WO2008053915A1 - Scanner optical system, laser processing device, and scanner optical device - Google Patents

Scanner optical system, laser processing device, and scanner optical device Download PDF

Info

Publication number
WO2008053915A1
WO2008053915A1 PCT/JP2007/071199 JP2007071199W WO2008053915A1 WO 2008053915 A1 WO2008053915 A1 WO 2008053915A1 JP 2007071199 W JP2007071199 W JP 2007071199W WO 2008053915 A1 WO2008053915 A1 WO 2008053915A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
deflection
scanner optical
scanner
Prior art date
Application number
PCT/JP2007/071199
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuneo Murakami
Isao Kojima
Tatsuo Inubuse
Takakuni Ueno
Original Assignee
Nabtesco Corporation
Cmet Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corporation, Cmet Inc. filed Critical Nabtesco Corporation
Priority to JP2008542149A priority Critical patent/JPWO2008053915A1/en
Publication of WO2008053915A1 publication Critical patent/WO2008053915A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head

Definitions

  • Scanner optical system laser processing apparatus, and scanner optical apparatus
  • the present invention relates to a scanner optical system that deflects an irradiation position on an object of light emitted from a light source, and a laser processing apparatus including the scanner optical system.
  • the present invention also relates to a scanner optical device that scans an object by deflecting light emitted from a light source, and a laser processing apparatus including the scanner optical device.
  • a laser processing apparatus that processes a workpiece by irradiating the workpiece with a laser beam generally includes a scanner optical system that deflects the optical path of the laser beam to vary the irradiation position on the workpiece (for example, (See Patent Document 1).
  • the scanner optical system has a galvano mirror that is held rotatably around the rotation axis and can position the reflecting surface at an arbitrary angle.
  • a galvano scanner that can change the irradiation position with high accuracy is known.
  • Patent Document 1 JP 2004-358507 A
  • Problems due to instability of energy density during laser scanning are not limited to laser processing equipment.
  • drawing images are drawn by scanning light at high speed on the drawing surface.
  • problems occur.
  • a sample is scanned and scanned at high speed to perform inspection and measurement. Errors occur in the detected values due to the equipment, and accurate measurement results cannot be obtained! /, And! /.
  • the present invention has been made in view of the circumstances described above, and is a scanner optical that enables stable optical scanning while scanning an object with light at high speed while varying the scanning speed. It is an object of the present invention to provide a system and a laser processing apparatus that enables high-quality processing while scanning a workpiece with laser light at high speed.
  • the present invention provides a scanner optical system that irradiates and scans an object with light output from a light source, and includes a light intensity adjusting unit that adjusts the intensity of the light. Deflecting the light toward a predetermined position of the object and deflecting the light so that a predetermined scanning speed is achieved from zero level, and the light intensity adjusting means includes the deflecting means. The light intensity is adjusted in proportion to the scanning speed of the light by the means or so that the energy density of the light becomes substantially constant.
  • the deflection unit includes a scanner mirror, a drive motor that drives the scanner mirror, and a controller that controls the drive motor.
  • An encoder that outputs a digital pulse signal corresponding to the drive amount of the scanner mirror is provided in the drive motor, and the controller counts the digital pulse signal to identify the drive amount, and based on the drive amount! /, Feedback control for outputting a control signal to the drive motor is performed.
  • the present invention provides the above-described scanner optical system, wherein the deflecting unit deflects the light in each of an X-axis direction and a Y-axis direction orthogonal to each other in a plane of the object.
  • Y-axis deflection means is provided, and both the deflection by the X-axis deflection means and the deflection by the Y-axis deflection means are controlled simultaneously by the same controller.
  • a force adjustment means for adjusting the focal length of the light by adjusting the distance of the light further comprising deflection by the X-axis deflection means and by the Y-axis deflection means
  • the focal length adjustment by the focus adjustment means is controlled by the same controller at the same time for all axes.
  • the present invention is characterized in that, in the above-described scanner optical system, the controller controls the focus adjustment means so that a focal length of the light is adjusted according to a surface unevenness of the object. To do.
  • the present invention provides a trajectory calculating means for calculating a deflection trajectory of the light by the deflecting means based on the shape of the object and the scanning mode of the light, and the trajectory calculating means. And a deflection control means for feedback-controlling the deflection of the light by the deflecting means based on the deflection trajectory by the optical path, and the trajectory calculating means and the deflection control means, respectively. It is composed of the following CPUs.
  • the deflecting means is controlled so as to be positioned on a trajectory to be scanned in a direction.
  • the light source includes a laser device that oscillates laser light
  • the light intensity adjusting unit outputs an output of a laser power source of the laser device
  • the laser device is Q
  • the Q switch when the switch is incorporated, the shutter when the laser device has a shutter that shields laser light
  • the acoustooptic device when the laser device has an acoustooptic device for intensity modulation
  • the laser device force S pulse laser beam is oscillated, at least one of the oscillation periods is adjusted to adjust the intensity of the laser beam.
  • the present invention provides a laser processing apparatus for irradiating a processing surface of a workpiece with a laser beam output from a laser oscillator, Light intensity adjusting means for adjusting the intensity, deflecting the laser beam, and vector scanning the processing surface of the workpiece with the laser beam at a predetermined scanning speed with zero level force Deflection means, and the light intensity adjustment means is proportional to the vector scanning speed of the laser light by the deflection means, or so that the energy density of the laser light is substantially constant. It is characterized by adjusting.
  • a trigger noise signal serving as an oscillation trigger of the panelless laser light is input to the laser oscillator, and is matched with the trigger noise signal.
  • a configuration may be adopted in which the pulse laser light is shielded to prevent the workpiece from being irradiated with the initial giant pulse.
  • the present invention includes a deflection module that deflects light output from a light source toward an object, and deflects the light by the deflection module.
  • a scanner optical device for scanning wherein the deflection module is fixed to a linear rail member, and a force adjustment means for adjusting the focal length of the light output from the light source force is detachable from the rail member.
  • a laser beam intensity adjustment module that adjusts the laser beam intensity of the laser beam incident on the focus adjustment unit is detachably provided on the rail member.
  • the laser beam has a pulse laser beam and a continuous wave laser beam.
  • the laser beam incident on the force adjustment unit may be either.
  • the focus adjustment unit is provided on the rail member, if an optical element for shaping the laser light incident on the focus adjustment unit is required, the optical element is also detachable from the rail together with the focus adjustment unit. Will be provided.
  • the invention is characterized in that, in the above-described scanner optical device, the deflection module is supported by the rail member and the stone surface plate.
  • the deflection module The rail member and the stone surface plate may be supported at both ends.
  • the present invention is also characterized in that, in the scanner optical device, the light source and an optical element that guides light output from the light source to the scanner optical device are both fixed to the stone surface plate.
  • the invention is characterized in that, in the above-described scanner optical device, the deflection module is held on the stone surface plate.
  • the present invention is also characterized in that, in the above-described scanner optical device, the rail member is divided into a plurality of rail pieces along the longitudinal direction, and the rail pieces are arranged with a gap therebetween.
  • the rail pieces may be arranged with the stone surface plate as a base member.
  • each member that is attached to the rail member has a mark portion that indicates an indication of the attachment position.
  • the present invention includes any one of the scanner optical devices described above and a laser device that outputs laser light to the scanner optical device, and the scanner optical device includes the scanner optical device.
  • a laser processing apparatus characterized in that a laser beam is deflected and a processed surface of a workpiece is scanned with the laser beam for processing.
  • the light intensity is adjusted in proportion to the light scanning speed or so that the light energy density is substantially constant.
  • the light energy density at the irradiation position of the object is maintained substantially constant during the optical scanning, and stable optical scanning is realized.
  • the focus adjustment is performed by fixing the deflection module to the linear rail member and adjusting the focal length of the light output from the light source. Since the means is provided so as to be detachably attached to the rail member, a scanner optical device in which the focus adjustment function is integrated is provided. Further, an optical element for shaping the light output from the focus adjusting means and inputting it to the deflection module is provided on the rail member so as to be freely positionable. Therefore, even when the distance between the optical element and the deflection module needs to be adjusted when the focus adjusting means is removed or replaced, the optical element is attached to the rail member. Since it moves while being guided, it is possible to easily adjust only the distance while keeping the optical axis between the optical element and the polarization module aligned.
  • FIG. 1 is a diagram showing a configuration of a laser processing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of a control unit.
  • FIG. 3 is a diagram for explaining laser beam scanning of an orbit including a switching point.
  • FIG. 4 is a diagram showing a modification of the control unit shown in FIG.
  • FIG. 5 is a diagram showing a configuration of a laser processing apparatus according to a second embodiment of the present invention.
  • FIG. 6 is a diagram showing a laser oscillator according to a second embodiment.
  • FIG. 7 is a diagram showing a configuration of a scanner optical device according to a second embodiment.
  • FIG. 8 is a view for explaining attachment of an optical element to a scanner optical device.
  • FIG. 9 is a diagram showing a configuration of a laser processing apparatus according to a modification of the second embodiment.
  • FIG. 10 is a diagram showing a configuration of a laser processing apparatus according to a modification of the second embodiment.
  • FIG. 11 is a diagram showing a configuration of a laser processing apparatus according to a modification of the second embodiment.
  • FIG. 12 is a diagram showing a configuration of a laser processing apparatus according to a modification of the second embodiment.
  • FIG. 13 is a diagram showing a configuration of a laser processing apparatus according to a modification of the second embodiment.
  • FIG. 14 is a diagram showing a configuration of a laser processing apparatus according to a modification of the second embodiment.
  • FIG. 15 is a diagram showing a configuration of a laser processing apparatus according to a modification of the second embodiment.
  • FIG. 16 is a diagram showing a configuration of a laser processing apparatus according to a modification of the second embodiment.
  • FIG. 17 is a diagram showing a configuration of a scanner optical device according to a modification of the second embodiment.
  • FIG. 18 is a diagram showing a configuration of a scanner optical device according to another modification of the second embodiment. Explanation of symbols
  • FIG. 1 is a diagram showing a schematic configuration of a laser processing apparatus 1 to which a scanner optical system according to the present invention is applied.
  • the laser processing apparatus 1 includes a laser apparatus 2 having a laser oscillator 2 and a laser control apparatus 3 having a power source for controlling the laser oscillation of the laser oscillator 2, and a laser beam intensity adjustment.
  • AOM (acousto-optic element) 5 as means, dynamic focus lens unit 6 as focal length adjustment means, and laser beam irradiation position on the work surface of work piece 98 placed on work stage 99
  • a scanner head 7 as a deflection means for scanning the processing surface with laser light, and further, as a control means for controlling each of the laser device 4, the AOM 5, the dynamic focus lens unit 6 and the scanner head 7.
  • a control unit 8 is provided.
  • the AOM 5, the scanner head 7 and the control unit 8 constitute a scanner optical system 20 that scans the processed surface with the laser light at high speed while adjusting the intensity of the laser light.
  • the laser oscillator 2 is a solid-state laser oscillator, a fiber laser oscillator, a liquid laser oscillator, or a gas laser oscillator, and outputs a laser beam having a wavelength corresponding to the laser medium. To do.
  • a laser oscillator 2 that continuously oscillates laser light is used as the laser oscillator 2.
  • the AOM 5 is a laser beam whose intensity is modulated and output at a predetermined frequency under the control of the control unit 8.
  • the AOM 5 is output from the laser oscillator 2 and is supplied with two collecting lenses 9A and 9B. The laser beam shaped through and is input.
  • the dynamic focus lens unit 6 varies the focal length of the laser beam via the AOM 5 according to the irradiation position of the laser beam on the processed surface of the workpiece 98 under the control of the control unit 8. By adjusting the focal distance of the dynamic focus lens unit 6, the irradiation spot area on the workpiece 98 is maintained substantially constant. It goes without saying that an f ⁇ lens may be used instead of the dynamic focus lens unit 6.
  • the focal length adjustment means in the scanner optical system 20.
  • the scanner head 7 deflects the optical path of the laser light that passes through the dynamic focus lens unit 6 under the control of the control unit 8, and the irradiation position with respect to the work stage 99 is set within the processing surface of the workpiece 98. It scans the laser beam with relative change.
  • the scanner mirror 71A deflects the optical path in the X-axis direction, the X-axis motor 72A that rotates the scanner mirror 71A, and the optical path orthogonal to the X-axis.
  • the light is incident on the mirror 71A, and the optical path of the laser beam is deflected in the direction defined by the angle of each reflecting surface of the scanner mirror 71A and the scanner mirror 71B.
  • the XY plane composed of the X axis and the axis is defined as a plane substantially parallel to the upper surface of the work stage 99, and the axis orthogonal to the XY plane is defined as the Z axis.
  • the control unit 8 is connected (may be built-in) to a computer system 13 having a display 11 as a display device and a keyboard 12 as an input device.
  • the computer system 13 includes a three-dimensional shape and material of the workpiece 98, a processing position where the workpiece 98 is irradiated with laser light (laser irradiation position), a processing depth, laser marking and trimming, Machining data including drilling and! /, The type of cutting, etc. are input, and the computer system 13 outputs a drawing condition command signal BCS based on the machining data to the control unit 8 during laser machining.
  • the control unit 8 controls the laser device 4, AOM 5, dynamic focus lens unit 6 and scanner head 7 based on the drawing condition command signal BCS.
  • FIG. 2 is a block diagram schematically showing the configuration of the control unit 8.
  • the control unit 8 includes two DSPs 80A and Has DSP80B.
  • a CPU may be used instead of the DSP for the DSP80A and DSP80B processing units.
  • the DSP 80A determines the laser beam on the workpiece 98 based on the shape of the workpiece 98 (for example, CAD data) indicated by the drawing condition command signal BCS and the scanning mode of the laser beam on the workpiece 98.
  • a trajectory calculation unit 81 that calculates the movement trajectory (ie, scanning trajectory) of the irradiation position, and a distortion correction unit that corrects the deviation (distortion) of the irradiation position (imaging point) caused by moving the irradiation position in the XY plane. It functions as 82, and mainly performs arithmetic processing based on the drawing condition command signal BCS input from the computer system 13.
  • the trajectory calculation unit 81 and the distortion correction unit 82 By the calculation of the trajectory calculation unit 81 and the distortion correction unit 82, the XY coordinate command value of the laser light irradiation position, the focal length command value corresponding to the XY coordinate value, and the like at every predetermined time (for example, within several tens of s) Various command values of the laser output command value for instructing the laser beam intensity are output.
  • the DSP 80B controls the laser power for the laser device 4, the focus position variable control by the dynamic focus lens unit 6, the laser beam deflection control by the scanner head 7, and the irradiation position, scanning speed, and irradiation spot area. It mainly performs drive control of each part such as laser light intensity control.
  • the DSP 80A and DSP 80B execute processing in synchronization with each other based on a clock signal generated by a clock generator (not shown).
  • control unit 8 is provided with a shared data memory 83 accessible from each of the two DSPs 80 A and 80 B, and the DSPs 80 A and 80 B share data via the shared data memory 83.
  • this shared data for example, the DSP80A notifies the DSP80A that the command command to be commanded to the DSP80B, the DSP80B to the DSP80A confirmation command for the command command, and that the DSP80B has finished executing the command command.
  • the XY coordinate command value of the laser beam irradiation position output by DSP8OA every predetermined time the focal length command value according to this XY coordinate command value
  • the DSP80B reads various command values output by the DSP80A to the shared data memory 83. On the basis of these command values, drive control of each part is executed.
  • the control unit is equipped with two DSP80A and DSP80B, and has a configuration in which arithmetic processing such as trajectory calculation and distortion correction, and drive control processing for driving and controlling each part are executed by different DSP80A and 80B. Therefore, the arithmetic processing does not cause a delay in the deflection control of the scanner head 7 and the light intensity control of the AOM 5, so that the scanning speed of the laser beam is increased and the processing speed is improved.
  • the DSP 80B outputs a power control signal to the laser control device 3 via the D / A converter 88 based on the laser output command value, and the laser power
  • an intensity control signal is output to the AO M5, and based on the XY coordinate command value and focal length command value, the X-axis motor 72A, Y-axis motor 72B and DF
  • the focal length by the dynamic focus lens unit 6 and the deflection by the scanner head 7 are controlled by controlling the motor 91, and the irradiation position of the laser beam on the processing surface of the workpiece 98 is controlled.
  • a closed loop control system is configured as a control system for the dynamic focus lens unit 6 and the scanner head 7 that realizes highly accurate irradiation position control. This configuration will be described below.
  • the X-axis motor 72A and the Y-axis motor 72B of the scanner head 7 are supplied with digital pulse signals SA and SB having the number of pulses corresponding to the rotation amount of the scanner mirrors 71A and 71B.
  • Encoders 90A and 90B are provided, and the dynamic focus lens unit 6 is provided with a DF (dynamic focus) motor 91 that drives an optical system (not shown) that changes the focal length and the drive amount of the optical system.
  • the encoder 90C outputs the digital pulse signal SC with the same number of pulses to the control unit 8, and the control unit 8 receives the digital pulse signals SA to SC output from the encoders 90A to 90C.
  • a counter circuit 84 that counts the digital pulse signals SA to SC and outputs them to the DSP 80B is provided.
  • the DSP 80B determines the amount of rotation of the scanner mirrors 71A and 71B and the amount of drive of the optical system of the dynamic focus lens unit 6 based on the counter values of the digital pulse signals SA to SC counted by the counter circuit 84.
  • X of the current laser beam irradiation position Specify the Y coordinate value and the current focal length.
  • the DSP 80B acquires the ⁇ coordinate command value of the laser beam irradiation position stored in the shared data memory 83 and the focal length command value according to the ⁇ coordinate command value, and uses these command values and the current value.
  • the position comparison unit 85 that compares and outputs the deviation signal to the motor control unit 87, and the laser output command value stored in the shared data memory 83 in synchronization with the ⁇ coordinate command value and the focal length command value are acquired. It has a signal output adjustment unit 86 that outputs a control signal to ⁇ 5 (the laser control device 3 if necessary).
  • the motor control unit 87 sends a digital control signal for canceling the deviation to the driver circuit 92 ⁇ of the X-axis motor 72 ⁇ , the driver circuit 92 ⁇ of the ⁇ -axis motor 72 ⁇ , and DF This is output to each of the driver circuits 92C of the motor 91 to execute negative feedback control.
  • each of the driver circuits 92A to 92C outputs a drive current to the X-axis motor 72A, the Y-axis motor 72B, and the DF motor 91, whereby the X-axis motor 72A and the Y-axis are output.
  • Motor 72B and DF motor 91 are driven.
  • the control unit 8 includes the encoders 90A to 90C that output the digital pulse signals SA to SC, the counter circuit 84, the DSP 80B, the motor control unit 87, and the driver circuits 92A to 92C.
  • the drive of each motor 72A, 72B, 91 is compensated with high accuracy.
  • high-precision motor control that is, high-precision irradiation position control on the processing surface of the workpiece 98 is realized.
  • the encoders 90A to 90C that output the digital pulse signals SA to SC are used as means for detecting the rotation amounts of the motors 72A, 72B, and 91, the X axis motor 72A, the Y axis motor 72B, and DF motor 91 can be digitally controlled, and the detection error is minimized compared to a configuration in which the motor rotation amount is controlled based on an analog detection signal corresponding to the rotation amount. Control will be realized.
  • the DSP 80B simultaneously controls each of the X-axis motor 72A, the Y-axis motor 72B, and the DF motor 91, the laser beam is deflected in the X-axis direction and the Y-axis direction, and the focal point in the Z-axis direction. The distance is synchronized with each other and controlled while suppressing the deviation between the axes, so that more accurate irradiation position control is realized.
  • the drawing condition command signal BCS is input from the computer system 13 to the control unit 8
  • the DSP 80A of the control unit 8 determines the workpiece 98 based on the drawing condition command signal BCS.
  • the trajectory of the irradiation position when scanning the machining surface with laser light is calculated, and distortion correction is performed on the XY coordinate values of each irradiation position.
  • the DSP80A calculates the laser beam intensity according to the processing depth, the material of the workpiece 98, and the type of processing for each irradiation position, as well as the line width, XY coordinate value, and processing surface of the scanning surface.
  • the focal length is calculated according to the unevenness.
  • a trajectory for vector scanning a line drawn on the machining surface of the workpiece 98, or a trajectory for vector scanning a line connecting a plurality of machining points on the machining surface with the shortest distance Is calculated.
  • the DSP 80A does not depend on the scanning speed of the laser light, and the energy density of the laser light per unit area of the irradiation position is substantially constant at each focal position.
  • the laser light intensity is calculated.
  • the energy density per unit area decreases as the scanning speed of the laser light increases, and processing is performed at a slow scanning speed. Variation in processing depth or the like occurs between the processed part and a part processed at a high scanning speed, and the processing quality is impaired.
  • the DSP 80A increases the laser beam intensity as the laser beam scanning speed increases, and also scans the laser beam.
  • the laser beam intensity at which the energy density per unit area at the irradiation spot is substantially constant is calculated. .
  • the DSP 80A shares the XY coordinate command value indicating the irradiation position on the processing surface of the workpiece 98, the focal length command value at the irradiation position, and the laser light intensity command value at predetermined time intervals.
  • Write to data memory 83, and DSP80B synchronizes each of AOM5, DF motor 91 of dynamic focus lens unit 6, and X-axis motor 72A and Y-axis motor 72B of scanner head 7 in synchronization with writing by DSP80A.
  • the workpiece 98 is machined by vector scanning of the machining surface with the laser beam.
  • the DSP 80B moves the irradiation position of the laser beam from the position (home position) PH deviated from the workpiece 98 to the vector scanning start point St as shown in FIG.
  • the drive pitch of the X-axis motor 72A and Y-axis motor 72B is increased, and the irradiation position is moved to the solid scan start point at high speed.
  • the drive pitch is reduced and control is performed so that the laser beam is accurately irradiated to a predetermined irradiation position.
  • the DSP 80B is configured only for the DF motor 91 so that the beam diameter at the vector scanning start point St becomes a predetermined value.
  • the X axis motor 72A and Y axis motor 72B are driven so that the beam diameter becomes a predetermined value regardless of the irradiation position on the processing surface during vector scanning. That is, the DF motor 91 is finely operated in synchronization with the laser beam irradiation position.
  • the DSP 80B performs dynamic focus lens unit 6 according to the height of the unevenness at the irradiation position.
  • the DF motor 91 is finely moved to maintain the beam diameter constant.
  • the DF motor 91 is coarsely operated in synchronization with the driving of the X-axis motor 72A and the Y-axis motor 72B.
  • the DF motor 91 may be coarsely and finely operated in synchronization with the driving of the X-axis motor 72A and the Y-axis motor 72B to adjust the focal position during vector scanning. is there.
  • the difference in level of the unevenness on the processed surface can be determined based on CAD data indicating the shape of the processed surface of the workpiece 98, and the unevenness data is included in the data indicating the shape of the processed surface. If not included, a distance sensor that measures the distance to the machined surface may be used to measure the height difference of the machined surface in real time during vector scanning or before vector scanning. .
  • FIG. 3 is a diagram showing an aspect of the trajectory L for vector scanning.
  • the scanning speed is a predetermined scanning speed (maximum) when the traverse direction K is constant (the trajectory L is a straight line).
  • the laser scanning is started from the vector scanning start point St while accelerating the scanning speed until the scanning speed reaches the scanning speed. After the scanning speed reaches the predetermined scanning speed, the scanning speed is maintained and the trajectory L is maintained. By controlling to scan, the processing time is increased.
  • the conventional control is to decelerate the scanning speed before the switching point Q so that the laser scanning is temporarily stopped at the switching point Q, and to start scanning by switching the laser scanning direction K at the switching point Q. It is done with force.
  • the switching point Q when the switching point Q exists on the trajectory L, the following laser beam scanning (deflection) control is performed to prevent the scanning time from extending! . That is, the trajectory calculation unit 81 of the DSP 80A described with reference to FIG. 2 calculates the trajectory L for performing the laser beam solid scan, and then the switching point Q exists on the trajectory as shown in FIG. In this case, the scanning direction switching start point Qs set before the switching point Q on the trajectory L and the merging point Qe set before the switching point Q on the trajectory L are gradually reduced. Correct the trajectory L to be connected by the curved trajectory Rr.
  • the irradiation position of the laser beam is the scanning direction switching start point.
  • the laser beam scanning along the curved trajectory Rr is continued while maintaining the scanning speed.
