WO2011016296A1 - Laser machining method - Google Patents

Laser machining method Download PDF

Info

Publication number
WO2011016296A1
WO2011016296A1 PCT/JP2010/060666 JP2010060666W WO2011016296A1 WO 2011016296 A1 WO2011016296 A1 WO 2011016296A1 JP 2010060666 W JP2010060666 W JP 2010060666W WO 2011016296 A1 WO2011016296 A1 WO 2011016296A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation pattern
laser
laser beam
modulation
laser light
Prior art date
Application number
PCT/JP2010/060666
Other languages
French (fr)
Japanese (ja)
Inventor
一弘 渥美
雅春 星川
浩之 岩城
誠 中野
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2011016296A1 publication Critical patent/WO2011016296A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the present invention relates to a laser processing method for forming a modified region on a workpiece.
  • a conventional laser processing method there is known a method in which a modified region is formed on a processing target by irradiating a laser beam with a focusing point inside the processing target (for example, Patent Document 1). , 2).
  • a laser beam emitted from a laser light source is modulated by a reflective spatial light modulator.
  • an accurate modified region is stably formed on the workpiece due to, for example, a shift in the optical system caused by a machine difference between laser processing apparatuses (so-called machine difference). May be difficult to do.
  • an object of the present invention is to provide a laser processing method capable of stably forming an accurate modified region on a workpiece.
  • a laser processing method includes a laser processing method in which a modified region is formed in a processing target by irradiating a laser beam with a focusing point inside the processing target.
  • a modulation step of modulating the laser light with the spatial light modulator, a condensing step of condensing the modulated laser light on the workpiece, and a detection step of detecting the position of the laser light, and modulating In the process, laser light is incident on the modulation pattern displayed on the display unit of the spatial light modulator, the laser light is modulated according to the modulation pattern, and based on the position of the laser light detected in the detection process, The position of the modulation pattern is changed.
  • the position of the modulation pattern in the spatial light modulator is changed based on the position of the laser light. Therefore, for example, even when the position of the laser light incident on the spatial light modulator is shifted, the position of the modulation pattern can be changed according to the shift. Therefore, the laser beam can always be suitably modulated by the spatial light modulator, and the aberration of the laser beam focused on the workpiece can be stably suppressed. That is, it is possible to stably form a modified region with high accuracy on the workpiece.
  • the detection step the amount of change in position of the laser beam with respect to the reference position is detected.
  • the laser beam and the modulation pattern are predetermined based on the amount of change in the position of the laser beam detected in the detection step. It is preferable to change the position of the modulation pattern so that the positional relationship is established. In this case, the above-described effect of stably forming an accurate modified region on the workpiece can be preferably exhibited.
  • the position of the modulation pattern may be changed using a data table regarding the position change amount of the modulation pattern associated with the position change amount of the laser beam.
  • the modulation pattern position change amount may be calculated based on the laser beam position change amount, and the modulation pattern position may be changed according to the calculated modulation pattern position change amount.
  • the modulation pattern represents the refractive index for each of the plurality of pixels of the display unit.
  • the modulation pattern is moved to a predetermined position and moved.
  • the refractive index of a plurality of pixels is calculated in accordance with the modulated pattern, and the refractive index of the pixel is controlled so as to have a refractive index in accordance with the calculated value.
  • the amount of movement for moving the modulation pattern may be less than or equal to one pixel size of the display unit.
  • an accurate modified region can be stably formed on a workpiece.
  • FIG. 3 is a cross-sectional view taken along the line III-III of the workpiece in FIG. 2. It is a top view of the processing target after laser processing.
  • FIG. 5 is a cross-sectional view taken along the line VV of the workpiece in FIG. 4.
  • FIG. 5 is a cross-sectional view taken along line VI-VI of the workpiece in FIG. 4.
  • It is a schematic structure figure showing a laser processing device concerning one embodiment of the present invention. It is a fragmentary sectional view of a reflection type spatial light modulator.
  • the modified region is formed in the processing target by irradiating the processing target with the laser beam with the focusing point inside the processing target.
  • a laser processing apparatus 100 includes a laser light source 101 that oscillates a laser beam L, a dichroic mirror 103 that is arranged so as to change the direction of the optical axis (optical path) of the laser beam L, and A condensing lens 105 for condensing the laser light L.
  • the laser processing apparatus 100 also includes a support 107 for supporting the workpiece 1 irradiated with the laser light L collected by the condensing lens 105, and the support 107 in the X, Y, and Z axis directions.
  • the laser light L emitted from the laser light source 101 is changed in the direction of its optical axis by 90 ° by the dichroic mirror 103, and is placed inside the processing object 1 placed on the support base 107.
  • the light is condensed by the condensing lens 105.
  • the stage 111 is moved, and the workpiece 1 is moved relative to the laser beam L along the planned cutting line 5. As a result, a modified region along the planned cutting line 5 is formed on the workpiece 1.
  • a semiconductor material, a piezoelectric material, or the like is used, and as shown in FIG. 2, a cutting scheduled line 5 for cutting the processing object 1 is set in the processing object 1.
  • the planned cutting line 5 is a virtual line extending linearly.
  • the laser beam L is projected along the planned cutting line 5 in a state where the focused point P is aligned with the inside of the workpiece 1. It moves relatively (that is, in the direction of arrow A in FIG. 2).
  • the modified region 7 is formed inside the workpiece 1 along the planned cutting line 5, and the modified region 7 formed along the planned cutting line 5 is formed. It becomes the cutting start area 8.
  • the condensing point P is a location where the laser light L is condensed.
  • the planned cutting line 5 is not limited to a straight line, but may be a curved line, or may be a line actually drawn on the surface 3 of the workpiece 1 without being limited to a virtual line.
  • the modified region 7 may be formed continuously or intermittently. Further, the modified region 7 may be in the form of a line or a dot. In short, the modified region 7 only needs to be formed at least inside the workpiece 1.
  • a crack may be formed starting from the modified region 7, and the crack and modified region 7 may be exposed on the outer surface (front surface, back surface, or outer peripheral surface) of the workpiece 1.
  • the laser beam L passes through the workpiece 1 and is particularly absorbed in the vicinity of the condensing point inside the workpiece 1, whereby a modified region 7 is formed in the workpiece 1. (Ie, internal absorption laser processing). Therefore, since the laser beam L is hardly absorbed by the surface 3 of the workpiece 1, the surface 3 of the workpiece 1 is not melted. In general, when a removed portion such as a hole or a groove is formed by being melted and removed from the front surface 3 (surface absorption laser processing), the processing region gradually proceeds from the front surface 3 side to the back surface side.
  • the modified region formed by the laser processing apparatus refers to a region where the density, refractive index, mechanical strength, and other physical characteristics are different from the surroundings.
  • the modified region include a melt treatment region, a crack region, a dielectric breakdown region, a refractive index change region, and the like, and there is a region where these are mixed.
  • the modified region there are a region where the density of the modified region in the material to be processed is changed compared to the density of the non-modified region, and a region where lattice defects are formed. Also known as the metastatic region).
  • the area where the density of the melt treatment area, the refractive index change area, the modified area has changed compared to the density of the non-modified area, and the area where lattice defects are formed are further divided into these areas and the modified area.
  • cracks are included in the interface with the non-modified region.
  • the included crack may be formed over the entire surface of the modified region, or may be formed in only a part or a plurality of parts.
  • Examples of the processing object 1 include those containing or consisting of silicon, glass, LiTaO 3 or sapphire (Al 2 O 3 ).
  • FIG. 7 is a schematic configuration diagram illustrating a laser processing apparatus that performs a laser processing method according to an embodiment of the present invention.
  • the laser processing apparatus 200 includes a laser light source 202, a reflective spatial light modulator 203, a 4f optical system 241 and a condensing optical system 204 in a housing 231.
  • the laser light source 202 emits laser light L.
  • a fiber laser is used as the laser light source 202.
  • the laser light source 202 here is fixed to the top plate 236 of the housing 231 with screws or the like so as to emit laser light in the horizontal direction (X direction).
  • the reflective spatial light modulator 203 modulates the laser light L emitted from the laser light source 202.
  • a reflective liquid crystal (LCOS: liquid crystal on silicon) spatial light modulator (SLM: Spatial light modulator) is used as the reflective spatial light modulator 203 .
  • the reflective spatial light modulator 203 reflects the laser light L incident from the horizontal direction obliquely upward with respect to the horizontal direction, and is condensed inside the workpiece 1 (that is, the condensed light). Modulation is performed so that the aberration of the laser beam L) at the position is less than or equal to a predetermined aberration (ideally substantially zero).
  • FIG. 8 is a partial cross-sectional view of the reflective spatial light modulator of the laser processing apparatus of FIG.
  • the reflective spatial light modulator 203 includes a silicon substrate 213, a drive circuit layer 914, a plurality of pixel electrodes 214, a reflective film 215 such as a dielectric multilayer mirror, an alignment film 999a, a liquid crystal layer (display). Part) 216, an alignment film 999b, a transparent conductive film 217, and a transparent substrate 218 such as a glass substrate, which are laminated in this order.
  • the transparent substrate 218 has a surface 218 a along the XY plane, and the surface 218 a constitutes the surface of the reflective spatial light modulator 203.
  • the transparent substrate 218 mainly includes a light transmissive material such as glass.
  • the transparent substrate 218 transmits the laser light L having a predetermined wavelength incident from the surface 218 a of the reflective spatial light modulator 203 into the reflective spatial light modulator 203.
  • the transparent conductive film 217 is formed on the back surface 218a of the transparent substrate 218, and mainly includes a conductive material (for example, ITO) that transmits the laser light L.
  • the plurality of pixel electrodes 214 are two-dimensionally arranged according to the arrangement of the plurality of pixels, and are arranged on the silicon substrate 213 along the transparent conductive film 217.
  • the plurality of pixel electrodes 214 are formed of a metal material such as aluminum, for example.
  • the surface 214a of the electrode 214 is processed flat and smooth.
  • the plurality of pixel electrodes 214 are driven by an active matrix circuit provided in the drive circuit layer 914.
  • the active matrix circuit is provided between the plurality of pixel electrodes 214 and the silicon substrate 213, and controls the voltage applied to each pixel electrode 214 in accordance with the optical image to be output from the reflective spatial light modulator 203.
  • Such an active matrix circuit includes, for example, a first driver circuit that controls the applied voltage of each pixel column arranged in the X-axis direction (not shown) and a first driver circuit that controls the applied voltage of each pixel column arranged in the Y-axis direction. 2 driver circuits.
  • the active matrix circuit is configured such that a predetermined voltage is applied to the pixel electrode 214 of the pixel designated by the control unit 250 in both driver circuits.
  • the alignment films 999a and 999b are arranged on both end faces of the liquid crystal layer 216, and the liquid crystal molecule groups are arranged in a certain direction.
  • the alignment films 999a and 999b are made of a polymer material such as polyimide.
  • As the alignment films 999a and 999b those in which a rubbing process or the like is performed on a contact surface with the liquid crystal layer 216 are used.
  • the liquid crystal layer 216 is disposed between the plurality of pixel electrodes 214 and the transparent conductive film 217, and modulates the laser light L in accordance with an electric field formed by each pixel electrode 214 and the transparent conductive film 217. That is, when a voltage is applied to a certain pixel electrode 214 by the active matrix circuit, an electric field is formed between the transparent conductive film 217 and the pixel electrode 214.
  • This electric field is applied to each of the reflective film 215 and the liquid crystal layer 216 at a rate corresponding to the thickness of each. Then, the alignment direction of the liquid crystal molecules 216a changes according to the magnitude of the electric field applied to the liquid crystal layer 216.
  • the laser light L passes through the transparent substrate 218 and the transparent conductive film 217 and enters the liquid crystal layer 216, the laser light L is modulated by the liquid crystal molecules 216 a while passing through the liquid crystal layer 216 and reflected by the reflective film 215. Then, the light is again modulated by the liquid crystal layer 216 and taken out.
  • each pixel electrode part 214a facing the transparent conductive film 217 by the controller 250 (described later), and each pixel electrode part facing the transparent conductive film 217 in the liquid crystal layer 216 according to the voltage.
  • the refractive index of the portion sandwiched between 214a is changed (the refractive index of the liquid crystal layer 216 at the position corresponding to each pixel is changed). With the change in the refractive index, the phase of the laser light L can be changed for each pixel of the liquid crystal layer 216 in accordance with the applied voltage.
  • phase modulation corresponding to the hologram pattern can be applied to each pixel by the liquid crystal layer 216 (that is, a modulation pattern as a hologram pattern for applying modulation is displayed on the spatial light modulator 203).
  • a modulation pattern as a hologram pattern for applying modulation is displayed on the spatial light modulator 203.
  • the wavefront of the laser beam L that is incident on the reflective spatial light modulator 203 and is modulated and reflected is adjusted, and each light beam constituting the laser beam L is shifted in phase to a component in a predetermined direction orthogonal to the traveling direction. And at least one of the intensity, amplitude, phase, polarization, etc. of the laser beam L is adjusted.
  • the 4f optical system 241 adjusts the wavefront shape of the laser light L modulated by the reflective spatial light modulator 203.
  • the 4f optical system 241 includes a first lens 241a and a second lens 241b.
