TW200827078A - Scanner optical system, laser processing apparatus, and scanner optical device - Google Patents

Scanner optical system, laser processing apparatus, and scanner optical device Download PDF

Info

Publication number
TW200827078A
TW200827078A TW096141139A TW96141139A TW200827078A TW 200827078 A TW200827078 A TW 200827078A TW 096141139 A TW096141139 A TW 096141139A TW 96141139 A TW96141139 A TW 96141139A TW 200827078 A TW200827078 A TW 200827078A
Authority
TW
Taiwan
Prior art keywords
light
laser
scanner
scanning
laser light
Prior art date
Application number
TW096141139A
Other languages
Chinese (zh)
Inventor
Tsuneo Murakami
Isao Kojima
Tatsuo Inubuse
Takakuni Ueno
Original Assignee
Nabtesco Corp
Cmet Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp, Cmet Inc filed Critical Nabtesco Corp
Publication of TW200827078A publication Critical patent/TW200827078A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

This invention provides a scanner optical system which enables a stable optical scanning at high speed by scanning an object with light while the scanning speed is varied. It is a laser processing apparatus 1 for performing a laser-processing by irradiating a surface of a work 98 to be processed with laser light outputted from a laser oscillator 2, the laser processing apparatus 1 has an AOM5 for regulating the intensity of the laser light and a scanner head 7 for vector-scanning with the laser light the surface of the work to be processed at a given scanning speed from zero level. The AOM5 is adapted to regulate the intensity of the laser light in proportion to the vector scanning speed of the laser light from the scanner head 7, or such that the energy density of the laser light is approximately constant.

Description

200827078 九、發明說明: 【發明所屬之技術領域】 本發明係有關將從光源所放射的光在對象物上的照射 位置予以偏向的掃描器光學系統、以及具有該掃描器光學 系統的雷射加工裝置。此外,本發明亦有關使光源所放射 的光偏向而將對象物進行掃描的掃描器光學裝置、以及具 有該掃描器光學裝置的雷射加工裝置。 【先前技術】 ® 於被加工物照射雷射光而進行加工的雷射加工裝置一 、般係具有使雷射光之光路偏向而使在被加工物上的照射位 '置成為可變的掃描器光學系統(參照例如專利文獻1)。此 外,近年來,就掃描器光學系統而言,已知有一種檢流計 式掃描器(galvanometer scanner),係具備了可旋轉地被保 持於旋轉軸周圍且可將反射面定位於任意角度的檢流計鏡 (galvanometer mirror),且藉由伺服(servo)控制而控制檢流 0計鏡之旋轉而可高速且高精度的變化照射位置。藉由將該 檢流計式掃描器使用於雷射加工裝置,即可高速地加工被 加工物而縮短加工時間。 [專利文獻1]日本特開2004-358507號公報 【發明内容】 (發明所欲解決的課題) 然而,在使用如檢流計式掃描器之可將照射位置高速 變化的掃描器光學系統一邊將雷射光之掃描速度可變一邊 進行雷射加工時,因為掃描速度的變動而使在照射位置的 5 319707 200827078 ι/ 雷射光之能源密度不一定的緣,. 均-而導致加工品質降低的問題。而存有加工深度變得不 因雷射掃描時之能源密度的 僅限於雷射加工裝置的問題:二=之問題’並非 、* X丄49 W 1如在使光對於描繪面高 速地知描而將料料以騎的騎裝置中會產生 = = = =:::檢查、測定的測定裝置 問題。 差產生無法得到正確的測定結果的 务明係有鑑於上述事由而研發者,其目的為提供一 種可而速且-邊變換掃描速度並—邊以光掃描對象物而可 進灯減的光掃描的掃描器光m以及—種以雷射光 高速掃描被加工物且可進行高品f之加I的雷射:工裝 (解決課題的手段) 籲為了達成上述目的,本發明為—種將從光源所輸出的 光照射至對象物而進行掃描的掃描器光學系統,其係具 有:光強度調整手段,調整前述光的強度;以及偏向手段二 在將前述光朝向前述對象物之預定位置進行偏向的同時, 以從零位階成為預定之掃描速度的方式將前述光進行偏 向’而且别述光強度調整手段係以與由前述偏向手段所致 的光之掃描速度成正比或使前述光之能量密度大致成一定 的方式來調整前述光的強度。 此外,本發明於前述掃描器光學系統中,前述偏向手 319707 6 200827078 #又係^有·掃描斋鏡;驅動該掃描器鏡的驅動馬達;以及 f制,驅動馬達的控制器;而於前述驅動馬達設有因應於 =述掃&裔鏡之驅動量而輸出數位脈衝訊號的編碼器;且 刚述控制器係計數前述數位脈衝訊號而特定前述驅動量, 、據該驅自里而執行對於前述驅動馬達輸出控制訊號的 回饋控制。 此外,本發明於前述掃描器光學系統中前述偏向手段 _糸具有:將前述光朝前述對象物之平面内彼此直交的又軸 ^及γ軸方向之各者進行偏向的X軸偏向手段及Y軸 • έ "手叙,而且以础述X軸偏向手段進行的偏向、及以Y 二偏向手段進行的偏向皆藉由同一控制器而同時控制兩 隹本發明於前述掃描器光學系統中,復具有:聚 居、凋整手段,因庫於v 乂 卜 以νά 應於以别述χ軸偏向手段進行的偏向、及 •象::照手段:的偏向所規定的前述光朝前述對 距. 、 凋整透鏡間之距離而調整前述光之隹 偏向手段進行的偏向、以及以前述聚焦調整手段進 距調整皆藉由同—控制器而同時控制全^進订的焦 此外’本發明於前述掃描器光學系统 係以因!前述對象物之表面凹凸而調整前述光之制器 式控制前述聚焦調整手段。 “、、的方 此外,本發明於前述掃描器光學系统 運算手段,依據前述對 、’ ,、有.執道 對象物及别述光之掃描態樣,運算由 319707 7 200827078 :二偏向手段進行的前述光之偏 道. 手段,依據由前述軌道運算 ^軌逼,以及偏向控制 光之偏向的檢職,將由:述偏:丁:::,、、、及前述 :進行回饋控制;而且前述軌道運瞀之偏 手段係由各個個别的cPU所構成 奴辟則述偏向控制 光進行掃描的預】::::::光:系統中,當於以前述 的切換點時,—邊從前述轉择描方向切換 :::後之掃描方向徐徐變化:掃= * 的方式控制前述偏向手=換後之掃描方向婦描的執道上 且有^”本發明於前述掃描器光學系統中,前述光源係 整賴射裝置的雷射電源輸出、於=建; •Q/職系調整該Q開關、於前述雷射裝置具;= ⑽係調整該門、於前述雷射裝置= 二二、曰%光學兀件時係調整該音響光學元件、以及於 月,J述田射裝置係振靈脈衝雷射光時調整振靈周帛之任、 者,以調整前述雷射光之強度。 此外,為了達成前述目的,本發明為一種雷射加工裝 置將枚雷射振盪器所輸出的雷射光照射至被加工物的加 二面以進行雷射加工,其係具有:光強度調整手段,調整 刖述田射光的強度;以及偏向手段,將前述雷射光進行偏 319707 200827078 I 、, 向,亚以從零位階成為預定之掃描速度而將前述加工物之 加工面以前述雷射光進行向量掃描;而且前述光強度調整 手段係以與由丽述偏向手段所致的前述雷射光之向量掃描 速度成正比或使前述雷射光之能量密度大致成-定的方式 來5周整如述雷射光的強度。 此外’於本發明之雷射加工裝置中,亦可構成為具有· 田射振盪控制手丰又,一邊將閑極訊號輸入,一邊將作為前 •述脈,田射光之振盡觸發的觸發脈衝訊號輸入至前述雷射 振盪态,且配合該觸發脈衝訊號而將脈衝雷射光予以輸 乂、及遮蔽手叙’用以遮蔽前述脈衝雷射光;而且在輸 入別述閘極Μ後,在被輸人預定脈衝數量的前述觸發脈 衝訊號之前以前述遮蔽手段遮蔽脈衝雷射光,而防止振盡 初期的巨脈衝照射於被加工物。 *為了達成則;4目的’本發明係—種掃描器光學裝置, 該知描③光學裝置係具有將從光源所輸出的光朝向對象勒 偏向核組’且藉由前述偏向模組將前述光偏向 ::對象物予以掃描,其中,在將前_^ 之 的同時,將用以調整從前述光源所輪出的光 而且將用以從前述二裝Γ前述執構件, 述偏向模組“由手,出的先整形且輪入前 自由疋位地設置於前述軌構件。 ’本發明係於前述掃描器光學裝置中,係將用以 口°正入射至前述聚焦調整單元的帝鼾氺币 、 射光強度調整模㈣W 田射7之雷射光強度的雷 、了自由拆裝地設置於前述軌構件。 319707 9 200827078 又,雷射光雖有脈衝雷射光與連續振盪雷射光,但入 射至前述聚焦調整單元的雷射光為任一者皆可。 此外,在將該聚焦調整單元設置於前述軌構件時,若 需要將入射至前述聚焦調整單元的雷射光整形的光學元件 時,則該光學元件將與前述聚焦調整單元一起可自由拆裝 地設置於前述軌構件。 此外,本發明於前述掃描器光學裝置中,係將前述偏 向模組以前述執構件及前述石平台支持。又,亦可構成為 β將前述偏向模組以前述執構件及前述石平台雙支撐支持。 此外,本發明於前述掃描器光學裝置中,係將前述光 源、以及用以將從前述光源所輸出的光導向至前述掃描器 光學裝置的光學元件一起固定於前述石平台。 此外,本發明於前述掃描器光學裝置中,係將前述偏 向模組以前述石平台予以支持。 此外,本發明於前述掃描器光學裝置中,係將前述軌 0構件沿著長邊方向分斷為複數個執片,且將各執片彼此分 開有間隙而排列。 又,亦可構成為以前述石平台作為基部構件而將各執 片排列。 此外,本發明於前述掃描器光學裝置中,係於被安裝 在前述執構件的每個構件,具有標示安裝位置之基準的標 記部。 此外,為了達成上述目的,本發明係提供一種雷射加 工裝置,其係具有:上述任一者之掃描器光學裝置;以及 10 319707 200827078 m::以將雷射光輪出至前述掃描器光學裝置;盆 =述_光學裳置係將前述雷射光偏向,: 工物之加工面以前述雷射光掃描而加工。 (發明效果) 依據具有本㈣之掃㈣光學㈣及該掃描器光 弁的雷射加工裝置,由於以與光之掃描速度成正比、或使 ”度成為大致一定的方式來調整光之強度,故可 貝現於-邊以光將對象物高速掃描,且— : 在對象物之照射位置的光之θ — ▼田將 實現穩定的光掃描。月以逸、度維持為大致-定,而 此外,依據本發明之掃描哭氺風壯 器光學裝置的雷射加工裳置==及具有該掃描 面〜认士 ^ 由於係構成為在將偏向模組 於;線麵構件的同時,將用以調整從光源所輪出 之"HfJ整手段可自由拆裝地設置 軌 供-體化了聚焦調整功能的掃描器光3 置。另外,由於將用以從前述聚焦調整手段所輸出的光敕 形且輸入前述偏向模組的光學元件可自由定位 ^ 述執構件,故即使在將前述聚焦調整手段取以^ ^ 了需要調整前述光學元件與前述偏向模組之間^離 =情況,也可將4光學元件—邊由前述轨構件導引一邊 進仃移動,而可以在保持前述光學元件盥 & 之光軸對合下,僅將距離簡單地進行調整。,l β吴、、且間 【實施方式】 以下’參照圖式對本發明之實施形態崎說明。 319707 11 200827078 v (第1實施形態) 第1圖為表示適用了本發明之掃描器光學系統的雷射 加工裝置1之概略構成圖。如該圖所示,雷射加工裝置1 係具有:雷射裝置4,其具備了雷射振盪器2、及控制該雷 射振盪器2之雷射振盪且具有電源的雷射控制裝置3 ; AOM(Acousto Optical Modulators,聲光調制器)5,作為雷 射光強度調整手段;動態聚焦透鏡單元(dynamic focus lens unit)6,用以作為聚焦調整手段;以及掃描器頭(scanner ⑩hesd)7,用以作為偏向手段,使被載置於工作台99的被工 作物9 8之加工面的雷射光照射位置為可變而將加工面内 以雷射光進行掃描;另外,尚具有控制單元8,作為控制 手段,將雷射裝置4、AOM 5、動態聚焦透鏡單元6及掃 描器頭7之各者予以控制。如此,藉由前述AOM 5、掃描 器頭7及控制單元8而構成一邊調整雷射光之強度、一邊 將加工面高速地以雷射光進行掃描的掃描器光學系統20。 φ 針對各構成要素更詳細的進行說明,雷射振盪器2係 固體雷射振盪器、光纖雷射振盪器、液體雷射振盪器、或 氣體雷射振盪器,而輸出因應於雷射媒質之波長的雷射 光。於本實施形態中,係使用連續振盪雷射光者作為該雷 射震盪器2。 AOM 5為在控制單元8之控制之下以預定之頻率將雷 射光強度調變且進行輸出者,於該AOM 5中係被輸入有從 雷射振盪器2輸出且通過2片之聚光透鏡9A及9B而被整 形後的雷射光。 12 319707 200827078200827078 IX. Description of the Invention: [Technical Field] The present invention relates to a scanner optical system for deflecting an irradiation position of light emitted from a light source on an object, and laser processing having the optical system of the scanner Device. Further, the present invention relates to a scanner optical device that deflects light emitted from a light source to scan an object, and a laser processing device including the scanner optical device. [Prior Art] ® A laser processing apparatus that performs processing by irradiating laser light onto a workpiece, generally has a scanner optical that deflects the optical path of the laser light to make the irradiation position on the workpiece "variable" System (refer to, for example, Patent Document 1). Further, in recent years, as for the scanner optical system, a galvanometer scanner having a rotatably held around a rotating shaft and capable of positioning the reflecting surface at an arbitrary angle is known. A galvanometer mirror is controlled, and the rotation of the galvanometer mirror is controlled by servo control to change the irradiation position at high speed and with high precision. By using the galvanometer scanner for the laser processing apparatus, the workpiece can be processed at a high speed to shorten the processing time. [Patent Document 1] JP-A-2004-358507 SUMMARY OF INVENTION (Problems to be Solved by the Invention) However, a scanner optical system capable of changing an irradiation position at a high speed using a galvanometer scanner will be used. When the laser scanning speed is variable while the laser scanning speed is variable, the energy density of 5 319 707 2008 270 78 ι / laser light at the irradiation position is not necessarily due to the change of the scanning speed, and the processing quality is lowered. . However, there is a problem that the processing depth is not limited to the laser processing device due to the energy density of the laser scanning: the problem of the second = 'not, * X 丄 49 W 1 is as high-speed as the light is drawn on the drawing surface. In the riding device that rides the material, the problem of the measuring device is checked and measured in the ====:::. The reason why the difference is that the correct measurement result cannot be obtained is that the developer has made the above problem, and the object of the invention is to provide a light scanning that can change the scanning speed at the same speed and scan the object with light. Scanner light m and a laser that can scan a workpiece at a high speed with laser light and can perform high-product f addition: tooling (means for solving the problem), in order to achieve the above object, the present invention is a light source The scanner optical system that scans the object and irradiates the light to the object, and has a light intensity adjusting means for adjusting the intensity of the light; and the deflecting means 2 biases the light toward a predetermined position of the object. At the same time, the light is deflected toward the predetermined scanning speed from the zero level, and the light intensity adjusting means is proportional to the scanning speed of the light caused by the biasing means or the energy density of the light is substantially In a certain way to adjust the intensity of the aforementioned light. Further, in the foregoing scanner optical system, the aforementioned biasing hand 319707 6 200827078 #also has a scanning mirror; a driving motor for driving the scanner mirror; and a controller for driving the motor; The driving motor is provided with an encoder for outputting a digital pulse signal according to the driving amount of the Sweeping &Mirror; and the controller directly counts the digital pulse signal to specify the driving amount, and is executed according to the driving For the feedback control of the aforementioned drive motor output control signal. Further, in the scanner optical system of the present invention, the deflecting means _ has an X-axis deflecting means for deflecting each of the axis and the γ-axis direction which are orthogonal to each other in the plane of the object, and Y Axis • έ "hand, and the biasing by the X-axis biasing means and the biasing by the Y-biasing means simultaneously control the two inventions in the aforementioned scanner optical system by the same controller, The complex has: the method of gathering and tidying, because the treasury is v 乂 以 ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά ά And adjusting the distance between the lenses to adjust the deflection of the light yaw biasing means, and adjusting the distance adjustment by the focus adjustment means by simultaneously controlling the full focus of the lens by the same controller. The scanner optical system is due to! The surface adjustment means is controlled by adjusting the surface of the object to adjust the light. Further, in the above-described scanner optical system calculation means, the present invention is based on the above-mentioned pair, ',, and the object to be scanned and the scanning pattern of the other light, and the calculation is performed by 319707 7 200827078: two bias means. The above-mentioned light bias. The means, according to the above-mentioned orbital operation, and the deviation of the control light deviation, will be: Deviation: D:::,,, and the foregoing: performing feedback control; The orbital means of the orbital movement is composed of individual cPUs, and the pre-measure of the control light is scanned. ::::::Light: In the system, when the switching point is used, the edge is The foregoing switching direction switching::: the scanning direction is changed slowly: the mode of scanning = * controls the aforementioned biasing hand = the scanning direction of the scanning direction is changed and there is ^" in the aforementioned scanner optical system, The light source is the output of the laser power source of the illuminating device, and the Q/the grade adjusts the Q switch to the laser device; the (10) adjusts the door, and the laser device is the second device.音响% optical components adjust the acoustic optics And in the month, any adjustment of the vibration silk spirit weeks, by vibrating the device is based spirit field pulse laser beam emitted J described later, to adjust the intensity of the laser beam. In addition, in order to achieve the above object, the present invention provides a laser processing apparatus that irradiates laser light output from a laser oscillator to a surface of a workpiece to perform laser processing, and has a light intensity adjustment means. Adjusting the intensity of the field light; and biasing means, the laser light is polarized by 319707 200827078 I, and the processing surface of the processed object is scanned by the laser light from the zero level to a predetermined scanning speed. And the light intensity adjusting means is arranged in a manner proportional to the vector scanning speed of the laser light caused by the biasing means or the energy density of the laser light is substantially constant. strength. In addition, in the laser processing apparatus of the present invention, it is also possible to configure a trigger pulse that is triggered by the vibration of the field and the light of the field, while the input of the idle signal is input. The signal is input to the aforementioned laser oscillation state, and the pulsed laser light is input and matched with the trigger pulse signal to shield the pulsed laser light; and after being input to the other gate electrode, the signal is transmitted. The pulse laser light is shielded by the shielding means before the trigger pulse signal of the predetermined number of pulses, and the giant pulse at the initial stage of the oscillation is prevented from being irradiated to the workpiece. * In order to achieve this, the present invention is directed to a scanner optical device having a light that is output from a light source toward a subject toward a core group and the light is polarized by the deflection module Biasing:: the object is scanned, wherein, while the front _^ is being used, the light that is rotated from the light source is used and is used to bias the aforementioned member from the two The hand is first shaped and placed freely before the wheel is placed on the rail member. The present invention is in the aforementioned scanner optical device, and is used for the right angle of the right to the aforementioned focus adjustment unit. , the light intensity adjustment mode (4) W, the lightning intensity of the laser beam 7 is set to the rail member freely disassembled. 319707 9 200827078 In addition, although the laser beam has pulsed laser light and continuous oscillation laser light, it is incident on the aforementioned focus. The laser light of the adjustment unit may be any one. Further, when the focus adjustment unit is disposed on the rail member, if necessary, the optical element that is incident on the laser beam of the focus adjustment unit is required. The optical component is detachably disposed on the rail member together with the focus adjustment unit. Further, in the scanner optical device, the deflecting module supports the deflecting member and the stone platform. In addition, the biasing module may be configured to support the deflecting module by the supporting member and the stone platform. In addition, in the scanner optical device, the light source and the light source from the light source are used. The output light is guided to the stone platform of the scanner optical device and fixed to the stone platform. In addition, in the scanner optical device, the deflection module is supported by the stone platform. In the scanner optical device, the rail member is divided into a plurality of tabs along the longitudinal direction, and the tabs are arranged with a gap therebetween. Alternatively, the rail platform may be used as the base. In addition, the present invention is in the scanner optical device described above, and is attached to each of the aforementioned members. The member has a marking portion that indicates a reference to the mounting position. Further, in order to achieve the above object, the present invention provides a laser processing apparatus comprising: the scanner optical device of any of the above; and 10 319707 200827078 m:: To irradiate the laser light to the scanner optical device; the basin_description_optical skirting deflects the laser light, and the processed surface of the workpiece is processed by scanning the laser light. (Effect of the invention) According to the present invention (4) Sweeping (4) optics (4) and the laser processing device of the scanner, because the intensity of the light is adjusted in proportion to the scanning speed of the light, or the degree of the light is substantially constant, the light can be seen in the side The object is scanned at a high speed, and - : θ of the light at the irradiation position of the object - the field will achieve a stable light scan. The yaw and the degree are maintained to be substantially constant, and in addition, the laser processing device according to the present invention scans the smashing device and the optical device is replaced with a == and has the scanning surface At the same time as the line surface member, the scanner light 3 for adjusting the focus adjustment function can be adjusted by adjusting the "HfJ" method which is rotated from the light source. In addition, since the optical member for outputting the light output from the focus adjustment means and input to the deflection module can freely position the member, even if the focus adjustment means is used, the aforementioned adjustment is required. Between the optical element and the deflecting module, the optical element can be moved while being guided by the rail member, and the optical axis of the optical element 盥& Simply adjust the distance simply. (1) The following describes the embodiments of the present invention with reference to the drawings. 319707 11 200827078 v (First Embodiment) Fig. 1 is a schematic configuration diagram showing a laser processing apparatus 1 to which a scanner optical system of the present invention is applied. As shown in the figure, the laser processing apparatus 1 includes a laser device 4 including a laser oscillator 2, and a laser control device 3 for controlling the laser oscillation of the laser oscillator 2 and having a power source; AOM (Acousto Optical Modulators) 5, as a laser light intensity adjustment means; a dynamic focus lens unit 6 for use as a focus adjustment means; and a scanner head (scanner 10hesd) 7, for As a biasing means, the laser beam irradiation position of the processed surface of the workpiece 18 placed on the table 99 is made variable, and the processed surface is scanned by laser light. Further, the control unit 8 is provided as The control means controls each of the laser device 4, the AOM 5, the dynamic focus lens unit 6, and the scanner head 7. As described above, the AOM 5, the scanner head 7, and the control unit 8 constitute the scanner optical system 20 that adjusts the intensity of the laser light while scanning the processed surface at high speed with laser light. φ For a more detailed description of each component, the laser oscillator 2 is a solid-state laser oscillator, a fiber laser oscillator, a liquid laser oscillator, or a gas laser oscillator, and the output is adapted to the laser medium. Laser light of wavelength. In the present embodiment, a person who continuously oscillates laser light is used as the laser oscillator 2. The AOM 5 is a modulator that adjusts the intensity of the laser light at a predetermined frequency under the control of the control unit 8, and is outputted in the AOM 5 with a condenser lens that is output from the laser oscillator 2 and passes through two pieces. Laser light after being shaped by 9A and 9B. 12 319707 200827078

