WO2018110238A1 - Laser machining device and laser machining method - Google Patents

Laser machining device and laser machining method Download PDF

Info

Publication number
WO2018110238A1
WO2018110238A1 PCT/JP2017/042053 JP2017042053W WO2018110238A1 WO 2018110238 A1 WO2018110238 A1 WO 2018110238A1 JP 2017042053 W JP2017042053 W JP 2017042053W WO 2018110238 A1 WO2018110238 A1 WO 2018110238A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflected light
laser
unit
branched
Prior art date
Application number
PCT/JP2017/042053
Other languages
French (fr)
Japanese (ja)
Inventor
勝仁 牟禮
誠 嶋田
大岳 福岡
秀和 土本
Original Assignee
株式会社スミテック
住友大阪セメント株式会社
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スミテック, 住友大阪セメント株式会社, 浜松ホトニクス株式会社 filed Critical 株式会社スミテック
Priority to CN201780077289.9A priority Critical patent/CN110337708B/en
Priority to KR1020197017355A priority patent/KR102454121B1/en
Publication of WO2018110238A1 publication Critical patent/WO2018110238A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks

Definitions

  • One aspect of the present invention relates to a laser processing apparatus and a laser processing method.
  • Such a laser processing apparatus includes a measurement light source that emits measurement light, a condensing lens that condenses the processing laser light and measurement light on the processing target, and a laser light incident surface of the processing target.
  • a displacement detector that detects a displacement of the laser light incident surface (hereinafter also simply referred to as “displacement”) based on the reflected reflected light of the measurement light.
  • the displacement detection unit adds astigmatism to the reflected light of the measurement light, detects the beam shape of the reflected light to which the astigmatism is added, and acquires a signal related to the displacement based on the detection result.
  • the signal fluctuation (signal inclination) with respect to the acquired displacement may become too gentle.
  • the measurement light is scattered by the grinding marks (also referred to as saw marks), and a different signal occurs even with the same displacement. Become prominent. As a result, it may be difficult to accurately detect the displacement of the laser light incident surface.
  • An object of one aspect of the present invention is to provide a laser processing apparatus and a laser processing method capable of accurately detecting a displacement of a laser light incident surface.
  • a laser processing apparatus is a laser processing apparatus that forms a modified region on a processing object by condensing the processing laser light on the processing object, and emits measurement light.
  • a condensing lens for condensing the processing laser light and the measurement light on the object to be processed, and a reflected light of the measurement light reflected by the laser light incident surface of the object to be processed
  • a displacement detector that detects the displacement of the light incident surface
  • an imaging state adjustment unit that moves at least one of the imaging states of the measurement light and the reflected light of the measurement light.
  • each of the branch part for branching the reflected light of the light into a plurality of branched reflected light and the optical path of the plurality of branched reflected light, and adding an astigmatism amount of a different size to each of the plurality of branched reflected light
  • Multiple astigmatism addition sections and multiple branched reflected light A plurality of beam shape detectors that detect the beam shape of each of the plurality of branched reflected lights provided with astigmatism, respectively, and the imaging state adjustment unit move from the optical paths of the plurality of branched reflected lights.
  • a signal acquisition unit that selects one corresponding to the imaging state and acquires a signal related to displacement based on a detection result of the beam shape detection unit in the optical path of the selected branched reflected light.
  • the inventors of the present invention have made extensive studies and found that the inclination of the acquired signal has a correlation with the imaging state of at least one of the measurement light and the reflected light of the measurement light. Furthermore, the present inventors have found that the reason why the signal inclination becomes too gentle is due to a mismatch between the imaging state and the amount of astigmatism added to the reflected light. Therefore, in the laser processing apparatus according to one aspect of the present invention, the reflected light of the measurement light is branched into a plurality of branched reflected lights, and the astigmatism amount having a different size is added to the optical path of each branched reflected light. The beam shape of the reflected light is detected.
  • one of the optical paths of the branched reflected light is selected according to the imaging state moving by the imaging state adjusting unit, and a signal based on the beam shape of the branched reflected light of the selected optical path is acquired. .
  • the amount of astigmatism added to the branched reflected light related to the signal to be acquired can be made in accordance with the imaging state. It is possible to suppress the inclination of the acquired signal from becoming too gentle. Therefore, it is possible to detect the displacement of the laser light incident surface with high accuracy.
  • the imaging state adjustment unit adjusts the offset amount by moving the imaging state
  • the signal acquisition unit connects the optical paths of the plurality of branched reflected lights.
  • One corresponding to the offset amount to be adjusted by the image state adjustment unit may be selected.
  • the offset amount is a scale indicating the relative displacement of the laser incident surface of the workpiece when the signal for the displacement of the laser incident surface of the workpiece is a reference value (typically zero).
  • an offset amount of ⁇ 180 ⁇ m means that a geometry whose signal becomes a reference value when the laser incident surface of the object to be processed approaches 180 ⁇ m from the above arrangement when the offset amount is 0 ⁇ m. This is a general arrangement state.
  • the value of the offset amount is small (minus width is large), the offset or the offset amount is said to be deep.
  • the offset or the offset amount is shallow.
  • the slope of the signal to be acquired specifically correlates with the offset amount and becomes too gentle due to a mismatch between the offset amount and the astigmatism amount. Therefore, in the laser processing apparatus according to one aspect of the present invention, one corresponding to the offset is selected from the optical paths of the plurality of branched reflected lights. Thereby, the amount of astigmatism added to the branched reflected light related to the signal to be acquired can be set according to the offset amount. It is possible to suppress the inclination of the acquired signal from becoming too gentle.
  • the branching unit branches the reflected light of the measurement light into at least the first branched reflected light and the second branched reflected light
  • the astigmatism adding unit is the first branched reflection.
  • a first astigmatism adding unit that is provided in the optical path of the light and adds the first astigmatism amount to the first branched reflected light; and an optical path of the second branched reflected light that is provided in the optical path of the second branched reflected light.
  • a second astigmatism addition unit for adding a large second astigmatism amount to the second branched reflected light, and the signal acquisition unit has an offset amount adjusted by the imaging state adjustment unit in the first range. In this case, the optical path of the first branched reflected light is selected, and when the offset amount adjusted by the imaging state adjustment unit is in the second range deeper than the first range, the optical path of the second branched reflected light is selected. May be.
  • the slope of the acquired signal becomes more gradual as the offset becomes deeper when the same astigmatism amount is added. Therefore, in the laser processing apparatus according to one aspect of the present invention, when the offset amount is in the first range, the optical path of the first branched reflected light is selected, and the offset amount adjusted by the imaging state adjustment unit is the first amount. If the second range is deeper than the range, the optical path of the second branched reflected light is selected. Thereby, the amount of astigmatism added to the branched reflected light related to the signal to be acquired can be increased when the offset is deep (small when it is shallow). It is possible to suppress the inclination of the acquired signal from becoming too gentle.
  • a laser processing apparatus includes an offset amount setting unit that sets an offset amount that is adjusted by an imaging state adjustment unit, and an imaging state adjustment unit that has an offset amount that is set by an offset amount setting unit.
  • An imaging state control unit that controls According to this configuration, the imaging state can be automatically adjusted so that the set offset amount is obtained.
  • a laser processing apparatus includes a drive mechanism that operates at least one of a processing target and a condensing lens along the optical axis direction of the condensing lens, and a signal acquired by a signal acquisition unit. And a drive mechanism control unit that operates the drive mechanism so as to maintain the target value.
  • the focusing lens can be relatively moved along the optical axis direction so as to follow the laser light incident surface.
  • the laser processing apparatus may include an optical axis adjustment mechanism that aligns the optical axis of the measurement light with the optical axis of the processing laser light. According to this configuration, the optical axis of the measurement light can be accurately aligned with the optical axis of the processing laser light.
  • the measurement light source can emit any of a plurality of lights having different wavelengths, and has the highest reflectivity with respect to the processing object among the light of the plurality of wavelengths.
  • Light having a high wavelength may be emitted as measurement light. In this case, it becomes possible to easily detect the reflected light obtained by reflecting the measurement light on the laser light incident surface.
  • a laser processing method is a laser processing method for forming a modified region on a processing object by condensing the processing laser light on the processing object, While condensing the laser light with the condensing lens, the measuring light is condensed on the object to be processed by the condensing lens, and the reflected light of the measuring light reflected by the laser light incident surface of the object to be processed is reflected. At least the first branched reflected light and the second branched reflected light are branched, and the beam shape of the first branched reflected light to which the first astigmatism amount is added in the optical path of the first branched reflected light is detected and the second branched reflected light is detected.
  • the beam shape of the second branched reflected light to which the second astigmatism amount larger than the first astigmatism amount is added is detected in the optical path of, and a signal relating to the displacement of the laser light incident surface based on the detection result of the beam shape And the acquired signal maintains the target value.
  • a laser processing step for operating at least one of the object to be processed and the condensing lens along the optical axis direction of the condensing lens, and the laser processing step includes a first step for setting an offset amount, When the offset amount set in one step is the first range, the optical path of the first branched reflected light is selected, and when the offset amount set in the first step is the second range deeper than the first range, the second range is selected.
  • the amount of astigmatism added to the branched reflected light related to the acquired signal can be increased when the offset is deep (small when it is shallow). Based on the above knowledge, it is possible to suppress the inclination of the acquired signal from becoming too gentle. Therefore, it is possible to detect the displacement of the laser light incident surface with high accuracy.
  • FIG. 1 is a schematic configuration diagram of a laser processing apparatus used for forming a modified region.
  • FIG. 2 is a plan view of a workpiece to be modified.
  • FIG. 3 is a cross-sectional view taken along the line III-III of the workpiece of FIG.
  • FIG. 4 is a plan view of an object to be processed after laser processing.
  • FIG. 5 is a cross-sectional view taken along the line VV of the workpiece in FIG. 6 is a cross-sectional view of the workpiece of FIG. 4 along the line VI-VI.
  • FIG. 7 is a schematic configuration diagram of a laser processing apparatus according to an embodiment.
  • FIG. 8 is a partial cross-sectional view of the reflective spatial light modulator of the laser processing apparatus of FIG. FIG.
  • FIG. 9 is a schematic configuration diagram of an autofocus control system including the AF unit of the laser processing apparatus of FIG.
  • FIG. 10A is a diagram illustrating a case where the beam shape of the reflected light is a vertically long ellipse.
  • FIG. 10B is a diagram illustrating a case where the beam shape of the reflected light is a perfect circle.
  • C is a figure explaining the case where the beam shape of reflected light is a horizontally long ellipse.
  • FIG. 11 is a graph illustrating an example of the error signal.
  • FIG. 12 is an example of a flowchart showing a laser processing method performed by the laser processing apparatus of FIG.
  • FIG. 13 is a graph showing an error signal generated based only on the beam shape detected by the first beam shape detection unit.
  • FIG. 10A is a diagram illustrating a case where the beam shape of the reflected light is a vertically long ellipse.
  • FIG. 10B is a diagram illustrating a case where the
  • FIG. 14 is a graph showing an error signal generated in the laser processing apparatus of FIG.
  • FIG. 15 is a graph showing an error signal generated based only on the beam shape detected by the second beam shape detection unit.
  • FIG. 16 is a schematic configuration diagram of an AF unit according to a modification.
  • FIG. 17A is a graph for explaining the effect of the AF unit of FIG. 16, and is an error signal when the first beam shape detection unit is fixed.
  • FIG. 17B is a graph for explaining the effect of the AF unit of FIG. 16, and is an error signal when the first beam shape detection unit is movable.
  • the modified region is formed in the processing object along the planned cutting line by condensing the laser beam on the processing object.
  • the formation of the modified region will be described with reference to FIGS.
  • a laser processing apparatus 100 includes a laser light source 101 that is a processing laser light source that pulsates laser light L that is a processing laser light, an optical system 103 that guides the laser light L, A condensing lens 105 for condensing the laser light L.
  • the laser processing apparatus 100 includes a support base 107 for supporting the workpiece 1 irradiated with the laser light L condensed by the condensing lens 105, a stage 111 for moving the support base 107, a laser, A laser light source controller 102 for controlling the laser light source 101 to adjust the output (pulse energy, light intensity), pulse width, pulse waveform, etc. of the light L, and a stage controller 115 for controlling the movement of the stage 111.
  • a laser light source controller 102 for controlling the laser light source 101 to adjust the output (pulse energy, light intensity), pulse width, pulse waveform, etc. of the light L
  • a stage controller 115 for controlling the movement of the stage 111.
  • the laser light L emitted from the laser light source 101 is guided by the optical system 103 and condensed by the condensing lens 105 inside the processing target 1 placed on the support base 107. Is done.
  • the stage 111 is moved, and the workpiece 1 is moved relative to the laser beam L along the planned cutting line 5. Thereby, a modified region along the planned cutting line 5 is formed on the workpiece 1.
  • the stage 111 is moved in order to move the laser light L relatively, but the condensing lens 105 may be moved, or both of them may be moved.
  • a plate-like member for example, a substrate, a wafer, or the like
  • a scheduled cutting line 5 for cutting the workpiece 1 is set in the workpiece 1.
  • the planned cutting line 5 is a virtual line extending linearly.
  • the laser beam L is cut in a state where the condensing point (condensing position) P is aligned with the inside of the workpiece 1 as shown in FIG. 3. It moves relatively along the planned line 5 (that is, in the direction of arrow A in FIG. 2).
  • the modified region 7 is formed on the workpiece 1 along the planned cutting line 5, and the modified region formed along the planned cutting line 5. 7 becomes the cutting start region 8.
  • the condensing point P is a portion where the laser light L is condensed.
  • the planned cutting line 5 is not limited to a straight line, but may be a curved line, a three-dimensional shape in which these lines are combined, or a coordinate designated.
  • the planned cutting line 5 is not limited to a virtual line, but may be a line actually drawn on the surface 3 of the workpiece 1.
  • the modified region 7 may be formed continuously or intermittently.
  • the modified region 7 may be in the form of a line or a dot. In short, the modified region 7 only needs to be formed at least inside the workpiece 1.
  • a crack may be formed starting from the modified region 7, and the crack and the modified region 7 may be exposed on the outer surface (front surface 3, back surface, or outer peripheral surface) of the workpiece 1. .
  • the laser light incident surface when forming the modified region 7 is not limited to the front surface 3 of the workpiece 1 and may be the back surface of the workpiece 1.
  • the laser light L passes through the workpiece 1 and is near the condensing point P located inside the workpiece 1. Especially absorbed. Thereby, the modified region 7 is formed in the workpiece 1. In this case, since the energy density of the laser beam L is low on the surface 3 of the workpiece 1, the surface 3 of the workpiece 1 is not melted.
  • the laser light L is particularly absorbed in the vicinity of the condensing point P located on the front surface 3 or the back surface, and from the front surface 3 or the back surface. It is melted and removed to form removed portions such as holes and grooves.
  • the modified region 7 is a region where the density, refractive index, mechanical strength and other physical characteristics are different from the surroundings.
  • Examples of the modified region 7 include a melt treatment region (meaning at least one of a region once solidified after melting, a region in a molten state, and a region in a state of being resolidified from melting), a crack region, and the like.
  • a dielectric breakdown region, a refractive index change region, etc. there is a region where these are mixed.
  • the modified region 7 includes a region where the density of the modified region 7 in the material of the workpiece 1 is changed compared to the density of the non-modified region, and a region where lattice defects are formed.
  • the modified region 7 can be said to be a high dislocation density region.
  • the area where the density of the melt processing area, the refractive index changing area, the density of the modified area 7 is changed as compared with the density of the non-modified area, and the area where lattice defects are formed are further included in the interior of these areas or the modified areas.
  • cracks (cracks, microcracks) are included in the interface between the region 7 and the non-modified region.
  • the included crack may be formed over the entire surface of the modified region 7, or may be formed in only a part or a plurality of parts.
  • the workpiece 1 includes a substrate made of a crystal material having a crystal structure.
  • the workpiece 1 includes a substrate formed of at least one of gallium nitride (GaN), silicon (Si), silicon carbide (SiC), LiTaO 3 , and sapphire (Al 2 O 3 ).
  • the workpiece 1 includes, for example, a gallium nitride substrate, a silicon substrate, a SiC substrate, a LiTaO 3 substrate, or a sapphire substrate.
  • the crystal material may be either an anisotropic crystal or an isotropic crystal.
  • the workpiece 1 may include a substrate made of an amorphous material having an amorphous structure (amorphous structure), for example, a glass substrate.
  • the modified region 7 can be formed by forming a plurality of modified spots (processing marks) along the planned cutting line 5.
  • the modified region 7 is formed by collecting a plurality of modified spots.
  • the size and length of cracks to be generated are appropriately determined in consideration of the required cutting accuracy, required flatness of the cut surface, thickness, type, crystal orientation, etc. of the workpiece 1. Can be controlled.
  • the modified spot can be formed as the modified region 7 along the planned cutting line 5.
  • the laser processing apparatus 300 includes a laser light source 202, a reflective spatial light modulator 203, a 4f optical system 241 and a condensing optical system 204 in a housing 231.
  • the laser processing apparatus 300 focuses the laser beam L on the workpiece 1 to form the modified region 7 on the workpiece 1 along the planned cutting line 5.
  • the laser light source 202 emits laser light L.
  • the laser light source 202 emits pulsed laser light, which is laser light having a pulse width of 1 ⁇ s or less, as laser light L.
  • the laser light source 202 includes an ultrashort pulse laser light source as a laser oscillator.
  • As the laser oscillator for example, a solid laser, a fiber laser, an external modulation element, or the like can be used.
  • the laser light source 202 includes an output adjusting unit that adjusts the output of the laser light L.
  • the output adjustment unit can be composed of a ⁇ / 2 wavelength plate unit, a polarizing plate unit, and the like.
  • the laser light source 202 includes a beam expander that parallelizes the laser light L while adjusting the diameter thereof.
  • the wavelength of the laser light L emitted from the laser light source 202 is included in any wavelength band of 500 to 550 nm, 1000 to 1150 nm, or 1300 to 1400 nm.
  • the wavelength of the laser beam L here is 1064 nm.
  • Such a laser light source 202 is fixed to the top plate 236 of the housing 231 with screws or the like so as to emit the laser light L in the horizontal direction.
  • the reflective spatial light modulator 203 modulates the laser light L emitted from the laser light source 202.
  • the reflective spatial light modulator 203 is, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator).
  • LCOS Liquid Crystal on Silicon
  • SLM Spatial Light Modulator
  • the reflective spatial light modulator 203 modulates the laser beam L incident from the horizontal direction and reflects the laser beam L obliquely upward with respect to the horizontal direction.
  • the reflective spatial light modulator 203 includes a silicon substrate 213, a drive circuit layer 914, a plurality of pixel electrodes 214, a reflective film 215 such as a dielectric multilayer mirror, an alignment film 999a, and a liquid crystal layer 216.
  • An alignment film 999b, a transparent conductive film 217, and a transparent substrate 218 such as a glass substrate are stacked in this order.
  • the transparent substrate 218 has a surface 218a along a predetermined plane.
  • the surface 218 a of the transparent substrate 218 constitutes the surface of the reflective spatial light modulator 203.
  • the transparent substrate 218 is made of a light transmissive material such as glass, for example.
  • the transparent substrate 218 transmits the laser light L having a predetermined wavelength incident from the surface 218 a of the reflective spatial light modulator 203 into the reflective spatial light modulator 203.
  • the transparent conductive film 217 is formed on the back surface of the transparent substrate 218.
  • the transparent conductive film 217 is made of a conductive material (for example, ITO) that transmits the laser light L.
  • the plurality of pixel electrodes 214 are arranged in a matrix on the silicon substrate 213 along the transparent conductive film 217.
  • the plurality of pixel electrodes 214 are formed of a metal material such as aluminum, for example.
  • the surfaces 214a of the plurality of pixel electrodes 214 are processed flat and smoothly.
  • the plurality of pixel electrodes 214 are driven by an active matrix circuit provided in the drive circuit layer 914.
  • the active matrix circuit is provided between the plurality of pixel electrodes 214 and the silicon substrate 213.
  • the active matrix circuit controls the voltage applied to each pixel electrode 214 in accordance with the light image to be output from the reflective spatial light modulator 203.
  • the active matrix circuit includes a first driver circuit that controls an applied voltage of each pixel column aligned in one direction along the surface 218a, and each pixel column orthogonal to the one direction and aligned in the other direction along the surface 218a. And a second driver circuit for controlling the applied voltage.
  • Such an active matrix circuit is configured such that a predetermined voltage is applied to the pixel electrode 214 of the pixel specified by both driver circuits by the control unit 250 (see FIG. 7).
  • the alignment films 999a and 999b are disposed on both end faces of the liquid crystal layer 216, and align liquid crystal molecule groups in a certain direction.
  • the alignment films 999a and 999b are formed of a polymer material such as polyimide, for example.
  • the contact surfaces of the alignment films 999a and 999b with the liquid crystal layer 216 are rubbed.
  • the liquid crystal layer 216 is disposed between the plurality of pixel electrodes 214 and the transparent conductive film 217.
  • the liquid crystal layer 216 modulates the laser light L in accordance with the electric field formed by each pixel electrode 214 and the transparent conductive film 217. That is, when a voltage is applied to each pixel electrode 214 by the active matrix circuit of the drive circuit layer 914, an electric field is formed between the transparent conductive film 217 and each pixel electrode 214, and the electric field formed in the liquid crystal layer 216.
  • the alignment direction of the liquid crystal molecules 216a changes depending on the size of the liquid crystal molecules.
  • the laser light L passes through the transparent substrate 218 and the transparent conductive film 217 and enters the liquid crystal layer 216, the laser light L is modulated by the liquid crystal molecules 216 a while passing through the liquid crystal layer 216, and is reflected on the reflective film 215. After reflection, the light is again modulated by the liquid crystal layer 216 and emitted.
  • each pixel electrode 214 is controlled by the control unit 250 (see FIG. 7), and a portion sandwiched between the transparent conductive film 217 and each pixel electrode 214 in the liquid crystal layer 216 according to the voltage.
  • the refractive index of the liquid crystal layer 216 at the position corresponding to each pixel changes. With this change in refractive index, the phase of the laser light L can be changed for each pixel of the liquid crystal layer 216 in accordance with the applied voltage. That is, phase modulation corresponding to the hologram pattern can be applied to each pixel by the liquid crystal layer 216.
  • the wavefront of the laser light L that enters and passes through the modulation pattern is adjusted, and the phase of the component in the direction orthogonal to the traveling direction is shifted in each light beam constituting the laser light L. Therefore, by appropriately setting the modulation pattern to be displayed on the reflective spatial light modulator 203, the laser light L can be modulated (for example, the intensity, amplitude, phase, polarization, etc. of the laser light L can be modulated).
  • the 4f optical system 241 is an adjustment optical system that adjusts the wavefront shape of the laser light L modulated by the reflective spatial light modulator 203.
  • the 4f optical system 241 includes a first lens 241a and a second lens 241b.
  • the distance of the optical path between the reflective spatial light modulator 203 and the first lens 241a is the first focal length f1 of the first lens 241a.
  • the distance of the optical path between the second lens 241b is the second focal distance f2 of the second lens 241b
  • the distance of the optical path between the first lens 241a and the second lens 241b is the first focal distance f1 and the second focal distance.
  • the laser beam L modulated by the reflective spatial light modulator 203 can be suppressed from changing its wavefront shape due to spatial propagation and increasing aberration.
  • the condensing optical system 204 includes a laser beam L emitted from the laser light source 202 and modulated by the reflective spatial light modulator 203, and a measurement beam LB1 emitted from an AF unit 212 described later. Condensed to The condensing optical system 204 is installed on the bottom plate 233 of the housing 231 via a drive unit 232 configured to include a piezoelectric element and the like.
  • the condensing optical system 204 is a condensing lens, and includes a plurality of lenses.
  • the laser light L emitted from the laser light source 202 travels in the horizontal direction in the housing 231, is then reflected downward by the mirror 205 a, and is reflected by the attenuator 207. Strength is adjusted. Thereafter, the laser light L is reflected in the horizontal direction by the mirror 205 b, the intensity distribution of the laser light L is made uniform by the beam homogenizer 260, and is incident on the reflective spatial light modulator 203.
  • the laser light L incident on the reflective spatial light modulator 203 is modulated in accordance with the modulation pattern by transmitting the modulation pattern displayed on the liquid crystal layer 216. Thereafter, the laser light L is reflected upward by the mirror 206a, the polarization direction is changed by the ⁇ / 2 wave plate 228, reflected by the mirror 206b in the horizontal direction, and enters the 4f optical system 241.
  • the wavefront shape of the laser light L incident on the 4f optical system 241 is adjusted so as to be incident on the condensing optical system 204 as parallel light. Specifically, the laser light L is transmitted and converged through the first lens 241a, reflected downward by the mirror 219, diverges through the condensing point O, and transmits through the second lens 241b to become parallel light. So that it converges again. Then, the laser light L sequentially passes through the dichroic mirrors 210 and 238 and enters the condensing optical system 204, and is condensed by the condensing optical system 204 in the workpiece 1 placed on the stage 111. .
  • the laser processing apparatus 300 also includes a surface observation unit 211 for observing the laser light incident surface of the workpiece 1 and an AF (AutoFocus) for finely adjusting the distance between the condensing optical system 204 and the workpiece 1. ) Unit 212 and housing 231.
  • the surface observation unit 211 includes an observation light source 211a that emits visible light VL1, and a detector 211b that receives and detects the reflected light VL2 of the visible light VL1 reflected by the laser light incident surface of the workpiece 1.
  • the visible light VL1 emitted from the observation light source 211a is reflected and transmitted by the mirror 208, the half mirror 209, and the dichroic mirrors 210 and 238, and directed toward the workpiece 1 by the condensing optical system 204. Focused.
  • the reflected light VL2 reflected by the laser light incident surface of the workpiece 1 is condensed by the condensing optical system 204, transmitted and reflected by the dichroic mirrors 238 and 210, and then transmitted through the half mirror 209 to be detected. Light is received at 211b.
  • the AF unit 212 emits the measurement light LB1 and receives and detects the reflected light LB2 of the measurement light LB1 reflected by the laser light incident surface, whereby the displacement of the laser light incident surface along the scheduled cutting line 5 is detected.
  • An error signal (signal related to displacement) that is data is acquired.
  • the AF unit 212 outputs the acquired error signal to the control unit 250 when forming the modified region 7.
  • the control unit 250 drives the drive unit 232 based on the error signal, and reciprocates the condensing optical system 204 in the optical axis direction so as to follow the undulation of the laser light incident surface.
  • the configuration and operation of the AF unit 212 will be described later in detail.
  • the laser processing apparatus 300 includes a control unit 250 that controls the operation of each unit of the laser processing apparatus 300.
  • the control unit 250 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the controller 250 controls the operation of the laser light source 202 and emits the laser light L from the laser light source 202.
  • the controller 250 controls the operation of the laser light source 202 and adjusts the output, pulse width, and the like of the laser light L emitted from the laser light source 202.
  • the control unit 250 forms the modified region 7
  • the condensing point P of the laser light L is located at a predetermined distance from the front surface 3 or the back surface 21 of the workpiece 1 and the condensing point P of the laser light L is cut.
  • At least one of the housing 231, the position of the stage 111, and the drive of the drive unit 232 is controlled so as to move relatively along the scheduled line 5.
  • the control unit 250 has functions of the laser light source control unit 102 and the stage control unit 115.
  • the control unit 250 When forming the modified region 7, the control unit 250 applies a predetermined voltage to each pixel electrode 214 in the reflective spatial light modulator 203 and causes the liquid crystal layer 216 to display a predetermined modulation pattern. Thereby, the control unit 250 modulates the laser light L as desired by the reflective spatial light modulator 203.
  • the modulation pattern displayed on the liquid crystal layer 216 includes, for example, the position where the modified region 7 is to be formed, the wavelength of the laser beam L to be irradiated, the material of the workpiece 1, and the condensing optical system 204 or the workpiece 1. Is derived in advance based on the refractive index and the like and stored in the control unit 250.
  • the modulation pattern includes an individual difference correction pattern for correcting individual differences generated in the laser processing apparatus 300 (for example, distortion generated in the liquid crystal layer 216), a spherical aberration correction pattern for correcting spherical aberration, and the like.
  • the AF unit 212 includes a measurement light source 30, a displacement detection unit 50, and an imaging state adjustment unit 70.
  • the measurement light source 30 emits measurement light LB1.
  • the measurement light source 30 can emit any of a plurality of lights having different wavelengths.
  • the measurement light source 30 includes a plurality of SLD (Super Luminescent Diode) light sources 31 and 32.
  • the control unit 250 selects one of the plurality of SLD light sources 31 and 32 that emits light having a wavelength with high reflectivity with respect to the workpiece 1.
  • the measurement light source 30 emits light having a wavelength with high reflectivity with respect to the workpiece 1 as measurement light LB1 from one of the selected SLD light sources 31 and 32.
  • the SLD light source 31 emits light having a wavelength of 650 nm, for example.
  • the SLD light source 32 emits light having a wavelength of, for example, 830 nm.
  • the measurement light source 30 is not limited to the SLD light sources 31 and 32, and may include, for example, an LED (Light Emitting Diode) light source or an LD (Laser Diode) light source.
  • the wavelength of the measurement light LB1 only needs to have a reflectance greater than zero on the back surface 21 that is the laser light incident surface.