  • the lenses 241a and 241b are arranged between the reflective spatial light modulator 203 and the condensing optical system 204 so as to have the following configuration. That is, in the lenses 241a and 241b, the distance between the reflective spatial light modulator 203 and the first lens 241a is the focal length f1 of the first lens 241a, and the distance between the condensing optical system 204 and the second lens 241b. Is the focal length f2 of the lens 241b, the distance between the first lens 241a and the second lens 241b is f1 + f2, and the reflective spatial light so that the first lens 241a and the second lens 241b are both-side telecentric optical systems. It is arranged between the modulator 203 and the condensing optical system 204.
  • the laser light L modulated by the reflective spatial light modulator 203 is adjusted so that the laser light L incident on the condensing optical system 204 becomes parallel light.
  • the condensing optical system 204 condenses the laser light L modulated by the 4f optical system 241 inside the workpiece 1.
  • the condensing optical system 204 includes a plurality of lenses and is installed on the bottom plate 233 of the housing 231 via a drive unit 232 including a piezoelectric element and the like.
  • the laser processing apparatus 200 includes a surface observation unit 211 for observing the surface 3 of the processing object 1 and an AF (AutoFocus) unit for finely adjusting the distance between the condensing optical system 204 and the processing object 1. 212 in the housing 231.
  • AF AutoFocus
  • the surface observation unit 211 includes an observation light source 211a that emits visible light VL1, and a detector 211b that receives and detects the reflected light VL2 of the visible light VL1 reflected by the surface 3 of the workpiece 1. ing.
  • the visible light VL1 emitted from the observation light source 211a is reflected and transmitted by the mirror 208 and the dichroic mirrors 209, 210, and 238, and is condensed toward the object to be processed by the condensing optical system 204.
  • the reflected light VL2 reflected by the surface 2 of the workpiece 1 is collected by the condensing optical system 204 and transmitted and reflected by the dichroic mirrors 238 and 210, and then the dichroic mirror 209. And is received by the detector 211b.
  • the AF unit 212 emits the AF laser beam LB1 and receives and detects the reflected light LB2 of the AF laser beam LB1 reflected by the surface 3 of the workpiece 1, thereby detecting the surface along the planned cutting line 5 3 displacement data is acquired. Then, when forming the modified region 7, the AF unit 212 drives the drive unit 232 based on the acquired displacement data, and moves the condensing optical system 204 along the waviness of the surface 3 of the workpiece 1. Reciprocate in the optical axis direction.
  • the laser processing apparatus 200 includes a control unit 250 including a CPU, a ROM, a RAM, and the like for controlling the laser processing apparatus 200.
  • the control unit 250 controls the laser light source 202 and adjusts the output, pulse width, and the like of the laser light L emitted from the laser light source 202. Further, when the control unit 250 forms the modified region 7, the condensing point P of the laser light L is located at a predetermined distance from the surface 3 of the workpiece 1 and moves relatively along the scheduled cutting line 5. Thus, the position of the housing 231 and the stage 111 and the drive of the drive unit 232 are controlled.
  • the control unit 250 applies a predetermined voltage to each electrode portion 214 a of the pixel electrode 214 and the transparent electrode film 217 in the reflective spatial light modulator 203, thereby reflecting the reflective spatial light.
  • the refractive index of each element of the liquid crystal layer 216 in the modulator 203 is changed, and a predetermined modulation pattern is displayed on the liquid crystal layer 216.
  • the aberration of the laser light L emitted from the reflective spatial light modulator 203 and condensed inside the workpiece 1 is controlled to be equal to or less than a predetermined aberration (details will be described later).
  • an expand tape is attached to the back surface of the workpiece 1 and the workpiece 1 is placed on the stage 111. Place.
  • a condensing point is aligned from the surface 3 of the workpiece 1 to the inside of the silicon wafer 11, and the laser light source 202 irradiates the laser beam L (S1 in FIG. 9).
  • the emitted laser light L travels in the horizontal direction in the housing 231, is reflected downward by the mirror 205 a, and the light intensity is adjusted by the attenuator 207.
  • the laser beam L is reflected in the horizontal direction by the mirror 205 b, the intensity distribution is made uniform by the beam homogenizer 260, and is incident on the reflective spatial light modulator 203.
  • the laser beam L incident on the reflective spatial light modulator 203 is modulated so as to be focused inside the workpiece 1 with an aberration equal to or less than a predetermined aberration (S4).
  • the incident laser beam L transmits through the modulation pattern displayed on the liquid crystal layer 216, is modulated according to the modulation pattern, and is emitted obliquely upward with respect to the horizontal direction.
  • the polarization direction is changed by the ⁇ / 2 wavelength plate 228 so that the polarization direction is along the line 5 to be cut, and is reflected by the mirror 206b in the horizontal direction to be 4f.
  • the light enters the optical system 241.
  • the wavefront shape of the laser light L incident on the 4f optical system 241 is adjusted so as to be incident on the condensing optical system 204 as parallel light (S5). Specifically, the laser light L is transmitted and converged through the first lens 241a, reflected downward by the mirror 219, diverged through the confocal O, and transmitted through the second lens 241b to become parallel light. Will converge again.
  • the laser light L sequentially passes through the dichroic mirrors 210 and 218 and enters the condensing optical system 204, and is condensed by the condensing optical system 204 inside the workpiece 1 placed on the stage 111. (S6).
  • the modified region 7 is formed inside the workpiece 1 along the planned cutting line 5.
  • the workpiece 1 is cut along the scheduled cutting line 5 with the modified region 7 as a starting point of cutting, and separated from each other as a plurality of semiconductor chips.
  • the laser processing apparatus 200 of the present embodiment includes PSDs (Position Sensitive Detectors) 270a and 270b as optical sensors for detecting the position (pointing) of the laser light L.
  • PSDs Position Sensitive Detectors
  • These PSDs 270 a and 270 b are connected to the control unit 250 and output the detected position information of the laser light L to the control unit 250.
  • the PSD 270a is connected between the mirror 205a and the attenuator 207 in the optical path of the laser beam L.
  • the PSD 270a reflects the laser light L reflected by the mirror 205a in order by the mirrors 271 and 272 and guides it to the PSD 270a.
  • the PSD 270a two-dimensionally detects the barycentric position (center position) of the spot of the laser light L before the light intensity is adjusted by the attenuator 207 as a coordinate value.
  • the PSD 270b is connected between the mirror 205b and the beam homogenizer 260 in the optical path of the laser light L.
  • the PSD 270b guides the laser light L reflected by the mirror 205b to the PSD 270b by sequentially reflecting it by the mirrors 273 and 274.
  • the PSD 270b two-dimensionally detects the position of the center of gravity of the spot of the laser light L before the intensity distribution is made uniform by the beam homogenizer 260 as the coordinate value.
  • FIG. 10 is a conceptual diagram showing an example of position information of laser light detected by PSD.
  • the coordinate value Q of the detected laser beam L is set on a coordinate axis with the center of gravity of the laser beam L in the initial state (at the time of initial adjustment) as the origin (reference position).
  • the coordinate value of the laser beam L is detected, that is, the position change amount with respect to the reference value (initial value) of the laser beam L is detected.
  • the coordinate value Q of the laser light L emitted from the laser light source 202 and before entering the reflective spatial light modulator 203 is constantly monitored by PSDs 270a and 270b (S2). Based on the coordinate value Q of the laser beam L input from at least one of the PSDs 270a and 270b, the voltage applied to the electrode unit 214a and the transparent conductive film 217 of the reflective spatial light modulator 203 is controlled by the control unit 250. Then, the position of the modulation pattern displayed on the liquid crystal layer 216 is automatically changed (corrected) (S3).
  • a data table relating to the position change amount of the modulation pattern associated with the coordinate value of the laser beam L is stored in the control unit 250 in advance.
  • the coordinate value Q of the laser light L is maintained so that the laser light L and the modulation pattern maintain a predetermined positional relationship (for example, the centroids coincide with each other).
  • the position change amount of the modulation pattern are associated with each other for each X and Y coordinate (see FIG. 8). Then, using this data table Tb, the position change amount of the modulation pattern is derived from the coordinate values of the laser light L detected by the PSDs 270a and 270b, and the position of the modulation pattern is changed by this position change amount.
  • the position change amount of the modulation pattern may be calculated by the following equation (1) based on the coordinate value of the laser beam L, and the position of the modulation pattern may be changed by this position change amount.
  • ⁇ X PSDx ⁇ a
  • ⁇ Y PSDy ⁇ b
  • ⁇ X is the amount of change in the position of the modulation pattern (X coordinate)
  • ⁇ Y position change amount (Y coordinate) of the modulation pattern
  • PSDx Coordinate value of laser beam L (X coordinate)
  • PSDy Coordinate value of laser beam L (Y coordinate) a
  • b predetermined set values
  • the positional relationship between the laser beam L incident on the liquid crystal layer 216 and the modulation pattern H displayed on the liquid crystal layer 216 is matched with the predetermined positional relationship with a high accuracy of about one pixel.
  • the laser light L is reliably and accurately modulated so that the aberration of the laser light L condensed inside the workpiece 1 is equal to or less than a predetermined aberration.
  • FIG. 12 is a conceptual diagram showing the relationship between the modulation pattern displayed on the liquid crystal layer and the laser light incident on the liquid crystal layer.
  • FIG. 12 shows the liquid crystal layer 216 when viewed from the Z-axis direction (see FIG. 8), and the modulation pattern H is circular.
  • FIG. 12A even when the center of gravity of the displayed modulation pattern H and the center of the incident laser beam L are shifted from each other due to, for example, a shift of the optical system, they do not match each other. ),
  • the position of the modulation pattern H is automatically moved based on the coordinate value of the laser beam L, and the center of gravity of the modulation pattern H and the center of gravity of the laser beam L coincide with each other.
  • the position of the modulation pattern H in the reflective spatial light modulator 203 is changed based on the position of the laser light L, and the positional relationship between the laser light L and the modulation pattern H is as high as about 1 pixel. It is put together in. Therefore, the laser beam L can always be suitably modulated by the reflective spatial light modulator 203, and the aberration of the laser beam L focused on the workpiece 1 can be stably suppressed.
  • the present embodiment it is possible to stably form the modified region 7 with high accuracy in the workpiece 1. As a result, the machine difference between apparatuses can be suppressed, and the processing quality can always be kept high.
  • FIG. 13 is an enlarged photograph showing a state of a cut surface when a modified region is formed on a workpiece and cut.
  • the pixel size (pixel size) of the reflective spatial light modulator 203 is 20 ⁇ m ⁇ 20 ⁇ m, and the number of pixels (number of pixels) is 792 in the horizontal (X) direction, and 792 ⁇ 600 of 600 in the vertical (Y) direction.
  • the liquid crystal layer 216 is shown when the position of the aberration correction pattern H, which is a modulation pattern, is changed along the X direction.
  • the positional relationship between the laser light L and the modulation pattern H is a predetermined positional relationship, and the quality of the cut surface is good.
  • the amount of change in the position of the modulation pattern H is +24 ⁇ m, the quality of the cut surface is poor, and otherwise, the quality of the cut surface is normal.
  • the modified region 7 is formed with high accuracy, high-precision alignment is required for the positional relationship between the laser light L and the modulation pattern H.
  • a sufficient effect appears with a movement amount of 1 pixel or less (that is, a movement amount of the pixel size in the vertical and horizontal directions). If the desired processing quality cannot be obtained by the movement within the range of one pixel, it is desirable to readjust the setting of the optical system.
  • FIG. 15 is a diagram for explaining movement of a modulation pattern of one pixel or less.
  • the refractive index corresponding to the modulation pattern for example, relating to aberration correction
  • each pixel liquid crystal
  • the modulation pattern is represented by the refractive index for each of a plurality of pixels.
  • the two-dimensional pattern is simplified and described as a one-dimensional pattern.
  • a modulation pattern curve (in the case of FIG. 13, an aberration correction pattern curve) W1 representing the refractive index of each pixel is set.
  • the refractive index of each pixel is expressed as a modulation pattern curve.
  • this modulation pattern curve is a modulation pattern representing the refractive index for each pixel.
  • the modulation pattern curve W1 is shifted rightward by a predetermined movement amount (for example, +4 ⁇ m as in FIG. 13).
  • a predetermined movement amount for example, +4 ⁇ m as in FIG. 13.
  • the refractive index (the circle in W2) of each pixel corresponding to the shifted modulation pattern curve W2 is recalculated.
  • a refractive index corresponding to the recalculated value is given to each pixel.
  • the refractive index given according to each pixel is 8 bits (256 gradations).
  • the modulation pattern H is shifted as described above. Therefore, it is possible to correct even a shift of 1 pixel or less, and it is possible to shift the modulation pattern (aberration correction pattern) more precisely.
  • the present invention is not limited to the above embodiments.
  • the above embodiment includes PSDs 270a and 270b for detecting the position of the laser beam, only one of these may be included.
  • PSDs 270a and 270b may be provided instead of or in addition to the PSDs 270a and 270b.
  • a PSD 370 may be connected between the dichroic mirror 238 and the condensing optical system 204 in the optical path of the laser light L.
  • the laser light L transmitted through the dichroic mirror 238 is sequentially reflected by the mirrors 371 and 372 and guided to the PSD 370. Therefore, the position of the laser beam L immediately before being focused on the workpiece 1 is detected.
  • the position of the modulation pattern H is always detected as a deviation of the position of the laser light L, and the positional relationship between the laser light L and the modulation pattern H is changed. It will be appropriate.
  • the beam homogenizer 260 is provided, and the laser light L whose intensity distribution is uniformed by the beam homogenizer 260 is incident on the reflective spatial light modulator 203.
  • a beam expander is provided.
  • the laser beam L whose beam diameter has been expanded by the beam expander may be incident on the reflective spatial light modulator 203.
  • the laser light incident surface when forming the modified region 7 is not limited to the surface 3 of the workpiece 1 and may be the back surface of the workpiece 1.
  • a plurality of rows of modified regions 7 may be formed along the planned cutting line 5.
  • an accurate modified region can be stably formed on a workpiece.
  • SYMBOLS 1 Processing object, 7 ... Modified area