V 動態聚焦透鏡單元6係於控制單元8之控制下,因應 被加工物98之加工面的雷射光之照射位置,而將經過 AOM 5的雷射光之焦距予以可變者,藉由該動態聚焦透鏡 單元6之焦距調整,可將在被加工物98的照射點面積維持 為大致一定。 又,代替動態聚焦透鏡單元6而使用fe透鏡當然亦可。 另外,在焦距較長且加工區域(雷射光掃描的區域)狹 小的情形中,因在加工面的焦點位置之偏移較小,故沒有 ®設置動態聚焦透鏡單元6或fe透鏡等之聚焦調整手段於掃 描器光學系統20的需要。 掃描器頭7係於控制單元8之控制之下,將經過動態 聚焦透鏡單元6的雷射光之光路予以偏向,而使在被加工 物之加工面内,照射位置係對於工作台99成相對地可變而 將雷射光進行掃描者,前述掃描器頭係具有:掃描器鏡 71A,將光路偏向至X軸方向;及X軸馬達72A,用以將 ⑩該掃描器鏡71A進行軸旋轉;掃描器鏡71B,將光路偏向 至與X軸直交的Y軸方向;以及Y軸馬達72A,用以將該 掃描器鏡71B進行軸旋轉;經過動態聚焦透鏡單元6後的 雷射光係經介聚光透鏡1 〇而入射至前述掃描器鏡71A,且 雷射光之光路即被偏向至由該掃描器鏡71A及掃描器鏡 71B之各反射面的角度所規定的方向。又,由前述X軸及 Y軸所構成的XY平面係被規定為與工作台99之上表面成 大致平行的面,此外,與該XY平面直交的軸即被規定為 Z轴0 13 319707 200827078 \ 於控制單元8係連接(内建也可)於具有作為顯示裝置 之顯示器11及作為輸入裝置之鍵盤12的電腦系統13。於 電腦系統13係被輸入了包含有:被加工物98之3次元形 狀和材質、對於該被加工物9 8照射雷射光而進行加工的加 工位置(雷射照射位置)、加工深度、雷射標記(marking)和 修整(trimming)、以及所謂開孔加工的加工種類等的加工資 料,電腦系統13係於雷射加工時,根據加工資料而將描繪 條件指令訊號BCS輸出至控制單元8,控制單元8係根據 ®描繪條件指令訊號BCS而控制雷射裝置4、AOM 5、動態 聚焦透鏡單元6及掃描頭7。 第2圖係示意的表示前述控制單元8之構成的方塊 圖。如該圖所示,控制單元8係具有作為運算處理裝置的 2 個 DSP 80A 及 DSP 80B。又在 DSP 80A 及 DSP 80B 的運 算處理裝置,代替DSP而使用CPU當然亦可。 DSP 80A係功能為:執道運算部81,根據由前述描繪 ⑩條件指令訊號BCS所指示的被加工物98的形狀(例如CAD 資料)、及對於該被加工物98的雷射光之掃描態樣,將被 加工物98的雷射光之照射位置的移動軌道(亦即掃描軌道) 予以運算;以及失真(distortion)補正部82,用以將因在XY 平面内移動照射位置而產生的照射位置(成像點)之偏移 (失真)予以補正;前述DSP主要係根據從電腦系統13所輸 入的描繪條件指令訊號BCS而執行運算處理。藉由該等執 道運算部81及失真補正部82的運算,每經預定時間(例如 數十ps以内)即輸出:雷射光照射位置的XY座標指令值、 14 319707 200827078The V dynamic focus lens unit 6 is controlled by the control unit 8, and the focal length of the laser light passing through the AOM 5 is varied according to the irradiation position of the laser light on the processed surface of the workpiece 98, by which the dynamic focus is The focal length adjustment of the lens unit 6 can maintain the area of the irradiation spot of the workpiece 98 substantially constant. Further, it is of course possible to use a fe lens instead of the dynamic focus lens unit 6. In addition, in the case where the focal length is long and the processing area (the area where the laser light is scanned) is narrow, since the offset of the focus position on the processing surface is small, there is no setting of the focus adjustment of the dynamic focus lens unit 6 or the fe lens. Means the need for the scanner optical system 20. The scanner head 7 is under the control of the control unit 8, and deflects the optical path of the laser beam passing through the dynamic focus lens unit 6, so that the illumination position is opposite to the table 99 in the processing plane of the workpiece. The scanner head is variable, and the scanner head has a scanner mirror 71A that deflects the optical path to the X-axis direction, and an X-axis motor 72A for axially rotating the scanner mirror 71A; The mirror 71B deflects the optical path to the Y-axis direction orthogonal to the X-axis; and the Y-axis motor 72A for axially rotating the scanner mirror 71B; the laser light after passing through the dynamic focus lens unit 6 is condensed light The lens 1 is incident on the scanner mirror 71A, and the optical path of the laser light is deflected in a direction defined by the angles of the respective reflecting surfaces of the scanner mirror 71A and the scanner mirror 71B. Further, the XY plane formed by the X-axis and the Y-axis is defined as a plane substantially parallel to the upper surface of the table 99, and the axis orthogonal to the XY plane is defined as the Z-axis 0 13 319707 200827078 The control unit 8 is connected (built-in) to a computer system 13 having a display 11 as a display device and a keyboard 12 as an input device. In the computer system 13, a processing position (laser irradiation position), a processing depth, and a laser including a ternary shape and material of the workpiece 98 and processing the laser beam by irradiating the workpiece 9 8 are input. The processing data such as marking and trimming, and the processing type of the so-called drilling process, the computer system 13 outputs the drawing condition command signal BCS to the control unit 8 according to the processing data during laser processing, and controls The unit 8 controls the laser device 4, the AOM 5, the dynamic focus lens unit 6, and the scan head 7 in accordance with the ® drawing condition command signal BCS. Fig. 2 is a block diagram showing the configuration of the aforementioned control unit 8. As shown in the figure, the control unit 8 has two DSPs 80A and DSPs 80B as arithmetic processing means. It is also possible to use the CPU instead of the DSP in the arithmetic processing device of the DSP 80A and the DSP 80B. The DSP 80A system function is: the execution path calculation unit 81, based on the shape of the workpiece 98 (for example, CAD data) indicated by the conditional command signal BCS described above, and the scanning pattern of the laser light for the workpiece 98. a moving orbit (ie, a scanning track) of the irradiation position of the laser beam of the workpiece 98 is calculated; and a distortion correcting portion 82 for illuminating the position due to the movement of the irradiation position in the XY plane ( The offset (distortion) of the image point is corrected; the aforementioned DSP mainly performs arithmetic processing based on the drawing condition command signal BCS input from the computer system 13. By the calculations of the execution computing unit 81 and the distortion correcting unit 82, the XY coordinate command value of the laser light irradiation position is output every predetermined time (for example, within several tens of ps), 14 319707 200827078

V 因應該XY座標值的焦距指冷值、以及指示雷射光強度的 雷射輸出指令值等各種指令值。 DSP80B係主要執行:對於雷射裝置4的控制、以動 態聚焦透鏡單元6而進行的焦點位置可變控制、以掃描頭 7而進行的雷射光之偏向控制、以及與照射位置、掃描速 度、照射點面積因應的雷射光強度控制等各部的驅動控 制。該等DSP80A及DSP80B係根據未圖示的時脈產生器 所產生的時脈訊號而互相同步且執行處理。 ® 此外,於控制單元8係設有從2個DSP80A及80Β之 各者皆可存取的共有資料記憶體83,各DSP80A、DSP80B 係經介共有資料記憶體83而共有資料。於該共有資料中, 存有例如:DSP80A對於DSP80B應下指令的指令命令 (command)、相對於該指令命令的從DSP80B朝DSP80A 的確認命令、將該DSP80B已將指令命令執行終了 一事對 於DSP80A進行通知的終了指令等所謂DSP80A、80B之 馨間的各種命令之外,尚有DSP80A每隔預定時間進行輸出 的雷射光照射位置之XY座標指令值、因應於該XY座標 指令值的焦距指令值、以及指示雷射光強度的雷射輸出指 令值之各種指令值。 然後,將DSP80A輸出至共有資料記憶體83的各種指 令值以DSP80B讀取,且根據該等指令值而執行各部之驅 動控制。 如上所述,控制單元8係具備2個DSP80A及 DSP80B,且因係構成為將軌道運算及失真補正等之運算處 15 319707 200827078 ν' 理、與將各部進行驅動控制的驅動控制處理各自藉由相異 的DSP80A、80Β而執行的緣故,故沒有因運算處理而導 致掃描頭7之偏向控制及ΑΟΜ5之強度控制產生延遲的情 況,而可以實現雷射光掃描速度的高速化而提升加工速度。 其次,針對以前述DSP80B進行的驅動控制進行詳 述,DSP80B係根據雷射輸出指令值,經介D/A變換器88 而對雷射控制裝置3輸出功率(power)控制訊號而控制雷射 功率,並同時為了調整雷射光強度而對於AOM5輸出強度 ⑩控制訊號,此外,根據XY座標指令值及焦距指令值,控 制X軸馬達72A、Y轴馬達72B及DF馬達91而控制由動 態聚焦透鏡單元6而進行的焦距、及由掃描頭7而進行的 偏向,並控制被加工物98之加工面的雷射光之照射位置。 於本實施形態中,為了實現高精度的照射位置控制 67,而構成有作為動態聚焦透鏡單元6及掃描頭7之控制 系統的閉環控制(close loop control)系統,以下即說明其構 •成' 如第2圖所示,於掃描頭7之X轴馬達72A及Y轴 馬達72B係設有:編碼器90A及90B,將因應於掃描器鏡 71A、71B之旋轉量的脈衝數之數位脈衝訊號SA、SB輸出 至控制單元8 ;同時於動態聚焦透鏡單元6係具有:編碼 器90C,將因應於將焦距予以可變的未圖示之光學系統進 行驅動的DF(Dynamic focus,動態聚焦)馬達91及光學系 統之驅動量的脈衝數之數位脈衝訊號SC輸出至控制單元 8 ;另外,於控制單元8係設有:計數(counter)電路84, 16 319707 200827078V The various values of the command value such as the focal length of the XY coordinate value and the laser output command value indicating the intensity of the laser light. The DSP 80B mainly performs control of the laser device 4, variable focus control by the dynamic focus lens unit 6, deflection control of the laser light by the scan head 7, and illumination position, scanning speed, and illumination. The point area corresponds to the laser light intensity control and other parts of the drive control. The DSPs 80A and DSPs 80B are synchronized with each other and perform processing in accordance with clock signals generated by a clock generator (not shown). In addition, the control unit 8 is provided with a shared data memory 83 accessible from each of the two DSPs 80A and 80A. Each of the DSPs 80A and DSP80B shares data through the shared data memory 83. In the common data, there are, for example, an instruction command of the DSP 80A for the instruction of the DSP 80B, a confirmation command from the DSP 80B to the DSP 80A with respect to the instruction command, and the DSP 80B has executed the instruction command for the DSP80A. In addition to various commands such as the end of the notification, such as DSP80A and 80B, there are still XY coordinate command values of the laser light irradiation position that the DSP 80A outputs at predetermined intervals, and a focus command value corresponding to the XY coordinate command value. And various command values for the laser output command value indicating the intensity of the laser light. Then, the various command values output from the DSP 80A to the shared data memory 83 are read by the DSP 80B, and the drive control of each unit is executed based on the command values. As described above, the control unit 8 includes two DSPs 80A and DSPs 80B, and is configured such that the arithmetic operations such as the orbit calculation and the distortion correction are performed, and the drive control processes for driving and controlling the respective units are respectively used. Since the different DSPs 80A and 80 are executed, there is no case where the deflection control of the scanning head 7 and the intensity control of the cymbal 5 are delayed due to the arithmetic processing, and the scanning speed of the laser light can be increased to increase the processing speed. Next, for the detailed description of the driving control by the aforementioned DSP 80B, the DSP 80B controls the laser power by controlling the laser power control signal to the laser control device 3 via the D/A converter 88 according to the laser output command value. At the same time, in order to adjust the intensity of the laser light, the AOM5 output intensity 10 control signal is further controlled. Further, according to the XY coordinate command value and the focus command value, the X-axis motor 72A, the Y-axis motor 72B, and the DF motor 91 are controlled to be controlled by the dynamic focus lens unit. The focal length and the deflection by the scanning head 7 are controlled to control the irradiation position of the laser beam on the processed surface of the workpiece 98. In the present embodiment, in order to realize the high-precision irradiation position control 67, a close loop control system as a control system of the dynamic focus lens unit 6 and the scanning head 7 is constructed, and the following is a description of the structure. As shown in Fig. 2, the X-axis motor 72A and the Y-axis motor 72B of the scanning head 7 are provided with encoders 90A and 90B, and digital pulse signals corresponding to the number of pulses of the scanner mirrors 71A and 71B. SA and SB are output to the control unit 8; and the dynamic focus lens unit 6 is provided with an encoder 90C for DF (Dynamic Focus) motor that drives an optical system (not shown) that varies the focal length. 91 and the number of pulses of the driving quantity of the optical system are output to the control unit 8; in addition, the control unit 8 is provided with: a counter circuit 84, 16 319707 200827078