  • the measurement light source 30 does not have to be capable of emitting light of a plurality of wavelengths.
  • the measurement light source 30 may include only one of the SLD light sources 31 and 32 and may emit only light of one wavelength.
  • the measurement light source 30 transmits the emitted measurement light LB1 to the adjustment optical system 60 via a WDM (Wavelength Division Multiplexing) 33 and a single-mode optical fiber 34 used for the synthesis of laser beams having a plurality of wavelengths.
  • WDM Widelength Division Multiplexing
  • the WDM 33 is not required when the measurement light source 30 emits only one wavelength of the measurement light LB1.
  • a spatial light transmission device may be used.
  • the adjustment optical system 60 includes a plurality of types of lenses and adjusts the measurement light LB1 so as to have an appropriate beam diameter.
  • the displacement detector 50 detects the displacement of the back surface 21 based on the reflected light LB2 of the measurement light LB1 reflected by the back surface 21 that is the laser light incident surface of the workpiece 1.
  • the displacement detection unit 50 includes a first branching unit 51, a second branching unit (branching unit) 52, first and second astigmatism adding units (astigmatism adding units) 53 and 54, and first and second beam shapes. Detection units (beam shape detection units) 55 and 56 and an error signal generation unit 57 are included.
  • the first branching unit 51 is a beam splitter that branches the measurement light LB1 and the reflected light LB2.
  • the first branching unit 51 divides the optical paths of the measurement light LB1 and the reflected light LB2 into an optical path of the measurement light LB1 and an optical path of the reflected light LB2.
  • the first branch unit 51 transmits the measurement light LB1 and reflects the reflected light LB2.
  • the first branching unit 51 is provided between the imaging state adjusting unit 70 and the adjusting optical system 60 in the optical paths of the measurement light LB1 and the reflected light LB2.
  • the second branching unit 52 is a beam splitter that branches the reflected light LB2 branched by the first branching unit 51 into the first branched reflected light LS1 and the second branched reflected light LS2.
  • the second branching unit 52 divides the optical path OP of the reflected light LB2 into a first branched optical path OP1 that is an optical path of the first branched reflected light LS1 and a second branched optical path OP2 that is an optical path of the second branched reflected light LS2.
  • the second branch portion 52 transmits the second branch reflected light LS2, while reflecting the first branch reflected light LS1.
  • the second branch portion 52 is provided downstream of the first branch portion 51 in the optical path OP of the reflected light LB2.
  • the first astigmatism adding unit 53 is provided downstream of the second branching unit 52 in the first branching optical path OP1.
  • the first astigmatism adding unit 53 adds a first astigmatism amount smaller than the astigmatism amount added by the second astigmatism adding unit 54 to the first branched reflected light LS1.
  • the amount of astigmatism is a measure representing the magnitude of astigmatism, and is defined here as follows.
  • the short axis direction on the plane perpendicular to the optical axis is the characteristic axis of the astigmatism adding portion.
  • the focal length in the characteristic axis direction of the astigmatism adding unit is fL1
  • the focal length in the direction perpendicular to the characteristic axis is fL2
  • fL2 / fL1 is the amount of astigmatism.
  • the first astigmatism adding unit 53 is configured by a combination of a convex lens 53a and a cylindrical lens 53b.
  • the focal length of the convex lens 53a is 40 mm
  • the focal length of the cylindrical lens 53b is 100 mm.
  • the second astigmatism adding unit 54 is provided via the mirror 58 downstream of the second branching unit 52 in the second branching optical path OP2.
  • the second astigmatism adding unit 54 adds an astigmatism amount different from the first astigmatism amount to the second branched reflected light LS2.
  • the second astigmatism adding unit 54 adds a second astigmatism amount larger than the first astigmatism amount to the second branched reflected light LS2.
  • the second astigmatism adding unit 54 is configured by a combination of a convex lens 54a and a cylindrical lens 54b.
  • the focal length of the convex lens 53a is 75 mm
  • the focal length of the cylindrical lens 53b is 75 mm.
  • the first beam shape detection unit 55 is provided in the first branch optical path OP1.
  • the first beam shape detection unit 55 receives the first branched reflected light LS1 to which the first astigmatism amount is added via the filter 59a, and detects the beam shape of the first branched reflected light LS1.
  • the second beam shape detection unit 56 is provided in the second branch optical path OP2.
  • the second beam shape detection unit 56 receives the second branched reflected light LS2 to which the second astigmatism amount is added via the filter 59b, and detects the beam shape of the second branched reflected light LS2.
  • the filter 59a attenuates the light having the wavelength of the laser light L in the first branch reflected light LS1.
  • the filter 59 a prevents light having the wavelength of the laser light L from entering the first beam shape detection unit 55.
  • the filter 59b attenuates the light having the wavelength of the laser light L in the second branched reflected light LS2.
  • the filter 59 b prevents light having the wavelength of the laser light L from entering the second beam shape detection unit 56.
  • the first beam shape detection unit 55 and the second beam shape detector 56 a four-quadrant detector can be used.
  • the first beam shape detection unit 55 and the second beam shape detection unit 56 output the detection results to the error signal generation unit 57.
  • each of the first beam shape detection unit 55 and the second beam shape detection unit 56 divides and receives the beam shape formed on the light receiving surface, and outputs an output value (voltage) corresponding to each light amount. Value) to the error signal generator 57.
  • the first beam shape detection unit 55 is not particularly limited as long as the beam shape can be detected.
  • a two-dimensional PD (Photo Diode) array may be used.
  • the error signal generator 57 receives outputs from the first beam shape detector 55 and the second beam shape detector 56 and generates an error signal.
  • the error signal generation unit 57 is one of the first and second beam shape detection units 55 and 56 provided on one of the first and second branch optical paths OP1 and OP2 selected by the control unit 250. An error signal is generated based on the detection result.
  • the error signal generation unit 57 When the first branch optical path OP1 is selected by the control unit 250, the error signal generation unit 57 generates an error signal using the detection result of the first beam shape detection unit 55.
  • the error signal generation unit 57 generates an error signal using the detection result of the second beam shape detection unit 56 when the control unit 250 selects the second branch optical path OP2.
  • the error signal generator 57 outputs the generated error signal to the controller 250.
  • the AF unit 212 passes the displacement (relative displacement) of the back surface 21 that is the laser light incident surface of the workpiece 1 using the Through the Lens method, that is, the condensing optical system 204 that condenses the laser light L. Measurement is performed using the measurement light LB1.
  • the AF unit 212 measures the displacement of the back surface 21 using astigmatism.
  • the distance of the optical system changes due to a change in the relative displacement between the condensing optical system 204 and the back surface 21, and the position of the image point of the reflected light LB2 of the measurement light LB1 moves through the optical system. Take advantage of what you do.
  • the beam shape of the reflected light LB2 changes on the beam shape detectors 55 and 56 such as a four-quadrant detector due to the displacement of the back surface 21 from a reference position described later on the workpiece 1.
  • the reflected light LB2 reflected by the back surface 21 has different beam divergence angles depending on the displacement of the back surface 21, and different beams on the beam shape detection units 55 and 56 according to the beam divergence angle. It becomes a shape.
  • the beam shape H of the reflected light LB2 is a vertically long ellipse (see FIG. 10A), a perfect circle (see FIG. 10B), and a horizontally long ellipse (see FIG. 10C).
  • the beam shape changing in this manner is detected by being divided into light receiving surfaces S A , S B , S C , and S D in the beam shape detectors 55 and 56. Then, the AF unit 212 generates an error signal by the calculation of the following equation (1) based on the beam shape detection result.
  • Error signal [(I A + I C ) ⁇ (I B + I D )] / [(I A + I B + I C + I D )] ...
  • I A a signal value output based on the amount of light on the light receiving surface S A
  • I B signal value outputted based on the amount of light at the light receiving surface S B
  • I C a signal value output based on the amount of light on the light receiving surface S C
  • ID A signal value output based on the amount of light on the light receiving surface SD .
  • FIG. 11 is a graph showing an example of the error signal.
  • the horizontal axis indicates the displacement of the laser light incident surface from the position where the error signal becomes zero
  • the vertical axis indicates the magnitude of the error signal. The smaller the displacement is (the closer to the left in the figure), the closer the laser light incident surface is to the condensing optical system 204. The larger the displacement is (the more it goes to the right side in the figure), the more the laser light incident surface is positioned away from the condensing optical system 204.
  • the error signal changes in an S-curve shape on the graph.
  • the displacement when the error signal becomes zero is the displacement when the beam shape becomes a perfect circle on the beam shape detectors 55 and 56.
  • the range that can be used in the error signal is a range that monotonously decreases around zero (hereinafter, this range is referred to as a “measurement range”).
  • the length measurement range of the present embodiment is at least ⁇ 10 ⁇ m in consideration of practicality from the variation in displacement of the back surface 21 at the laser processing start position due to warpage of the workpiece 1.
  • the length measurement range of this embodiment is ⁇ 20 ⁇ m or more.
  • the imaging state adjustment unit 70 moves the imaging state of the measurement light LB1 and the reflected light LB2.
  • the imaging state adjusting unit 70 is provided between the first branching unit 51 and the dichroic mirror 238 in the optical paths of the measurement light LB1 and the reflected light LB2.
  • the imaging state adjustment unit 70 includes a concave lens 71 and a convex lens 72.
  • the imaging state adjustment unit 70 changes the distance between the concave lens 71 and the convex lens 72 based on a command from the control unit 250 and moves the imaging state. Thereby, the imaging state adjustment unit 70 adjusts the offset amount.
  • the movement of the imaging state includes copying any set of imaging position relationships on the optical path to another imaging position relationship set (that is, moving the imaging position).
  • the reference position is the depth position of the laser light incident surface set at the time of reference position described later (step S5). Specifically, the reference position is the position of the back surface 21 when the back surface 21 is imaged by the front surface observation unit 211 and the contrast of the projected reticle is maximized.
  • the imaging state adjusting unit 70 moves the imaging state of the measurement light LB1 and the reflected light LB2 to move from 0 ⁇ m to ⁇ 180 ⁇ m. Vary the offset amount in the range.
  • the processing object 1 is a silicon substrate having a thickness of 775 ⁇ m and the modified region 7 is formed at a shallow position from the back surface 21 in the processing object 1, the convergence power of the imaging state adjustment unit 70 is weakened, and the offset amount Is a value close to 0 ⁇ m to 0 ⁇ m, and the distance between the condensing optical system 204 and the back surface 21 is a long distance.
  • the convergence power of the imaging state adjusting unit 70 is The offset is set to a value close to ⁇ 180 ⁇ m to ⁇ 180 ⁇ m, and the distance between the condensing optical system 204 and the surface 3 is set to a short distance.
  • the control unit 250 sets an offset amount based on a command from a host system such as a host controller.
  • the control unit 250 controls the imaging state adjustment unit 70 so that the set offset amount is obtained.
  • the control unit 250 stores in advance a data table relating to the position of the concave lens 71 determined for each offset amount.
  • the control unit 250 obtains the position of the concave lens 71 having the set offset amount by referring to the data table, and outputs a command to move the concave lens 71 to the obtained position of the concave lens 71 to the imaging state adjustment unit 70. .
  • the control unit 250 selects one of the first branching optical path OP1 and the second branching optical path OP2 according to the imaging state that is moved by the imaging state adjusting unit 70. Specifically, the control unit 250 selects one of the first branch optical path OP1 and the second branch optical path OP2 according to the offset amount adjusted by the imaging state adjustment unit 70. More specifically, when the set offset amount is in the first range, the control unit 250 selects the first branched optical path OP1 that is the optical path of the first branched reflected light LS1. When the set offset amount is in the second range, the second branch optical path OP2 that is the optical path of the second branch reflected light LS2 is selected. The second range is a range deeper than the first range.
  • the first range is a range of 0 ⁇ m or less and greater than ⁇ 40 ⁇ m.
  • the second range is a range of ⁇ 40 ⁇ m or less and ⁇ 180 ⁇ m or more.
  • the control unit 250 outputs an instruction related to the selection result of the first branch optical path OP1 and the second branch optical path OP2 to the error signal generation unit 57.
  • the controller 250 operates the drive unit 232 so that the error signal generated by the error signal generator 57 maintains the target value (here, zero).
  • the AF unit 212 further includes a first steering mirror 81 and a second steering mirror 82.
  • the first and second steering mirrors 81 and 82 are disposed between the imaging state adjusting unit 70 and the dichroic mirror 238 in the optical paths of the measurement light LB1 and the reflected light LB2.
  • the first and second steering mirrors 81 and 82 align (coalign) the optical axis of the measurement light LB1 with the optical axis of the laser light L.
  • the first and second steering mirrors 81 and 82 constitute an optical axis adjustment mechanism.
  • the laser processing method of the present embodiment is used as a chip manufacturing method for manufacturing a plurality of chips by laser processing the workpiece 1.
  • the workpiece 1 has a plate shape.
  • the workpiece 1 is, for example, a sapphire substrate, a SiC substrate, a glass substrate (tempered glass substrate), a silicon substrate, a semiconductor substrate, a transparent insulating substrate, or the like.
  • the processing object 1 here is a silicon substrate.
  • a functional element layer is formed on the processing object 1 on the surface 3 side opposite to the back surface 21 side which is the laser light incident surface side.
  • the functional element layer includes a plurality of functional elements (for example, a light receiving element such as a photodiode, a light emitting element such as a laser diode, or a circuit element formed as a circuit) arranged in a matrix.
  • the back surface 21 side of the workpiece 1 is ground so that the workpiece 1 is thinned to a desired thickness.
  • a plurality of cutting lines 5 that extend so as to pass between adjacent functional elements are set in the workpiece 1.
  • the plurality of scheduled cutting lines 5 extend in a lattice shape.
  • the processing object 1 is placed on the support base 107 of the stage 111 so that the back surface 21 becomes the laser light incident surface.
  • Laser light L is emitted from the laser light source 202, and the laser light L is condensed inside the workpiece 1 by the condensing optical system 204.
  • the movement of the stage 111 is controlled by the control unit 250, and the laser light L is moved (scanned) relatively in the processing progress direction along the planned cutting line 5 to be modified inside the processing target 1.
  • the region 7 is formed along the planned cutting line 5.
  • the expanding tape attached to the front surface 3 or the back surface 21 of the processing object 1 is expanded to cut the processing object 1 and cut the processing object 1 into a plurality of chips.
  • the back surface 21 of the workpiece 1 has warping or waviness due to the influence of stress or the like resulting from the formation of the functional element layer on the front surface 3. Therefore, in order to focus the laser beam L and stably form the modified region 7 at the intended depth, control is performed to keep the relative displacement between the condensing optical system 204 and the back surface 21 at the intended displacement. There is a need.
  • the measurement light LB1 is focused on the processing target 1 while condensing the laser light L on the processing target 1.
  • the first branched reflected light LS1 obtained by branching the reflected light LB2 of the measurement light LB1 reflected by the back surface 21 into the first and second branched reflected lights LS1 and LS2 and adding the first astigmatism amount in the first branched optical path OP1.
  • An error signal is acquired based on the detection result of the beam shape, and the condensing optical system 204 is operated in the Z direction by the drive unit 232 so that the error signal maintains a target value. Specifically, the following steps are executed.
  • control unit 250 sets an offset amount based on a command from the host system (step S1). Based on the command from the host system, the control unit 250 selects one of the SLD light sources 31 and 32 of the measurement light source 30 that emits light having a wavelength with high reflectivity with respect to the workpiece 1 (step S2). ).
  • Control unit 250 selects branch optical paths OP1 and OP2 that generate error signals based on the set offset amount (step S3).
  • step S3 when the set offset amount is in the first range ( ⁇ 40 ⁇ m ⁇ offset amount ⁇ 0 ⁇ m), the first branch optical path which is an optical path for adding the first astigmatism amount to the first branch reflected light LS1.
  • the set offset amount is in the second range ( ⁇ 180 ⁇ m ⁇ offset amount ⁇ ⁇ 40 ⁇ m)
  • the second branch optical path OP2 is selected.
  • the image forming state adjusting unit 70 is controlled by the control unit 250 so that the set offset amount is obtained, and the image forming states of the measurement light LB1 and the reflected light LB2 are moved (step S4).
  • step S4 the position of the concave lens 71 corresponding to the set offset amount is derived with reference to the data table, and the concave lens 71 is moved to this position.
  • the reference positioning is performed to position the workpiece 1 at the reference position (step S5).
  • step S5 the back surface 21 which is the laser light incident surface is imaged by the front surface observation unit 211, and the stage is positioned by the control unit 250 so that the back surface 21 is positioned at a depth where the contrast of the projected reticle is maximized.
  • 111 is moved in the Z direction.
  • the magnitude of the error signal at this stage is zero when the offset amount is 0 ⁇ m.
  • the control unit 250 moves the stage 111 so that the set offset is obtained, and causes the processing target object 1 to approach the condensing optical system 204 (step S6).
  • the target value of the error signal is acquired and stored in the control unit 250 (step S7).
  • the measurement light LB1 is emitted from one of the SLD light sources 31 and 32 of the measurement light source 30 selected in step S2.
  • the measurement light LB1 has its beam diameter adjusted by the adjusting optical system 60, passes through the first branching unit 51, and after the image forming state is adjusted by the image forming state adjusting unit 70, the first and second steering mirrors 81 , 82 and the dichroic mirror 238 are sequentially reflected, condensed on the workpiece 1 by the condensing optical system 204, and reflected by the back surface 21.
  • the reflected light LB2 reflected by the back surface 21 passes through the condensing optical system 204, is sequentially reflected by the dichroic mirror 238, the second and first steering mirrors 82, 81, and the imaging state is adjusted by the imaging state adjustment unit 70.
  • the second branch part 52 After being reflected by the first branch part 51, the second branch part 52 is branched into the first and second branch reflected lights LS 1 and LS 2.
  • the first astigmatism amount is added to the first branched reflected light LS1 by the first astigmatism adding unit 53 in the first branch optical path OP1, the first beam shape detecting unit 55 passes through the filter 59a. Received light.
  • the second beam shape detecting unit 56 passes through the filter 59b. Received light.
  • the error signal generation unit 57 generates an error signal corresponding to the beam shape detected by the first beam shape detection unit 55 using the above equation (1).
  • an error signal corresponding to the beam shape detected by the second beam shape detection unit 56 is generated according to the above equation (1).
  • the generated error signal is stored in the control unit 205 as a target value.
  • step S8 laser processing is started (step S8).
  • step S8 while scanning the laser beam L along the planned cutting line 5, an error signal is acquired in the same manner as in step S7, and the drive unit 232 collects the error signal so that the acquired error signal maintains the target value.
  • the optical system 204 is operated in the Z direction. Thereby, along with the scanning of the laser beam L, feedback control is performed in which the relative displacement between the condensing optical system 204 and the back surface 21 is kept constant, and the condensing optical system 204 follows the displacement of the back surface 21. .
  • step S9 it is determined whether or not laser processing along all the scheduled cutting lines 5 has been completed. In the case of No in step S9, the above steps S1 to S9 are repeatedly performed along the scheduled cutting line 5 where the laser processing is not completed, whereas in the case of Yes in step S9, the laser processing ends.
  • FIG. 13 is a graph showing an error signal generated based only on the beam shape detected by the first beam shape detection unit 55.
  • each error signal when the offset amount is changed from 0 ⁇ m to ⁇ 180 ⁇ m in increments of 10 ⁇ m to 20 ⁇ m is shown.
  • the slope of the error signal has a correlation with the offset amount (that is, the imaging state moved by the imaging state adjustment unit 70).
  • the slope of the error signal becomes too gentle.
  • the slope of the error signal is the fluctuation of the error signal with respect to the acquired displacement.
  • the slope of the error signal is the rate of change of the error signal related to displacement.
  • the slope of the error signal corresponds to the proportionality constant when the error signal monotonously decreases proportionally.
  • the slope of the error signal corresponds to the amount of fluctuation when the error signal fluctuates with a change in displacement.
  • the laser processing apparatus 300 In the laser processing apparatus 300, one of the first and second branch optical paths OP1 and OP2 is selected according to the offset amount, and the beam shape detected in one of the selected first and second branch optical paths OP1 and OP2 is obtained. Based on this, an error signal is generated. As a result, the amount of astigmatism added to one of the first and second branched reflected lights LS1 and LS2 used for generating the error signal can be made in accordance with the offset amount. As a result, it is possible to suppress the inclination of the error signal from becoming too gentle. Therefore, it is possible to accurately detect the displacement of the back surface 21 that is the laser light incident surface.
  • the back surface 21 is ground until the workpiece 1 is thinned to a desired thickness, the back surface 21 is in a state in which grinding marks are formed (a state in which many grooves having extremely shallow depths are formed). ).
  • the error signal may vary. Therefore, if the inclination of the error signal becomes too gentle, there may be a problem in practicality. Therefore, when the grinding mark is formed on the back surface 21 as described above, the above-described effect of suppressing the inclination of the error signal from becoming too gentle is remarkable.
  • the first branch optical path OP1 when the offset amount is in the first range, the first branch optical path OP1 is selected, and when the offset amount is in the second range deeper than the first range, the second branch optical path OP2 is selected. Select.
  • the first branched reflected light LS1 when the offset is shallow, the first branched reflected light LS1 to which a small amount of astigmatism is added is used to generate an error signal.
  • the first astigmatism having a large amount of astigmatism is added.
  • the bifurcated reflected light LS2 can be used for generating an error signal. It becomes possible to suppress the inclination of the error signal from becoming too gentle and to detect the displacement of the back surface 21 with high accuracy.
  • FIG. 14 is a graph showing an error signal generated in the laser processing apparatus 300.
  • each error signal when the offset amount is changed from 0 ⁇ m to ⁇ 180 ⁇ m in increments of 10 ⁇ m to 20 ⁇ m is shown.
  • each item (series) name in the figure when the error signal is based on the beam shape of the first branch optical path OP1, “OP1” is added, and when the error signal is based on the beam shape of the second branch optical path OP2. “OP2” is attached.
  • FIG. 14 according to the laser processing apparatus 300, it can be seen that the inclination of the error signal can be suppressed from becoming too gentle.
  • the error signal has a certain inclination or more so that the measurement error due to the grinding mark is within the practical range.
  • the error signal may have an absolute value of a slope of 0.025 / ⁇ m or more at a displacement at which the error signal becomes zero.
  • the error signal may have an absolute value of a slope of 0.0275 / ⁇ m or more at a displacement at which the error signal becomes zero.
  • the first range is 0 ⁇ m or less and larger than ⁇ 40 ⁇ m
  • the second range is ⁇ 40 ⁇ m or less and ⁇ 180 ⁇ m or more, but the first range is 0 ⁇ m or less and ⁇ 40 ⁇ m or more.
  • the second range may be less than ⁇ 40 ⁇ m and greater than ⁇ 180 ⁇ m.
  • FIG. 15 is a graph showing an error signal generated based only on the beam shape detected by the second beam shape detection unit 56.
  • each error signal when the offset amount is changed from 0 ⁇ m to ⁇ 180 ⁇ m in increments of 10 ⁇ m to 20 ⁇ m is shown.
  • the shallower the offset is in the workpiece 1 the steep error signal becomes steep and the measurement range becomes insufficient.
  • the laser processing apparatus 300 it is possible to suppress the error signal from becoming too steep, and to ensure a sufficient length measurement range (see FIG. 14).
  • the offset amount is set by the control unit 250, and the imaging state adjusting unit 70 is controlled so as to be the set offset amount. According to this configuration, the imaging states of the measurement light LB1 and the reflected light LB2 can be automatically adjusted so that the set offset amount is obtained.
  • the laser processing apparatus 300 includes a drive unit 232 that operates the condensing optical system 204 in the Z direction, and the drive unit 232 is operated by the control unit 205 so that the error signal maintains a target value. According to this configuration, the condensing optical system 204 can be moved in the Z direction so as to follow the back surface 21.
  • the laser processing apparatus 300 includes first and second steering mirrors 81 and 82 for aligning the optical axis of the measurement light LB1 with the optical axis of the laser light L. According to this configuration, the optical axis of the measurement light LB1 can be accurately aligned with the optical axis of the laser light L.
  • the measurement light source 30 emits, as the measurement light LB1, light having a wavelength with a high reflectivity with respect to the workpiece 1 among the light having a plurality of wavelengths. As a result, the measurement light LB1 can be easily reflected by the back surface 21.
  • the inclination of the error signal can be reduced by shortening the physical distance between the imaging state adjusting unit 70 and the condensing optical system 204, or by inserting a 4f lens system therebetween to shorten the optical distance. It is also possible to suppress the change. However, it is difficult to shorten the physical distance due to restrictions on the device configuration, and inserting the 4f lens system also leads to an increase in the size of the device, which may be difficult to realize. In particular, when the first and second steering mirrors 81 and 82 are arranged, it is difficult to shorten the physical distance. In this respect, the laser processing apparatus 300 is less likely to be restricted in terms of the apparatus configuration, and can suppress an increase in the size of the apparatus. In the laser processing apparatus 300, the first and second steering mirrors 81 and 82 can be disposed.
  • FIG. 16 is a configuration diagram showing a part of an AF unit 212B according to a modification.
  • each of the first and second beam shape detection units 55 and 56 of the AF unit 212B moves in accordance with the movement of the concave lens 71 of the imaging state adjustment unit 70.
  • OP2 may be movable along each. Specifically, the first and second beam shape detection units 55 and 56 are moved away from the first and second astigmatism addition units 53 and 54 as the concave lens 71 is moved so that the offset is deepened by the control unit 250. The first and second beam shape detectors 55 and 56 may be moved closer to the first and second astigmatism adding units 53 and 54 as the offset becomes deeper.
  • FIG. 17 is a graph for explaining the effect of the AF unit 212B of FIG.
  • FIG. 17 shows an error signal generated based on the beam shape detected by the first beam shape detection unit 55.
  • FIG. 17A shows an error signal when the first beam shape detection unit 55 is fixed.
  • FIG. 17B shows an error signal generated by the AF unit 212B, that is, an error signal when the first beam shape detection unit 55 is movable.
  • the S-curve of the error signal is leveled around zero on the horizontal axis for any offset amount. The shape can be improved. This contributes to responsiveness improvement such as PID control.
  • the convex lenses 53a and 54a and the cylindrical lenses 53b and 54b of the first and second astigmatism adding units 53 and 54 are used. At least one of these may be moved similarly. Even in this case, the same effect is produced.
  • the optical path OP of the reflected light LB2 is branched into two optical paths (first and second branched optical paths OP1 and OP2) by the second branching unit 52, but may be branched into three or more optical paths.
  • a plurality of astigmatism adding sections for adding different amounts of astigmatism and a plurality of beam shapes for detecting the beam shapes of the plurality of branched reflected lights to which astigmatism is added need only be provided.
  • an optical path is selected from a plurality of optical paths so that a larger astigmatism amount is added to the branched reflected light as the offset is deeper, and based on the detection result of the beam shape of the branched reflected light in the selected optical path.
  • An error signal may be generated.
  • the imaging state adjustment unit 70 is disposed between the first branching unit 51 and the dichroic mirror 238 in the optical paths of the measurement light LB1 and the reflected light LB2. It is not limited. Instead of or in addition to the arrangement of the above embodiment, the first branch 51 and the second branch 52 are arranged upstream of the first branch 51 in the optical path of the measurement light LB1 and in the optical path OP of the reflected light LB2. The imaging state adjustment unit 70 may be disposed at least at any point between the two.
  • the imaging state adjustment unit 70 is configured by the concave lens 71 and the convex lens 72, but the imaging state adjustment unit 70 is not particularly limited, and may be a variable focal length lens, for example.
  • the optical system of the above embodiment includes the dichroic mirror 238 that transmits the laser light L and reflects the measurement light LB1 and the reflected light LB2. Instead, the optical system reflects the laser light L and reflects the measurement light.
  • a configuration including a dichroic mirror that transmits LB1 and reflected light LB2 may also be used.
  • the optical system of the above embodiment may be configured to reflect the measurement light LB1 and transmit the reflected light LB2 at the first branching unit 51.
  • the optical system of the above embodiment may be configured to transmit the first branched reflected light LS1 and reflect the second branched reflected light LS2 in the second branch portion 52.
  • the bias offset values of the first and second beam shape detectors 55 and 56 (the first and second beam shapes in a state in which the beam shape is not detected) between the step S6 and the step S7.
  • the output values of the detection units 55 and 56) may be acquired and adjusted.
  • the offset amount is set as an optical arrangement in which the error signal becomes zero.
  • the present invention is not limited to the case where the error signal becomes zero, and the offset amount may be set as an optical arrangement in which the error signal becomes a reference value. Good.
  • the offset amount is set based on a command from the host system.
  • the offset amount may be set by an operator's operation, or the offset amount is set in advance according to the position of the reforming region 7 to be formed. It may be.
  • the imaging state adjustment unit 70 is controlled by the control unit 250 so that the set offset amount is obtained, but the imaging state adjustment unit 70 may be controlled by an operator's operation.
  • the above embodiment includes the reflective spatial light modulator 203 as the spatial light modulator.
  • the spatial light modulator is not limited to the reflective type, and may include a transmissive spatial light modulator.
  • the back surface 21 of the workpiece 1 is a laser light incident surface, but the front surface 3 of the workpiece 1 may be a laser light incident surface.
  • the control unit 250 and the error signal generation unit 57 constitute a signal acquisition unit.
  • the control unit 250 configures an offset amount setting unit, an imaging state control unit, and a drive mechanism control unit.
  • second steering mirror optical axis adjustment
  • 100 300 ... laser processing apparatus, 204 ... condensing optical system (condensing lens), 232 ... drive unit (drive mechanism), 250 ... control unit (signal acquisition unit, offset amount setting unit, imaging state) Control unit, drive mechanism control unit), L ... laser beam (laser beam for processing) LB1 ... measurement light, LB2 ... reflected light, LS1 ... first branched reflected light (branched reflected light), LS2 ... second branched reflected light (branched reflected light), OP1 ... first branched optical path (first branched reflected light Optical path), OP2... Second branched optical path (optical path of the second branched reflected light).

