WO2022162810A1 - ライダ装置及び送受分離装置 - Google Patents

ライダ装置及び送受分離装置 Download PDF

Info

Publication number
WO2022162810A1
WO2022162810A1 PCT/JP2021/002938 JP2021002938W WO2022162810A1 WO 2022162810 A1 WO2022162810 A1 WO 2022162810A1 JP 2021002938 W JP2021002938 W JP 2021002938W WO 2022162810 A1 WO2022162810 A1 WO 2022162810A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
fiber cable
optical fiber
signal
Prior art date
Application number
PCT/JP2021/002938
Other languages
English (en)
French (fr)
Inventor
美緒 西田
賢一 廣澤
隆行 柳澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180089335.3A priority Critical patent/CN116670540A/zh
Priority to EP21922830.1A priority patent/EP4266081A4/en
Priority to JP2021529379A priority patent/JP7019870B1/ja
Priority to PCT/JP2021/002938 priority patent/WO2022162810A1/ja
Publication of WO2022162810A1 publication Critical patent/WO2022162810A1/ja
Priority to US18/197,917 priority patent/US20230280448A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present disclosure relates to a lidar device that emits signal light into space, receives scattered light from a measurement target that exists in space, and calculates the distance to the measurement target and the speed of the measurement target.
  • Patent Document 1 discloses a device that switches the irradiation direction of a laser beam with an optical switch, emits laser beams in multiple directions, receives scattered light from a measurement target, and calculates the distance to the measurement target and the speed of the measurement target.
  • a static lidar device is shown.
  • the present disclosure has been made in view of the above points, and is a lidar apparatus that emits laser light in a plurality of directions, receives scattered light from a measurement target, and calculates the distance to the measurement target and the speed of the measurement target.
  • An object of the present invention is to obtain a lidar apparatus in which the signal-to-noise ratio of a received signal based on scattered light from a measurement target is increased.
  • a lidar device includes a light source that outputs laser light, a demultiplexer/divider that receives the laser light output from the light source and outputs local oscillation light and a plurality of signal lights, and a plurality of amplifiers corresponding to each of the plurality of signal lights output from the device and amplifying the corresponding signal lights; and each corresponding to each of the plurality of amplifiers and transmitting the signal lights output from the corresponding amplifiers.
  • a plurality of optical transceivers that radiate into space as light and receive scattered light from measurement targets that exist in space as received light;
  • a signal processing device for calculating the distance to a measurement target and properties of the measurement target based on the light, and an optical transmission/reception device corresponding to each of a plurality of amplifiers and a plurality of optical transmission/reception devices, and corresponding to transmission light from the plurality of amplifiers.
  • a plurality of transmit/receive demultiplexers coupled to the device for coupling received light received by the plurality of optical transceivers to corresponding signal processors.
  • transmission light is separated by the demultiplexer/divider before the transmission/reception separation device, it is possible to prevent unnecessary scattered light from the demultiplexer/divider from being mixed into the received light. can increase the signal-to-noise ratio of the received signal based on
  • FIG. 1 is a configuration diagram showing a lidar device according to Embodiment 1;
  • FIG. FIG. 10 is a configuration diagram showing a lidar device according to Embodiment 2;
  • FIG. 11 is a configuration diagram showing a lidar device according to Embodiment 3;
  • FIG. 11 is a configuration diagram showing a lidar device according to Embodiment 4;
  • FIG. 11 is a configuration diagram showing a transmission/reception separation device in a lidar device according to Embodiment 4;
  • FIG. 11 is a configuration diagram showing a lidar device according to Embodiment 5;
  • FIG. 12 is a configuration diagram showing a lidar device according to Embodiment 6;
  • Embodiment 1 A lidar (LIDAR: Light Detection and Ranging, Laser Imaging Detection and Ranging) apparatus according to Embodiment 1 will be described with reference to FIG.
  • the lidar apparatus according to the first embodiment is intended for a monostatic lidar apparatus that emits laser light in a plurality of directions, receives scattered light from a measurement target, and calculates the distance to the measurement target and the properties of the measurement target. do.
  • the target is a lidar apparatus having a plurality of optical transceivers that radiate signal light by laser light into space as transmission light and receive scattered light from a measurement target existing in space as reception light.
  • the property of the measurement target is the speed of the wind, which is the measurement target, in the case of a Doppler lidar device for wind measurement. In the case of , it is the contrast of the image of the measurement target, which is the measurement target, and in the case of the lidar device used for gas concentration measurement that measures the concentration distribution of the measurement target gas, it is the concentration of the measurement target gas, which is the measurement target. be.
  • the lidar device includes a light source 1, a demultiplexer/divider 2 having a demultiplexer 3 and a divider 4, a plurality of amplifiers 5, a plurality of transmission/reception separation devices 6, a plurality of optical transmission/reception devices 7, and signal processing. a device 8;
  • the plurality of amplifiers 5, the plurality of transmitting/receiving separation devices 6, and the plurality of optical transmitting/receiving devices 7 each have a first to a third.
  • Each of the first to third items is distinguished by adding a to c after the reference numerals, but when simplifying the description, for example, when describing common items, the additional a to c are omitted from the description. do.
  • the number of each of the amplifier 5, the transmission/reception separation device 6, and the optical transmission/reception device 7 is three in the first embodiment, the number may be two, or four or more.