V 係被輸入有從各編碼器90A至9〇c所輪出的數位脈衝訊號 SA至SC,且計數該等數位脈衝訊號SA^ 輸 DSP80B 。 DSP麵係根據由計數電路84所計數的各數位脈衝訊 唬S A至S C的計數值,特定掃描器鏡7} α、7】β之旋轉量、 以及動態聚焦透鏡單元6之光學系統的驅動量,進而特定 現在的雷射光照射位置之灯座標值及現在的焦距。 $外該DSP8〇B係具有:位置比較部85,其係取得 儲存於共有資料記憶體83的雷射光照射位置之χγ座標指 =、及因應於該χγ座標指令值的焦距指令值,且將該 等指令值與現在值比較而將偏差訊號輸出至馬達控制部 87 ;以及訊號輸出調整部%,係取得與前座標指令 值及焦距指令值同步而被儲存於共有資料記憶體Μ的雷 射輸出指令值,且對於A0M5( g應需要也對 置3)輸出控制訊號。 ^ • 前述馬達控制部87係根據來自Dsp_的偏差訊號而 將用以抵銷偏差的數位控制訊號對於又軸馬達ΜΑ之驅動 電路92A、Y軸馬達72B之驅動電路92b、以及π馬達 91之驅動電路92c之各者分別輸出而執行負回饋(叫如ve feedback)控制者。各驅動電路92A至92(:若被輸人了數位 控制訊號’則將對於X軸馬達72Α、γ軸馬達72β、及df 馬達輸出驅動電流,藉此,χ轴馬達72α、γ轴馬達 72Β、以及Dp馬達91被驅動。 、 如上所述,於控鮮元8中,係藉由:輸出數位脈衝 319707 17 200827078 訊號SA至SC 66姐戊-a 、、、馬态90A至9OC、言十數電路84、 DSP80B、馬達捭制卹μ &制邛87、以及驅動電路92Α至92C而構 成有閉環控制系統,且將夂羊 '圭79Δ 且肘各馬達72Α、72Β、91之驅動高 精度地予以補償。拉+ _ ^ ^ — 、^ ,可貫現咼精度的馬達控制,亦即 的編碼器90Α至90c作為各馬達72α、72β、9】之旋轉量 檢測手段的構成,因此變得可以進行χ軸馬達DA、丫輛 馬,72B、以及DF馬達91之數位㈣,且與以因應了旋 轉量的類比檢測訊號為根據而控制馬達旋轉量的構成相 比,可將檢測誤差抑制在最小,以此而可實現更高精度的 照射位置控制。 可貫現被加工物98之加工面的高精度之照射位置控制。 另卜由於係採用了使用輸出數位脈衝訊號至%The V system is input with the digital pulse signals SA to SC which are rotated from the respective encoders 90A to 9〇c, and counts the digital pulse signals SA^ to the DSP 80B. The DSP surface is based on the count values of the respective digital pulse signals SA to SC counted by the counting circuit 84, the rotation amount of the specific scanner mirror 7}, 7]β, and the driving amount of the optical system of the dynamic focus lens unit 6. In turn, the lamp coordinate value of the current laser light irradiation position and the current focal length are specified. The DSP8〇B system has a position comparing unit 85 that acquires a χ coordinate finger = stored in the laser light irradiation position of the shared data memory 83, and a focal length command value corresponding to the χ γ coordinate command value, and The command values are compared with the current values, and the deviation signals are output to the motor control unit 87; and the signal output adjustment unit % obtains the lasers stored in the shared data memory in synchronization with the front coordinate command values and the focus command values. The command value is output and the control signal is output for A0M5 (g should also be opposed to 3). The motor control unit 87 uses a digital control signal for canceling the deviation based on the deviation signal from Dsp_ for the drive circuit 92A of the re-axis motor, the drive circuit 92b of the Y-axis motor 72B, and the π motor 91. Each of the drive circuits 92c outputs a negative feedback (called a ve feedback) controller. Each of the drive circuits 92A to 92 (when the digital control signal is input) outputs a drive current to the X-axis motor 72A, the γ-axis motor 72β, and the df motor, whereby the x-axis motor 72α and the γ-axis motor 72Β, And the Dp motor 91 is driven. As described above, in the control unit 8, the output digital pulse 319707 17 200827078 signal SA to SC 66 sister-a, ,, horse state 90A to 9OC, say ten The circuit 84, the DSP 80B, the motor μ μ & & 、 87, and the drive circuits 92 Α to 92 C constitute a closed loop control system, and drive the 79 ' 'Guy 79 Δ and elbow motors 72 Α, 72 Β, 91 with high precision Compensation is made. Pull + _ ^ ^ — , ^, can realize the motor control with high precision, that is, the encoders 90Α to 90c are configured as the rotation amount detecting means of the motors 72α, 72β, and 9], so that it becomes possible The digits (4) of the boring motor DA, the cymbal horse 72B, and the DF motor 91 are performed, and the detection error can be suppressed to a minimum as compared with the configuration in which the motor rotation amount is controlled based on the analog detection signal corresponding to the rotation amount. , in order to achieve higher precision photos Position control can now be irradiated penetration of high-precision machining of the workpiece surface 98 of the position control system using another Bu Since the use of the output pulse signal to a digital%

此外,由於將X軸馬達72Α、γ軸馬達72β、以及df 馬達91之各者以DSP8GB同時地進行回饋控制,故雷射光 之X軸方向及Y軸方向的偏向、與z軸方向之隹距係互相 φ同步,且一邊抑制軸間的偏移一邊進行控制,而可實現更 高精度的照射位置控制。 在以上構成下,若從電腦系統13將描繪條件指令訊號 BCS輸入至控制單元8時,則控制單元8之DSp8〇A會依 據該描繪指令訊號BCS,運算以雷射光掃描被加工物θ98 之加工面内時之照射位置軌道,同時對於各照射位置之χγ 座標值進行失真補正。此外,DSP80A係於各照射位置因 應加工殊度、被加工物9 8之材質、加工之種類而運算雷射 光強度’同時因惠掃描時之線寬、ΧΥ座標值及加工面之 319707 18 200827078 |i 凹凸而運算焦距。 在上述照射位置的執道運算中係運算··用以向量掃描 描繪被加工物9 8的加工面之線的軌道,或運算由以向量掃 描以最短距離連結加工面之複數個加工點的線之執道。 此外,在前述雷射光強度運算中,DSP80A係以使於 每個照射位置之單位面積的雷射光之能量密度與雷射光之 掃描速度無關地成為大致一定的方式,算出在各焦點位置 的雷射光強度。 ® 詳細而言,當雷射裝置4之雷射光輸出及照射點面積 為一定時,隨著雷射光之掃描速度變快,每單位面積的能 量密度會變小,而使在以慢的掃描速度所加工的部位、與 以快的掃描速度所加工的部位之間,會產生加工深度等之 蒼差’而損及加工品質。 因此,DSP80A在雷射裝置4之雷射光輸出及照射點 面積為一定的情形中,隨著雷射光之掃描速度變快而提高 ⑩雷射光強度;另外,在雷射光之掃描速度或/及照射點為可 變的情形、或著在雷射裝置4之雷射光輸出進行變動的情 形中,DSP80A係運算雷射光強度俾使在照射點的每個單 位面積之能源密度成為大致一定。 而且,DSP80A係每隔預定時間將表示被加工物98之 加工面之照射位置的XY座標指令值、在該照射位置的焦 距指令值、以及雷射光強度指令值寫入共有資料記憶體 83,DSP80B則與以DSP80A而進行的寫入同步,使AOM5 與動態聚焦透鏡單元6之DF馬達91、掃描頭7之X軸馬 19 319707 200827078 達72A及Y軸馬逵79Pr 運 2β之各者互相同步而同時地進行控 制,將加工面98以兩μ止 Μ田射先進行向量(vector)掃描而將被加 工物98進行加工。 此蚪,如則述第i圖所示,DSp8〇B在將雷射光的照 射位置從偏離被加工物98的位置(原點位置(h_e p s曰ition))PH私動至向量掃描開始點&為止之際,以及從 向里掃U點移動至下一個向量掃描開始、點&之際,將 X軸=達72Α及γ軸馬達72Β之驅動間距增大,且使照射 位置焉速移動至向量掃描開始點,此外,於向量掃描中, 將驅動間距變小,且η祐+ & 使缉射光正確地照射於預定之照射 位置的方式進行控制。 曰此外使田射光之照射位置從原點位置移動至向 ^描開始點&為止時,Dsp咖係僅使⑽馬達91粗動 動作而調整焦距俾使向量掃描開始點直 預定值,此外,於向景捃> 士 y 不且仕风局 、… 於向里知描中,係使DF馬達91與乂軸馬 同牛:=馬广2β之驅動(亦即,雷射光之照射位置) 日Km 微動動作俾使光束直徑與在加工面的 恥射位置無關地成為預定值。 進行卜;= 於加工面具有凹凸的被加工物98以雷射光 ^丁向_描知^向量掃描令Dsp8〇B係配合照射位置 進Γ凸之南低而使前述動態聚焦透鏡單元6的加馬達91 進仃上述微動動作而將光束直獲維持於一定, :面之凹凸的高低差比較大的情形中,於向量掃插中二 、以勤馬達91之微動動作將光束直徑维持於一定: 319707 20 200827078 l · - 故於該情形中,係與x軸馬達72A另v 4 動同步而使DF馬達91進行粗動動作Y軸馬達7四之驅 二達與^馬二…轴馬達72Β之驅動同步而 馬違Μ進行粗動動作及微動叙从 、 中的焦點位置調整當然亦可。’而進行向量掃描 此外,前述加工面的凹凸 碎、, 工物98之加工而其/社Α 回-差係可依據表示被加 表一 》、白、CAD資料而進行判定,另外,當 • ^加1面形狀的資料中不包含凹凸的資料時,使用計測 加工面為止之距離的距離残 、 timeM w旦, ㈣心於向量掃描中即時(real )或於向篁掃描前預先計測 可。 T』加工面之凹凸的高低差亦 98之射加工裝置^進行的對於被加工物 ^面的雷射光之向量掃描進行說明。 第3圖為表示向量掃描執道L之-態樣的圖。 圖所示的已說明之Dsp8〇B於軌道[上以雷射 瞻仃向量掃描時,在掃描方向K為-定(執道L為直 ^ J ^ ^ ^ , # ^ ^ ^ ( ^ ^ 則㈢邊將掃描速度加速一邊從向量掃描開始點st開 。雷射光掃描,當掃描速度達咖定讀描速度讀,以 呆持該掃描速度的狀態下於執道£上進行掃描的方式進行 控制,藉此謀求加工時間之高速化。 此^•’如第3圖所示’當於軌道L上存在有切換掃描 二=的切換點q時’一般而言,由於在機構上難以將雷 士知插方向不連續地進行切換,敌在該切換點Q之前使掃 319707 21 200827078 描^減逮俾使雷射掃描在切換點Q暫時停止,之後,於 切換點Q將雷射播扣士人 VI才丨了正之俊,於 以往即被進行者。換而使掃描開始的控制係從 道L之右於切換點Q使—旦停止掃描,則會有導致軌 田戶斤需的時間(亦即,雷射加工時間)延長的問題。 為τ / :本貫施形態中’當切換點Q存在於執道L上時, 向)控制。㈣時間延長’乃進行如下所述的#射光掃描(偏 瞀部t即二於第2圖所示的已說明過之DSP8〇A的軌道運 ;:二運算出雷射光進行向量掃描的執道L後,如 將在執’當其執道上存在有切換點Q時,將其補正為 開始點ϋ皮設定於比切換點Q更先前的掃描方向切換 匯人$ L上被設定於比切換點Q更靠前的 ^〜以緩和的曲線執道&連結而成的執道L。 DF民、去n 糸將X軸馬達72A、Y軸馬達72B及 當^V1驅動而執行沿著軌道£的雷射光掃描控制時, 维持射位置到達掃描方向切換開始點Qs時,係 描。寺速度的狀態下繼續延著曲線執道Rr的雷射光掃 Q後雷射光之掃描方向K會徐徐變化為通過切換點 =的:描方向κ,而在曲線執道Rr的終點位置,即匯合 執e、、、吉束雷射光之掃描方向κ的切換,進行沿著當Further, since each of the X-axis motor 72A, the γ-axis motor 72β, and the df motor 91 is simultaneously controlled by the DSP 8GB, the deflection of the X-axis direction and the Y-axis direction of the laser light and the pupil distance from the z-axis direction are obtained. By controlling the mutual φ and controlling the shift between the axes while suppressing the rotation between the axes, it is possible to achieve more precise irradiation position control. In the above configuration, when the drawing condition command signal BCS is input from the computer system 13 to the control unit 8, the DSp8A of the control unit 8 calculates the processing of scanning the workpiece θ98 by the laser light according to the drawing command signal BCS. The positional orbit is illuminated while in-plane, and the χ-coordinate value of each illumination position is corrected for distortion. In addition, the DSP80A calculates the laser light intensity according to the processing degree, the material of the workpiece 98, and the type of processing at each irradiation position. At the same time, the line width, the coordinate value and the processing surface of the scanning surface are 319707 18 200827078 | i Concave and manipulate the focal length. In the calculation of the irradiation position, the calculation is performed by scanning the line of the line of the machined surface of the workpiece 79 with a vector scan, or calculating the line of the plurality of machining points that join the machined surface by the vector at the shortest distance. Defend. Further, in the above-described laser light intensity calculation, the DSP 80A calculates the laser light at each focus position so that the energy density of the laser light per unit area of each irradiation position is substantially constant irrespective of the scanning speed of the laser light. strength. ® In detail, when the laser light output and the irradiation spot area of the laser device 4 are constant, as the scanning speed of the laser light becomes faster, the energy density per unit area becomes smaller, and the scanning speed is slower. Between the processed part and the part processed at a fast scanning speed, there is a difference in processing depth and the like, and the processing quality is impaired. Therefore, in the case where the laser light output and the irradiation spot area of the laser device 4 are constant, the DSP 80A increases the intensity of the 10 laser light as the scanning speed of the laser light becomes faster; in addition, the scanning speed or/and the irradiation of the laser light In the case where the point is variable or when the laser light output of the laser device 4 fluctuates, the DSP 80A calculates the intensity of the laser light so that the energy density per unit area at the irradiation point becomes substantially constant. Further, the DSP 80A writes the XY coordinate command value indicating the irradiation position of the processed surface of the workpiece 98, the focus command value at the irradiation position, and the laser light intensity command value to the shared data memory 83, DSP80B, every predetermined time. Then, in synchronization with the writing by the DSP 80A, the AOM 5 is synchronized with the DF motor 91 of the dynamic focus lens unit 6, the X-axis horse 19 319707 200827078 of the scan head 72, and the Y-axis 逵 79Pr transport 2β. Simultaneously, the machined surface 98 is processed by scanning the machined surface 98 with a two-degree smear. Therefore, as shown in the first diagram, DSp8〇B moves the irradiation position of the laser light from the position (the origin position (h_e ps曰ition)) PH which is deviated from the workpiece 98 to the vector scanning start point & Up to the end, and when moving from the inward sweep U point to the next vector scan start, point &, the X-axis = up to 72 Α and the γ-axis motor 72 Β drive pitch is increased, and the irradiation position is idling To the start of the vector scan, in addition, in the vector scan, the driving pitch is made small, and η + + & controls the illuminating light to be correctly irradiated to the predetermined irradiation position. In addition, when the irradiation position of the field light is moved from the origin position to the start point & the Dsp coffee system only adjusts the focal length of the motor 91 by the coarse movement of the motor (91), and the vector scanning start point is straightened to a predetermined value. Yu Xiangjing 捃 士 y 不 不 仕 仕 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The daily Km fretting action causes the beam diameter to become a predetermined value regardless of the shame position on the machined surface. The processing object 98 having the unevenness on the processing surface is scanned by the laser light to make the Dsp8〇B system match the irradiation position to the south of the convexity, so that the dynamic focusing lens unit 6 is added. The motor 91 advances the above-described micro-motion to maintain the beam straightly. In the case where the height difference of the surface unevenness is relatively large, in the vector sweeping, the micro-movement of the motor 91 maintains the beam diameter at a constant value: 319707 20 200827078 l · - Therefore, in this case, the DF motor 91 is coarsely moved in synchronization with the x-axis motor 72A, and the Y-axis motor 7 is driven by the second motor and the second motor. It is also possible to drive the synchronization and to perform the coarse movement and the focus position adjustment in the micro-motion. In addition, the vector scanning is performed, and the irregularities of the processing surface are broken, and the processing of the workpiece 98 is performed, and the / Α - 差 差 差 差 差 差 差 降 降 降 降 降 降 降 降 降 降 降 降 降 降 降 降 降 降^When the data of the one-face shape is not included in the data of the concave and convex, the distance from the distance measured by the processing surface is used, and the time is Mm. (4) The heart is scanned in advance in the vector scan or before the scan. The height difference of the unevenness of the T-processed surface is also described by the laser processing device of the processing object of the workpiece. Figure 3 is a diagram showing the state of the vector scan. The illustrated Dsp8〇B is shown in the figure [in the case of a laser scanning vector, the scanning direction K is - (the L is straight ^ J ^ ^ ^ , # ^ ^ ^ ( ^ ^ (3) While starting the scanning speed, the scanning point is started from the vector scanning start point. The laser scanning is performed when the scanning speed is up to the reading speed reading speed, and scanning is performed on the road in the state of holding the scanning speed. In order to speed up the processing time, this ^•' is as shown in Fig. 3 'When there is a switching point q of the switching scan 2 on the track L', it is generally difficult to institutionalize NVC. The direction of the insertion is discontinuously switched, and the enemy makes the sweep 319707 21 200827078 before the switching point Q, so that the laser scanning is temporarily stopped at the switching point Q, and then the lightning broadcaster is at the switching point Q. VI has just married Zheng Jun, who has been carried out in the past. In other words, the control system that starts scanning starts from the right of the switch L to the switching point Q. Once the scanning is stopped, there will be time required for the railroad households (also That is, the problem of prolonged laser processing time). For τ / : in the form of "perform" When Q is present on the road L, it is controlled. (4) Time extension is performed as follows: #瞀光扫描(The yaw part t is the track of the DSP8〇A as described in Fig. 2 ;: After the operation of the laser light for vector scanning, if there is a switching point Q on the way, it will be corrected as the starting point, and the scan will be set to a previous scan than the switching point Q. The direction switching person $L is set to be at the front of the switching point Q. The road is connected with the easing curve. The DF is used to go to the n-axis. The X-axis motor 72A and the Y-axis are used. When the motor 72B and the laser light scanning control along the track are executed while driving the motor VB, when the sustaining position reaches the scanning direction switching start point Qs, the laser light continues to extend the curve of the Rr. After sweeping Q, the scanning direction K of the laser light will change slowly to the end point of the curve by the switching point = κ, and at the end position of the curve Rr, that is, the switching of the scanning direction κ of the e, and ji beam laser light Carry along