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)

Abstract

A laser machining device, provided with: a measurement light source; a condensing lens; a displacement detector for detecting the displacement of a laser beam incidence surface on the basis of reflected light of measurement light reflected by the laser beam incidence surface; and an imaging state adjustment unit for moving the imaging state of the measurement light and/or the reflected light of the measurement light. The displacement detector has: a branching unit for branching the reflected light of the measurement light into a plurality of branched reflected lights; a plurality of astigmatism imparting units for imparting astigmatism amounts of different sizes to each of the plurality of branched reflected lights; a plurality of beam shape detectors for detecting the respective beam shapes of each of the branched reflected lights to which astigmatism has been imparted; and a signal acquisition unit for selecting, from the light paths of the plurality of branched reflected lights, a light path corresponding to the imaging state to be adjusted by the imaging state adjustment unit, and acquiring a signal relating to displacement on the basis of the result of detection by the beam shape detector on the light path of the selected branched reflected light.

Description

レーザ加工装置及びレーザ加工方法Laser processing apparatus and laser processing method
 本発明の一側面は、レーザ加工装置及びレーザ加工方法に関する。 One aspect of the present invention relates to a laser processing apparatus and a laser processing method.
 従来、加工対象物に加工用レーザ光を集光することにより、加工対象物に改質領域を形成するレーザ加工装置が知られている(例えば特許文献1参照)。このようなレーザ加工装置は、測定用光を出射する測定用光源と、加工用レーザ光及び測定用光を加工対象物に集光する集光用レンズと、加工対象物のレーザ光入射面で反射された測定用光の反射光に基づいてレーザ光入射面の変位(以下、単に「変位」とも称する)を検出する変位検出部と、を備える。変位検出部は、測定用光の反射光に非点収差を付加し、非点収差を付加した反射光のビーム形状を検出し、その検出結果に基づいて変位に関する信号を取得する。 Conventionally, there has been known a laser processing apparatus that forms a modified region on a processing object by condensing a processing laser beam on the processing object (see, for example, Patent Document 1). Such a laser processing apparatus includes a measurement light source that emits measurement light, a condensing lens that condenses the processing laser light and measurement light on the processing target, and a laser light incident surface of the processing target. A displacement detector that detects a displacement of the laser light incident surface (hereinafter also simply referred to as “displacement”) based on the reflected reflected light of the measurement light. The displacement detection unit adds astigmatism to the reflected light of the measurement light, detects the beam shape of the reflected light to which the astigmatism is added, and acquires a signal related to the displacement based on the detection result.
特開2015-186825号公報Japanese Patent Laid-Open No. 2015-186825
 上述したようなレーザ加工装置では、取得する変位に対する信号の変動(信号の傾き)が緩やかになり過ぎる場合がある。この場合、例えばレーザ光入射面が研削面であると、その研削痕(ソーマークとも称される)で測定用光が散乱し、同じ変位でも信号が異なる現象が生じるため、検出する変位の誤差が顕著になる。その結果、レーザ光入射面の変位を精度よく検出することが困難になるおそれがある。 In the laser processing apparatus as described above, the signal fluctuation (signal inclination) with respect to the acquired displacement may become too gentle. In this case, for example, if the laser light incident surface is a ground surface, the measurement light is scattered by the grinding marks (also referred to as saw marks), and a different signal occurs even with the same displacement. Become prominent. As a result, it may be difficult to accurately detect the displacement of the laser light incident surface.
 本発明の一側面は、レーザ光入射面の変位を精度よく検出することができるレーザ加工装置及びレーザ加工方法を提供することを目的とする。 An object of one aspect of the present invention is to provide a laser processing apparatus and a laser processing method capable of accurately detecting a displacement of a laser light incident surface.
 本発明の一側面に係るレーザ加工装置は、加工対象物に加工用レーザ光を集光することにより、加工対象物に改質領域を形成するレーザ加工装置であって、測定用光を出射する測定用光源と、加工用レーザ光及び測定用光を加工対象物に集光する集光用レンズと、加工対象物のレーザ光入射面で反射された測定用光の反射光に基づいて、レーザ光入射面の変位を検出する変位検出部と、測定用光及び測定用光の反射光の少なくとも何れかの結像状態を移動する結像状態調整部と、を備え、変位検出部は、測定用光の反射光を複数の分岐反射光へ分岐する分岐部と、複数の分岐反射光の光路それぞれに設けられ、複数の分岐反射光それぞれに対して互いに異なる大きさの非点収差量を付加する複数の非点収差付加部と、複数の分岐反射光の光路それぞれに設けられ、非点収差が付加された複数の分岐反射光それぞれのビーム形状を検出する複数のビーム形状検出部と、複数の分岐反射光の光路の中から結像状態調整部で移動する結像状態に応じた一つを選択し、選択した分岐反射光の光路におけるビーム形状検出部の検出結果に基づいて変位に関する信号を取得する信号取得部と、を有する。 A laser processing apparatus according to one aspect of the present invention is a laser processing apparatus that forms a modified region on a processing object by condensing the processing laser light on the processing object, and emits measurement light. Based on a measurement light source, a condensing lens for condensing the processing laser light and the measurement light on the object to be processed, and a reflected light of the measurement light reflected by the laser light incident surface of the object to be processed A displacement detector that detects the displacement of the light incident surface; and an imaging state adjustment unit that moves at least one of the imaging states of the measurement light and the reflected light of the measurement light. Provided in each of the branch part for branching the reflected light of the light into a plurality of branched reflected light and the optical path of the plurality of branched reflected light, and adding an astigmatism amount of a different size to each of the plurality of branched reflected light Multiple astigmatism addition sections and multiple branched reflected light A plurality of beam shape detectors that detect the beam shape of each of the plurality of branched reflected lights provided with astigmatism, respectively, and the imaging state adjustment unit move from the optical paths of the plurality of branched reflected lights. A signal acquisition unit that selects one corresponding to the imaging state and acquires a signal related to displacement based on a detection result of the beam shape detection unit in the optical path of the selected branched reflected light.
 本発明者らは鋭意検討を重ね、取得する信号の傾きは、測定用光及び測定用光の反射光の少なくとも何れかの結像状態と相関があることを見出した。さらに、信号の傾きが緩やかになり過ぎる要因として、当該結像状態と反射光に付加する非点収差量とのミスマッチに起因することを見出した。そこで、本発明の一側面に係るレーザ加工装置では、測定用光の反射光を複数の分岐反射光へ分岐し、各分岐反射光の光路において互いに異なる大きさの非点収差量を付加した分岐反射光のビーム形状を検出する。そして、複数の分岐反射光の光路の中から、結像状態調整部で移動する結像状態に応じた一つを選択し、選択した当該光路の分岐反射光のビーム形状に基づく信号を取得する。これにより、取得する信号に係る分岐反射光に付加される非点収差量を、結像状態に応じたものとすることができる。取得する信号の傾きが緩やかになり過ぎるのを抑制することが可能となる。したがって、レーザ光入射面の変位を精度よく検出することが可能となる。 The inventors of the present invention have made extensive studies and found that the inclination of the acquired signal has a correlation with the imaging state of at least one of the measurement light and the reflected light of the measurement light. Furthermore, the present inventors have found that the reason why the signal inclination becomes too gentle is due to a mismatch between the imaging state and the amount of astigmatism added to the reflected light. Therefore, in the laser processing apparatus according to one aspect of the present invention, the reflected light of the measurement light is branched into a plurality of branched reflected lights, and the astigmatism amount having a different size is added to the optical path of each branched reflected light. The beam shape of the reflected light is detected. Then, one of the optical paths of the branched reflected light is selected according to the imaging state moving by the imaging state adjusting unit, and a signal based on the beam shape of the branched reflected light of the selected optical path is acquired. . Thereby, the amount of astigmatism added to the branched reflected light related to the signal to be acquired can be made in accordance with the imaging state. It is possible to suppress the inclination of the acquired signal from becoming too gentle. Therefore, it is possible to detect the displacement of the laser light incident surface with high accuracy.
 本発明の一側面に係るレーザ加工装置では、結像状態調整部は、結像状態を移動することでオフセット量を調整し、信号取得部は、複数の分岐反射光の光路の中から、結像状態調整部で調整するオフセット量に応じた一つを選択してもよい。ここで、オフセット量とは、加工対象物のレーザ入射面の変位に対する信号が基準値(典型的にはゼロ)となるときの、加工対象物のレーザ入射面の相対変位を示す尺度である。例えばオフセット量が0μmであるとは、測定用光と同じ波長の平行光が集光用レンズに入射したとき、加工対象物のレーザ入射面で最小に絞れる配置となり、そのときの変位信号に対する信号が基準値となる幾何学的配置状態である。また、例えばオフセット量が-180μmであるとは、オフセット量が0μmであるときの上記配置から加工対象物のレーザ入射面が集光用レンズへ180μm近づいたときに信号が基準値となる幾何学的配置状態である。オフセット量の値が小さい(マイナス幅が大きい)ときには、オフセット又はオフセット量が深いといい、オフセット量の値が大きい(マイナス幅が小さい)ときには、オフセット又はオフセット量が浅いという。 In the laser processing apparatus according to one aspect of the present invention, the imaging state adjustment unit adjusts the offset amount by moving the imaging state, and the signal acquisition unit connects the optical paths of the plurality of branched reflected lights. One corresponding to the offset amount to be adjusted by the image state adjustment unit may be selected. Here, the offset amount is a scale indicating the relative displacement of the laser incident surface of the workpiece when the signal for the displacement of the laser incident surface of the workpiece is a reference value (typically zero). For example, when the offset amount is 0 μm, when parallel light having the same wavelength as the measurement light is incident on the condensing lens, the arrangement is such that the laser incident surface of the object to be processed is minimized, and a signal corresponding to the displacement signal at that time Is a geometric arrangement state in which is a reference value. Further, for example, an offset amount of −180 μm means that a geometry whose signal becomes a reference value when the laser incident surface of the object to be processed approaches 180 μm from the above arrangement when the offset amount is 0 μm. This is a general arrangement state. When the value of the offset amount is small (minus width is large), the offset or the offset amount is said to be deep. When the value of the offset amount is large (minus width is small), the offset or the offset amount is shallow.
 取得する信号の傾きは、具体的には、オフセット量と相関があり、オフセット量と非点収差量とのミスマッチに起因して緩やかになり過ぎるという知見が見出される。そこで、本発明の一側面に係るレーザ加工装置では、複数の分岐反射光の光路の中からオフセットに応じた一つを選択する。これにより、取得する信号に係る分岐反射光に付加される非点収差量を、オフセット量に応じたものとすることができる。取得する信号の傾きが緩やかになり過ぎるのを抑制することが可能となる。 It is found that the slope of the signal to be acquired specifically correlates with the offset amount and becomes too gentle due to a mismatch between the offset amount and the astigmatism amount. Therefore, in the laser processing apparatus according to one aspect of the present invention, one corresponding to the offset is selected from the optical paths of the plurality of branched reflected lights. Thereby, the amount of astigmatism added to the branched reflected light related to the signal to be acquired can be set according to the offset amount. It is possible to suppress the inclination of the acquired signal from becoming too gentle.
 本発明の一側面に係るレーザ加工装置では、分岐部は、測定用光の反射光を少なくとも第1分岐反射光及び第2分岐反射光へ分岐し、非点収差付加部は、第1分岐反射光の光路に設けられ、第1非点収差量を第1分岐反射光に付加する第1非点収差付加部と、第2分岐反射光の光路に設けられ、第1非点収差量よりも大きい第2非点収差量を第2分岐反射光に付加する第2非点収差付加部と、を有し、信号取得部は、結像状態調整部で調整するオフセット量が第1範囲にある場合には、第1分岐反射光の光路を選択し、結像状態調整部で調整するオフセット量が第1範囲よりも深い第2範囲にある場合には、第2分岐反射光の光路を選択してもよい。 In the laser processing apparatus according to one aspect of the present invention, the branching unit branches the reflected light of the measurement light into at least the first branched reflected light and the second branched reflected light, and the astigmatism adding unit is the first branched reflection. A first astigmatism adding unit that is provided in the optical path of the light and adds the first astigmatism amount to the first branched reflected light; and an optical path of the second branched reflected light that is provided in the optical path of the second branched reflected light. A second astigmatism addition unit for adding a large second astigmatism amount to the second branched reflected light, and the signal acquisition unit has an offset amount adjusted by the imaging state adjustment unit in the first range. In this case, the optical path of the first branched reflected light is selected, and when the offset amount adjusted by the imaging state adjustment unit is in the second range deeper than the first range, the optical path of the second branched reflected light is selected. May be.
 取得する信号の傾きは、より具体的には、同じ非点収差量が付加されている場合、オフセットが深いほど緩やかになり過ぎるという知見が見出される。そこで、本発明の一側面に係るレーザ加工装置では、オフセット量が第1範囲にある場合には、第1分岐反射光の光路を選択し、結像状態調整部で調整するオフセット量が第1範囲よりも深い第2範囲にある場合には、第2分岐反射光の光路を選択する。これにより、取得する信号に係る分岐反射光に付加される非点収差量を、オフセットが深い場合には大きく(浅い場合には小さく)できる。取得する信号の傾きが緩やかになり過ぎるのを抑制することが可能となる。 More specifically, it is found that the slope of the acquired signal becomes more gradual as the offset becomes deeper when the same astigmatism amount is added. Therefore, in the laser processing apparatus according to one aspect of the present invention, when the offset amount is in the first range, the optical path of the first branched reflected light is selected, and the offset amount adjusted by the imaging state adjustment unit is the first amount. If the second range is deeper than the range, the optical path of the second branched reflected light is selected. Thereby, the amount of astigmatism added to the branched reflected light related to the signal to be acquired can be increased when the offset is deep (small when it is shallow). It is possible to suppress the inclination of the acquired signal from becoming too gentle.
 本発明の一側面に係るレーザ加工装置は、結像状態調整部で調整するオフセット量を設定するオフセット量設定部と、オフセット量設定部で設定されたオフセット量となるように結像状態調整部を制御する結像状態制御部と、を備えていてもよい。この構成によれば、設定されたオフセット量となるように結像状態を自動調整することができる。 A laser processing apparatus according to an aspect of the present invention includes an offset amount setting unit that sets an offset amount that is adjusted by an imaging state adjustment unit, and an imaging state adjustment unit that has an offset amount that is set by an offset amount setting unit. An imaging state control unit that controls According to this configuration, the imaging state can be automatically adjusted so that the set offset amount is obtained.
 本発明の一側面に係るレーザ加工装置は、集光用レンズの光軸方向に沿って、加工対象物及び集光用レンズの少なくとも何れかを動作させる駆動機構と、信号取得部で取得した信号が目標値を維持するように駆動機構を動作させる駆動機構制御部と、を備えていてもよい。この構成によれば、レーザ光入射面に追従するように、集光用レンズをその光軸方向に沿って相対移動させることができる。 A laser processing apparatus according to one aspect of the present invention includes a drive mechanism that operates at least one of a processing target and a condensing lens along the optical axis direction of the condensing lens, and a signal acquired by a signal acquisition unit. And a drive mechanism control unit that operates the drive mechanism so as to maintain the target value. According to this configuration, the focusing lens can be relatively moved along the optical axis direction so as to follow the laser light incident surface.
 本発明の一側面に係るレーザ加工装置は、加工用レーザ光の光軸に測定用光の光軸を合わせる光軸調整機構を備えていてもよい。この構成によれば、加工用レーザ光の光軸に測定用光の光軸を精度よく合わせることができる。 The laser processing apparatus according to an aspect of the present invention may include an optical axis adjustment mechanism that aligns the optical axis of the measurement light with the optical axis of the processing laser light. According to this configuration, the optical axis of the measurement light can be accurately aligned with the optical axis of the processing laser light.
 本発明の一側面に係るレーザ加工装置では、測定用光源は、互いに異なる波長を有する複数の光の何れかを出射可能であって、複数の波長の光のうち加工対象物に対する反射率が最も高い波長を有する光を測定用光として出射してもよい。この場合、測定用光をレーザ光入射面で反射した反射光を、検出しやすくすることが可能となる。 In the laser processing apparatus according to one aspect of the present invention, the measurement light source can emit any of a plurality of lights having different wavelengths, and has the highest reflectivity with respect to the processing object among the light of the plurality of wavelengths. Light having a high wavelength may be emitted as measurement light. In this case, it becomes possible to easily detect the reflected light obtained by reflecting the measurement light on the laser light incident surface.
 本発明の一側面に係るレーザ加工方法は、加工対象物に加工用レーザ光を集光することにより、加工対象物に改質領域を形成するレーザ加工方法であって、加工対象物に加工用レーザ光を集光用レンズで集光しながら、測定用光を加工対象物に集光用レンズで集光し、加工対象物のレーザ光入射面で反射された当該測定用光の反射光を少なくとも第1分岐反射光及び第2分岐反射光へ分岐し、第1分岐反射光の光路において第1非点収差量を付加した第1分岐反射光のビーム形状を検出すると共に第2分岐反射光の光路において第1非点収差量よりも大きい第2非点収差量を付加した第2分岐反射光のビーム形状を検出し、当該ビーム形状の検出結果に基づいてレーザ光入射面の変位に関する信号を取得し、取得した信号が目標値を維持するように集光用レンズの光軸方向に沿って加工対象物及び集光用レンズの少なくとも何れかを動作させるレーザ加工ステップを備え、レーザ加工ステップは、オフセット量を設定する第1ステップと、第1ステップで設定したオフセット量が第1範囲の場合には第1分岐反射光の光路を選択し、第1ステップで設定したオフセット量が第1範囲よりも深い第2範囲の場合には第2分岐反射光の光路を選択する第2ステップと、第1ステップで設定したオフセット量となるように、測定用光及び測定用光の反射光の少なくとも何れかの結像状態を移動する第3ステップと、第1ステップで設定したオフセット量となるように、加工対象物及び集光用レンズの少なくとも何れかを動作させる第4ステップと、第3ステップ及び第4ステップの後、目標値を取得する第5ステップと、第5ステップの後、加工対象物に加工用レーザ光を集光用レンズで集光しながら、第2ステップで選択した分岐反射光の光路においてビーム形状を検出し、当該ビーム形状の検出結果に基づいて信号を取得し、取得した信号が目標値を維持するように集光用レンズの光軸方向に沿って加工対象物及び集光用レンズの少なくとも何れかを動作させる第6ステップと、を含む。 A laser processing method according to one aspect of the present invention is a laser processing method for forming a modified region on a processing object by condensing the processing laser light on the processing object, While condensing the laser light with the condensing lens, the measuring light is condensed on the object to be processed by the condensing lens, and the reflected light of the measuring light reflected by the laser light incident surface of the object to be processed is reflected. At least the first branched reflected light and the second branched reflected light are branched, and the beam shape of the first branched reflected light to which the first astigmatism amount is added in the optical path of the first branched reflected light is detected and the second branched reflected light is detected. The beam shape of the second branched reflected light to which the second astigmatism amount larger than the first astigmatism amount is added is detected in the optical path of, and a signal relating to the displacement of the laser light incident surface based on the detection result of the beam shape And the acquired signal maintains the target value. And a laser processing step for operating at least one of the object to be processed and the condensing lens along the optical axis direction of the condensing lens, and the laser processing step includes a first step for setting an offset amount, When the offset amount set in one step is the first range, the optical path of the first branched reflected light is selected, and when the offset amount set in the first step is the second range deeper than the first range, the second range is selected. A second step of selecting the optical path of the branched reflected light, and a third step of moving the imaging state of at least one of the measurement light and the reflected light of the measurement light so that the offset amount set in the first step is obtained. And after the third step and the fourth step, the fourth step of operating at least one of the processing object and the condensing lens so as to be the offset amount set in the first step, After the fifth step of obtaining the target value and the fifth step, the beam shape is changed in the optical path of the branched reflected light selected in the second step while condensing the processing laser light on the processing object with the condensing lens. Detect and acquire a signal based on the detection result of the beam shape, and at least one of the processing object and the condensing lens along the optical axis direction of the condensing lens so that the acquired signal maintains the target value And a sixth step for operating the device.
 このレーザ加工方法においても、取得する信号に係る分岐反射光に付加される非点収差量を、オフセットが深い場合には大きく(浅い場合には小さく)できる。上記知見により、取得する信号の傾きが緩やかになり過ぎるのを抑制することが可能となる。したがって、レーザ光入射面の変位を精度よく検出することが可能となる。 Also in this laser processing method, the amount of astigmatism added to the branched reflected light related to the acquired signal can be increased when the offset is deep (small when it is shallow). Based on the above knowledge, it is possible to suppress the inclination of the acquired signal from becoming too gentle. Therefore, it is possible to detect the displacement of the laser light incident surface with high accuracy.
 本発明の一側面によれば、レーザ光入射面の変位を精度よく検出することができるレーザ加工装置及びレーザ加工方法を提供することが可能となる。 According to one aspect of the present invention, it is possible to provide a laser processing apparatus and a laser processing method capable of accurately detecting the displacement of the laser light incident surface.
図1は、改質領域の形成に用いられるレーザ加工装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a laser processing apparatus used for forming a modified region. 図2は、改質領域の形成の対象となる加工対象物の平面図である。FIG. 2 is a plan view of a workpiece to be modified. 図3は、図2の加工対象物のIII-III線に沿っての断面図である。FIG. 3 is a cross-sectional view taken along the line III-III of the workpiece of FIG. 図4は、レーザ加工後の加工対象物の平面図である。FIG. 4 is a plan view of an object to be processed after laser processing. 図5は、図4の加工対象物のV-V線に沿っての断面図である。FIG. 5 is a cross-sectional view taken along the line VV of the workpiece in FIG. 図6は、図4の加工対象物のVI-VI線に沿っての断面図である。6 is a cross-sectional view of the workpiece of FIG. 4 along the line VI-VI. 図7は、一実施形態に係るレーザ加工装置の概略構成図である。FIG. 7 is a schematic configuration diagram of a laser processing apparatus according to an embodiment. 図8は、図7のレーザ加工装置の反射型空間光変調器の部分断面図である。FIG. 8 is a partial cross-sectional view of the reflective spatial light modulator of the laser processing apparatus of FIG. 図9は、図7のレーザ加工装置のAFユニットを含むオートフォーカス制御系の概略構成図である。FIG. 9 is a schematic configuration diagram of an autofocus control system including the AF unit of the laser processing apparatus of FIG. 図10(a)は、反射光のビーム形状が縦長楕円の場合を説明する図である。図10(b)は、反射光のビーム形状が真円の場合を説明する図である。(c)は、反射光のビーム形状が横長楕円の場合を説明する図である。FIG. 10A is a diagram illustrating a case where the beam shape of the reflected light is a vertically long ellipse. FIG. 10B is a diagram illustrating a case where the beam shape of the reflected light is a perfect circle. (C) is a figure explaining the case where the beam shape of reflected light is a horizontally long ellipse. 図11は、誤差信号の一例を示すグラフである。FIG. 11 is a graph illustrating an example of the error signal. 図12は、図7のレーザ加工装置で実施されるレーザ加工方法を示すフローチャートの一例である。FIG. 12 is an example of a flowchart showing a laser processing method performed by the laser processing apparatus of FIG. 図13は、第1ビーム形状検出部で検出したビーム形状のみに基づき生成した誤差信号を示すグラフである。FIG. 13 is a graph showing an error signal generated based only on the beam shape detected by the first beam shape detection unit. 図14は、図7のレーザ加工装置において生成した誤差信号を示すグラフである。FIG. 14 is a graph showing an error signal generated in the laser processing apparatus of FIG. 図15は、第2ビーム形状検出部で検出したビーム形状のみに基づき生成した誤差信号を示すグラフである。FIG. 15 is a graph showing an error signal generated based only on the beam shape detected by the second beam shape detection unit. 図16は、変形例に係るAFユニットの概略構成図である。FIG. 16 is a schematic configuration diagram of an AF unit according to a modification. 図17(a)は、図16のAFユニットによる効果を説明するためのグラフであって、第1ビーム形状検出部が固定の場合の誤差信号である。図17(b)は、図16のAFユニットによる効果を説明するためのグラフであって、第1ビーム形状検出部が可動の場合の誤差信号である。FIG. 17A is a graph for explaining the effect of the AF unit of FIG. 16, and is an error signal when the first beam shape detection unit is fixed. FIG. 17B is a graph for explaining the effect of the AF unit of FIG. 16, and is an error signal when the first beam shape detection unit is movable.
 以下、実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, embodiments will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.
 実施形態に係るレーザ加工装置及びレーザ加工方法では、加工対象物にレーザ光を集光することにより、切断予定ラインに沿って加工対象物に改質領域を形成する。そこで、まず、改質領域の形成について、図1~図6を参照して説明する。 In the laser processing apparatus and the laser processing method according to the embodiment, the modified region is formed in the processing object along the planned cutting line by condensing the laser beam on the processing object. First, the formation of the modified region will be described with reference to FIGS.
 図1に示されるように、レーザ加工装置100は、加工用レーザ光であるレーザ光Lをパルス発振する加工用レーザ光源であるレーザ光源101と、レーザ光Lを導光する光学系103と、レーザ光Lを集光するための集光用レンズ105と、を備えている。レーザ加工装置100は、集光用レンズ105で集光されたレーザ光Lが照射される加工対象物1を支持するための支持台107と、支持台107を移動させるためのステージ111と、レーザ光Lの出力(パルスエネルギ,光強度)やパルス幅、パルス波形等を調節するためにレーザ光源101を制御するレーザ光源制御部102と、ステージ111の移動を制御するステージ制御部115と、を備えている。 As shown in FIG. 1, a laser processing apparatus 100 includes a laser light source 101 that is a processing laser light source that pulsates laser light L that is a processing laser light, an optical system 103 that guides the laser light L, A condensing lens 105 for condensing the laser light L. The laser processing apparatus 100 includes a support base 107 for supporting the workpiece 1 irradiated with the laser light L condensed by the condensing lens 105, a stage 111 for moving the support base 107, a laser, A laser light source controller 102 for controlling the laser light source 101 to adjust the output (pulse energy, light intensity), pulse width, pulse waveform, etc. of the light L, and a stage controller 115 for controlling the movement of the stage 111. I have.
 レーザ加工装置100においては、レーザ光源101から出射されたレーザ光Lは、光学系103で導かれ、支持台107上に載置された加工対象物1の内部に集光用レンズ105によって集光される。これと共に、ステージ111が移動させられ、加工対象物1がレーザ光Lに対して切断予定ライン5に沿って相対移動させられる。これにより、切断予定ライン5に沿った改質領域が加工対象物1に形成される。なお、ここでは、レーザ光Lを相対的に移動させるためにステージ111を移動させたが、集光用レンズ105を移動させてもよいし、或いはこれらの両方を移動させてもよい。 In the laser processing apparatus 100, the laser light L emitted from the laser light source 101 is guided by the optical system 103 and condensed by the condensing lens 105 inside the processing target 1 placed on the support base 107. Is done. At the same time, the stage 111 is moved, and the workpiece 1 is moved relative to the laser beam L along the planned cutting line 5. Thereby, a modified region along the planned cutting line 5 is formed on the workpiece 1. Here, the stage 111 is moved in order to move the laser light L relatively, but the condensing lens 105 may be moved, or both of them may be moved.
 加工対象物1としては、半導体材料で形成された半導体基板や圧電材料で形成された圧電基板等を含む板状の部材(例えば、基板、ウェハ等)が用いられる。図2に示されるように、加工対象物1には、加工対象物1を切断するための切断予定ライン5が設定されている。切断予定ライン5は、直線状に延びた仮想線である。加工対象物1の内部に改質領域を形成する場合、図3に示されるように、加工対象物1の内部に集光点(集光位置)Pを合わせた状態で、レーザ光Lを切断予定ライン5に沿って(すなわち、図2の矢印A方向に)相対的に移動させる。これにより、図4、図5及び図6に示されるように、改質領域7が切断予定ライン5に沿って加工対象物1に形成され、切断予定ライン5に沿って形成された改質領域7が切断起点領域8となる。 As the processing object 1, a plate-like member (for example, a substrate, a wafer, or the like) including a semiconductor substrate formed of a semiconductor material, a piezoelectric substrate formed of a piezoelectric material, or the like is used. As shown in FIG. 2, a scheduled cutting line 5 for cutting the workpiece 1 is set in the workpiece 1. The planned cutting line 5 is a virtual line extending linearly. When the modified region is formed inside the workpiece 1, the laser beam L is cut in a state where the condensing point (condensing position) P is aligned with the inside of the workpiece 1 as shown in FIG. 3. It moves relatively along the planned line 5 (that is, in the direction of arrow A in FIG. 2). Thereby, as shown in FIGS. 4, 5, and 6, the modified region 7 is formed on the workpiece 1 along the planned cutting line 5, and the modified region formed along the planned cutting line 5. 7 becomes the cutting start region 8.
 集光点Pとは、レーザ光Lが集光する箇所のことである。切断予定ライン5は、直線状に限らず曲線状であってもよいし、これらが組み合わされた3次元状であってもよいし、座標指定されたものであってもよい。切断予定ライン5は、仮想線に限らず、加工対象物1の表面3に実際に引かれた線であってもよい。改質領域7は、連続的に形成される場合もあるし、断続的に形成される場合もある。改質領域7は列状でも点状でもよく、要は、改質領域7は少なくとも加工対象物1の内部に形成されていればよい。また、改質領域7を起点に亀裂が形成される場合があり、亀裂及び改質領域7は、加工対象物1の外表面(表面3、裏面、若しくは外周面)に露出していてもよい。改質領域7を形成する際のレーザ光入射面は、加工対象物1の表面3に限定されるものではなく、加工対象物1の裏面であってもよい。 The condensing point P is a portion where the laser light L is condensed. The planned cutting line 5 is not limited to a straight line, but may be a curved line, a three-dimensional shape in which these lines are combined, or a coordinate designated. The planned cutting line 5 is not limited to a virtual line, but may be a line actually drawn on the surface 3 of the workpiece 1. The modified region 7 may be formed continuously or intermittently. The modified region 7 may be in the form of a line or a dot. In short, the modified region 7 only needs to be formed at least inside the workpiece 1. In addition, a crack may be formed starting from the modified region 7, and the crack and the modified region 7 may be exposed on the outer surface (front surface 3, back surface, or outer peripheral surface) of the workpiece 1. . The laser light incident surface when forming the modified region 7 is not limited to the front surface 3 of the workpiece 1 and may be the back surface of the workpiece 1.