  • the scanning direction K of the laser beam gradually changes so that it becomes the running direction K after passing through the switching point Q, and the end point position of the curved path Rr, that is, the confluence point Qe, in the scanning direction K of the laser beam.
  • Switching is completed, and laser beam scanning is performed along the original trajectory L. Done.
  • it is not necessary to stop the laser scanning at the switching point Q so that the time required for the trajectory L scan is prevented from being extended, and high-speed laser processing is realized.
  • Each of the scanning direction switching start point Qs and the merging point Qe is set to a point separated by a switching point Q force by a predetermined distance Ts, Te along the trajectory L.
  • the curvature of the curved track Rr depends on the switching angle ⁇ in the scanning direction K at the switching point Q.
  • the predetermined distances Ts and Te are always constant, the curvature of the curved track Rr decreases as the switching angle ⁇ force S decreases.
  • the predetermined distances Ts and Te are always constant.
  • the curvature of the curved trajectory Rr3 at the switching point Q3 is larger than that of the curved trajectories Rrl and Rr2 at the switching points Ql and Q2.
  • the predetermined threshold value ⁇ th is the minimum value of the switching angle at which the curvature capable of scanning can be obtained while maintaining the maximum scanning speed.
  • the DSP 80A sets the deceleration start point Qd and executes the control to generate the XY coordinate command value so that the scanning speed is decelerated from the deceleration start point Qd.
  • the scanning speed is sufficiently decelerated, and then the curved trajectory Rr is scanned while maintaining the scanning speed at that time.
  • the amount of change is kept small, and irradiation position control by drive control of the X-axis motor 72A, the Y-axis motor 72B, and the DF motor 91 becomes easy.
  • the DSP80A accelerates until the scanning speed reaches a predetermined scanning speed (maximum scanning speed), and after reaching the predetermined scanning speed, the scanning speed Thus, laser beam scanning is continued.
  • the DSP 80A reduces the energy density.
  • a laser output command value is outputted so that the intensity of the laser beam increases or decreases according to the deceleration and acceleration of the scanning speed.
  • the scanning direction switching start point Qs and the confluence point Qe are set on the trajectory L so that the DSP 80A always has a predetermined distance Ts and Te.
  • the scanning direction switching start point Qs and the confluence point Qe may be set so that the curvature of the curved trajectory Rr is always constant. According to this configuration, by setting the curvature of the curved trajectory Rr to a curvature that can be scanned at the maximum scanning speed, it is possible to scan the curved trajectory Rr at the maximum scanning speed regardless of the switching angle ⁇ of the switching point Q. It becomes.
  • the DSP 80B controls the AOM 5 to increase the laser light intensity in proportion to the scanning speed of the laser light on the processed surface of the workpiece 98, or Since the laser beam intensity is adjusted so that the energy density of the laser beam at each irradiation position is substantially constant, even if the scanning speed of the laser beam is high, variations in the processing depth on the processing surface This prevents high-quality processing.
  • the encoders 90A to 90C that output digital pulse signals, the counter circuit 84, the DSP 80B, the motor control unit 87, and the driver circuits 92A to 92C constitute a closed loop control system.
  • the X-axis motor 72A, Y-axis motor 72B, and DF motor 91 drive can be compensated with high precision, so the irradiation position on the work surface of the workpiece 98 can be controlled with high precision, enabling high-quality machining. It becomes.
  • the encoder 90A to 90C that outputs the digital pulse signals SA to SC is used.
  • Axis motor 72A, Y-axis motor 72B, and DF motor 91 can be digitally controlled, and the detection error can be minimized compared to a configuration in which the motor rotation amount is controlled based on an analog detection signal corresponding to the rotation amount. Therefore, more accurate irradiation position control is possible.
  • analog detectors that output analog signals according to the rotation amount of the X-axis motor 72A, Y-axis motor 72B and DF motor 91! /, Depending on the rotation amount as the motor temperature rises Since the signal changes non-linearly, correction according to the motor temperature is required, and the detection error increases depending on the correction accuracy. In addition, the analog detector rotates The detection accuracy is also affected by the aging of the quantity detection element.
  • the X-axis motor 72A, the Y-axis motor 72B, and the DF motor 91 are digitally controlled using the encoders 90A to 90C. Therefore, it is possible to maintain high-precision irradiation position control that is hardly affected by aging.
  • the DSP 80B simultaneously controls each of the X-axis motor 72A, the Y-axis motor 72B, and the DF motor 91, the X-axis direction of the laser beam and the Y-axis
  • the deflection of the direction and the focal length in the Z-axis direction are synchronized with each other and can be controlled while suppressing the misalignment between the axes, so that the irradiation position can be controlled with higher accuracy and higher quality machining can be performed. It becomes possible.
  • the control unit is equipped with two DSP80A and 80B with 8 forces, and the calculation processing such as trajectory calculation and distortion correction is different from the drive control processing for driving and controlling each part. Since it is configured to be executed by the DSP 80A and 80B, the above-described highly accurate irradiation position control is realized without causing delay in the deflection control of the scanner head 7 and the laser light intensity control of the AOM 5 by the arithmetic processing. The scanning speed of the laser beam can be increased, and high-quality processing can be performed in a short time.
  • the processed surface is not limited to the processed workpiece 98 having a flat processed surface.
  • Laser processing is also possible for the workpiece 98 that draws a curved surface.
  • the laser beam scanning direction K is switched from before the switching point Q (scanning direction switching start point Qs).
  • the scanning position of the laser beam is switched to the scanning direction K after switching, and the irradiation position is on the trajectory L to be scanned in the scanning direction K after switching. Since the laser beam scanning is controlled so that it is located at the (confluence point Qe), it is not necessary to stop the laser scanning at the switching point Q. Processing is realized.
  • the configuration in which the control unit 8 includes the shared data memory 83 that can be accessed by the power of each of the two DSPs 80 A and 80 B is exemplified.
  • the configuration of the control unit 8A, DSP80A is equipped with memory 83A and DSP80B power S memory 83B, and DSP80A and 80B send and receive data required for mutual processing by communication. It is good also as a structure.
  • the laser oscillator 2 that continuously oscillates laser light has been described as an example.
  • the present invention is not limited thereto, and a configuration using a laser oscillator that outputs noise light may be used.
  • the laser beam intensity can be varied in this configuration, for example, if the laser oscillator oscillates using a Q switch, the laser beam intensity can be varied by varying the timing of the Q switch.
  • the laser oscillator has a shutter that shields the laser beam, the shutter opening / closing timing (open or closed time)
  • the laser oscillator has an acoustooptic device (AOM) for intensity modulation. If it is, the intensity of the laser light may be varied by adjusting at least one of the acousto-optic elements, 1.
  • the laser beam is always vector-scanned at the time of laser processing.
  • the present invention is not limited to this. If there is no bent portion, raster scanning may be performed in which laser light scanning is performed while the laser light intensity and scanning speed are always maintained constant.
  • the scanner optical system 20 according to the present invention is applied to a laser processing apparatus.
  • the present invention is not limited to this.
  • light from a light source laser light
  • it is necessary to deflect light at high speed such as a drawing device that draws a drawn image by scanning the drawing surface at high speed and a measuring device that scans the sample at high speed to perform inspection measurement. It can be applied to various devices.
  • a scanner optical device configured such that a mirror is rotatably held on a rotation shaft and a reflection surface of the mirror can be adjusted to an arbitrary angle.
  • Such a scanner optical apparatus is widely used in a laser processing apparatus as a deflecting means for scanning a processing surface of a workpiece with a laser beam as disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-358507. ing.
  • the intensity of irradiation light is high.
  • the conventional scanner optical device since the conventional scanner optical device only provides light deflecting means, the user separately installs an optical module or optical element for intensity adjustment and focal position adjustment. It is necessary to prepare one optical system by arranging these optical modules or optical elements and scanner optical devices as appropriate.
  • optical axes of optical modules, optical elements, and scanner optical devices are aligned, and the beam diameter of light is adjusted for each optical element or optical module. Alignment work is required.
  • the alignment work of the optical system requires skill, and is very labor-intensive for those who are not experienced.
  • a scanner optical device that can easily construct an optical system for optical scanning, and a laser processing device that is suitable for use with this scanner optical device will be described.
  • FIG. 5 is a diagram showing a configuration of the laser processing apparatus 100 according to the present embodiment.
  • the laser processing apparatus 100 includes a laser oscillator 102, a scanner optical apparatus 103, and a pair of mirrors 104A and 104B, which are optical elements that guide the laser light emitted from the laser oscillator 102 to the scanner optical apparatus 103. These are placed and fixed on a plate-like stone surface plate 105.
  • the stone surface plate 105 is designed to mount and fix each optical element on such a stone surface plate 105, which has very high planar accuracy, thereby preventing the optical axis from being shifted between the optical elements. Aligning the optical axis between the optical elements becomes easy.
  • a transmissive optical element such as a prism lens may be used instead of the mirror that is a reflective optical element.
  • an optical element that guides the laser light emitted from the laser oscillator 102 to the scanner optical device 103 is not necessary.
  • the laser oscillator 102 is a solid-state laser oscillator, liquid laser oscillator, gas laser oscillator, semiconductor laser oscillator, fiber laser oscillator, or free electron laser oscillator, and is controlled by a laser control device (not shown) to be used as a laser medium. Oscillates a laser beam with the corresponding wavelength.
  • the laser oscillator 102 includes a rectangular parallelepiped oscillator main body 120 having a built-in laser resonator, and a laser output opening at a tip 120A of the oscillator main body 120. Constructed with a mouthpiece 121!
  • an XYZ axis stage 122 is provided on the front end 120A side and the rear end 120B side of the bottom surface of the oscillator main body 120, and these XYZ axis stages 122 are fixed to the stone surface plate 105 with screws.
  • the optical axis of the laser oscillator 102 can be finely adjusted.
  • the laser oscillator 102 is placed on the stone surface plate 105.
  • the stone surface plate 105 has a very low thermal conductivity, even if the laser oscillator 102 generates heat, It is possible to minimize the thermal effect on the optical element.
  • FIG. 7 is an enlarged view showing the scanner optical device 103.
  • the scanner optical device 103 includes an AOM (acousto-optic modulator) 130 that modulates the intensity of the laser beam output from the laser oscillator 102, a dynamic focus lens 131 that adjusts the focus of the laser beam, and deflects the laser beam.
  • the optical element is attached to a rail 133 extending linearly.
  • the rail 133 is provided between the dynamic focus lens 131 and the scanner head 132, and a lens 134 as an optical element that shapes the light output from the dynamic focus lens 131 and inputs the light to the scanner head 132.
  • Each of the two lenses 135A and 135B as optical elements that shape the laser light incident on the AOM 130 is mounted in a freely positionable manner.
  • the scanner head 132 includes a scanner mirror 1321A that deflects laser light, a scanner mirror 1321B that deflects laser light in a direction at a predetermined angle with respect to the deflection direction of the scanner mirror 1321A, and these scanner mirrors 1321A. , Motors 1322A and 1322B for driving 1321B, and a box-shaped housing 1323 having an open bottom for housing scanner mirrors 1321A and 1321B.
  • the housing 1323 has a laser light inlet (not shown) formed on the side surface.
  • the rail 133 has an extending portion 1340 extending from the end portion 105B of the stone surface plate 105, and the housing 1323 of the scanner head 132 is disposed on the extending portion 1340.
  • the side surface is held by a holding piece 136 erected on the rail 133, and is held on the rail 133 by a so-called both-end support structure.
  • the rail 133 is provided with an exit port 1324 for emitting the light deflected by the scanner mirrors 1321A and 1321B.
  • the scanner module 132, the lens 134, and the exit port 1324 constitute a deflection module.
  • the dynamic focus lens 131 deflects laser light with the scanner head 132 and scans the object with the laser light, the irradiation spot diameter of the laser light on the scanning surface of the object is made substantially constant regardless of the irradiation position.
  • the focal length of the laser beam is varied so as to maintain it.
  • the dynamic focus lens 131 is driven by a motor (not shown) to vary the focal length of the laser beam.
  • This motor (not shown) and the motors 1322A and 1322 of the scanner head 132 are controlled by a control unit 106 ⁇ shown in FIG.
  • the control unit 106 controls the motor of the dynamic focus lens 131 that adjusts the focal length based on the irradiation position of the laser beam on the scanning surface and the motors 1322A and 1322B of the scanner head 132 while synchronizing them with each other.
  • an f ⁇ lens may be used as a focal length adjustment unit.
  • the AOM 130 modulates the intensity of the continuous wave laser beam or pulse laser beam output from the laser oscillator 102, and is controlled by the control unit 106.
  • the control unit 106 Laser beam intensity according to the scanning speed of the laser beam specified by the drive amount of the motor 13 22A and 1322B of the scanner head 132 that always keeps the processing degree such as the laser processing depth on the scanning surface of the object constant Is variable. That is, when the scanning speed of the laser beam is high, the control unit 106 increases the laser beam intensity or the laser beam density because the energy per unit area decreases, and on the contrary, the scanning rate is slow. In some cases, the laser light intensity or laser light density is controlled to be reduced! /, And the energy per unit area during laser light scanning is controlled to be substantially constant.
  • the laser beam density is defined by the number of pulses per unit time of the laser beam, and the energy of the laser beam per unit area can be varied by varying the laser beam density.
  • the AOM 130 and the dynamic focus lens 131 are mounted on a pedestal 137, and the pedestal 137 is mounted on a rail 133 so as to be freely positioned. It is.
  • Each lens 134, 135 mm, 135 mm is also held by a lens holder 138, and a rail mounting part 139 is provided at the bottom of the lens holder 138, and this rail mounting part 139 is mounted on the rail 133 so as to be freely positioned.
  • the base 137 and the rail mounting part 139 are provided with a number of screw holes 144. After adjusting the mounting position of the AOM 130, etc., screws are screwed into the screw holes 144 and fixed to the rails 133 by screws.
  • the rail mounting portion 139 of the pedestal 137 and the lens holder 138 is provided with a dovetail structure dovetail 140, and the upper surface of the rail 133 extends in the longitudinal direction.
  • a single groove 1330 is formed.
  • each optical element is attached to the rail 133 by fitting the base 140 with the base 137 and the rail attachment portion 139 from one end of the rail 133 into the groove 1330.
  • the linear arrangement of the pedestal 137 and the lens holder 138 is regulated by the groove 133 30 of the rail 133, the AOM 130, the dynamic focus lens 131, and the lenses 134, 135A are simultaneously mounted on the rail 133
  • the alignment of the 135B linear optical axis is completed.
  • the rail 133, the base 137, and the rail mounting portion 139 can be firmly fixed by screwing the screw into the screw ⁇ L144.
  • the positioning mark 150 is drawn on the upper surface of the rail 133 at the mounting positions of the eaves 130, the dynamic focus lens 131, and the lenses 134, 135A, and 135B.
  • a positioning mark 151 is drawn on each side surface of the rail mounting portion 139 of the base 137 and the lens holder 138.
  • the positioning mark 150 and the positioning mark 151 in advance, when transporting the scanner optical device 103, etc., the collar 130, the dynamic focus lens 131, and the lenses 134, 135A, 135B Even when each of these is removed and transported by the Lenole 133 force, alignment when attaching them to the rail 133 becomes easy. Furthermore, when finely adjusting the mounting position of each part due to aging deterioration or individual differences of lenses and optical elements, each part along the groove 1330 of the rail 133 with reference to the positioning mark 150 and the positioning mark 151 Positioning work becomes easier compared to the case where there is no guideline for a good mounting position just by moving back and forth.
  • the positions of the positioning mark 150 and the positioning mark 151 are the optical characteristics of the optical elements such as the dynamic focus lens 131 and the lenses 134, 135A, and 135B, in other words, the optical design of the scanner optical device 3. Naturally, it can be changed according to the scanning angle range and spot diameter of the laser beam. Therefore, the positioning mark 150 and the positioning mark 151 may be provided for each of several optical design values. As a result, when the user operates the scanner optical device 3 with different optical design values, each optical element can be easily replaced and positioned.
  • the force is such that the positioning mark 150 and the positioning mark 151 are directly drawn on each of the rail 133, the base 137, and the rail mounting portion 139. In other words, it is sufficient that the positioning mark 150 and the positioning mark 151 are provided so that the relative distance between the optical elements attached to the rail 133 is defined. It is also possible to mark the mark 150 on a separate member and paste it on the rail 133. Further, the positioning mark 151 may be a separate member.
  • the scanner optical device 103 includes the AOM 130 described above. Therefore, it is necessary to remove the AOM130 from the optical axis (path) of the laser beam. Even in such a case, in the present embodiment, since the dovetail structure is adopted for mounting each optical element to the rail 133, the A OM130 and the pedestal 137 for mounting the AOM130 are mounted on the rail. It can be easily removed from 133.
  • AOM 130 when AOM 130 is attached to Renore 133, AOM 130 can be easily attached and positioned by aligning positioning mark 150 and positioning mark 151 as described above. It becomes possible. Also, when installing AOM130 on rail 133, attach AOM130 to rail 133 with AOM130 removed from rail133. By aligning the optical axes of the optical elements, and then attaching the AOM 130, the influence of the AOM 130 can be eliminated when aligning the optical axes of the optical elements.
  • the dynamic focus lens 131 (of course, the ⁇ lens is also used). May be unnecessary.
  • the dynamic focus lens 131 (or f ⁇ lens)
  • another lens is disposed in front of the lens 134. Even in such a case, similarly to the AOM 130, the dynamic focus lens 131 can be easily removed, and a lens in place of the dynamic focus lens 131 can be attached.
  • the dynamic focus lens 131 when the dynamic focus lens 131 is removed from the rail 133 or when the dynamic focus lens 131 is changed to one having different optical characteristics, it enters the scanner mirrors 1321A and 1321B of the scanner head 132. Since the beam diameter of the laser beam to be changed changes, it may be necessary to adjust the position of the lens 134 arranged in front of the scanner head 132. Even in such a case, since the lens 134 is mounted on the linear rail 133 so as to be freely positioned, the optical axis can be adjusted by moving the lens 134 back and forth along the dovetail groove 1330 and adjusting it. It becomes possible to perform positioning adjustment without shifting.
  • the rail 133 is divided into a plurality of rail pieces 133A to 133E along the longitudinal direction.
  • Each of the rail pieces 133A to 133E is formed in a shape having substantially the same dimensions, and an extending portion 1340 for placing the scanner head 132 is provided only on the leading rail piece 133A.
  • These rail pieces 133A to 133E are attached to the stone surface plate 105 to maintain the function of the rail guide member.
  • the stone surface plate 105 is used for connecting the rail pieces 133A to 133E. It functions as a base material.
  • Each rail piece 133A to 133E is formed in an L shape in side view, and has positioning legs 142 that are in surface contact with the end surface 105A of the stone surface plate 105. ing. That is, along each side of the stone surface plate 105, each rail piece 133A-; 133E positioning leg 142 is fixed to the end surface 105A of the stone surface plate 105 while being fixed. Each of the rail pieces 133A to 133E using 105 end faces 105A is linearly aligned and connected. When fixing each rail piece 133A ⁇ ; 133E to the stone surface plate 105, each is fixed with a gap ⁇ (see Fig.
  • one rail piece 133 ⁇ ⁇ 133 ⁇ causes thermal expansion etc.
  • the separation from the other rail pieces 133A to 133E prevents the occurrence of positional deviation (particularly, the variation in the relative distance between the optical elements).
  • the interval ⁇ is adjusted using, for example, a gap gauge!
  • the scanner head 132 is fixed to the end of the rail 133, and the dynamic focus lens 131 is attached to the rail 133.
  • the lens 134 is provided on the rail 133 so as to be freely positioned. According to this configuration, since the scanner head 132 and the dynamic focus lens 131 are attached to the rail 133 and unitized, the laser beam is deflected by the scanner head 132 and the object is scanned with the laser beam. While making it possible to keep the light irradiation spot diameter constant regardless of the irradiation position, the optical design value of the scanner optical device 103 can be easily changed by changing or removing the dynamic focus lens 131. .
  • the AOM 130 is configured to be detachably attached to the rail 133.
  • the scanner optical device 103 in which the function of adjusting the intensity of the laser beam when the laser beam is deflected by the scanner head 132 and the object is scanned with the laser beam is integrated is provided.
  • the rail 133 force is also attached to the AOM 130, and the specifications of the laser oscillator 102 used together with the scanner optical device 103 are as follows. Can be easily adapted to.
  • the rail 133 is fixed to the stone surface plate 105, the optical axis shift between the optical elements attached to the rail 133 is prevented, and each optical element It becomes easy to align the optical axis.
  • the stone surface plate 105 is configured such that the laser oscillator 102 and the pair of mirrors 104A and 104B are mounted and fixed together with the scanner optical device 103. According to this configuration, the optical axis shift between the optical elements placed on the stone surface plate 105 is prevented, and the optical axis alignment between the optical elements is facilitated. Even if the laser oscillator 102 is mounted on the stone surface plate 105, the thermal conductivity of the stone surface plate 105 is extremely small, so that the heat effect of the heat generated by the laser oscillator 102 on other optical elements can be minimized. I can do it.
  • the rail 133 is divided into a plurality of rail pieces 133 A to 133 E along the longitudinal direction, and the rail pieces 133 A to 133 E are arranged along one side of the stone surface plate 105.
  • the rail pieces 133A to 133E are arranged with a gap ⁇ between them while aligning the axes (the dovetail grooves 1330).
  • an extension portion 1340 is provided on the first rail piece 133A of the plurality of rail pieces 133A to 133E, the scanner head 132 is disposed on the extension portion 1340, and the extension portion 1340 is erected.
  • the scanner head 132 is held by the holding piece 136.
  • the rail piece 133A is arranged in front of the end 105 ⁇ of the stone surface plate 105, and the holding piece 136A is provided at the tip 1350 of the rail piece 133A.
  • the scanner head 132 may be mounted on the stone surface plate 105 and the holding optical element 103A may be held by the holding piece 136A, and a laser processing apparatus 100A using the scanner optical apparatus 103A may be configured. According to the force and the structure, the scanner head 132 is placed on the stone surface plate 105 side, and it is difficult to transmit the vibration of the scanner head 132 to other optical elements. Therefore, it is possible to prevent displacement of the optical element due to vibration of the scanner head 132.
  • the scanner optical device 103 is configured by providing a condensing lens 134 at the subsequent stage of the dynamic focus 131.
  • a scanner optical device 103B in which a lens 134 is provided in front of the dynamic focus 131 may be configured, and a laser processing device 101B provided with the scanner optical device 103B may be used.
  • the AOM 130 and the lens are arranged in front of the dynamic focus 131.
  • the scanner optical device 103 is configured by providing 135A and 135B.
  • the scanner optical device 103C may be configured by omitting the M130 and the lenses 135A and 135B, and the laser processing device 101C including the scanner optical device 103C may be used.
  • the AOM 130 and the lens are arranged in front of the dynamic focus 131.
  • the lens for condensing the dynamic focus 131 is the rear stage 1
  • M130 and lenses 135A and 135B are omitted, and lens 134 is dynamically focused.
  • a scanner optical device 103D may be provided in front of 131, and a laser processing device 101D including the scanner optical device 103D may be used.
  • the laser light output from the laser oscillator 102 is converted into a pair of mirrors.
  • the configuration is such that the light is deflected by 104A and 104B and guided to the scanner optical device 103.
  • the laser processing apparatus 101E configured to directly enter the laser light output from the laser oscillator 102 into the scanner optical apparatus 103 may be used.
  • the scanner optical device 103B described above is used instead of the scanner optical device 103 as shown in FIG.
  • the laser processing device 101F can be configured
  • the laser processing apparatus 101G may be configured by using the above-described scanner optical apparatus 103C.
  • the apparatus 101H may be configured.
  • each of the other rail pieces 133B to 133E except for the leading rail piece 133A has substantially the same size.
  • the scanner optical device 103E may be configured by dividing the rail 133 into rail pieces 133A ′ to 133E ′ for each optical element to be attached.
  • the scanner optical device 103F may be configured by using one rail 160.
  • the scanner head 132 has a cantilever support structure in which the scanner head 132 is held only by the end of the rail piece 133A ′ or the holding piece 136 erected on the end of the rail 160. Also good.
  • a linear guide that is generally used as a linear guide shaft bearing may be used.
  • the mounting structure between the rail 133 and each optical element is a groove structure, but the present invention is not limited to this.
  • one or more ridges extending in parallel with each other are provided on the upper surface of the rail 133, and ridges that engage with the ridges of the rail 133 are provided on the bottom surfaces of the base 137 and the rail mounting portion 139.
  • Each optical element may be attached to the lenore 133 by an engaging structure of ridges and ridges. As a result, each optical element can be individually detached from the rail 133 as compared to a structure in which each optical element is mounted by providing a groove in the rail 133.
  • the configuration in which the light emitted from the laser oscillators 1 and 102 is deflected vertically downward by the scanner head 7 or the scanner optical device 103 to irradiate the workpiece is exemplified.
  • the scanner head 7 or the scanner optical device 103 is rotated by a predetermined angle with the optical axis (incident side) of the laser light as the central axis, and the vertical downward direction is defined as 0 degrees
  • the horizontal direction is, for example, within ⁇ 90 degrees Irradiate laser light at an arbitrary angle of, or irradiate laser light vertically upward at 180 degrees in the horizontal direction It is good also as composition to do.
  • the irradiation range of the laser beam can be expanded compared to a configuration in which the scanner head 7 or the scanner optical device 103 is not rotated.
  • a rotation driving means for adjusting the predetermined angle of the scanner head 7 or the scanner optical device 103 to an arbitrary angle may be provided separately.

