refractive power and converges the first light flux and the second light flux from the synthesizing element toward an object to be processed;
    a correction optical system having a positive refractive power,
    The correction optical system is arranged on the second optical path on the incident side of the combining element,
    one of the first light flux and the second light flux is a light flux for processing the workpiece;
    The optical processing device, wherein the other one of the first and second beams is a beam for measuring the workpiece.
  5.  第1波長の第1光束の第1光路と、前記第1波長より長い波長の第2波長の第2光束の第2光路とを合成する合成素子と、
     正の屈折力を有し、前記合成素子からの前記第1光束と前記第2光束とをそれぞれ、被加工物に向けて集光させる集光光学系と、
     負の屈折力を有する補正光学系と、を備え、
     前記補正光学系は、前記合成素子の入射側における前記第2光路に配置され、
     前記第1波長における前記集光光学系のバックフォーカスは、前記第2波長における前記集光光学系のバックフォーカスよりも長く、
     前記第1光束及び前記第2光束の一方の光束は、前記被加工物を加工する光束であり、
     前記第1光束及び前記第2光束の他方の光束は、前記被加工物を計測する光束である、光加工装置。
    a synthesizing element for synthesizing a first optical path of a first light beam having a first wavelength and a second optical path of a second light beam having a second wavelength longer than the first wavelength;
    a condensing optical system that has a positive refractive power and converges the first light flux and the second light flux from the synthesizing element toward an object to be processed;
    a correction optical system having negative refractive power,
    The correction optical system is arranged on the second optical path on the incident side of the combining element,
    the back focus of the condensing optical system at the first wavelength is longer than the back focus of the condensing optical system at the second wavelength;
    one of the first light flux and the second light flux is a light flux for processing the workpiece,
    The optical processing device, wherein the other of the first and second light beams is a light beam for measuring the workpiece.
  6.  請求項4または請求項5に記載の光加工装置において、
     前記第2波長における前記集光光学系および前記補正光学系の合成光学系のバックフォーカスと前記第1波長における前記集光光学系のバックフォーカスとの差の絶対値は、前記第2波長における前記集光光学系のバックフォーカスと前記第1波長における前記集光光学系のバックフォーカスとの差の絶対値よりも小さい、光加工装置。
    In the optical processing device according to claim 4 or claim 5,
    The absolute value of the difference between the back focus of the combining optical system of the condensing optical system and the correction optical system at the second wavelength and the back focus of the condensing optical system at the first wavelength is the An optical processing device, wherein the absolute value of the difference between the back focus of the light collecting optical system and the back focus of the light collecting optical system at the first wavelength is smaller.
  7.  請求項1から請求項6までのいずれか一項に記載の光加工装置において、
     前記集光光学系を第1集光光学系とし、前記補正光学系を第1補正光学系とするとき、
     前記第1集光光学系は、前記第1集光光学系と異なる第2集光光学系と交換可能に設けられ、
     前記第1補正光学系は、前記第1補正光学系と異なる第2補正光学系と交換可能に設けられる、光加工装置。
    In the optical processing device according to any one of claims 1 to 6,
    When the condensing optical system is the first condensing optical system and the correcting optical system is the first correcting optical system,
    The first condensing optical system is provided interchangeably with a second condensing optical system different from the first condensing optical system,
    The optical processing apparatus, wherein the first correction optical system is replaceable with a second correction optical system different from the first correction optical system.