 ちなみに、加工対象物1の内部に改質領域7を形成する場合には、レーザ光Lは、加工対象物1を透過すると共に、加工対象物1の内部に位置する集光点P近傍にて特に吸収される。これにより、加工対象物1に改質領域7が形成される。この場合、加工対象物1の表面3ではレーザ光Lのエネルギー密度が低いので、加工対象物1の表面3が溶融することはない。一方、加工対象物1の表面3又は裏面に改質領域7を形成する場合には、レーザ光Lが表面3又は裏面に位置する集光点P近傍にて特に吸収され、表面3又は裏面から溶融され除去されて、穴や溝等の除去部が形成される。 Incidentally, when the modified region 7 is formed inside the workpiece 1, the laser light L passes through the workpiece 1 and is near the condensing point P located inside the workpiece 1. Especially absorbed. Thereby, the modified region 7 is formed in the workpiece 1. In this case, since the energy density of the laser beam L is low on the surface 3 of the workpiece 1, the surface 3 of the workpiece 1 is not melted. On the other hand, when the modified region 7 is formed on the front surface 3 or the back surface of the workpiece 1, the laser light L is particularly absorbed in the vicinity of the condensing point P located on the front surface 3 or the back surface, and from the front surface 3 or the back surface. It is melted and removed to form removed portions such as holes and grooves.
 改質領域7は、密度、屈折率、機械的強度やその他の物理的特性が周囲とは異なる状態になった領域をいう。改質領域7としては、例えば、溶融処理領域(一旦溶融後再固化した領域、溶融状態中の領域及び溶融から再固化する状態中の領域のうち少なくとも何れか一つを意味する)、クラック領域、絶縁破壊領域、屈折率変化領域等があり、これらが混在した領域もある。更に、改質領域7としては、加工対象物1の材料において改質領域7の密度が非改質領域の密度と比較して変化した領域や、格子欠陥が形成された領域がある。加工対象物1の材料が単結晶シリコンである場合、改質領域7は、高転位密度領域ともいえる。 The modified region 7 is a region where the density, refractive index, mechanical strength and other physical characteristics are different from the surroundings. Examples of the modified region 7 include a melt treatment region (meaning at least one of a region once solidified after melting, a region in a molten state, and a region in a state of being resolidified from melting), a crack region, and the like. In addition, there are a dielectric breakdown region, a refractive index change region, etc., and there is a region where these are mixed. Further, the modified region 7 includes a region where the density of the modified region 7 in the material of the workpiece 1 is changed compared to the density of the non-modified region, and a region where lattice defects are formed. When the material of the workpiece 1 is single crystal silicon, the modified region 7 can be said to be a high dislocation density region.
 溶融処理領域、屈折率変化領域、改質領域7の密度が非改質領域の密度と比較して変化した領域、及び、格子欠陥が形成された領域は、更に、それら領域の内部や改質領域7と非改質領域との界面に亀裂(割れ、マイクロクラック)を内包している場合がある。内包される亀裂は、改質領域7の全面に渡る場合や一部分のみや複数部分に形成される場合がある。加工対象物1は、結晶構造を有する結晶材料からなる基板を含む。例えば加工対象物1は、窒化ガリウム(GaN)、シリコン(Si)、シリコンカーバイド(SiC)、LiTaO、及び、サファイア(Al)の少なくとも何れかで形成された基板を含む。換言すると、加工対象物1は、例えば、窒化ガリウム基板、シリコン基板、SiC基板、LiTaO基板、又はサファイア基板を含む。結晶材料は、異方性結晶及び等方性結晶の何れであってもよい。また、加工対象物1は、非結晶構造(非晶質構造)を有する非結晶材料からなる基板を含んでいてもよく、例えばガラス基板を含んでいてもよい。 The area where the density of the melt processing area, the refractive index changing area, the density of the modified area 7 is changed as compared with the density of the non-modified area, and the area where lattice defects are formed are further included in the interior of these areas or the modified areas In some cases, cracks (cracks, microcracks) are included in the interface between the region 7 and the non-modified region. The included crack may be formed over the entire surface of the modified region 7, or may be formed in only a part or a plurality of parts. The workpiece 1 includes a substrate made of a crystal material having a crystal structure. For example, the workpiece 1 includes a substrate formed of at least one of gallium nitride (GaN), silicon (Si), silicon carbide (SiC), LiTaO 3 , and sapphire (Al 2 O 3 ). In other words, the workpiece 1 includes, for example, a gallium nitride substrate, a silicon substrate, a SiC substrate, a LiTaO 3 substrate, or a sapphire substrate. The crystal material may be either an anisotropic crystal or an isotropic crystal. Moreover, the workpiece 1 may include a substrate made of an amorphous material having an amorphous structure (amorphous structure), for example, a glass substrate.
 実施形態では、切断予定ライン5に沿って改質スポット(加工痕)を複数形成することにより、改質領域7を形成することができる。この場合、複数の改質スポットが集まることによって改質領域7となる。改質スポットについては、要求される切断精度、要求される切断面の平坦性、加工対象物1の厚さ、種類、結晶方位等を考慮して、その大きさや発生する亀裂の長さを適宜制御することができる。また、実施形態では、切断予定ライン5に沿って、改質スポットを改質領域7として形成することができる。 In the embodiment, the modified region 7 can be formed by forming a plurality of modified spots (processing marks) along the planned cutting line 5. In this case, the modified region 7 is formed by collecting a plurality of modified spots. For the modified spot, the size and length of cracks to be generated are appropriately determined in consideration of the required cutting accuracy, required flatness of the cut surface, thickness, type, crystal orientation, etc. of the workpiece 1. Can be controlled. In the embodiment, the modified spot can be formed as the modified region 7 along the planned cutting line 5.
 次に、実施形態に係るレーザ加工装置及びレーザ加工方法について説明する。以下では、加工対象物1の裏面21をレーザ光入射面とする場合を例示する。加工対象物1の厚さ方向をZ方向として説明する。 Next, a laser processing apparatus and a laser processing method according to the embodiment will be described. Below, the case where the back surface 21 of the workpiece 1 is a laser light incident surface is illustrated. The description will be made assuming that the thickness direction of the workpiece 1 is the Z direction.
 図7に示されるように、レーザ加工装置300は、レーザ光源202、反射型空間光変調器203、4f光学系241及び集光光学系204を、筐体231内に備えている。レーザ加工装置300は、加工対象物1にレーザ光Lを集光することにより、切断予定ライン5に沿って加工対象物1に改質領域7を形成する。 As shown in FIG. 7, the laser processing apparatus 300 includes a laser light source 202, a reflective spatial light modulator 203, a 4f optical system 241 and a condensing optical system 204 in a housing 231. The laser processing apparatus 300 focuses the laser beam L on the workpiece 1 to form the modified region 7 on the workpiece 1 along the planned cutting line 5.
 レーザ光源202は、レーザ光Lを出射するものである。レーザ光源202は、1μs以下のパルス幅を有するレーザ光であるパルスレーザ光をレーザ光Lとして出射する。レーザ光源202は、レーザ発振器として超短パルスレーザ光源を含む。レーザ発振器としては、例えば固体レーザ、ファイバレーザ又は外部変調素子等で構成できる。レーザ光源202は、レーザ光Lの出力を調整する出力調整部を含んでいる。出力調整部としては、λ/2波長板ユニット及び偏光板ユニット等で構成できる。また、レーザ光源202は、レーザ光Lの径を調整しつつ平行化するビームエキスパンダを含んでいる。 The laser light source 202 emits laser light L. The laser light source 202 emits pulsed laser light, which is laser light having a pulse width of 1 μs or less, as laser light L. The laser light source 202 includes an ultrashort pulse laser light source as a laser oscillator. As the laser oscillator, for example, a solid laser, a fiber laser, an external modulation element, or the like can be used. The laser light source 202 includes an output adjusting unit that adjusts the output of the laser light L. The output adjustment unit can be composed of a λ / 2 wavelength plate unit, a polarizing plate unit, and the like. Further, the laser light source 202 includes a beam expander that parallelizes the laser light L while adjusting the diameter thereof.
 レーザ光源202から出射されるレーザ光Lの波長は、500~550nm、1000~1150nm又は1300~1400nmのいずれかの波長帯に含まれる。ここでのレーザ光Lの波長は、1064nmである。このようなレーザ光源202は、水平方向にレーザ光Lを出射するように、筐体231の天板236にねじ等で固定されている。 The wavelength of the laser light L emitted from the laser light source 202 is included in any wavelength band of 500 to 550 nm, 1000 to 1150 nm, or 1300 to 1400 nm. The wavelength of the laser beam L here is 1064 nm. Such a laser light source 202 is fixed to the top plate 236 of the housing 231 with screws or the like so as to emit the laser light L in the horizontal direction.
 反射型空間光変調器203は、レーザ光源202から出射されたレーザ光Lを変調するものである。反射型空間光変調器203は、例えば反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)である。反射型空間光変調器203は、水平方向から入射するレーザ光Lを変調すると共に、水平方向に対し斜め上方に反射する。 The reflective spatial light modulator 203 modulates the laser light L emitted from the laser light source 202. The reflective spatial light modulator 203 is, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator). The reflective spatial light modulator 203 modulates the laser beam L incident from the horizontal direction and reflects the laser beam L obliquely upward with respect to the horizontal direction.
 図8に示されるように、反射型空間光変調器203は、シリコン基板213、駆動回路層914、複数の画素電極214、誘電体多層膜ミラー等の反射膜215、配向膜999a、液晶層216、配向膜999b、透明導電膜217、及びガラス基板等の透明基板218がこの順に積層されることで構成されている。透明基板218は、所定平面に沿った表面218aを有している。透明基板218の表面218aは、反射型空間光変調器203の表面を構成する。透明基板218は、例えばガラス等の光透過性材料からなる。透明基板218は、反射型空間光変調器203の表面218aから入射した所定波長のレーザ光Lを、反射型空間光変調器203の内部へ透過する。透明導電膜217は、透明基板218の裏面上に形成されている。透明導電膜217は、レーザ光Lを透過する導電性材料(例えばITO)からなる。 As shown in FIG. 8, the reflective spatial light modulator 203 includes a silicon substrate 213, a drive circuit layer 914, a plurality of pixel electrodes 214, a reflective film 215 such as a dielectric multilayer mirror, an alignment film 999a, and a liquid crystal layer 216. , An alignment film 999b, a transparent conductive film 217, and a transparent substrate 218 such as a glass substrate are stacked in this order. The transparent substrate 218 has a surface 218a along a predetermined plane. The surface 218 a of the transparent substrate 218 constitutes the surface of the reflective spatial light modulator 203. The transparent substrate 218 is made of a light transmissive material such as glass, for example. The transparent substrate 218 transmits the laser light L having a predetermined wavelength incident from the surface 218 a of the reflective spatial light modulator 203 into the reflective spatial light modulator 203. The transparent conductive film 217 is formed on the back surface of the transparent substrate 218. The transparent conductive film 217 is made of a conductive material (for example, ITO) that transmits the laser light L.
 複数の画素電極214は、透明導電膜217に沿ってシリコン基板213上にマトリックス状に配列されている。複数の画素電極214は、例えばアルミニウム等の金属材料で形成されている。複数の画素電極214の表面214aは、平坦且つ滑らかに加工されている。複数の画素電極214は、駆動回路層914に設けられたアクティブ・マトリクス回路によって駆動される。 The plurality of pixel electrodes 214 are arranged in a matrix on the silicon substrate 213 along the transparent conductive film 217. The plurality of pixel electrodes 214 are formed of a metal material such as aluminum, for example. The surfaces 214a of the plurality of pixel electrodes 214 are processed flat and smoothly. The plurality of pixel electrodes 214 are driven by an active matrix circuit provided in the drive circuit layer 914.
 アクティブ・マトリクス回路は、複数の画素電極214とシリコン基板213との間に設けられている。アクティブ・マトリクス回路は、反射型空間光変調器203から出力しようとする光像に応じて各画素電極214への印加電圧を制御する。例えばアクティブ・マトリクス回路は、表面218aに沿う一方向に並んだ各画素列の印加電圧を制御する第1ドライバ回路と、当該一方向に直交し且つ表面218aに沿う他方向に並んだ各画素列の印加電圧を制御する第2ドライバ回路と、を有している。このようなアクティブ・マトリクス回路は、制御部250(図7参照)によって双方のドライバ回路で指定された画素の画素電極214に所定電圧が印加されるように構成されている。 The active matrix circuit is provided between the plurality of pixel electrodes 214 and the silicon substrate 213. The active matrix circuit controls the voltage applied to each pixel electrode 214 in accordance with the light image to be output from the reflective spatial light modulator 203. For example, the active matrix circuit includes a first driver circuit that controls an applied voltage of each pixel column aligned in one direction along the surface 218a, and each pixel column orthogonal to the one direction and aligned in the other direction along the surface 218a. And a second driver circuit for controlling the applied voltage. Such an active matrix circuit is configured such that a predetermined voltage is applied to the pixel electrode 214 of the pixel specified by both driver circuits by the control unit 250 (see FIG. 7).
 配向膜999a,999bは、液晶層216の両端面に配置されており、液晶分子群を一定方向に配列させる。配向膜999a,999bは、例えばポリイミド等の高分子材料で形成されている。配向膜999a,999bにおける液晶層216との接触面には、ラビング処理等が施されている。 The alignment films 999a and 999b are disposed on both end faces of the liquid crystal layer 216, and align liquid crystal molecule groups in a certain direction. The alignment films 999a and 999b are formed of a polymer material such as polyimide, for example. The contact surfaces of the alignment films 999a and 999b with the liquid crystal layer 216 are rubbed.
 液晶層216は、複数の画素電極214と透明導電膜217との間に配置されている。液晶層216は、各画素電極214と透明導電膜217とにより形成される電界に応じてレーザ光Lを変調する。すなわち、駆動回路層914のアクティブ・マトリクス回路によって各画素電極214に電圧が印加されると、透明導電膜217と各画素電極214との間に電界が形成され、液晶層216に形成された電界の大きさに応じて液晶分子216aの配列方向が変化する。そして、レーザ光Lが透明基板218及び透明導電膜217を透過して液晶層216に入射すると、このレーザ光Lは、液晶層216を通過する間に液晶分子216aによって変調され、反射膜215において反射した後、再び液晶層216により変調されて出射する。 The liquid crystal layer 216 is disposed between the plurality of pixel electrodes 214 and the transparent conductive film 217. The liquid crystal layer 216 modulates the laser light L in accordance with the electric field formed by each pixel electrode 214 and the transparent conductive film 217. That is, when a voltage is applied to each pixel electrode 214 by the active matrix circuit of the drive circuit layer 914, an electric field is formed between the transparent conductive film 217 and each pixel electrode 214, and the electric field formed in the liquid crystal layer 216. The alignment direction of the liquid crystal molecules 216a changes depending on the size of the liquid crystal molecules. When the laser light L passes through the transparent substrate 218 and the transparent conductive film 217 and enters the liquid crystal layer 216, the laser light L is modulated by the liquid crystal molecules 216 a while passing through the liquid crystal layer 216, and is reflected on the reflective film 215. After reflection, the light is again modulated by the liquid crystal layer 216 and emitted.
 このとき、制御部250(図7参照)によって各画素電極214に印加される電圧が制御され、その電圧に応じて、液晶層216において透明導電膜217と各画素電極214とに挟まれた部分の屈折率が変化する(各画素に対応した位置の液晶層216の屈折率が変化する)。この屈折率の変化により、印加した電圧に応じて、レーザ光Lの位相を液晶層216の画素ごとに変化させることができる。つまり、ホログラムパターンに応じた位相変調を画素ごとに液晶層216によって付与することができる。変調パターンに入射し透過するレーザ光Lは、その波面が調整され、レーザ光Lを構成する各光線において進行方向に直交する方向の成分の位相にずれが生じる。したがって、反射型空間光変調器203に表示させる変調パターンを適宜設定することにより、レーザ光Lが変調(例えば、レーザ光Lの強度、振幅、位相、偏光等が変調)可能となる。 At this time, the voltage applied to each pixel electrode 214 is controlled by the control unit 250 (see FIG. 7), and a portion sandwiched between the transparent conductive film 217 and each pixel electrode 214 in the liquid crystal layer 216 according to the voltage. The refractive index of the liquid crystal layer 216 at the position corresponding to each pixel changes. With this change in refractive index, the phase of the laser light L can be changed for each pixel of the liquid crystal layer 216 in accordance with the applied voltage. That is, phase modulation corresponding to the hologram pattern can be applied to each pixel by the liquid crystal layer 216. The wavefront of the laser light L that enters and passes through the modulation pattern is adjusted, and the phase of the component in the direction orthogonal to the traveling direction is shifted in each light beam constituting the laser light L. Therefore, by appropriately setting the modulation pattern to be displayed on the reflective spatial light modulator 203, the laser light L can be modulated (for example, the intensity, amplitude, phase, polarization, etc. of the laser light L can be modulated).
 図7に戻り、4f光学系241は、反射型空間光変調器203によって変調されたレーザ光Lの波面形状を調整する調整光学系である。4f光学系241は、第1レンズ241a及び第2レンズ241bを有している。第1レンズ241a及び第2レンズ241bは、反射型空間光変調器203と第1レンズ241aとの間の光路の距離が第1レンズ241aの第1焦点距離f1となり、集光光学系204と第2レンズ241bとの間の光路の距離が第2レンズ241bの第2焦点距離f2となり、第1レンズ241aと第2レンズ241bとの間の光路の距離が第1焦点距離f1と第2焦点距離f2との和(すなわち、f1+f2)となり、第1レンズ241a及び第2レンズ241bが両側テレセントリック光学系となるように、反射型空間光変調器203と集光光学系204との間の光路上に配置されている。4f光学系241によれば、反射型空間光変調器203で変調されたレーザ光Lが空間伝播により波面形状が変化し収差が増大するのを抑制することができる。 Returning to FIG. 7, the 4f optical system 241 is an adjustment optical system that adjusts the wavefront shape of the laser light L modulated by the reflective spatial light modulator 203. The 4f optical system 241 includes a first lens 241a and a second lens 241b. In the first lens 241a and the second lens 241b, the distance of the optical path between the reflective spatial light modulator 203 and the first lens 241a is the first focal length f1 of the first lens 241a. The distance of the optical path between the second lens 241b is the second focal distance f2 of the second lens 241b, and the distance of the optical path between the first lens 241a and the second lens 241b is the first focal distance f1 and the second focal distance. on the optical path between the reflective spatial light modulator 203 and the condensing optical system 204 so that the first lens 241a and the second lens 241b are both-side telecentric optical systems. Has been placed. According to the 4f optical system 241, the laser beam L modulated by the reflective spatial light modulator 203 can be suppressed from changing its wavefront shape due to spatial propagation and increasing aberration.
 集光光学系204は、レーザ光源202により出射されて反射型空間光変調器203により変調されたレーザ光Lと、後述のAFユニット212により出射された測定用光LB1と、を加工対象物1に集光する。集光光学系204は、圧電素子等を含んで構成された駆動ユニット232を介して筐体231の底板233に設置されている。集光光学系204は、集光用レンズであり、複数のレンズを含んで構成されている。 The condensing optical system 204 includes a laser beam L emitted from the laser light source 202 and modulated by the reflective spatial light modulator 203, and a measurement beam LB1 emitted from an AF unit 212 described later. Condensed to The condensing optical system 204 is installed on the bottom plate 233 of the housing 231 via a drive unit 232 configured to include a piezoelectric element and the like. The condensing optical system 204 is a condensing lens, and includes a plurality of lenses.
 以上のように構成されたレーザ加工装置300では、レーザ光源202から出射されたレーザ光Lは、筐体231内にて水平方向に進行した後、ミラー205aによって下方に反射され、アッテネータ207によって光強度が調整される。その後、レーザ光Lは、ミラー205bによって水平方向に反射され、ビームホモジナイザ260によってレーザ光Lの強度分布が均一化されて反射型空間光変調器203に入射する。 In the laser processing apparatus 300 configured as described above, the laser light L emitted from the laser light source 202 travels in the horizontal direction in the housing 231, is then reflected downward by the mirror 205 a, and is reflected by the attenuator 207. Strength is adjusted. Thereafter, the laser light L is reflected in the horizontal direction by the mirror 205 b, the intensity distribution of the laser light L is made uniform by the beam homogenizer 260, and is incident on the reflective spatial light modulator 203.
 反射型空間光変調器203に入射したレーザ光Lは、液晶層216に表示された変調パターンを透過することにより当該変調パターンに応じて変調される。その後、レーザ光Lは、ミラー206aによって上方に反射され、λ/2波長板228によって偏光方向が変更され、ミラー206bによって水平方向に反射されて4f光学系241に入射する。 The laser light L incident on the reflective spatial light modulator 203 is modulated in accordance with the modulation pattern by transmitting the modulation pattern displayed on the liquid crystal layer 216. Thereafter, the laser light L is reflected upward by the mirror 206a, the polarization direction is changed by the λ / 2 wave plate 228, reflected by the mirror 206b in the horizontal direction, and enters the 4f optical system 241.
 4f光学系241に入射したレーザ光Lは、平行光で集光光学系204に入射するよう波面形状が調整される。具体的には、レーザ光Lは、第1レンズ241aを透過し収束され、ミラー219によって下方へ反射され、集光点Oを経て発散すると共に、第2レンズ241bを透過し、平行光となるように再び収束される。そして、レーザ光Lは、ダイクロイックミラー210,238を順次透過して集光光学系204に入射し、ステージ111上に載置された加工対象物1内に集光光学系204によって集光される。 The wavefront shape of the laser light L incident on the 4f optical system 241 is adjusted so as to be incident on the condensing optical system 204 as parallel light. Specifically, the laser light L is transmitted and converged through the first lens 241a, reflected downward by the mirror 219, diverges through the condensing point O, and transmits through the second lens 241b to become parallel light. So that it converges again. Then, the laser light L sequentially passes through the dichroic mirrors 210 and 238 and enters the condensing optical system 204, and is condensed by the condensing optical system 204 in the workpiece 1 placed on the stage 111. .
 また、レーザ加工装置300は、加工対象物1のレーザ光入射面を観察するための表面観察ユニット211と、集光光学系204と加工対象物1との距離を微調整するためのAF(AutoFocus)ユニット212と、を筐体231内に備えている。 The laser processing apparatus 300 also includes a surface observation unit 211 for observing the laser light incident surface of the workpiece 1 and an AF (AutoFocus) for finely adjusting the distance between the condensing optical system 204 and the workpiece 1. ) Unit 212 and housing 231.
 表面観察ユニット211は、可視光VL1を出射する観察用光源211aと、加工対象物1のレーザ光入射面で反射された可視光VL1の反射光VL2を受光して検出する検出器211bと、を有している。表面観察ユニット211では、観察用光源211aから出射された可視光VL1が、ミラー208、ハーフミラー209及びダイクロイックミラー210,238で反射・透過され、集光光学系204で加工対象物1に向けて集光される。加工対象物1のレーザ光入射面で反射された反射光VL2が、集光光学系204で集光されてダイクロイックミラー238,210で透過・反射された後、ハーフミラー209を透過して検出器211bにて受光される。 The surface observation unit 211 includes an observation light source 211a that emits visible light VL1, and a detector 211b that receives and detects the reflected light VL2 of the visible light VL1 reflected by the laser light incident surface of the workpiece 1. Have. In the surface observation unit 211, the visible light VL1 emitted from the observation light source 211a is reflected and transmitted by the mirror 208, the half mirror 209, and the dichroic mirrors 210 and 238, and directed toward the workpiece 1 by the condensing optical system 204. Focused. The reflected light VL2 reflected by the laser light incident surface of the workpiece 1 is condensed by the condensing optical system 204, transmitted and reflected by the dichroic mirrors 238 and 210, and then transmitted through the half mirror 209 to be detected. Light is received at 211b.
 AFユニット212は、測定用光LB1を出射し、レーザ光入射面で反射された測定用光LB1の反射光LB2を受光し検出することで、切断予定ライン5に沿ったレーザ光入射面の変位データである誤差信号(変位に関する信号)を取得する。AFユニット212は、改質領域7を形成する際、取得した誤差信号を制御部250に出力する。制御部250は、当該誤差信号に基づいて駆動ユニット232を駆動させ、レーザ光入射面のうねりに沿うように集光光学系204をその光軸方向に往復移動させる。AFユニット212の構成及び動作について、詳しくは後述する。 The AF unit 212 emits the measurement light LB1 and receives and detects the reflected light LB2 of the measurement light LB1 reflected by the laser light incident surface, whereby the displacement of the laser light incident surface along the scheduled cutting line 5 is detected. An error signal (signal related to displacement) that is data is acquired. The AF unit 212 outputs the acquired error signal to the control unit 250 when forming the modified region 7. The control unit 250 drives the drive unit 232 based on the error signal, and reciprocates the condensing optical system 204 in the optical axis direction so as to follow the undulation of the laser light incident surface. The configuration and operation of the AF unit 212 will be described later in detail.
 レーザ加工装置300は、当該レーザ加工装置300の各部の動作を制御する制御部250を備えている。制御部250は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等によって構成されている。 The laser processing apparatus 300 includes a control unit 250 that controls the operation of each unit of the laser processing apparatus 300. The control unit 250 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
 制御部250は、レーザ光源202の動作を制御し、レーザ光源202からレーザ光Lを出射させる。制御部250は、レーザ光源202の動作を制御し、レーザ光源202から出射されるレーザ光Lの出力やパルス幅等を調節する。制御部250は、改質領域7を形成する際、レーザ光Lの集光点Pが加工対象物1の表面3又は裏面21から所定距離に位置し且つレーザ光Lの集光点Pが切断予定ライン5に沿って相対的に移動するように、筐体231、ステージ111の位置、及び駆動ユニット232の駆動の少なくとも1つを制御する。制御部250は、上記レーザ光源制御部102及び上記ステージ制御部115の機能を有する。 The controller 250 controls the operation of the laser light source 202 and emits the laser light L from the laser light source 202. The controller 250 controls the operation of the laser light source 202 and adjusts the output, pulse width, and the like of the laser light L emitted from the laser light source 202. When the control unit 250 forms the modified region 7, the condensing point P of the laser light L is located at a predetermined distance from the front surface 3 or the back surface 21 of the workpiece 1 and the condensing point P of the laser light L is cut. At least one of the housing 231, the position of the stage 111, and the drive of the drive unit 232 is controlled so as to move relatively along the scheduled line 5. The control unit 250 has functions of the laser light source control unit 102 and the stage control unit 115.
 制御部250は、改質領域7を形成する際、反射型空間光変調器203における各画素電極214に所定電圧を印加し、液晶層216に所定の変調パターンを表示させる。これにより、制御部250は、レーザ光Lを反射型空間光変調器203で所望に変調させる。液晶層216に表示される変調パターンは、例えば、改質領域7を形成しようとする位置、照射するレーザ光Lの波長、加工対象物1の材料、及び集光光学系204や加工対象物1の屈折率等に基づいて予め導出され、制御部250に記憶されている。変調パターンは、レーザ加工装置300に生じる個体差(例えば、液晶層216に生じる歪)を補正するための個体差補正パターン、球面収差を補正するための球面収差補正パターン等を含んでいる。 When forming the modified region 7, the control unit 250 applies a predetermined voltage to each pixel electrode 214 in the reflective spatial light modulator 203 and causes the liquid crystal layer 216 to display a predetermined modulation pattern. Thereby, the control unit 250 modulates the laser light L as desired by the reflective spatial light modulator 203. The modulation pattern displayed on the liquid crystal layer 216 includes, for example, the position where the modified region 7 is to be formed, the wavelength of the laser beam L to be irradiated, the material of the workpiece 1, and the condensing optical system 204 or the workpiece 1. Is derived in advance based on the refractive index and the like and stored in the control unit 250. The modulation pattern includes an individual difference correction pattern for correcting individual differences generated in the laser processing apparatus 300 (for example, distortion generated in the liquid crystal layer 216), a spherical aberration correction pattern for correcting spherical aberration, and the like.
 次に、AFユニット212の構成について具体的に説明する。 Next, the configuration of the AF unit 212 will be specifically described.
 図9に示されるように、AFユニット212は、測定用光源30、変位検出部50、結像状態調整部70を備える。測定用光源30は、測定用光LB1を出射する。測定用光源30は、互いに異なる波長を有する複数の光の何れかを出射可能である。測定用光源30は、複数のSLD(Super Luminescent Diode)光源31,32を有する。測定用光源30では、制御部250により、複数のSLD光源31,32の中から、加工対象物1に対する反射率が高い波長の光を出射する一方が選択される。測定用光源30は、選択されたSLD光源31,32の一方から、加工対象物1に対する反射率が高い波長の光を測定用光LB1として出射する。SLD光源31は、例えば650nmの波長の光を出射する。SLD光源32は、例えば830nmの波長の光を出射する。 As shown in FIG. 9, the AF unit 212 includes a measurement light source 30, a displacement detection unit 50, and an imaging state adjustment unit 70. The measurement light source 30 emits measurement light LB1. The measurement light source 30 can emit any of a plurality of lights having different wavelengths. The measurement light source 30 includes a plurality of SLD (Super Luminescent Diode) light sources 31 and 32. In the measurement light source 30, the control unit 250 selects one of the plurality of SLD light sources 31 and 32 that emits light having a wavelength with high reflectivity with respect to the workpiece 1. The measurement light source 30 emits light having a wavelength with high reflectivity with respect to the workpiece 1 as measurement light LB1 from one of the selected SLD light sources 31 and 32. The SLD light source 31 emits light having a wavelength of 650 nm, for example. The SLD light source 32 emits light having a wavelength of, for example, 830 nm.
 測定用光源30としては、SLD光源31,32に限定されず、例えばLED(Light Emitting Diode)光源を有していてもよいし、LD(Laser Diode)光源を有していてもよい。測定用光LB1の波長は、レーザ光入射面である裏面21でゼロより大きい反射率を有していればよい。測定用光源30は、複数波長の光を出射可能でなくともよく、例えばSLD光源31,32の何れか1つのみを有し、1波長の光のみを出射可能であってもよい。 The measurement light source 30 is not limited to the SLD light sources 31 and 32, and may include, for example, an LED (Light Emitting Diode) light source or an LD (Laser Diode) light source. The wavelength of the measurement light LB1 only needs to have a reflectance greater than zero on the back surface 21 that is the laser light incident surface. The measurement light source 30 does not have to be capable of emitting light of a plurality of wavelengths. For example, the measurement light source 30 may include only one of the SLD light sources 31 and 32 and may emit only light of one wavelength.