  • the same number of amplifiers 5 and transmission/reception separation devices 6 as the number of optical transmission/reception devices 7 are provided for emitting laser light in a plurality of directions and receiving scattered light from the measurement target. That is, the optical transmitter/receiver 7, the amplifier 5, and the transmitter/receiver separator 6 are provided correspondingly.
  • the first optical transmission/reception device 7a, the first amplifier 5a, and the first transmission/reception separation device 6a correspond to each other
  • the second optical transmission/reception device 7b, the second amplifier 5b, and the second transmission/reception separation device correspond to each other
  • 6b corresponds
  • the third optical transmitter/receiver 7c, the third amplifier 5c, and the third transmission/reception separating device 6c correspond.
  • the light source 1, the demultiplexer 3, the distributor 4, the plurality of amplifiers 5, the plurality of transmission/reception separation devices 6, and the signal processing device 8 are connected by optical transmission means, which are optical fiber cables 9 to 12 and 14, respectively. be done.
  • the optical transmission means, which are the optical fiber cables 9 to 12, 14, are not limited to optical fiber cables, and the light source 1, the demultiplexer 3, the distributor 4, the plurality of amplifiers 5, and the plurality of transmission/reception separating devices 6 and the signal processing device 8 may be optically coupled by free space propagation.
  • Optical coupling between the plurality of transmitting/receiving separating devices 6 and the plurality of optical transmitting/receiving devices 7 is connected by free space propagation, and is represented as optical transmission means 13 in the figure.
  • a light source 1 outputs a laser beam.
  • the light source 1 outputs a laser beam of a single wavelength or a plurality of laser beams of different wavelengths.
  • the laser beams are output by changing the wavelengths with time, or the laser beams with a plurality of different wavelengths are output at the same time.
  • the light source 1 may be composed of a semiconductor laser, a solid-state laser, or a combination thereof, in addition to the fiber laser described above.
  • the demultiplexer 3 divides the laser light output from the light source 1 and transmitted via the optical fiber cable 9 into signal light and local oscillation light.
  • the division ratio of the signal light and the local oscillation light is a constant intensity ratio determined in advance by the distributor 4 and the signal processing device 8, eg, 9:1.
  • the demultiplexer 3 is a beam splitter composed of an optical fiber coupler, a half mirror, a lens, and the like.
  • the distributor 4 distributes the signal light from the demultiplexer 3 into a plurality of signal lights and outputs them. That is, the splitter 4 splits the signal light transmitted through the optical fiber cable 10a from the demultiplexer 3, splits the signal light from the first signal light to the third signal light, and outputs the third signal light.
  • the first signal light is input to the first amplifier 5a via the optical fiber cable 11a
  • the second signal light is input to the second amplifier 5b via the optical fiber cable 11b
  • the third signal light is It is input to the third amplifier 5c via the optical fiber cable 11c.
  • the distributor 4 uses a temporal distribution means such as an optical switch.
  • the splitter 4 like the demultiplexer 3, is composed of an optical fiber coupler, a half mirror, a lens, etc. for splitting the first signal light to the third signal light at a constant intensity ratio and outputting it. beam splitter.
  • the splitter 4 may be a beam splitter that splits the first signal light to the third signal light according to polarization and outputs the split light.
  • the distributor 4 uses means for separating according to wavelengths. That is, the distributor 4 selects and distributes the light input from the light source 1 for each wavelength so that it is input to the amplifiers 5a to 5c capable of amplifying the wavelength.
  • the splitter 4 consists of an optical power splitter, an optical switch, a wavelength demultiplexer, or a combination thereof. Note that the distributor 4 may be the same distributor as the distributor for the light source 1 that outputs laser light of a single wavelength.
  • the demultiplexer 3 and the distributor 4 constitute a demultiplexer/divider 2 that receives the laser light output from the light source 1 and outputs local oscillation light and a plurality of signal lights.
  • the amplifier 5 amplifies the intensity of the signal light distributed by the distributor 4 . That is, the first signal light distributed by the distributor 4 and transmitted via the optical fiber cable 11a is amplified by the first amplifier 5a. The second signal light distributed by the distributor 4 and transmitted via the optical fiber cable 11b is amplified by the second amplifier 5b. The third signal light distributed by the distributor 4 and transmitted via the optical fiber cable 11c is amplified by the third amplifier 5c.
  • the amplifier 5 a solid-state laser amplifier such as an optical fiber amplifier, a waveguide amplifier, a slab amplifier, or a semiconductor optical amplifier is used. Since the present lidar apparatus uses the first amplifier 5a to the third amplifier 5c and a plurality of amplifiers, the first amplifier 5a to the third amplifier 5c may be used in combination with different types of amplifiers.
  • the amplifier 5 is an LMA fiber amplifier.
  • an LMA fiber as the optical fiber cable 12 has the advantage of being able to propagate light of high intensity.
  • an LMA fiber amplifier is used as the amplifier 5, the number of parts can be reduced.
  • the optical fiber cable 12 does not necessarily have to be an LMA fiber. Further, when a solid-state laser amplifier such as a slab type amplifier is used as the amplifier 5 and the intensity of the light transmitted through the optical fiber cable 12 is high, the LMA fiber does not necessarily have to be used as the optical fiber cable 12 . However, in order to suppress transmission loss during high-intensity amplification, it is preferable to use an LMA fiber as the optical fiber cable 12 .