射光?描。結果,因為變得不需要在切換點Q 間的延手田止’故可以防止軌道L之掃描所需時 .、長,而實現高速的雷射加工。 319707 22 200827078 —描方向切換開始點❼及匯合點Qe之各者係被 ^者軌道L且離切換點Q達預定距離iTe的點 之切換角度心在職距離m經常為-定的情^ 度θ若越小,則曲線軌道Rr之曲率會越大。例如, :弟3圖中’由於比起切換點…以之切換角度θ卜θ ’切換點Q3之切換角度θ3更小的緣故,所以頁 離H經常為一定的情形下’比起切換點Q1、Q2的曲 f執道如、Rr2,在切換點Q3的曲線軌道如的合 變大。 胃 曲線軌道Rr之曲率變得越大,則沿著曲線軌道r 行雷射光掃描之際,即需要掃描方向κ之急遽的變更押 制’而使X轴馬達72A、γ軸馬達72Β及Μ馬達9 ‘ 制=困難。因此,在DSP8〇A使預定距離Ts、h為一 ^ 而叹定掃描方向切換開始點(^及匯合點Qe的情形中,當 切換點Q之切換角度Θ為預定之臨限值Θ th以下時,於軌 道L上設定比掃描方向切換開始點Qs更之前的掃描速度 ,速開始點Qd,且以自該減速開始點Qd起掃描速度會= 減逮的方式產生χγ座標指令值。預定之臨限值0比係可 獲得在維持最大掃描速度之狀態下可繼續掃描的曲率的切 換角度之最小值。 如上所述,由於DSP80A設定減速開始點Qd及以從 該減速開始點Qd起將掃描速度減速的方式執行產生χγ 座標值的控制,在藉由DSP8〇B之控制,於雷射光照射位 319707 23 200827078 置到達掃描方向切換開始點QS之前即將掃描速度充分減 速後,便在維持當時之掃描速度下而掃描曲線執道Rr,因 此可以壓低每單位時間的掃描方向K之變化量,而使以χ 軸馬達72Α、Υ軸馬達72Β、及DF馬達91之驅動控制所 進行的照射位置控制變得容易。 / —此外¥替射光之照射位置到達匯合點Qe時,DSP80A 係將掃描速度加速至到達預定之掃描速度(最大掃描速度) 奶為止,在到達預定之掃描速度後,即維持該掃描速度而繼 續雷射光掃描。 又,當掃描速度被減速及加速時,為了使能 !密度保持一定,會以因應掃描速度之減速及加速而提升 或減低雷射光強度的方式輸出雷射輸出指令值。 此外,當切換點Q存在於執道L上時,Dsp8〇A並不Shooting light. As a result, since it becomes unnecessary to stop at the switching point Q, it is possible to prevent the scanning of the track L from being required, and to realize high-speed laser processing. 319707 22 200827078 - The switching angle between the starting point ❼ and the meeting point Qe is the switching angle of the point of the track L and the predetermined distance iTe from the switching point Q. The incumbent distance m is often a constant θ If the smaller, the curvature of the curved track Rr will be larger. For example, in the figure of the brother 3, 'the switching angle θ3 of the switching point Q3 is smaller than the switching point...the switching angle θ θ ' is smaller than the switching point Q1, so the page is often in a certain situation from the switching point Q1. The curve f of Q2, such as Rr2, is larger at the curve track of the switching point Q3. When the curvature of the stomach curve track Rr becomes larger, the laser beam scanning along the curved track r, that is, the scanning direction κ is required to be changed rapidly, and the X-axis motor 72A, the γ-axis motor 72, and the Μ motor are provided. 9 ' system = difficult. Therefore, in the case where the DSP 8A makes the predetermined distances Ts, h to be one and the scanning direction switching start point (^ and the convergence point Qe), when the switching angle 切换 of the switching point Q is below the predetermined threshold Θ th At this time, the scanning speed before the scanning direction switching start point Qs and the speed start point Qd are set on the track L, and the χγ coordinate command value is generated so that the scanning speed is reduced from the deceleration starting point Qd. The threshold value of 0 is the minimum value of the switching angle of the curvature that can be continuously scanned while maintaining the maximum scanning speed. As described above, since the DSP 80A sets the deceleration start point Qd and will scan from the deceleration start point Qd The speed deceleration method performs the control for generating the χ γ coordinate value. After the laser light irradiation position 319707 23 200827078 reaches the scanning direction switching start point QS, the scanning speed is sufficiently decelerated by the control of the DSP 8 〇 B, and then the scanning speed is sufficiently decelerated. At the scanning speed, the scanning curve is traversing Rr, so that the amount of change in the scanning direction K per unit time can be depressed, and the driving of the y-axis motor 72 Α, the Υ-axis motor 72 Β, and the DF motor 91 can be driven. The irradiation position control by the motion control becomes easy. / - In addition, when the irradiation position of the spot light reaches the convergence point Qe, the DSP 80A accelerates the scanning speed until reaching the predetermined scanning speed (maximum scanning speed), and arrives at the scheduled time. After the scanning speed, the scanning speed is maintained and the laser scanning is continued. When the scanning speed is decelerated and accelerated, in order to enable the density to be constant, the laser light is accelerated or reduced in response to the deceleration and acceleration of the scanning speed. The intensity output mode outputs the laser output command value. In addition, when the switching point Q exists on the way L, Dsp8〇A does not

㈣為以使預定距離Ts、Te經常保持—韻方式於執道L Μ掃描方向切換開始點Qs及匯合點Qe之構成;亦可 t 使曲線軌道Rr之曲率經常成為—^的方式設定掃描 万向切換開始點Qs及匯合點〇 由將曲. 口”占如之構成。依據該構成,藉 Β 為取大掃描速度進行掃 描:掃描:切換點Q之切換角度θ而以最大掃 如以上所說明,依據太訾余 制形怨,由於DSP麵為控 制AOM5而與被加工物98 + 勹枉 ff & & 加面的雷射光掃描速度成 正比的提高雷射光強度,或著 肪 的能靜庚士 〇 母個照射位置之雷射光 在度大致成—定的方式調整雷射光強度之構成,敌 319707 24 200827078 的情形,也可防止一的 少 進仃兩品質的加工。 碼器9。“9:本;:::’由於輸出數位脈衝訊號的編 _ μ 9=^sp晒、馬達控 、(4) In order to keep the predetermined distances Ts and Te constantly maintained, the rhyme mode is configured to switch the start point Qs and the convergence point Qe in the scanning direction of the trajectory L Μ; or the curvature of the curved track Rr is often set to -^ According to this configuration, the switching start point Qs and the convergence point 构成 are composed of a plurality of scans. According to this configuration, scanning is performed for taking a large scanning speed: scanning: switching angle θ of switching point Q is maximized as above Explain that, according to the slogan, the DSP surface is used to control the AOM5 and the laser light intensity is increased in proportion to the laser scanning speed of the processed object 98 + 勹枉ff &&& The laser light of the Jing Gengshi's mother's illumination position adjusts the intensity of the laser light in a roughly-determined manner. In the case of the enemy 319707 24 200827078, it can also prevent the processing of two qualities of less. "9: Ben;:::' due to the output of the digital pulse signal _ μ 9 = ^ sp sun, motor control,

轴馬達m、y轴馬達=糸構成閉環控制系統,而可將X 庐声ϋ待 ,、、達 及Μ馬達%之驅動進行高 广月又1貝,故可以高精度地控制被加工The shaft motor m, y-axis motor = 糸 constitutes a closed-loop control system, and the X 庐 ϋ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

照射位置,而進行高品質的加工。 面的 尤/、因為係使用了採用輸出數位脈衡訊號SA至s 的編碼ii 9aAi9ac作為χ軸馬達72Α、γ軸馬達別、 及DF馬達91《旋轉量檢測手段的構成,故可以進行又轴 馬達72Α、γ軸馬達72β、及df馬達91的數位控制,比 起依據m應了旋轉量的類比檢測訊號而控制馬達旋轉量之 構成,可將檢測誤差抑制於最小,從而進行更高精昭 射位置控制。 ' 尤其,在因應X軸馬達72A、γ轴馬達72b、及df 馬達91之旋轉量而輸出類比訊號的類比檢測器中,因隨著 馬達溫度的上升會使對應於旋轉量的訊號非線性地進行變 化,故需要因應於馬達溫度的補正,此外,視其補正精度, 檢測誤差也會變大。另外,類比檢測器也會因旋轉量檢測 元件之經年劣化而對檢測精度產生影響。 對此’依據本貫施形態’由於係構成為使用前述編碼 器90A至90C進行X軸馬達72A、γ軸馬達mb、及D]p 馬達91之數位控制,敌不易受到馬達溫度之影響及經年劣 319707 25 200827078 化之影響,而可以維持高精度的照射位置控制。 此外’依據本實施形態,由於係採用以1個 同時地對X軸馬達72A、Y軸馬達72B、DF馬達91之各 者進行回饋控制之構成,故可以將雷射光之X軸方向及Y 軸方向的偏向、與Z軸方向之焦距彼此同步且二邊抑制軸 間的偏移一邊進行控制,藉此,照射位置被更高精度地控 制,而可以進行更高品質的加工。 _ 另外’依據本貫施形態,由於係構成為:控制單元8 具有2個DSP80A及80B,且將執道運算和失真補正等運 异處理、與將各部進行驅動控制的驅動控制處理各自藉由 相異的DSP80A、80B而實行,故不會因運算處理而使於 掃描頭7之偏向控制及A0M5之雷射光強度控制產生延 遲,而可以一邊實現前述之高精度照射位置控制,一邊實 現宙射光之掃描速度的高速化,而可以短時間進行高孓 的加工。 一-、 _ 此外,依據本實施形態,由於俵根據被加工物98之加 工面的凹凸而調整雷射光之焦點距離,故加工面不限於平 垣的被加工物98,即使對於加工面如同曲面般的被加工物 98也可使用雷射加工。、 士更且,依據本實施形態,當在軌道L上存在有切換點 Q τ,由於係控制雷射光之掃描,俾使從切換點q之前(掃 掏方向切換開始點QS)即使雷射光之掃描方向尺朝切換後 ^掃描方向K徐徐變化而進行掃描,且在雷射光之掃描方 向K切換為切換後之掃描方向〖時,其照射位置位於應以 319707 26 200827078 切換後的掃描方向K掃描的軌道乙卜 要在切換點Q之雷射掃描的暫時佟止$ 〇點^)’故不而 掃描所需時間的延長,而實現高逮的雷:力可:止執道 有二;f述的第1實施形態中,係:示了:制單元8具 有了攸2個DSP80A及80B之各者進杆 憶體83的構成。 者進仃存取的共有資料記 之各控制單元8A之構成亦可為如第4圖所示 各自為D謂A具有記憶體83A、Dsp_具有記憶體 二二T及_將彼此處理所需要的資料藉由通 Λ而收达的構成。 例如,於前述的第i實施形態中,雖例示有連續振盡 二til㈣盪器2,但不限於此’亦可為採用輸出脈 為可雄Γ指盈器之構成。在該構成中當欲使雷射光強度 為可心’例如若雷射振盪器為使帛Q_而振盡雷射 者則/、要使該Q開關之時序⑷ming)為可變而使雷射光 強度為可、交即可,此外,當雷射振盪器具有將雷射光遮蔽 的門(gutter)時,若具有該門之開關時序(開或關時間)或雷 射振盪器強度調變用的音響光學元件(AOM),則亦可調整 該音響光學元件之中的至少1個而使雷射光強度為可變。 此外,於上述的第1實施形態中,於雷射加工時,雖經常 使雷射光進行向量掃描,但不限於此,在描繪比較長的直 、表專於執道L沒有切換點Q或彎曲部的情形之下,亦可 執行將雷射光強度及掃描速度經常維持為一定而進行雷射 光掃描的逐線掃描(raster scan)。_ 田 319707 27 200827078 在上攻的弟1貫施形態中, 之掃描器光學牵雒 灼不有將本發明 尤予糸統20適用於雷射加工裝 ㈣此’^如’亦可應用於以來自光源的光(不並不 將描續'面高速播y而收二 艮於运射光) 四门迷知描而將插繪像予以描繪的壯 ,料以雷射光高速掃插而進行檢查敎之二 1署,對 而要將光兩速偏向的各種裝置。 疋衣置等有 (第2實施形態) 其次針對本發明之第2實施形態 過去已習知有構成為將於y叮#絲 ^ 且可將奸Η夕^ 轉地保持於旋轉輕, 置了m 朝任意角度調整的掃描器光學裝 如上所述之掃描器光學裝置, 2004-358507缺八也α - 曰本4寸開High-quality processing is performed by irradiating the position. In particular, since the code ii 9aAi9ac that outputs the digital pulse balance signal SA to s is used as the stern axis motor 72 Α, the γ axis motor, and the DF motor 91 "rotation amount detecting means" The digital control of the motor 72A, the γ-axis motor 72β, and the df motor 91 controls the rotation amount of the motor in comparison with the analog detection signal in accordance with the amount of rotation of m, and the detection error can be minimized, thereby achieving a higher precision shot position. control. In particular, in an analog detector that outputs an analog signal in response to the amount of rotation of the X-axis motor 72A, the γ-axis motor 72b, and the df motor 91, the signal corresponding to the amount of rotation is nonlinearly nonlinearly as the motor temperature rises. Since the change is made, it is necessary to correct the motor temperature, and the detection error is also increased depending on the correction accuracy. In addition, the analog detector also affects the detection accuracy due to the deterioration of the rotation amount detecting element over the years. In view of the fact that the 'according to the present embodiment' is configured to perform digital control of the X-axis motor 72A, the γ-axis motor mb, and the D]p motor 91 using the encoders 90A to 90C described above, the enemy is less susceptible to the influence of the motor temperature and Inferior to 319707 25 200827078, the high-precision illumination position control can be maintained. Further, according to the present embodiment, since the feedback control is performed on each of the X-axis motor 72A, the Y-axis motor 72B, and the DF motor 91 at the same time, the X-axis direction and the Y-axis of the laser light can be used. The direction deviation and the focal length in the Z-axis direction are synchronized with each other, and the two sides suppress the shift between the axes, whereby the irradiation position is controlled with higher precision, and higher-quality processing can be performed. _ In addition, according to the present embodiment, the control unit 8 has two DSPs 80A and 80B, and the drive control processing such as the obeying operation and the distortion correction, and the drive control processing for driving the respective units are respectively performed by Since the different DSPs 80A and 80B are implemented, the deflection control of the scanning head 7 and the laser light intensity control of the A0M5 are not delayed by the arithmetic processing, and the high-precision irradiation position control can be realized while realizing the prism light. The scanning speed is increased, and the processing of sorghum can be performed in a short time. In addition, according to the present embodiment, since the focus distance of the laser light is adjusted according to the unevenness of the processed surface of the workpiece 98, the processed surface is not limited to the workpiece 98 which is flat, even if the processed surface is curved. The workpiece 98 can also be processed using lasers. According to the present embodiment, when there is a switching point Q τ on the track L, since the scanning of the laser light is controlled, even before the switching point q (the broom direction switching start point QS), even the laser light is After the scanning direction is changed, the scanning direction K changes slowly and scans, and when the scanning direction K of the laser light is switched to the scanning direction after switching, the irradiation position is located in the scanning direction K which should be switched after 319707 26 200827078 switching. The track B should be at the switching point Q. The laser scan temporarily stops at $ 〇 point ^)', so the time required for scanning is not extended, and the high catching mine is realized: the force can be: the stop road has two; f In the first embodiment described above, it is shown that the manufacturing unit 8 has a configuration in which each of the two DSPs 80A and 80B enters the memory 83. The configuration of each control unit 8A for accessing the shared data may also be as shown in FIG. 4, where D is a memory A has a memory 83A, Dsp has a memory T2, and _ is processed by each other. The composition of the information is obtained through overnight. For example, in the above-described first embodiment, although the continuation of the two til (four) snubbers 2 is exemplified, the present invention is not limited to the configuration in which the output pulse is a male yoke. In this configuration, when the intensity of the laser light is to be made to be flexible, for example, if the laser oscillator vibrates the laser for 帛Q_, the timing of the Q switch is made variable, and the laser light is made variable. The intensity is achievable and can be used. In addition, when the laser oscillator has a gutter that shields the laser light, if it has the switching timing (on or off time) of the gate or the intensity modulation of the laser oscillator In the acoustic optical element (AOM), at least one of the acoustic optical elements may be adjusted to make the intensity of the laser light variable. Further, in the above-described first embodiment, the laser light is often subjected to vector scanning during laser processing, but the present invention is not limited thereto, and the drawing is relatively long, and the table is dedicated to the lane L. There is no switching point Q or bending. In the case of the part, it is also possible to perform a raster scan in which the laser light intensity and the scanning speed are constantly maintained to be constant and the laser scanning is performed. _ Tian 319707 27 200827078 In the form of the upper division of the upper division, the scanner optical entanglement does not have the invention of the invention 20 applies to the laser processing equipment (4) This can also be applied to Light from the light source (not to continue to view the 'high-speed broadcast y and receive the second light on the moving light.) The four fans know how to draw the image, and the high-speed sweeping of the laser light is used for inspection. The second unit, the two devices that have to deflect the light at two speeds. In the second embodiment of the present invention, it is conventionally known that the second embodiment of the present invention is configured such that the y叮# silk^ can be held in a rotating light. m Scanner optically mounted at any angle is mounted on the scanner optics as described above, 2004-358507 lacks eight also α - 曰本 4 inch open