  8.  請求項7に記載の光加工装置において、
     前記集光光学系として前記第2集光光学系が使われるとき、前記補正光学系として前記第2補正光学系が使われる、光加工装置。
    In the optical processing device according to claim 7,
    An optical processing apparatus, wherein when the second condensing optical system is used as the condensing optical system, the second correcting optical system is used as the correcting optical system.
  9.  請求項7または請求項8に記載の光加工装置において、
     前記第1集光光学系と前記第2集光光学系とはバックフォーカスが異なり、
     前記第1補正光学系と前記第2補正光学系とは焦点距離が異なる、光加工装置。
    In the optical processing device according to claim 7 or claim 8,
    The first condensing optical system and the second condensing optical system have different back focal lengths,
    The optical processing apparatus, wherein the first correction optical system and the second correction optical system have different focal lengths.
  10.  請求項1または請求項4のいずれか一項を引用する請求項7から請求項9までのいずれか一項に記載の光加工装置において、
     前記第1集光光学系のバックフォーカスが前記第2集光光学系のバックフォーカスよりも短い場合、前記第1補正光学系の焦点距離よりも前記第2補正光学系の焦点距離が長く、
     前記第1集光光学系のバックフォーカスが前記第2集光光学系のバックフォーカスよりも長い場合、前記第1補正光学系の焦点距離よりも前記第2補正光学系の焦点距離が短い、光加工装置。
    In the optical processing device according to any one of claims 7 to 9 citing claim 1 or claim 4,
    When the back focus of the first condensing optical system is shorter than the back focus of the second condensing optical system, the focal length of the second correction optical system is longer than the focal length of the first correction optical system,
    When the back focus of the first condensing optical system is longer than the back focus of the second condensing optical system, the focal length of the second correction optical system is shorter than the focal length of the first correction optical system, light processing equipment.
  11.  請求項2を引用する請求項7から請求項9までのいずれか一項に記載の光加工装置において、
     前記第1集光光学系の前記第1波長におけるバックフォーカスが前記第2集光光学系の前記第1波長におけるバックフォーカスよりも短い場合、前記第1補正光学系の前記第1波長における焦点距離よりも前記第2補正光学系の前記第1波長における焦点距離が長く、
     前記第1集光光学系の前記第1波長におけるバックフォーカスが前記第2集光光学系の前記第1波長におけるバックフォーカスよりも長い場合、前記第1補正光学系の前記第1波長における焦点距離よりも前記第2補正光学系の前記第1波長における焦点距離が短い、光加工装置。
    In the optical processing device according to any one of claims 7 to 9 citing claim 2,
    When the back focus of the first condensing optical system at the first wavelength is shorter than the back focus of the second condensing optical system at the first wavelength, the focal length of the first correction optical system at the first wavelength The focal length at the first wavelength of the second correction optical system is longer than
    When the back focus of the first condensing optical system at the first wavelength is longer than the back focus of the second condensing optical system at the first wavelength, the focal length of the first correcting optical system at the first wavelength wherein the focal length of the second correction optical system at the first wavelength is shorter than the optical processing apparatus.
  12.  請求項5を引用する請求項7から請求項9までのいずれか一項に記載の光加工装置において、
     前記第1集光光学系の前記第2波長におけるバックフォーカスが前記第2集光光学系の前記第2波長におけるバックフォーカスよりも短い場合、前記第1補正光学系の前記第2波長における焦点距離よりも前記第2補正光学系の前記第2波長における焦点距離が長く、
     前記第1集光光学系の前記第2波長におけるバックフォーカスが前記第2集光光学系の前記第2波長におけるバックフォーカスよりも長い場合、前記第1補正光学系の前記第2波長における焦点距離よりも前記第2補正光学系の前記第2波長における焦点距離が短い、光加工装置。
    In the optical processing device according to any one of claims 7 to 9 citing claim 5,