  • the transmission/reception separation device 6 optically couples the amplifier 5 and the optical transmission/reception device 7 when the transmission light is emitted from the optical transmission/reception device 7, and the optical transmission/reception device 7 and the signal processing device 8 are connected when the reception light is received by the optical transmission/reception device 7. and are optically coupled. That is, when the light input source is the amplifier 5, the light transmitting/receiving separating device 6 switches the output destination according to the light input source. If it is the transmission/reception device 7 , the light output destination is switched to the signal processing device 8 .
  • the transmission/reception separating device 6 is an optical circulator composed of an isolator using a Faraday element and a polarizing beam splitter, an optical circulator composed of a polarizing beam splitter and a quarter-wave plate, or an optical circulator composed of a combination thereof. be.
  • the first transmission/reception separation device 6a optically transmits the first signal light output from the first amplifier 5a and transmitted via the optical fiber cable 12a when the transmission light is emitted by the first optical transmission/reception device 7a.
  • means (free space propagation) 13a the first signal light is input to the first optical transmitter/receiver 7a, and when the scattered light is received by the first optical transmitter/receiver 7a, the first optical transmitter/receiver 7a
  • the first received light output and transmitted via the optical transmission means (free space propagation) 13 a is output to the optical fiber cable 14 a and the first received light is input to the signal processing device 8 .
  • the second transmission/reception separation device 6b optically transmits the second signal light output from the second amplifier 5b and transmitted via the optical fiber cable 12b when the transmission light is emitted from the second optical transmission/reception device 7b.
  • means (free space propagation) 13b the second signal light is input to the second optical transmitter/receiver 7b, and when the second optical transmitter/receiver 7b receives the scattered light, the second optical transmitter/receiver 7b
  • the second received light that is output and transmitted via the optical transmission means (free space propagation) 13b is output to the optical fiber cable 14b, and the second received light is input to the signal processing device 8.
  • the third transmission/reception separation device 6c optically transmits the third signal light output from the third amplifier 5c and transmitted via the optical fiber cable 12c when the transmission light is emitted by the third optical transmission/reception device 7c.
  • means (free space propagation) 13c the third signal light is input to the optical transmitter/receiver 7c, and is output from the third optical transmitter/receiver 7c when the scattered light is received by the third optical transmitter/receiver 7c,
  • the third received light transmitted through the optical transmission means (free space propagation) 13 c is output to the optical fiber cable 14 c and input to the signal processing device 8 .
  • the optical transmitter/receiver 7 radiates the signal light output from the amplifier 5 into space as transmission light, and receives scattered light from a measurement target existing in space as reception light.
  • the optical transmitter/receiver 7 is like a so-called optical telescope and has an optical antenna composed of a plurality of refracting lenses or a plurality of mirrors.
  • the first optical transmission/reception device 7a is connected to the first transmission/reception separation device 6a via optical transmission means (free space propagation) 13a
  • the second optical transmission/reception device 7b is connected via optical transmission means (free space propagation) 13b
  • the third optical transmitter/receiver 7c is connected to the third transmitter/receiver separator 6c via an optical transmission means (free space propagation) 13c.
  • the first optical transmitter-receiver 7a to the third optical transmitter-receiver 7c are installed so that their radiation directions are different from each other.
  • the signal processing device 8 analyzes the received light from the optical transmitter/receiver 7 and the local oscillation light from the demultiplexer 3, and calculates the distance to the measurement target existing in space and the properties of the measurement target. That is, the signal processing device 8 transmits the first received light based on the scattered light from the measurement target received by the first optical transmitter/receiver 7a to the optical transmission means (free space propagation) 13a and the first transmission/reception separation device 6a. , and the first received light input via the optical fiber cable 14a and the local oscillation light input via the optical fiber cable 10b from the demultiplexer 3, the distance to the measurement target and the measurement Calculate target properties.
  • the signal processing device 8 transmits the second received light based on the scattered light from the measurement target received by the second optical transmitter/receiver 7b to the optical transmission means (free space propagation) 13b and the second transmitter/receiver separator. 6b, and the second received light input via the optical fiber cable 14b and the local oscillation light input via the optical fiber cable 10b from the demultiplexer 3, the distance to the measurement target and Calculate the properties of the measurement target.
  • the signal processing device 8 transmits the third received light based on the scattered light from the measurement target received by the third optical transmitter/receiver 7c to the optical transmission means (free space propagation) 13c and the third transmission/reception separation device 6c. , and the third received light input via the optical fiber cable 14c and the local oscillation light input via the optical fiber cable 10b from the demultiplexer 3, the distance to the measurement target and the measurement Calculate target properties.
  • the signal processing device 8 includes a heterodyne receiver, an A/D converter, a fast Fourier transform device, a frequency shift analysis device, and a speed calculation device. It is configured to include
  • the heterodyne receiver causes the local oscillation light from the demultiplexer 3 and the received light from the transmission/reception separation device 6 to interfere with each other, and detects a signal with a balanced detector, that is, performs heterodyne detection.
  • the A/D converter digitally converts the analog electrical signal converted by the heterodyne receiver.