+ 6 號Α報所示,係作為將被加工物之加工而LV 雷射光進行掃描之際的值a 面以 裝置。 之際的偏向手段而被廣泛使用於雷射加工 大4 =在將被加工物等之對象物以光進行掃描時,在 的情形中,雖也會控制照射光之強度、焦點位置等 往的掃描器光學農置僅提供光之偏向手^+ As shown in the No. 6 report, it is used as a value a surface when the LV laser light is scanned for processing of the workpiece. In the case where the object to be processed is scanned by light, the intensity of the irradiation light, the focus position, etc. are controlled. Scanner optical farmhouse only provides light bias to the hand ^

用者必須另外準備強;#胡敕$ A 風一杜、位置調整用的光學模組 ^子70件),且有需要將該等光學模組或光學元件盘掃 描器光學裝置作適當地排列而構築幻個光學系統/、 μ井1外杜在構築光學系統之際,需要進行或使光學模組 先予70件)、掃描器光學裝置之各者的光軸對合,或將 =之光束直徑在每個光學元件或光學模組進行調整等的所 明對準(alignment)作業。 319707 28 200827078 光學系統之對準作業乃需要熟練者,對於經驗不足者 而言,是非常費時的作業。 因此,本實施形態中,乃針對可以簡單的構築用以光 掃描之光學系統的掃描器光學裝置、以及使用了該光學裝 置的較佳的雷射加工裝置進行說明。 第5圖乃表示本實施形態之雷射加工裝置100之構成 的圖。 雷射加工裝置100係具有:雷射振盪器102 ;掃描器 •光學裝置103 ;以及將從雷射振盪器102所放射的雷射光 導向掃描器光學裝置103的屬於光學元件的1對鏡104A 及104B ;且該等係被載置、固定於板狀的石平台105。石 平台105 —般而言,其平面精度乃非常高,藉由於如上所 述的石平台105載置、固定各光學要素,可以防止各光學 要素間之光轴的偏移,且使各光學要素間之光軸對合變得 容易。又,前述鏡片104A、104B中,亦可使用例如稜鏡 _片(prism lens)等之穿透型光學元件來代替為反射型光學 元件的鏡。此外,當雷射振盪器102與掃描器光學裝置103 係被配置為直線狀時,即不需要將從雷射振盪器102所放 射的雷射光導引至掃描器光學裝置103的光學元件。 雷射振盪器102可為固體雷射振盪器、液體雷射振盪 器、氣體雷射振盪器、半導體雷射振盪器、光纖雷射振盈 器、或自由電子雷射振盪器,其係被未圖示的雷射控制裝 置所控制,而振盪出因應於雷射媒質之波長的雷射光。如 第6圖所示,雷射震盪器102係構成為具有:振盪器本體 29 319707 200827078 120,為直方體形狀且内建有雷射共振器;以及雷射射出口 121,開口於振盪器本體120之前端部120A。 此外,於振盪器本體120之底面的前端部120A侧及 後端部120B侧設有XYZ軸工作台122,該等又丫乙軸工作 台122係被螺止固定於石平台105,藉由調整XYZ軸工作 台122,即可微調雷射振盪器102之光轴。如此一來,於 本實施型態中,雖將雷射振盪器102載置於石平台105, 但因石平台105的熱傳導率非常小,故即使雷射振盪器102 胃發熱也可將其給予其他光學要件的熱影響抑制至最小。 第7圖為將掃描器光學裝置103放大表示的圖。 掃描器光學裝置103係具有:AOM(音響光學調變元 件)130,用以將從雷射振盪器102所輸出的雷射光之強度 進行調變;動態聚焦透鏡131,用以調整雷射光之聚焦; 以及掃描器頭132,將雷射光偏向而照射至對象物;並且, 該等光學要素係被安裝於直線狀延伸的執133。另外,於 ⑩該軌133尚安裝有:透鏡134,被設置於動態聚焦透鏡131 及掃描器頭132之間,作為用以將從動態聚焦透鏡131所 輸出的光整形而輸入至掃描器頭132的光學元件;以及2 組透鏡135A及135B,作為將入射呈AOM 130的雷射光 予以整形的光學元件,兩組透鏡135A及135B之各者係可 自由定位的被安裝。 掃描器頭132係具有:掃描器鏡1321A,用以將雷射 光偏向;掃描器鏡1321B,用以將雷射光偏向至與掃描器 鏡1321A之偏向方向成預定角度的方向;馬達1322A、 30 319707 200827078 1322B,用以將該等掃描哭 a 卞佩r田态鏡1321A、132ib進行驅動;以 及箱型的框體1323,收交德> 收谷知私态鏡1321A、1321B且底面 開口。 一 框體1323係於側而带士 — J面形成有未圖示的雷射光之導入 口。如之说弟5圖所示,執m 、 m 133係具有從石平台105之媸 部105B延伸出的延出邱% 、出邛1340,在該延出部1340配置掃描 器頭132之筐體1323的π 口士 _丄 1 田 々同日守,猎由立設於該執133的保持 片136而保持其側面,也銶县 丨 也就疋猎由所謂兩支撐支持構造而 保持執1 3 3。又,於勒1 Q Q y么 丄 、執U3係权有將由前述掃描器鏡 21β所偏向的光出射的出射口 1324。之後,於 本實施形態中,係藉由掃描器頭132、透鏡134及㈣ 1324而構成偏向模組。 動態聚焦透鏡131’係在將雷射光以掃描器頭132偏 向而對對象物以雷射光進行掃描之際,以將對象物之掃描 =的雷射光之照射點直徑與照射位置錢地維持為大致二 定的方式而將雷射光之焦點距離進行可變者。動態聚焦透 鏡131,係藉由未圖示的馬達而驅動透鏡系統且使雷射光 之焦距可變。該未圖示之馬達以及前述掃描器頭132的馬 達1322Α、1322Β,係由前述第5圖所示之控制單元 斤'希]該控制單元10 6係根據婦描面的雷射光之明.射位 置而調整焦距,且一邊使動態聚焦透鏡131之馬達、與掃 描器頭132之馬達1322A、1322B互相同步—邊進行控制: 又,代替動態聚焦透鏡131而使用ίθ透鏡作為聚焦 段也可。 …、咧正于 319707 31 200827078 5 AJ3M 130係如上所述',為將從雷射振盪器1〇2所輸出 的連績振盪雷射光或脈衝雷射光之強度進行調變者,其係 被前述控制單元1〇6所控制,控制單元1〇6為了將對象物 之掃描面的田射加工深度等之加工程度經常維持為一定, 乃因應於由掃描器頭132之馬達1322A、1322B之驅動量 所規疋的雷射光之掃描速度而使雷射光強度為可變。亦 即二控制單元106在雷射光之掃描速度較快的情形時,由 ⑩=每單位面積的能量降低之故而提高雷射光強度或雷射光 密度;與此相反地,在掃描速度較慢的情形時,則進行降 低雷射光強度或雷射光密度的控制,而進行將雷射光掃描 日守之母單位面積之能量雒持為大致一定的控制。 又’前述雷射光密度係由脈衝雷射光之每單位時間的 脈衝數所定義,藉由使該雷射光密度為可變,即可使每單 位面積之雷射光的能量為可變。 如第7圖所示,該等A0M 13〇及動態聚焦透鏡ΐ3ι 籲係被裝載於台座137,該台座137則可自由定位地被安裝 於軌133。此外,各透鏡134、135A、135B係被保持於透 鏡保持具138,且於該透鏡保持具138之底部係設有執安 裝部139,該軌安裝部139係可自由定位地被安裝於執 133。另外,於台座137及軌安裝部139,係穿設有多數個 螺絲孔144,且於AOM 130等之安裝位置的調整後於各螺 絲孔144將螺絲螺合且將其螺止固定於執13 3。 於台座137及透鏡保持具138之執安裝部139,係如 第8圖所示地設有鳩尾溝構造之鳩尾榫14〇,另外,於執 319707 32 200827078 Η 133之上表面,則形成有延伸於長邊方向延 溝 1330。 ^ ^ 從而,藉由使台座137及執安裝部139之轉尾棒14〇 從軌133之一端通過鳩職133〇而嵌合,即可進行與 要件對軌133的安褒。此時,台座137及透鏡保持具13于8 之直線的排列,由於係受到執133之鸠尾溝133〇所限制, 故在安裝至執133的同時,也完成了 AQM 13()能 透鏡131、各透鏡134、Π5Α、 135B之直線的光軸位置對 a。尤其,藉由在各光學要素之朝執133的㈣構采 鳩=構造,可抑制執133與各光學要素之間的鬆動,且 僅需安裝於執133,即可精度良好的對合各光 之間的光軸。更且,藉由將螺絲螺入螺絲孔144即可^ 133與台座137及執安裝部139堅牢地予以固定。、 此外,如前述第7圖所示,於軌133之上表面,在 動態聚焦透鏡m、以及透鏡134、135八、Μα之 各者的安裝位置描繪有定位用標記15〇,此外“座 持具138的軌安裝部139之各者的側面:描綠有 w對入標記151,而藉由將該等定位用標…50及位 c票記⑸對合,即完成了 AOM13〇、動態聚焦透 ,兄〗31、以及透鏡134、135A、135B的定位。 述;藉由預先設置定位用標記15〇及位置對合 在將择描器光學裝置1〇3進行搬送之 M13G、㈣聚焦透鏡ΐ3ϊ、以及透鏡 而、咖之各者從軌133取下而進行搬送 319707 33 200827078 時,也易於進行將該等安裝於執133時的對準。 更且,在因經年劣化、或透鏡、光學元件之個體差等, 而需將各部之安裝位置進行微調整之際,也僅需以定位用 標記150及位置對合用標記151為基準而沿著執I%之鳩 尾溝1330使各部分前後移動即可,與^全沒有安裝位置之 基準的情形相比,定位作業變得容易許多。 又、,該等定位用標記15〇及位置對合用標記i5i之位 置,當然為可因應動態聚焦透鏡131、以及透鏡134、135a、 135B等之光學要素的光學特性,換言之即因應掃描器光學 衣置3之光學設計(尤其是因應雷射光之掃描角範圍和點 直位)而進仃變更者。從而,將該等定位用標記⑼及位置 =口用私名151構成為於幾個光學設計值進行設置亦可。 藉使用者在以不同的光學設計值運用掃描^光學裝置 3時,即可輕易地將各光學要素交換或定位。 此外’雖為將^位用標記15G及位置對合用標記⑸ 馨直接描!會於執 罾 、, σ座137及執安裝部139之各者的構 人’但亚不限於此。,亦即’該等定位用標記15〇及位置 合用標記1 5 1,口巫7姐—、丄 …要以可規疋被文裝於軌133之各光要 素間之相對距離的方式設置即已足夠,例如,將定位用桿 標示於其他構件之板材,且將其貼設於軌133亦可;、 件。亦可針對位置對合用標記151也同樣的使用其他構 、在此田AOM 130已内建於雷射振盪器1〇2時、或可 以用雷射振盪器】〇2進行能詈批告 ^ 運仃此里拴制蚪、或根本就不需要能 319707 34 200827078 量控制時,於掃描器光學裝置103即不需要上述AOM 130,而有將該AOM 130從雷射光之光軸(路徑)上移除的 需要。就算是在該種情形中,由於本實施形態中係於對執 133之各光學要素的安裝採用鳩尾溝構造,故可以輕易的 將AOM 130以及裝載該AOM 130的台座137從軌133取 下。 與此相反地,將AOM 130安裝於執133之際,如上所 述,藉由將定位用標記150以及位置對合用標記151對合, ®即可輕易的進行AOM 130之安裝及定位。此外,在將AOM 130安裝於軌133之際時,在AOM 130從執133被取下的 狀態中,將被安裝於執133的各光學要素彼此的光軸進行 對合,之後再安裝AOM 130,藉此即可消除在將各光學要 素彼此之光軸進行對合之際AOM 130的影響。 更且,在由掃描器頭132而定的掃描角範圍比較窄的 情形、或在對象物之掃描面的照射點直徑之變化較小的情 •形等中,則有不需要動態聚焦透鏡i3i(當然也不需要fe 透鏡)的情形。在該種情形中,係在透鏡134之前段配設其 他透鏡來代替動態聚焦透鏡131(或fe透鏡)。且即使在該 種情形中,也與AOM 130同樣的可輕易地將動態聚焦透鏡 131取下,且可安裝代替該動態聚焦透鏡ί31的透鏡。 如上所述,在將動態聚焦透鏡131從軌133取下的情 形、或在將動態聚焦透鏡131變更為具有相異光學特性者 時,由於入射至掃描器頭132之上述掃描器鏡1321Α、 1321Β的雷射光之光束直徑會變化,故會產生有需要調整 35 319707 200827078 f. - ' 被配置於該掃描器頭132之前段的透鏡i34之位置的情 形。即使是在該種情形中,由於透鏡134係可於直線上^ 軌133 1由疋位地被安裝,故藉由沿著鳩尾溝而將透 鏡134前後移動且進行調整,即可不使光轴偏移 位調整。 接著如第7圖及第8圖所示,執133係沿著長邊方 向而被複數個執片⑽至㈣所分斷,各執片U3A至 |測係被構成為大致同—尺寸的形狀,只有前頭的軌片 133A設有載置前述掃描器頭132用的延出部丨财。該等 執片33A至133E係藉由被安裝於石平台工〇5而維持執導 引構件之功能,換言之,石平台1G5係作為將各執片13从 至133E連結用的基座材而產生功能。 針對石平台1〇5的安裝構造進行說明,各執片133a 至j33E係形成為侧面視呈L字狀,且於前述石平台1〇5 之端面1G5A具有面接觸的位置對合用腳142。亦即,沿著 >石平台105之一邊,將各執片⑺八至U3E的位置對合用 腳142緊靠著石平台1〇5之端面1〇5八進行固定,藉此使 用石平台105之端面1〇5A而使各執片133人至之各 者j直線狀地位置對合而連結。在將各執片133八至USE 固疋於石平台105之際,係隔以間隔δ(參照第7圖)而個別 固定,如此即使某執片13从至133£引起熱膨脹等,也因' 係與其.他軌片133八至133Ε分斷而可防止產生位置偏移 (尤其是光學要素間之相對距離的變動)。又,前述間隔§ 係例如使用間隙規而予以調整。 319707 36 200827078 ’依據本實施形態,在雷射加工裝置100 本裝置103中,係構成為在將掃描器頭 之端部的同時,也將動態聚焦透鏡131 如以上所說明 所具有的掃描器光 132固定於執133The user must be prepared separately; #胡敕$A 风一杜, 70 pieces of optical module for position adjustment), and it is necessary to properly arrange the optical modules or optical component disk scanner optical devices And the construction of the magic optical system /, μ well 1 outside the construction of the optical system, you need to make or make the optical module 70 pieces), the optical axis of each of the scanner optics, or = The beam diameter is aligned for each optical element or optical module to be aligned. 319707 28 200827078 The alignment of optical systems is a skilled person and is a very time consuming task for less experienced people. Therefore, in the present embodiment, a scanner optical device that can easily construct an optical system for optical scanning and a preferred laser processing device using the optical device will be described. Fig. 5 is a view showing the configuration of the laser processing apparatus 100 of the present embodiment. The laser processing apparatus 100 includes: a laser oscillator 102; a scanner/optical device 103; and a pair of mirrors 104A belonging to the optical element that guide the laser light emitted from the laser oscillator 102 to the scanner optical device 103 and 104B; and these are placed and fixed on the plate-shaped stone platform 105. In general, the stone platform 105 has a very high plane precision. By placing and fixing the optical elements on the stone platform 105 as described above, it is possible to prevent the optical axis from shifting between the optical elements and to make the optical elements The optical axis alignment becomes easy. Further, in the lenses 104A and 104B, a transmissive optical element such as a prism lens may be used instead of the mirror which is a reflective optical element. Further, when the laser oscillator 102 and the scanner optical device 103 are arranged in a straight line, that is, the laser light emitted from the laser oscillator 102 is not required to be guided to the optical element of the scanner optical device 103. The laser oscillator 102 can be a solid-state laser oscillator, a liquid laser oscillator, a gas laser oscillator, a semiconductor laser oscillator, a fiber laser oscillator, or a free-electron laser oscillator, which is not The laser control device shown is controlled to oscillate the laser light in response to the wavelength of the laser medium. As shown in FIG. 6, the laser oscillator 102 is configured to have an oscillator body 29 319707 200827078 120 in a rectangular parallelepiped shape with a built-in laser resonator, and a laser exit 121 opening to the oscillator body. Front end 120A before 120. Further, an XYZ-axis table 122 is provided on the front end portion 120A side and the rear end portion 120B side of the bottom surface of the oscillator body 120, and the other two-axis table 122 is screwed and fixed to the stone platform 105 by adjusting The XYZ axis table 122 can fine tune the optical axis of the laser oscillator 102. In this manner, in the present embodiment, although the laser oscillator 102 is placed on the stone platform 105, since the thermal conductivity of the stone platform 105 is very small, even if the laser oscillator 102 is heated, the stomach oscillator can be given The thermal effects of other optical components are minimized. Fig. 7 is an enlarged view of the scanner optical device 103. The scanner optical device 103 has an AOM (Audio Optical Modulation Element) 130 for modulating the intensity of the laser light output from the laser oscillator 102, and a dynamic focus lens 131 for adjusting the focus of the laser light. And the scanner head 132 deflects the laser light to the object; and the optical elements are attached to the straight extension 133. Further, at 10, the rail 133 is further provided with a lens 134 disposed between the dynamic focus lens 131 and the scanner head 132 as a shape for inputting the light output from the dynamic focus lens 131 to the scanner head 132. The optical elements; and the two sets of lenses 135A and 135B are optical elements for shaping the laser light incident on the AOM 130, and each of the two sets of lenses 135A and 135B is freely positionable. The scanner head 132 has a scanner mirror 1321A for deflecting the laser light, and a scanner mirror 1321B for deflecting the laser light to a direction at a predetermined angle to the deflecting direction of the scanner mirror 1321A; the motor 1322A, 30 319707 200827078 1322B, which is used to drive the scanning and crying mirrors 1321A and 132ib; and the box-shaped housing 1323, which receives the German <RTI ID=0.0>>> One frame 1323 is attached to the side, and the J-side is formed with an inlet for laser light (not shown). As shown in FIG. 5, the m and m 133 systems have an extended qiu% and a dimming 1340 extending from the crotch portion 105B of the stone platform 105, and the housing of the scanner head 132 is disposed at the elongating portion 1340. 1323's π 士 _ 丄 1 々 々 々 , , 猎 猎 猎 猎 猎 猎 猎 猎 猎 猎 猎 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 Further, the U3 system has an exit port 1324 that emits light deflected by the scanner mirror 21β. Thereafter, in the present embodiment, the deflector module is constituted by the scanner head 132, the lens 134, and the (four) 1324. The dynamic focus lens 131' maintains the irradiation spot diameter of the laser light of the target object and the irradiation position substantially when the laser beam is deflected by the scanner head 132 and the object is scanned by the laser beam. The focus distance of the laser light is variable in a second way. The dynamic focus lens 131 drives the lens system by a motor (not shown) and changes the focal length of the laser light. The motor (not shown) and the motors 1322Α and 1322 of the scanner head 132 are controlled by the control unit shown in FIG. 5, and the control unit 106 is based on the laser light of the woman's surface. The focal length is adjusted in position, and the motor of the dynamic focus lens 131 and the motors 1322A and 1322B of the scanner head 132 are synchronized with each other: instead of the dynamic focus lens 131, a ίθ lens may be used as the focus segment. ..., 咧 于 319707 31 200827078 5 AJ3M 130 is as described above, which is the modulation of the intensity of the oscillating laser light or pulsed laser light output from the laser oscillator 1〇2. The control unit 1〇6 controls the degree of processing of the depth of the field of the scanning surface of the object to be constant, in response to the driving of the motors 1322A and 1322B of the scanner head 132. The laser light intensity is variable due to the scanning speed of the laser light. In other words, when the scanning speed of the laser light is fast, the laser light intensity or the laser light density is increased by 10=the energy per unit area; on the contrary, the scanning speed is slow. At the time, the control for reducing the intensity of the laser light or the laser light density is performed, and the control of the energy per unit area of the laser light scanning day is strictly controlled. Further, the aforementioned laser light density is defined by the number of pulses per unit time of the pulsed laser light, and by making the laser light density variable, the energy of the laser light per unit area can be made variable. As shown in Fig. 7, the A0M 13〇 and the dynamic focus lens ΐ3ι are mounted on the pedestal 137, which is detachably mounted to the rail 133. In addition, each of the lenses 134, 135A, and 135B is held by the lens holder 138, and a mounting portion 139 is attached to the bottom of the lens holder 138. The rail mounting portion 139 is detachably mounted to the holder 133. . Further, a plurality of screw holes 144 are formed in the pedestal 137 and the rail mounting portion 139, and after the adjustment of the mounting position of the AOM 130 or the like, the screws are screwed to the respective screw holes 144 and screwed to the holder 13 3. The mounting portion 139 of the pedestal 137 and the lens holder 138 is provided with a dovetail structure of the dovetail structure as shown in Fig. 8, and an extension is formed on the upper surface of the 319707 32 200827078 Η 133. The groove 1330 is extended in the longitudinal direction. ^ ^ Thus, by fitting the pedestal 137 and the tailing bar 14 of the attaching portion 139 from one end of the rail 133 through the 133 〇, the ampule of the traverse 133 can be performed. At this time, the arrangement of the pedestal 137 and the lens holder 13 in a straight line of 8 is restricted by the tail groove 133 of the 133, so that the AQM 13() lens 131 is completed while being mounted to the 133. The optical axis position of each of the lenses 134, Π5Α, and 135B is a. In particular, by the (four) configuration of the optical element 133, it is possible to suppress the looseness between the 133 and the optical elements, and it is only necessary to mount the 133, so that the light can be accurately matched. The optical axis between. Further, by screwing the screw into the screw hole 144, the pedestal 137 and the attaching portion 139 can be firmly fixed. Further, as shown in the seventh embodiment, the positioning mark 15 is drawn on the upper surface of the rail 133 at the mounting position of each of the dynamic focus lens m and the lenses 134, 135, and Μα. The side of each of the rail mounting portions 139 having the 138: the green has the w-input mark 151, and by aligning the positioning with the label 50 and the bit c (5), the AOM13〇, dynamic focus is completed. Throughout, the brothers 31, and the positioning of the lenses 134, 135A, 135B. The M13G, (4) focusing lens ΐ3ϊ, which is carried by the positioning device optical device 1〇3, by presetting the positioning mark 15〇 and the positional alignment In addition, when the lens and the coffee are removed from the rail 133 and transported 319707 33 200827078, it is easy to perform the alignment when the 133 is attached to the 133. Further, the lens is deteriorated due to years, or lens or optics. When the components are individually adjusted, and the mounting position of each part is to be finely adjusted, it is only necessary to move the parts back and forth along the tail groove 1330 of the I% based on the positioning mark 150 and the position-to-use mark 151. Yes, and there is no benchmark for the installation location. In contrast, the positioning operation becomes much easier. Moreover, the positions of the positioning marks 15〇 and the position pairing marks i5i are of course optical elements that can respond to the dynamic focus lens 131 and the lenses 134, 135a, 135B, and the like. The optical characteristics, in other words, the optical design of the optical housing of the scanner (especially in response to the scanning angle range and the straight position of the laser light), thereby making the positioning marks (9) and position = mouth The private name 151 is configured to be set for several optical design values. By using the scanning optical device 3 with different optical design values, the optical elements can be easily exchanged or positioned. In order to directly mark the position mark 15G and the position pair mark (5), the configuration of each of the holders, the σ seat 137, and the attachment portion 139 is not limited to this, that is, 'these It is sufficient to set the positioning mark 15〇 and the position combination mark 1 5 1, and the mouth of the mouth to be set to the relative distance between the light elements of the track 133, for example, Positioning rod marking The plate of other members may be attached to the rail 133; or the other components may be used for the position-to-use mark 151, and the AOM 130 is built in the laser oscillator 1〇2. At the time of the scanner optical device 103, the above-mentioned AOM may not be required when the laser oscillator is used, or the laser oscillator can be used for the control, or the 319707 34 200827078 quantity control is not required at all. 130, there is a need to remove the AOM 130 from the optical axis (path) of the laser light. Even in this case, since the optical element of the 133 is installed in the present embodiment, the tail groove is used. The configuration makes it easy to remove the AOM 130 and the pedestal 137 carrying the AOM 130 from the rail 133. Contrary to this, when the AOM 130 is mounted on the 133, as described above, the mounting and positioning of the AOM 130 can be easily performed by aligning the positioning mark 150 and the position matching mark 151. Further, when the AOM 130 is mounted on the rail 133, in a state where the AOM 130 is removed from the holder 133, the optical axes of the optical elements mounted on the holder 133 are aligned with each other, and then the AOM 130 is mounted. Thereby, the influence of the AOM 130 at the time of aligning the optical axes of the optical elements with each other can be eliminated. Further, in the case where the scanning angle range determined by the scanner head 132 is relatively narrow, or in the case where the change in the diameter of the irradiation spot of the scanning surface of the object is small, there is no need for the dynamic focus lens i3i. (Of course, there is no need for a fe lens). In this case, other lenses are disposed in front of the lens 134 instead of the dynamic focus lens 131 (or fe lens). And even in this case, the dynamic focus lens 131 can be easily removed as in the AOM 130, and a lens in place of the dynamic focus lens ί31 can be mounted. As described above, in the case where the dynamic focus lens 131 is removed from the rail 133, or when the dynamic focus lens 131 is changed to have a different optical characteristic, the above-described scanner mirrors 1321, 1321 are incident on the scanner head 132. The beam diameter of the laser beam changes, so there is a need to adjust the position of the lens i34 that is disposed in front of the scanner head 132 by 35 319707 200827078. Even in this case, since the lens 134 can be mounted on the straight line 133 1 by the clamp, the lens 134 can be moved back and forth along the dovetail groove and adjusted, so that the optical axis is not biased. Shift adjustment. Next, as shown in FIGS. 7 and 8, the 133 series is divided by a plurality of pieces (10) to (4) along the longitudinal direction, and each of the pieces U3A to | is formed into a substantially same-sized shape. Only the front rail piece 133A is provided with an extension portion for mounting the scanner head 132. The holders 33A to 133E maintain the function of the leader member by being attached to the stone platform work 5, in other words, the stone platform 1G5 functions as a base member for connecting the respective sheets 13 to 133E. . The attachment structure of the stone platform 1〇5 will be described. Each of the attachment pieces 133a to j33E is formed in an L-shape in a side view, and the pair of legs 142 are provided in a position where the end faces 1G5A of the stone platform 1〇5 are in surface contact. That is, along one side of the stone platform 105, the positions of the respective pieces (7) 8 to U3E are fixed to the end faces 142 of the stone platform 1〇5, and the stone platform 105 is used. The end faces 1〇5A are connected to each other in a straight line by the respective pieces 133 to 391. When the respective pieces 133 to USE are fixed to the stone platform 105, they are individually fixed by the interval δ (refer to Fig. 7), so that even if a certain piece 13 causes thermal expansion from 133 to 133, it is caused by ' It is separated from the 133 to 133 轨 of the rails to prevent positional shift (especially the change in relative distance between optical elements). Further, the aforementioned interval § is adjusted, for example, using a gap gauge. 319707 36 200827078 'In the laser processing apparatus 100, the apparatus 103 is configured such that the dynamic focus lens 131 has the scanner light as described above while the end portion of the scanner head is being used. 132 fixed in 133