Abstract

It is possible to perform high-speed and stable scan by scanning an object by a light while the scan speed is changed. A laser processing device (1) performs laser processing by applying a laser beam outputted from a laser oscillator (2) to a processing surface of an object (98). The laser processing device (1) includes an AOM (5) for adjusting the laser beam intensity and a scanner head (7) for vector-scanning the processing surface of the object with a predetermined scan speed from a zero level by the laser light. The AOM (5) is configured to adjust the laser beam intensity in proportion to the vector scan speed or in such a manner that the laser beam energy density is substantially constant.

Description

明 細 書  Specification
スキャナ光学システム、レーザ加工装置、及び、スキャナ光学装置 技術分野  Scanner optical system, laser processing apparatus, and scanner optical apparatus
[0001] 本発明は、光源から放射された光の対象物における照射位置を偏向するスキャナ 光学システム、及び、このスキャナ光学システムを備えたレーザ加工装置に関する。 また、本発明は、光源が放射した光を偏向して対象物を走査するスキャナ光学装置 、及び、このスキャナ光学装置を備えたレーザ加工装置にも関する。  The present invention relates to a scanner optical system that deflects an irradiation position on an object of light emitted from a light source, and a laser processing apparatus including the scanner optical system. The present invention also relates to a scanner optical device that scans an object by deflecting light emitted from a light source, and a laser processing apparatus including the scanner optical device.
背景技術  Background art
[0002] 被加工物にレーザ光を照射して加工するレーザ加工装置は、一般に、レーザ光の 光路を偏向して被加工物における照射位置を可変にするスキャナ光学システムを備 えている(例えば、特許文献 1参照)。また近年では、スキャナ光学システムとして、回 転軸の回りに回転自在に保持され、反射面を任意の角度に位置決め可能なガルバ ノミラーを備え、サーボ制御によりガルバノミラーの回転を制御して、高速に、かつ、 高精度に照射位置を可変可能にしたガルバノスキャナが知られている。このガルバノ スキャナをレーザ加工装置に用いることで、被加工物を高速に加工し加工時間を短 縮可能となる。  [0002] A laser processing apparatus that processes a workpiece by irradiating the workpiece with a laser beam generally includes a scanner optical system that deflects the optical path of the laser beam to vary the irradiation position on the workpiece (for example, (See Patent Document 1). In recent years, the scanner optical system has a galvano mirror that is held rotatably around the rotation axis and can position the reflecting surface at an arbitrary angle. In addition, a galvano scanner that can change the irradiation position with high accuracy is known. By using this galvano scanner in a laser processing device, the workpiece can be processed at high speed and the processing time can be shortened.
特許文献 1 :特開 2004— 358507公報  Patent Document 1: JP 2004-358507 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかしながら、ガルバノスキャナのように照射位置を高速に可変するスキャナ光学シ ステムを用いてレーザ光の走査速度を可変しながらレーザ加工する場合、走査速度 の変動により照射位置におけるレーザ光のエネルギー密度が一定しないため、加工 深度が不均一となり加工品質が低下する、といった問題がある。 [0003] However, when laser processing is performed while changing the scanning speed of the laser beam using a scanner optical system that changes the irradiation position at high speed, such as a galvano scanner, the energy of the laser beam at the irradiation position due to fluctuations in the scanning speed. Since the density is not constant, there is a problem that the processing depth becomes non-uniform and the processing quality decreases.
レーザ走査時のエネルギー密度の不安定さによる問題は、レーザ加工装置に限つ た問題ではなぐ例えば、描画面に対して光を高速に走査させて描画像を描画する 描画装置においては描画像にムラが生じ、描画像の品質が低下するといつた問題を 生じ、また例えば、試料に対してレーザ光を高速に走査させて検査 ·測定を行う測定 装置にぉレ、ては検出値に誤差が生じ、正確な測定結果が得られな!/、と!/、つた問題を 生じる。 Problems due to instability of energy density during laser scanning are not limited to laser processing equipment. For example, drawing images are drawn by scanning light at high speed on the drawing surface. When unevenness occurs and the quality of the drawn image deteriorates, problems occur. For example, a sample is scanned and scanned at high speed to perform inspection and measurement. Errors occur in the detected values due to the equipment, and accurate measurement results cannot be obtained! /, And! /.
[0004] 本発明は、上述した事情に鑑みてなされたものであり、高速に、かつ、走査速度を 可変させながら光で対象物を走査しつつ、安定した光走査を可能にするスキャナ光 学システム、及び、レーザ光で被加工物を高速に走査しつつ、高品位な加工を可能 にするレーザ加工装置を提供することを目的とする。  The present invention has been made in view of the circumstances described above, and is a scanner optical that enables stable optical scanning while scanning an object with light at high speed while varying the scanning speed. It is an object of the present invention to provide a system and a laser processing apparatus that enables high-quality processing while scanning a workpiece with laser light at high speed.
課題を解決するための手段  Means for solving the problem
[0005] 上記目的を達成するために、本発明は、光源から出力された光を、対象物に照射 し走査するスキャナ光学システムであって、前記光の強度を調整する光強度調整手 段と、前記光を前記対象物の所定位置に向けて偏向すると共に、ゼロレベルから所 定の走査速度となるように前記光を偏向する偏向手段とを備え、前記光強度調整手 段は、前記偏向手段による光の走査速度に比例して、或いは、前記光のエネルギー 密度が略一定となるように、前記光の強度を調整することを特徴とする。  In order to achieve the above object, the present invention provides a scanner optical system that irradiates and scans an object with light output from a light source, and includes a light intensity adjusting unit that adjusts the intensity of the light. Deflecting the light toward a predetermined position of the object and deflecting the light so that a predetermined scanning speed is achieved from zero level, and the light intensity adjusting means includes the deflecting means. The light intensity is adjusted in proportion to the scanning speed of the light by the means or so that the energy density of the light becomes substantially constant.
[0006] また本発明は、上記スキャナ光学システムにおいて、前記偏向手段は、スキャナミラ 一と、このスキャナミラーを駆動する駆動モータと、この駆動モータを制御するコント口 一ラとを有し、前記スキャナミラーの駆動量に応じたデジタルパルス信号を出力する エンコーダを前記駆動モータに設け、前記コントローラは、前記デジタルパルス信号 をカウントして前記駆動量を特定し、当該駆動量に基づ!/、て前記駆動モータに制御 信号を出力するフィードバック制御を実行することを特徴とする。  [0006] Further, in the scanner optical system according to the present invention, the deflection unit includes a scanner mirror, a drive motor that drives the scanner mirror, and a controller that controls the drive motor. An encoder that outputs a digital pulse signal corresponding to the drive amount of the scanner mirror is provided in the drive motor, and the controller counts the digital pulse signal to identify the drive amount, and based on the drive amount! /, Feedback control for outputting a control signal to the drive motor is performed.
[0007] また本発明は、上記スキャナ光学システムにおいて、前記偏向手段は、前記対象 物の平面内を互いに直交する X軸方向及び Y軸方向のそれぞれに前記光を偏向す る X軸偏向手段及び Y軸偏向手段を備え、前記 X軸偏向手段による偏向及び Y軸偏 向手段による偏向を共に同一のコントローラで同時に両軸を制御したことを特徴とす  [0007] Further, the present invention provides the above-described scanner optical system, wherein the deflecting unit deflects the light in each of an X-axis direction and a Y-axis direction orthogonal to each other in a plane of the object. Y-axis deflection means is provided, and both the deflection by the X-axis deflection means and the deflection by the Y-axis deflection means are controlled simultaneously by the same controller.
[0008] また本発明は、上記スキャナ光学システムにおいて、前記 X軸偏向手段による偏向 及び前記 Y軸偏向手段による偏向によって規定される前記光の前記対象物への照 射位置に応じて、レンズ間の距離を調整して前記光の焦点距離を調整するフォー力 ス調整手段を更に備え、前記 X軸偏向手段による偏向及び前記 Y軸偏向手段による 偏向と共に、前記フォーカス調整手段による焦点距離調整を同一のコントローラで同 時に全軸を制御することを特徴とする。 [0008] Further, according to the present invention, in the above-described scanner optical system, according to the irradiation position of the light to the object defined by the deflection by the X-axis deflection unit and the deflection by the Y-axis deflection unit, A force adjustment means for adjusting the focal length of the light by adjusting the distance of the light, further comprising deflection by the X-axis deflection means and by the Y-axis deflection means Along with the deflection, the focal length adjustment by the focus adjustment means is controlled by the same controller at the same time for all axes.
[0009] また本発明は、上記スキャナ光学システムにおいて、前記コントローラは、前記対象 物の表面凹凸に応じて前記光の焦点距離が調整されるように前記フォーカス調整手 段を制御することを特徴とする。 [0009] Further, the present invention is characterized in that, in the above-described scanner optical system, the controller controls the focus adjustment means so that a focal length of the light is adjusted according to a surface unevenness of the object. To do.
[0010] また本発明は、上記スキャナ光学システムにおいて、前記対象物の形状及び前記 光の走査態様に基づいて、前記偏向手段による前記光の偏向軌道を演算する軌道 演算手段と、前記軌道演算手段による偏向軌道と、前記光の偏向の検出値とに基づ いて、前記偏向手段による前記光の偏向をフィードバック制御す偏向制御手段とを 備え、前記軌道演算手段と前記偏向制御手段とを各々個別の CPUで構成したこと を特徴とする。 In the scanner optical system, the present invention provides a trajectory calculating means for calculating a deflection trajectory of the light by the deflecting means based on the shape of the object and the scanning mode of the light, and the trajectory calculating means. And a deflection control means for feedback-controlling the deflection of the light by the deflecting means based on the deflection trajectory by the optical path, and the trajectory calculating means and the deflection control means, respectively. It is composed of the following CPUs.
[0011] また本発明は、上記スキャナ光学システムにおいて、前記光で走査する予定の軌 道上に、前記光の走査方向が切り替わる切替点が存在する場合、前記切替点の手 前から、前記光の走査方向を前記切替後の走査方向に徐々に変化させて走査しつ つ、前記光の走査方向が前記切替後の走査方向に切り替わったときの前記光の走 查位置が、前記切替後の走査方向で走査すべき軌道上に位置するように前記偏向 手段を制御することを特徴とする。  [0011] Further, according to the present invention, in the above-described scanner optical system, when there is a switching point at which the scanning direction of the light is switched on the trajectory to be scanned with the light, the light is transmitted from before the switching point. The scanning position of the light when the scanning direction of the light is switched to the scanning direction after the switching while the scanning direction is gradually changed in the scanning direction after the switching is the scanning after the switching. The deflecting means is controlled so as to be positioned on a trajectory to be scanned in a direction.
[0012] また本発明は、上記スキャナ光学システムにおいて、前記光源は、レーザ光を発振 するレーザ装置を有し、前記光強度調整手段は、前記レーザ装置のレーザ電源の 出力、前記レーザ装置が Qスィッチを内蔵する場合には当該 Qスィッチ、前記レーザ 装置がレーザ光を遮蔽するシャッターを有する場合には当該シャッター、前記レーザ 装置が強度変調用の音響光学素子を有する場合には当該音響光学素子、及び、前 記レーザ装置力 Sパルスレーザ光を発振する場合には発振周期の少なくともいずれか 1つを調整し、前記レーザ光の強度を調整することを特徴とする。  [0012] Further, in the scanner optical system according to the present invention, the light source includes a laser device that oscillates laser light, the light intensity adjusting unit outputs an output of a laser power source of the laser device, and the laser device is Q The Q switch when the switch is incorporated, the shutter when the laser device has a shutter that shields laser light, the acoustooptic device when the laser device has an acoustooptic device for intensity modulation, In addition, when the laser device force S pulse laser beam is oscillated, at least one of the oscillation periods is adjusted to adjust the intensity of the laser beam.
[0013] また上記目的を達成するために、本発明は、レーザ発振器から出力されたレーザ 光を、被加工物の加工面に照射してレーザ加工するレーザ加工装置であって、前記 レーザ光の強度を調整する光強度調整手段と、前記レーザ光を偏向し、ゼロレベル 力、ら所定の走査速度で前記被加工物の加工面を前記レーザ光でベクトル走査する 偏向手段とを備え、前記光強度調整手段は、前記偏向手段による前記レーザ光の ベクトル走査速度に比例して、或いは、前記レーザ光のエネルギー密度が略一定と なるように、前記レーザ光の強度を調整することを特徴とする。 [0013] In order to achieve the above object, the present invention provides a laser processing apparatus for irradiating a processing surface of a workpiece with a laser beam output from a laser oscillator, Light intensity adjusting means for adjusting the intensity, deflecting the laser beam, and vector scanning the processing surface of the workpiece with the laser beam at a predetermined scanning speed with zero level force Deflection means, and the light intensity adjustment means is proportional to the vector scanning speed of the laser light by the deflection means, or so that the energy density of the laser light is substantially constant. It is characterized by adjusting.
[0014] なお、本発明に係るレーザ加工装置において、ゲート信号を入力しつつ、前記パ ノレスレーザ光の発振トリガとなるトリガノ ルス信号を前記レーザ発振器に入力し、当 該トリガノくルス信号に合わせてノ ルスレーザ光を出力させるレーザ発振制御手段と、 前記パルスレーザ光を遮蔽する遮蔽手段とを備え、前記ゲート信号を入力した後、 所定パルス数の前記トリガパルス信号が入力されるまで前記遮蔽手段によりパルスレ 一ザ光を遮蔽し、発振当初のジャイアントパルスが被加工物に照射される事を防止 する構成としても良い。 [0014] In the laser processing apparatus according to the present invention, while inputting a gate signal, a trigger noise signal serving as an oscillation trigger of the panelless laser light is input to the laser oscillator, and is matched with the trigger noise signal. A laser oscillation control means for outputting a Norlas laser beam; and a shielding means for shielding the pulse laser light. After the gate signal is inputted, the shielding means until the trigger pulse signal of a predetermined number of pulses is inputted. A configuration may be adopted in which the pulse laser light is shielded to prevent the workpiece from being irradiated with the initial giant pulse.
[0015] また上記目的を達成するために、本発明は、光源から出力された光を対象物に向 けて偏向する偏向モジュールを有し、前記偏向モジュールにより前記光を偏向し対 象物を走査するスキャナ光学装置であって、直線状のレール部材に前記偏向モジュ ールを固定すると共に、前記光源力 出力された光の焦点距離を調整するフォー力 ス調整手段を前記レール部材に着脱自在に設け、前記フォーカス調整手段から出 力された光を整形し前記偏向モジュールに入力する光学素子を前記レール部材に 位置決め自在に設けたことを特徴とする。  [0015] In order to achieve the above object, the present invention includes a deflection module that deflects light output from a light source toward an object, and deflects the light by the deflection module. A scanner optical device for scanning, wherein the deflection module is fixed to a linear rail member, and a force adjustment means for adjusting the focal length of the light output from the light source force is detachable from the rail member. And an optical element for shaping the light output from the focus adjusting means and inputting the light to the deflection module, so that the optical element can be positioned on the rail member.
[0016] また本発明は、上記スキャナ光学装置において、前記フォーカス調整ユニットに入 射するレーザ光のレーザ光強度を調整するレーザ光強度調整モジュールを前記レ 一ル部材に着脱自在に設けたことを特徴とする。  [0016] Further, according to the present invention, in the above-described scanner optical device, a laser beam intensity adjustment module that adjusts the laser beam intensity of the laser beam incident on the focus adjustment unit is detachably provided on the rail member. Features.
なお、レーザ光にはパルスレーザ光と連続発振レーザ光とがある力 前記フォー力 ス調整ユニットに入射するレーザ光はどちらでも良い。  The laser beam has a pulse laser beam and a continuous wave laser beam. The laser beam incident on the force adjustment unit may be either.
また、当該フォーカス調整ユニットを前記レール部材に設ける際に、当該フォーカス 調整ユニットに入射するレーザ光を整形する光学素子を要する場合には、当該光学 素子も前記レールに前記フォーカス調整ユニットと共に着脱自在に設けられることに なる。  In addition, when the focus adjustment unit is provided on the rail member, if an optical element for shaping the laser light incident on the focus adjustment unit is required, the optical element is also detachable from the rail together with the focus adjustment unit. Will be provided.
[0017] また本発明は、上記スキャナ光学装置において、前記偏向モジュールを前記レー ル部材及び前記石定盤で支持したことを特徴とする。なお、前記偏向モジュールを 前記レール部材及び前記石定盤に両持支持する構成としても良い。 [0017] Further, the invention is characterized in that, in the above-described scanner optical device, the deflection module is supported by the rail member and the stone surface plate. The deflection module The rail member and the stone surface plate may be supported at both ends.
[0018] また本発明は、上記スキャナ光学装置において、前記光源と、前記光源が出力す る光を前記スキャナ光学装置に導く光学素子とを共に前記石定盤に固定したことを 特徴とする。 [0018] The present invention is also characterized in that, in the scanner optical device, the light source and an optical element that guides light output from the light source to the scanner optical device are both fixed to the stone surface plate.
[0019] また本発明は、上記スキャナ光学装置において、前記偏向モジュールを前記石定 盤に保持させたことを特徴とする。  [0019] Further, the invention is characterized in that, in the above-described scanner optical device, the deflection module is held on the stone surface plate.
[0020] また本発明は、上記スキャナ光学装置において、前記レール部材を長手方向に沿 つて複数のレール片に分断し、各レール片を互いに隙間をあけて配列したことを特 徴とする。 The present invention is also characterized in that, in the above-described scanner optical device, the rail member is divided into a plurality of rail pieces along the longitudinal direction, and the rail pieces are arranged with a gap therebetween.
なお、各レール片を上記石定盤をベース部材として配列する構成としても良い。  The rail pieces may be arranged with the stone surface plate as a base member.
[0021] また、本発明は、上記スキャナ光学装置において、前記レール部材に取り付けられ る部材ごとに、取付位置の目安を示すマーク部を有することを特徴とする。 [0021] Further, the invention is characterized in that in the above-described scanner optical device, each member that is attached to the rail member has a mark portion that indicates an indication of the attachment position.
[0022] また上記目的を達成するために、本発明は、上述したいずれかのスキャナ光学装 置と、前記スキャナ光学装置にレーザ光を出力するレーザ装置とを備え、前記スキヤ ナ光学装置が前記レーザ光を偏向し、被加工物の加工面を前記レーザ光で走査し て加工することを特徴とするレーザ加工装置を提供する。 In order to achieve the above object, the present invention includes any one of the scanner optical devices described above and a laser device that outputs laser light to the scanner optical device, and the scanner optical device includes the scanner optical device. There is provided a laser processing apparatus characterized in that a laser beam is deflected and a processed surface of a workpiece is scanned with the laser beam for processing.
発明の効果  The invention's effect
[0023] 本発明のスキャナ光学システム及び当該スキャナ光学システムを有するレーザ加工 装置によれば、光の走査速度に比例して、或いは、光のエネルギー密度が略一定と なるように、光の強度を調整するため、光で対象物を高速に走査しつつ、光走査時 においては、対象物の照射位置における光のエネルギー密度が略一定に維持され 、安定した光走査が実現される。  [0023] According to the scanner optical system and the laser processing apparatus having the scanner optical system of the present invention, the light intensity is adjusted in proportion to the light scanning speed or so that the light energy density is substantially constant. In order to adjust, while scanning the object at high speed with light, the light energy density at the irradiation position of the object is maintained substantially constant during the optical scanning, and stable optical scanning is realized.
また本発明のスキャナ光学装置及び当該スキャナ光学装置を有するレーザ加工装 置によれば、直線状のレール部材に偏向モジュールを固定すると共に、光源から出 力された光の焦点距離を調整するフォーカス調整手段を前記レール部材に着脱自 在に設ける構成としたため、フォーカス調整機能が一体化されたスキャナ光学装置が 提供される。さらに、前記フォーカス調整手段から出力された光を整形し前記偏向モ ジュールに入力する光学素子が前記レール部材に位置決め自在に設けられて!/、る ため、前記フォーカス調整手段を取り外し、或いは、交換した際に、前記光学素子と 前記偏向モジュールとの間の距離を調整する必要が生じた場合であっても、前記光 学素子は前記レール部材にガイドされながら移動するため、前記光学素子と前記偏 向モジュールとの間の光軸を合わせたまま、距離だけを簡単に調整することが可能と なる。 Further, according to the scanner optical device of the present invention and the laser processing apparatus having the scanner optical device, the focus adjustment is performed by fixing the deflection module to the linear rail member and adjusting the focal length of the light output from the light source. Since the means is provided so as to be detachably attached to the rail member, a scanner optical device in which the focus adjustment function is integrated is provided. Further, an optical element for shaping the light output from the focus adjusting means and inputting it to the deflection module is provided on the rail member so as to be freely positionable. Therefore, even when the distance between the optical element and the deflection module needs to be adjusted when the focus adjusting means is removed or replaced, the optical element is attached to the rail member. Since it moves while being guided, it is possible to easily adjust only the distance while keeping the optical axis between the optical element and the polarization module aligned.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]本発明の第 1実施形態に係るレーザ加工装置の構成を示す図である。  FIG. 1 is a diagram showing a configuration of a laser processing apparatus according to a first embodiment of the present invention.
[図 2]コントロールユニットの構成を示す図である。  FIG. 2 is a diagram showing a configuration of a control unit.
[図 3]切替点を含む軌道のレーザ光走査を説明するための図である。  FIG. 3 is a diagram for explaining laser beam scanning of an orbit including a switching point.
[図 4]図 2に示すコントロールユニットの変形例を示す図である。  4 is a diagram showing a modification of the control unit shown in FIG.
[図 5]本発明の第 2実施形態に係るレーザ加工装置の構成を示す図である。  FIG. 5 is a diagram showing a configuration of a laser processing apparatus according to a second embodiment of the present invention.
[図 6]第 2実施形態に係るレーザ発振器を示す図である。  FIG. 6 is a diagram showing a laser oscillator according to a second embodiment.
[図 7]第 2実施形態に係るスキャナ光学装置の構成を示す図である。  FIG. 7 is a diagram showing a configuration of a scanner optical device according to a second embodiment.
[図 8]スキャナ光学装置への光学素子の取付を説明するための図である。  FIG. 8 is a view for explaining attachment of an optical element to a scanner optical device.
[図 9]第 2実施形態の変形例に係るレーザ加工装置の構成を示す図である。  FIG. 9 is a diagram showing a configuration of a laser processing apparatus according to a modification of the second embodiment.
[図 10]第 2実施形態の変形例に係るレーザ加工装置の構成を示す図である。  FIG. 10 is a diagram showing a configuration of a laser processing apparatus according to a modification of the second embodiment.
[図 11]第 2実施形態の変形例に係るレーザ加工装置の構成を示す図である。  FIG. 11 is a diagram showing a configuration of a laser processing apparatus according to a modification of the second embodiment.
[図 12]第 2実施形態の変形例に係るレーザ加工装置の構成を示す図である。  FIG. 12 is a diagram showing a configuration of a laser processing apparatus according to a modification of the second embodiment.
[図 13]第 2実施形態の変形例に係るレーザ加工装置の構成を示す図である。  FIG. 13 is a diagram showing a configuration of a laser processing apparatus according to a modification of the second embodiment.
[図 14]第 2実施形態の変形例に係るレーザ加工装置の構成を示す図である。  FIG. 14 is a diagram showing a configuration of a laser processing apparatus according to a modification of the second embodiment.
[図 15]第 2実施形態の変形例に係るレーザ加工装置の構成を示す図である。  FIG. 15 is a diagram showing a configuration of a laser processing apparatus according to a modification of the second embodiment.
[図 16]第 2実施形態の変形例に係るレーザ加工装置の構成を示す図である。  FIG. 16 is a diagram showing a configuration of a laser processing apparatus according to a modification of the second embodiment.