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

Provided is a laser machining method by which a precisely modified region can be stably formed in an object to be machined. The laser beam (L) is modulated by a spatial light modulator and is converged onto the object to be machined. Upon convergence, the position of the laser beam (L) is detected and the position of a modulation pattern (H) in the spatial light modulator is changed on the basis of the detected position of the laser beam (L). Therefore, even if the position of the laser beam (L) incident upon the spatial light modulator is deviated, or the like, it is possible to change the position of the modulation pattern (H) in accordance with the deviation, so that the laser beam (L) can be always appropriately modulated by the spatial light modulator. Thus, it is possible to stably suppress aberrations of the laser beam (L) converged onto the object to be machined.

Description

レーザ加工方法Laser processing method
 本発明は、加工対象物に改質領域を形成するためのレーザ加工方法に関する。 The present invention relates to a laser processing method for forming a modified region on a workpiece.
 従来のレーザ加工方法としては、加工対象物の内部に集光点を合わせてレーザ光を照射することにより、加工対象物に改質領域を形成するものが知られている(例えば、特許文献1,2参照)。このようなレーザ加工方法では、レーザ光源で出射されたレーザ光を反射型空間光変調器で変調することが図られている。 As a conventional laser processing method, there is known a method in which a modified region is formed on a processing target by irradiating a laser beam with a focusing point inside the processing target (for example, Patent Document 1). , 2). In such a laser processing method, a laser beam emitted from a laser light source is modulated by a reflective spatial light modulator.
国際公開第2005/106564号パンフレットInternational Publication No. 2005/106564 Pamphlet 特開2006-68762号公報JP 2006-68762 A
 ここで、上述したような従来技術では、例えばレーザ加工装置間の機差(いわゆる装置間機差)に起因する光学系のズレ等によって、加工対象物に精度よい改質領域を安定して形成することが困難となるおそれがある。 Here, in the conventional technology as described above, an accurate modified region is stably formed on the workpiece due to, for example, a shift in the optical system caused by a machine difference between laser processing apparatuses (so-called machine difference). May be difficult to do.
 そこで、本発明は、加工対象物に精度よい改質領域を安定して形成することができるレーザ加工方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a laser processing method capable of stably forming an accurate modified region on a workpiece.
 上記課題を解決するために、本発明に係るレーザ加工方法は、加工対象物の内部に集光点を合わせてレーザ光を照射することにより、加工対象物に改質領域を形成するレーザ加工方法であって、レーザ光を空間光変調器で変調する変調工程と、変調したレーザ光を加工対象物に集光させる集光工程と、レーザ光の位置を検出する検出工程と、を含み、変調工程においては、空間光変調器の表示部に表示した変調パターンにレーザ光を入射させ、該レーザ光に変調パターンに応じた変調を与えると共に、検出工程で検出したレーザ光の位置に基づいて、変調パターンの位置を変化させることを特徴とする。 In order to solve the above-described problems, a laser processing method according to the present invention includes a laser processing method in which a modified region is formed in a processing target by irradiating a laser beam with a focusing point inside the processing target. A modulation step of modulating the laser light with the spatial light modulator, a condensing step of condensing the modulated laser light on the workpiece, and a detection step of detecting the position of the laser light, and modulating In the process, laser light is incident on the modulation pattern displayed on the display unit of the spatial light modulator, the laser light is modulated according to the modulation pattern, and based on the position of the laser light detected in the detection process, The position of the modulation pattern is changed.
 このレーザ加工方法では、空間光変調器における変調パターンの位置がレーザ光の位置に基づいて変化される。そのため、例えば空間光変調器に入射するレーザ光の位置がズレた場合等においても、かかるズレに応じて変調パターンの位置を変化させることが可能となる。よって、空間光変調器でレーザ光を常に好適に変調でき、加工対象物に集光されるレーザ光の収差を安定して抑制できる。すなわち、加工対象物に精度よい改質領域を安定して形成することが可能となる。 In this laser processing method, the position of the modulation pattern in the spatial light modulator is changed based on the position of the laser light. Therefore, for example, even when the position of the laser light incident on the spatial light modulator is shifted, the position of the modulation pattern can be changed according to the shift. Therefore, the laser beam can always be suitably modulated by the spatial light modulator, and the aberration of the laser beam focused on the workpiece can be stably suppressed. That is, it is possible to stably form a modified region with high accuracy on the workpiece.
 また、検出工程では、レーザ光が基準位置に対して変化した位置変化量を検出し、変調工程では、検出工程で検出したレーザ光の位置変化量に基づいて、レーザ光と変調パターンとが所定位置関係となるよう変調パターンの位置を変化させることが好ましい。この場合、加工対象物に精度よい改質領域を安定して形成するという上記効果を好適に発揮させることができる。 In the detection step, the amount of change in position of the laser beam with respect to the reference position is detected. In the modulation step, the laser beam and the modulation pattern are predetermined based on the amount of change in the position of the laser beam detected in the detection step. It is preferable to change the position of the modulation pattern so that the positional relationship is established. In this case, the above-described effect of stably forming an accurate modified region on the workpiece can be preferably exhibited.
 このとき、変調工程では、レーザ光の位置変化量に関連付けられた変調パターンの位置変化量に関するデータテーブルを用いて、変調パターンの位置を変化させる場合がある。また、変調工程では、レーザ光の位置変化量に基づいて変調パターンの位置変化量を算出し、算出した変調パターンの位置変化量に応じて変調パターンの位置を変化させる場合がある。 At this time, in the modulation step, the position of the modulation pattern may be changed using a data table regarding the position change amount of the modulation pattern associated with the position change amount of the laser beam. In the modulation step, the modulation pattern position change amount may be calculated based on the laser beam position change amount, and the modulation pattern position may be changed according to the calculated modulation pattern position change amount.
 また、上記作用効果を好適に奏する構成として、具体的には、変調パターンは、表示部の複数の画素毎の屈折率を表しており、変調工程では、変調パターンを所定位置に移動させ、移動させた変調パターンに応じて複数の画素の屈折率を演算し、この演算した値に応じた屈折率となるよう画素の屈折率を制御する構成が挙げられる。 Further, as a configuration that favorably exhibits the above-described effects, specifically, the modulation pattern represents the refractive index for each of the plurality of pixels of the display unit. In the modulation step, the modulation pattern is moved to a predetermined position and moved. There is a configuration in which the refractive index of a plurality of pixels is calculated in accordance with the modulated pattern, and the refractive index of the pixel is controlled so as to have a refractive index in accordance with the calculated value.
 このとき、変調パターンを移動させる移動量は、表示部の1画素サイズ以下である場合がある。 At this time, the amount of movement for moving the modulation pattern may be less than or equal to one pixel size of the display unit.
 本発明によれば、加工対象物に精度よい改質領域を安定して形成することができる。 According to the present invention, an accurate modified region can be stably formed on a workpiece.
改質領域の形成に用いられるレーザ加工装置の概略構成図である。It is a schematic block diagram of the laser processing apparatus used for formation of a modification area | region. 改質領域の形成の対象となる加工対象物の平面図である。It is a top view of the processing target object used as the object of formation of a modification field. 図2の加工対象物のIII-III線に沿っての断面図である。FIG. 3 is a cross-sectional view taken along the line III-III of the workpiece in FIG. 2. レーザ加工後の加工対象物の平面図である。It is a top view of the processing target after laser processing. 図4の加工対象物のV-V線に沿っての断面図である。FIG. 5 is a cross-sectional view taken along the line VV of the workpiece in FIG. 4. 図4の加工対象物のVI-VI線に沿っての断面図である。FIG. 5 is a cross-sectional view taken along line VI-VI of the workpiece in FIG. 4. 本発明の一実施形態に係るレーザ加工装置を示す概略構成図である。It is a schematic structure figure showing a laser processing device concerning one embodiment of the present invention. 反射型空間光変調器の部分断面図である。It is a fragmentary sectional view of a reflection type spatial light modulator. レーザ加工方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the laser processing method. PSDにより検出されたレーザ光の位置情報の一例を示す概念図である。It is a conceptual diagram which shows an example of the positional information on the laser beam detected by PSD. レーザ光の座標値と変調パターンの位置変化量とに関するデータテーブルを示す図である。It is a figure which shows the data table regarding the coordinate value of a laser beam, and the position variation | change_quantity of a modulation pattern. 液晶層に表示された変調パターンと液晶層に入射したレーザ光との関係を示す概念図である。It is a conceptual diagram which shows the relationship between the modulation pattern displayed on the liquid crystal layer, and the laser beam which injected into the liquid crystal layer. 加工対象物に改質領域を形成して切断した際の切断面状態を示す拡大写真図である。It is an enlarged photograph figure which shows the cut surface state at the time of forming and forming a modification area | region in a workpiece. 図7のレーザ加工装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the laser processing apparatus of FIG. 1ピクセル以下の変調パターンの移動を説明するための図である。It is a figure for demonstrating the movement of the modulation pattern of 1 pixel or less.
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当要素には同一符号を付し、重複する説明を省略する。また、「上」「下」「左」「右」の語は、図面に示される状態に基づいており便宜的なものである。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent element in each figure, and the overlapping description is abbreviate | omitted. Further, the terms “upper”, “lower”, “left”, and “right” are based on the state shown in the drawings for convenience.
 本実施形態に係るレーザ加工装置では、加工対象物の内部に集光点を合わせてレーザ光を照射することにより加工対象物に改質領域を形成する。そこで、まず、本実施形態のレーザ加工装置による改質領域の形成について、図1~図6を参照して説明する。 In the laser processing apparatus according to the present embodiment, the modified region is formed in the processing target by irradiating the processing target with the laser beam with the focusing point inside the processing target. First, the formation of the modified region by the laser processing apparatus of this embodiment will be described with reference to FIGS.
 図1に示すように、レーザ加工装置100は、レーザ光Lをパルス発振するレーザ光源101と、レーザ光Lの光軸(光路)の向きを90°変えるように配置されたダイクロイックミラー103と、レーザ光Lを集光するための集光用レンズ105と、を備えている。また、レーザ加工装置100は、集光用レンズ105で集光されたレーザ光Lが照射される加工対象物1を支持するための支持台107と、支持台107をX、Y、Z軸方向に移動させるためのステージ111と、レーザ光Lの出力やパルス幅等を調節するためにレーザ光源101を制御するレーザ光源制御部102と、ステージ111の移動を制御するステージ制御部115と、を備えている。 As shown in FIG. 1, a laser processing apparatus 100 includes a laser light source 101 that oscillates a laser beam L, a dichroic mirror 103 that is arranged so as to change the direction of the optical axis (optical path) of the laser beam L, and A condensing lens 105 for condensing the laser light L. The laser processing apparatus 100 also includes a support 107 for supporting the workpiece 1 irradiated with the laser light L collected by the condensing lens 105, and the support 107 in the X, Y, and Z axis directions. A stage 111 for moving the light source, a laser light source control unit 102 for controlling the laser light source 101 to adjust the output and pulse width of the laser light L, and a stage control unit 115 for controlling the movement of the stage 111. I have.
 このレーザ加工装置100では、レーザ光源101から出射されたレーザ光Lは、ダイクロイックミラー103によってその光軸の向きを90°変えられ、支持台107上に載置された加工対象物1の内部に集光用レンズ105によって集光される。これと共に、ステージ111が移動させられ、加工対象物1がレーザ光Lに対して切断予定ライン5に沿って相対移動させられる。これにより、切断予定ライン5に沿った改質領域が加工対象物1に形成されることとなる。 In this laser processing apparatus 100, the laser light L emitted from the laser light source 101 is changed in the direction of its optical axis by 90 ° by the dichroic mirror 103, and is placed inside the processing object 1 placed on the support base 107. The light is condensed by the condensing lens 105. At the same time, the stage 111 is moved, and the workpiece 1 is moved relative to the laser beam L along the planned cutting line 5. As a result, a modified region along the planned cutting line 5 is formed on the workpiece 1.
 加工対象物1は、半導体材料や圧電材料等が用いられ、図2に示すように、加工対象物1には、加工対象物1を切断するための切断予定ライン5が設定されている。切断予定ライン5は、直線状に延びた仮想線である。加工対象物1の内部に改質領域を形成する場合、図3に示すように、加工対象物1の内部に集光点Pを合わせた状態で、レーザ光Lを切断予定ライン5に沿って(すなわち、図2の矢印A方向に)相対的に移動させる。これにより、図4~図6に示すように、改質領域7が切断予定ライン5に沿って加工対象物1の内部に形成され、切断予定ライン5に沿って形成された改質領域7が切断起点領域8となる。 As the processing object 1, a semiconductor material, a piezoelectric material, or the like is used, and as shown in FIG. 2, a cutting scheduled line 5 for cutting the processing object 1 is set in the processing object 1. The planned cutting line 5 is a virtual line extending linearly. When forming a modified region inside the workpiece 1, as shown in FIG. 3, the laser beam L is projected along the planned cutting line 5 in a state where the focused point P is aligned with the inside of the workpiece 1. It moves relatively (that is, in the direction of arrow A in FIG. 2). As a result, as shown in FIGS. 4 to 6, the modified region 7 is formed inside the workpiece 1 along the planned cutting line 5, and the modified region 7 formed along the planned cutting line 5 is formed. It becomes the cutting start area 8.