  • a Fast Fourier Transform device performs a Fast Fourier Transform (FFT) on the digital electrical signal from the A/D converter.
  • the frequency shift analysis device obtains the Doppler shift amount of the scattered light by calculating the peak frequency from the signal spectrum Fourier transformed by the fast Fourier transform device.
  • the speed calculation device calculates the speed of the measurement target from the Doppler shift amount obtained by the frequency shift analysis device.
  • the fast Fourier transform device, the frequency shift analysis device, and the speed calculation device are composed of a CPU (Central Processing Unit) and a memory, and the speed of the measurement target is calculated by the CPU executing a program stored in the memory.
  • the signal processing device 8 has been described above as performing processing using heterodyne detection, processing using a detection method other than heterodyne detection, such as video detection, may be used.
  • a laser beam output from a light source 1 per unit time is split by a demultiplexer 3, and the demultiplexed signal light is transmitted to a splitter 4 via an optical fiber cable 10a.
  • the first signal light is sent to the first amplifier 5a through the optical fiber cable 11a
  • the second signal light is sent to the second amplifier 5b through the optical fiber cable 11b
  • the third signal light is sent. are sequentially transmitted to the third amplifier 5c via the optical fiber cable 11c.
  • the amplifier 5 receives the signal light distributed from the distributor 4 and amplifies the signal light.
  • the transmission/reception separation device 6 outputs the signal light amplified by the amplifier 5 and propagated through the optical fiber cable 12 to the optical transmission means (free space propagation) 13 so as to be input to the optical transmission/reception device 7 .
  • the first transmission/reception separation device 6a optically transmits the first signal light that has been amplified by the first amplifier 5a and propagated through the optical fiber cable 12a so that it is input to the first optical transmission/reception device 7a. Output to means (free space propagation) 13a.
  • the second transmission/reception separation device 6b transmits the second signal light, which has been amplified by the second amplifier 5b and propagated through the optical fiber cable 12b, to the second optical transmission/reception device 7b. free space propagation) 13b.
  • the third transmission/reception separation device 6c transmits the third signal light, which has been amplified by the third amplifier 5c and propagated through the optical fiber cable 12a, to the third optical transmission/reception device 7c. free space propagation) 13c.
  • the optical transmitter/receiver 7 radiates into space the signal light input via the optical transmission means 13 as transmission light. That is, the first optical transceiver 7a emits the first transmission light, the second optical transceiver 7b emits the second transmission light, and the third optical transceiver 7c emits the third transmission light. radiate.
  • the first transmission light from the first optical transmission/reception device 7a, the second transmission light from the second optical transmission/reception device 7b, and the third transmission light from the third optical transmission/reception device 7c are transmitted into the space. radiate in different directions.
  • transmitted light is scattered by the measurement target.
  • This scattered light is collected by the optical transmitter/receiver 7 and transmitted as received light to the transmitter/receiver separator 6 via the optical transmission means (free space propagation) 13 .
  • the transmission/reception separation device 6 outputs the received light from the optical transmission/reception device 7 propagating through the optical transmission means (free space propagation) 13 to the optical fiber cable 14 so as to be input to the signal processing device 8 .
  • the first transmitting/receiving separating device 6a transmits the first received light from the first optical transmitting/receiving device 7a propagating through the optical transmission means (free space propagation) 13a so as to be input to the signal processing device 8. Output to the fiber cable 14a.
  • the second transmitting/receiving separating device 6b transmits the second received light from the second optical transmitting/receiving device 7b propagated through the optical transmission means (free space propagation) 13b to the signal processing device 8 via an optical fiber cable. 14b.
  • the third transmitting/receiving separating device 6c transmits the third received light from the third optical transmitting/receiving device 7c propagating through the optical transmission means (free space propagation) 13ca to the signal processing device 8 by an optical fiber cable. 14c.
  • the signal processor 8 receives light from the optical transmitter/receiver 7 transmitted via the optical fiber cable 14, the transmitter/receiver separator 6, and the optical transmission means (free space propagation) 13, and transmits the light via the optical fiber cable 10b. Analysis is performed based on the local oscillation light from the demultiplexer 3, and the distance to the measurement target existing in the space and the properties of the measurement target are calculated.
  • the lidar apparatus provides the corresponding amplifiers 5a to 5c and the transmission/reception separating devices 6a to 6a to 7c for the plurality of optical transmitter/receivers 7a to 7c, respectively. 6c is provided, and a splitter 4 for outputting signal light to each of the optical transmitter-receivers 7a-7c is arranged in front of the amplifiers 5a-5c.
  • the splitter 4 is arranged in front of the amplifiers 5a to 5c.
  • the amplification factor in ⁇ 5c can be kept high. Furthermore, it is possible to keep the intensity of the light input to the distributor 4 low, and use an optical switch with low light resistance as the distributor 4 while maintaining a high output intensity.
  • Embodiment 2 A lidar apparatus according to Embodiment 2 will be described with reference to FIG. In FIG. 2, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the lidar apparatus according to the second embodiment distributes A pre-amplifier 15 is arranged for amplifying the received signal light.
  • the lidar apparatus according to the second embodiment can also obtain the same effect as the lidar apparatus according to the first embodiment. Moreover, the presence of the preamplifier 15 can suppress the influence of attenuation due to disturbance and propagation, and the amplifiers 5a to 5c can obtain a stable gain and improve the SN ratio.