[図 17]第 2実施形態の変形例に係るスキャナ光学装置の構成を示す図である。  FIG. 17 is a diagram showing a configuration of a scanner optical device according to a modification of the second embodiment.
[図 18]第 2実施形態の他の変形例に係るスキャナ光学装置の構成を示す図である。 符号の説明  FIG. 18 is a diagram showing a configuration of a scanner optical device according to another modification of the second embodiment. Explanation of symbols
[0025] 1、 100 レーザ加工装置 [0025] 1, 100 Laser processing equipment
2、 102 レーザ発振器  2, 102 Laser oscillator
5 AOM (光強度調整手段) 6 ダイナミックフォーカスレンズユニット(焦点距離調整手段)5 AOM (Light intensity adjustment means) 6 Dynamic focus lens unit (focal length adjustment means)
7 スキャナヘッド (偏向手段) 7 Scanner head (deflection means)
8、 8A コントロールユニット  8, 8A control unit
13 コンピュータシステム  13 Computer system
20 スキャナ光学システム  20 Scanner optical system
72A X軸モータ  72A X-axis motor
72B Y軸モータ  72B Y-axis motor
80A、 80B DSP  80A, 80B DSP
90A〜90C エンコーダ  90A ~ 90C encoder
91 DFモータ  91 DF motor
92A〜92C ドライバ回路  92A to 92C driver circuit
98 被加工物(対象物)  98 Workpiece (object)
103 スキャナ光学装置  103 Scanner optical device
131 ダイナミックフォーカスレンズ (フォーカス調整手段) 132 スキャナヘッド  131 Dynamic focus lens (Focus adjustment means) 132 Scanner head
133、 166 レーノレ(レーノレ 材)  133, 166 Lenore (Lenore material)
133A~133E レーノレ片 133A ~ 133E Lenore piece
134、 135A、 135B レンズ(光学素子)  134, 135A, 135B lenses (optical elements)
136、 136A 保持片 136, 136A Holding piece
140 あり  140 Yes
142 位置合用脚  142 Alignment legs
150 位置決用マーク  150 Positioning mark
151 位置合用マーク  151 Alignment mark
1330 あり溝 (ガイド溝)  1330 Dovetail groove (guide groove)
1340 延出部  1340 Extension
BCS 描画条件指令信号  BCS drawing condition command signal
SA〜SC デジタルパルス信号  SA to SC Digital pulse signal
Q 切替点 Qs 走査方向切替開始点 Q Switching point Qs Scanning direction switching start point
Qe 合流点  Qe Junction
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、図面を参照して本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<第 1実施形態 >  <First embodiment>
図 1は、本発明に係るスキャナ光学システムが適用されたレーザ加工装置 1の概略 構成を示す図である。この図に示すように、レーザ加工装置 1は、レーザ発振器 2、及 び、このレーザ発振器 2のレーザ発振を制御する、電源を有するレーザコントロール 装置 3とを有するレーザ装置 4と、レーザ光強度調整手段としての AOM (音響光学 素子) 5と、焦点距離調整手段としてのダイナミックフォーカスレンズユニット 6と、ヮー クステージ 99に載置された被加工物 98の加工面におけるレーザ光照射位置を可変 して加工面内をレーザ光で走査する偏向手段としてのスキャナヘッド 7とを有し、さら に、レーザ装置 4、 AOM5、ダイナミックフォーカスレンズユニット 6及びスキャナへッ ド 7の各々を制御する制御手段としてのコントロールユニット 8を備えている。そして、 上記 AOM5、スキャナヘッド 7及びコントロールユニット 8とによって、レーザ光の強度 を調整しながら加工面を高速にレーザ光で走査するスキャナ光学システム 20が構成 されている。  FIG. 1 is a diagram showing a schematic configuration of a laser processing apparatus 1 to which a scanner optical system according to the present invention is applied. As shown in this figure, the laser processing apparatus 1 includes a laser apparatus 2 having a laser oscillator 2 and a laser control apparatus 3 having a power source for controlling the laser oscillation of the laser oscillator 2, and a laser beam intensity adjustment. AOM (acousto-optic element) 5 as means, dynamic focus lens unit 6 as focal length adjustment means, and laser beam irradiation position on the work surface of work piece 98 placed on work stage 99 And a scanner head 7 as a deflection means for scanning the processing surface with laser light, and further, as a control means for controlling each of the laser device 4, the AOM 5, the dynamic focus lens unit 6 and the scanner head 7. A control unit 8 is provided. The AOM 5, the scanner head 7 and the control unit 8 constitute a scanner optical system 20 that scans the processed surface with the laser light at high speed while adjusting the intensity of the laser light.
[0027] 各構成要素について、より詳細に説明すると、レーザ発振器 2は、固体レーザ発振 器、ファイバレーザ発振器、液体レーザ発振器或いは気体レーザ発振器であり、レー ザ媒質に応じた波長のレーザ光を出力する。本実施形態では、このレーザ発振器 2 として、レーザ光を連続発振するものが用いられている。  [0027] Each component will be described in more detail. The laser oscillator 2 is a solid-state laser oscillator, a fiber laser oscillator, a liquid laser oscillator, or a gas laser oscillator, and outputs a laser beam having a wavelength corresponding to the laser medium. To do. In the present embodiment, a laser oscillator 2 that continuously oscillates laser light is used as the laser oscillator 2.
AOM5は、コントロールユニット 8の制御の下、所定の周波数でレーザ光を強度変 調して出力するものであり、この AOM5には、レーザ発振器 2から出力され、 2枚の集 光レンズ 9A及び 9Bを通過して整形されたレーザ光が入力される。  The AOM 5 is a laser beam whose intensity is modulated and output at a predetermined frequency under the control of the control unit 8. The AOM 5 is output from the laser oscillator 2 and is supplied with two collecting lenses 9A and 9B. The laser beam shaped through and is input.
ダイナミックフォーカスレンズユニット 6は、コントロールユニット 8の制御の下、被加 ェ物 98の加工面におけるレーザ光の照射位置に応じて、 AOM5を経由したレーザ 光の焦点距離を可変するものであり、このダイナミックフォーカスレンズユニット 6の焦 点距離調整により、被加工物 98における照射スポット面積が略一定に維持される。 なお、ダイナミックフォーカスレンズユニット 6に代えて、 f Θレンズを用いても良いこ とは勿論である。 The dynamic focus lens unit 6 varies the focal length of the laser beam via the AOM 5 according to the irradiation position of the laser beam on the processed surface of the workpiece 98 under the control of the control unit 8. By adjusting the focal distance of the dynamic focus lens unit 6, the irradiation spot area on the workpiece 98 is maintained substantially constant. It goes without saying that an fΘ lens may be used instead of the dynamic focus lens unit 6.
さらに、焦点距離が比較的長ぐなおかつ、加工領域 (レーザ光を走査する領域)が 狭い場合には、加工面における焦点位置のズレが小さいため、ダイナミックフォー力 スレンズユニット 6や f Θレンズ等の焦点距離調整手段をスキャナ光学システム 20に 設ける必要はない。  Furthermore, if the focal length is relatively long and the processing area (laser beam scanning area) is narrow, the focal position deviation on the processing surface is small, so the dynamic force lens unit 6 and fΘ lens, etc. It is not necessary to provide the focal length adjustment means in the scanner optical system 20.
[0028] スキャナヘッド 7は、コントロールユニット 8の制御の下、ダイナミックフォーカスレンズ ユニット 6を経由したレーザ光の光路を偏向し、被加工物 98の加工面内で照射位置 をワークステージ 99に対して相対的に可変してレーザ光を走査するものであり、光路 を X軸方向に偏向するスキャナミラー 71A、及び、このスキャナミラー 71Aを軸回転 する X軸モータ 72Aと、光路を X軸と直交する Y軸方向に偏向するスキャナミラー 71 B、及び、このスキャナミラー 71Bを軸回転する Y軸モータ 72Bとを有し、ダイナミック フォーカスレンズユニット 6を経由したレーザ光が集光レンズ 10を介して上記スキャナ ミラー 71Aに入射され、このスキャナミラー 71A及びスキャナミラー 71Bの各反射面 の角度によって規定される方向にレーザ光の光路が偏向される。なお、上記 X軸及 ひ Ύ軸からなる XY平面はワークステージ 99の上面と略平行な面として規定され、ま た、この XY平面に直交する軸が Z軸として規定される。  The scanner head 7 deflects the optical path of the laser light that passes through the dynamic focus lens unit 6 under the control of the control unit 8, and the irradiation position with respect to the work stage 99 is set within the processing surface of the workpiece 98. It scans the laser beam with relative change. The scanner mirror 71A deflects the optical path in the X-axis direction, the X-axis motor 72A that rotates the scanner mirror 71A, and the optical path orthogonal to the X-axis. A scanner mirror 71B that deflects in the Y-axis direction, and a Y-axis motor 72B that rotates the scanner mirror 71B, and the laser beam that has passed through the dynamic focus lens unit 6 passes through the condenser lens 10 and the scanner The light is incident on the mirror 71A, and the optical path of the laser beam is deflected in the direction defined by the angle of each reflecting surface of the scanner mirror 71A and the scanner mirror 71B.The XY plane composed of the X axis and the axis is defined as a plane substantially parallel to the upper surface of the work stage 99, and the axis orthogonal to the XY plane is defined as the Z axis.
[0029] コントロールユニット 8には、表示装置としてのディスプレイ 11及び入力装置として のキーボード 12を有するコンピュータシステム 13に接続(内蔵でも良い)されている。 コンピュータシステム 13には、被加工物 98の 3次元形状や材質、当該被加工物 98 に対してレーザ光を照射して加工する加工位置(レーザ照射位置)、加工深度、レー ザマーキングやトリミング、孔あけ加工と!/、つた加工の種類等を含む加工データが入 力されており、コンピュータシステム 13は、レーザ加工時に、加工データに基づく描 画条件指令信号 BCSをコントロールユニット 8に出力し、コントロールユニット 8は、描 画条件指令信号 BCSに基づいてレーザ装置 4、 AOM5、ダイナミックフォーカスレン ズユニット 6及びスキャナヘッド 7を制御する。  [0029] The control unit 8 is connected (may be built-in) to a computer system 13 having a display 11 as a display device and a keyboard 12 as an input device. The computer system 13 includes a three-dimensional shape and material of the workpiece 98, a processing position where the workpiece 98 is irradiated with laser light (laser irradiation position), a processing depth, laser marking and trimming, Machining data including drilling and! /, The type of cutting, etc. are input, and the computer system 13 outputs a drawing condition command signal BCS based on the machining data to the control unit 8 during laser machining. The control unit 8 controls the laser device 4, AOM 5, dynamic focus lens unit 6 and scanner head 7 based on the drawing condition command signal BCS.
[0030] 図 2は、上記コントロールユニット 8の構成を模式的に示すブロック図である。この図 に示すように、コントロールユニット 8は、演算処理装置としての 2つの DSP80A及び DSP80Bを有している。なお、 DSP80A及び DSP80Bの演算処理装置には、 DSP に代えて CPUを用いても良!/、事は勿論である。 FIG. 2 is a block diagram schematically showing the configuration of the control unit 8. As shown in this figure, the control unit 8 includes two DSPs 80A and Has DSP80B. Of course, a CPU may be used instead of the DSP for the DSP80A and DSP80B processing units.
DSP80Aは、上記描画条件指令信号 BCSにより示される被加工物 98の形状 (例 えば CADデータ)、及び、当該被加工物 98に対するレーザ光の走査態様に基づい て、被加工物 98におけるレーザ光の照射位置の移動軌道(すなわち走査軌道)を演 算する軌道演算部 81と、 XY平面内で照射位置を移動することによって生じる照射 位置(結像点)のズレ(ディストーション)を補正するディストーション補正部 82として機 能するものであり、主として、コンピュータシステム 13から入力された描画条件指令信 号 BCSに基づく演算処理を実行する。これら軌道演算部 81及びディストーション補 正部 82の演算により、所定時間(例えば数十 s以内)毎に、レーザ光照射位置の X Y座標指令値、この XY座標値に応じた焦点距離指令値、及び、レーザ光強度を指 示するレーザ出力指令値の各種指令値が出力される。  The DSP 80A determines the laser beam on the workpiece 98 based on the shape of the workpiece 98 (for example, CAD data) indicated by the drawing condition command signal BCS and the scanning mode of the laser beam on the workpiece 98. A trajectory calculation unit 81 that calculates the movement trajectory (ie, scanning trajectory) of the irradiation position, and a distortion correction unit that corrects the deviation (distortion) of the irradiation position (imaging point) caused by moving the irradiation position in the XY plane. It functions as 82, and mainly performs arithmetic processing based on the drawing condition command signal BCS input from the computer system 13. By the calculation of the trajectory calculation unit 81 and the distortion correction unit 82, the XY coordinate command value of the laser light irradiation position, the focal length command value corresponding to the XY coordinate value, and the like at every predetermined time (for example, within several tens of s) Various command values of the laser output command value for instructing the laser beam intensity are output.
[0031] DSP80Bは、レーザ装置 4に対するレーザパワー制御、ダイナミックフォーカスレン ズユニット 6による焦点位置可変制御、スキャナヘッド 7によるレーザ光の偏向制御、 及び、照射位置や走査速度、照射スポット面積に応じたレーザ光強度制御といった、 各部の駆動制御を主として実行するものである。これら DSP80A及び DSP80Bは、 図示せぬクロックジェネレータが生成するクロック信号に基づいて互いに同期して処 理を実行する。 [0031] The DSP 80B controls the laser power for the laser device 4, the focus position variable control by the dynamic focus lens unit 6, the laser beam deflection control by the scanner head 7, and the irradiation position, scanning speed, and irradiation spot area. It mainly performs drive control of each part such as laser light intensity control. The DSP 80A and DSP 80B execute processing in synchronization with each other based on a clock signal generated by a clock generator (not shown).
[0032] また、コントロールユニット 8には、 2つの DSP80A、 80Bの各々からアクセス可能な 共有データメモリ 83が設けられており、各 DSP80A、 80Bは共有データメモリ 83を 介してデータを共有する。この共有データには、例えば、 DSP80Aが DSP80Bに対 して指令すべき指令コマンドや、当該指令コマンドに対する DSP80Bから DSP80A の確認コマンド、当該 DSP80Bが指令コマンドを実行終了した旨を DSP80Aに対し て通知する終了コマンドといった DSP80A、 80Bの間での各種コマンドの他、 DSP8 OAが所定時間毎に出力するレーザ光照射位置の XY座標指令値、この XY座標指 令値に応じた焦点距離指令値、及び、レーザ光強度を指示するレーザ出力指令値 の各種指令値がある。  In addition, the control unit 8 is provided with a shared data memory 83 accessible from each of the two DSPs 80 A and 80 B, and the DSPs 80 A and 80 B share data via the shared data memory 83. In this shared data, for example, the DSP80A notifies the DSP80A that the command command to be commanded to the DSP80B, the DSP80B to the DSP80A confirmation command for the command command, and that the DSP80B has finished executing the command command. In addition to various commands between DSP80A and 80B such as the end command, the XY coordinate command value of the laser beam irradiation position output by DSP8OA every predetermined time, the focal length command value according to this XY coordinate command value, and There are various command values for the laser output command value that indicate the laser beam intensity.
そして、 DSP80Aが共有データメモリ 83に出力した各種指令値を DSP80Bが読み 込み、これらの指令値に基づいて、各部の駆動制御を実行する。 The DSP80B reads various command values output by the DSP80A to the shared data memory 83. On the basis of these command values, drive control of each part is executed.
[0033] このように、コントロールユニット 8力 2つの DSP80A及び DSP80Bを備え、軌道 演算やディストーション補正等の演算処理と、各部を駆動制御する駆動制御処理とを 、各々異なる DSP80A、 80Bにより実行する構成としているため、演算処理によって 、スキャナヘッド 7の偏向制御及び AOM5の光強度制御に遅滞が生じることが無ぐ レーザ光の走査速度の高速化が実現され加工速度が向上する。  [0033] In this way, the control unit is equipped with two DSP80A and DSP80B, and has a configuration in which arithmetic processing such as trajectory calculation and distortion correction, and drive control processing for driving and controlling each part are executed by different DSP80A and 80B. Therefore, the arithmetic processing does not cause a delay in the deflection control of the scanner head 7 and the light intensity control of the AOM 5, so that the scanning speed of the laser beam is increased and the processing speed is improved.
[0034] さて、上記 DSP80Bによる駆動制御について詳述すると、 DSP80Bは、レーザ出 力指令値に基づいて、 D/A変換器 88を介してレーザコントロール装置 3にパワー 制御信号を出力し、レーザパワーを制御すると共に、レーザ光強度を調整すべく AO M5に対して強度制御信号を出力し、また、 XY座標指令値及び焦点距離指令値に 基づいて、 X軸モータ 72A、 Y軸モータ 72B及び DFモータ 91を制御してダイナミック フォーカスレンズユニット 6による焦点距離及びスキャナヘッド 7による偏向を制御し、 被加工物 98の加工面におけるレーザ光の照射位置を制御する。  [0034] Now, the drive control by the DSP 80B will be described in detail. The DSP 80B outputs a power control signal to the laser control device 3 via the D / A converter 88 based on the laser output command value, and the laser power In order to adjust the laser beam intensity, an intensity control signal is output to the AO M5, and based on the XY coordinate command value and focal length command value, the X-axis motor 72A, Y-axis motor 72B and DF The focal length by the dynamic focus lens unit 6 and the deflection by the scanner head 7 are controlled by controlling the motor 91, and the irradiation position of the laser beam on the processing surface of the workpiece 98 is controlled.
本実施形態では、高精度な照射位置制御を実現すベぐダイナミックフォーカスレ ンズユニット 6及びスキャナヘッド 7の制御系としてクローズドループ制御系が構成さ れており、以下、かかる構成について説明する。  In the present embodiment, a closed loop control system is configured as a control system for the dynamic focus lens unit 6 and the scanner head 7 that realizes highly accurate irradiation position control. This configuration will be described below.
[0035] 図 2に示すように、スキャナヘッド 7の X軸モータ 72A及び Y軸モータ 72Bには、ス キヤナミラー 71A、 71Bの回転量に応じたパルス数のデジタルパルス信号 SA、 SBを コントロールユニット 8に出力するエンコーダ 90A及び 90Bが設けられていると共に、 ダイナミックフォーカスレンズユニット 6には、焦点距離を可変する図示せぬ光学系を 駆動する DF (ダイナミックフォーカス)モータ 91及び光学系の駆動量に応じたパルス 数のデジタルパルス信号 SCをコントロールユニット 8に出力するエンコーダ 90Cを有 し、また、コントロールユニット 8には、各エンコーダ 90A〜90Cから出力されたデジタ ルパルス信号 SA〜SCが入力され、これらのデジタルパルス信号 SA〜SCをカウント して DSP80Bに出力するカウンタ回路 84が設けられている。  As shown in FIG. 2, the X-axis motor 72A and the Y-axis motor 72B of the scanner head 7 are supplied with digital pulse signals SA and SB having the number of pulses corresponding to the rotation amount of the scanner mirrors 71A and 71B. Encoders 90A and 90B are provided, and the dynamic focus lens unit 6 is provided with a DF (dynamic focus) motor 91 that drives an optical system (not shown) that changes the focal length and the drive amount of the optical system. The encoder 90C outputs the digital pulse signal SC with the same number of pulses to the control unit 8, and the control unit 8 receives the digital pulse signals SA to SC output from the encoders 90A to 90C. A counter circuit 84 that counts the digital pulse signals SA to SC and outputs them to the DSP 80B is provided.
[0036] DSP80Bは、カウンタ回路 84によってカウントされた各デジタルパルス信号 SA〜S Cのカウンタ値に基づいて、スキャナミラー 71A、 71Bの回転量、及び、ダイナミックフ オーカスレンズユニット 6の光学系の駆動量を特定し、現在のレーザ光照射位置の X Y座標値、及び、現在の焦点距離を特定する。 [0036] The DSP 80B determines the amount of rotation of the scanner mirrors 71A and 71B and the amount of drive of the optical system of the dynamic focus lens unit 6 based on the counter values of the digital pulse signals SA to SC counted by the counter circuit 84. X of the current laser beam irradiation position Specify the Y coordinate value and the current focal length.
また、この DSP80Bは、共有データメモリ 83に格納されたレーザ光照射位置の ΧΥ 座標指令値、及び、この ΧΥ座標指令値に応じた焦点距離指令値を取得し、これら 指令値と現在値とを比較して偏差信号をモータ制御部 87に出力する位置比較部 85 、及び、上記 ΧΥ座標指令値及び焦点距離指令値と同期して共有データメモリ 83に 格納されたレーザ出力指令値を取得し、 ΑΟΜ5 (必要に応じてレーザコントロール装 置 3)に対して制御信号を出力する信号出力調整部 86を有して!/、る。  In addition, the DSP 80B acquires the ΧΥ coordinate command value of the laser beam irradiation position stored in the shared data memory 83 and the focal length command value according to the ΧΥ coordinate command value, and uses these command values and the current value. The position comparison unit 85 that compares and outputs the deviation signal to the motor control unit 87, and the laser output command value stored in the shared data memory 83 in synchronization with the ΧΥ coordinate command value and the focal length command value are acquired. It has a signal output adjustment unit 86 that outputs a control signal to ΑΟΜ5 (the laser control device 3 if necessary).
[0037] 上記モータ制御部 87は、 DSP80Bからの偏差信号に基づいて、偏差を打ち消す ためのデジタル制御信号を、 X軸モータ 72Αのドライバ回路 92Α、 Υ軸モータ 72Βの ドライバ回路 92Β、及び、 DFモータ 91のドライバ回路 92Cのそれぞれに出力してネ ガティブフィードバック制御を実行するものである。各ドライバ回路 92A〜92Cは、デ ジタル制御信号が入力されると、 X軸モータ 72A、 Y軸モータ 72B、及び、 DFモータ 91に駆動電流を出力し、これにより、 X軸モータ 72A、 Y軸モータ 72B及び DFモー タ 91が駆動される。 [0037] Based on the deviation signal from DSP80B, the motor control unit 87 sends a digital control signal for canceling the deviation to the driver circuit 92Α of the X-axis motor 72Α, the driver circuit 92Β of theΥ-axis motor 72Β, and DF This is output to each of the driver circuits 92C of the motor 91 to execute negative feedback control. When a digital control signal is input, each of the driver circuits 92A to 92C outputs a drive current to the X-axis motor 72A, the Y-axis motor 72B, and the DF motor 91, whereby the X-axis motor 72A and the Y-axis are output. Motor 72B and DF motor 91 are driven.
[0038] このように、コントロールユニット 8においては、デジタルパルス信号 SA〜SCを出力 するエンコーダ 90A〜90C、カウンタ回路 84、 DSP80B、モータ制御部 87、及び、 ドライバ回路 92A〜92Cによりクローズドループ制御系が構成されており、各モータ 7 2A、 72B、 91の駆動が高精度に補償される。これにより、高精度なモータ制御、すな わち、被加工物 98の加工面における高精度な照射位置制御が実現される。  [0038] As described above, the control unit 8 includes the encoders 90A to 90C that output the digital pulse signals SA to SC, the counter circuit 84, the DSP 80B, the motor control unit 87, and the driver circuits 92A to 92C. The drive of each motor 72A, 72B, 91 is compensated with high accuracy. Thereby, high-precision motor control, that is, high-precision irradiation position control on the processing surface of the workpiece 98 is realized.
[0039] さらに、各モータ 72A、 72B、 91の回転量の検出手段として、デジタルパルス信号 SA〜SCを出力するエンコーダ 90A〜90Cを用いる構成としているため、 X軸モータ 72A、 Y軸モータ 72B及び DFモータ 91のデジタル制御が可能になり、回転量に応 じたアナログ検出信号に基づいてモータ回転量を制御する構成に比べて、検出誤差 を最小に抑え、以つて、より高精度な照射位置制御が実現されることとなる。  [0039] Furthermore, since the encoders 90A to 90C that output the digital pulse signals SA to SC are used as means for detecting the rotation amounts of the motors 72A, 72B, and 91, the X axis motor 72A, the Y axis motor 72B, and DF motor 91 can be digitally controlled, and the detection error is minimized compared to a configuration in which the motor rotation amount is controlled based on an analog detection signal corresponding to the rotation amount. Control will be realized.
[0040] また、 X軸モータ 72A、 Y軸モータ 72B及び DFモータ 91の各々を DSP80Bが同 時にフォードバック制御するため、レーザ光の X軸方向及び Y軸方向の偏向と、 Z軸 方向の焦点距離とが互いに同期し、かつ、軸間のズレを抑制しながら制御され、より 高精度な照射位置制御が実現される。 [0041] 以上の構成の下、コンピュータシステム 13から描画条件指令信号 BCSがコントロー ルユニット 8に入力されると、コントロールユニット 8の DSP80Aは、この描画条件指令 信号 BCSに基づいて、被加工物 98の加工面内をレーザ光で走査するときの照射位 置の軌道を演算すると共に、各照射位置の XY座標値に対してディストーション補正 を行う。また、 DSP80Aは、各照射位置ごとに、加工深度や被加工物 98の材質、加 ェの種類に応じてレーザ光強度を演算すると共に、走査時のライン幅、 XY座標値及 び加工面の凹凸に応じて焦点距離を演算する。 [0040] Since the DSP 80B simultaneously controls each of the X-axis motor 72A, the Y-axis motor 72B, and the DF motor 91, the laser beam is deflected in the X-axis direction and the Y-axis direction, and the focal point in the Z-axis direction. The distance is synchronized with each other and controlled while suppressing the deviation between the axes, so that more accurate irradiation position control is realized. [0041] Under the above configuration, when the drawing condition command signal BCS is input from the computer system 13 to the control unit 8, the DSP 80A of the control unit 8 determines the workpiece 98 based on the drawing condition command signal BCS. The trajectory of the irradiation position when scanning the machining surface with laser light is calculated, and distortion correction is performed on the XY coordinate values of each irradiation position. In addition, the DSP80A calculates the laser beam intensity according to the processing depth, the material of the workpiece 98, and the type of processing for each irradiation position, as well as the line width, XY coordinate value, and processing surface of the scanning surface. The focal length is calculated according to the unevenness.