 なお、集光点Pとは、レーザ光Lが集光する箇所のことである。また、切断予定ライン5は、直線状に限らず曲線状であってもよいし、仮想線に限らず加工対象物1の表面3に実際に引かれた線であってもよい。また、改質領域7は、連続的に形成される場合もあるし、断続的に形成される場合もある。また、改質領域7は列状でも点状でもよく、要は、改質領域7は少なくとも加工対象物1の内部に形成されていればよい。また、改質領域7を起点に亀裂が形成される場合があり、亀裂及び改質領域7は、加工対象物1の外表面(表面、裏面、若しくは外周面)に露出していてもよい。 In addition, the condensing point P is a location where the laser light L is condensed. Further, the planned cutting line 5 is not limited to a straight line, but may be a curved line, or may be a line actually drawn on the surface 3 of the workpiece 1 without being limited to a virtual line. In addition, the modified region 7 may be formed continuously or intermittently. Further, the modified region 7 may be in the form of a line or a dot. In short, the modified region 7 only needs to be formed at least inside the workpiece 1. In addition, a crack may be formed starting from the modified region 7, and the crack and modified region 7 may be exposed on the outer surface (front surface, back surface, or outer peripheral surface) of the workpiece 1.
 ちなみに、ここでは、レーザ光Lが、加工対象物1を透過すると共に加工対象物1の内部の集光点近傍にて特に吸収され、これにより、加工対象物1に改質領域7が形成される(すなわち、内部吸収型レーザ加工)。よって、加工対象物1の表面3ではレーザ光Lが殆ど吸収されないので、加工対象物1の表面3が溶融することはない。一般的に、表面3から溶融され除去されて穴や溝等の除去部が形成される(表面吸収型レーザ加工)場合、加工領域は表面3側から徐々に裏面側に進行する。 Incidentally, here, the laser beam L passes through the workpiece 1 and is particularly absorbed in the vicinity of the condensing point inside the workpiece 1, whereby a modified region 7 is formed in the workpiece 1. (Ie, internal absorption laser processing). Therefore, since the laser beam L is hardly absorbed by the surface 3 of the workpiece 1, the surface 3 of the workpiece 1 is not melted. In general, when a removed portion such as a hole or a groove is formed by being melted and removed from the front surface 3 (surface absorption laser processing), the processing region gradually proceeds from the front surface 3 side to the back surface side.
 ところで、本実施形態に係るレーザ加工装置で形成される改質領域は、密度、屈折率、機械的強度やその他の物理的特性が周囲とは異なる状態になった領域をいう。改質領域としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等があり、これらが混在した領域もある。さらに、改質領域としては、加工対象物の材料において改質領域の密度が非改質領域の密度と比較して変化した領域や、格子欠陥が形成された領域がある(これらをまとめて高密転移領域ともいう)。 By the way, the modified region formed by the laser processing apparatus according to the present embodiment refers to a region where the density, refractive index, mechanical strength, and other physical characteristics are different from the surroundings. Examples of the modified region include a melt treatment region, a crack region, a dielectric breakdown region, a refractive index change region, and the like, and there is a region where these are mixed. Furthermore, as the modified region, there are a region where the density of the modified region in the material to be processed is changed compared to the density of the non-modified region, and a region where lattice defects are formed. Also known as the metastatic region).
 また、溶融処理領域や屈折率変化領域、改質領域の密度が非改質領域の密度と比較して変化した領域、格子欠陥が形成された領域は、さらにそれら領域の内部や改質領域と非改質領域との界面に亀裂(割れ、マイクロクラック)を内包している場合がある。内包される亀裂は、改質領域の全面に渡る場合や一部分のみや複数部分に形成される場合がある。加工対象物1としては、例えばシリコン、ガラス、LiTaO又はサファイア(Al)を含む、又はこれらからなるものが挙げられる。 In addition, the area where the density of the melt treatment area, the refractive index change area, the modified area has changed compared to the density of the non-modified area, and the area where lattice defects are formed are further divided into these areas and the modified area. In some cases, cracks (cracks, microcracks) are included in the interface with the non-modified region. The included crack may be formed over the entire surface of the modified region, or may be formed in only a part or a plurality of parts. Examples of the processing object 1 include those containing or consisting of silicon, glass, LiTaO 3 or sapphire (Al 2 O 3 ).
 次に、本発明の一実施形態について詳細に説明する。 Next, an embodiment of the present invention will be described in detail.
 図7は、本発明の一実施形態に係るレーザ加工方法を実施するレーザ加工装置を示す概略構成図である。図7に示すように、レーザ加工装置200は、レーザ光源202、反射型空間光変調器203、4f光学系241及び集光光学系204を筐体231内に備えている。 FIG. 7 is a schematic configuration diagram illustrating a laser processing apparatus that performs a laser processing method according to an embodiment of the present invention. As shown in FIG. 7, the laser processing apparatus 200 includes a laser light source 202, a reflective spatial light modulator 203, a 4f optical system 241 and a condensing optical system 204 in a housing 231.
 レーザ光源202は、レーザ光Lを出射するものである。レーザ光源202としては、例えばファイバレーザが用いられている。ここでのレーザ光源202は、水平方向(X方向)にレーザ光を出射するように、筐体231の天板236にねじ等で固定されている。 The laser light source 202 emits laser light L. For example, a fiber laser is used as the laser light source 202. The laser light source 202 here is fixed to the top plate 236 of the housing 231 with screws or the like so as to emit laser light in the horizontal direction (X direction).
 反射型空間光変調器203は、レーザ光源202から出射されたレーザ光Lを変調するものである。反射型空間光変調器203としては、例えば反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)が用いられている。この反射型空間光変調器203は、水平方向から入射するレーザ光Lを、水平方向に対し斜め上方に反射しつつ、加工対象物1の内部に集光されるレーザ光L(つまり、集光位置でのレーザ光L)の収差が所定収差以下(理想的には、略ゼロ)となるように変調する。 The reflective spatial light modulator 203 modulates the laser light L emitted from the laser light source 202. As the reflective spatial light modulator 203, for example, a reflective liquid crystal (LCOS: liquid crystal on silicon) spatial light modulator (SLM: Spatial light modulator) is used. The reflective spatial light modulator 203 reflects the laser light L incident from the horizontal direction obliquely upward with respect to the horizontal direction, and is condensed inside the workpiece 1 (that is, the condensed light). Modulation is performed so that the aberration of the laser beam L) at the position is less than or equal to a predetermined aberration (ideally substantially zero).
 図8は、図7のレーザ加工装置の反射型空間光変調器の部分断面図である。図8に示すように、反射型空間光変調器203は、シリコン基板213、駆動回路層914、複数の画素電極214、誘電体多層膜ミラー等の反射膜215、配向膜999a、液晶層(表示部)216、配向膜999b、透明導電膜217、及びガラス基板等の透明基板218を備え、これらがこの順に積層されている。 FIG. 8 is a partial cross-sectional view of the reflective spatial light modulator of the laser processing apparatus of FIG. As shown in FIG. 8, the reflective spatial light modulator 203 includes a silicon substrate 213, a drive circuit layer 914, a plurality of pixel electrodes 214, a reflective film 215 such as a dielectric multilayer mirror, an alignment film 999a, a liquid crystal layer (display). Part) 216, an alignment film 999b, a transparent conductive film 217, and a transparent substrate 218 such as a glass substrate, which are laminated in this order.
 透明基板218は、XY平面に沿った表面218aを有しており、該表面218aは反射型空間光変調器203の表面を構成する。透明基板218は、例えばガラス等の光透過性材料を主に含んでいる。透明基板218は、反射型空間光変調器203の表面218aから入射した所定波長のレーザ光Lを、反射型空間光変調器203の内部へ透過する。透明導電膜217は、透明基板218の裏面218a上に形成されており、レーザ光Lを透過する導電性材料(例えばITO)を主に含んで構成されている。 The transparent substrate 218 has a surface 218 a along the XY plane, and the surface 218 a constitutes the surface of the reflective spatial light modulator 203. The transparent substrate 218 mainly includes a light transmissive material such as glass. The transparent substrate 218 transmits the laser light L having a predetermined wavelength incident from the surface 218 a of the reflective spatial light modulator 203 into the reflective spatial light modulator 203. The transparent conductive film 217 is formed on the back surface 218a of the transparent substrate 218, and mainly includes a conductive material (for example, ITO) that transmits the laser light L.
 複数の画素電極214は、複数の画素の配列に従って二次元状に配列されており、透明導電膜217に沿ってシリコン基板213上に配列されている。複数の画素電極214は、例えばアルミニウム等の金属材料で形成されている。また、電極214の表面214aは、平坦且つ滑らかに加工されている。複数の画素電極214は、駆動回路層914に設けられたアクティブ・マトリクス回路によって駆動される。 The plurality of pixel electrodes 214 are two-dimensionally arranged according to the arrangement of the plurality of pixels, and are arranged on the silicon substrate 213 along the transparent conductive film 217. The plurality of pixel electrodes 214 are formed of a metal material such as aluminum, for example. In addition, the surface 214a of the electrode 214 is processed flat and smooth. The plurality of pixel electrodes 214 are driven by an active matrix circuit provided in the drive circuit layer 914.
 アクティブ・マトリクス回路は、複数の画素電極214とシリコン基板213との間に設けられ、反射型空間光変調器203から出力しようとする光像に応じて各画素電極214への印加電圧を制御する。このようなアクティブ・マトリクス回路は、例えば図示しないX軸方向に並んだ各画素列の印加電圧を制御する第1のドライバ回路と、Y軸方向に並んだ各画素列の印加電圧を制御する第2のドライバ回路とを有している。アクティブ・マトリクス回路は、制御部250によって双方のドライバ回路で指定された画素の画素電極214に所定電圧が印加されるよう構成されている。 The active matrix circuit is provided between the plurality of pixel electrodes 214 and the silicon substrate 213, and controls the voltage applied to each pixel electrode 214 in accordance with the optical image to be output from the reflective spatial light modulator 203. . Such an active matrix circuit includes, for example, a first driver circuit that controls the applied voltage of each pixel column arranged in the X-axis direction (not shown) and a first driver circuit that controls the applied voltage of each pixel column arranged in the Y-axis direction. 2 driver circuits. The active matrix circuit is configured such that a predetermined voltage is applied to the pixel electrode 214 of the pixel designated by the control unit 250 in both driver circuits.
 なお、配向膜999a,999bは、液晶層216の両端面に配置されており、液晶分子群を一定方向に配列させる。配向膜999a,999bは、例えばポリイミドといった高分子材料により形成されている。配向膜999a,999bとしては、液晶層216との接触面にラビング処理等が施されたものが適用される。 Note that the alignment films 999a and 999b are arranged on both end faces of the liquid crystal layer 216, and the liquid crystal molecule groups are arranged in a certain direction. The alignment films 999a and 999b are made of a polymer material such as polyimide. As the alignment films 999a and 999b, those in which a rubbing process or the like is performed on a contact surface with the liquid crystal layer 216 are used.
 液晶層216は、複数の画素電極214と透明導電膜217との間に配置されており、各画素電極214と透明導電膜217とにより形成される電界に応じてレーザ光Lを変調する。すなわち、アクティブ・マトリクス回路によって或る画素電極214に電圧が印加されると、透明導電膜217と該画素電極214との間に電界が形成される。 The liquid crystal layer 216 is disposed between the plurality of pixel electrodes 214 and the transparent conductive film 217, and modulates the laser light L in accordance with an electric field formed by each pixel electrode 214 and the transparent conductive film 217. That is, when a voltage is applied to a certain pixel electrode 214 by the active matrix circuit, an electric field is formed between the transparent conductive film 217 and the pixel electrode 214.
 この電界は、反射膜215及び液晶層216のそれぞれに対し、各々の厚さに応じた割合で印加される。そして、液晶層216に印加された電界の大きさに応じて液晶分子216aの配列方向が変化する。レーザ光Lが透明基板218及び透明導電膜217を透過して液晶層216に入射すると、このレーザ光Lは液晶層216を通過する間に液晶分子216aによって変調され、反射膜215において反射した後、再び液晶層216により変調されてから取り出されることとなる。 This electric field is applied to each of the reflective film 215 and the liquid crystal layer 216 at a rate corresponding to the thickness of each. Then, the alignment direction of the liquid crystal molecules 216a changes according to the magnitude of the electric field applied to the liquid crystal layer 216. When the laser light L passes through the transparent substrate 218 and the transparent conductive film 217 and enters the liquid crystal layer 216, the laser light L is modulated by the liquid crystal molecules 216 a while passing through the liquid crystal layer 216 and reflected by the reflective film 215. Then, the light is again modulated by the liquid crystal layer 216 and taken out.
 このとき、制御部250(後述)によって透明導電膜217と対向する各画素電極部214a毎に電圧が印加され、その電圧に応じて、液晶層216において透明導電膜217と対向する各画素電極部214aに挟まれた部分の屈折率が変化される(各画素に対応した位置の液晶層216の屈折率が変化する)。かかる屈折率の変化により、印加した電圧に応じて、レーザ光Lの位相を液晶層216の画素毎に変化させることができる。つまり、ホログラムパターンに応じた位相変調を画素毎に液晶層216によって与えることができる(すなわち、変調を付与するホログラムパターンとしての変調パターンが空間光変調器203に表示される)。その結果、反射型空間光変調器203に入射し変調されて反射するレーザ光Lの波面が調整され、該レーザ光Lを構成する各光線において進行方向に直交する所定方向の成分の位相にずれが生じ、該レーザ光Lの強度、振幅、位相、偏光等の少なくとも1つが調整されることになる。 At this time, a voltage is applied to each pixel electrode part 214a facing the transparent conductive film 217 by the controller 250 (described later), and each pixel electrode part facing the transparent conductive film 217 in the liquid crystal layer 216 according to the voltage. The refractive index of the portion sandwiched between 214a is changed (the refractive index of the liquid crystal layer 216 at the position corresponding to each pixel is changed). With the change in the refractive index, the phase of the laser light L can be changed for each pixel of the liquid crystal layer 216 in accordance with the applied voltage. That is, phase modulation corresponding to the hologram pattern can be applied to each pixel by the liquid crystal layer 216 (that is, a modulation pattern as a hologram pattern for applying modulation is displayed on the spatial light modulator 203). As a result, the wavefront of the laser beam L that is incident on the reflective spatial light modulator 203 and is modulated and reflected is adjusted, and each light beam constituting the laser beam L is shifted in phase to a component in a predetermined direction orthogonal to the traveling direction. And at least one of the intensity, amplitude, phase, polarization, etc. of the laser beam L is adjusted.
 図7に戻り、4f光学系241は、反射型空間光変調器203によって変調されたレーザ光Lの波面形状を調整するものである。この4f光学系241は、第1レンズ241a及び第2レンズ241bを有している。 Returning to FIG. 7, the 4f optical system 241 adjusts the wavefront shape of the laser light L modulated by the reflective spatial light modulator 203. The 4f optical system 241 includes a first lens 241a and a second lens 241b.