  • Embodiment 3 A lidar apparatus according to Embodiment 3 will be described with reference to FIG. In FIG. 3, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the lidar apparatus according to the third embodiment is different from the lidar apparatus according to the first embodiment in that an optical modulator 16 is arranged between the demultiplexer 3 and the distributor 4 that constitute the demultiplexer/divider 2. It is what I did.
  • the optical modulator 16 is, for example, an LN (lithium niobate, LiNbO 3 ) modulator that temporally optically modulates the signal light split by the demultiplexer 3 .
  • the lidar apparatus according to the third embodiment can also obtain the same effect as the lidar apparatus according to the first embodiment.
  • the arrangement of the optical modulator 16 firstly allows high peak energy to be obtained by pulsing to improve the SN ratio, and secondly heterodyne detection can be used by frequency modulation.
  • Embodiment 4 A lidar apparatus according to Embodiment 4 will be described with reference to FIGS. 4 and 5.
  • FIG. 4 and 5, the same reference numerals as those in FIG. 1 indicate the same or corresponding parts.
  • the lidar device according to the fourth embodiment differs from the lidar device according to the first embodiment in that the transmission/reception separation device 6 includes a numerical aperture converter 22.
  • the use of the device 6 is different in that the LMA fiber is used as the optical fiber cable 12 for optically coupling the amplifier 5 and the transmitting/receiving separating device 6 .
  • the light source 1, the demultiplexer 3, the distributor 4, the plurality of optical transmission/reception devices 7, and the signal processing device 8 in the lidar device according to the fourth embodiment correspond to the light source 1 in the lidar device according to the first embodiment.
  • the demultiplexer 3 , the distributor 4 , the plurality of optical transmission/reception devices 7 , and the signal processing device 8 correspond to the light source 1 in the lidar device according to the first embodiment.
  • the lidar apparatus uses an LMA fiber as the optical fiber cable 12 for optically coupling the amplifier 5 and the transmission/reception separation device 6, the light intensity from the amplifier 5 to the transmission/reception separation device 6 is It is possible to suppress the occurrence of light loss during transmission due to nonlinear phenomena, especially stimulated Brillouin scattering, caused by the optical transmission medium in the section where the intensity density is the highest.
  • An LMA fiber amplifier or a solid-state laser amplifier such as a slab type amplifier is used as the amplifier 5 .
  • the optical fiber cable 14 for optically coupling the transmission/reception separating device 6 and the signal processing device 8 may have a relatively low strength for optical transmission. Cost can be reduced by using an optical fiber having a small effective area.
  • the fiber optic cable 14 may use LMA fibers depending on the desired degree of beam quality or required cost.
  • an optical fiber cable 9 for optically coupling the light source 1 and the demultiplexer 3 an optical fiber cable 10a for optically coupling the demultiplexer 3 and the splitter 4, and a demultiplexer, which require relatively low intensity for optical transmission.
  • the optical fiber cable 10b for optically coupling the device 3 and the signal processing device 8, and the optical fiber cable 11 for optically coupling the distributor 4 and the amplifier 5 are made of ordinary optical fibers, thereby reducing the cost. can be reduced.
  • the fiber optic cables 10a, 10b, 11, 14 may use LMA fibers depending on the required degree of beam quality or the required cost.
  • the transmission/reception separation device 6 and the optical transmission/reception device 7 are optically coupled by free space propagation (optical transmission means 13).
  • the LMA fiber used for the optical fiber cable 12 and the ordinary optical fiber used for the optical fiber cable 14 are optical transmission means having different effective cross-sectional areas with respect to the fundamental mode, that is, different numerical apertures. Therefore, the transmission/reception separation device 6 outputs the signal light from the amplifier 5 propagating through the optical fiber cable 12 to the optical transmission means (free space propagation) 13 so as to be input to the optical transmission/reception device 7.
  • a separator having a receiving optical system optical path for outputting the received light from the optical transmitting/receiving device 7 propagating through the optical transmission means (free space propagation) 13 to the optical fiber cable 14 so as to be input to the signal processing device 8 and a separator for performing different numerical aperture conversions on the optical path of the signal light system and the optical path of the reception light system.
  • the transmission/reception separation device 6 is an optical circulator composed of a polarizing beam splitter (PBS) 19, a lens 20, a 1/4 ⁇ wavelength plate 21, and a numerical aperture converter 22, as shown in FIG. .
  • the polarization beam splitter 19 , the lens 20 and the 1/4 ⁇ wavelength plate 21 amplify the signal light propagated through the optical fiber cable 12 by the corresponding amplifier 5 and transmit the signal light so as to be input to the corresponding optical transmitter/receiver 7 .
  • a separator having an optical path is constructed.
  • fiber optic cable 12 is optically coupled to polarizing beam splitter 19 .
  • fiber optic cable 14 is optically coupled to numerical aperture converter 22 .
  • the polarizing beam splitter 19, the lens 20, and the 1/4 ⁇ wavelength plate 21 constituting the separator are configured to mutually convert the numerical aperture of the optical fiber cable 12 and the numerical aperture of the optical transmitter/receiver 7.
  • the numerical aperture is converted into the numerical aperture of the optical transmitter/receiver 7 and output to the optical transmission means 13 .