可拆裝地設置於執133,並將透鏡134.可自由定位地設置 於執13/3。依據該構成,由於掃描器頭m及動態聚焦透 鏡131,一起被安裝於執133而單元化的緣故,故在將雷 射光以掃描器頭132偏向而將對象物以雷射㈣描之際, :以使雷射光之照射點直徑與照射位置無關地經常保持一 定且可將動悲聚焦透鏡13 1變更或取下,而輕易地變更 掃描斋光學裝置1 〇3的光學設計值。 更且,藉由將動態聚焦透鏡131變更或取下,即使在 產^ 了將透鏡134與掃描器頭132間之距離進行調整的需 要時,由於係可自由定位地被安裝於直線上的執m,故 可以在保持透鏡134與掃描器頭132之間的光軸對合下, 使該透鏡134沿· 133前後而調整距離,使光學設計 更時的對準作業變得容易。 此外,依據本實施形態,係構成為A〇M 13〇可自由 裝地安裝於執133。藉由該構成,可以提供在將雷射光以 掃描器頭132偏向而將對象物以雷射光進行掃描之際,一 體化地組人有雷射光之強度調整功能的掃= 1〇3。另外,在AOM 130已内建於雷射振盪器2的情形、 或雷射振盪益2係將雷射光進行脈衝振盪的情形中,可將 AOM 130從軌133進行拆裝,而輕易地對合與掃插風 裝置103 —起運用的雷射振盪器1〇2之設計。 °。予 319707 37 200827078Removably disposed in the holder 133, and the lens 134. is freely positionable to the holder 13/3. According to this configuration, since the scanner head m and the dynamic focus lens 131 are attached to the 133 and are unitized, when the laser light is deflected by the scanner head 132 and the object is scanned by the laser (four), The optical design value of the scanning optical device 1 〇 3 is easily changed so that the diameter of the irradiation spot of the laser light is always kept constant regardless of the irradiation position and the moving focus lens 13 1 can be changed or removed. Moreover, by changing or removing the dynamic focus lens 131, even when the distance between the lens 134 and the scanner head 132 is adjusted, it is mounted on a straight line in a freely positionable manner. Therefore, the optical axis between the holding lens 134 and the scanner head 132 can be aligned, and the lens 134 can be adjusted in the front and rear of the 133 to make the alignment of the optical design easier. Further, according to the present embodiment, the configuration 〇M 13〇 is detachably attached to the holder 133. With this configuration, it is possible to provide a sweep = 1 〇 3 of the intensity adjustment function of the laser beam in the group when the laser beam is deflected by the scanner head 132 and the object is scanned by the laser light. In addition, in the case where the AOM 130 is built into the laser oscillator 2, or the laser oscillation is pulsing the laser light, the AOM 130 can be detached from the rail 133, and easily aligned. The design of the laser oscillator 1〇2 used with the sweeping device 103. °. To 319707 37 200827078

IT 絲,依據本實施形態,由於係採 】 於 石平台的構成,故可以防止安裳= 九133固疋於 素間之光抽的偏移,且使各 門、#各光學要 易。 予要素間之光軸對合變得容 更且’依據本實施形態’係採用 :=^1°3 一起载置、固定雷射^ 石二1〇5m的構成。藉由該構成’可以防止載置於 ,去° °光¥要素間之光轴的偏移,且可使各光學 要素間之光轴對合變得完! 載置於石平台105,因石平1:,即使將雷射振盡器102 可以將雷射振盪器102之發埶 文 熱影㈣抑至最小。…對於其他光學要素所給予的According to the present embodiment, the IT wire can prevent the offset of the light pumping between the primes and the slabs, and the opticals of each door and # are easy to be used. The optical axis of the elements is replaced by the optical axis. According to the present embodiment, the structure of the laser beam 2: 5 m is placed and fixed together: =^1°3. According to this configuration, it is possible to prevent the shift of the optical axis between the elements placed and removed, and to complete the optical axis alignment between the optical elements! It is placed on the stone platform 105. Because of the stone level 1: even the laser oscillating device 102 can minimize the thermal shock (4) of the laser oscillator 102. ...for other optical elements