上記照射位置の軌道演算においては、被加工物 98の加工面に描画するラインを ベクトル走査するための軌道、或いは、加工面における複数の加工点を最短距離で 結ぶラインをベクトル走査するための軌道が演算される。  In the trajectory calculation of the irradiation position, a trajectory for vector scanning a line drawn on the machining surface of the workpiece 98, or a trajectory for vector scanning a line connecting a plurality of machining points on the machining surface with the shortest distance. Is calculated.
[0042] また、上記レーザ光強度演算においては、 DSP80Aは、レーザ光の走査速度によ らず、照射位置の単位面積あたりのレーザ光のエネルギー密度が略一定となるように 、各焦点位置でのレーザ光強度を算出する。  [0042] In the above laser light intensity calculation, the DSP 80A does not depend on the scanning speed of the laser light, and the energy density of the laser light per unit area of the irradiation position is substantially constant at each focal position. The laser light intensity is calculated.
詳述すると、レーザ装置 4のレーザ光出力、及び、照射スポット面積が一定である場 合、レーザ光の走査速度が速くなるにしたがって、単位面積あたりのエネルギー密度 は小さくなり、遅い走査速度で加工した箇所と、速い走査速度で加工した箇所との間 に、加工深度等のバラツキが生じ、加工品質が損なわれる。  More specifically, when the laser light output of the laser device 4 and the irradiation spot area are constant, the energy density per unit area decreases as the scanning speed of the laser light increases, and processing is performed at a slow scanning speed. Variation in processing depth or the like occurs between the processed part and a part processed at a high scanning speed, and the processing quality is impaired.
そこで、 DSP80Aは、レーザ装置 4のレーザ光出力、及び、照射スポット面積が一 定である場合には、レーザ光の走査速度が速くなるにしたがってレーザ光強度を高 め、また、レーザ光の走査速度又は/及び照射スポットが可変する場合、或いは、レ 一ザ装置 4のレーザ光出力が変動する場合には、照射スポットにおける単位面積あ たりのエネルギー密度が略一定となるレーザ光強度を演算する。  Therefore, when the laser beam output of the laser device 4 and the irradiation spot area are constant, the DSP 80A increases the laser beam intensity as the laser beam scanning speed increases, and also scans the laser beam. When the speed or / and the irradiation spot varies, or when the laser beam output of the laser device 4 fluctuates, the laser beam intensity at which the energy density per unit area at the irradiation spot is substantially constant is calculated. .
[0043] そして、 DSP80Aは、所定時間ごとに、被加工物 98の加工面における照射位置を 示す XY座標指令値、その照射位置での焦点距離指令値、及び、レーザ光強度指 令値を共有データメモリ 83に書き込み、 DSP80Bが、 DSP80Aによる書き込みに同 期して、 AOM5と、ダイナミックフォーカスレンズユニット 6の DFモータ 91と、スキャナ ヘッド 7の X軸モータ 72A及び Y軸モータ 72Bのそれぞれを互いに同期させて同時 に制御して、加工面をレーザ光でベクトル走査させて被加工物 98を加工する。 [0044] このとき、 DSP80Bは、レーザ光の照射位置を、前掲図 1に示すように、被加工物 9 8から外れた位置(ホームポジション) PHからベクトル走査開始点 Stまで移動させる 際、及び、ベクトル走査終了点から、次のベクトル走査開始点 Stまで移動させる際に は、 X軸モータ 72A及び Y軸モータ 72Bの駆動ピッチを大きくし、照射位置をべタト ル走査開始点に高速に移動させ、また、ベクトル走査中においては、駆動ピッチを小 さくし、所定の照射位置に正確にレーザ光が照射されるように制御する。 [0043] The DSP 80A shares the XY coordinate command value indicating the irradiation position on the processing surface of the workpiece 98, the focal length command value at the irradiation position, and the laser light intensity command value at predetermined time intervals. Write to data memory 83, and DSP80B synchronizes each of AOM5, DF motor 91 of dynamic focus lens unit 6, and X-axis motor 72A and Y-axis motor 72B of scanner head 7 in synchronization with writing by DSP80A. At the same time, the workpiece 98 is machined by vector scanning of the machining surface with the laser beam. At this time, the DSP 80B moves the irradiation position of the laser beam from the position (home position) PH deviated from the workpiece 98 to the vector scanning start point St as shown in FIG. When moving from the vector scan end point to the next vector scan start point St, the drive pitch of the X-axis motor 72A and Y-axis motor 72B is increased, and the irradiation position is moved to the solid scan start point at high speed. In addition, during vector scanning, the drive pitch is reduced and control is performed so that the laser beam is accurately irradiated to a predetermined irradiation position.
[0045] また、レーザ光の照射位置を、ホームポジション PHからベクトル走査開始点 Stまで 移動させたときには、ベクトル走査開始点 Stにおけるビーム径が所定値となるように、 DSP80Bは、 DFモータ 91のみを粗動動作させて焦点距離を調整し、また、ベクトル 走査中においては、加工面における照射位置によらずビーム径が所定値となるよう に、 X軸モータ 72A及び Y軸モータ 72Bの駆動(すなわち、レーザ光の照射位置)と 同期して DFモータ 91を微動動作させる。  [0045] In addition, when the laser beam irradiation position is moved from the home position PH to the vector scanning start point St, the DSP 80B is configured only for the DF motor 91 so that the beam diameter at the vector scanning start point St becomes a predetermined value. The X axis motor 72A and Y axis motor 72B are driven so that the beam diameter becomes a predetermined value regardless of the irradiation position on the processing surface during vector scanning. That is, the DF motor 91 is finely operated in synchronization with the laser beam irradiation position.
[0046] また、加工面に凹凸のある被加工物 98をレーザ光でベクトル走査する際には、ベタ トル走査中に、 DSP80Bは、照射位置における凹凸の高低に合わせてダイナミックフ オーカスレンズユニット 6の DFモータ 91を上記微動動作させてビーム径を一定に維 持する。このとき、加工面の凹凸における高低差が比較的大きい場合には、ベクトノレ 走査中に DFモータ 91の微動動作のみでビーム径を一定に維持する事は困難であ るため、この場合には、 X軸モータ 72A及び Y軸モータ 72Bの駆動と同期して DFモ ータ 91を粗動動作させる。  [0046] Also, when vector scanning is performed with a laser beam on a workpiece 98 having unevenness on the processing surface, the DSP 80B performs dynamic focus lens unit 6 according to the height of the unevenness at the irradiation position. The DF motor 91 is finely moved to maintain the beam diameter constant. At this time, if the height difference in the unevenness of the processed surface is relatively large, it is difficult to keep the beam diameter constant only by fine movement of the DF motor 91 during the vector scan, and in this case, The DF motor 91 is coarsely operated in synchronization with the driving of the X-axis motor 72A and the Y-axis motor 72B.
[0047] なお、 X軸モータ 72A及び Y軸モータ 72Bの駆動と同期して DFモータ 91を粗動動 作及び微動動作させて、ベクトル走査中における焦点位置調整を行っても良いこと は勿論である。  [0047] Of course, the DF motor 91 may be coarsely and finely operated in synchronization with the driving of the X-axis motor 72A and the Y-axis motor 72B to adjust the focal position during vector scanning. is there.
また、上記加工面における凹凸の高低差は、被加工物 98の加工面の形状を示す CADデータに基づいて判定する事が可能であり、また、加工面の形状を示すデータ に凹凸のデータが含まれていない場合には、加工面までの距離を計測する距離セン サを用いてベクトル走査中にリアルタイム、或いは、ベクトル走査前に予め加工面の 凹凸の高低差を計測するようにしても良い。  Further, the difference in level of the unevenness on the processed surface can be determined based on CAD data indicating the shape of the processed surface of the workpiece 98, and the unevenness data is included in the data indicating the shape of the processed surface. If not included, a distance sensor that measures the distance to the machined surface may be used to measure the height difference of the machined surface in real time during vector scanning or before vector scanning. .
[0048] 次いで、レーザ加工装置 1による被加工物 98の加工面に対するレーザ光のベタト ル走査について説明する。 [0048] Next, the solidity of the laser beam on the processing surface of the workpiece 98 by the laser processing apparatus 1 A description will be given of the scanning.
図 3は、ベクトル走査する軌道 Lの一態様を示す図である。  FIG. 3 is a diagram showing an aspect of the trajectory L for vector scanning.
図 2に示して説明した DSP80Bは、軌道 L上をレーザ光でベクトル走査する際、走 查方向 Kが一定 (軌道 Lが直線)である場合には、走査速度が所定の走査速度(最 大走査速度)に達するまで走査速度を加速させながらベクトル走査開始点 Stからレ 一ザ光走査を開始し、走査速度が所定の走査速度に達した後は、その走査速度を 保ったまま軌道 L上を走査するように制御することで、加工時間の高速化を図ってい  In the DSP80B shown in FIG. 2, when vector scanning is performed on the trajectory L with the laser beam, the scanning speed is a predetermined scanning speed (maximum) when the traverse direction K is constant (the trajectory L is a straight line). The laser scanning is started from the vector scanning start point St while accelerating the scanning speed until the scanning speed reaches the scanning speed. After the scanning speed reaches the predetermined scanning speed, the scanning speed is maintained and the trajectory L is maintained. By controlling to scan, the processing time is increased.
[0049] このとき、図 3に示すように、走査方向 Kを切り替える切替点 Qが軌道 L上に存在す る場合、一般に、レーザ走査方向 Kを不連続に切替えることは機構上困難であるた め、切替点 Qでレーザ走査が一端停止するように当該切替点 Qの手前で走査速度を 減速させ、そして、切替点 Qにてレーザ走査方向 Kを切替えて走査を開始させるとい う制御が従来力、ら行われてレ、る。 At this time, as shown in FIG. 3, when the switching point Q for switching the scanning direction K exists on the trajectory L, it is generally difficult to switch the laser scanning direction K discontinuously. Therefore, the conventional control is to decelerate the scanning speed before the switching point Q so that the laser scanning is temporarily stopped at the switching point Q, and to start scanning by switching the laser scanning direction K at the switching point Q. It is done with force.
[0050] しかしながら、切替点 Qにて一端走査を停止させると、軌道 Lの走査に要する時間、 すなわち、レーザ加工時間が延びてしまうという問題がある。  [0050] However, if scanning is stopped at the switching point Q, there is a problem that the time required for scanning the track L, that is, the laser processing time is extended.
そこで、本実施形態では、切替点 Qが軌道 L上に存在する場合に、走査時間が延 びることを防止すベぐ次のようなレーザ光走査 (偏向)制御を行うこととして!/、る。 すなわち、図 2に示して説明した DSP80Aの軌道演算部 81は、レーザ光をべタト ル走査する軌道 Lを演算した後、図 3に示すように、その軌道上に切替点 Qが存在す る場合に、軌道 L上にお!/、て切替点 Qよりも手前に設定される走査方向切替開始点 Qsと、軌道 L上において切替点 Qよりも先に設定される合流点 Qeとを緩やかな曲線 軌道 Rrにて結んだ軌道 Lに補正する。  Therefore, in the present embodiment, when the switching point Q exists on the trajectory L, the following laser beam scanning (deflection) control is performed to prevent the scanning time from extending! . That is, the trajectory calculation unit 81 of the DSP 80A described with reference to FIG. 2 calculates the trajectory L for performing the laser beam solid scan, and then the switching point Q exists on the trajectory as shown in FIG. In this case, the scanning direction switching start point Qs set before the switching point Q on the trajectory L and the merging point Qe set before the switching point Q on the trajectory L are gradually reduced. Correct the trajectory L to be connected by the curved trajectory Rr.
[0051] そして、 DSP80Bは、 X軸モータ 72A、 Y軸モータ 72B及び DFモータ 91を駆動し て軌道 Lに沿ったレーザ光走査制御を実行する場合、レーザ光の照射位置が走査 方向切替開始点 Qsに達したときに、走査速度を維持したまま曲線軌道 Rrに沿ったレ 一ザ光走査を継続する。これにより、レーザ光の走査方向 Kが切替点 Q通過後の走 查方向 Kになるように徐々に変化し、曲線軌道 Rrの終点位置、つまり、合流点 Qeに てレーザ光の走査方向 Kの切替えが完了し、当初の軌道 Lに沿ってレーザ光走査が 行われる。この結果、切替点 Qにおけるレーザ走査の一端停止が不要となるため、軌 道 Lの走査に要する時間の延長を防止し、高速なレーザ加工が実現される。 [0051] When the DSP 80B drives the X-axis motor 72A, the Y-axis motor 72B, and the DF motor 91 to execute the laser beam scanning control along the trajectory L, the irradiation position of the laser beam is the scanning direction switching start point. When Qs is reached, the laser beam scanning along the curved trajectory Rr is continued while maintaining the scanning speed. As a result, the scanning direction K of the laser beam gradually changes so that it becomes the running direction K after passing through the switching point Q, and the end point position of the curved path Rr, that is, the confluence point Qe, in the scanning direction K of the laser beam. Switching is completed, and laser beam scanning is performed along the original trajectory L. Done. As a result, it is not necessary to stop the laser scanning at the switching point Q, so that the time required for the trajectory L scan is prevented from being extended, and high-speed laser processing is realized.
[0052] 上記走査方向切替開始点 Qs及び合流点 Qeの各々は、軌道 Lに沿って切替点 Q 力 所定距離 Ts、Teだけ離れた点に設定される。このとき、曲線軌道 Rrの曲率は、 切替点 Qにおける走査方向 Kの切替角度 Θに依存し、所定距離 Ts、 Teを常に一定 とした場合、切替角度 Θ力 S小さくなるほど、曲線軌道 Rrの曲率が大となる。例えば、 図 3において、切替点 Ql、 Q2の切替角度 Θ 1、 Θ 2よりも、切替点 Q3の切替角度 Θ 3の方が小さいため、所定距離 Ts、 Teが常に一定である場合には、切替点 Ql、 Q2 における曲線軌道 Rrl、Rr2よりも切替点 Q3における曲線軌道 Rr3の方が曲率が大 きくなる。 [0052] Each of the scanning direction switching start point Qs and the merging point Qe is set to a point separated by a switching point Q force by a predetermined distance Ts, Te along the trajectory L. At this time, the curvature of the curved track Rr depends on the switching angle Θ in the scanning direction K at the switching point Q. When the predetermined distances Ts and Te are always constant, the curvature of the curved track Rr decreases as the switching angle Θ force S decreases. Becomes big. For example, in FIG. 3, since the switching angle Θ 3 at the switching point Q3 is smaller than the switching angles Θ 1 and Θ 2 at the switching points Ql and Q2, the predetermined distances Ts and Te are always constant. The curvature of the curved trajectory Rr3 at the switching point Q3 is larger than that of the curved trajectories Rrl and Rr2 at the switching points Ql and Q2.
[0053] 曲線軌道 Rrの曲率が大きくなる程、曲線軌道 Rrに沿ってレーザ光を走査する際に 、走査方向 Kの急激な変更制御が必要となり、 X軸モータ 72A、 Y軸モータ 72B及び DFモータ 91が困難となる。そこで DSP80Aは、所定距離 Ts、 Teを常に一定にして 走査方向切替開始点 Qs及び合流点 Qeを設定する場合、切替点 Qの切替角度 Θが 所定のしきい値 Θ th以下であるときには、軌道 L上において走査方向切替開始点 Q sよりも更に手前に走査速度の減速開始点 Qdを設定し、当該減速開始点 Qdから走 查速度が減速されるように XY座標指令値を生成する。所定のしきい値 Θ thは、最大 走査速度を維持したまま走査可能な曲率が得られる切替角度の最小値である。  [0053] The greater the curvature of the curved track Rr, the more rapid control of the scanning direction K is required when scanning the laser light along the curved track Rr. The X-axis motor 72A, the Y-axis motor 72B, and the DF The motor 91 becomes difficult. Therefore, if the DSP 80A sets the scanning direction switching start point Qs and the merging point Qe while the predetermined distances Ts and Te are always constant, the trajectory when the switching angle Θ of the switching point Q is equal to or smaller than the predetermined threshold Θ th. Set the deceleration start point Qd of the scanning speed on L before the scanning direction switching start point Q s and generate the XY coordinate command value so that the running speed is decelerated from the deceleration start point Qd. The predetermined threshold value Θth is the minimum value of the switching angle at which the curvature capable of scanning can be obtained while maintaining the maximum scanning speed.
[0054] 上記のように DSP80Aが減速開始点 Qdを設定及び当該減速開始点 Qdから走査 速度が減速されるように XY座標指令値を生成する制御を実行することで、 DSP80B の制御によって、レーザ光照射位置が走査方向切替開始点 Qsに達する前に走査速 度を十分に減速した後、そのときの走査速度を維持したまま曲線軌道 Rrが走査され るため、単位時間辺りの走査方向 Kの変化量が小さく抑えられ、 X軸モータ 72A、 Y 軸モータ 72B及び DFモータ 91の駆動制御による照射位置制御が容易となる。 また、レーザ光の照射位置が合流点 Qeに達した場合、 DSP80Aは、走査速度が 所定の走査速度(最大走査速度)に達するまで加速させ、所定の走査速度に達した 後は、その走査速度を維持してレーザ光走査を継続することになる。  [0054] As described above, the DSP 80A sets the deceleration start point Qd and executes the control to generate the XY coordinate command value so that the scanning speed is decelerated from the deceleration start point Qd. Before the light irradiation position reaches the scanning direction switching start point Qs, the scanning speed is sufficiently decelerated, and then the curved trajectory Rr is scanned while maintaining the scanning speed at that time. The amount of change is kept small, and irradiation position control by drive control of the X-axis motor 72A, the Y-axis motor 72B, and the DF motor 91 becomes easy. When the laser beam irradiation position reaches the confluence point Qe, the DSP80A accelerates until the scanning speed reaches a predetermined scanning speed (maximum scanning speed), and after reaching the predetermined scanning speed, the scanning speed Thus, laser beam scanning is continued.
[0055] なお、走査速度が減速及び加速された場合には、 DSP80Aは、エネルギー密度を 一定にするために、走査速度の減速及び加速に応じてレーザ光強度が高め、或い は、低められるようにレーザ出力指令値を出力する。 [0055] When the scanning speed is decelerated and accelerated, the DSP 80A reduces the energy density. In order to make it constant, a laser output command value is outputted so that the intensity of the laser beam increases or decreases according to the deceleration and acceleration of the scanning speed.
また、切替点 Qが軌道 L上に存在する場合に、 DSP80Aが所定距離 Ts、 Teが常 に一定となるように、走査方向切替開始点 Qs及び合流点 Qeを軌道 L上に設定する 構成に限らず、曲線軌道 Rrの曲率が常に一定となるように走査方向切替開始点 Qs 及び合流点 Qeを設定する構成としても良い。この構成によれば、曲線軌道 Rrの曲率 を最大走査速度で走査可能な曲率に設定することで、切替点 Qの切替角度 Θに依 らず最大走査速度で曲線軌道 Rrを走査することが可能となる。  In addition, when the switching point Q exists on the trajectory L, the scanning direction switching start point Qs and the confluence point Qe are set on the trajectory L so that the DSP 80A always has a predetermined distance Ts and Te. Not limited to this, the scanning direction switching start point Qs and the confluence point Qe may be set so that the curvature of the curved trajectory Rr is always constant. According to this configuration, by setting the curvature of the curved trajectory Rr to a curvature that can be scanned at the maximum scanning speed, it is possible to scan the curved trajectory Rr at the maximum scanning speed regardless of the switching angle Θ of the switching point Q. It becomes.
[0056] 以上説明したように、本実施形態によれば、 DSP80Bが AOM5を制御して、被加 ェ物 98の加工面におけるレーザ光の走査速度に比例してレーザ光強度を高め、或 いは、照射位置ごとのレーザ光のエネルギー密度が略一定となるようにレーザ光強 度を調整する構成としたため、レーザ光の走査速度が速い場合であっても、加工面 における加工深度のバラツキを防止し、高品位な加工が可能となる。  [0056] As described above, according to this embodiment, the DSP 80B controls the AOM 5 to increase the laser light intensity in proportion to the scanning speed of the laser light on the processed surface of the workpiece 98, or Since the laser beam intensity is adjusted so that the energy density of the laser beam at each irradiation position is substantially constant, even if the scanning speed of the laser beam is high, variations in the processing depth on the processing surface This prevents high-quality processing.
[0057] また、本実施形態によれば、デジタルパルス信号を出力するエンコーダ 90A〜90 C、カウンタ回路 84、 DSP80B、モータ制御部 87、及び、ドライバ回路 92A〜92C がクローズドループ制御系を構成し、 X軸モータ 72A、 Y軸モータ 72B及び DFモー タ 91の駆動を高精度に補償可能としたため、被加工物 98の加工面における照射位 置を高精度に制御し、高品位な加工が可能となる。  Further, according to the present embodiment, the encoders 90A to 90C that output digital pulse signals, the counter circuit 84, the DSP 80B, the motor control unit 87, and the driver circuits 92A to 92C constitute a closed loop control system. The X-axis motor 72A, Y-axis motor 72B, and DF motor 91 drive can be compensated with high precision, so the irradiation position on the work surface of the workpiece 98 can be controlled with high precision, enabling high-quality machining. It becomes.
[0058] 特に、 X軸モータ 72A、 Y軸モータ 72B及び DFモータ 91の回転量の検出手段とし て、デジタルパルス信号 SA〜SCを出力するエンコーダ 90A〜90Cを用いる構成と しているため、 X軸モータ 72A、 Y軸モータ 72B及び DFモータ 91のデジタル制御が 可能になり、回転量に応じたアナログ検出信号に基づいてモータ回転量を制御する 構成に比べて、検出誤差を最小に抑え、以つて、より高精度な照射位置制御が可能 となる。  [0058] In particular, as the means for detecting the rotation amount of the X-axis motor 72A, the Y-axis motor 72B, and the DF motor 91, the encoder 90A to 90C that outputs the digital pulse signals SA to SC is used. Axis motor 72A, Y-axis motor 72B, and DF motor 91 can be digitally controlled, and the detection error can be minimized compared to a configuration in which the motor rotation amount is controlled based on an analog detection signal corresponding to the rotation amount. Therefore, more accurate irradiation position control is possible.
特に、 X軸モータ 72A、 Y軸モータ 72B及び DFモータ 91の回転量に応じたアナ口 グ信号を出力するアナログ検出器にお!/、ては、モータ温度の上昇に伴って回転量に 応じた信号が非線形に変化するため、モータ温度に応じた補正が必要となり、また、 その補正精度によっては、検出誤差が大きくなる。さらに、アナログ検出器は、回転 量検出素子の経年劣化によっても検出精度に影響が生じる。 Especially for analog detectors that output analog signals according to the rotation amount of the X-axis motor 72A, Y-axis motor 72B and DF motor 91! /, Depending on the rotation amount as the motor temperature rises Since the signal changes non-linearly, correction according to the motor temperature is required, and the detection error increases depending on the correction accuracy. In addition, the analog detector rotates The detection accuracy is also affected by the aging of the quantity detection element.
これに対して、本実施形態によれば、上記エンコーダ 90A〜90Cを用いて X軸モ ータ 72A、 Y軸モータ 72B及び DFモータ 91のデジタル制御を行う構成としたため、 モータ温度の影響、及び、経年劣化の影響を受け難ぐ高精度な照射位置制御を維 持できる。  On the other hand, according to the present embodiment, the X-axis motor 72A, the Y-axis motor 72B, and the DF motor 91 are digitally controlled using the encoders 90A to 90C. Therefore, it is possible to maintain high-precision irradiation position control that is hardly affected by aging.
[0059] また、本実施形態によれば、 X軸モータ 72A、 Y軸モータ 72B及び DFモータ 91の 各々を 1つの DSP80Bが同時にフォードバック制御する構成としたため、レーザ光の X軸方向及び Y軸方向の偏向と、 Z軸方向の焦点距離とが互いに同期し、かつ、軸 間のズレを抑制しながら制御可能となり、これにより、照射位置が更に高精度に制御 され、より高品位な加工が可能となる。  [0059] According to the present embodiment, since the DSP 80B simultaneously controls each of the X-axis motor 72A, the Y-axis motor 72B, and the DF motor 91, the X-axis direction of the laser beam and the Y-axis The deflection of the direction and the focal length in the Z-axis direction are synchronized with each other and can be controlled while suppressing the misalignment between the axes, so that the irradiation position can be controlled with higher accuracy and higher quality machining can be performed. It becomes possible.
[0060] さらに、本実施形態によれば、コントロールユニット 8力 2つの DSP80A、 80Bを備 え、軌道演算やディストーション補正等の演算処理と、各部を駆動制御する駆動制 御処理とを、各々異なる DSP80A、 80Bにより実行する構成としているため、演算処 理によって、スキャナヘッド 7の偏向制御及び AOM5のレーザ光強度制御に遅滞が 生じることが無ぐ上記の高精度な照射位置制御を実現しつつ、レーザ光の走査速 度の高速化が実現可能となり、高品位な加工を短時間で行うことができる。  [0060] Further, according to the present embodiment, the control unit is equipped with two DSP80A and 80B with 8 forces, and the calculation processing such as trajectory calculation and distortion correction is different from the drive control processing for driving and controlling each part. Since it is configured to be executed by the DSP 80A and 80B, the above-described highly accurate irradiation position control is realized without causing delay in the deflection control of the scanner head 7 and the laser light intensity control of the AOM 5 by the arithmetic processing. The scanning speed of the laser beam can be increased, and high-quality processing can be performed in a short time.