 測定用光源30は、複数波長のレーザ光の合成に使用するWDM(Wavelength Division Multiplexing)33とシングルモードの光ファイバ34とを介して、出射した測定用光LB1を調整光学系60へ伝送する。なお、測定用光源30が1波長の測定用光LB1のみを出射する場合には、WDM33は不要である。光ファイバ34に代えて、空間光伝送デバイスを用いてもよい。調整光学系60は、複数種のレンズを有しており、測定用光LB1が適切なビーム径となるように調整する。 The measurement light source 30 transmits the emitted measurement light LB1 to the adjustment optical system 60 via a WDM (Wavelength Division Multiplexing) 33 and a single-mode optical fiber 34 used for the synthesis of laser beams having a plurality of wavelengths. Note that the WDM 33 is not required when the measurement light source 30 emits only one wavelength of the measurement light LB1. Instead of the optical fiber 34, a spatial light transmission device may be used. The adjustment optical system 60 includes a plurality of types of lenses and adjusts the measurement light LB1 so as to have an appropriate beam diameter.
 変位検出部50は、加工対象物1のレーザ光入射面である裏面21で反射された測定用光LB1の反射光LB2に基づいて、裏面21の変位を検出する。変位検出部50は、第1分岐部51、第2分岐部(分岐部)52、第1及び第2非点収差付加部(非点収差付加部)53,54、第1及び第2ビーム形状検出部(ビーム形状検出部)55,56、並びに誤差信号生成部57を有する。 The displacement detector 50 detects the displacement of the back surface 21 based on the reflected light LB2 of the measurement light LB1 reflected by the back surface 21 that is the laser light incident surface of the workpiece 1. The displacement detection unit 50 includes a first branching unit 51, a second branching unit (branching unit) 52, first and second astigmatism adding units (astigmatism adding units) 53 and 54, and first and second beam shapes. Detection units (beam shape detection units) 55 and 56 and an error signal generation unit 57 are included.
 第1分岐部51は、測定用光LB1と反射光LB2とを分岐するビームスプリッタである。第1分岐部51は、測定用光LB1及び反射光LB2の光路を、測定用光LB1の光路と反射光LB2の光路とに分ける。第1分岐部51は、測定用光LB1を透過させる一方で、反射光LB2を反射する。第1分岐部51は、測定用光LB1及び反射光LB2の光路において、結像状態調整部70と調整光学系60との間に設けられている。 The first branching unit 51 is a beam splitter that branches the measurement light LB1 and the reflected light LB2. The first branching unit 51 divides the optical paths of the measurement light LB1 and the reflected light LB2 into an optical path of the measurement light LB1 and an optical path of the reflected light LB2. The first branch unit 51 transmits the measurement light LB1 and reflects the reflected light LB2. The first branching unit 51 is provided between the imaging state adjusting unit 70 and the adjusting optical system 60 in the optical paths of the measurement light LB1 and the reflected light LB2.
 第2分岐部52は、第1分岐部51で分岐した反射光LB2を、第1分岐反射光LS1と第2分岐反射光LS2とに分岐するビームスプリッタである。第2分岐部52は、反射光LB2の光路OPを、第1分岐反射光LS1の光路である第1分岐光路OP1と第2分岐反射光LS2の光路である第2分岐光路OP2とに分ける。第2分岐部52は、第2分岐反射光LS2を透過させる一方で、第1分岐反射光LS1を反射する。第2分岐部52は、反射光LB2の光路OPにおいて第1分岐部51の下流に設けられている。 The second branching unit 52 is a beam splitter that branches the reflected light LB2 branched by the first branching unit 51 into the first branched reflected light LS1 and the second branched reflected light LS2. The second branching unit 52 divides the optical path OP of the reflected light LB2 into a first branched optical path OP1 that is an optical path of the first branched reflected light LS1 and a second branched optical path OP2 that is an optical path of the second branched reflected light LS2. The second branch portion 52 transmits the second branch reflected light LS2, while reflecting the first branch reflected light LS1. The second branch portion 52 is provided downstream of the first branch portion 51 in the optical path OP of the reflected light LB2.
 第1非点収差付加部53は、第1分岐光路OP1において第2分岐部52の下流に設けられている。第1非点収差付加部53は、第2非点収差付加部54が付加する非点収差量よりも小さい第1非点収差量を、第1分岐反射光LS1に付加する。非点収差量は、非点収差の大きさを表す尺度であり、ここでは、次のように定義される。測定用光LB1と同一波長の平行ビームが非点収差付加部に入射したとき、非点収差付加部より出射したビームの光軸に垂直な面に投影したビーム幅の短軸が最小となる点が存在し、光軸に垂直な面上でその短軸の方向を非点収差付加部の特性軸とする。非点収差付加部の特性軸方向に対する焦点距離をfL1とし、特性軸に垂直な方向に対する焦点距離をfL2としたとき、fL2/fL1を非点収差量とする。第1非点収差付加部53は、凸レンズ53aとシリンドリカルレンズ53bとの組合わせにより構成されている。例えば凸レンズ53aの焦点距離は40mmであり、シリンドリカルレンズ53bの焦点距離は100mmである。 The first astigmatism adding unit 53 is provided downstream of the second branching unit 52 in the first branching optical path OP1. The first astigmatism adding unit 53 adds a first astigmatism amount smaller than the astigmatism amount added by the second astigmatism adding unit 54 to the first branched reflected light LS1. The amount of astigmatism is a measure representing the magnitude of astigmatism, and is defined here as follows. When a parallel beam having the same wavelength as the measurement light LB1 is incident on the astigmatism adding portion, the short axis of the beam width projected onto the plane perpendicular to the optical axis of the beam emitted from the astigmatism adding portion is minimized. The short axis direction on the plane perpendicular to the optical axis is the characteristic axis of the astigmatism adding portion. When the focal length in the characteristic axis direction of the astigmatism adding unit is fL1, and the focal length in the direction perpendicular to the characteristic axis is fL2, fL2 / fL1 is the amount of astigmatism. The first astigmatism adding unit 53 is configured by a combination of a convex lens 53a and a cylindrical lens 53b. For example, the focal length of the convex lens 53a is 40 mm, and the focal length of the cylindrical lens 53b is 100 mm.
 第2非点収差付加部54は、第2分岐光路OP2において第2分岐部52の下流にミラー58を介して設けられている。第2非点収差付加部54は、第1非点収差量とは異なる非点収差量を第2分岐反射光LS2に付加する。第2非点収差付加部54は、第1非点収差量よりも大きい第2非点収差量を第2分岐反射光LS2に付加する。第2非点収差付加部54は、凸レンズ54aとシリンドリカルレンズ54bとの組合わせにより構成されている。例えば、凸レンズ53aの焦点距離は75mmであり、シリンドリカルレンズ53bの焦点距離は75mmである。 The second astigmatism adding unit 54 is provided via the mirror 58 downstream of the second branching unit 52 in the second branching optical path OP2. The second astigmatism adding unit 54 adds an astigmatism amount different from the first astigmatism amount to the second branched reflected light LS2. The second astigmatism adding unit 54 adds a second astigmatism amount larger than the first astigmatism amount to the second branched reflected light LS2. The second astigmatism adding unit 54 is configured by a combination of a convex lens 54a and a cylindrical lens 54b. For example, the focal length of the convex lens 53a is 75 mm, and the focal length of the cylindrical lens 53b is 75 mm.
 第1ビーム形状検出部55は、第1分岐光路OP1に設けられている。第1ビーム形状検出部55は、第1非点収差量が付加された第1分岐反射光LS1をフィルタ59aを介して受光し、当該第1分岐反射光LS1のビーム形状を検出する。第2ビーム形状検出部56は、第2分岐光路OP2に設けられている。第2ビーム形状検出部56は、第2非点収差量が付加された第2分岐反射光LS2をフィルタ59bを介して受光し、当該第2分岐反射光LS2のビーム形状を検出する。 The first beam shape detection unit 55 is provided in the first branch optical path OP1. The first beam shape detection unit 55 receives the first branched reflected light LS1 to which the first astigmatism amount is added via the filter 59a, and detects the beam shape of the first branched reflected light LS1. The second beam shape detection unit 56 is provided in the second branch optical path OP2. The second beam shape detection unit 56 receives the second branched reflected light LS2 to which the second astigmatism amount is added via the filter 59b, and detects the beam shape of the second branched reflected light LS2.
 フィルタ59aは、第1分岐反射光LS1におけるレーザ光Lの波長の光を減衰する。フィルタ59aは、レーザ光Lの波長の光が第1ビーム形状検出部55に入射することを防止する。フィルタ59bは、第2分岐反射光LS2におけるレーザ光Lの波長の光を減衰する。フィルタ59bは、レーザ光Lの波長の光が第2ビーム形状検出部56に入射することを防止する。 The filter 59a attenuates the light having the wavelength of the laser light L in the first branch reflected light LS1. The filter 59 a prevents light having the wavelength of the laser light L from entering the first beam shape detection unit 55. The filter 59b attenuates the light having the wavelength of the laser light L in the second branched reflected light LS2. The filter 59 b prevents light having the wavelength of the laser light L from entering the second beam shape detection unit 56.
 第1ビーム形状検出部55及び第2ビーム形状検出部56としては、4象限検知器を用いることができる。第1ビーム形状検出部55及び第2ビーム形状検出部56は、その検出結果を誤差信号生成部57へ出力する。具体的には、第1ビーム形状検出部55及び第2ビーム形状検出部56のそれぞれは、その受光面に形成されたビーム形状を分割して受光し、その各光量に応じた出力値(電圧値)を誤差信号生成部57へ出力する。なお、第1ビーム形状検出部55としては、ビーム形状を検出できれば特に限定されず、例えば2次元PD(Photo Diode)アレイであってもよい。 As the first beam shape detector 55 and the second beam shape detector 56, a four-quadrant detector can be used. The first beam shape detection unit 55 and the second beam shape detection unit 56 output the detection results to the error signal generation unit 57. Specifically, each of the first beam shape detection unit 55 and the second beam shape detection unit 56 divides and receives the beam shape formed on the light receiving surface, and outputs an output value (voltage) corresponding to each light amount. Value) to the error signal generator 57. The first beam shape detection unit 55 is not particularly limited as long as the beam shape can be detected. For example, a two-dimensional PD (Photo Diode) array may be used.
 誤差信号生成部57は、第1ビーム形状検出部55及び第2ビーム形状検出部56からの出力を受け取り、誤差信号を生成する。具体的には、誤差信号生成部57は、制御部250により選択された第1及び第2分岐光路OP1,OP2の一方に設けられた第1及び第2ビーム形状検出部55,56の何れかの検出結果に基づいて、誤差信号を生成する。誤差信号生成部57は、制御部250により第1分岐光路OP1が選択された場合、第1ビーム形状検出部55の検出結果を用いて誤差信号を生成する。誤差信号生成部57は、制御部250により第2分岐光路OP2が選択された場合、第2ビーム形状検出部56の検出結果を用いて誤差信号を生成する。誤差信号生成部57は、生成した誤差信号を制御部250へ出力する。 The error signal generator 57 receives outputs from the first beam shape detector 55 and the second beam shape detector 56 and generates an error signal. Specifically, the error signal generation unit 57 is one of the first and second beam shape detection units 55 and 56 provided on one of the first and second branch optical paths OP1 and OP2 selected by the control unit 250. An error signal is generated based on the detection result. When the first branch optical path OP1 is selected by the control unit 250, the error signal generation unit 57 generates an error signal using the detection result of the first beam shape detection unit 55. The error signal generation unit 57 generates an error signal using the detection result of the second beam shape detection unit 56 when the control unit 250 selects the second branch optical path OP2. The error signal generator 57 outputs the generated error signal to the controller 250.
 ここで、誤差信号及びその取得原理について、以下に具体的に説明する。 Here, the error signal and its acquisition principle will be specifically described below.
 AFユニット212は、加工対象物1のレーザ光入射面である裏面21の変位(相対変位)をThrough the Lens方式を用いて、すなわち、レーザ光Lを集光する集光光学系204を通過する測定用光LB1を用いて計測する。また、AFユニット212は、非点収差を利用して裏面21の変位を計測する。AFユニット212は、集光光学系204と裏面21との相対変位の変化により光学系の距離が変化し、光学系を通過した際の測定用光LB1の反射光LB2の像点の位置が移動することを利用する。 The AF unit 212 passes the displacement (relative displacement) of the back surface 21 that is the laser light incident surface of the workpiece 1 using the Through the Lens method, that is, the condensing optical system 204 that condenses the laser light L. Measurement is performed using the measurement light LB1. The AF unit 212 measures the displacement of the back surface 21 using astigmatism. In the AF unit 212, the distance of the optical system changes due to a change in the relative displacement between the condensing optical system 204 and the back surface 21, and the position of the image point of the reflected light LB2 of the measurement light LB1 moves through the optical system. Take advantage of what you do.
 AFユニット212において、反射光LB2のビーム形状は、加工対象物1における後述の基準位置からの裏面21の変位により、4象限検知器等のビーム形状検出部55,56上で変化する。具体的には、裏面21で反射された反射光LB2は、当該裏面21の変位に応じて異なるビーム拡がり角を有し、そのビーム拡がり角に応じてビーム形状検出部55,56上で異なるビーム形状となる。例えば図10に示されるように、反射光LB2のビーム形状Hは、縦長楕円(図10(a)参照)と真円(図10(b)参照)と横長楕円(図10(c)参照)との間で変化する。AFユニット212では、このように変化するビーム形状を、ビーム形状検出部55,56において受光面S,S,S,Sに分割して検出する。そして、AFユニット212では、ビーム形状の検出結果に基づいて下式(1)の演算により誤差信号を生成する。
 誤差信号=[(I+I)-(I+I)]/[(I+I+I+I)]
                               …(1)
 但し、
  I:受光面Sにおける光量に基づいて出力された信号値、
  I:受光面Sにおける光量に基づいて出力された信号値、
  I:受光面Sにおける光量に基づいて出力された信号値、
  I:受光面Sにおける光量に基づいて出力された信号値。
In the AF unit 212, the beam shape of the reflected light LB2 changes on the beam shape detectors 55 and 56 such as a four-quadrant detector due to the displacement of the back surface 21 from a reference position described later on the workpiece 1. Specifically, the reflected light LB2 reflected by the back surface 21 has different beam divergence angles depending on the displacement of the back surface 21, and different beams on the beam shape detection units 55 and 56 according to the beam divergence angle. It becomes a shape. For example, as shown in FIG. 10, the beam shape H of the reflected light LB2 is a vertically long ellipse (see FIG. 10A), a perfect circle (see FIG. 10B), and a horizontally long ellipse (see FIG. 10C). And change between. In the AF unit 212, the beam shape changing in this manner is detected by being divided into light receiving surfaces S A , S B , S C , and S D in the beam shape detectors 55 and 56. Then, the AF unit 212 generates an error signal by the calculation of the following equation (1) based on the beam shape detection result.
Error signal = [(I A + I C ) − (I B + I D )] / [(I A + I B + I C + I D )]
... (1)
However,
I A : a signal value output based on the amount of light on the light receiving surface S A ,
I B: signal value outputted based on the amount of light at the light receiving surface S B,
I C : a signal value output based on the amount of light on the light receiving surface S C ,
ID : A signal value output based on the amount of light on the light receiving surface SD .
 図11は、誤差信号の一例を示すグラフである。図11に示されるグラフでは、横軸はレーザ光入射面の誤差信号がゼロになる位置からの変位を示し、縦軸は誤差信号の大きさを示している。変位が小さくなるほど(図中左側に行くほど)、レーザ光入射面が集光光学系204に近づく方向に位置する。変位が大きくなるほど(図中右側に行くほど)、レーザ光入射面が集光光学系204から遠ざかる方向に位置する。 FIG. 11 is a graph showing an example of the error signal. In the graph shown in FIG. 11, the horizontal axis indicates the displacement of the laser light incident surface from the position where the error signal becomes zero, and the vertical axis indicates the magnitude of the error signal. The smaller the displacement is (the closer to the left in the figure), the closer the laser light incident surface is to the condensing optical system 204. The larger the displacement is (the more it goes to the right side in the figure), the more the laser light incident surface is positioned away from the condensing optical system 204.
 図11に示されるように、誤差信号は、グラフ上でS字カーブ状に変化する。誤差信号がゼロになるときの変位は、ビーム形状がビーム形状検出部55,56上で真円になるときの変位である。誤差信号において利用可能な範囲は、ゼロ周辺の単調減少となる範囲(以下、この範囲を「測長レンジ」と称する)である。本実施形態の測長レンジは、加工対象物1の反りによるレーザ加工開始位置での裏面21の変位のばらつきから、実用性を考慮して、少なくとも±10μmである。本実施形態の測長レンジは、±20μm以上である。 As shown in FIG. 11, the error signal changes in an S-curve shape on the graph. The displacement when the error signal becomes zero is the displacement when the beam shape becomes a perfect circle on the beam shape detectors 55 and 56. The range that can be used in the error signal is a range that monotonously decreases around zero (hereinafter, this range is referred to as a “measurement range”). The length measurement range of the present embodiment is at least ± 10 μm in consideration of practicality from the variation in displacement of the back surface 21 at the laser processing start position due to warpage of the workpiece 1. The length measurement range of this embodiment is ± 20 μm or more.
 図9に戻り、結像状態調整部70は、測定用光LB1及び反射光LB2の結像状態を移動する。結像状態調整部70は、測定用光LB1及び反射光LB2の光路において第1分岐部51とダイクロイックミラー238との間に設けられている。結像状態調整部70は、凹レンズ71及び凸レンズ72を有する。結像状態調整部70は、制御部250からの指令に基づいて、凹レンズ71及び凸レンズ72間の距離を変化させ、当該結像状態を移動する。これにより、結像状態調整部70は、オフセット量を調整する。結像状態の移動は、当該光路上のあらゆる結像位置関係の集合を別の結像位置関係の集合へ写すこと(つまり、結像位置の移動)を含む。 Referring back to FIG. 9, the imaging state adjustment unit 70 moves the imaging state of the measurement light LB1 and the reflected light LB2. The imaging state adjusting unit 70 is provided between the first branching unit 51 and the dichroic mirror 238 in the optical paths of the measurement light LB1 and the reflected light LB2. The imaging state adjustment unit 70 includes a concave lens 71 and a convex lens 72. The imaging state adjustment unit 70 changes the distance between the concave lens 71 and the convex lens 72 based on a command from the control unit 250 and moves the imaging state. Thereby, the imaging state adjustment unit 70 adjusts the offset amount. The movement of the imaging state includes copying any set of imaging position relationships on the optical path to another imaging position relationship set (that is, moving the imaging position).
 基準位置とは、後述の基準位置出し時(ステップS5)に設定されたレーザ光入射面の深さ位置である。具体的には、基準位置は、裏面21を表面観察ユニット211で撮像し、投影されるレチクルのコントラストが最大になる状態のときの当該裏面21の位置である。 The reference position is the depth position of the laser light incident surface set at the time of reference position described later (step S5). Specifically, the reference position is the position of the back surface 21 when the back surface 21 is imaged by the front surface observation unit 211 and the contrast of the projected reticle is maximized.
 結像状態調整部70は、加工対象物1が最大で775μmの厚さを有するシリコン基板である場合、測定用光LB1及び反射光LB2の結像状態を移動することで、0μm~-180μmの範囲でオフセット量を可変する。 When the workpiece 1 is a silicon substrate having a maximum thickness of 775 μm, the imaging state adjusting unit 70 moves the imaging state of the measurement light LB1 and the reflected light LB2 to move from 0 μm to −180 μm. Vary the offset amount in the range.
 加工対象物1が厚さ775μmのシリコン基板であって加工対象物1内における裏面21から浅い位置に改質領域7を形成する場合、結像状態調整部70の収束パワーは弱くされ、オフセット量は0μmないし0μmに近い値とされ、集光光学系204と裏面21との間の距離は遠距離とされる。これに対して、加工対象物1が厚さ775μmのシリコン基板であって加工対象物1内における裏面21から深い位置に改質領域7を形成する場合、結像状態調整部70の収束パワーは強くされ、オフセット量は-180μmないし-180μmに近い値とされ、集光光学系204と表面3との間の距離は近距離とされる。 When the processing object 1 is a silicon substrate having a thickness of 775 μm and the modified region 7 is formed at a shallow position from the back surface 21 in the processing object 1, the convergence power of the imaging state adjustment unit 70 is weakened, and the offset amount Is a value close to 0 μm to 0 μm, and the distance between the condensing optical system 204 and the back surface 21 is a long distance. On the other hand, when the processing object 1 is a silicon substrate having a thickness of 775 μm and the modified region 7 is formed at a deep position from the back surface 21 in the processing object 1, the convergence power of the imaging state adjusting unit 70 is The offset is set to a value close to −180 μm to −180 μm, and the distance between the condensing optical system 204 and the surface 3 is set to a short distance.
 制御部250は、上位コントローラ等の上位システムからの指令に基づき、オフセット量を設定する。制御部250は、設定されたオフセット量となるように結像状態調整部70を制御する。具体的には、制御部250には、オフセット量毎に定められた凹レンズ71の位置に関するデータテーブルが、予め記憶されている。制御部250は、設定されたオフセット量になる凹レンズ71の位置をデータテーブルを参照して求め、求められた凹レンズ71の位置まで当該凹レンズ71を移動させる指令を結像状態調整部70へ出力する。 The control unit 250 sets an offset amount based on a command from a host system such as a host controller. The control unit 250 controls the imaging state adjustment unit 70 so that the set offset amount is obtained. Specifically, the control unit 250 stores in advance a data table relating to the position of the concave lens 71 determined for each offset amount. The control unit 250 obtains the position of the concave lens 71 having the set offset amount by referring to the data table, and outputs a command to move the concave lens 71 to the obtained position of the concave lens 71 to the imaging state adjustment unit 70. .
 制御部250は、第1分岐光路OP1及び第2分岐光路OP2のうち、結像状態調整部70で移動する結像状態に応じた一方を選択する。具体的には、制御部250は、第1分岐光路OP1及び第2分岐光路OP2の中から、結像状態調整部70で調整するオフセット量に応じた一方を選択する。より具体的には、制御部250は、設定されたオフセット量が第1範囲にある場合には、第1分岐反射光LS1の光路である第1分岐光路OP1を選択する。設定されたオフセット量が第2範囲にある場合には、第2分岐反射光LS2の光路である第2分岐光路OP2を選択する。第2範囲は、第1範囲よりも深い範囲である。第1範囲は、0μm以下で-40μmよりも大きい範囲である。第2範囲は、-40μm以下で-180μm以上の範囲である。制御部250は、第1分岐光路OP1及び第2分岐光路OP2の選択結果に係る指示を、誤差信号生成部57へ出力する。制御部250は、誤差信号生成部57で生成された誤差信号が目標値(ここでは、ゼロ)を維持するように、駆動ユニット232を動作させる。 The control unit 250 selects one of the first branching optical path OP1 and the second branching optical path OP2 according to the imaging state that is moved by the imaging state adjusting unit 70. Specifically, the control unit 250 selects one of the first branch optical path OP1 and the second branch optical path OP2 according to the offset amount adjusted by the imaging state adjustment unit 70. More specifically, when the set offset amount is in the first range, the control unit 250 selects the first branched optical path OP1 that is the optical path of the first branched reflected light LS1. When the set offset amount is in the second range, the second branch optical path OP2 that is the optical path of the second branch reflected light LS2 is selected. The second range is a range deeper than the first range. The first range is a range of 0 μm or less and greater than −40 μm. The second range is a range of −40 μm or less and −180 μm or more. The control unit 250 outputs an instruction related to the selection result of the first branch optical path OP1 and the second branch optical path OP2 to the error signal generation unit 57. The controller 250 operates the drive unit 232 so that the error signal generated by the error signal generator 57 maintains the target value (here, zero).
 AFユニット212は、第1ステアリングミラー81及び第2ステアリングミラー82をさらに有する。第1及び第2ステアリングミラー81,82は、測定用光LB1及び反射光LB2の光路において、結像状態調整部70とダイクロイックミラー238との間に配置されている。第1及び第2ステアリングミラー81,82は、レーザ光Lの光軸に測定用光LB1の光軸を合わせる(コアライメントする)。第1及び第2ステアリングミラー81,82は、光軸調整機構を構成する。 The AF unit 212 further includes a first steering mirror 81 and a second steering mirror 82. The first and second steering mirrors 81 and 82 are disposed between the imaging state adjusting unit 70 and the dichroic mirror 238 in the optical paths of the measurement light LB1 and the reflected light LB2. The first and second steering mirrors 81 and 82 align (coalign) the optical axis of the measurement light LB1 with the optical axis of the laser light L. The first and second steering mirrors 81 and 82 constitute an optical axis adjustment mechanism.
 次に、レーザ加工装置300において実施されるレーザ加工方法について説明する。 Next, a laser processing method performed in the laser processing apparatus 300 will be described.
 本実施形態のレーザ加工方法は、加工対象物1をレーザ加工して複数のチップを製造するためのチップの製造方法として用いられる。加工対象物1は、板状を呈している。加工対象物1は、例えば、サファイア基板、SiC基板、ガラス基板(強化ガラス基板)、シリコン基板、半導体基板又は透明絶縁基板等である。ここでの加工対象物1は、シリコン基板である。加工対象物1においてレーザ光入射面側である裏面21側とは反対側の表面3側には、機能素子層が形成されている。機能素子層は、マトリックス状に配列された複数の機能素子(例えば、フォトダイオード等の受光素子、レーザダイオード等の発光素子、又は回路として形成された回路素子等)を含んでいる。加工対象物1の裏面21側は、加工対象物1が所望の厚さまで薄化するように研削されている。加工対象物1には、隣り合う機能素子間を通るように延びる切断予定ライン5が複数設定されている。複数の切断予定ライン5は、格子状に延在している。 The laser processing method of the present embodiment is used as a chip manufacturing method for manufacturing a plurality of chips by laser processing the workpiece 1. The workpiece 1 has a plate shape. The workpiece 1 is, for example, a sapphire substrate, a SiC substrate, a glass substrate (tempered glass substrate), a silicon substrate, a semiconductor substrate, a transparent insulating substrate, or the like. The processing object 1 here is a silicon substrate. A functional element layer is formed on the processing object 1 on the surface 3 side opposite to the back surface 21 side which is the laser light incident surface side. The functional element layer includes a plurality of functional elements (for example, a light receiving element such as a photodiode, a light emitting element such as a laser diode, or a circuit element formed as a circuit) arranged in a matrix. The back surface 21 side of the workpiece 1 is ground so that the workpiece 1 is thinned to a desired thickness. A plurality of cutting lines 5 that extend so as to pass between adjacent functional elements are set in the workpiece 1. The plurality of scheduled cutting lines 5 extend in a lattice shape.
 本実施形態のレーザ加工方法では、まず、裏面21がレーザ光入射面となるようにステージ111の支持台107上に加工対象物1を載置する。レーザ光源202からレーザ光Lを出射させ、当該レーザ光Lを集光光学系204により加工対象物1の内部に集光させる。併せて、制御部250によりステージ111の移動等を制御し、当該レーザ光Lを切断予定ライン5に沿った加工進行方向へ相対的に移動(スキャン)させ、加工対象物1の内部に改質領域7を切断予定ライン5に沿って形成する。その後、加工対象物1の表面3又は裏面21に貼り付けられたエキスパンドテープを拡張して加工対象物1を切断し、加工対象物1を複数のチップに切断する。 In the laser processing method of the present embodiment, first, the processing object 1 is placed on the support base 107 of the stage 111 so that the back surface 21 becomes the laser light incident surface. Laser light L is emitted from the laser light source 202, and the laser light L is condensed inside the workpiece 1 by the condensing optical system 204. At the same time, the movement of the stage 111 is controlled by the control unit 250, and the laser light L is moved (scanned) relatively in the processing progress direction along the planned cutting line 5 to be modified inside the processing target 1. The region 7 is formed along the planned cutting line 5. Thereafter, the expanding tape attached to the front surface 3 or the back surface 21 of the processing object 1 is expanded to cut the processing object 1 and cut the processing object 1 into a plurality of chips.
 ここで、加工対象物1の裏面21は、表面3に機能素子層を形成したことに起因する応力等の影響により、反り又はうねりを有している。よって、レーザ光Lを集光させて改質領域7を意図した深さに安定して形成するためには、集光光学系204と裏面21との相対変位を意図した変位に保つ制御を行う必要がある。 Here, the back surface 21 of the workpiece 1 has warping or waviness due to the influence of stress or the like resulting from the formation of the functional element layer on the front surface 3. Therefore, in order to focus the laser beam L and stably form the modified region 7 at the intended depth, control is performed to keep the relative displacement between the condensing optical system 204 and the back surface 21 at the intended displacement. There is a need.
 そこで、本実施形態のレーザ加工方法では、加工対象物1にレーザ光Lを集光しながら、測定用光LB1を加工対象物1に集光する。裏面21で反射した測定用光LB1の反射光LB2を第1及び第2分岐反射光LS1,LS2へ分岐し、第1分岐光路OP1において第1非点収差量を付加した第1分岐反射光LS1のビーム形状を検出すると共に第2分岐光路OP2において第2非点収差量を付加した第2分岐反射光LS2のビーム形状を検出する。当該ビーム形状の検出結果に基づいて誤差信号を取得し、その誤差信号が目標値を維持するように駆動ユニット232により集光光学系204をZ方向に動作させる。具体的には、以下のステップを実行する。 Therefore, in the laser processing method of the present embodiment, the measurement light LB1 is focused on the processing target 1 while condensing the laser light L on the processing target 1. The first branched reflected light LS1 obtained by branching the reflected light LB2 of the measurement light LB1 reflected by the back surface 21 into the first and second branched reflected lights LS1 and LS2 and adding the first astigmatism amount in the first branched optical path OP1. And a beam shape of the second branched reflected light LS2 to which the second astigmatism amount is added in the second branch optical path OP2. An error signal is acquired based on the detection result of the beam shape, and the condensing optical system 204 is operated in the Z direction by the drive unit 232 so that the error signal maintains a target value. Specifically, the following steps are executed.
 すなわち、図12に示されるように、上位システムからの指令に基づき、制御部250により、オフセット量を設定する(ステップS1)。上位システムからの指令に基づき、制御部250により、測定用光源30のSLD光源31,32の中から、加工対象物1に対する反射率が高い波長を有する光を出射する一方を選択する(ステップS2)。 That is, as shown in FIG. 12, the control unit 250 sets an offset amount based on a command from the host system (step S1). Based on the command from the host system, the control unit 250 selects one of the SLD light sources 31 and 32 of the measurement light source 30 that emits light having a wavelength with high reflectivity with respect to the workpiece 1 (step S2). ).
 制御部250により、設定したオフセット量に基づいて、誤差信号を生成する分岐光路OP1,OP2を選択する(ステップS3)。ステップS3では、設定したオフセット量が第1範囲(-40μm<オフセット量≦0μm)にある場合には、第1非点収差量を第1分岐反射光LS1に付加する光路である第1分岐光路OP1を選択する。設定したオフセット量が第2範囲(-180μm≦オフセット量≦-40μm)にある場合には、第1非点収差量よりも大きい第2非点収差量を第2分岐反射光LS2に付加する光路である第2分岐光路OP2を選択する。 Control unit 250 selects branch optical paths OP1 and OP2 that generate error signals based on the set offset amount (step S3). In step S3, when the set offset amount is in the first range (−40 μm <offset amount ≦ 0 μm), the first branch optical path which is an optical path for adding the first astigmatism amount to the first branch reflected light LS1. Select OP1. When the set offset amount is in the second range (−180 μm ≦ offset amount ≦ −40 μm), an optical path for adding a second astigmatism amount larger than the first astigmatism amount to the second branched reflected light LS2. The second branch optical path OP2 is selected.
 制御部250により、設定したオフセット量となるように結像状態調整部70を制御し、測定用光LB1及び反射光LB2の結像状態を移動する(ステップS4)。ステップS4では、データテーブルを参照して、設定したオフセット量に対応する凹レンズ71の位置を導出し、この位置まで凹レンズ71を移動させる。 The image forming state adjusting unit 70 is controlled by the control unit 250 so that the set offset amount is obtained, and the image forming states of the measurement light LB1 and the reflected light LB2 are moved (step S4). In step S4, the position of the concave lens 71 corresponding to the set offset amount is derived with reference to the data table, and the concave lens 71 is moved to this position.