 レンズ241a,241bは、次の構成となるようにして反射型空間光変調器203と集光光学系204との間に配置されている。すなわち、レンズ241a,241bにあっては、反射型空間光変調器203と第1レンズ241aとの距離が第1レンズ241aの焦点距離f1となり、集光光学系204と第2レンズ241bとの距離がレンズ241bの焦点距離f2となり、第1レンズ241aと第2レンズ241bとの距離がf1+f2となり、且つ第1レンズ241aと第2レンズ241bとが両側テレセントリック光学系となるように、反射型空間光変調器203と集光光学系204との間に配置されている。 The lenses 241a and 241b are arranged between the reflective spatial light modulator 203 and the condensing optical system 204 so as to have the following configuration. That is, in the lenses 241a and 241b, the distance between the reflective spatial light modulator 203 and the first lens 241a is the focal length f1 of the first lens 241a, and the distance between the condensing optical system 204 and the second lens 241b. Is the focal length f2 of the lens 241b, the distance between the first lens 241a and the second lens 241b is f1 + f2, and the reflective spatial light so that the first lens 241a and the second lens 241b are both-side telecentric optical systems. It is arranged between the modulator 203 and the condensing optical system 204.
 この4f光学系241では、反射型空間光変調器203で変調されたレーザ光Lが空間伝播によって波面形状が変化し収差が増大するのを抑制することができる。ここでの4f光学系241においては、集光光学系204に入射するレーザ光Lが平行光となるようにレーザ光Lが調整される。 In this 4f optical system 241, it is possible to prevent the laser light L modulated by the reflective spatial light modulator 203 from changing its wavefront shape due to spatial propagation and increasing aberrations. In the 4f optical system 241 here, the laser light L is adjusted so that the laser light L incident on the condensing optical system 204 becomes parallel light.
 集光光学系204は、4f光学系241によって変調されたレーザ光Lを加工対象物1の内部に集光するものである。この集光光学系204は、複数のレンズを含んで構成されており、圧電素子等を含んで構成された駆動ユニット232を介して筐体231の底板233に設置されている。 The condensing optical system 204 condenses the laser light L modulated by the 4f optical system 241 inside the workpiece 1. The condensing optical system 204 includes a plurality of lenses and is installed on the bottom plate 233 of the housing 231 via a drive unit 232 including a piezoelectric element and the like.
 また、レーザ加工装置200は、加工対象物1の表面3を観察するための表面観察ユニット211と、集光光学系204と加工対象物1との距離を微調整するためのAF(AutoFocus)ユニット212と、を筐体231内に備えている。 The laser processing apparatus 200 includes a surface observation unit 211 for observing the surface 3 of the processing object 1 and an AF (AutoFocus) unit for finely adjusting the distance between the condensing optical system 204 and the processing object 1. 212 in the housing 231.
 表面観察ユニット211は、可視光VL1を出射する観察用光源211aと、加工対象物1の表面3で反射された可視光VL1の反射光VL2を受光して検出する検出器211bと、を有している。表面観察ユニット211では、観察用光源211aから出射された可視光VL1が、ミラー208及びダイクロイックミラー209,210,238で反射・透過され、集光光学系204で加工対象物に向けて集光される。そして、表面観察ユニット211では、加工対象物1の表面2で反射された反射光VL2が、集光光学系204で集光されてダイクロイックミラー238,210で透過・反射された後、ダイクロイックミラー209を透過して検出器211bで受光される。 The surface observation unit 211 includes an observation light source 211a that emits visible light VL1, and a detector 211b that receives and detects the reflected light VL2 of the visible light VL1 reflected by the surface 3 of the workpiece 1. ing. In the surface observation unit 211, the visible light VL1 emitted from the observation light source 211a is reflected and transmitted by the mirror 208 and the dichroic mirrors 209, 210, and 238, and is condensed toward the object to be processed by the condensing optical system 204. The In the surface observation unit 211, the reflected light VL2 reflected by the surface 2 of the workpiece 1 is collected by the condensing optical system 204 and transmitted and reflected by the dichroic mirrors 238 and 210, and then the dichroic mirror 209. And is received by the detector 211b.
 AFユニット212は、AF用レーザ光LB1を出射し、加工対象物1の表面3で反射されたAF用レーザ光LB1の反射光LB2を受光し検出することで、切断予定ライン5に沿った表面3の変位データを取得する。そして、AFユニット212は、改質領域7を形成する際、取得した変位データに基づいて駆動ユニット232を駆動させ、加工対象物1の表面3のうねりに沿うように集光光学系204をその光軸方向に往復移動させる。 The AF unit 212 emits the AF laser beam LB1 and receives and detects the reflected light LB2 of the AF laser beam LB1 reflected by the surface 3 of the workpiece 1, thereby detecting the surface along the planned cutting line 5 3 displacement data is acquired. Then, when forming the modified region 7, the AF unit 212 drives the drive unit 232 based on the acquired displacement data, and moves the condensing optical system 204 along the waviness of the surface 3 of the workpiece 1. Reciprocate in the optical axis direction.
 さらにまた、レーザ加工装置200は、該レーザ加工装置200を制御するためのものとして、CPU、ROM、RAM等からなる制御部250を備えている。制御部250は、レーザ光源202を制御し、レーザ光源202から出射されるレーザ光Lの出力やパルス幅等を調節する。また、制御部250は、改質領域7を形成する際、レーザ光Lの集光点Pが加工対象物1の表面3から所定距離に位置し且つ切断予定ライン5に沿って相対的に移動するように、筐体231やステージ111の位置、及び駆動ユニット232の駆動を制御する。 Furthermore, the laser processing apparatus 200 includes a control unit 250 including a CPU, a ROM, a RAM, and the like for controlling the laser processing apparatus 200. The control unit 250 controls the laser light source 202 and adjusts the output, pulse width, and the like of the laser light L emitted from the laser light source 202. Further, when the control unit 250 forms the modified region 7, the condensing point P of the laser light L is located at a predetermined distance from the surface 3 of the workpiece 1 and moves relatively along the scheduled cutting line 5. Thus, the position of the housing 231 and the stage 111 and the drive of the drive unit 232 are controlled.
 また、制御部250は、改質領域7を形成する際、反射型空間光変調器203における画素電極214の各電極部214aと透明電極膜217に所定電圧を印加することで、反射型空間光変調器203における液晶層216の各素子の屈折率を変化し、液晶層216に所定の変調パターンを表示させる。その結果、反射型空間光変調器203から出射され加工対象物1の内部に集光されるレーザ光Lの収差が、所定収差以下となるよう制御されることとなる(詳しくは、後述)。 Further, when forming the modified region 7, the control unit 250 applies a predetermined voltage to each electrode portion 214 a of the pixel electrode 214 and the transparent electrode film 217 in the reflective spatial light modulator 203, thereby reflecting the reflective spatial light. The refractive index of each element of the liquid crystal layer 216 in the modulator 203 is changed, and a predetermined modulation pattern is displayed on the liquid crystal layer 216. As a result, the aberration of the laser light L emitted from the reflective spatial light modulator 203 and condensed inside the workpiece 1 is controlled to be equal to or less than a predetermined aberration (details will be described later).
 以上のように構成されたレーザ加工装置200を用いて加工対象物1を切断する場合、まず、加工対象物1の裏面に、例えばエキスパンドテープを貼り付けて当該加工対象物1をステージ111上に載置する。 When cutting the workpiece 1 using the laser processing apparatus 200 configured as described above, first, for example, an expand tape is attached to the back surface of the workpiece 1 and the workpiece 1 is placed on the stage 111. Place.
 続いて、加工対象物1の表面3からシリコンウェハ11の内部に集光点を合わせ、レーザ光源202からレーザ光Lを照射する(図9のS1)。出射されたレーザ光Lは、筐体231内において水平方向に進行した後、ミラー205aによって下方に反射され、アッテネータ207によって光強度が調整される。そして、レーザ光Lは、ミラー205bによって水平方向に反射され、ビームホモジナイザ260によって強度分布が均一化されて反射型空間光変調器203に入射する。 Subsequently, a condensing point is aligned from the surface 3 of the workpiece 1 to the inside of the silicon wafer 11, and the laser light source 202 irradiates the laser beam L (S1 in FIG. 9). The emitted laser light L travels in the horizontal direction in the housing 231, is reflected downward by the mirror 205 a, and the light intensity is adjusted by the attenuator 207. Then, the laser beam L is reflected in the horizontal direction by the mirror 205 b, the intensity distribution is made uniform by the beam homogenizer 260, and is incident on the reflective spatial light modulator 203.
 反射型空間光変調器203に入射したレーザ光Lは、所定収差以下の収差で加工対象物1の内部に集光されるよう変調される(S4)。具体的には、入射したレーザ光Lは、液晶層216に表示された変調パターンを透過して該変調パターンに応じて変調され、水平方向に対し斜め上方に出射される。そして、レーザ光Lは、ミラー206aによって上方に反射された後、λ/2波長板228によって偏光方向が切断予定ライン5に沿う方向となるよう変更され、ミラー206bによって水平方向に反射されて4f光学系241に入射する。 The laser beam L incident on the reflective spatial light modulator 203 is modulated so as to be focused inside the workpiece 1 with an aberration equal to or less than a predetermined aberration (S4). Specifically, the incident laser beam L transmits through the modulation pattern displayed on the liquid crystal layer 216, is modulated according to the modulation pattern, and is emitted obliquely upward with respect to the horizontal direction. Then, after the laser beam L is reflected upward by the mirror 206a, the polarization direction is changed by the λ / 2 wavelength plate 228 so that the polarization direction is along the line 5 to be cut, and is reflected by the mirror 206b in the horizontal direction to be 4f. The light enters the optical system 241.
 4f光学系241に入射したレーザ光Lは、平行光で集光光学系204に入射するよう波面形状が調整される(S5)。具体的には、レーザ光Lは、第1レンズ241aを透過し収束され、ミラー219によって下方へ反射され、共焦点Oを経て発散すると共に、第2レンズ241bを透過し、平行光となるように再び収束される。 The wavefront shape of the laser light L incident on the 4f optical system 241 is adjusted so as to be incident on the condensing optical system 204 as parallel light (S5). Specifically, the laser light L is transmitted and converged through the first lens 241a, reflected downward by the mirror 219, diverged through the confocal O, and transmitted through the second lens 241b to become parallel light. Will converge again.
 その後、レーザ光Lは、ダイクロイックミラー210,218を順次透過して集光光学系204に入射し、ステージ111上に載置された加工対象物1の内部に集光光学系204によって集光される(S6)。これにより、切断予定ライン5に沿って、加工対象物1の内部に改質領域7が形成される。そして、エキスパンドテープを拡張することで、改質領域7を切断の起点として、加工対象物1を切断予定ライン5に沿って切断し、複数の半導体チップとして互いに離間させる。 Thereafter, the laser light L sequentially passes through the dichroic mirrors 210 and 218 and enters the condensing optical system 204, and is condensed by the condensing optical system 204 inside the workpiece 1 placed on the stage 111. (S6). Thereby, the modified region 7 is formed inside the workpiece 1 along the planned cutting line 5. Then, by expanding the expanded tape, the workpiece 1 is cut along the scheduled cutting line 5 with the modified region 7 as a starting point of cutting, and separated from each other as a plurality of semiconductor chips.
 ここで、本実施形態のレーザ加工装置200は、レーザ光Lの位置(ポインティング)を検出する光センサとして、PSD(Position Sensitive Detector:半導体位置検出素子)270a,270bを備えている。これらPSD270a,270bは、制御部250に接続されており、検出したレーザ光Lの位置情報を制御部250へ出力する。 Here, the laser processing apparatus 200 of the present embodiment includes PSDs (Position Sensitive Detectors) 270a and 270b as optical sensors for detecting the position (pointing) of the laser light L. These PSDs 270 a and 270 b are connected to the control unit 250 and output the detected position information of the laser light L to the control unit 250.
 PSD270aは、レーザ光Lの光路においてミラー205aとアッテネータ207との間に接続されている。ここでは、PSD270aは、ミラー205aで反射されたレーザ光Lを、ミラー271,272で順に反射させてPSD270aへと導光している。これにより、PSD270aは、アッテネータ207で光強度が調整される前のレーザ光Lのスポットにおける重心位置(中心位置)を、座標値として2次元的に検出する。 The PSD 270a is connected between the mirror 205a and the attenuator 207 in the optical path of the laser beam L. Here, the PSD 270a reflects the laser light L reflected by the mirror 205a in order by the mirrors 271 and 272 and guides it to the PSD 270a. As a result, the PSD 270a two-dimensionally detects the barycentric position (center position) of the spot of the laser light L before the light intensity is adjusted by the attenuator 207 as a coordinate value.
 PSD270bは、レーザ光Lの光路においてミラー205bとビームホモジナイザ260との間に接続されている。ここでは、PSD270bは、ミラー205bで反射されたレーザ光Lを、ミラー273,274で順に反射させてPSD270bへと導光している。これにより、PSD270bは、ビームホモジナイザ260で強度分布が均一化される前のレーザ光Lのスポットにおける重心位置を、座標値として2次元的に検出する。 The PSD 270b is connected between the mirror 205b and the beam homogenizer 260 in the optical path of the laser light L. Here, the PSD 270b guides the laser light L reflected by the mirror 205b to the PSD 270b by sequentially reflecting it by the mirrors 273 and 274. Thereby, the PSD 270b two-dimensionally detects the position of the center of gravity of the spot of the laser light L before the intensity distribution is made uniform by the beam homogenizer 260 as the coordinate value.
 図10は、PSDにより検出されたレーザ光の位置情報の一例を示す概念図である。図中の例では、検出されるレーザ光Lの座標値Qが、初期状態(初期調整時)のレーザ光Lの重心位置を原点(基準位置)とした座標軸にて設定されている。図10に示すように、PSD270a,270bによれば、レーザ光Lの座標値が検出される、つまり、レーザ光Lの基準値(初期値)に対する位置変化量が検出されることになる。 FIG. 10 is a conceptual diagram showing an example of position information of laser light detected by PSD. In the example in the figure, the coordinate value Q of the detected laser beam L is set on a coordinate axis with the center of gravity of the laser beam L in the initial state (at the time of initial adjustment) as the origin (reference position). As shown in FIG. 10, according to the PSDs 270a and 270b, the coordinate value of the laser beam L is detected, that is, the position change amount with respect to the reference value (initial value) of the laser beam L is detected.
 そこで、本実施形態においては、レーザ光源202から出射され反射型空間光変調器203に入射する前のレーザ光Lの座標値Qを、PSD270a,270bによって常時モニタする(S2)。そして、PSD270a,270bの少なくとも一方から入力されたレーザ光Lの座標値Qに基づいて、反射型空間光変調器203の電極部214a及び透明導電膜217に印加する電圧を制御部250によって制御し、液晶層216に表示する変調パターンの位置を自動的に変化(補正)させる(S3)。 Therefore, in this embodiment, the coordinate value Q of the laser light L emitted from the laser light source 202 and before entering the reflective spatial light modulator 203 is constantly monitored by PSDs 270a and 270b (S2). Based on the coordinate value Q of the laser beam L input from at least one of the PSDs 270a and 270b, the voltage applied to the electrode unit 214a and the transparent conductive film 217 of the reflective spatial light modulator 203 is controlled by the control unit 250. Then, the position of the modulation pattern displayed on the liquid crystal layer 216 is automatically changed (corrected) (S3).