  • the received light from the optical transmitting/receiving device 7 propagating through the optical transmission means 13 is transmitted through the 1/4 ⁇ wavelength plate 21, the lens 20, and the polarization beam splitter 19 to the optical transmitting/receiving device.
  • the numerical aperture of the LMA fiber is converted from the numerical aperture of 7 to the numerical aperture of the LMA fiber. is output to the optical fiber cable 14 so as to be input to .
  • Numerical aperture converter 22 is a numerical aperture conversion lens.
  • the transmission/reception separating device 6 allows the signal light propagated through the optical fiber cable 12 to pass through the polarization beam splitter 19, the lens 20, the 1/4 ⁇ wavelength plate 21, and the numerical aperture of the optical fiber cable 12, which is an LMA fiber. is converted to the numerical aperture of the optical transmitter/receiver 7 and output to the optical transmission means 13 so as to be input to the optical transmitter/receiver 7 . Further, when the optical transmission/reception device 7 receives the received light by the transmission/reception separation device 6, the received light from the optical transmission/reception device 7 propagating through the optical transmission means 13 is divided into 1/4 ⁇ wavelength plate 21-lens 20-polarized light.
  • the numerical aperture of the optical transceiver 7 is converted into the numerical aperture of the LMA fiber, and the numerical aperture of the LMA fiber is converted into the numerical aperture of the optical fiber cable 14, which is a normal optical fiber. , and is output to the optical fiber cable 14 so as to be input to the signal processing device 8 .
  • the signal light amplified by the amplifier and propagating through the optical fiber cable is separated from the numerical aperture of the optical fiber cable 12, which is an LMA fiber, by the polarization beam splitter 19-lens 20-1/4 ⁇ wavelength plate 21 in the transmission/reception separating device 6. It is converted into the numerical aperture of the optical transmitter/receiver 7 and output to the optical transmission means 13 so as to be input to the optical transmitter/receiver 7 .
  • the optical transmitter/receiver 7 when the optical transmitter/receiver 7 receives the received light, the received light from the optical transmitter/receiver 7 propagating through the optical transmission means 13 is transmitted through the 1/4 ⁇ wavelength plate 21-lens 20-polarization beam splitter 19 to the optical transmitter-receiver. 7 to the numerical aperture of the LMA fiber, the numerical aperture converter 22 converts the numerical aperture of the LMA fiber into the numerical aperture of the optical fiber cable 14, which is a normal optical fiber, and inputs it to the signal processing device 8. is output to the optical fiber cable 14 as follows.
  • the same effects as those of the lidar apparatus according to the first embodiment can be obtained.
  • Optical loss during transmission of the optical signal to the device 6 can be suppressed, and the transmission/reception separation device 6 is configured to perform different numerical aperture conversions for the transmission light and the reception light, respectively. It is possible to prevent the loss of light due to the mismatch of the numerical aperture when inputting to the separating device 6 and when inputting the received light to the optical fiber cable 14, and as a result suppressing the deterioration of the SN ratio.
  • the numerical aperture converter 22 is arranged between the polarizing beam splitter 19 and the optical fiber cable 14, but the numerical aperture converter 22 is arranged between the optical fiber cable 12 and the polarizing beam splitter 19 may be arranged.
  • the numerical aperture converter 22 is a numerical aperture conversion lens that converts the numerical aperture of the optical fiber cable 12 , which is an LMA fiber, into the numerical aperture of the optical transmitter/receiver 7 .
  • the numerical aperture converter 22 may be arranged both between the polarizing beam splitter 19 and the optical fiber cable 14 and between the optical fiber cable 12 and the polarizing beam splitter 19 .
  • the numerical aperture converter 22 arranged between the optical fiber cable 12 and the polarizing beam splitter 19 is a numerical aperture converter for converting the numerical aperture of the optical fiber cable 12, which is an LMA fiber, into the numerical aperture of the optical transceiver 7.
  • first optical transceiver 7a to the third optical transceiver 7c may be optical transceivers with different numerical apertures, and appropriate resolution can be given according to the measurement distance.
  • Embodiment 5 A lidar apparatus according to Embodiment 5 will be described with reference to FIG. In FIG. 6, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the lidar apparatus according to the fifth embodiment has an arrangement of the demultiplexer 3 and the distributor 4 in which the demultiplexer/divider 2 is configured by the lidar apparatus according to the first embodiment.
  • the lidar device according to the fifth embodiment constitutes the demultiplexer/divider 2 and the demultiplexer 3 and the splitter
  • the array of devices 4 is optically coupled by optical fiber cables 24 in the order of a distributor 4 and a plurality of demultiplexers 3 .
  • Demultiplexer/divider 2 receives laser light output from light source 1 and outputs local oscillation light and a plurality of signal lights, like demultiplexer/divider 2 in the lidar apparatus according to the first embodiment.
  • a distributor 4 that constitutes the demultiplexer/distributor 2 distributes the laser beam output from the light source 1 and transmitted via the optical fiber cable 9 into a plurality of laser beams, and outputs the laser beams. That is, the distributor 4 distributes the laser beam transmitted through the optical fiber cable 9 from the first laser beam to the third laser beam, and outputs the laser beams.