 加工対象物1を基準位置に位置させる基準位置出しを実行する(ステップS5)。ステップS5では、レーザ光入射面である裏面21を表面観察ユニット211で撮像し、投影されるレチクルのコントラストが最大になる状態の深さ位置に裏面21が位置するように、制御部250によりステージ111をZ方向に移動させる。レチクルを投影する光の波長と測定用光LB1の波長とが等しい場合、オフセット量が0μmのときに、この段階における誤差信号の大きさはゼロとなる。一方、レチクルを投影する光の波長と測定用光LB1の波長とが異なる場合、オフセット量が0μmのときに、この段階における誤差信号の大きさは、集光光学系204のレチクル投影光と測定用光LB1に対する色収差の大きさに応じた値となる。基準位置とオフセット量とは、このように関連付けられる。その後、制御部250により、設定したオフセットとなるように、ステージ111を移動させて集光光学系204に加工対象物1を接近させる(ステップS6)。 The reference positioning is performed to position the workpiece 1 at the reference position (step S5). In step S5, the back surface 21 which is the laser light incident surface is imaged by the front surface observation unit 211, and the stage is positioned by the control unit 250 so that the back surface 21 is positioned at a depth where the contrast of the projected reticle is maximized. 111 is moved in the Z direction. When the wavelength of the light that projects the reticle and the wavelength of the measurement light LB1 are equal, the magnitude of the error signal at this stage is zero when the offset amount is 0 μm. On the other hand, when the wavelength of the light that projects the reticle is different from the wavelength of the measurement light LB1, the magnitude of the error signal at this stage is the same as that of the reticle projection light of the condensing optical system 204 when the offset amount is 0 μm. It becomes a value corresponding to the magnitude of chromatic aberration with respect to the light beam LB1. The reference position and the offset amount are associated in this way. Thereafter, the control unit 250 moves the stage 111 so that the set offset is obtained, and causes the processing target object 1 to approach the condensing optical system 204 (step S6).
 誤差信号の目標値を取得し、制御部250にメモリーする(ステップS7)。ステップS7では、測定用光源30のSLD光源31,32のうち上記ステップS2で選択した一方から測定用光LB1を出射する。測定用光LB1は、調整光学系60でビーム径が調整され、第1分岐部51を通過し、結像状態調整部70で結像状態が調整された後、第1及び第2ステアリングミラー81,82及びダイクロイックミラー238で順に反射し、集光光学系204により加工対象物1に集光され、裏面21で反射する。 The target value of the error signal is acquired and stored in the control unit 250 (step S7). In step S7, the measurement light LB1 is emitted from one of the SLD light sources 31 and 32 of the measurement light source 30 selected in step S2. The measurement light LB1 has its beam diameter adjusted by the adjusting optical system 60, passes through the first branching unit 51, and after the image forming state is adjusted by the image forming state adjusting unit 70, the first and second steering mirrors 81 , 82 and the dichroic mirror 238 are sequentially reflected, condensed on the workpiece 1 by the condensing optical system 204, and reflected by the back surface 21.
 裏面21で反射した反射光LB2は、集光光学系204を通り、ダイクロイックミラー238、第2及び第1ステアリングミラー82,81で順に反射し、結像状態調整部70で結像状態が調整され、第1分岐部51で反射された後、第2分岐部52で第1及び第2分岐反射光LS1,LS2に分岐される。第1分岐反射光LS1は、第1分岐光路OP1において、第1非点収差付加部53により第1非点収差量が付加された後、フィルタ59aを介して第1ビーム形状検出部55にて受光される。第2分岐反射光LS2は、第2分岐光路OP2において、第2非点収差付加部54により第2非点収差量が付加された後、フィルタ59bを介して第2ビーム形状検出部56にて受光される。誤差信号生成部57は、上記ステップS3で第1分岐光路OP1が制御部250により選択されている場合、第1ビーム形状検出部55で検出したビーム形状に応じた誤差信号を上式(1)に従い生成する。一方、上記ステップS3で第2分岐光路OP2が制御部250により選択されている場合、第2ビーム形状検出部56で検出したビーム形状に応じた誤差信号を上式(1)に従い生成する。生成した誤差信号を、目標値として制御部205にメモリーする。 The reflected light LB2 reflected by the back surface 21 passes through the condensing optical system 204, is sequentially reflected by the dichroic mirror 238, the second and first steering mirrors 82, 81, and the imaging state is adjusted by the imaging state adjustment unit 70. After being reflected by the first branch part 51, the second branch part 52 is branched into the first and second branch reflected lights LS 1 and LS 2. After the first astigmatism amount is added to the first branched reflected light LS1 by the first astigmatism adding unit 53 in the first branch optical path OP1, the first beam shape detecting unit 55 passes through the filter 59a. Received light. After the second astigmatism amount is added to the second branched reflected light LS2 by the second astigmatism adding unit 54 in the second branch optical path OP2, the second beam shape detecting unit 56 passes through the filter 59b. Received light. When the first branch optical path OP1 is selected by the control unit 250 in step S3, the error signal generation unit 57 generates an error signal corresponding to the beam shape detected by the first beam shape detection unit 55 using the above equation (1). Generate according to On the other hand, when the second branch optical path OP2 is selected by the control unit 250 in step S3, an error signal corresponding to the beam shape detected by the second beam shape detection unit 56 is generated according to the above equation (1). The generated error signal is stored in the control unit 205 as a target value.
 続いて、レーザ加工を開始する(ステップS8)。ステップS8では、切断予定ライン5に沿ってレーザ光Lをスキャンしながら、上記ステップS7と同様にして誤差信号を取得し、取得した誤差信号が目標値を維持するように駆動ユニット232により集光光学系204をZ方向に動作させる。これにより、レーザ光Lのスキャンと共に、集光光学系204と裏面21との相対変位が一定に保たれるフィードバック制御が実行され、集光光学系204が裏面21の変位に追従することとなる。その後、全ての切断予定ライン5に沿ったレーザ加工が完了したか否かを判定する(ステップS9)。ステップS9でNoの場合、レーザ加工が完了していない当該切断予定ライン5に沿って、上記ステップS1~S9を繰り返し実施する一方、ステップS9でYesの場合、レーザ加工が終了する。 Subsequently, laser processing is started (step S8). In step S8, while scanning the laser beam L along the planned cutting line 5, an error signal is acquired in the same manner as in step S7, and the drive unit 232 collects the error signal so that the acquired error signal maintains the target value. The optical system 204 is operated in the Z direction. Thereby, along with the scanning of the laser beam L, feedback control is performed in which the relative displacement between the condensing optical system 204 and the back surface 21 is kept constant, and the condensing optical system 204 follows the displacement of the back surface 21. . Thereafter, it is determined whether or not laser processing along all the scheduled cutting lines 5 has been completed (step S9). In the case of No in step S9, the above steps S1 to S9 are repeatedly performed along the scheduled cutting line 5 where the laser processing is not completed, whereas in the case of Yes in step S9, the laser processing ends.
 図13は、第1ビーム形状検出部55で検出したビーム形状のみに基づき生成した誤差信号を示すグラフである。図中では、オフセット量を0μmから-180μmまで10μm刻みないし20μm刻みで変更した場合の各誤差信号を示している。図13に示されるように、誤差信号の傾きは、オフセット量(つまり、結像状態調整部70で移動する結像状態)と相関を有している。また、オフセットが加工対象物1において深い位置になるほど、誤差信号の傾きは緩やかになり過ぎることがわかる。なお、誤差信号の傾きとは、取得する変位に対する誤差信号の変動である。誤差信号の傾きとは、変位に関する誤差信号の変化の割合である。誤差信号の傾きは、誤差信号が比例的に単調減少する場合に、その比例定数に対応する。誤差信号の傾きは、変位の変化に伴って誤差信号が変動するときの変動量に対応する。 FIG. 13 is a graph showing an error signal generated based only on the beam shape detected by the first beam shape detection unit 55. In the figure, each error signal when the offset amount is changed from 0 μm to −180 μm in increments of 10 μm to 20 μm is shown. As shown in FIG. 13, the slope of the error signal has a correlation with the offset amount (that is, the imaging state moved by the imaging state adjustment unit 70). In addition, it can be seen that as the offset becomes deeper in the workpiece 1, the slope of the error signal becomes too gentle. Note that the slope of the error signal is the fluctuation of the error signal with respect to the acquired displacement. The slope of the error signal is the rate of change of the error signal related to displacement. The slope of the error signal corresponds to the proportionality constant when the error signal monotonously decreases proportionally. The slope of the error signal corresponds to the amount of fluctuation when the error signal fluctuates with a change in displacement.
 ここで、誤差信号の傾きが緩やかになり過ぎる要因として、測定用光LB1の反射光LB2に付加する非点収差量とオフセット量とのミスマッチが見出される。そこで、レーザ加工装置300では、第1及び第2分岐光路OP1,OP2の一方をオフセット量に応じて選択し、選択した第1及び第2分岐光路OP1,OP2の一方で検出されたビーム形状に基づき誤差信号を生成する。これにより、誤差信号の生成に用いられる第1及び第2分岐反射光LS1,LS2の一方に付加する非点収差量を、オフセット量に応じたものとすることができる。その結果、誤差信号の傾きが緩やかになり過ぎるのを抑制することが可能となる。したがって、レーザ光入射面である裏面21の変位を精度よく検出することが可能となる。 Here, a mismatch between the amount of astigmatism added to the reflected light LB2 of the measurement light LB1 and the amount of offset is found as a factor in which the inclination of the error signal becomes too gentle. Therefore, in the laser processing apparatus 300, one of the first and second branch optical paths OP1 and OP2 is selected according to the offset amount, and the beam shape detected in one of the selected first and second branch optical paths OP1 and OP2 is obtained. Based on this, an error signal is generated. As a result, the amount of astigmatism added to one of the first and second branched reflected lights LS1 and LS2 used for generating the error signal can be made in accordance with the offset amount. As a result, it is possible to suppress the inclination of the error signal from becoming too gentle. Therefore, it is possible to accurately detect the displacement of the back surface 21 that is the laser light incident surface.
 特に、加工対象物1が所望厚さに薄化するまで裏面21が研削されていることから、裏面21には、研削痕が形成された状態(深さの極めて浅い溝が多数形成された状態)となっている。この場合、裏面21で測定用光LB1が散乱して同じ変位であっても誤差信号がばらつくおそれがあるため、誤差信号の傾きが緩やかになり過ぎると、実用性に問題が生じ得る。よって、このように裏面21に研削痕が形成されている場合には、誤差信号の傾きが緩やかになり過ぎるのを抑制するという上記作用効果は顕著である。 In particular, since the back surface 21 is ground until the workpiece 1 is thinned to a desired thickness, the back surface 21 is in a state in which grinding marks are formed (a state in which many grooves having extremely shallow depths are formed). ). In this case, even if the measurement light LB1 is scattered on the back surface 21 and the displacement is the same, the error signal may vary. Therefore, if the inclination of the error signal becomes too gentle, there may be a problem in practicality. Therefore, when the grinding mark is formed on the back surface 21 as described above, the above-described effect of suppressing the inclination of the error signal from becoming too gentle is remarkable.
 レーザ加工装置300では、オフセット量が第1範囲にある場合には、第1分岐光路OP1を選択し、オフセット量が第1範囲よりも深い第2範囲にある場合には、第2分岐光路OP2を選択する。この場合、オフセットが浅い場合には、小さい非点収差量が付加された第1分岐反射光LS1を誤差信号の生成に用い、オフセットが深い場合には、大きい非点収差量が付加された第2分岐反射光LS2を誤差信号の生成に用いることができる。誤差信号の傾きが緩やかになり過ぎるのを抑制することが可能となり、裏面21の変位を精度よく検出することが可能となる。 In the laser processing apparatus 300, when the offset amount is in the first range, the first branch optical path OP1 is selected, and when the offset amount is in the second range deeper than the first range, the second branch optical path OP2 is selected. Select. In this case, when the offset is shallow, the first branched reflected light LS1 to which a small amount of astigmatism is added is used to generate an error signal. When the offset is deep, the first astigmatism having a large amount of astigmatism is added. The bifurcated reflected light LS2 can be used for generating an error signal. It becomes possible to suppress the inclination of the error signal from becoming too gentle and to detect the displacement of the back surface 21 with high accuracy.
 図14は、レーザ加工装置300において生成した誤差信号を示すグラフである。図中では、オフセット量を0μmから-180μmまで10μm刻みないし20μm刻みで変更した場合の各誤差信号を示している。図中の各項目(系列)名において、第1分岐光路OP1のビーム形状に基づく誤差信号である場合に「OP1」を付し、第2分岐光路OP2のビーム形状に基づく誤差信号である場合に「OP2」を付している。図14に示されるように、レーザ加工装置300によれば、誤差信号の傾きが緩やかになり過ぎるのを抑制できることが分かる。例えばレーザ加工装置300では、誤差信号は、研削痕による測定誤差が実用範囲内となる一定以上の傾きを有している。例えば誤差信号は、誤差信号がゼロになる変位において、0.025/μm以上の傾きの絶対値を有していてもよい。例えば誤差信号は、誤差信号がゼロになる変位において、0.0275/μm以上の傾きの絶対値を有していてもよい。 FIG. 14 is a graph showing an error signal generated in the laser processing apparatus 300. In the figure, each error signal when the offset amount is changed from 0 μm to −180 μm in increments of 10 μm to 20 μm is shown. In each item (series) name in the figure, when the error signal is based on the beam shape of the first branch optical path OP1, “OP1” is added, and when the error signal is based on the beam shape of the second branch optical path OP2. “OP2” is attached. As shown in FIG. 14, according to the laser processing apparatus 300, it can be seen that the inclination of the error signal can be suppressed from becoming too gentle. For example, in the laser processing apparatus 300, the error signal has a certain inclination or more so that the measurement error due to the grinding mark is within the practical range. For example, the error signal may have an absolute value of a slope of 0.025 / μm or more at a displacement at which the error signal becomes zero. For example, the error signal may have an absolute value of a slope of 0.0275 / μm or more at a displacement at which the error signal becomes zero.
 なお、オフセット量が-40μmの場合には、第1分岐光路OP1のビーム形状に基づく誤差信号であっても、第2分岐光路OP2のビーム形状に基づく誤差信号であっても、その傾きは一定以上となることがわかる。よって、本実施形態では、第1範囲を0μm以下で-40μmよりも大きい範囲とし、第2範囲を-40μm以下で-180μm以上の範囲としたが、第1範囲を0μm以下で-40μm以上の範囲とし、第2範囲を-40μm未満で-180μm以上の範囲としてもよい。 When the offset amount is −40 μm, the slope is constant regardless of whether the error signal is based on the beam shape of the first branch optical path OP1 or the error signal based on the beam shape of the second branch optical path OP2. It turns out that it becomes the above. Therefore, in this embodiment, the first range is 0 μm or less and larger than −40 μm, and the second range is −40 μm or less and −180 μm or more, but the first range is 0 μm or less and −40 μm or more. The second range may be less than −40 μm and greater than −180 μm.
 図15は、第2ビーム形状検出部56で検出したビーム形状のみに基づき生成した誤差信号を示すグラフである。図中では、オフセット量を0μmから-180μmまで10μm刻みないし20μm刻みで変更した場合の各誤差信号を示している。図15に示される結果によれば、オフセットが加工対象物1において浅い位置になるほど、誤差信号の傾きは急になり過ぎ、測長レンジが不十分になることがわかる。これに対して、レーザ加工装置300では、誤差信号の傾きが急になり過ぎるのを抑制でき、且つ、測長レンジを十分に確保することが可能となる(図14参照)。 FIG. 15 is a graph showing an error signal generated based only on the beam shape detected by the second beam shape detection unit 56. In the figure, each error signal when the offset amount is changed from 0 μm to −180 μm in increments of 10 μm to 20 μm is shown. According to the results shown in FIG. 15, it can be seen that the shallower the offset is in the workpiece 1, the steep error signal becomes steep and the measurement range becomes insufficient. On the other hand, in the laser processing apparatus 300, it is possible to suppress the error signal from becoming too steep, and to ensure a sufficient length measurement range (see FIG. 14).
 レーザ加工装置300では、制御部250によりオフセット量が設定され、設定されたオフセット量となるように結像状態調整部70が制御される。この構成によれば、設定されたオフセット量となるように測定用光LB1及び反射光LB2の結像状態を自動調整できる。 In the laser processing apparatus 300, the offset amount is set by the control unit 250, and the imaging state adjusting unit 70 is controlled so as to be the set offset amount. According to this configuration, the imaging states of the measurement light LB1 and the reflected light LB2 can be automatically adjusted so that the set offset amount is obtained.
 レーザ加工装置300は、Z方向に集光光学系204を動作させる駆動ユニット232を備え、誤差信号が目標値を維持するように制御部205により駆動ユニット232が動作される。この構成によれば、裏面21に追従するように集光光学系204をZ方向に移動させることができる。 The laser processing apparatus 300 includes a drive unit 232 that operates the condensing optical system 204 in the Z direction, and the drive unit 232 is operated by the control unit 205 so that the error signal maintains a target value. According to this configuration, the condensing optical system 204 can be moved in the Z direction so as to follow the back surface 21.
 レーザ加工装置300は、レーザ光Lの光軸に測定用光LB1の光軸を合わせる第1及び第2ステアリングミラー81,82を備える。この構成によれば、レーザ光Lの光軸に測定用光LB1の光軸を精度よく合わせることができる。 The laser processing apparatus 300 includes first and second steering mirrors 81 and 82 for aligning the optical axis of the measurement light LB1 with the optical axis of the laser light L. According to this configuration, the optical axis of the measurement light LB1 can be accurately aligned with the optical axis of the laser light L.
 レーザ加工装置300では、測定用光源30は、複数の波長の光のうち加工対象物1に対する反射率が高い波長を有する光を、測定用光LB1として出射する。これにより、測定用光LB1を裏面21で反射させやすくすることが可能となる。 In the laser processing apparatus 300, the measurement light source 30 emits, as the measurement light LB1, light having a wavelength with a high reflectivity with respect to the workpiece 1 among the light having a plurality of wavelengths. As a result, the measurement light LB1 can be easily reflected by the back surface 21.
 ちなみに、結像状態調整部70と集光光学系204との間の物理的距離を短くする、又は、この間に4fレンズ系を挿入して光学的距離を短くすることにより、誤差信号の傾きの変化を抑制することも考えられる。しかし、装置構成上の制限から当該物理的距離を短くし難く、また4fレンズ系を挿入することは装置大型化にもつながるために、実現困難となる可能性がある。特に、第1及び第2ステアリングミラー81,82を配置する場合、当該物理的距離を短くすることは困難である。この点、レーザ加工装置300では、装置構成上の制限を受けることは少なく、また、装置大型化を抑制できる。レーザ加工装置300では、第1及び第2ステアリングミラー81,82を配置することが可能である。 Incidentally, the inclination of the error signal can be reduced by shortening the physical distance between the imaging state adjusting unit 70 and the condensing optical system 204, or by inserting a 4f lens system therebetween to shorten the optical distance. It is also possible to suppress the change. However, it is difficult to shorten the physical distance due to restrictions on the device configuration, and inserting the 4f lens system also leads to an increase in the size of the device, which may be difficult to realize. In particular, when the first and second steering mirrors 81 and 82 are arranged, it is difficult to shorten the physical distance. In this respect, the laser processing apparatus 300 is less likely to be restricted in terms of the apparatus configuration, and can suppress an increase in the size of the apparatus. In the laser processing apparatus 300, the first and second steering mirrors 81 and 82 can be disposed.
 図16は、変形例に係るAFユニット212Bの一部を示す構成図である。図16に示されるように、AFユニット212Bの第1及び第2ビーム形状検出部55,56それぞれは、結像状態調整部70の凹レンズ71の移動に応じて、第1及び第2分岐光路OP1,OP2それぞれに沿って移動可能であってもよい。具体的には、制御部250により、オフセットが深まるように凹レンズ71が移動されるほど、第1及び第2ビーム形状検出部55,56を第1及び第2非点収差付加部53,54から近づく方向に連動させてもよい(換言すると、オフセットが深くなるに従って第1及び第2ビーム形状検出部55,56を第1及び第2非点収差付加部53,54に近づけてもよい)。 FIG. 16 is a configuration diagram showing a part of an AF unit 212B according to a modification. As shown in FIG. 16, each of the first and second beam shape detection units 55 and 56 of the AF unit 212B moves in accordance with the movement of the concave lens 71 of the imaging state adjustment unit 70. , OP2 may be movable along each. Specifically, the first and second beam shape detection units 55 and 56 are moved away from the first and second astigmatism addition units 53 and 54 as the concave lens 71 is moved so that the offset is deepened by the control unit 250. The first and second beam shape detectors 55 and 56 may be moved closer to the first and second astigmatism adding units 53 and 54 as the offset becomes deeper.
 図17は、図16のAFユニット212Bによる効果を説明するためのグラフである。図17では、第1ビーム形状検出部55で検出したビーム形状に基づき生成した誤差信号を示している。図17(a)は、第1ビーム形状検出部55が固定の場合の誤差信号である。図17(b)は、AFユニット212Bで生成された誤差信号、つまり、第1ビーム形状検出部55が可動の場合の誤差信号である。図17(a)及び図17(b)に示されるように、変形例に係るAFユニット212Bでは、どのオフセット量に対しても、誤差信号のS字カーブを、横軸においてゼロを中心に均整のとれた形状とすることができる。このことは、PID制御等の応答性改善に寄与する。 FIG. 17 is a graph for explaining the effect of the AF unit 212B of FIG. FIG. 17 shows an error signal generated based on the beam shape detected by the first beam shape detection unit 55. FIG. 17A shows an error signal when the first beam shape detection unit 55 is fixed. FIG. 17B shows an error signal generated by the AF unit 212B, that is, an error signal when the first beam shape detection unit 55 is movable. As shown in FIGS. 17A and 17B, in the AF unit 212B according to the modified example, the S-curve of the error signal is leveled around zero on the horizontal axis for any offset amount. The shape can be improved. This contributes to responsiveness improvement such as PID control.
 AFユニット212Bでは、第1及び第2ビーム形状検出部55,56の移動に代えてもしくは加えて、第1及び第2非点収差付加部53,54の凸レンズ53a,54a及びシリンドリカルレンズ53b,54bの少なくとも何れかを同様に移動させてもよい。この場合でも、同様な効果が奏される。 In the AF unit 212B, instead of or in addition to the movement of the first and second beam shape detectors 55 and 56, the convex lenses 53a and 54a and the cylindrical lenses 53b and 54b of the first and second astigmatism adding units 53 and 54 are used. At least one of these may be moved similarly. Even in this case, the same effect is produced.
 以上、実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用してもよい。 As mentioned above, although embodiment was described, this invention is not restricted to the said embodiment, You may change in the range which does not change the summary described in each claim, or may apply it to another thing.
 上記実施形態では、第2分岐部52により反射光LB2の光路OPを2光路(第1及び第2分岐光路OP1,OP2)に分岐したが、3光路以上に分岐してもよい。3光路以上の光路のそれぞれにおいて、互いに異なる大きさの非点収差量を付加する複数の非点収差付加部と、非点収差が付加された複数の分岐反射光それぞれのビーム形状を検出する複数のビーム形状検出部と、が設けられていればよい。この場合、複数の光路の中から、オフセットが深いほど大きい非点収差量が分岐反射光に付加されるように光路を選択し、選択した光路の当該分岐反射光のビーム形状の検出結果に基づいて誤差信号を生成してもよい。 In the above embodiment, the optical path OP of the reflected light LB2 is branched into two optical paths (first and second branched optical paths OP1 and OP2) by the second branching unit 52, but may be branched into three or more optical paths. In each of the three or more optical paths, a plurality of astigmatism adding sections for adding different amounts of astigmatism and a plurality of beam shapes for detecting the beam shapes of the plurality of branched reflected lights to which astigmatism is added. And a beam shape detecting unit of the above-mentioned need only be provided. In this case, an optical path is selected from a plurality of optical paths so that a larger astigmatism amount is added to the branched reflected light as the offset is deeper, and based on the detection result of the beam shape of the branched reflected light in the selected optical path. An error signal may be generated.
 上記実施形態では、測定用光LB1及び反射光LB2の光路において、第1分岐部51とダイクロイックミラー238との間に結像状態調整部70を配置したが、結像状態調整部70の配置は限定されない。上記実施形態の配置に代えてもしくは加えて、測定用光LB1の光路において第1分岐部51よりも上流側、及び、反射光LB2の光路OPにおいて第1分岐部51と第2分岐部52との間の少なくとも何れかに、結像状態調整部70を配置してもよい。 In the embodiment described above, the imaging state adjustment unit 70 is disposed between the first branching unit 51 and the dichroic mirror 238 in the optical paths of the measurement light LB1 and the reflected light LB2. It is not limited. Instead of or in addition to the arrangement of the above embodiment, the first branch 51 and the second branch 52 are arranged upstream of the first branch 51 in the optical path of the measurement light LB1 and in the optical path OP of the reflected light LB2. The imaging state adjustment unit 70 may be disposed at least at any point between the two.
 上記実施形態では、結像状態調整部70を凹レンズ71及び凸レンズ72により構成したが、結像状態調整部70は特に限定されず、例えば可変焦点距離レンズであってもよい。上記実施形態の光学系は、レーザ光Lを透過させ且つ測定用光LB1及び反射光LB2を反射させるダイクロイックミラー238を備えているが、これに代えて、レーザ光Lを反射させ且つ測定用光LB1及び反射光LB2を透過させるダイクロイックミラーを備えた構成であってもよい。同様に、上記実施形態の光学系は、第1分岐部51において測定用光LB1を反射させ且つ反射光LB2を透過させる構成であってもよい。同様に、上記実施形態の光学系は、第2分岐部52において第1分岐反射光LS1を透過させ且つ第2分岐反射光LS2を反射させる構成であってもよい。 In the above embodiment, the imaging state adjustment unit 70 is configured by the concave lens 71 and the convex lens 72, but the imaging state adjustment unit 70 is not particularly limited, and may be a variable focal length lens, for example. The optical system of the above embodiment includes the dichroic mirror 238 that transmits the laser light L and reflects the measurement light LB1 and the reflected light LB2. Instead, the optical system reflects the laser light L and reflects the measurement light. A configuration including a dichroic mirror that transmits LB1 and reflected light LB2 may also be used. Similarly, the optical system of the above embodiment may be configured to reflect the measurement light LB1 and transmit the reflected light LB2 at the first branching unit 51. Similarly, the optical system of the above embodiment may be configured to transmit the first branched reflected light LS1 and reflect the second branched reflected light LS2 in the second branch portion 52.
 上記実施形態では、上記ステップS6と上記ステップS7との間において、第1及び第2ビーム形状検出部55,56のバイアスオフセット値(ビーム形状を検出していない状態の第1及び第2ビーム形状検出部55,56の出力値)を取得して調整してもよい。上記実施形態では、オフセット量を誤差信号がゼロになる光学配置として設定したが、誤差信号がゼロになる場合に限定されず、オフセット量を誤差信号が基準値になる光学配置として設定してもよい。 In the above embodiment, the bias offset values of the first and second beam shape detectors 55 and 56 (the first and second beam shapes in a state in which the beam shape is not detected) between the step S6 and the step S7. The output values of the detection units 55 and 56) may be acquired and adjusted. In the above embodiment, the offset amount is set as an optical arrangement in which the error signal becomes zero. However, the present invention is not limited to the case where the error signal becomes zero, and the offset amount may be set as an optical arrangement in which the error signal becomes a reference value. Good.
 上記実施形態では、上位システムからの指令に基づきオフセット量を設定したが、オペレータの操作によりオフセット量を設定してもよいし、形成する改質領域7の位置に応じて予めオフセット量が設定されていてもよい。上記実施形態では、設定されたオフセット量となるように結像状態調整部70を制御部250により制御したが、オペレータの操作により結像状態調整部70を制御してもよい。 In the above embodiment, the offset amount is set based on a command from the host system. However, the offset amount may be set by an operator's operation, or the offset amount is set in advance according to the position of the reforming region 7 to be formed. It may be. In the above embodiment, the imaging state adjustment unit 70 is controlled by the control unit 250 so that the set offset amount is obtained, but the imaging state adjustment unit 70 may be controlled by an operator's operation.
 上記実施形態は、空間光変調器として反射型空間光変調器203を備えているが、空間光変調器は反射型のものに限定されず、透過型の空間光変調器を備えていてもよい。上記実施形態では、加工対象物1の裏面21をレーザ光入射面としたが、加工対象物1の表面3をレーザ光入射面としてもよい。上記において、制御部250及び誤差信号生成部57は、信号取得部を構成する。制御部250は、オフセット量設定部、結像状態制御部及び駆動機構制御部を構成する。 The above embodiment includes the reflective spatial light modulator 203 as the spatial light modulator. However, the spatial light modulator is not limited to the reflective type, and may include a transmissive spatial light modulator. . In the above embodiment, the back surface 21 of the workpiece 1 is a laser light incident surface, but the front surface 3 of the workpiece 1 may be a laser light incident surface. In the above, the control unit 250 and the error signal generation unit 57 constitute a signal acquisition unit. The control unit 250 configures an offset amount setting unit, an imaging state control unit, and a drive mechanism control unit.
 1…加工対象物、3…表面、7…改質領域、21…裏面、30…測定用光源、50…変位検出部、52…第2分岐部(分岐部)、53…第1非点収差付加部(非点収差付加部)、54…第2非点収差付加部(非点収差付加部)、55…第1ビーム形状検出部(ビーム形状検出部)、56…第2ビーム形状検出部(ビーム形状検出部)、57…誤差信号生成部(信号取得部)、70…結像状態調整部、81…第1ステアリングミラー(光軸調整機構)、82…第2ステアリングミラー(光軸調整機構)、100,300…レーザ加工装置、204…集光光学系(集光用レンズ)、232…駆動ユニット(駆動機構)、250…制御部(信号取得部,オフセット量設定部,結像状態制御部,駆動機構制御部)、L…レーザ光(加工用レーザ光)、LB1…測定用光、LB2…反射光、LS1…第1分岐反射光(分岐反射光)、LS2…第2分岐反射光(分岐反射光)、OP1…第1分岐光路(第1分岐反射光の光路)、OP2…第2分岐光路(第2分岐反射光の光路)。 DESCRIPTION OF SYMBOLS 1 ... Work object, 3 ... Front surface, 7 ... Modified area | region, 21 ... Back surface, 30 ... Light source for measurement, 50 ... Displacement detection part, 52 ... 2nd branch part (branch part), 53 ... 1st astigmatism Addition unit (astigmatism addition unit), 54 ... second astigmatism addition unit (astigmatism addition unit), 55 ... first beam shape detection unit (beam shape detection unit), 56 ... second beam shape detection unit (Beam shape detection unit), 57 ... error signal generation unit (signal acquisition unit), 70 ... imaging state adjustment unit, 81 ... first steering mirror (optical axis adjustment mechanism), 82 ... second steering mirror (optical axis adjustment) Mechanism), 100, 300 ... laser processing apparatus, 204 ... condensing optical system (condensing lens), 232 ... drive unit (drive mechanism), 250 ... control unit (signal acquisition unit, offset amount setting unit, imaging state) Control unit, drive mechanism control unit), L ... laser beam (laser beam for processing) LB1 ... measurement light, LB2 ... reflected light, LS1 ... first branched reflected light (branched reflected light), LS2 ... second branched reflected light (branched reflected light), OP1 ... first branched optical path (first branched reflected light Optical path), OP2... Second branched optical path (optical path of the second branched reflected light).