 具体的には、レーザ光Lの座標値に関連付けられた変調パターンの位置変化量に関するデータテーブルを、制御部250に予め格納しておく。図11に示すように、ここでのデータテーブルTbでは、レーザ光Lと変調パターンとが所定位置関係を保つように(例えば、互いの重心が一致するように)、レーザ光Lの座標値Qと変調パターンの位置変化量とがX及びY座標(図8参照)毎に関連付けられている。そして、このデータテーブルTbを用いて、PSD270a,270bで検出されたレーザ光Lの座標値から変調パターンの位置変化量を導出し、この位置変化量だけ変調パターンの位置を変化させる。 Specifically, a data table relating to the position change amount of the modulation pattern associated with the coordinate value of the laser beam L is stored in the control unit 250 in advance. As shown in FIG. 11, in the data table Tb here, the coordinate value Q of the laser light L is maintained so that the laser light L and the modulation pattern maintain a predetermined positional relationship (for example, the centroids coincide with each other). And the position change amount of the modulation pattern are associated with each other for each X and Y coordinate (see FIG. 8). Then, using this data table Tb, the position change amount of the modulation pattern is derived from the coordinate values of the laser light L detected by the PSDs 270a and 270b, and the position of the modulation pattern is changed by this position change amount.
 或いは、レーザ光Lの座標値に基づいて、下式(1)によって変調パターンの位置変化量を算出し、この位置変化量だけ変調パターンの位置を変化させてもよい。
               ΔX=PSDx×a
               ΔY=PSDy×b …(1)
 但し、ΔX  :変調パターンの位置変化量(X座標)、
    ΔY  :変調パターンの位置変化量(Y座標)、
    PSDx:レーザ光Lの座標値(X座標)
    PSDy:レーザ光Lの座標値(Y座標)
    a,b :所定の設定値
Alternatively, the position change amount of the modulation pattern may be calculated by the following equation (1) based on the coordinate value of the laser beam L, and the position of the modulation pattern may be changed by this position change amount.
ΔX = PSDx × a
ΔY = PSDy × b (1)
Where ΔX is the amount of change in the position of the modulation pattern (X coordinate),
ΔY: position change amount (Y coordinate) of the modulation pattern,
PSDx: Coordinate value of laser beam L (X coordinate)
PSDy: Coordinate value of laser beam L (Y coordinate)
a, b: predetermined set values
 これにより、液晶層216に入射されるレーザ光Lと液晶層216に表示される変調パターンHとの位置関係が、1ピクセル程度の高い精度で所定位置関係に合わせ込まれる。その結果、反射型空間光変調器203では、加工対象物1の内部に集光されるレーザ光Lの収差が所定収差以下となるように、レーザ光Lが確実且つ精度よく変調されることとなる。 Thereby, the positional relationship between the laser beam L incident on the liquid crystal layer 216 and the modulation pattern H displayed on the liquid crystal layer 216 is matched with the predetermined positional relationship with a high accuracy of about one pixel. As a result, in the reflective spatial light modulator 203, the laser light L is reliably and accurately modulated so that the aberration of the laser light L condensed inside the workpiece 1 is equal to or less than a predetermined aberration. Become.
 図12は、液晶層に表示された変調パターンと液晶層に入射したレーザ光との関係を示す概念図である。図12では、Z軸方向(図8参照)から見たときの液晶層216を示しており、変調パターンHを円形状のものとしている。図12(a)に示すように、例えば光学系のズレ等によって、表示された変調パターンHの重心と入射したレーザ光Lとの重心とが互いにズレて不一致となる場合でも、図12(b)に示すように、レーザ光Lの座標値に基づき変調パターンHの位置が自動的に移動され、変調パターンHの重心とレーザ光Lとの重心とが一致することになる。 FIG. 12 is a conceptual diagram showing the relationship between the modulation pattern displayed on the liquid crystal layer and the laser light incident on the liquid crystal layer. FIG. 12 shows the liquid crystal layer 216 when viewed from the Z-axis direction (see FIG. 8), and the modulation pattern H is circular. As shown in FIG. 12A, even when the center of gravity of the displayed modulation pattern H and the center of the incident laser beam L are shifted from each other due to, for example, a shift of the optical system, they do not match each other. ), The position of the modulation pattern H is automatically moved based on the coordinate value of the laser beam L, and the center of gravity of the modulation pattern H and the center of gravity of the laser beam L coincide with each other.
 以上、本実施形態では、反射型空間光変調器203における変調パターンHの位置がレーザ光Lの位置に基づいて変化され、レーザ光Lと変調パターンHとの位置関係が1ピクセル程度の高い精度で合わせ込まれている。よって、反射型空間光変調器203でレーザ光Lを常に好適に変調させることができ、加工対象物1に集光されるレーザ光Lの収差を安定して抑制することが可能となる。 As described above, in the present embodiment, the position of the modulation pattern H in the reflective spatial light modulator 203 is changed based on the position of the laser light L, and the positional relationship between the laser light L and the modulation pattern H is as high as about 1 pixel. It is put together in. Therefore, the laser beam L can always be suitably modulated by the reflective spatial light modulator 203, and the aberration of the laser beam L focused on the workpiece 1 can be stably suppressed.
 従って、本実施形態によれば、加工対象物1に精度よい改質領域7を安定して形成することが可能となる。その結果、装置間機差を抑制することができ、加工品質を常に高く維持することが可能となる。 Therefore, according to the present embodiment, it is possible to stably form the modified region 7 with high accuracy in the workpiece 1. As a result, the machine difference between apparatuses can be suppressed, and the processing quality can always be kept high.
 図13は、加工対象物に改質領域を形成して切断した際の切断面状態を示す拡大写真図である。なお、反射型空間光変調器203の画素サイズ(ピクセルサイズ)は20μm×20μmとされ、画素数(ピクセル数)は横(X)方向に792、縦(Y)方向に600の792×600とされている。図中では、液晶層216において変調パターンである収差補正パターンHの位置をX方向に沿って変化させたときのものを示している。 FIG. 13 is an enlarged photograph showing a state of a cut surface when a modified region is formed on a workpiece and cut. Note that the pixel size (pixel size) of the reflective spatial light modulator 203 is 20 μm × 20 μm, and the number of pixels (number of pixels) is 792 in the horizontal (X) direction, and 792 × 600 of 600 in the vertical (Y) direction. Has been. In the drawing, the liquid crystal layer 216 is shown when the position of the aberration correction pattern H, which is a modulation pattern, is changed along the X direction.
 図13に示す例では、変調パターンHの位置変化量が0(基準位置)のとき及び+4μmのとき、レーザ光Lと変調パターンHとの位置関係が所定位置関係となり、切断面の品質が良好とされることがわかる。また、変調パターンHの位置変化量が+24μmのとき、切断面の品質が不良とされ、それ以外のとき、切断面の品質が通常とされることがわかる。また、図13に示す例により、精度よい改質領域7を形成する場合、レーザ光Lと変調パターンHとの位置関係に高精度の合わせ込みが要されることがわかる。 In the example shown in FIG. 13, when the amount of change in the position of the modulation pattern H is 0 (reference position) and +4 μm, the positional relationship between the laser light L and the modulation pattern H is a predetermined positional relationship, and the quality of the cut surface is good. You can see that It can also be seen that when the amount of change in the position of the modulation pattern H is +24 μm, the quality of the cut surface is poor, and otherwise, the quality of the cut surface is normal. Moreover, it can be seen from the example shown in FIG. 13 that, when the modified region 7 is formed with high accuracy, high-precision alignment is required for the positional relationship between the laser light L and the modulation pattern H.
 また、1ピクセル以下の移動量(つまり、縦及び横方向それぞれの画素サイズ以下の移動量)で十分な効果が現れている。この1ピクセル以内の範囲内の移動によって好ましい加工品質が得られない場合には、光学系のセッティングを再調整することが望ましい。 Moreover, a sufficient effect appears with a movement amount of 1 pixel or less (that is, a movement amount of the pixel size in the vertical and horizontal directions). If the desired processing quality cannot be obtained by the movement within the range of one pixel, it is desirable to readjust the setting of the optical system.
 1ピクセル以下の変調パターンの移動ついて説明する。図15は、1ピクセル以下の変調パターンの移動を説明するための図である。この図15では、所定のX方向である一方向の各画素(液晶)における変調パターン(例えば収差補正等に関する)に応じた屈折率が棒グラフで示されている。つまり、変調パターンを、複数の画素毎の屈折率で表している。ここでは、説明のため、2次元パターンを1次元パターンで簡略化して説明する。 The movement of the modulation pattern of 1 pixel or less will be described. FIG. 15 is a diagram for explaining movement of a modulation pattern of one pixel or less. In FIG. 15, the refractive index corresponding to the modulation pattern (for example, relating to aberration correction) in each pixel (liquid crystal) in one direction which is a predetermined X direction is shown by a bar graph. That is, the modulation pattern is represented by the refractive index for each of a plurality of pixels. Here, for explanation, the two-dimensional pattern is simplified and described as a one-dimensional pattern.
 まず、図15(a)に示すように、各画素の屈折率を表す変調パターン曲線(図13の場合、収差補正パターン曲線)W1が設定されている。なお、1次元で説明するため、各画素の屈折率が変調パターン曲線として表現されるが、2次元の場合、この変調パターン曲線は、各画素毎の屈折率を表す変調パターンである。 First, as shown in FIG. 15 (a), a modulation pattern curve (in the case of FIG. 13, an aberration correction pattern curve) W1 representing the refractive index of each pixel is set. In order to explain in one dimension, the refractive index of each pixel is expressed as a modulation pattern curve. However, in the case of two dimensions, this modulation pattern curve is a modulation pattern representing the refractive index for each pixel.
 そして、図15(b)に示すように、変調パターン曲線W1を所定の移動量(図13の場合ように、例えば+4μm)だけ右方向にシフトする。次に、シフトした変調パターン曲線W2に応じた各画素の屈折率(W2における丸印)を再計算する。次に、再計算した値に応じた屈折率を各画素に与える。例えば図13に示す例の場合には、各画素に応じて与えられる屈折率は、8bit(256階調)とされている。 Then, as shown in FIG. 15B, the modulation pattern curve W1 is shifted rightward by a predetermined movement amount (for example, +4 μm as in FIG. 13). Next, the refractive index (the circle in W2) of each pixel corresponding to the shifted modulation pattern curve W2 is recalculated. Next, a refractive index corresponding to the recalculated value is given to each pixel. For example, in the example shown in FIG. 13, the refractive index given according to each pixel is 8 bits (256 gradations).
 以上のように変調パターンHのシフトが行われる。従って、1ピクセル以下のシフトでも補正することが可能であり、より精密に変調パターン(収差補正パターン)をシフトさせることが可能である。 The modulation pattern H is shifted as described above. Therefore, it is possible to correct even a shift of 1 pixel or less, and it is possible to shift the modulation pattern (aberration correction pattern) more precisely.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態は、レーザ光の位置を検出するものとしてPSD270a,270bを備えているが、これらの何れか一方のみを備えていてもよい。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above embodiments. For example, although the above embodiment includes PSDs 270a and 270b for detecting the position of the laser beam, only one of these may be included.
 さらに、PSD270a,270bに代えて若しくは加えて、他のPSDを備えていてもよく、例えば、図14に示すように、レーザ光Lの光路においてダイクロイックミラー238と集光光学系204との間にPSD370が接続されていてもよい。この場合、ダイクロイックミラー238を透過したレーザ光Lが、ミラー371,372で順に反射されてPSD370へと導光される。そのため、加工対象物1に集光する直前のレーザ光Lの位置が検出される。よって、レーザ光Lに係る光学系にズレ等が生じた場合、レーザ光Lの位置のズレとして必ず検出されて変調パターンHの位置が変化され、レーザ光Lと変調パターンHとの位置関係が適正なものとなる。 Furthermore, instead of or in addition to the PSDs 270a and 270b, other PSDs may be provided. For example, as shown in FIG. 14, between the dichroic mirror 238 and the condensing optical system 204 in the optical path of the laser light L, A PSD 370 may be connected. In this case, the laser light L transmitted through the dichroic mirror 238 is sequentially reflected by the mirrors 371 and 372 and guided to the PSD 370. Therefore, the position of the laser beam L immediately before being focused on the workpiece 1 is detected. Accordingly, when a deviation or the like occurs in the optical system related to the laser light L, the position of the modulation pattern H is always detected as a deviation of the position of the laser light L, and the positional relationship between the laser light L and the modulation pattern H is changed. It will be appropriate.
 また、上記実施形態では、ビームホモジナイザ260を備え、ビームホモジナイザ260で強度分布を均一化したレーザ光Lを反射型空間光変調器203に入射させたが、これに代えて、ビームエキスパンダを備え、ビームエキスパンダでビーム径を拡大したレーザ光Lを反射型空間光変調器203に入射させてもよい。この場合、レーザ光Lの位置検出を高精度化するため、ビームエキスパンダでビーム径が拡大される前のレーザ光Lの位置をPSDで検出することが好ましい。 In the above embodiment, the beam homogenizer 260 is provided, and the laser light L whose intensity distribution is uniformed by the beam homogenizer 260 is incident on the reflective spatial light modulator 203. Instead, a beam expander is provided. The laser beam L whose beam diameter has been expanded by the beam expander may be incident on the reflective spatial light modulator 203. In this case, in order to improve the position detection of the laser beam L, it is preferable to detect the position of the laser beam L before the beam diameter is expanded by the beam expander by PSD.
 また、改質領域7を形成する際におけるレーザ光入射面は、加工対象物1の表面3に限定されず、加工対象物1の裏面であってもよい。また、上記実施形態では、切断予定ライン5に沿って複数列の改質領域7を形成しても勿論よい。 Further, the laser light incident surface when forming the modified region 7 is not limited to the surface 3 of the workpiece 1 and may be the back surface of the workpiece 1. In the above-described embodiment, a plurality of rows of modified regions 7 may be formed along the planned cutting line 5.
 本発明によれば、加工対象物に精度よい改質領域を安定して形成することができる。 According to the present invention, an accurate modified region can be stably formed on a workpiece.
 1…加工対象物、7…改質領域、203…反射型空間光変調器(空間光変調器)、216…液晶層(表示部)、H…変調パターン、L…レーザ光、P…集光点。 DESCRIPTION OF SYMBOLS 1 ... Processing object, 7 ... Modified area | region, 203 ... Reflection type spatial light modulator (spatial light modulator), 216 ... Liquid crystal layer (display part), H ... Modulation pattern, L ... Laser beam, P ... Condensing point.