[0061] また、本実施形態によれば、被加工物 98の加工面の凹凸に基づいて、レーザ光の 焦点距離を調整するため、加工面が平らな被加工物 98に限らず、加工面が曲面を 描くような被加工物 98に対するレーザ加工も可能になる。  Further, according to the present embodiment, since the focal length of the laser beam is adjusted based on the unevenness of the processed surface of the workpiece 98, the processed surface is not limited to the processed workpiece 98 having a flat processed surface. Laser processing is also possible for the workpiece 98 that draws a curved surface.
[0062] さらにまた、本実施形態によれば、軌道 L上に、切替点 Qが存在する場合、切替点 Qの手前(走査方向切替開始点 Qs)から、レーザ光の走査方向 Kを切替後の走査方 向 Kに徐々に変化させて走査しつつ、レーザ光の走査方向 Kが切替後の走査方向 Kに切り替わったときの照射位置が、切替後の走査方向 Kで走査すべき軌道 L上 (合 流点 Qe)に位置するようにレーザ光の走査を制御するため、切替点 Qにおけるレー ザ走査の一端停止が不要となり、軌道 Lの走査に要する時間の延長を防止し、高速 なレーザ加工が実現される。  Furthermore, according to the present embodiment, when the switching point Q exists on the trajectory L, the laser beam scanning direction K is switched from before the switching point Q (scanning direction switching start point Qs). The scanning position of the laser beam is switched to the scanning direction K after switching, and the irradiation position is on the trajectory L to be scanned in the scanning direction K after switching. Since the laser beam scanning is controlled so that it is located at the (confluence point Qe), it is not necessary to stop the laser scanning at the switching point Q. Processing is realized.
[0063] なお、上述した第 1実施形態においては、コントロールユニット 8が、 2つの DSP80 A、 80Bの各々力、らアクセス可能な共有データメモリ 83を備える構成を例示した。 これに対して、コントロールユニット 8Aの構成を、図 4に示すように、 DSP80Aがメ モリ 83Aを、 DSP80B力 Sメモリ 83Bをそれぞれ備え、 DSP80A、 80Bが互いの処理 に要するデータを通信により送受する構成としても良い。 In the first embodiment described above, the configuration in which the control unit 8 includes the shared data memory 83 that can be accessed by the power of each of the two DSPs 80 A and 80 B is exemplified. On the other hand, as shown in Fig. 4, the configuration of the control unit 8A, DSP80A is equipped with memory 83A and DSP80B power S memory 83B, and DSP80A and 80B send and receive data required for mutual processing by communication. It is good also as a structure.
[0064] 例えば、上述した第 1実施形態では、レーザ光を連続発振するレーザ発振器 2を例 示したが、これに限らず、ノ ルス光を出力するレーザ発振器を用いる構成としても良 い。この構成においてレーザ光強度を可変する場合には、例えば、レーザ発振器が Qスィッチを用いてレーザ発振するものであれば、この Qスィッチのタイミングを可変し てレーザ光強度を可変すれば良ぐまた、レーザ発振器がレーザ光を遮蔽するシャツ ターを有している場合には、当該シャッターの開閉タイミング(開又は閉時間)、レー ザ発振器が強度変調用の音響光学素子 (AOM)を有している場合には当該音響光 学素子の少なくともいずれ力、 1を調整してレーザ光強度を可変しても良い。  [0064] For example, in the first embodiment described above, the laser oscillator 2 that continuously oscillates laser light has been described as an example. However, the present invention is not limited thereto, and a configuration using a laser oscillator that outputs noise light may be used. When the laser beam intensity is varied in this configuration, for example, if the laser oscillator oscillates using a Q switch, the laser beam intensity can be varied by varying the timing of the Q switch. When the laser oscillator has a shutter that shields the laser beam, the shutter opening / closing timing (open or closed time), the laser oscillator has an acoustooptic device (AOM) for intensity modulation. If it is, the intensity of the laser light may be varied by adjusting at least one of the acousto-optic elements, 1.
[0065] また、上述した第 1実施形態では、レーザ加工時に、常にレーザ光をベクトル走査 することとしたが、これに限らず、比較的長い直線を描画する等、軌道 Lに切替点 Q や屈曲部が無い場合には、レーザ光強度及び走査速度を常に一定に維持したまま レーザ光走査するラスター走査を行っても良い。  In the first embodiment described above, the laser beam is always vector-scanned at the time of laser processing. However, the present invention is not limited to this. If there is no bent portion, raster scanning may be performed in which laser light scanning is performed while the laser light intensity and scanning speed are always maintained constant.
[0066] また、上述した第 1実施形態では、本発明に係るスキャナ光学システム 20をレーザ 加工装置に適用した場合を例示したが、これに限らず、例えば、光源からの光(レー ザ光に限らない)で描画面を高速に走査して描画像を描画する描画装置や、試料に 対してレーザ光を高速に走査させて検査測定を行う測定装置といった光を高速に偏 向する必要のある各種装置にも応用可能である。  [0066] In the first embodiment described above, the case where the scanner optical system 20 according to the present invention is applied to a laser processing apparatus is illustrated. However, the present invention is not limited to this. For example, light from a light source (laser light) However, it is necessary to deflect light at high speed, such as a drawing device that draws a drawn image by scanning the drawing surface at high speed and a measuring device that scans the sample at high speed to perform inspection measurement. It can be applied to various devices.
[0067] <第 2実施形態〉  <Second Embodiment>
次!/、で本発明の第 2実施形態につ!/、て説明する。  Next, a second embodiment of the present invention will be described.
従来から、ミラーを回転軸に回転自在に保持し、当該ミラーの反射面を任意の角度 に調整可能に構成したスキャナ光学装置が知られている。そして、このようなスキャナ 光学装置は、例えば、特開 2004— 358507公報に示されているように、被加工物の 加工面をレーザ光で走査する際の偏向手段としてレーザ加工装置に広く用いられて いる。  2. Description of the Related Art Conventionally, there is known a scanner optical device configured such that a mirror is rotatably held on a rotation shaft and a reflection surface of the mirror can be adjusted to an arbitrary angle. Such a scanner optical apparatus is widely used in a laser processing apparatus as a deflecting means for scanning a processing surface of a workpiece with a laser beam as disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-358507. ing.
[0068] しかしながら、被加工物等の対象物を光走査する際、多くの場合には、照射光の強 度や焦点位置等も制御されるものの、従来のスキャナ光学装置は、光の偏向手段を 提供するのみであるため、強度調整や焦点位置調整のための光学モジュール或い は光学素子をユーザが別途用意し、これらの光学モジュール或いは光学素子とスキ ャナ光学装置とを適宜に配列して 1つの光学システムを構築する必要がある。 However, when optically scanning an object such as a workpiece, in many cases, the intensity of irradiation light is high. However, since the conventional scanner optical device only provides light deflecting means, the user separately installs an optical module or optical element for intensity adjustment and focal position adjustment. It is necessary to prepare one optical system by arranging these optical modules or optical elements and scanner optical devices as appropriate.
さらに、光学システムの構築の際には、光学モジュールや光学素子、スキャナ光学 装置の各々の光軸を合わせたり、光のビーム径を光学素子や光学モジュールごとに 調整したりする、 V、わゆるァライメント作業が必要となる。  Furthermore, when constructing an optical system, the optical axes of optical modules, optical elements, and scanner optical devices are aligned, and the beam diameter of light is adjusted for each optical element or optical module. Alignment work is required.
光学システムのァライメント作業は、熟練が必要なものであり、経験の浅い者等には 、非常に手間の力、かる作業である。  The alignment work of the optical system requires skill, and is very labor-intensive for those who are not experienced.
そこで本実施形態では、光走査のための光学システムを簡単に構築することのでき るスキャナ光学装置、及び、このスキャナ光学装置を用いて好適なレーザ加工装置 について説明する。  Therefore, in this embodiment, a scanner optical device that can easily construct an optical system for optical scanning, and a laser processing device that is suitable for use with this scanner optical device will be described.
[0069] 図 5は、本実施形態に係るレーザ加工装置 100の構成を示す図である。  FIG. 5 is a diagram showing a configuration of the laser processing apparatus 100 according to the present embodiment.
レーザ加工装置 100は、レーザ発振器 102と、スキャナ光学装置 103と、レーザ発 振器 102から放射されたレーザ光をスキャナ光学装置 103に導く光学素子たる 1対 のミラー 104A、 104Bとを有し、これらが板状の石定盤 105に載置 '固定されている 。石定盤 105は、一般に、平面精度が非常に高ぐこのような石定盤 105に各光学要 素を載置、固定することで、各光学要素間の光軸のずれが防止され、さらに、各光学 要素間の光軸合わせが容易となる。なお、上記ミラー 104A、 104Bは、反射型光学 素子たるミラーに代えて、例えばプリズムレンズ等の透過型光学素子を用いても良い 。また、レーザ発振器 102とスキャナ光学装置 103とが直線状に配置されている場合 には、レーザ発振器 102から放射されたレーザ光をスキャナ光学装置 103に導く光 学素子は不要である。  The laser processing apparatus 100 includes a laser oscillator 102, a scanner optical apparatus 103, and a pair of mirrors 104A and 104B, which are optical elements that guide the laser light emitted from the laser oscillator 102 to the scanner optical apparatus 103. These are placed and fixed on a plate-like stone surface plate 105. In general, the stone surface plate 105 is designed to mount and fix each optical element on such a stone surface plate 105, which has very high planar accuracy, thereby preventing the optical axis from being shifted between the optical elements. Aligning the optical axis between the optical elements becomes easy. For the mirrors 104A and 104B, a transmissive optical element such as a prism lens may be used instead of the mirror that is a reflective optical element. Further, when the laser oscillator 102 and the scanner optical device 103 are linearly arranged, an optical element that guides the laser light emitted from the laser oscillator 102 to the scanner optical device 103 is not necessary.
[0070] レーザ発振器 102は、固体レーザ発振器、液体レーザ発振器、気体レーザ発振器 、半導体レーザ発振器、ファイバレーザ発振器、或いは、自由電子レーザ発振器で あり、図示せぬレーザ制御装置により制御され、レーザ媒質に応じた波長のレーザ光 を発振する。レーザ発振器 102は、図 6に示すように、レーザ共振器を内蔵する直方 体形状の発振器本体 120と、発振器本体 120の先端部 120Aに開口するレーザ出 射口 121とを有して構成されて!/、る。 The laser oscillator 102 is a solid-state laser oscillator, liquid laser oscillator, gas laser oscillator, semiconductor laser oscillator, fiber laser oscillator, or free electron laser oscillator, and is controlled by a laser control device (not shown) to be used as a laser medium. Oscillates a laser beam with the corresponding wavelength. As shown in FIG. 6, the laser oscillator 102 includes a rectangular parallelepiped oscillator main body 120 having a built-in laser resonator, and a laser output opening at a tip 120A of the oscillator main body 120. Constructed with a mouthpiece 121!
[0071] また、発振器本体 120の底面の先端部 120A側及び後端部 120B側には、 XYZ軸 ステージ 122が設けられ、これら XYZ軸ステージ 122が石定盤 105にねじ止め固定 されており、 XYZ軸ステージ 122を調整することで、レーザ発振器 102の光軸が微調 整可能となっている。このように、本実施形態では、レーザ発振器 102を石定盤 105 に載置されているが、石定盤 105は熱伝導率が非常に小さいため、レーザ発振器 10 2が発熱しても他の光学要素に与える熱影響を最小に抑えることが可能となる。  [0071] Further, an XYZ axis stage 122 is provided on the front end 120A side and the rear end 120B side of the bottom surface of the oscillator main body 120, and these XYZ axis stages 122 are fixed to the stone surface plate 105 with screws. By adjusting the XYZ axis stage 122, the optical axis of the laser oscillator 102 can be finely adjusted. As described above, in this embodiment, the laser oscillator 102 is placed on the stone surface plate 105. However, since the stone surface plate 105 has a very low thermal conductivity, even if the laser oscillator 102 generates heat, It is possible to minimize the thermal effect on the optical element.
[0072] 図 7は、スキャナ光学装置 103を拡大して示す図である。  FIG. 7 is an enlarged view showing the scanner optical device 103.
スキャナ光学装置 103は、レーザ発振器 102から出力されたレーザ光の強度を変 調する AOM (音響光学変調素子) 130と、レーザ光のフォーカスを調整するダイナミ ックフォーカスレンズ 131と、レーザ光を偏向して対象物に照射するスキャナヘッド 13 2とを有し、これらの光学要素が直線状に延びるレール 133に取り付けられている。さ らに、このレール 133には、ダイナミックフォーカスレンズ 131及びスキャナヘッド 132 の間に設けられ、ダイナミックフォーカスレンズ 131から出力された光を整形してスキ ャナヘッド 132に入力する光学素子としてのレンズ 134と、 AOM130に入射するレ 一ザ光を整形する光学素子としての 2組のレンズ 135A、 135Bとのそれぞれが位置 決め自在に取り付けられて!/、る。  The scanner optical device 103 includes an AOM (acousto-optic modulator) 130 that modulates the intensity of the laser beam output from the laser oscillator 102, a dynamic focus lens 131 that adjusts the focus of the laser beam, and deflects the laser beam. Thus, the optical element is attached to a rail 133 extending linearly. Further, the rail 133 is provided between the dynamic focus lens 131 and the scanner head 132, and a lens 134 as an optical element that shapes the light output from the dynamic focus lens 131 and inputs the light to the scanner head 132. Each of the two lenses 135A and 135B as optical elements that shape the laser light incident on the AOM 130 is mounted in a freely positionable manner.
[0073] スキャナヘッド 132は、レーザ光を偏向するスキャナミラー 1321A、及び、スキャナ ミラー 1321Aの偏向方向に対して所定の角度となる方向にレーザ光を偏向するスキ ャナミラー 1321Bと、これらのスキャナミラー 1321A、 1321Bを駆動するモータ 132 2A、 1322Bと、スキャナミラー 1321A、 1321Bを収容する、底面が開口した箱型の 筐体 1323を有している。  [0073] The scanner head 132 includes a scanner mirror 1321A that deflects laser light, a scanner mirror 1321B that deflects laser light in a direction at a predetermined angle with respect to the deflection direction of the scanner mirror 1321A, and these scanner mirrors 1321A. , Motors 1322A and 1322B for driving 1321B, and a box-shaped housing 1323 having an open bottom for housing scanner mirrors 1321A and 1321B.
[0074] 筐体 1323には、図示せぬレーザ光の導入口が側面に形成されている。前掲図 5 に示すように、レール 133は、石定盤 105の端部 105Bから延出する延出部 1340を 有し、この延出部 1340にスキャナヘッド 132の筐体 1323が配置されると共に、当該 レール 133に立設した保持片 136により側面が保持され、いわゆる、両持支持構造 によりレール 133に保持されている。なお、レール 133には、上記スキャナミラー 132 1A、 1321Bにて偏向された光を出射する出射口 1324が設けられている。そして、 本実施形態では、スキャナヘッド 132、レンズ 134及び出射口 1324により、偏向モジ ユールが構成されている。 The housing 1323 has a laser light inlet (not shown) formed on the side surface. As shown in FIG. 5, the rail 133 has an extending portion 1340 extending from the end portion 105B of the stone surface plate 105, and the housing 1323 of the scanner head 132 is disposed on the extending portion 1340. The side surface is held by a holding piece 136 erected on the rail 133, and is held on the rail 133 by a so-called both-end support structure. The rail 133 is provided with an exit port 1324 for emitting the light deflected by the scanner mirrors 1321A and 1321B. And In the present embodiment, the scanner module 132, the lens 134, and the exit port 1324 constitute a deflection module.
[0075] ダイナミックフォーカスレンズ 131は、レーザ光をスキャナヘッド 132で偏向し対象 物をレーザ光で走査する際に、対象物の走査面におけるレーザ光の照射スポット径 を照射位置によらず略一定に維持するようにレーザ光の焦点距離を可変するもので ある。ダイナミックフォーカスレンズ 131は、図示せぬモータによってレンズ系が駆動 されレーザ光の焦点距離が可変される。この図示せぬモータ、及び、上記スキャナへ ッド 132のモータ 1322A、 1322Βίま、前掲図 5ίこ示すコントローノレユニット 106ίこより 制御されている。このコントロールユニット 106は、走査面におけるレーザ光の照射位 置に基づいて焦点距離を調整すベぐダイナミックフォーカスレンズ 131のモータと、 スキャナヘッド 132のモータ 1322A、 1322Bとを互いに同期させながら制御する。な お、ダイナミックフォーカスレンズ 131に代えて f Θレンズを焦点距離調整手段として 用いても良い。 When the dynamic focus lens 131 deflects laser light with the scanner head 132 and scans the object with the laser light, the irradiation spot diameter of the laser light on the scanning surface of the object is made substantially constant regardless of the irradiation position. The focal length of the laser beam is varied so as to maintain it. The dynamic focus lens 131 is driven by a motor (not shown) to vary the focal length of the laser beam. This motor (not shown) and the motors 1322A and 1322 of the scanner head 132 are controlled by a control unit 106ί shown in FIG. The control unit 106 controls the motor of the dynamic focus lens 131 that adjusts the focal length based on the irradiation position of the laser beam on the scanning surface and the motors 1322A and 1322B of the scanner head 132 while synchronizing them with each other. In place of the dynamic focus lens 131, an fΘ lens may be used as a focal length adjustment unit.
[0076] AOM130は、上記の通り、レーザ発振器 102から出力された連続発振レーザ光、 或いは、パルスレーザ光の強度変調を行うものであり、上記コントロールユニット 106 により制御されており、コントロールユニット 106は、対象物の走査面におけるレーザ 加工深度等の加工度合いを常に一定に維持すベぐスキャナヘッド 132のモータ 13 22A、 1322Bの駆動量によって規定されるレーザ光の走査速度に応じて、レーザ光 強度を可変する。すなわち、コントロールユニット 106は、レーザ光の走査速度が速 い場合には、単位面積あたりのエネルギーが低下するためレーザ光強度もしくはレ 一ザ光密度を高め、これとは逆に、走査速度が遅い場合にはレーザ光強度もしくは レーザ光密度を低める制御を行!/、、レーザ光走査時の単位面積あたりのエネルギー を略一定に維持する制御を行う。  [0076] As described above, the AOM 130 modulates the intensity of the continuous wave laser beam or pulse laser beam output from the laser oscillator 102, and is controlled by the control unit 106. The control unit 106 Laser beam intensity according to the scanning speed of the laser beam specified by the drive amount of the motor 13 22A and 1322B of the scanner head 132 that always keeps the processing degree such as the laser processing depth on the scanning surface of the object constant Is variable. That is, when the scanning speed of the laser beam is high, the control unit 106 increases the laser beam intensity or the laser beam density because the energy per unit area decreases, and on the contrary, the scanning rate is slow. In some cases, the laser light intensity or laser light density is controlled to be reduced! /, And the energy per unit area during laser light scanning is controlled to be substantially constant.
なお、上記レーザ光密度は、ノ ルスレーザ光の単位時間当たりのノ ルス数により定 義され、当該レーザ光密度を可変することで、単位面積当たりのレーザ光のエネルギ 一を可変することができる。  The laser beam density is defined by the number of pulses per unit time of the laser beam, and the energy of the laser beam per unit area can be varied by varying the laser beam density.
[0077] これら AOM130及びダイナミックフォーカスレンズ 131は、図 7に示すように、台座 137にマウントされており、この台座 137がレール 133に位置決め自在に取り付けら れる。また、各レンズ 134、 135Α、 135Βίまレンズホノレダ 138 ίこ保持されており、この レンズホルダ 138の底部にレール取付部 139が設けられ、このレール取付部 139が レール 133に位置決め自在に取り付けられている。さらに、台座 137及びレール取付 部 139には、多数のねじ孔 144が穿設されており、 AOM130等の取付位置の調整 後に各ねじ孔 144にねじを螺合してレール 133にねじ止め固定される。 As shown in FIG. 7, the AOM 130 and the dynamic focus lens 131 are mounted on a pedestal 137, and the pedestal 137 is mounted on a rail 133 so as to be freely positioned. It is. Each lens 134, 135 mm, 135 mm is also held by a lens holder 138, and a rail mounting part 139 is provided at the bottom of the lens holder 138, and this rail mounting part 139 is mounted on the rail 133 so as to be freely positioned. . Furthermore, the base 137 and the rail mounting part 139 are provided with a number of screw holes 144. After adjusting the mounting position of the AOM 130, etc., screws are screwed into the screw holes 144 and fixed to the rails 133 by screws. The
[0078] 台座 137及びレンズホルダ 138のレール取付部 139には、図 8に示すように、あり 溝構造のあり 140が設けられており、また、レール 133の上面には、長手方向に延び る一条のあり溝 1330が形成されている。  [0078] As shown in FIG. 8, the rail mounting portion 139 of the pedestal 137 and the lens holder 138 is provided with a dovetail structure dovetail 140, and the upper surface of the rail 133 extends in the longitudinal direction. A single groove 1330 is formed.
したがって、台座 137及びレール取付部 139のあり 140をレール 133の一端からあ り溝 1330に通し嵌合させることで、各光学要素のレール 133への取付が行われる。 このとき、台座 137及びレンズホルダ 138の直線的な配列は、レール 133のあり溝 13 30によって規制されるため、レール 133への取付と同時に、 AOM130やダイナミツ クフォーカスレンズ 131、各レンズ 134、 135A、 135Bの直線的な光軸の位置合わ せが完了する。特に、各光学要素のレール 133への取付構造に、あり溝構造を採用 することで、レール 133と各光学要素との間のガタツキが抑えられ、レール 133に取り 付けるだけで、各光学要素同士の光軸を精度良く合わせることができる。さらに、ねじ 孑 L144にねじをねじ込むことによりレール 133と台座 137及びレール取付部 139とを 強く固定することができる。  Accordingly, each optical element is attached to the rail 133 by fitting the base 140 with the base 137 and the rail attachment portion 139 from one end of the rail 133 into the groove 1330. At this time, since the linear arrangement of the pedestal 137 and the lens holder 138 is regulated by the groove 133 30 of the rail 133, the AOM 130, the dynamic focus lens 131, and the lenses 134, 135A are simultaneously mounted on the rail 133 The alignment of the 135B linear optical axis is completed. In particular, by adopting a dovetail structure for the mounting structure of each optical element on the rail 133, the backlash between the rail 133 and each optical element can be suppressed. The optical axis can be accurately aligned. Furthermore, the rail 133, the base 137, and the rail mounting portion 139 can be firmly fixed by screwing the screw into the screw 孑 L144.
[0079] また、前掲図 7に示すように、レール 133の上面には、 ΑΟΜ130、ダイナミックフォ 一カスレンズ 131、及びレンズ 134、 135A、 135Bのそれぞれの取付位置に位置決 用マーク 150が描かれており、また、台座 137及びレンズホルダ 138のレール取付部 139のそれぞれの側面には、位置合用マーク 151が描かれており、これら位置決用 マーク 150及び位置合用マーク 151を合わせることで、 ΑΟΜ130、ダイナミックフォ 一カスレンズ 131、及びレンズ 134、 135A、 135Bの位置決めが完了する。  [0079] Further, as shown in FIG. 7, the positioning mark 150 is drawn on the upper surface of the rail 133 at the mounting positions of the eaves 130, the dynamic focus lens 131, and the lenses 134, 135A, and 135B. In addition, a positioning mark 151 is drawn on each side surface of the rail mounting portion 139 of the base 137 and the lens holder 138. By aligning the positioning mark 150 and the positioning mark 151, ΑΟΜ130, The positioning of the dynamic focus lens 131 and the lenses 134, 135A, 135B is completed.
[0080] このように、位置決用マーク 150及び位置合用マーク 151を予め設けておくことで、 スキャナ光学装置 103を搬送する際等に、 ΑΟΜ130、ダイナミックフォーカスレンズ 131、及びレンズ 134、 135A、 135Bのそれぞれをレーノレ 133力、ら取り外して搬送し た場合であっても、これらをレール 133に取り付ける時のァライメントが容易となる。 さらに、経年劣化やレンズや光学素子の個体差等によって、各部の取付位置を微 調整する際には、位置決用マーク 150及び位置合用マーク 151を基準にレール 133 のあり溝 1330に沿って各部を前後させるだけで良ぐ取付位置の目安が全く無い場 合と比較して、位置決め作業が容易となる。 Thus, by providing the positioning mark 150 and the positioning mark 151 in advance, when transporting the scanner optical device 103, etc., the collar 130, the dynamic focus lens 131, and the lenses 134, 135A, 135B Even when each of these is removed and transported by the Lenole 133 force, alignment when attaching them to the rail 133 becomes easy. Furthermore, when finely adjusting the mounting position of each part due to aging deterioration or individual differences of lenses and optical elements, each part along the groove 1330 of the rail 133 with reference to the positioning mark 150 and the positioning mark 151 Positioning work becomes easier compared to the case where there is no guideline for a good mounting position just by moving back and forth.
[0081] なお、これら位置決用マーク 150及び位置合用マーク 151の位置は、ダイナミック フォーカスレンズ 131やレンズ 134、 135A、 135B等の光学要素の光学特性、換言 すれば、スキャナ光学装置 3の光学設計(特に、レーザ光の走査角範囲やスポット径 )に応じて当然に変更され得るものである。したがって、これら位置決用マーク 150及 び位置合用マーク 151を、幾つかの光学設計値ごとに設ける構成としても良い。これ により、ユーザがスキャナ光学装置 3を異なる光学設計値で運用する際に、各光学要 素を簡単に交換し、かつ、位置決めすることが可能となる。  Note that the positions of the positioning mark 150 and the positioning mark 151 are the optical characteristics of the optical elements such as the dynamic focus lens 131 and the lenses 134, 135A, and 135B, in other words, the optical design of the scanner optical device 3. Naturally, it can be changed according to the scanning angle range and spot diameter of the laser beam. Therefore, the positioning mark 150 and the positioning mark 151 may be provided for each of several optical design values. As a result, when the user operates the scanner optical device 3 with different optical design values, each optical element can be easily replaced and positioned.