Claims (8)

  1.  加工対象物に加工用レーザ光を集光することにより、前記加工対象物に改質領域を形成するレーザ加工装置であって、
     測定用光を出射する測定用光源と、
     前記加工用レーザ光及び前記測定用光を前記加工対象物に集光する集光用レンズと、
     前記加工対象物のレーザ光入射面で反射された前記測定用光の反射光に基づいて、前記レーザ光入射面の変位を検出する変位検出部と、
     前記測定用光及び前記測定用光の反射光の少なくとも何れかの結像状態を移動する結像状態調整部と、を備え、
     前記変位検出部は、
      前記測定用光の反射光を複数の分岐反射光へ分岐する分岐部と、
      複数の前記分岐反射光の光路それぞれに設けられ、複数の前記分岐反射光それぞれに対して互いに異なる大きさの非点収差量を付加する複数の非点収差付加部と、
      複数の前記分岐反射光の光路それぞれに設けられ、非点収差が付加された複数の前記分岐反射光それぞれのビーム形状を検出する複数のビーム形状検出部と、
      複数の前記分岐反射光の光路の中から前記結像状態調整部で調整する前記結像状態に応じた一つを選択し、選択した前記分岐反射光の光路における前記ビーム形状検出部の検出結果に基づいて前記変位に関する信号を取得する信号取得部と、を有する、レーザ加工装置。
    A laser processing apparatus that forms a modified region on the processing object by condensing the processing laser beam on the processing object,
    A measurement light source that emits measurement light; and
    A condensing lens that condenses the processing laser light and the measurement light on the object to be processed;
    A displacement detector that detects the displacement of the laser light incident surface based on the reflected light of the measurement light reflected by the laser light incident surface of the workpiece;
    An imaging state adjustment unit that moves an imaging state of at least one of the measurement light and reflected light of the measurement light, and
    The displacement detector is
    A branching section for branching the reflected light of the measurement light into a plurality of branched reflected lights;
    A plurality of astigmatism adding units that are provided in each of the plurality of branched reflected light paths and add astigmatism amounts of different sizes to each of the plurality of branched reflected lights;
    A plurality of beam shape detection units that are provided in each of the optical paths of the plurality of branch reflected lights and detect the beam shape of each of the plurality of branch reflected lights to which astigmatism is added;
    One of the plurality of branched reflected light paths is selected according to the imaging state to be adjusted by the imaging state adjusting unit, and the detection result of the beam shape detection unit in the selected optical path of the branched reflected light And a signal acquisition unit that acquires a signal related to the displacement based on the laser processing apparatus.
  2.  前記結像状態調整部は、前記結像状態を移動することでオフセット量を調整し、
     前記信号取得部は、複数の前記分岐反射光の光路の中から、前記結像状態調整部で調整する前記オフセット量に応じた一つを選択する、請求項1に記載のレーザ加工装置。
    The imaging state adjustment unit adjusts the offset amount by moving the imaging state,
    The laser processing apparatus according to claim 1, wherein the signal acquisition unit selects one of a plurality of optical paths of the branched reflected light according to the offset amount adjusted by the imaging state adjustment unit.
  3.  前記分岐部は、前記測定用光の反射光を少なくとも第1分岐反射光及び第2分岐反射光へ分岐し、
     前記非点収差付加部は、
      前記第1分岐反射光の光路に設けられ、第1非点収差量を前記第1分岐反射光に付加する第1非点収差付加部と、
      前記第2分岐反射光の光路に設けられ、前記第1非点収差量よりも大きい第2非点収差量を前記第2分岐反射光に付加する第2非点収差付加部と、を有し、
     前記信号取得部は、
      前記結像状態調整部で調整する前記オフセット量が第1範囲にある場合には、前記第1分岐反射光の光路を選択し、
      前記結像状態調整部で調整する前記オフセット量が前記第1範囲よりも深い第2範囲にある場合には、前記第2分岐反射光の光路を選択する、請求項2に記載のレーザ加工装置。
    The branching unit branches the reflected light of the measurement light into at least a first branched reflected light and a second branched reflected light,
    The astigmatism adding unit is
    A first astigmatism adding unit that is provided in the optical path of the first branched reflected light and adds a first astigmatism amount to the first branched reflected light;
    A second astigmatism adding unit that is provided in the optical path of the second branched reflected light and adds a second astigmatism amount larger than the first astigmatism amount to the second branched reflected light; ,
    The signal acquisition unit
    When the offset amount to be adjusted by the imaging state adjustment unit is in the first range, the optical path of the first branched reflected light is selected,
    3. The laser processing apparatus according to claim 2, wherein an optical path of the second branched reflected light is selected when the offset amount adjusted by the imaging state adjusting unit is in a second range deeper than the first range. .
  4.  前記結像状態調整部で調整する前記オフセット量を設定するオフセット量設定部と、
     前記オフセット量設定部で設定された前記オフセット量となるように前記結像状態調整部を制御する結像状態制御部と、を備える請求項2又は3に記載のレーザ加工装置。
    An offset amount setting unit for setting the offset amount to be adjusted by the imaging state adjusting unit;
    The laser processing apparatus according to claim 2, further comprising: an imaging state control unit that controls the imaging state adjustment unit so as to be the offset amount set by the offset amount setting unit.
  5.  前記集光用レンズの光軸方向に沿って、前記加工対象物及び前記集光用レンズの少なくとも何れかを動作させる駆動機構と、
     前記信号取得部で取得した前記信号が目標値を維持するように前記駆動機構を動作させる駆動機構制御部と、を備える、請求項1~4の何れか一項に記載のレーザ加工装置。
    A drive mechanism for operating at least one of the object to be processed and the condensing lens along the optical axis direction of the condensing lens;
    The laser processing apparatus according to any one of claims 1 to 4, further comprising: a drive mechanism control unit that operates the drive mechanism so that the signal acquired by the signal acquisition unit maintains a target value.
  6.  前記加工用レーザ光の光軸に前記測定用光の光軸を合わせる光軸調整機構を備える、請求項1~5の何れか一項に記載のレーザ加工装置。 The laser processing apparatus according to any one of claims 1 to 5, further comprising an optical axis adjustment mechanism that aligns the optical axis of the measurement light with the optical axis of the processing laser light.
  7.  前記測定用光源は、互いに異なる波長を有する複数の光の何れかを出射可能であって、複数の波長の光のうち前記加工対象物に対する反射率が最も高い波長を有する光を前記測定用光として出射する、請求項1~5の何れか一項に記載のレーザ加工装置。 The measurement light source can emit any of a plurality of lights having different wavelengths, and the light having the highest reflectivity with respect to the object to be processed is selected from the plurality of wavelengths. 6. The laser processing apparatus according to claim 1, wherein the laser processing apparatus emits as
  8.  加工対象物に加工用レーザ光を集光することにより、前記加工対象物に改質領域を形成するレーザ加工方法であって、
     前記加工対象物に前記加工用レーザ光を集光用レンズで集光しながら、測定用光を前記加工対象物に前記集光用レンズで集光し、前記加工対象物のレーザ光入射面で反射された当該測定用光の反射光を少なくとも第1分岐反射光及び第2分岐反射光へ分岐し、前記第1分岐反射光の光路において第1非点収差量を付加した前記第1分岐反射光のビーム形状を検出すると共に前記第2分岐反射光の光路において前記第1非点収差量よりも大きい第2非点収差量を付加した前記第2分岐反射光のビーム形状を検出し、当該ビーム形状の検出結果に基づいて前記レーザ光入射面の変位に関する信号を取得し、取得した前記信号が目標値を維持するように前記集光用レンズの光軸方向に沿って前記加工対象物及び前記集光用レンズの少なくとも何れかを動作させるレーザ加工ステップを備え、
     前記レーザ加工ステップは、
      オフセット量を設定する第1ステップと、
      前記第1ステップで設定した前記オフセット量が第1範囲の場合には前記第1分岐反射光の光路を選択し、前記第1ステップで設定した前記オフセット量が前記第1範囲よりも深い第2範囲の場合には前記第2分岐反射光の光路を選択する第2ステップと、
      前記第1ステップで設定した前記オフセット量となるように、前記測定用光及び前記測定用光の反射光の少なくとも何れかの結像状態を移動する第3ステップと、
      前記第1ステップで設定した前記オフセット量となるように、前記加工対象物及び前記集光用レンズの少なくとも何れかを動作させる第4ステップと、
      前記第3ステップ及び前記第4ステップの後、前記目標値を取得する第5ステップと、
      前記第5ステップの後、前記加工対象物に前記加工用レーザ光を前記集光用レンズで集光しながら、前記第2ステップで選択した前記分岐反射光の光路において前記ビーム形状を検出し、当該ビーム形状の検出結果に基づいて前記信号を取得し、取得した前記信号が前記目標値を維持するように前記集光用レンズの光軸方向に沿って前記加工対象物及び前記集光用レンズの少なくとも何れかを動作させる第6ステップと、を含む、レーザ加工方法。
    A laser processing method for forming a modified region in a processing object by condensing a processing laser beam on the processing object,
    While condensing the processing laser light on the processing object with a condensing lens, the measurement light is condensed on the processing object with the condensing lens, and the laser light incident surface of the processing object is The reflected light of the reflected measurement light is branched into at least a first branched reflected light and a second branched reflected light, and a first astigmatism amount is added in the optical path of the first branched reflected light. Detecting a beam shape of the second branched reflected light to which a second astigmatism amount larger than the first astigmatism amount is added in the optical path of the second branched reflected light, and detecting the beam shape of the second branched reflected light; A signal related to the displacement of the laser light incident surface is acquired based on the detection result of the beam shape, and the workpiece and the processing object along the optical axis direction of the condensing lens so that the acquired signal maintains a target value. At least one of the condensing lenses Comprising a laser processing step of operation,
    The laser processing step includes
    A first step of setting an offset amount;
    When the offset amount set in the first step is in the first range, the optical path of the first branched reflected light is selected, and the offset amount set in the first step is a second deeper than the first range. A second step of selecting an optical path of the second branched reflected light in the case of a range;
    A third step of moving an imaging state of at least one of the measurement light and the reflected light of the measurement light so as to be the offset amount set in the first step;
    A fourth step of operating at least one of the object to be processed and the condensing lens so as to be the offset amount set in the first step;
    A fifth step for obtaining the target value after the third step and the fourth step;
    After the fifth step, the beam shape is detected in the optical path of the branched reflected light selected in the second step while condensing the processing laser light on the processing object with the condensing lens, The signal is acquired based on the detection result of the beam shape, and the object to be processed and the condensing lens along the optical axis direction of the condensing lens so that the acquired signal maintains the target value. And a sixth step of operating at least one of the laser processing method.
PCT/JP2017/042053 2016-12-16 2017-11-22 Laser machining device and laser machining method WO2018110238A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780077289.9A CN110337708B (en) 2016-12-16 2017-11-22 Laser processing device and laser processing method
KR1020197017355A KR102454121B1 (en) 2016-12-16 2017-11-22 Laser processing apparatus and laser processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016244693A JP6786374B2 (en) 2016-12-16 2016-12-16 Laser processing equipment and laser processing method
JP2016-244693 2016-12-16