  • the first laser light is input to the first demultiplexer 3a via the optical fiber cable 24a
  • the second laser light is input to the second demultiplexer 3b via the optical fiber cable 24b
  • is input to the third demultiplexer 3b. is input to the third demultiplexer 3c through the optical fiber cable 24c.
  • the distributor 4 is similar to the distributor 4 in the lidar device according to the first embodiment.
  • a demultiplexer 3 that constitutes the demultiplexer/divider 2 divides the laser light distributed and output from the distributor 4 into a local oscillation light and a signal light.
  • the division ratio of signal light and local oscillation light is, for example, 9:1.
  • the first demultiplexer 3a divides the first laser light distributed by the distributor 4 and transmitted via the optical fiber cable 24a into the first signal light and the first local oscillation light.
  • the first signal light is input to the first amplifier 5a via the optical fiber cable 25a, and the first local oscillation light is input to the signal processing device 8 via the optical fiber cable 26a.
  • the second demultiplexer 3b divides the second laser light distributed by the distributor 4 and transmitted via the optical fiber cable 24b into the second signal light and the second local oscillation light.
  • the second signal light is input to the second amplifier 5b via the optical fiber cable 25b, and the second local oscillation light is input to the signal processing device 8 via the optical fiber cable 26b.
  • the third demultiplexer 3c divides the third laser light distributed by the distributor 4 and transmitted via the optical fiber cable 24c into the third signal light and the third local oscillation light.
  • the third signal light is input to the third amplifier 5c via the optical fiber cable 25c, and the third local oscillation light is input to the signal processing device 8 via the optical fiber cable 26c.
  • the first branching filter 3a to the third branching filter 3c are similar to the branching filter 3 in the lidar device according to the first embodiment.
  • the signal processing device 8 operates in the transmission mode in the same manner as the signal processing device 8 in the lidar device according to Embodiment 1, and in the reception mode, detects scattered light from the measurement target received by the first optical transmission/reception device 7a. and the first local oscillation light from the first demultiplexer 3a. and the second local oscillation light from the second demultiplexer 3b, and the third received light based on the scattered light from the measurement target received by the third optical transceiver 7c and Analysis is performed based on the third local oscillation light from the third demultiplexer 3c to calculate the distance to the measurement target and the properties of the measurement target.
  • the lidar apparatus according to the fifth embodiment can also obtain the same effect as the lidar apparatus according to the first embodiment.
  • the components are arranged in order from the demultiplexer 4 to the first demultiplexer 3a to the third demultiplexer 3c.
  • the first demultiplexer 3a to the third The first to third signal lights demultiplexed by the demultiplexer 3c are respectively amplified in parallel by the first amplifiers 5a to the third amplifiers 5c.
  • a first signal processing device for performing analysis based on the received light and the first locally oscillated light
  • a second signal processing device for performing analysis based on the second received light and the second locally oscillated light
  • a third signal processing device that performs analysis based on the received light and the third local oscillation light, and the first signal processing device to the third signal processing device perform analysis in parallel, and the measurement target It may also calculate the distance to and properties of the measurement target.
  • the first optical transmitter/receiver 7a to the third optical transmitter/receiver 7c can simultaneously perform measurements in a plurality of different directions with the same wavelength.
  • the signals distributed from the distributor 4 are not limited to the three signal lights from the first signal light to the third signal light, and may be two signal lights or four or more signal lights. In that case, a signal processing device 8 may be provided for each of the plurality of signal lights.
  • Embodiment 6 A lidar apparatus according to Embodiment 6 will be described with reference to FIG. In FIG. 7, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the lidar apparatus according to the sixth embodiment is provided with one pumping light source 27 and a pumping light splitter 28 for branching the output light from the pumping light source 27. The difference is that each amplifier 5 is pumped by the pumping light branched from the wave generator 28 .
  • an erbium ion doped fiber amplifier (hereinafter referred to as an EDFA) is used as the amplifier 5, and a cascaded Raman fiber laser is used as the pumping light source 27 for supplying pumping light to the amplifier 5.
  • EDFA erbium ion doped fiber amplifier
  • a cascaded Raman fiber laser is used as the pumping light source 27 for supplying pumping light to the amplifier 5.
  • a cascaded Raman fiber laser which is the excitation light source 27, is a light source that outputs single-mode laser light in the 1.48 ⁇ m band.
  • the EDFA has a wide gain in the 1.5 ⁇ m band and is most efficiently pumped by 1.48 ⁇ m light.
  • the amplifier 5 is an EDFA and the pumping light source 27 is a CRFL.
  • LMA fiber type erbium ion doped fiber amplifier LMA-EDFA
  • Laser light output from the pumping light source 27 is split into a plurality of pumping lights by the pumping light demultiplexer 28 , and the split pumping lights are input to the amplifier 5 . That is, the excitation light demultiplexer 28 distributes the laser light output from the excitation light source 27 transmitted through the optical fiber cable 29 from the first excitation light to the third excitation light, and outputs the third excitation light.
  • the first pumping light is input to the first amplifier 5a via the optical fiber cable 30a
  • the second pumping light is input to the second amplifier 5b via the optical fiber cable 30b
  • the third pumping light is It is input to the third amplifier 5c via the optical fiber cable 30c.