    When the back focus of the first condensing optical system at the second wavelength is shorter than the back focus of the second condensing optical system at the second wavelength, the focal length of the first correction optical system at the second wavelength The focal length at the second wavelength of the second correction optical system is longer than
    When the back focus of the first condensing optical system at the second wavelength is longer than the back focus of the second condensing optical system at the second wavelength, the focal length of the first correction optical system at the second wavelength wherein the focal length of the second correction optical system at the second wavelength is shorter than the optical processing apparatus.
  13.  請求項1から請求項3まで、または請求項1から請求項3までのいずれか一項を引用する請求項7から請求項11までのいずれか一項に記載の光加工装置において、
     前記補正光学系は、前記第2光路に配置されない、光加工装置。
    In the optical processing device according to any one of claims 1 to 3 or claims 7 to 11 citing any one of claims 1 to 3,
    The optical processing device, wherein the correction optical system is not arranged in the second optical path.
  14.  請求項4から請求項6まで、または請求項4から請求項6までのいずれか一項を引用する請求項7から請求項10まで、または請求項12のいずれか一項に記載の光加工装置において、
     前記補正光学系は、前記第1光路に配置されない、光加工装置。
    The optical processing device according to any one of claims 7 to 10 or claim 12, citing any one of claims 4 to 6 or claims 4 to 6. in
    The optical processing device, wherein the correction optical system is not arranged on the first optical path.
  15.  請求項1から請求項14までのいずれか一項に記載の光加工装置において、
     前記集光光学系は、前記合成素子側から順に、負の屈折力を有する第1レンズと、全体として正の屈折力を有する第2レンズ群とを有し、
     前記第1波長における前記補正光学系の焦点距離fcと前記第1波長における前記集光光学系の焦点距離fgとは、
     |fc| > 10×fg の関係を満たす、
    光加工装置。
    In the optical processing device according to any one of claims 1 to 14,
    The condensing optical system has, in order from the synthetic element side, a first lens having a negative refractive power and a second lens group having a positive refractive power as a whole,
    The focal length fc of the correction optical system at the first wavelength and the focal length fg of the condensing optical system at the first wavelength are
    satisfying the relationship |fc| > 10 x fg,
    Optical processing equipment.
  16.  請求項1から請求項15までのいずれか一項に記載の光加工装置において、
     前記集光光学系は、前記合成素子側から順に、負の屈折力を有する第1レンズと、全体として正の屈折力を有する第2レンズ群とを有し、
     前記第2レンズ群は、
     正の屈折力を有し、第1レンズ材料からなる1以上の正レンズと、
     負の屈折力を有し、第2レンズ材料からなる1以上の負レンズと、
    を含み、
     レンズ材料のアッベ数νを、レンズ材料の前記第1波長に対する屈折率n1と、前記第2波長に対する屈折率n2に対して、ν=(n2-1)/(n2-n1)とするとき、
     前記第1レンズ材料のアッベ数ν1と、前記第2レンズ材料のアッベ数ν2とは、
      ν1 > ν2 の関係を満たす、
    光加工装置。
    In the optical processing device according to any one of claims 1 to 15,
    The condensing optical system has, in order from the synthetic element side, a first lens having a negative refractive power and a second lens group having a positive refractive power as a whole,
    The second lens group is
    one or more positive lenses having positive refractive power and made of a first lens material;
    one or more negative lenses having negative refractive power and made of a second lens material;
    including
    When the Abbe number ν of the lens material is ν=(n2−1)/(n2−n1) with respect to the refractive index n1 of the lens material for the first wavelength and the refractive index n2 for the second wavelength,
    The Abbe number ν1 of the first lens material and the Abbe number ν2 of the second lens material are
    satisfying the relationship ν1 > ν2,