Publications (1)

Publication Number Publication Date
WO2018110238A1 true WO2018110238A1 (en) 2018-06-21

Family

ID=62558266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042053 WO2018110238A1 (en) 2016-12-16 2017-11-22 Laser machining device and laser machining method

Country Status (5)

Country Link
JP (1) JP6786374B2 (en)
KR (1) KR102454121B1 (en)
CN (1) CN110337708B (en)
TW (1) TWI745509B (en)
WO (1) WO2018110238A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182251A1 (en) * 2020-03-10 2021-09-16 浜松ホトニクス株式会社 Laser processing device and laser processing method
WO2021182252A1 (en) * 2020-03-10 2021-09-16 浜松ホトニクス株式会社 Laser processing device and laser processing method
WO2022180808A1 (en) * 2021-02-26 2022-09-01 株式会社ニコン Optical processing device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088761B2 (en) * 2018-07-05 2022-06-21 浜松ホトニクス株式会社 Laser processing equipment
US11897056B2 (en) 2018-10-30 2024-02-13 Hamamatsu Photonics K.K. Laser processing device and laser processing method
JP7120904B2 (en) 2018-10-30 2022-08-17 浜松ホトニクス株式会社 LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
WO2020090905A1 (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser processing device and laser processing method
JP7303079B2 (en) * 2019-09-11 2023-07-04 浜松ホトニクス株式会社 LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
JP7405605B2 (en) * 2019-12-26 2023-12-26 株式会社キーエンス laser processing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014155936A (en) * 2013-02-14 2014-08-28 Sumitomo Osaka Cement Co Ltd Processing apparatus
JP2015024428A (en) * 2013-07-26 2015-02-05 住友大阪セメント株式会社 Processing device
JP2015186825A (en) * 2014-03-14 2015-10-29 株式会社東京精密 Laser dicing device and dicing method
WO2016121685A1 (en) * 2015-01-28 2016-08-04 株式会社東京精密 Laser dicing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3481672A (en) * 1967-01-03 1969-12-02 Hughes Aircraft Co F.m. laser contour mapper
US5684566A (en) * 1995-05-24 1997-11-04 Svg Lithography Systems, Inc. Illumination system and method employing a deformable mirror and diffractive optical elements
CN101065694A (en) * 2004-11-12 2007-10-31 应用材料股份有限公司 Single axis light pipe for homogenizing one axis of illumination system based on laser diodes
JP5131957B2 (en) * 2007-02-22 2013-01-30 パルステック工業株式会社 Laser micromachining device and focus servo method for laser micromachining device
JP4402708B2 (en) * 2007-08-03 2010-01-20 浜松ホトニクス株式会社 Laser processing method, laser processing apparatus and manufacturing method thereof
JP6353683B2 (en) * 2014-04-04 2018-07-04 浜松ホトニクス株式会社 Laser processing apparatus and laser processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014155936A (en) * 2013-02-14 2014-08-28 Sumitomo Osaka Cement Co Ltd Processing apparatus
JP2015024428A (en) * 2013-07-26 2015-02-05 住友大阪セメント株式会社 Processing device
JP2015186825A (en) * 2014-03-14 2015-10-29 株式会社東京精密 Laser dicing device and dicing method
WO2016121685A1 (en) * 2015-01-28 2016-08-04 株式会社東京精密 Laser dicing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182251A1 (en) * 2020-03-10 2021-09-16 浜松ホトニクス株式会社 Laser processing device and laser processing method
WO2021182252A1 (en) * 2020-03-10 2021-09-16 浜松ホトニクス株式会社 Laser processing device and laser processing method
JP7441684B2 (en) 2020-03-10 2024-03-01 浜松ホトニクス株式会社 Laser processing equipment and laser processing method
JP7441683B2 (en) 2020-03-10 2024-03-01 浜松ホトニクス株式会社 Laser processing equipment and laser processing method
WO2022180808A1 (en) * 2021-02-26 2022-09-01 株式会社ニコン Optical processing device

Also Published As

Publication number Publication date
CN110337708B (en) 2022-11-18
CN110337708A (en) 2019-10-15
JP2018098464A (en) 2018-06-21
JP6786374B2 (en) 2020-11-18
KR20190097033A (en) 2019-08-20
TW201836748A (en) 2018-10-16
KR102454121B1 (en) 2022-10-14
TWI745509B (en) 2021-11-11

Similar Documents

Publication Publication Date Title
WO2018110238A1 (en) Laser machining device and laser machining method
US11612956B2 (en) Laser light radiation device and laser light radiation method
JP5254761B2 (en) Laser processing equipment
JP6353683B2 (en) Laser processing apparatus and laser processing method
JP5670647B2 (en) Processing object cutting method
WO2011016296A1 (en) Laser machining method
JP7034621B2 (en) Laser processing equipment
JP6719074B2 (en) Laser processing area confirmation device and confirmation method
JP6867762B2 (en) Divergence angle adjustment device and divergence angle adjustment method
US11065722B2 (en) Laser processing apparatus and laser processing method
JP2017174941A (en) Laser processing method and laser processing apparatus
JP6693040B1 (en) Aberration adjusting method and aberration controlling method for laser processing apparatus
US20210370437A1 (en) Laser machining device
JP6327525B2 (en) Laser dicing equipment
KR20190071729A (en) Laser processing device and operation confirmation method
JP6569187B2 (en) Position detection device
JP6710891B2 (en) Light modulation device and light modulation method
JP2023013750A (en) Laser processing device and control method of the same
JP2020163432A (en) Aberration adjustment method and aberration control method for laser processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197017355

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880754

Country of ref document: EP

Kind code of ref document: A1