[0082] また、位置決用マーク 150及び位置合用マーク 151がレール 133、台座 137及び レール取付部 139の各々に直接描画された構成とした力 これに限らない。すなわち 、これらの位置決用マーク 150及び位置合用マーク 151は、レール 133に取り付けら れる各光学要素間の相対的な距離が規定されるように設けられていれば十分であり 、例えば、位置決用マーク 150を別部材の板材に標し、これをレール 133に貼設して も良ぐさらに、位置合用マーク 151についても同様に別部材としても良い。  In addition, the force is such that the positioning mark 150 and the positioning mark 151 are directly drawn on each of the rail 133, the base 137, and the rail mounting portion 139. In other words, it is sufficient that the positioning mark 150 and the positioning mark 151 are provided so that the relative distance between the optical elements attached to the rail 133 is defined. It is also possible to mark the mark 150 on a separate member and paste it on the rail 133. Further, the positioning mark 151 may be a separate member.
[0083] ここで、 AOM130がレーザ発振器 102に既に内蔵されている場合や、レーザ発振 器 102でエネルギー制御が可能な場合、そもそもエネルギー制御が不要な場合、ス キヤナ光学装置 103には、上記 AOM130が不要となり、当該 AOM130をレーザ光 の光軸(経路)上から取り除く必要がある。このような場合であっても、本実施形態に おいては、レール 133への各光学要素の取付に、あり溝構造を採用しているため、 A OM130及び当該 AOM130をマウントする台座 137をレール 133から簡単に取り外 すことが可能となる。  Here, when the AOM 130 is already built in the laser oscillator 102, when energy control is possible with the laser oscillator 102, or when energy control is not necessary in the first place, the scanner optical device 103 includes the AOM 130 described above. Therefore, it is necessary to remove the AOM130 from the optical axis (path) of the laser beam. Even in such a case, in the present embodiment, since the dovetail structure is adopted for mounting each optical element to the rail 133, the A OM130 and the pedestal 137 for mounting the AOM130 are mounted on the rail. It can be easily removed from 133.
[0084] これとは逆に、 AOM130をレーノレ 133に取り付ける際には、上記のように、位置決 用マーク 150及び位置合用マーク 151を合わせることで、 AOM130の取付及び位 置決めを簡単に行うことが可能となる。また、 AOM130をレール 133に取り付ける際 には、 AOM130をレール 133から取り外されている状態で、レーノレ 133に取り付けら れている各光学要素同士の光軸を合わせ、その後に、 AOM130を取り付けることで 、各光学要素同士の光軸を合わせる際に AOM130の影響を無くすことができる。 [0084] On the contrary, when AOM 130 is attached to Renore 133, AOM 130 can be easily attached and positioned by aligning positioning mark 150 and positioning mark 151 as described above. It becomes possible. Also, when installing AOM130 on rail 133, attach AOM130 to rail 133 with AOM130 removed from rail133. By aligning the optical axes of the optical elements, and then attaching the AOM 130, the influence of the AOM 130 can be eliminated when aligning the optical axes of the optical elements.
[0085] さらに、スキャナヘッド 132による走査角範囲が比較的狭い場合や、対象物の走査 面での照射スポット径の変化が小さい場合等には、ダイナミックフォーカスレンズ 131 が(ί θレンズも勿論)不要となる場合がある。このような場合には、ダイナミックフォー カスレンズ 131 (或いは f Θレンズ)に代えて、レンズ 134の前段に他のレンズが配設 される。このような場合でも、 AOM130と同様に、ダイナミックフォーカスレンズ 131を 簡単に取り外し、さらに、このダイナミックフォーカスレンズ 131に代わるレンズを取り 付けることが可能となる。  Furthermore, when the scanning angle range by the scanner head 132 is relatively narrow, or when the change in the irradiation spot diameter on the scanning surface of the object is small, the dynamic focus lens 131 (of course, the Θθ lens is also used). May be unnecessary. In such a case, instead of the dynamic focus lens 131 (or fΘ lens), another lens is disposed in front of the lens 134. Even in such a case, similarly to the AOM 130, the dynamic focus lens 131 can be easily removed, and a lens in place of the dynamic focus lens 131 can be attached.
[0086] このように、ダイナミックフォーカスレンズ 131をレール 133から取り外した場合、或 いは、ダイナミックフォーカスレンズ 131を異なる光学特性のものに変更した場合、ス キヤナヘッド 132の上記スキャナミラー 1321A、 1321Bに入射するレーザ光のビー ム径が変わってしまうため、当該スキャナヘッド 132の前段に配置されたレンズ 134 の位置を調整する必要が生じる場合がある。このような場合であっても、レンズ 134が 直線上のレール 133に位置決め自在に取り付けられているため、あり溝 1330に沿つ てレンズ 134を前後に移動して調整することで、光軸をずらすことなぐ位置決め調整 を行うことが可能となる。  As described above, when the dynamic focus lens 131 is removed from the rail 133 or when the dynamic focus lens 131 is changed to one having different optical characteristics, it enters the scanner mirrors 1321A and 1321B of the scanner head 132. Since the beam diameter of the laser beam to be changed changes, it may be necessary to adjust the position of the lens 134 arranged in front of the scanner head 132. Even in such a case, since the lens 134 is mounted on the linear rail 133 so as to be freely positioned, the optical axis can be adjusted by moving the lens 134 back and forth along the dovetail groove 1330 and adjusting it. It becomes possible to perform positioning adjustment without shifting.
[0087] さて、レール 133は、図 7及び図 8に示すように、長手方向に沿って複数のレール 片 133A〜; 133Eに分断されている。各レール片 133A〜; 133Eは略同一寸法の形 状に構成されており、先頭のレール片 133Aにのみ、上記スキャナヘッド 132を載置 するための延出部 1340が設けられている。これらのレール片 133A〜133Eは、石 定盤 105に取り付けられることで、レールガイド部材の機能を維持しており、換言すれ ば、石定盤 105が各レール片 133A〜 133Eを連結するためのベース材として機能 している。  [0087] As shown in FIGS. 7 and 8, the rail 133 is divided into a plurality of rail pieces 133A to 133E along the longitudinal direction. Each of the rail pieces 133A to 133E is formed in a shape having substantially the same dimensions, and an extending portion 1340 for placing the scanner head 132 is provided only on the leading rail piece 133A. These rail pieces 133A to 133E are attached to the stone surface plate 105 to maintain the function of the rail guide member.In other words, the stone surface plate 105 is used for connecting the rail pieces 133A to 133E. It functions as a base material.
[0088] 石定盤 105への取付構造について説明すると、各レール片 133A〜133Eが側面 視 L字状に形成され、上記石定盤 105の端面 105Aに面接触する位置合用脚 142 を有している。すなわち、石定盤 105の一辺に沿って、各レール片 133A〜; 133Eの 位置合用脚 142を石定盤 105の端面 105Aに宛がいながら固定することで、石定盤 105の端面 105Aを使っての各レール片 133A〜133Eの各々が直線状に位置合わ せされて連結される。各レール片 133A〜; 133Eを石定盤 105に固定する際には、間 隔 δ (図 7参照)をあけて各々が固定されており、あるレール片 133Α〜133Εが熱膨 張等を起こしても、他のレール片 133A〜; 133Eと分断されることで位置ズレ(特に、 光学要素間の相対距離の変動)の発生が防止される。なお、上記間隔 δは例えば隙 間ゲージを用いて調整されて!/、る。 [0088] The mounting structure to the stone surface plate 105 will be described. Each rail piece 133A to 133E is formed in an L shape in side view, and has positioning legs 142 that are in surface contact with the end surface 105A of the stone surface plate 105. ing. That is, along each side of the stone surface plate 105, each rail piece 133A-; 133E positioning leg 142 is fixed to the end surface 105A of the stone surface plate 105 while being fixed. Each of the rail pieces 133A to 133E using 105 end faces 105A is linearly aligned and connected. When fixing each rail piece 133A ~; 133E to the stone surface plate 105, each is fixed with a gap δ (see Fig. 7), and one rail piece 133Α ~ 133Ε causes thermal expansion etc. However, the separation from the other rail pieces 133A to 133E prevents the occurrence of positional deviation (particularly, the variation in the relative distance between the optical elements). The interval δ is adjusted using, for example, a gap gauge!
[0089] 以上説明したように、本実施形態によれば、レーザ加工装置 100が備えるスキャナ 光学装置 103において、レール 133の端部にスキャナヘッド 132を固定すると共に、 ダイナミックフォーカスレンズ 131をレール 133に着脱自在に設けると共に、レンズ 13 4をレール 133に位置決め自在に設ける構成としている。この構成によれば、スキヤ ナヘッド 132及びダイナミックフォーカスレンズ 131がレール 133に共に取り付けられ てユニット化されているため、レーザ光をスキャナヘッド 132で偏向し対象物をレーザ 光で走査する際に、レーザ光の照射スポット径を照射位置によらず常に一定とするこ とを可能としつつ、さらに、ダイナミックフォーカスレンズ 131を変更或いは取り外して 、スキャナ光学装置 103の光学設計値を簡単に変更することができる。  As described above, according to the present embodiment, in the scanner optical device 103 included in the laser processing apparatus 100, the scanner head 132 is fixed to the end of the rail 133, and the dynamic focus lens 131 is attached to the rail 133. In addition to being detachably provided, the lens 134 is provided on the rail 133 so as to be freely positioned. According to this configuration, since the scanner head 132 and the dynamic focus lens 131 are attached to the rail 133 and unitized, the laser beam is deflected by the scanner head 132 and the object is scanned with the laser beam. While making it possible to keep the light irradiation spot diameter constant regardless of the irradiation position, the optical design value of the scanner optical device 103 can be easily changed by changing or removing the dynamic focus lens 131. .
[0090] さらに、ダイナミックフォーカスレンズ 131を変更或いは取り外した事により、レンズ 1 34とスキャナヘッド 132との間の距離を調整する必要が生じた場合であっても、直線 上のレール 133に位置決め自在に取り付けられているため、レンズ 134とスキャナへ ッド 132との間の光軸を合わせたまま、当該レンズ 134をレール 133に沿って前後さ せて距離を調整することが可能となり、光学設計変更時のァライメント作業が容易とな  [0090] Furthermore, even when the dynamic focus lens 131 is changed or removed, even when it is necessary to adjust the distance between the lens 1 34 and the scanner head 132, positioning on the linear rail 133 is possible. It is possible to adjust the distance by moving the lens 134 back and forth along the rail 133 while keeping the optical axis between the lens 134 and the scanner head 132 aligned. Easier alignment work when changing
[0091] また、本実施形態によれば、 AOM130をレール 133に着脱自在に取付可能な構 成とした。この構成によれば、レーザ光をスキャナヘッド 132で偏向し対象物をレーザ 光で走査する際に、レーザ光の強度調整する機能が一体的に組み込まれたスキャナ 光学装置 103が提供される。さらに、 AOM130がレーザ発振器 2に既に内蔵されて いる場合や、レーザ発振器 102がレーザ光をパルス発振する場合には、レール 133 力も AOM130を着脱し、スキャナ光学装置 103と共に用いられるレーザ発振器 102 の仕様に簡単に合わせることができる。 [0092] また、本実施形態によれば、レール 133を石定盤 105に固定する構成としたため、 レール 133に取り付けられる各光学要素間の光軸のずれが防止され、さらに、各光 学要素間の光軸合わせが容易となる。 Further, according to the present embodiment, the AOM 130 is configured to be detachably attached to the rail 133. According to this configuration, the scanner optical device 103 in which the function of adjusting the intensity of the laser beam when the laser beam is deflected by the scanner head 132 and the object is scanned with the laser beam is integrated is provided. Furthermore, when the AOM 130 is already built in the laser oscillator 2 or when the laser oscillator 102 oscillates the laser beam, the rail 133 force is also attached to the AOM 130, and the specifications of the laser oscillator 102 used together with the scanner optical device 103 are as follows. Can be easily adapted to. In addition, according to the present embodiment, since the rail 133 is fixed to the stone surface plate 105, the optical axis shift between the optical elements attached to the rail 133 is prevented, and each optical element It becomes easy to align the optical axis.
[0093] さらにまた、本実施形態によれば、上記石定盤 105には、スキャナ光学装置 103と 共に、レーザ発振器 102及び 1対のミラー 104A、 104Bを載置'固定する構成として いる。この構成によれば、石定盤 105に載置されている各光学要素間の光軸のずれ が防止され、さらに、各光学要素間の光軸合わせが容易となる。また、レーザ発振器 102を石定盤 105に載置したとしても、石定盤 105は熱伝導率が非常に小さいため 、レーザ発振器 102の発熱が他の光学要素に与える熱影響を最小に抑えることがで きる。  Furthermore, according to the present embodiment, the stone surface plate 105 is configured such that the laser oscillator 102 and the pair of mirrors 104A and 104B are mounted and fixed together with the scanner optical device 103. According to this configuration, the optical axis shift between the optical elements placed on the stone surface plate 105 is prevented, and the optical axis alignment between the optical elements is facilitated. Even if the laser oscillator 102 is mounted on the stone surface plate 105, the thermal conductivity of the stone surface plate 105 is extremely small, so that the heat effect of the heat generated by the laser oscillator 102 on other optical elements can be minimized. I can do it.
[0094] また、本実施形態によれば、レール 133を長手方向に沿って複数のレール片 133 A〜; 133Eに分断し、各レール片 133A〜133Eを石定盤 105の一辺に沿って配列 して互いの軸(あり溝 1330)を合わせつつ、各レール片 133A〜133Eを互いに間隔 δの隙間をあけて配列する構成とした。  Further, according to the present embodiment, the rail 133 is divided into a plurality of rail pieces 133 A to 133 E along the longitudinal direction, and the rail pieces 133 A to 133 E are arranged along one side of the stone surface plate 105. Thus, the rail pieces 133A to 133E are arranged with a gap δ between them while aligning the axes (the dovetail grooves 1330).
この構成によれば、あるレール片 133Α〜133Εが熱膨張等を起こしても、他のレー ル片 133A〜; 133Eと分断されることで位置ズレの発生が防止される。さらに、複数の レール片 133Α〜133Εを、平面精度の高い石定盤 105の一辺に沿って配列したた め、互いのあり溝 1330を簡単に、かつ、精度良く合わせることが可能となる。  According to this configuration, even if one rail piece 133Α to 133Ε undergoes thermal expansion or the like, it is separated from the other rail pieces 133A to 133E, thereby preventing the occurrence of misalignment. Furthermore, since the plurality of rail pieces 133 to 133 are arranged along one side of the stone surface plate 105 having a high planar accuracy, it is possible to easily and accurately align the dovetail grooves 1330 with each other.
[0095] なお、第 2実施形態は、本発明の範囲内で任意に変形および応用が可能である。 Note that the second embodiment can be arbitrarily modified and applied within the scope of the present invention.
第 2実施形態では、複数のレール片 133A〜; 133Eの先頭のレール片 133Aに延 出部 1340を設け、この延出部 1340にスキャナヘッド 132を配置すると共に延出部 1 340に立設した保持片 136でスキャナヘッド 132を保持する構造とした。  In the second embodiment, an extension portion 1340 is provided on the first rail piece 133A of the plurality of rail pieces 133A to 133E, the scanner head 132 is disposed on the extension portion 1340, and the extension portion 1340 is erected. The scanner head 132 is held by the holding piece 136.
これに対して、例えば、図 9に示すように、レール片 133Aを石定盤 105の端部 105 Βよりも手前に配置すると共に、レール片 133Aの先端部 1350に保持片 136Aを設 け、石定盤 105にスキャナヘッド 132を載置すると共に保持片 136Aに保持させる構 造のスキャナ光学装置 103Α、及び、このスキャナ光学装置 103Aを用いたレーザ加 ェ装置 100Aを構成しても良い。力、かる構成によれば、スキャナヘッド 132が石定盤 105側に載置され、スキャナヘッド 132の振動が他の光学素子に伝達し難くなるため 、当該スキャナヘッド 132の振動による光学素子の位置ズレ等を防止することができ On the other hand, for example, as shown in FIG. 9, the rail piece 133A is arranged in front of the end 105 端 of the stone surface plate 105, and the holding piece 136A is provided at the tip 1350 of the rail piece 133A. The scanner head 132 may be mounted on the stone surface plate 105 and the holding optical element 103A may be held by the holding piece 136A, and a laser processing apparatus 100A using the scanner optical apparatus 103A may be configured. According to the force and the structure, the scanner head 132 is placed on the stone surface plate 105 side, and it is difficult to transmit the vibration of the scanner head 132 to other optical elements. Therefore, it is possible to prevent displacement of the optical element due to vibration of the scanner head 132.
[0096] 第 2実施形態では、ダイナミックフォーカス 131の後段に集光用のレンズ 134を設け てスキャナ光学装置 103を構成した。 In the second embodiment, the scanner optical device 103 is configured by providing a condensing lens 134 at the subsequent stage of the dynamic focus 131.
これに対して、例えば図 10に示すように、レンズ 134をダイナミックフォーカス 131 の前段に設けたスキャナ光学装置 103Bを構成し、このスキャナ光学装置 103Bを備 えたレーザ加工装置 101Bとしても良い。  On the other hand, as shown in FIG. 10, for example, a scanner optical device 103B in which a lens 134 is provided in front of the dynamic focus 131 may be configured, and a laser processing device 101B provided with the scanner optical device 103B may be used.
[0097] また第 2実施形態では、ダイナミックフォーカス 131の前段に AOM130及びレンズ In the second embodiment, the AOM 130 and the lens are arranged in front of the dynamic focus 131.
135A、 135Bを設けてスキャナ光学装置 103を構成した。  The scanner optical device 103 is configured by providing 135A and 135B.
これに対して、例えば図 11に示すように、ダイナミックフォーカス 131の前段に AO On the other hand, for example, as shown in FIG.
M130及びレンズ 135A、 135Bを省略してスキャナ光学装置 103Cを構成し、このス キヤナ光学装置 103Cを備えたレーザ加工装置 101Cとしても良い。 The scanner optical device 103C may be configured by omitting the M130 and the lenses 135A and 135B, and the laser processing device 101C including the scanner optical device 103C may be used.
[0098] また第 2実施形態では、ダイナミックフォーカス 131の前段に AOM130及びレンズ In the second embodiment, the AOM 130 and the lens are arranged in front of the dynamic focus 131.
135A、 135Bを設け、さらに、ダイナミックフォーカス 131の後段に集光用のレンズ 1 135A and 135B are provided, and the lens for condensing the dynamic focus 131 is the rear stage 1
34を設けてスキャナ光学装置 103を構成した。 34 is provided to configure the scanner optical device 103.
これに対して、例えば図 12に示すように、ダイナミックフォーカス 131の前段に AO On the other hand, for example, as shown in FIG.
M130及びレンズ 135A、 135Bを省略し、また、レンズ 134をダイナミックフォーカスM130 and lenses 135A and 135B are omitted, and lens 134 is dynamically focused.
131の前段に設けてスキャナ光学装置 103Dを構成し、このスキャナ光学装置 103D を備えたレーザ加工装置 101Dとしても良い。 A scanner optical device 103D may be provided in front of 131, and a laser processing device 101D including the scanner optical device 103D may be used.
[0099] また第 2実施形態では、レーザ発振器 102から出力されたレーザ光を一対のミラー In the second embodiment, the laser light output from the laser oscillator 102 is converted into a pair of mirrors.
104A、 104Bにより偏向させてスキャナ光学装置 103に導く構成とした。  The configuration is such that the light is deflected by 104A and 104B and guided to the scanner optical device 103.
これに対して、例えば図 13に示すように、レーザ発振器 102とスキャナ光学装置 10 On the other hand, for example, as shown in FIG.
3とを光軸を合わせて直線上に配置して、レーザ発振器 102から出力されたレーザ 光をそのままスキャナ光学装置 103に入射する構成のレーザ加工装置 101Eとしても 良い。 3 may be arranged on a straight line with the optical axes aligned, and the laser processing apparatus 101E configured to directly enter the laser light output from the laser oscillator 102 into the scanner optical apparatus 103 may be used.
なお、レーザ発振器 102とスキャナ光学装置 103とを光軸を合わせて直線上に配 置する構成においては、例えば図 14に示すように、スキャナ光学装置 103に代えて 上記のスキャナ光学装置 103Bを用いてレーザ加工装置 101Fを構成しても良ぐま た例えば図 15に示すように、上記のスキャナ光学装置 103Cを用いてレーザ加工装 置 101Gを構成しても良ぐまた例えば図 16に示すように、上記のスキャナ光学装置 103Dを用いてレーザ加工装置 101Hを構成しても良い。 In the configuration in which the laser oscillator 102 and the scanner optical device 103 are arranged on a straight line with the optical axes aligned, for example, the scanner optical device 103B described above is used instead of the scanner optical device 103 as shown in FIG. The laser processing device 101F can be configured For example, as shown in FIG. 15, the laser processing apparatus 101G may be configured by using the above-described scanner optical apparatus 103C. Also, for example, as shown in FIG. 16, laser processing by using the above-described scanner optical apparatus 103D. The apparatus 101H may be configured.
[0100] 第 2実施形態では、先頭のレール片 133Aを除く他のレール片 133B〜; 133Eのそ れぞれを略同一寸法のものとしたが、これに限らず、図 17に示すように、取り付けら れる光学要素ごとにレール 133をレール片 133A'〜; 133E'に分断し、スキャナ光学 装置 103Eを構成しても良い。  [0100] In the second embodiment, each of the other rail pieces 133B to 133E except for the leading rail piece 133A has substantially the same size. However, the present invention is not limited to this, as shown in FIG. The scanner optical device 103E may be configured by dividing the rail 133 into rail pieces 133A ′ to 133E ′ for each optical element to be attached.
さらに、図 18に示すように、 1本のレール 160を用いてスキャナ光学装置 103Fを構 成しても良い。また、図 17及び図 18に示すように、スキャナヘッド 132を、レール片 1 33A'の端部、或いは、レール 160の端部に立設した保持片 136にのみ保持する、 片持支持構造としても良い。  Further, as shown in FIG. 18, the scanner optical device 103F may be configured by using one rail 160. Further, as shown in FIGS. 17 and 18, the scanner head 132 has a cantilever support structure in which the scanner head 132 is held only by the end of the rail piece 133A ′ or the holding piece 136 erected on the end of the rail 160. Also good.
[0101] なお、これら図 10〜図 18においては、位置決用マーク 150及び位置合用マーク 1 51の図示を省略している。  Note that in FIGS. 10 to 18, the positioning mark 150 and the positioning mark 151 are not shown.
[0102] また上述したレール 133に代えて、直線案内用軸軸受として一般的に利用されて V、るリニアガイドを用いる構成としても良レ、。  [0102] Further, instead of the rail 133 described above, a linear guide that is generally used as a linear guide shaft bearing may be used.
また、第 2実施形態では、レール 133と各光学要素との取り付け構造をあり溝構造と したが、これに限らない。例えば、レール 133の上面に互いに平行に延びる 1或いは 複数の凸条を設けると共に、台座 137及びレール取付部 139の各々の底面に、レー ル 133の凸条に係合する凹条を設け、これら凸条及び凹条の係合構造により、レー ノレ 133に各光学要素を取り付ける構成としても良い。これにより、レール 133に溝を 設けて各光学要素を取り付ける構造に比べ、各光学要素をレール 133から個別に取 り外すことができる。  In the second embodiment, the mounting structure between the rail 133 and each optical element is a groove structure, but the present invention is not limited to this. For example, one or more ridges extending in parallel with each other are provided on the upper surface of the rail 133, and ridges that engage with the ridges of the rail 133 are provided on the bottom surfaces of the base 137 and the rail mounting portion 139. Each optical element may be attached to the lenore 133 by an engaging structure of ridges and ridges. As a result, each optical element can be individually detached from the rail 133 as compared to a structure in which each optical element is mounted by providing a groove in the rail 133.
[0103] また、第 1及び第 2実施形態では、レーザ発振器 1 , 102から放射された光をスキヤ ナヘッド 7或いはスキャナ光学装置 103により鉛直下方に偏向して被加工物に照射 する構成を例示したが、これに限らない。すなわち、レーザ光の光軸(入射側)を中心 軸としてスキャナヘッド 7或いはスキャナ光学装置 103を所定角度回転させて設け、 鉛直下方を 0度と定義した場合に、水平方向に例えば ± 90度範囲の任意の角度を 持たせてレーザ光を照射したり、水平方向 180度として鉛直上方にレーザ光を照射 する構成としても良い。このような構成とすることで、スキャナヘッド 7或いはスキャナ 光学装置 103を回転させない構成に比べて、レーザ光の照射範囲を広げることがで きる。 In the first and second embodiments, the configuration in which the light emitted from the laser oscillators 1 and 102 is deflected vertically downward by the scanner head 7 or the scanner optical device 103 to irradiate the workpiece is exemplified. However, it is not limited to this. That is, if the scanner head 7 or the scanner optical device 103 is rotated by a predetermined angle with the optical axis (incident side) of the laser light as the central axis, and the vertical downward direction is defined as 0 degrees, the horizontal direction is, for example, within ± 90 degrees Irradiate laser light at an arbitrary angle of, or irradiate laser light vertically upward at 180 degrees in the horizontal direction It is good also as composition to do. By adopting such a configuration, the irradiation range of the laser beam can be expanded compared to a configuration in which the scanner head 7 or the scanner optical device 103 is not rotated.
なお、スキャナヘッド 7或いはスキャナ光学装置 103の上記所定角度を任意の角度 に調整する回転駆動手段を別途に設ける構成としても良い。  Note that a rotation driving means for adjusting the predetermined angle of the scanner head 7 or the scanner optical device 103 to an arbitrary angle may be provided separately.