    Optical processing equipment.
  17.  請求項1から請求項16までのいずれか一項に記載の光加工装置において、
     前記合成素子と前記集光光学系との間の前記第1光路および前記第2光路に配置され、前記第1光束および前記第2光束を偏向させて、前記集光光学系から射出された前記第1光束および前記第2光束の集光位置を前記集光光学系の光軸に交差する軸に沿って移動させる偏向走査部を備える、光加工装置。
    In the optical processing device according to any one of claims 1 to 16,
    arranged on the first optical path and the second optical path between the synthesizing element and the condensing optical system, deflecting the first light flux and the second light flux and exiting from the condensing optical system; An optical processing apparatus comprising a deflection scanning unit that moves the condensing positions of the first light beam and the second light beam along an axis that intersects the optical axis of the light condensing optical system.
  18.  請求項1から請求項17までのいずれか一項に記載の光加工装置において、
     前記第1光束および前記第2光束の主光線の、それぞれの集光位置での法線に対する角度は、1°以内である、光加工装置
    In the optical processing device according to any one of claims 1 to 17,
    The optical processing device, wherein the angles of the principal rays of the first light beam and the second light beam with respect to normals at respective condensing positions are within 1°.
  19.  請求項1から請求項18までのいずれか一項に記載の光加工装置において、
     前記第1光束および前記第2光束の前記他方の光束は、前記合成素子および前記集光光学系を介して前記被加工物に照射され、
     前記被加工物に照射される前記他方の光束によって生じる検出光を、前記集光光学系および前記合成素子を介して検出する計測部をさらに備える、光加工装置。
    In the optical processing device according to any one of claims 1 to 18,
    the other light beam of the first light beam and the second light beam is irradiated onto the workpiece via the synthesizing element and the condensing optical system;
    An optical processing apparatus, further comprising a measurement unit that detects detection light generated by the other light flux with which the workpiece is irradiated via the condensing optical system and the synthesizing element.
  20.  請求項19に記載の光加工装置において、
     前記計測部が検出した検出光に基づいて、前記被加工物のうちの前記第1光束および前記第2光束の前記一方の光束が照射された部分の位置に関する位置情報を生成する算出部をさらに備える、光加工装置。
    In the optical processing device according to claim 19,
    a calculating unit that generates position information about a position of a portion of the workpiece irradiated with the one of the first light beam and the second light beam, based on the detection light detected by the measuring unit; An optical processing device.
  21.  請求項20に記載の光加工装置において、
     前記位置情報に基づいて前記第1光束および前記第2光束の前記一方の光束を照射する、光加工装置。
    In the optical processing device according to claim 20,
    An optical processing device that emits the one of the first light beam and the second light beam based on the position information.
  22.  請求項1から請求項21までのいずれか一項に記載の光加工装置において、
     前記一方の光束は、第2光束であり、
     前記他方の光束は、第1光束である、光加工装置。
    In the optical processing device according to any one of claims 1 to 21,
    the one light flux is a second light flux,
    The optical processing device, wherein the other light flux is the first light flux.
PCT/JP2021/007455 2021-02-26 2021-02-26 Optical processing device WO2022180808A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/007455 WO2022180808A1 (en) 2021-02-26 2021-02-26 Optical processing device
JP2023501970A JPWO2022180808A1 (en) 2021-02-26 2021-02-26
EP21927908.0A EP4299233A1 (en) 2021-02-26 2021-02-26 Optical processing device
CN202180094408.8A CN116917078A (en) 2021-02-26 2021-02-26 Optical processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007455 WO2022180808A1 (en) 2021-02-26 2021-02-26 Optical processing device