、,外、:依據本實施形態,係採用將執133沿著長邊方 向为斷為複數個執片133A 至133E、且將各軌片133A至 1330请°^石平口 1〇5之一邊排列而將彼此的轴⑽尾溝 ^對5 ’且將各軌片咖幻规彼此隔以間隔§的 縫Ρ糸而排列的構成。 依據該構成’即使某執片133Α至133Ε引起執膨脹 其_片13^至13犯分斷而防止録偏 矛夕勺產士另外’由於將複數的執片133A至133E沿著平 面精度高的石平台105之-邊進行排列,故可以將彼此的 鳩尾溝1330簡單且精度良好的對合。 又,第2實施形態係可於本發明之範圍内進行任意的 變形及應用。 319707 38 200827078 1於第2實施形態中,係採用在複數個軌片133A至133E =頭的執片133A設置延出部134〇,且在將掃描器頭132 =置於該延出部⑽的同時藉由立設於延出部134〇的保 寺片136而保持掃描器頭132的構造。 相對於此,例如如第9圖所示,在將執片133A配置 於^石平台1G5之端部咖更前方的同時,於執片133八 之則端4 1350设置保持片136A,且在將掃描器頭⑴載 置於石平台1〇5的同時,於執片133A之前端部135〇設置 保持片136A,而構成在將掃描器頭132載置於石平台 的同時使保持# IMA將其保持的構造之掃描器光學裝置 103A ’以及使用了該掃描器光學裝置iq3a的雷射加工裝 置101A亦可。依據該構成,由於掃描器頭说係被載置 於石平台1〇5侧,掃描器132之振動難以傳達至其他光學 =件的緣故’而可防止因該掃描器頭132之振動所致的光 丰元件之位置偏移等。 取、於第2實施形態中,於動態聚焦透鏡131之後段設有 ♦光甩之透鏡13<而構成掃描器光學裝置1〇3。 ^對於此,例如如第10圖所示,採用將透鏡134設置 於動態聚焦透鏡丨31之前段而構成掃描器光學裝置 103B,且具有該掃描器光學裝置l〇3B的雷射加工 101B亦可。 係於動態聚焦透鏡131之 、135B而構成掃描器光學 此外,於第2實施形態中, 前段設置AOM 130及透鏡135A 裝置103。 319707 39 200827078 e 相,於此’例如如第11圖所示,係於動態聚焦透鏡 131之前段省略A〇M 13〇及透鏡135A、135B而構成光學 裝置103C,而採用具有該掃描器光學裝置1〇3c 工裝置101C亦可。 田对 此外,於第2實施形態中,係於動態聚焦透鏡131之 前段設置A〇M 130及透鏡135Α、135β,且更於動 透鏡131之後段設置聚光用的透豸134而構 : 裝置103。 田口口亢予 相對於此,例如如第12圖 =於動態聚焦透鏡131之前段而構成掃描學= 腦,而採用具有該掃描器光學裝 :::, 置101D亦可。 叼田射加工裝 所於t外’於第2實施形態中,係採用將從雷射振盪哭102 所輸出的雷射光藉由—對鏡i Q4A、丨Q4 ^ 器光學裝置103的構成。 烏向而V向掃描 相對於此,例如第13圖所, 與掃描器光學裝置1〇3的光軸對合 伙雷射振盪1 102所輸出的㈣ 且將 器光學裝置103的構成之承射加壯、不茭地入射至掃描 v各 風之田射加工裝置101E亦可。 ,在將雷射振盪器102與掃描器壯 軸對合而配置於直線上的構成之中,例如第予^置1〇3的光 替掃描器光學裝置103而使 弟14圖所示,代 構成雷射加工裝置卿亦可用=掃插器光學裝置咖 ¥了另夕卜,例如第15圖所示, 319707 40 200827078 利用前述掃插器光學装置1〇3C而構In addition, according to the present embodiment, the 133 is cut along the longitudinal direction into a plurality of 133A to 133E, and each of the rails 133A to 1330 is arranged at one side of the slab. On the other hand, the axes (10) of the respective axes are arranged to be 5', and the respective rails are arranged in a space separated by a slit. According to the composition, even if a certain piece of film 133Α to 133Ε causes expansion, its _ piece 13^ to 13 is broken, and the yoke is prevented from being smashed by the stalker ‘ additional 133A to 133E along the plane with high precision. Since the sides of the stone platform 105 are arranged, it is possible to simply and accurately combine the dovetails 1330 of each other. Further, the second embodiment can be arbitrarily modified and applied within the scope of the present invention. 319707 38 200827078 1 In the second embodiment, the extension portion 134A is provided in the plurality of rail pieces 133A to 133E = the head piece 133A, and the scanner head 132 = is placed on the extension portion (10). At the same time, the structure of the scanner head 132 is maintained by the temple plate 136 which is erected on the extension portion 134A. On the other hand, for example, as shown in FIG. 9, while the blade 133A is disposed in front of the end of the stone platform 1G5, the holding piece 136A is disposed at the end 4 1350 of the die 133, and While the scanner head (1) is placed on the stone platform 1〇5, the holding piece 136A is disposed at the end 135 of the front end of the piece 133A, and is configured to hold the scanner head 132 on the stone platform while keeping the #IMA The scanner optical device 103A' having the structure maintained and the laser processing device 101A using the scanner optical device iq3a may be used. According to this configuration, since the scanner head is placed on the side of the stone platform 1〇5, the vibration of the scanner 132 is difficult to be transmitted to other optical components, and the vibration of the scanner head 132 can be prevented. The position of the Guangfeng component is shifted. In the second embodiment, the optical lens 13 <lt; is formed in the subsequent stage of the dynamic focus lens 131 to constitute the scanner optical device 1 〇 3. For this reason, for example, as shown in FIG. 10, the scanner optical device 103B is configured by arranging the lens 134 in front of the dynamic focus lens 丨 31, and the laser processing 101B having the scanner optical device 10B can also be used. . The scanner optical is formed by 135B of the dynamic focus lens 131. Further, in the second embodiment, the AOM 130 and the lens 135A device 103 are provided in the front stage. 319707 39 200827078 e phase, here, for example, as shown in Fig. 11, the optical device 103C is formed by omitting the A 〇 M 13 〇 and the lenses 135A, 135B in the preceding stage of the dynamic focus lens 131, and the optical device having the scanner is used. 1〇3c Industrial device 101C is also possible. In the second embodiment, in the second embodiment, A〇M 130 and lenses 135Α and 135β are provided in the front stage of the dynamic focus lens 131, and a diffuser 134 for collecting light is provided in the subsequent stage of the movable lens 131. 103. In contrast, for example, as shown in Fig. 12, the scanning focus = brain is formed in front of the dynamic focus lens 131, and the optical device is mounted with the scanner::: 101D. In the second embodiment, the laser light output from the laser oscillation 102 is used by the pair of mirrors i Q4A and 丨Q4^ optical device 103. The U-direction and V-direction scanning are relative to this, for example, in Fig. 13, the optical axis of the scanner optical device 1〇3 is coupled to the (4) output of the cooperative laser oscillation 1 102 and the configuration of the optical device 103 is increased. It is also possible to intensively and intensively inject into the scanning v-field processing device 101E. In the configuration in which the laser oscillator 102 is placed on a straight line in alignment with the scanner axis, for example, the light of the scanner 1 is set for the scanner optical device 103, and the image is shown in FIG. The laser processing device can also be used with the =sweeper optical device, for example, as shown in Fig. 15, 319707 40 200827078 using the above-mentioned sweeper optical device 1〇3C

亦可,此外,例如第16圖所示,使用田=工/置101G 1〇3D構成雷射加工裝置101H亦可。為光學褒置 於第2實施形態中,雖使除了 的其他執片咖至⑽之各者為大致相2^八以外 限於此,如第17圖所示,視每個被安 要但不 133分斷為軌片133Ai133E 々先予要素而將執 亦可。 至測而構成掃描器光學裝置咖 =外’如第18圖所示,使们條執丨成掃+ 學裳置咖亦可。另外,如第 =知“光 為將掃描器頭132僅以軌片133A,之端2所不,使其 於該等第10圖至第18圖之中 標記U0及位置對合用標記151之圖示。“略了定位用 二采Γ為直線導引用轴軸承而廣為-般利用的 >綠|>生¥引件代替雨述軌133的構成亦可。 此外,於第2實施形態中,雖 之安裝構造為鳩尾溝構造,作 -各光學要素 在執133之上面<署分不此。例如,構成為 於台座137及軌壯邱行延伸或複數個凸條的同時, nq 文衣邛139之各者的底面設置卡合於軌 133之凸條的凹條,藉 、執 各光學要素安裝於軌133 J可。:此凹卡合構造而將 而安裝各光學要素的構进b猎此,與在執133設置溝 從轨133取下。仏相比,可則_㈣各光學要素 319707 41 200827078 t 此外’於弟1及第2實施形態中,雖例示了十 振盈器W02所放射出的光藉由掃描器頭7或掃描哭= 裝置103而朝錯直下方偏向且照射至被加工物的構成先: 亚不限於此。亦即,構成為以雷射光之光軸(入射側)為; 心軸而將掃描器頭7或掃描器光學裝置⑻旋轉預 而設置,且將錯直下方定義為〇度時,使雷射光具有於ς I方向例如±90度範圍内的任意角度而照射,或為水平 • 〇度而於錯直上方照射雷射光的構成亦可。藉由如上 • ν勺構成與不使掃描盗頭7或掃描器光學裝置1 旋 鈐的構成相比,可以擴展雷射光之照射範圍。 又,構成為另外設置將掃描器頭7或掃描器光學I置 :3。之前述預定角度調整至任意角度的旋轉驅動手段㊁ 【圖式簡單說明】 第1圖為表示本發明第1實施形態之雷射加工裝置構 成的圖。 第2圖為表示控制單元之構成的圖。 弟3圖為用以說明包含切換點之執道的雷射光掃描的 圖 0 =4圖為表示於第2圖所示的控制單元之變形例的圖。 弟5圖為表示本發明第2實施形態之雷射加工裝置構 成的圖。 $ 6圖為表示第2實施形態之雷射振盪器的圖。 第7圖為表示第2實施形態之掃描器光學裝置之構成 319707 42 200827078 的圖。 第8圖為用以說明將光學元件安裝於掃描器光學裝置 的圖。 第9圖為表示第2實施形態之變形例之雷射加工裝置 之構成的圖。 第10圖為表示第2實施形態之變形例之雷射加工裝置 之構成的圖。 第11圖為表示第2實施形態之變形例之雷射加工裝置 之構成的圖。 第12圖為表示第2實施形態之變形例之雷射加工裝置 之構成的圖。 第13圖為表示第2實施形態之變形例之雷射加工裝置 之構成的圖。 第14圖為表示第2實施形態之變形例之雷射加工裝置 之構成的圖。 '第15圖為表示第2實施形態之變形例之雷射加工裝置 之構成的圖。 第16圖為表示第2實施形態之變形例之雷射加工裝置 之構成的圖。 第17圖為表示第2實施形態之變形例之掃描器光學裝 置之構成的圖。 第18圖為表示第2實施形態之其他變形例之掃描器光 學裝置之構成的圖。 【主要元件符號說明】 43 319707 200827078 1、100 雷射加工裝置 2、102 雷射振盪器 3 雷射控制裝置 4 雷射裝置 5、130 AOM(光強度調整手段) 6 動態聚焦透鏡單元(聚焦調整手段) 7 掃描器頭(偏向手段)8、8A、106 控制單元 9A、9B、10 聚光透鏡 12 鍵盤 20 掃描器光學系統 ® 72A X轴馬達 80A、80B DSP 82 失真補正部 84 計.數電路 86 訊號輸出調整部 88 D/A變換器 91 DF馬達 • 98 被加工物(對象物) 103 掃描器光學裝置 104A、104B 鏡 120A 前端部 121 雷射射出口 131 動態聚焦透鏡(聚焦 132 掃描器頭 11 顯示器 13 電腦系統 71A、 71B 掃描器鏡 72B Y軸馬達 81 執道運算部 83 共有貢料記憶體 85 位置比較部 87 馬達控制部 90A至 90C 編碼器 92A至 92C 驅動電路 99 工作台 105 石平台 120 振盪器本體 120B 後端部 122 XYZ轴工作台 丨整手段) 133、160、166 軌(軌構件) 133A至133E 軌片 134、135A、135B 透鏡(光學元件) 44 319707 200827078 136、 136A 保持片 137 138 透鏡保持具 139 140 鳩尾榫 142 150 定位用標記 151 1321A 、1321B掃描器鏡 1322A 1323 框體 1324 1330 力鳥尾溝(導引溝) 1340 1350 前端部 BCS SA至SC 數位脈衝訊號 Q Qs 掃描方向切換開始點 Qe 合流點 台座 執安裝部 位置對合用腳 位置對合用標記 、1322B 馬達 出射口 延出部 插繪條件指令訊號 切換點 319707 45Alternatively, for example, as shown in FIG. 16, the laser processing apparatus 101H may be configured by using Field=Working/Setting 101G 1〇3D. In the second embodiment, the optical rafts are limited to the other ones except for the other ones, and as shown in Fig. 17, as shown in Fig. 17, each of them is required to be 133. The break is the track piece 133Ai133E. As for the measurement and the optical device of the scanner, the outside is shown in Figure 18, so that it can be used to make it into a sweep + Xueshang coffee. In addition, if the light is such that the scanner head 132 is only the end of the rail piece 133A, the mark U0 and the position pairing mark 151 are shown in the 10th to 18th figures. In the case of the positioning guide, the second guide is used for the linear guide shaft bearing, and the green|gt; Further, in the second embodiment, the attachment structure is a dovetail structure, and the optical elements are not above the 133. For example, while the pedestal 137 and the rail extension line or the plurality of ridges are formed, the bottom surface of each of the nq clothes 邛 139 is provided with a concave strip that is engaged with the ridge of the rail 133, and the optical elements are held. Mounted on rail 133 J. : This concave engagement structure is used to mount the optical elements, and is removed from the rail 133.仏 ( ( ( ( 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 于 于 于 于 于 于 于The device 103 is biased toward the wrong straight side and is irradiated to the workpiece. First, the sub-area is not limited thereto. That is, the laser light is arranged on the optical axis (incident side) of the laser light; the scanner head 7 or the scanner optical device (8) is rotated to be set in advance, and when the straight line is defined as the twist, the laser light is made. It is also possible to illuminate at any angle within the range of ςI, for example, within ±90 degrees, or to illuminate the laser light at a horizontal or horizontal angle. The irradiation range of the laser light can be expanded by the configuration of the above-mentioned ? scoop as compared with the configuration in which the scanning thief 7 or the scanner optical device 1 is not rotated. Further, it is configured to additionally set the scanner head 7 or the scanner optical I to :3. The above-mentioned predetermined angle is adjusted to an arbitrary angle of the rotational driving means. [Schematic description of the drawings] Fig. 1 is a view showing the configuration of a laser processing apparatus according to the first embodiment of the present invention. Fig. 2 is a view showing the configuration of a control unit. Fig. 3 is a view for explaining laser scanning including the switching point. Fig. 0 = 4 is a view showing a modification of the control unit shown in Fig. 2. Fig. 5 is a view showing the configuration of a laser processing apparatus according to a second embodiment of the present invention. Fig. 6 is a view showing the laser oscillator of the second embodiment. Fig. 7 is a view showing the configuration of the scanner optical device of the second embodiment 319707 42 200827078. Fig. 8 is a view for explaining the mounting of an optical element to a scanner optical device. Fig. 9 is a view showing the configuration of a laser processing apparatus according to a modification of the second embodiment. Fig. 10 is a view showing the configuration of a laser processing apparatus according to a modification of the second embodiment. Fig. 11 is a view showing the configuration of a laser processing apparatus according to a modification of the second embodiment. Fig. 12 is a view showing the configuration of a laser processing apparatus according to a modification of the second embodiment. Fig. 13 is a view showing the configuration of a laser processing apparatus according to a modification of the second embodiment. Fig. 14 is a view showing the configuration of a laser processing apparatus according to a modification of the second embodiment. Fig. 15 is a view showing the configuration of a laser processing apparatus according to a modification of the second embodiment. Figure 16 is a view showing the configuration of a laser processing apparatus according to a modification of the second embodiment. Fig. 17 is a view showing the configuration of a scanner optical device according to a modification of the second embodiment. Figure 18 is a view showing the configuration of a scanner optical device according to another modification of the second embodiment. [Main component symbol description] 43 319707 200827078 1,100 laser processing device 2, 102 laser oscillator 3 laser control device 4 laser device 5, 130 AOM (light intensity adjustment means) 6 dynamic focus lens unit (focus adjustment Means) 7 Scanner head (biasing means) 8, 8A, 106 Control unit 9A, 9B, 10 Concentrating lens 12 Keyboard 20 Scanner optical system ® 72A X-axis motor 80A, 80B DSP 82 Distortion correction section 84 Counting circuit 86 Signal output adjustment unit 88 D/A converter 91 DF motor • 98 Object (object) 103 Scanner optics 104A, 104B Mirror 120A Front end 121 Laser exit 131 Dynamic focus lens (focus 132 scanner head 11 Display 13 Computer system 71A, 71B Scanner mirror 72B Y-axis motor 81 Execution calculation unit 83 Common tributary memory 85 Position comparison unit 87 Motor control unit 90A to 90C Encoder 92A to 92C Drive circuit 99 Table 105 Stone platform 120 oscillator body 120B rear end 122 XYZ axis table adjustment means) 133, 160, 166 rail (rail member) 133A to 133E rail 134, 135A, 1 35B lens (optical element) 44 319707 200827078 136, 136A holding piece 137 138 lens holder 139 140 dovetail 142 150 positioning mark 151 1321A, 1321B scanner mirror 1322A 1323 frame 1324 1330 force bird tail groove (guide groove) 1340 1350 Front end BCS SA to SC Digital pulse signal Q Qs Scanning direction switching start point Qe Confluence point pedestal mounting position Position pairing foot position pairing mark, 1322B Motor exit port extension part Insertion condition command signal switching point 319707 45

Claims (1)