Claims

請求の範囲 The scope of the claims
[1] 光源から出力された光を、対象物に照射し走査するスキャナ光学システムであって 前記光の強度を調整する光強度調整手段と、  [1] A scanner optical system that irradiates and scans an object with light output from a light source, the light intensity adjusting means for adjusting the intensity of the light,
前記光を前記対象物の所定位置に向けて偏向すると共に、ゼロレベルから所定の 走査速度となるように前記光を偏向する偏向手段とを備え、  Deflection means for deflecting the light toward a predetermined position of the object and deflecting the light so as to obtain a predetermined scanning speed from a zero level;
前記光強度調整手段は、前記偏向手段による光の走査速度に比例して、或いは、 前記光のエネルギー密度が略一定となるように、前記光の強度を調整することを特 徴とするスキャナ光学システム。  The light intensity adjusting means adjusts the light intensity in proportion to the light scanning speed by the deflecting means or so that the energy density of the light becomes substantially constant. system.
[2] 請求項 1に記載のスキャナ光学システムにお!/、て、  [2] The scanner optical system according to claim 1! /,
前記偏向手段は、スキャナミラーと、このスキャナミラーを駆動する駆動モータと、こ の駆動モータを制御するコントローラとを有し、  The deflection means includes a scanner mirror, a drive motor that drives the scanner mirror, and a controller that controls the drive motor,
前記スキャナミラーの駆動量に応じたデジタルパルス信号を出力するエンコーダを 前記駆動モータに設け、  An encoder for outputting a digital pulse signal corresponding to the drive amount of the scanner mirror is provided in the drive motor;
前記コントローラは、前記デジタルパルス信号をカウントして前記駆動量を特定し、 当該駆動量に基づいて前記駆動モータに制御信号を出力するフィードバック制御を 実行する  The controller counts the digital pulse signal to identify the drive amount, and executes feedback control that outputs a control signal to the drive motor based on the drive amount
ことを特徴とするスキャナ光学システム。  A scanner optical system.
[3] 請求項 1に記載のスキャナ光学システムにお!/、て、 [3] In the scanner optical system according to claim 1,! /
前記偏向手段は、  The deflection means includes
前記対象物の平面内を互いに直交する X軸方向及び Y軸方向のそれぞれに前記 光を偏向する X軸偏向手段及び Y軸偏向手段を備え、  X-axis deflecting means and Y-axis deflecting means for deflecting the light in the X-axis direction and the Y-axis direction orthogonal to each other in the plane of the object,
前記 X軸偏向手段による偏向及び Y軸偏向手段による偏向を共に同一のコント口 ーラで同時に両軸を制御したことを特徴とするスキャナ光学システム。  A scanner optical system, wherein both the deflection by the X-axis deflection means and the deflection by the Y-axis deflection means are simultaneously controlled by the same controller.
[4] 請求項 3に記載のスキャナ光学システムにおいて、  [4] The scanner optical system according to claim 3,
前記 X軸偏向手段による偏向及び前記 Y軸偏向手段による偏向によって規定され る前記光の前記対象物への照射位置に応じて、レンズ間の距離を調整して前記光 の焦点距離を調整するフォーカス調整手段を更に備え、 前記 X軸偏向手段による偏向及び前記 Y軸偏向手段による偏向と共に、前記フォ 一カス調整手段による焦点距離調整を同一のコントローラで同時に全軸を制御する ことを特徴とするスキャナ光学システム。 A focus that adjusts the focal length of the light by adjusting the distance between the lenses according to the irradiation position of the light on the object defined by the deflection by the X-axis deflection unit and the deflection by the Y-axis deflection unit. An adjustment means; A scanner optical system, wherein all axes are simultaneously controlled by the same controller for the focal length adjustment by the focus adjustment means together with the deflection by the X axis deflection means and the deflection by the Y axis deflection means.
[5] 請求項 4に記載のスキャナ光学システムにおいて、  [5] The scanner optical system according to claim 4,
前記コントローラは、前記対象物の表面凹凸に応じて前記光の焦点距離が調整さ れるように前記フォーカス調整手段を制御する  The controller controls the focus adjustment means so that a focal length of the light is adjusted according to surface irregularities of the object.
ことを特徴とするスキャナ光学システム。  A scanner optical system.
[6] 請求項 1に記載のスキャナ光学システムにお!/、て、 [6] In the scanner optical system according to claim 1,! /
前記対象物の形状及び前記光の走査態様に基づ!/、て、前記偏向手段による前記 光の偏向軌道を演算する軌道演算手段と、  Based on the shape of the object and the scanning mode of the light, a trajectory calculating means for calculating the deflection trajectory of the light by the deflecting means;
前記軌道演算手段による偏向軌道と、前記光の偏向の検出値とに基づいて、前記 偏向手段による前記光の偏向をフィードバック制御す偏向制御手段とを備え、 前記軌道演算手段と前記偏向制御手段とを各々個別の CPUで構成したことを特 徴とするスキャナ光学システム。  Deflection control means for feedback-controlling the deflection of the light by the deflection means based on the deflection trajectory by the trajectory calculation means and the detected value of the deflection of the light, and the trajectory calculation means and the deflection control means; A scanner optical system characterized by the fact that each is composed of individual CPUs.
[7] 請求項 1に記載のスキャナ光学システムにお!/、て、 [7] In the scanner optical system according to claim 1,! /
前記光で走査する予定の軌道上に、前記光の走査方向が切り替わる切替点が存 在する場合、  When there is a switching point at which the scanning direction of the light is switched on the trajectory to be scanned with the light,
前記切替点の手前から、前記光の走査方向を前記切替後の走査方向に徐々に変 化させて走査しつつ、前記光の走査方向が前記切替後の走査方向に切り替わつたと きの前記光の走査位置が、前記切替後の走査方向で走査すべき軌道上に位置する ように前記偏向手段を制御する  The scanning direction of the light is gradually changed to the scanning direction after the switching from before the switching point, and the scanning direction of the light is switched to the scanning direction after the switching. The deflecting unit is controlled so that the light scanning position is located on the trajectory to be scanned in the scanning direction after the switching.
ことを特徴とするスキャナ光学システム。  A scanner optical system.
[8] 請求項 6または 7に記載のスキャナ光学システムにおいて、 [8] The scanner optical system according to claim 6 or 7,
前記光源は、レーザ光を発振するレーザ装置を有し、  The light source has a laser device that oscillates laser light,
前記光強度調整手段は、前記レーザ装置が Qスィッチを内蔵する場合には当該 Q スィッチ、前記レーザ装置がレーザ光を遮蔽するシャッターを有する場合には当該シ ャッター、前記レーザ装置が強度変調用の音響光学素子を有する場合には当該音 響光学素子、及び、前記レーザ装置力パルスレーザ光を発振する場合には発振周 期の少なくともいずれ力、 1つを調整し、前記レーザ光の強度を調整することを特徴と するスキャナ光学システム。 The light intensity adjusting means includes the Q switch when the laser device incorporates a Q switch, the shutter when the laser device has a shutter for shielding laser light, and the laser device for intensity modulation. In the case of having an acousto-optic element, the oscillation optical element, and in the case of oscillating the laser device pulsed laser beam, the oscillation frequency A scanner optical system characterized by adjusting at least one of the forces in one period and adjusting the intensity of the laser beam.
レーザ発振器から出力されたレーザ光を、被加工物の加工面に照射してレーザ加 ェするレーザ加工装置であって、  A laser processing apparatus for applying a laser by irradiating a processing surface of a workpiece with laser light output from a laser oscillator,
前記レーザ光の強度を調整する光強度調整手段と、  A light intensity adjusting means for adjusting the intensity of the laser light;
前記レーザ光を偏向し、ゼロレベルから所定の走査速度で前記被加工物の加工面 を前記レーザ光でベクトル走査する偏向手段とを備え、  Deflecting means for deflecting the laser light, and vector scanning the processed surface of the workpiece with the laser light at a predetermined scanning speed from zero level,
前記光強度調整手段は、前記偏向手段による前記レーザ光のベクトル走査速度に 比例して、或いは、前記レーザ光のエネルギー密度が略一定となるように、前記レー ザ光の強度を調整することを特徴とするレーザ加工装置。  The light intensity adjusting means adjusts the intensity of the laser light in proportion to the vector scanning speed of the laser light by the deflecting means or so that the energy density of the laser light becomes substantially constant. A featured laser processing apparatus.
光源から出力された光を対象物に向けて偏向する偏向モジュールを有し、前記偏 向モジュールにより前記光を偏向し対象物を走査するスキャナ光学装置であって、 直線状のレール部材に前記偏向モジュールを固定すると共に、  A scanner optical device having a deflection module for deflecting light output from a light source toward an object, and deflecting the light by the deflection module to scan the object, wherein the deflection is applied to a linear rail member While fixing the module,
前記光源から出力された光の焦点距離を調整するフォーカス調整手段を前記レー ル部材に着脱自在に設け、  A focus adjusting means for adjusting the focal length of the light output from the light source is detachably provided on the rail member,
前記フォーカス調整手段から出力された光を整形し前記偏向モジュールに入力す る光学素子を前記レール部材に位置決め自在に設けた  An optical element that shapes the light output from the focus adjusting means and inputs the light to the deflection module is provided on the rail member so as to be freely positioned.
ことを特徴とするスキャナ光学装置。  A scanner optical device.
請求項 10に記載のスキャナ光学装置において、  The scanner optical device according to claim 10,
前記フォーカス調整ユニットに入射するレーザ光のレーザ光強度を調整するレーザ 光強度調整モジュールを前記レール部材に着脱自在に設けたことを特徴とするスキ ャナ光学装置。  A scanner optical device, wherein a laser light intensity adjustment module for adjusting a laser light intensity of laser light incident on the focus adjustment unit is detachably provided on the rail member.
請求項 10に記載のスキャナ光学装置において、  The scanner optical device according to claim 10,
前記レール部材を石定盤に固定したことを特徴とするスキャナ光学装置。  A scanner optical device, wherein the rail member is fixed to a stone surface plate.
請求項 12に記載のスキャナ光学装置において、  The scanner optical device according to claim 12,
前記光源と、前記光源が出力する光を前記スキャナ光学装置に導く光学素子とを 共に前記石定盤に固定したことを特徴とするスキャナ光学装置。  A scanner optical device, wherein both the light source and an optical element for guiding light output from the light source to the scanner optical device are fixed to the stone surface plate.
請求項 12に記載のスキャナ光学装置において、 前記偏向モジュールを前記レール部材及び前記石定盤で支持したことを特徴とす るスキャナ光学装置。 The scanner optical device according to claim 12, A scanner optical device, wherein the deflection module is supported by the rail member and the stone surface plate.
[15] 請求項 10に記載のスキャナ光学装置において、 [15] The scanner optical apparatus according to claim 10,
前記レール部材を長手方向に沿って複数のレール片に分断し、各レール片を互い に隙間をあけて配列したことを特徴とするスキャナ光学装置。  A scanner optical device, wherein the rail member is divided into a plurality of rail pieces along a longitudinal direction, and the rail pieces are arranged with a gap therebetween.
[16] 請求項 10に記載のスキャナ光学装置において、 [16] The scanner optical apparatus according to claim 10,
前記レール部材に取り付けられる部材ごとに、取付位置の目安を示すマーク部を 有することを特徴とするスキャナ光学装置。  A scanner optical device, comprising: a mark portion indicating a guide of an attachment position for each member attached to the rail member.
[17] 光源から出力された光を対象物に向けて偏向する偏向モジュールを有し、前記偏 向モジュールにより前記光を偏向し対象物を走査するスキャナ光学装置であって、 直線状のレール部材に前記偏向モジュールを固定すると共に、前記光源から出力さ れた光の焦点距離を調整するフォーカス調整手段を前記レール部材に着脱自在に 設け、前記フォーカス調整手段から出力された光を整形し前記偏向モジュールに入 力する光学素子を前記レール部材に位置決め自在に設けたスキャナ光学装置と、 前記スキャナ光学装置にレーザ光を出力するレーザ装置とを備え、 [17] A scanner optical device that includes a deflection module that deflects light output from a light source toward an object, scans the object by deflecting the light by the deflection module, and includes a linear rail member The deflection module is fixed to the rail member, and a focus adjusting means for adjusting the focal length of the light output from the light source is detachably provided on the rail member, and the light output from the focus adjusting means is shaped to deflect the deflection. A scanner optical device in which an optical element to be input to the module is provided on the rail member so as to be freely positioned; and a laser device that outputs laser light to the scanner optical device,
前記スキャナ光学装置が前記レーザ光を偏向し、被加工物の加工面を前記レーザ 光で走査して加工することを特徴とするレーザ加工装置。  A laser processing apparatus, wherein the scanner optical device deflects the laser light and scans a processing surface of a workpiece with the laser light.
PCT/JP2007/071199 2006-11-02 2007-10-31 Scanner optical system, laser processing device, and scanner optical device WO2008053915A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008542149A JPWO2008053915A1 (en) 2006-11-02 2007-10-31 Scanner optical system, laser processing apparatus, and scanner optical apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-298659 2006-11-02
JP2006298659 2006-11-02
JP2006-316641 2006-11-24
JP2006316641 2006-11-24

Publications (1)

Publication Number Publication Date
WO2008053915A1 true WO2008053915A1 (en) 2008-05-08

Family

ID=39344256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071199 WO2008053915A1 (en) 2006-11-02 2007-10-31 Scanner optical system, laser processing device, and scanner optical device

Country Status (3)

Country Link
JP (1) JPWO2008053915A1 (en)
TW (1) TW200827078A (en)
WO (1) WO2008053915A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029872A (en) * 2008-07-25 2010-02-12 Nippon Sharyo Seizo Kaisha Ltd Laser beam machining apparatus
JP2010167491A (en) * 2008-12-24 2010-08-05 Toshiba Mach Co Ltd Pulsed laser beam machining apparatus
JP2010228007A (en) * 2008-12-24 2010-10-14 Toshiba Mach Co Ltd Pulsed laser machining apparatus and pulsed laser machining method
JP2012006040A (en) * 2010-06-24 2012-01-12 Toshiba Mach Co Ltd Pulse laser machining method
JP2012006039A (en) * 2010-06-24 2012-01-12 Toshiba Mach Co Ltd Pulse laser machining method and method for creating data for pulse laser machining
WO2013084413A1 (en) * 2011-12-08 2013-06-13 Canon Kabushiki Kaisha Laser processing apparatus, laser processing method, substrate for ink jet head, and manufacturing method of ink jet head
KR101278044B1 (en) * 2011-08-08 2013-06-24 주식회사 엘티에스 Method for cutting electrode of secondary battery using laser
WO2013133415A1 (en) * 2012-03-09 2013-09-12 株式会社トヨコー Laser irradiation device, laser irradiation system, and method for removing coating or adhering matter
CN105073333A (en) * 2013-03-13 2015-11-18 应用材料公司 Laser ablation platform for solar cells
JP2016093832A (en) * 2014-11-17 2016-05-26 トリニティ工業株式会社 Laser decoration apparatus and manufacturing method of decorative part
KR20160119470A (en) * 2015-04-06 2016-10-14 박재길 Marking system using fiber laser
WO2017022561A1 (en) * 2015-07-31 2017-02-09 ブラザー工業株式会社 Laser machining device and control program of laser machining device
WO2017091505A1 (en) 2015-11-23 2017-06-01 Nlight, Inc. Fine-scale temporal control for laser material processing
EP2463051A4 (en) * 2009-08-03 2017-06-14 Toshiba Kikai Kabushiki Kaisha Pulse laser machining apparatus and pulse laser machining method
JP2017131947A (en) * 2016-01-28 2017-08-03 浜松ホトニクス株式会社 Laser output device
CN107430269A (en) * 2015-03-06 2017-12-01 英特尔公司 The acousto-optics deflector and speculum manipulated for laser beam
WO2018150996A1 (en) * 2017-02-20 2018-08-23 株式会社ニコン Pattern rendering device and pattern rendering method
JP2019042767A (en) * 2017-09-01 2019-03-22 東芝機械株式会社 Laser processing device and laser processing method
JP2019141876A (en) * 2018-02-20 2019-08-29 フタバ産業株式会社 Welding method
US10656330B2 (en) 2016-09-29 2020-05-19 Nlight, Inc. Use of variable beam parameters to control solidification of a material
US10673198B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-coupled laser with time varying beam characteristics
US10673197B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based optical modulator
US10673199B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based saturable absorber
US10768433B2 (en) 2015-09-24 2020-09-08 Nlight, Inc. Beam parameter product (bpp) control by varying fiber-to-fiber angle
US10916908B2 (en) 2015-01-26 2021-02-09 Nlight, Inc. High-power, single-mode fiber sources
JP2021013951A (en) * 2019-07-12 2021-02-12 株式会社ディスコ Laser processing device
TWI723127B (en) * 2016-01-28 2021-04-01 日商濱松赫德尼古斯股份有限公司 Laser processing device and laser output device
US10971884B2 (en) 2015-03-26 2021-04-06 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
US10971885B2 (en) 2014-06-02 2021-04-06 Nlight, Inc. Scalable high power fiber laser
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
WO2022180808A1 (en) * 2021-02-26 2022-09-01 株式会社ニコン Optical processing device
WO2023276346A1 (en) * 2021-06-30 2023-01-05 ブラザー工業株式会社 Laser machining device and acceleration control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5731868B2 (en) * 2011-03-24 2015-06-10 ビアメカニクス株式会社 Laser processing method and processing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179714A (en) * 1984-09-27 1986-04-23 Mitsubishi Electric Corp Laser hardening device
JPH02121789A (en) * 1988-10-31 1990-05-09 Komatsu Ltd Optical scan laser beam machine
JP2003183726A (en) * 2001-12-13 2003-07-03 Yamazaki Mazak Corp Control method and device for laser quenching

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179714A (en) * 1984-09-27 1986-04-23 Mitsubishi Electric Corp Laser hardening device
JPH02121789A (en) * 1988-10-31 1990-05-09 Komatsu Ltd Optical scan laser beam machine
JP2003183726A (en) * 2001-12-13 2003-07-03 Yamazaki Mazak Corp Control method and device for laser quenching

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029872A (en) * 2008-07-25 2010-02-12 Nippon Sharyo Seizo Kaisha Ltd Laser beam machining apparatus
US9012806B2 (en) 2008-12-24 2015-04-21 Toshiba Kikai Kabushiki Kaisha Pulse laser processing device
JP2013056371A (en) * 2008-12-24 2013-03-28 Toshiba Mach Co Ltd Pulsed laser machining apparatus and pulsed laser machining method
JP2010167491A (en) * 2008-12-24 2010-08-05 Toshiba Mach Co Ltd Pulsed laser beam machining apparatus
JP2010228007A (en) * 2008-12-24 2010-10-14 Toshiba Mach Co Ltd Pulsed laser machining apparatus and pulsed laser machining method
EP2463051A4 (en) * 2009-08-03 2017-06-14 Toshiba Kikai Kabushiki Kaisha Pulse laser machining apparatus and pulse laser machining method
JP2012006040A (en) * 2010-06-24 2012-01-12 Toshiba Mach Co Ltd Pulse laser machining method
JP2012006039A (en) * 2010-06-24 2012-01-12 Toshiba Mach Co Ltd Pulse laser machining method and method for creating data for pulse laser machining
KR101278044B1 (en) * 2011-08-08 2013-06-24 주식회사 엘티에스 Method for cutting electrode of secondary battery using laser
JP2013119106A (en) * 2011-12-08 2013-06-17 Canon Inc Laser beam machining device, laser beam machining method, and inkjet head substrate
WO2013084413A1 (en) * 2011-12-08 2013-06-13 Canon Kabushiki Kaisha Laser processing apparatus, laser processing method, substrate for ink jet head, and manufacturing method of ink jet head
WO2013133415A1 (en) * 2012-03-09 2013-09-12 株式会社トヨコー Laser irradiation device, laser irradiation system, and method for removing coating or adhering matter
US11135681B2 (en) 2012-03-09 2021-10-05 TOYOKOH, Co., Ltd. Laser irradiation device, laser irradiation system, and method for removing coating or adhering matter
US9868179B2 (en) 2012-03-09 2018-01-16 TOYOKOH, Co., Ltd. Laser irradiation device, laser irradiation system, and method for removing coating or adhering matter
CN105073333A (en) * 2013-03-13 2015-11-18 应用材料公司 Laser ablation platform for solar cells
TWI630970B (en) * 2013-03-13 2018-08-01 美商應用材料股份有限公司 Laser scanning apparatus and chamber for solar cells
US10971885B2 (en) 2014-06-02 2021-04-06 Nlight, Inc. Scalable high power fiber laser
JP2016093832A (en) * 2014-11-17 2016-05-26 トリニティ工業株式会社 Laser decoration apparatus and manufacturing method of decorative part
US10916908B2 (en) 2015-01-26 2021-02-09 Nlight, Inc. High-power, single-mode fiber sources
CN107430269A (en) * 2015-03-06 2017-12-01 英特尔公司 The acousto-optics deflector and speculum manipulated for laser beam
US10971884B2 (en) 2015-03-26 2021-04-06 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
KR101724194B1 (en) * 2015-04-06 2017-04-06 박재길 Marking system using fiber laser
KR20160119470A (en) * 2015-04-06 2016-10-14 박재길 Marking system using fiber laser
WO2017022561A1 (en) * 2015-07-31 2017-02-09 ブラザー工業株式会社 Laser machining device and control program of laser machining device
JP2017030011A (en) * 2015-07-31 2017-02-09 ブラザー工業株式会社 Laser processing device and control program for laser processing device
US20180021886A1 (en) * 2015-07-31 2018-01-25 Brother Kogyo Kabushiki Kaisha Laser machining apparatus with workpiece position adjusting capability relative to focal point of laser beam
US10768433B2 (en) 2015-09-24 2020-09-08 Nlight, Inc. Beam parameter product (bpp) control by varying fiber-to-fiber angle
US11719948B2 (en) 2015-09-24 2023-08-08 Nlight, Inc. Beam parameter product (BPP) control by varying fiber-to-fiber angle
US10434600B2 (en) 2015-11-23 2019-10-08 Nlight, Inc. Fine-scale temporal control for laser material processing
US11794282B2 (en) 2015-11-23 2023-10-24 Nlight, Inc. Fine-scale temporal control for laser material processing
JP2022153589A (en) * 2015-11-23 2022-10-12 エヌライト,インコーポレーテッド Fine-scale temporal control for laser processing
US11331756B2 (en) 2015-11-23 2022-05-17 Nlight, Inc. Fine-scale temporal control for laser material processing
EP3978184A1 (en) * 2015-11-23 2022-04-06 NLIGHT, Inc. Method and apparatus for fine-scale temporal control for laser beam material processing
WO2017091505A1 (en) 2015-11-23 2017-06-01 Nlight, Inc. Fine-scale temporal control for laser material processing
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
JP2019503866A (en) * 2015-11-23 2019-02-14 エヌライト,インコーポレーテッド Temporal control at fine scale for laser processing
EP3380266A4 (en) * 2015-11-23 2019-09-04 NLIGHT, Inc. Fine-scale temporal control for laser material processing
TWI723127B (en) * 2016-01-28 2021-04-01 日商濱松赫德尼古斯股份有限公司 Laser processing device and laser output device
JP2017131947A (en) * 2016-01-28 2017-08-03 浜松ホトニクス株式会社 Laser output device
US10673199B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based saturable absorber
US10673197B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based optical modulator
US10673198B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-coupled laser with time varying beam characteristics
US10663767B2 (en) 2016-09-29 2020-05-26 Nlight, Inc. Adjustable beam characteristics
US10656330B2 (en) 2016-09-29 2020-05-19 Nlight, Inc. Use of variable beam parameters to control solidification of a material
JPWO2018150996A1 (en) * 2017-02-20 2019-12-12 株式会社ニコン Pattern drawing apparatus and pattern drawing method
JP7036041B2 (en) 2017-02-20 2022-03-15 株式会社ニコン Pattern drawing device and pattern drawing method
WO2018150996A1 (en) * 2017-02-20 2018-08-23 株式会社ニコン Pattern rendering device and pattern rendering method
KR20190117533A (en) * 2017-02-20 2019-10-16 가부시키가이샤 니콘 Pattern Writing Apparatus and Pattern Writing Method
CN110325922A (en) * 2017-02-20 2019-10-11 株式会社尼康 Pattern plotter device and pattern plotter method
KR102610675B1 (en) 2017-02-20 2023-12-07 가부시키가이샤 니콘 Pattern drawing device and pattern drawing method
JP2019042767A (en) * 2017-09-01 2019-03-22 東芝機械株式会社 Laser processing device and laser processing method
US11213915B2 (en) 2018-02-20 2022-01-04 Futaba Industrial Co., Ltd. Joining method
JP2019141876A (en) * 2018-02-20 2019-08-29 フタバ産業株式会社 Welding method
JP2021013951A (en) * 2019-07-12 2021-02-12 株式会社ディスコ Laser processing device
WO2022180808A1 (en) * 2021-02-26 2022-09-01 株式会社ニコン Optical processing device
WO2023276346A1 (en) * 2021-06-30 2023-01-05 ブラザー工業株式会社 Laser machining device and acceleration control method

Also Published As

Publication number Publication date
TW200827078A (en) 2008-07-01
JPWO2008053915A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
WO2008053915A1 (en) Scanner optical system, laser processing device, and scanner optical device
JP4199820B2 (en) Laser processing apparatus and laser processing method
CN109689278B (en) Laser processing device and laser processing method
CN101244486A (en) Device manufacturing method, laser processing method, and laser processing apparatus
WO2013038606A1 (en) Laser processing device and laser processing method
KR102595081B1 (en) Lithography apparatus comprising a plurality of individually controllable write heads
CN111940910A (en) Laser processing device, laser processing method, and correction data generation method
JP2010224544A (en) Laser beam exposure apparatus and method therefor
CN102123817B (en) Chamfering apparatus
KR102364166B1 (en) Apparatus for automatically correcting the position of laser scanning system
JP2007061914A (en) Hybrid machining device
JP2017535821A5 (en)
CN111804913A (en) 3D printing apparatus integrating molding and detection
JP2017113788A (en) Optical processing device
TWI622446B (en) Optical processing apparatus and method for producing optically processed product
JP2020004478A (en) Lift device and method for using same
JP2000317657A (en) Laser beam marking device
KR101299234B1 (en) Laser machining apparatus and method being capable of 2-beam-machining
JP2001044136A (en) Precision laser beam irradiation apparatus and control method
JP2017113787A (en) Optical processing device
JP2003234306A (en) Laser machining method and device therefor
JP2004170455A (en) Laser processing apparatus, laser processing system and solar cell
KR102459817B1 (en) Laser crystalling apparatus
KR101640348B1 (en) Apparatus of high precision optical scanning
JP4533874B2 (en) Laser beam exposure system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830933

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008542149

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830933

Country of ref document: EP

Kind code of ref document: A1