Publications (1)

Publication Number Publication Date
WO2022180808A1 true WO2022180808A1 (en) 2022-09-01

Family

ID=83048714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007455 WO2022180808A1 (en) 2021-02-26 2021-02-26 Optical processing device

Country Status (4)

Country Link
EP (1) EP4299233A1 (en)
JP (1) JPWO2022180808A1 (en)
CN (1) CN116917078A (en)
WO (1) WO2022180808A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994639A (en) 1989-01-11 1991-02-19 British Aerospace Public Limited Company Methods of manufacture and surface treatment using laser radiation
WO2008053915A1 (en) * 2006-11-02 2008-05-08 Nabtesco Corporation Scanner optical system, laser processing device, and scanner optical device
JP2010025922A (en) 2008-06-20 2010-02-04 Nikon Corp Interference device
JP5231883B2 (en) 2008-07-03 2013-07-10 株式会社 光コム Distance meter, distance measuring method, and optical three-dimensional shape measuring machine
US20140226145A1 (en) 2013-02-12 2014-08-14 Faro Technologies, Inc. Multi-mode optical measurement device and method of operation
JP2018501964A (en) * 2014-10-20 2018-01-25 プレシテック ゲーエムベーハー ウント ツェーオー カーゲー Equipment for measuring weld seam depth in real time
WO2018110238A1 (en) * 2016-12-16 2018-06-21 株式会社スミテック Laser machining device and laser machining method
JP2020085633A (en) 2018-11-22 2020-06-04 株式会社キーエンス Displacement measuring system, displacement measuring device, and displacement measuring method
JP2020101499A (en) 2018-12-25 2020-07-02 株式会社Xtia Optical measurement instrument, and data generation method of the same
US20200361038A1 (en) * 2019-05-16 2020-11-19 Panasonic Intellectual Property Management Co., Ltd. Laser processing apparatus, laser processing method, and correction data generation method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994639A (en) 1989-01-11 1991-02-19 British Aerospace Public Limited Company Methods of manufacture and surface treatment using laser radiation
WO2008053915A1 (en) * 2006-11-02 2008-05-08 Nabtesco Corporation Scanner optical system, laser processing device, and scanner optical device
JP2010025922A (en) 2008-06-20 2010-02-04 Nikon Corp Interference device
JP5231883B2 (en) 2008-07-03 2013-07-10 株式会社 光コム Distance meter, distance measuring method, and optical three-dimensional shape measuring machine
US20140226145A1 (en) 2013-02-12 2014-08-14 Faro Technologies, Inc. Multi-mode optical measurement device and method of operation
JP2016510415A (en) 2013-02-12 2016-04-07 ファロ テクノロジーズ インコーポレーテッド Multi-mode optical measuring instrument and operating method
JP2018501964A (en) * 2014-10-20 2018-01-25 プレシテック ゲーエムベーハー ウント ツェーオー カーゲー Equipment for measuring weld seam depth in real time
WO2018110238A1 (en) * 2016-12-16 2018-06-21 株式会社スミテック Laser machining device and laser machining method
JP2020085633A (en) 2018-11-22 2020-06-04 株式会社キーエンス Displacement measuring system, displacement measuring device, and displacement measuring method
JP2020101499A (en) 2018-12-25 2020-07-02 株式会社Xtia Optical measurement instrument, and data generation method of the same
US20200361038A1 (en) * 2019-05-16 2020-11-19 Panasonic Intellectual Property Management Co., Ltd. Laser processing apparatus, laser processing method, and correction data generation method

Also Published As

Publication number Publication date
EP4299233A1 (en) 2024-01-03
CN116917078A (en) 2023-10-20
JPWO2022180808A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US20170097574A1 (en) Array of encoders for alignment measurement
EP0956518B1 (en) Interferometer system and lithographic apparatus comprising such a system
KR100554886B1 (en) Inter- ferometer system with two wavelengths, and lithographic apparatus provided with such a system
RU2404036C2 (en) Laser welding head
EP2150770B1 (en) Optical distance sensor
JP6622116B2 (en) Optical imaging device for determining imaging errors
JP5868854B2 (en) Spin wafer inspection system, high-frequency autofocus mechanism, and beam shaping / directing module
JP7296412B2 (en) Optical system and method of correcting mask defects using optical system
CN109219496B (en) Device for monitoring a process during laser machining, comprising an optical distance measuring device and a prism deflection unit, and laser machining head comprising such a device
JP2000097666A (en) Interferometer for measuring shape of surface, wavefront aberration measuring machine, manufacture of projection optical system using this interferometer and machine, and method for calibrating this interferometer
JP5559462B2 (en) Projection optics for microlithography.
JPWO2005010960A1 (en) Projection optical system inspection method and inspection apparatus, and projection optical system manufacturing method
US20060007554A1 (en) Method and apparatus for maintaining focus and magnification of a projected image
WO2016031935A1 (en) Surface shape measuring device
JPH08179202A (en) Ultraviolet image forming optical system
JP5517062B2 (en) Normal vector tracking type ultra-precision shape measurement method
WO2022180808A1 (en) Optical processing device
JP2002296005A (en) Aligning method, point diffraction interference measuring instrument, and high-accuracy projection lens manufacturing method using the same instrument
JPWO2005091343A1 (en) Mirror, alignment method, optical unit manufacturing method and optical unit, and exposure apparatus
JPH06174430A (en) Center thickness measuring method and device used for it
JP3352280B2 (en) Projection exposure apparatus adjusting method and exposure method
CN212620587U (en) Long-distance angle focusing device suitable for optical and similar measurement systems
JP7282367B2 (en) differential interferometer
JP2005003667A (en) Reference axis setting optical system, eccentricity measuring machine and eccentricity-measuring method using the optical system
US20230341679A1 (en) Optical apparatus and processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927908

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180094408.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023501970

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021927908

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021927908

Country of ref document: EP

Effective date: 20230926