Claims (6)

  1.  加工対象物の内部に集光点を合わせてレーザ光を照射することにより、前記加工対象物に改質領域を形成するレーザ加工方法であって、
     前記レーザ光を空間光変調器で変調する変調工程と、
     変調した前記レーザ光を前記加工対象物に集光させる集光工程と、
     前記レーザ光の位置を検出する検出工程と、を含み、
     前記変調工程においては、
     前記空間光変調器の表示部に表示した変調パターンに前記レーザ光を入射させ、該レーザ光に前記変調パターンに応じた変調を与えると共に、
     前記検出工程で検出した前記レーザ光の位置に基づいて、前記変調パターンの位置を変化させることを特徴とするレーザ加工方法。
    A laser processing method for forming a modified region on the processing object by irradiating a laser beam with a focusing point inside the processing object,
    A modulation step of modulating the laser light with a spatial light modulator;
    A condensing step of condensing the modulated laser beam on the workpiece;
    Detecting the position of the laser beam,
    In the modulation step,
    The laser light is incident on the modulation pattern displayed on the display unit of the spatial light modulator, and the laser light is modulated according to the modulation pattern, and
    A laser processing method, wherein the position of the modulation pattern is changed based on the position of the laser beam detected in the detection step.
  2.  前記検出工程では、前記レーザ光が基準位置に対して変化した位置変化量を検出し、
     前記変調工程では、前記検出工程で検出した前記レーザ光の位置変化量に基づいて、前記レーザ光と前記変調パターンとが所定位置関係となるよう前記変調パターンの位置を変化させることを特徴とする請求項1記載のレーザ加工方法。
    In the detection step, a position change amount in which the laser beam has changed with respect to a reference position is detected,
    In the modulation step, the position of the modulation pattern is changed based on the position change amount of the laser beam detected in the detection step so that the laser beam and the modulation pattern have a predetermined positional relationship. The laser processing method according to claim 1.
  3.  前記変調工程では、前記レーザ光の位置変化量に関連付けられた前記変調パターンの位置変化量に関するデータテーブルを用いて、前記変調パターンの位置を変化させることを特徴とする請求項2記載のレーザ加工方法。 3. The laser processing according to claim 2, wherein, in the modulation step, the position of the modulation pattern is changed using a data table related to the position change amount of the modulation pattern associated with the position change amount of the laser beam. Method.
  4.  前記変調工程では、前記レーザ光の位置変化量に基づいて前記変調パターンの位置変化量を算出し、算出した前記変調パターンの位置変化量に応じて前記変調パターンの位置を変化させることを特徴とする請求項2記載のレーザ加工方法。 In the modulation step, a position change amount of the modulation pattern is calculated based on a position change amount of the laser light, and the position of the modulation pattern is changed according to the calculated position change amount of the modulation pattern. The laser processing method according to claim 2.
  5.  前記変調パターンは、前記表示部の複数の画素毎の屈折率を表しており、
     前記変調工程では、前記変調パターンを所定位置に移動させ、移動させた前記変調パターンに応じて前記複数の画素の屈折率を演算し、この演算した値に応じた屈折率となるよう前記画素の屈折率を制御することを特徴とする請求項1又は2記載のレーザ加工方法。
    The modulation pattern represents a refractive index for each of the plurality of pixels of the display unit,
    In the modulation step, the modulation pattern is moved to a predetermined position, a refractive index of the plurality of pixels is calculated according to the moved modulation pattern, and the refractive index of the pixel is set to be a refractive index according to the calculated value. 3. The laser processing method according to claim 1, wherein the refractive index is controlled.
  6.  前記変調パターンを移動させる移動量は、前記表示部の1画素サイズ以下であることを特徴とする請求項5記載のレーザ加工方法。 6. The laser processing method according to claim 5, wherein a movement amount for moving the modulation pattern is equal to or smaller than one pixel size of the display unit.
PCT/JP2010/060666 2009-08-03 2010-06-23 Laser machining method WO2011016296A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009181003A JP5451238B2 (en) 2009-08-03 2009-08-03 Laser processing method
JP2009-181003 2009-08-03