200827078 十、申請專利範圍: 1· 一種掃描器光學系統,係將從光源所輸出的光照射至對 象物而進行掃描,其係具有: 光強度調整手段,調整前述光的強度;以及 偏向手段,在將前述光朝向前述對象物之預定位置 予以偏向的同時,以從零位階成為預定之掃描速度的方 式將前述光予以偏向;而且 鈉述光強度调整手段係以與由前述偏向手段所致 的光之掃描速度成正比或使前述光之能量密度大致成 疋的方式來調整前述光的強度。 2·如申請專利範圍第1項之掃描器光學系統,其中, 。别述偏向手段係具有·掃描器鏡;驅動該掃描器鏡 的驅動馬達;以及控制該驅動馬達的控制器;而且 係於前述驅動馬達設有輸出因應於前述掃描器鏡 之驅動量的數位脈衝訊號的編碼器;且 ⑩w =述控制器,係計數前述數位脈衝訊號而特定前述 驅動!,且根據該驅動量而執行對於前述職馬達輸出 控制訊號的回饋控制。 3.如申=專利範圍第!項之掃描器光學系統,其中, 前述偏向手段係具有·· 將前述光朝於前述對象物之平面内彼此直交的 :::::軸::之各者進行偏向_偏向手段及 以前述x軸偏向手段騎的精、及《Υ轴偏 319707 46 200827078 手段進行的偏向皆藉由同一控哭 4.如申請專利範圍第3 ::问時控制兩軸.。 有: 先學系統,其中,復具 ♦焦5周整手段’因應於以前述 偏向、及以前述Y轴偏向手 二::手段進行的 光朝前述對象物之照射位 敕丁J偏向所規定的前述 前述光之焦距,·而且 °正、鏡間之距離而調整 偏向、及以前述Μ 焦距調整皆藉由同-控:器 5. 如申請料]範圍第4項之掃描器光學系統, ,述控制器係以因應前述對象物之“中 整前述光之焦點距離的方式控制前述聚隹調敕=而調 6. 如申請專利範圍第1項之掃描ϋ光學I統,其%,1有· 執道運算手段,根據前诚斟金此 、〒,、有· =及運异“述偏向手段進行的前述光之偏向的二 偏向控f手段’根據以前述執道運算手段進行的偏 向執道二及前述光之偏向的檢測值,將以前述偏向手段 進行的前述光之偏向進行回饋控制;而且 ㈤述執迢運异手段與前述偏向控制手段係由各個 個別的CPU所構成。 7. 如申請專利範圍第1項之掃描器光學系統,其中, 當於以前述光進行掃描的預定軌道上存在有使前 47 319707 200827078 述光之掃描方向切換的切換點時, 、 杈從成述切換點之前使前述光之掃描方向朝前 述切換後之掃描方向慢慢變化而掃描,—邊以使前述光 之1描方向切換為前述切換後之掃描方向時之前述光 的知描位置位於應以前述切換後之掃描方向婦描的軌 道上的方式控制前述偏向手段。 8.如中請專利範圍第6項或第7項之掃描器光學系統,盆 中: 八 如述光源係具有振盪雷射光的雷射裝置; 月9述光強度調整手段係調整下述中之至少任一 者:即=前述雷射裝置内建有Q開關時係調整該q開 關、於珂述雷射裝置具有遮蔽雷射光的門時係調整該 門於4述雷射裝置具有強度調變用的音響光學元件時 係调正該曰響光學元件、以及於前述雷射裝置係振靈脈 衝田射光日守則调整振盪周期,以調整前述雷射光之強 I 度。 Μ射力工衣置,將從雷射振盪器所輸出的雷射光照 射至被加工物的加工面而進行雷射加工,其係、具有: 光強度調整手段’調整前述雷射光的強度;以及 、扁向手#又,將鈉述雷射光予以偏向,以從零位階成 為預定之掃描速度而將前述被加工物之加工面以前述 雷射光進行向量掃描;而且 1珂述光強度調整手段係以與由前述偏向手段所致 勺珀込田射光之向量掃描速度成正比或使前述雷射光 319707 48 200827078 之能 度。 量密度大致成一定的方式來調整前述雷射先的強 10.-種掃描器光學裝置,該掃描器光學裝置係具有將 2所輸出的光朝向對象物進行偏向的偏向模組,且2由 前述偏向模組將前述光偏向而將對象物予以掃描,曰直 中, 常田 其 士在將前述偏向模組以於直線狀的執構件的同 正手段可自由拆裝地設置於前述軌構件,而且 將從前述聚焦調整手段所輸出的光予以整 入至前述偏向模組的光學元件可自由設: 述執構件。 。又置於刚 η.如申請專利範圍第1G項之掃描器光學裝置, 1: = :=射至前述聚焦調整單元的雷射光之 於前述心件…知度調整模組可自由拆裝地設置 以如申請專利範圍第1G項之掃描器光學裝置,其中, 係將前述執構件固定於石平台。 】3.如申請專利範圍笫〗? ^ ^ ㈣弟12項之掃描器光學裝置,, 導Λ 用謂謂述光源所輪出的光 V向至刖迷掃描器光學裝風- 兀* 述石平台。的先予兀件一起固定於前 】4.如申請專利範圚第ί2頊之 ^ # μ、, 、之知插器光學裝置,其中, 係將现述偏向模組以前述執構件及前述石;台予 319707 49 200827078 以支持。 15.如申請專鄉目第1G奴掃描H光學H,甘 係將前述軌構件沿著長邊方向 片,且將各執片彼此隔以間隙而排列。_為设數個執 16·如申請專利範圍第1〇項之掃描器光學裳置,复 係於被安裝在前述軌構件的每個構件;:, 裝位置之基準的標記部。 /、有私不文 17.—種雷射加工裝置,其係具有: 掃描H光學裝置,該掃描器光學裝置 ! 、所輸出的光朝向對象物予以偏向的偏向模組 别述偏向触將前述光予以偏向以掃描對象物,^, 在將前述偏向模組固定於直線狀的件的 二:=㈣光源所輸出的光之焦距的聚焦調 設置於前述軌構件,而且將從前述 =贱手段所輸出的光予以整形且輸U前述㈣ I且的光學^件可自由定位地設置於前述執構件;以及 罢雷射裝置’用以將雷射光輸出至前述掃描器光學裝 置;而且 前述掃描器光學裝置係將前述雷射光偏向,而將被 加工物之加工面以前述雷射光掃描而加工。 319707 50200827078 X. Patent Application Range: 1. A scanner optical system that scans light emitted from a light source to an object and has a light intensity adjustment means for adjusting the intensity of the light; and a biasing means, While deflecting the light toward a predetermined position of the object, the light is deflected from a zero order to a predetermined scanning speed; and the sodium light intensity adjusting means is caused by the biasing means The intensity of the light is adjusted such that the scanning speed of the light is proportional or the energy density of the light is substantially 疋. 2. The scanner optical system of claim 1 of the patent scope, wherein. The biasing means has a scanner mirror; a driving motor for driving the scanner mirror; and a controller for controlling the driving motor; and the driving motor is provided with a digital pulse for outputting the driving amount corresponding to the scanner mirror The encoder of the signal; and 10w = the controller, which counts the aforementioned digital pulse signal and specifies the aforementioned driver! And the feedback control for the aforementioned motor output control signal is performed in accordance with the driving amount. 3. Such as Shen = patent scope! The scanner optical system, wherein the biasing means has a direction of directing the light toward the surface of the object:::::axis:: each of the deflecting-biasing means and the x The axis deviation means riding the fine, and the "axis of the 319707 46 200827078 means the bias is controlled by the same control. 4. If you apply for patent range 3: ask to control the two axes. There are: First learn the system, in which the recombination ♦ coke 5 weeks of the whole means 'in response to the above-mentioned bias, and the above-mentioned Y-axis biased to the hand two:: means the light is directed toward the target object The aforementioned focal length of the light, and the adjustment of the deviation between the positive and the distance between the mirrors, and the adjustment of the focal length of the mirror are all controlled by the same:: 5. The scanner optical system of the fourth item of the application material, The controller is controlled by the above-mentioned object in the manner of controlling the focal distance of the light in the above-mentioned object, and is adjusted to 6. According to the scanning scope, the optical system of the first item of the patent application, the %, 1 There is a means of obedience calculation, based on the pre-existing loyalty, 〒, 、, and 运 “ “ “ “ “ “ “ “ “ “ “ “ “ “ 二 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据The detected value of the second light and the deviation of the light is subjected to feedback control by the bias of the light by the biasing means; and (5) the means for performing the transfer and the biasing means are constituted by individual CPUs. 7. The scanner optical system of claim 1, wherein when there is a switching point on the predetermined track scanned by the light, the scanning direction of the light of the first 47 319707 200827078 is switched, Before the switching point, the scanning direction of the light is gradually changed in the scanning direction after the switching, and the scanning position of the light is set when the scanning direction of the light is switched to the scanning direction after the switching. The aforementioned biasing means should be controlled in such a manner as to be on the track of the scanning direction after the switching. 8. In the scanner optical system of item 6 or 7 of the patent scope, in the basin: the light source is a laser device with oscillating laser light; the light intensity adjustment means of the month 9 is adjusted as follows At least one of the following: that is, when the Q switch is built in the laser device, the q switch is adjusted, and when the laser device has a door that shields the laser light, the door is adjusted to have intensity modulation in the laser device In the case of the acoustic optical component used, the squeaking optical component is adjusted, and the oscillation period is adjusted in the laser device of the aforementioned laser device to adjust the intensity of the aforementioned laser light. The Μ 力 工 , , , , , , , , , , , , , , , , , , , , , , , , , , , , 工 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷And flattening the hand# again, deflecting the sodium laser light to scan the processed surface of the workpiece with the laser light from the zero order to a predetermined scanning speed; and 1 illuminating the light intensity adjusting means It is proportional to the vector scanning speed of the scooping light emitted by the aforementioned biasing means or the energy of the aforementioned laser light 319707 48 200827078. The first ten kinds of scanner optical devices are arranged in a manner that the amount of density is substantially constant, and the scanner optical device has a deflection module that deflects the two outputs of the light toward the object, and The deflecting module biases the light to scan the object, and in the middle of the straight line, Mr. Masato is detachably mounted on the rail member in the same manner as the linear member of the deflecting module. Further, the optical element output from the focus adjustment means to the optical element of the deflection module can be freely provided: the actuator member. . Also placed in the scanner optical device as in the first application of the scope of the invention, 1: = := laser light incident on the focus adjustment unit is applied to the core member... the degree adjustment module is freely detachable In the scanner optical device of claim 1G, wherein the aforementioned member is fixed to the stone platform. 】 3. If the patent application scope 笫 〗? ^ ^ (4) The 12th scanner optical device, guide Λ Λ 述 述 述 Λ Λ Λ Λ Λ Λ Λ V V V V V V V V V V V V V V V V V V V V V V V V V V V The first component is fixed together in the front. 4. As for the application of the patent, the #μ,,,,,,,,,,,,,,,,,,, ; Taiwan to 319707 49 200827078 to support. 15. If the application is directed to the 1G slave scanning H-optical H, the gantry member is arranged along the longitudinal direction of the rail member, and the respective slabs are arranged with a gap therebetween. _ is a number of actuators. 16. The scanner optical dressing according to the first aspect of the patent application is applied to each member mounted on the rail member;: a marking portion on which the position is mounted. /, private article 17. A type of laser processing device, which has: a scanning H optical device, the scanner optical device!, the output light is biased toward the object, the biasing module is biased toward the above The light is deflected to scan the object, and the focus of the focal length of the light output by the second:=(four) light source that fixes the deflection module to the linear member is set to the rail member, and the above-mentioned =贱 means The output light is shaped and the U (the first) I and the optical components are freely positionably disposed on the foregoing member; and the laser device is used to output the laser light to the scanner optical device; and the aforementioned scanner The optical device deflects the aforementioned laser light and processes the processed surface of the workpiece by scanning with the aforementioned laser light. 319707 50
TW096141139A 2006-11-02 2007-11-01 Scanner optical system, laser processing apparatus, and scanner optical device TW200827078A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006298659 2006-11-02
JP2006316641 2006-11-24

Publications (1)

Publication Number Publication Date
TW200827078A true TW200827078A (en) 2008-07-01

Family

ID=39344256

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096141139A TW200827078A (en) 2006-11-02 2007-11-01 Scanner optical system, laser processing apparatus, and scanner optical device

Country Status (3)

Country Link
JP (1) JPWO2008053915A1 (en)
TW (1) TW200827078A (en)
WO (1) WO2008053915A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029872A (en) * 2008-07-25 2010-02-12 Nippon Sharyo Seizo Kaisha Ltd Laser beam machining apparatus
JP4612733B2 (en) 2008-12-24 2011-01-12 東芝機械株式会社 Pulse laser processing equipment
JP5132726B2 (en) * 2008-12-24 2013-01-30 東芝機械株式会社 Pulse laser processing apparatus and pulse laser processing method
WO2011016176A1 (en) * 2009-08-03 2011-02-10 東芝機械株式会社 Pulse laser machining apparatus and pulse laser machining method
JP5632662B2 (en) * 2010-06-24 2014-11-26 東芝機械株式会社 Pulsed laser processing method
JP5634765B2 (en) * 2010-06-24 2014-12-03 東芝機械株式会社 Pulse laser machining method and pulse laser machining data creation method
JP5731868B2 (en) * 2011-03-24 2015-06-10 ビアメカニクス株式会社 Laser processing method and processing apparatus
KR101278044B1 (en) * 2011-08-08 2013-06-24 주식회사 엘티에스 Method for cutting electrode of secondary battery using laser
JP5967913B2 (en) * 2011-12-08 2016-08-10 キヤノン株式会社 Laser processing apparatus, laser processing method, and inkjet head substrate
JP5574354B2 (en) 2012-03-09 2014-08-20 株式会社トヨコー Coating film removing method and laser coating film removing apparatus
CN105073333B (en) * 2013-03-13 2017-10-31 应用材料公司 laser ablation platform for solar cell
US10069271B2 (en) 2014-06-02 2018-09-04 Nlight, Inc. Scalable high power fiber laser
JP2016093832A (en) * 2014-11-17 2016-05-26 トリニティ工業株式会社 Laser decoration apparatus and manufacturing method of decorative part
US9837783B2 (en) 2015-01-26 2017-12-05 Nlight, Inc. High-power, single-mode fiber sources
CN107430269B (en) * 2015-03-06 2020-10-02 英特尔公司 Acousto-optic deflector and mirror for laser beam steering
US10050404B2 (en) 2015-03-26 2018-08-14 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
KR101724194B1 (en) * 2015-04-06 2017-04-06 박재길 Marking system using fiber laser
JP6657640B2 (en) * 2015-07-31 2020-03-04 ブラザー工業株式会社 Laser processing apparatus and control program for laser processing apparatus
JP6743136B2 (en) 2015-09-24 2020-08-19 エヌライト,インコーポレーテッド Beam Parameter Product (BPP) Control by Changing Fiber to Fiber Angle
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
EP3380266B1 (en) * 2015-11-23 2021-08-11 NLIGHT, Inc. Fine-scale temporal control for laser material processing
CN108602159B (en) * 2016-01-28 2020-09-29 浜松光子学株式会社 Laser processing device and laser output device
JP6925778B2 (en) * 2016-01-28 2021-08-25 浜松ホトニクス株式会社 Laser output device and laser processing device
US10673197B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based optical modulator
US10673199B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based saturable absorber
US10673198B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-coupled laser with time varying beam characteristics
US10295845B2 (en) 2016-09-29 2019-05-21 Nlight, Inc. Adjustable beam characteristics
KR102610675B1 (en) * 2017-02-20 2023-12-07 가부시키가이샤 니콘 Pattern drawing device and pattern drawing method
JP6649328B2 (en) * 2017-09-01 2020-02-19 東芝機械株式会社 Laser processing apparatus and laser processing method
JP6756755B2 (en) * 2018-02-20 2020-09-16 フタバ産業株式会社 Joining method
JP2021013951A (en) * 2019-07-12 2021-02-12 株式会社ディスコ Laser processing device
WO2022180808A1 (en) * 2021-02-26 2022-09-01 株式会社ニコン Optical processing device
JP2023006154A (en) * 2021-06-30 2023-01-18 ブラザー工業株式会社 Laser processing device and acceleration control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179714A (en) * 1984-09-27 1986-04-23 Mitsubishi Electric Corp Laser hardening device
JPH02121789A (en) * 1988-10-31 1990-05-09 Komatsu Ltd Optical scan laser beam machine
JP3922686B2 (en) * 2001-12-13 2007-05-30 ヤマザキマザック株式会社 Laser quenching control method and laser quenching apparatus

Also Published As

Publication number Publication date
WO2008053915A1 (en) 2008-05-08
JPWO2008053915A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
TW200827078A (en) Scanner optical system, laser processing apparatus, and scanner optical device
JP4804911B2 (en) Laser processing equipment
TW436358B (en) Laser processing machine
JP5670647B2 (en) Processing object cutting method
KR100753380B1 (en) Image enhancement for multiple exposure beams
KR20050059103A (en) Laser processing method and processing device
JP5301955B2 (en) Defect correction device
CN109732223A (en) The device of wafer cutting
TWI228816B (en) Chip scale marker and marking method
KR20180119553A (en) Laser light irradiation apparatus and laser light irradiation method
CN102123817A (en) Chamfering apparatus
KR101420565B1 (en) Laser processing apparatus and laser processing method
JPH11170072A (en) Method and device for laser beam machining and for forming circuit of nonconductive transparent substrate
JP2006287183A (en) Laser irradiation equipment of laser annealing device
CN105618928B (en) Laser processing device
JP2000263261A (en) Laser beam machining device and method of laser beam machining using same device
JP2006049635A (en) Method and apparatus for laser irradiation and method for laser annealing
KR20210070909A (en) Laser beam adjusting mechanism and laser machining apparatus
KR20150118017A (en) Exposing apparatus and method for fixing the same
KR102459817B1 (en) Laser crystalling apparatus
JP6013708B2 (en) Posture correction device
JP2005007427A (en) Laser marking method
JP2005262260A (en) Laser beam machining apparatus and laser beam machining control program
JP2003248184A (en) Beam mode shaping optical system and aligner
JP2004317861A (en) Laser processing system and laser processing method