Publications (1)

Publication Number Publication Date
WO2011016296A1 true WO2011016296A1 (en) 2011-02-10

Family

ID=43544198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060666 WO2011016296A1 (en) 2009-08-03 2010-06-23 Laser machining method

Country Status (3)

Country Link
JP (1) JP5451238B2 (en)
TW (1) TW201105444A (en)
WO (1) WO2011016296A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5947172B2 (en) * 2012-09-19 2016-07-06 浜松ホトニクス株式会社 Wavelength conversion type spatial light modulator
JP6620976B2 (en) * 2015-09-29 2019-12-18 株式会社東京精密 Laser processing apparatus and laser processing method
JP6644563B2 (en) 2016-01-28 2020-02-12 浜松ホトニクス株式会社 Laser light irradiation device
WO2017155104A1 (en) * 2016-03-10 2017-09-14 浜松ホトニクス株式会社 Laser light radiation device and laser light radiation method
JP6732627B2 (en) * 2016-10-19 2020-07-29 浜松ホトニクス株式会社 Laser light irradiation device
JP7105639B2 (en) 2018-07-05 2022-07-25 浜松ホトニクス株式会社 Laser processing equipment
JP7088761B2 (en) * 2018-07-05 2022-06-21 浜松ホトニクス株式会社 Laser processing equipment
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
JP7450413B2 (en) 2020-03-09 2024-03-15 株式会社ディスコ Laser processing equipment and how to adjust it
JP7212299B1 (en) * 2022-03-28 2023-01-25 株式会社東京精密 Method and apparatus for adjusting optical axis of laser light
JP2023145943A (en) * 2022-03-29 2023-10-12 浜松ホトニクス株式会社 Spatial light modulation device, processing device, and position estimation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002049002A (en) * 2000-08-03 2002-02-15 Hamamatsu Photonics Kk Laser beam machine
JP2002273583A (en) * 2001-03-19 2002-09-25 Inst Of Physical & Chemical Res Machining device for transparent medium
JP2003025085A (en) * 2001-07-12 2003-01-28 Seiko Epson Corp Laser beam processing method and laser beam processing machine
JP2009034723A (en) * 2007-08-03 2009-02-19 Hamamatsu Photonics Kk Laser beam machining method, laser beam machining apparatus and method of manufacturing it
JP2009082966A (en) * 2007-10-01 2009-04-23 Olympus Corp Regulating device, laser beam machining device, regulating method and regulating program
JP2009169021A (en) * 2008-01-15 2009-07-30 Hamamatsu Photonics Kk Observation apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1721695A4 (en) * 2004-03-05 2009-04-01 Olympus Corp Laser processing equipment
US7177012B2 (en) * 2004-10-18 2007-02-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE102006062376B4 (en) * 2006-12-19 2018-03-22 Seereal Technologies S.A. Method and display device for reducing speckle
JP5333215B2 (en) * 2007-05-31 2013-11-06 株式会社ニコン Tunable filter, light source device and spectrum distribution measuring device
EP2012173A3 (en) * 2007-07-03 2009-12-09 JDS Uniphase Corporation Non-etched flat polarization-selective diffractive optical elements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002049002A (en) * 2000-08-03 2002-02-15 Hamamatsu Photonics Kk Laser beam machine
JP2002273583A (en) * 2001-03-19 2002-09-25 Inst Of Physical & Chemical Res Machining device for transparent medium
JP2003025085A (en) * 2001-07-12 2003-01-28 Seiko Epson Corp Laser beam processing method and laser beam processing machine
JP2009034723A (en) * 2007-08-03 2009-02-19 Hamamatsu Photonics Kk Laser beam machining method, laser beam machining apparatus and method of manufacturing it
JP2009082966A (en) * 2007-10-01 2009-04-23 Olympus Corp Regulating device, laser beam machining device, regulating method and regulating program
JP2009169021A (en) * 2008-01-15 2009-07-30 Hamamatsu Photonics Kk Observation apparatus

Also Published As

Publication number Publication date
JP2011031284A (en) 2011-02-17
TW201105444A (en) 2011-02-16
JP5451238B2 (en) 2014-03-26
TWI560015B (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP5451238B2 (en) Laser processing method
JP6272301B2 (en) Laser processing apparatus and laser processing method
JP6353683B2 (en) Laser processing apparatus and laser processing method
JP6258787B2 (en) Laser processing apparatus and laser processing method
JP5479924B2 (en) Laser processing method
JP5905274B2 (en) Manufacturing method of semiconductor device
JP5479925B2 (en) Laser processing system
JP6272145B2 (en) Laser processing apparatus and laser processing method
JP5410250B2 (en) Laser processing method and laser processing apparatus
JP6272302B2 (en) Laser processing apparatus and laser processing method
US9821408B2 (en) Laser machining method and laser machining device
JP6272300B2 (en) Laser processing apparatus and laser processing method
JP6715632B2 (en) Laser processing method and laser processing apparatus
WO2013039006A1 (en) Laser machining method
CN112384324B (en) Laser processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806296

Country of ref document: EP

Kind code of ref document: A1