  • the distribution of the pumping light in the pumping light demultiplexer 28 may be a simple division of equal intensity. can be controlled to
  • the basic operation is the same as that of the lidar apparatus according to the first embodiment, except that the EDFA is used as the amplifier 5 and the CRFL is used as the excitation light source 27 to amplify the signal light in the 1.5 ⁇ m band with high intensity. Since the operation is the same as in , the explanation is omitted.
  • the lidar apparatus since the pumping light from the pumping light source 27 is shared by the plurality of amplifiers 5 using the pumping light demultiplexer 28, the lidar apparatus can Cost and size can be reduced.
  • the lidar apparatus according to Embodiment 6 sets the signal light from the light source 1 to the 1.5 ⁇ m band, which is the eye-safe band, and uses an EDFA capable of amplifying the 1.5 ⁇ m band for the amplifier 5, so that high output operation can be performed outdoors. It is possible.
  • the signal light from the light source 1 is in the 1.5 ⁇ m band
  • the EDFA is used for the amplifier 5
  • the pump light from the pump light source 27 is split into multiple Since it is common to a certain amplifier 5, even if a CRFL, which is the pumping light source 27 of the 1.48 ⁇ m band, is used for pumping the EDFA, high output operation is possible outdoors, and the amplifier 5 amplifies with high efficiency. It is possible to reduce the cost and size of the lidar device.
  • the lidar apparatus according to the sixth embodiment can also obtain the same effect as the lidar apparatus according to the first embodiment.
  • the lidar device since the pumping light from a single pumping light source 27 is branched by the pumping light demultiplexer 28 and the branched pumping light is input to a plurality of amplifiers 5, the lidar device is costly and costly. size can be reduced. Secondly, by using the signal light from the light source 1 as the signal light in the eye-safe band and using the EDFA for the amplifier 5, it is possible to safely operate at high output outdoors.
  • the signal light from the light source 1 is used as eye-safe band signal light
  • using an EDFA as the amplifier 5 and using the EDFA in combination with a 1.48 ⁇ m band CRFL pumping light source 27, a signal in the 1.5 ⁇ m band can be obtained.
  • High-power operation is made possible as a device capability by highly efficient pumping of light.
  • the signal light from the light source 1 is used as signal light in the eye-safe band
  • the EDFA amplifier 5 is combined with the CRFL pumping light source 27, and the laser light output from the pumping light source 27 is passed through the pumping light demultiplexer 28.
  • the pumping light source 27 can be shared, that is, unified for the plurality of amplifiers 5a to 5c, so that it can be used outdoors.
  • a lidar device capable of amplifying signal light in the eye-safe band with high output and high efficiency can be obtained at reduced cost and size.
  • laser light such as an ytterbium ion doped fiber laser (YDFL) is wavelength-changed by stimulated Raman scattering, and high-cost 1.48 ⁇ m band single-mode laser light having a multi-stage structure is output.
  • YDFL ytterbium ion doped fiber laser
  • the pumping light demultiplexer 28 can be used to share the pumping light source 27 for the plurality of amplifiers 5a to 5c, that is, to use a single pumping light source 27.
  • the cost and size can be reduced, and the size and cost of the lidar device can be reduced.
  • the excitation light output from the excitation light source 27 is sent to all the amplifiers 5, that is, to all the first amplifiers 5a to the third amplifiers 5c using the excitation light demultiplexer 28.
  • the pumping light output from the pumping light source 27 is sent to a plurality of amplifiers 5a to 5c. It may be input to at least one amplifier.
  • the lidar apparatus according to Embodiment 6 uses an EDFA for the amplifier 5 and uses a CRFL for the excitation light source 27, the combination of the amplifier 5 and the excitation light source 27 is not limited to this. Any combination of amplifier 5 and pump light source 27 may be used depending on the design.
  • a lidar apparatus is suitable for a wind measurement Doppler lidar apparatus, a lidar apparatus used for three-dimensional high-speed imaging, and a lidar apparatus used for gas concentration measurement.
  • 1 light source 1 light source, 2 demultiplexer/divider, 3 demultiplexer, 4 distributor, 5a-5c amplifier, 6a-6c transmission/reception separation device, 7a-7c optical transceiver, 8 signal processing device, 15 pre-amplifier, 16 light Modulator, 22a to 22c numerical aperture converter, 27 excitation light source, 28 excitation optical demultiplexer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

ライダ装置は、レーザ光を出力する光源1と、光源1から出力されたレーザ光を受け、局部発振光と複数の信号光を出力する分波・分配器2と、それぞれが分波・分配器2から出力された複数の信号光のそれぞれに対応し、対応する信号光を増幅する複数の増幅器5a~5cと、それぞれが複数の増幅器5a~5cのそれぞれに対応し、対応する増幅器5a~5cから出力された信号光を送信光として空間中に放射し、空間中に存在する測定ターゲットからの散乱光を受信光として受信する複数の光送受信装置7a~7cと、複数の光送受信装置7a~7cからの受信光と分波・分配器2からの局部発振光に基づき測定ターゲットまでの距離及び測定ターゲットの性質を算出する信号処理装置8と、 それぞれが複数の増幅器5a~5c及び複数の光送受信装置7a~7cのそれぞれに対応し、複数の増幅器5a~5cからの送信光を対応する光送受信装置7a~7cに結合し、複数の光送受信装置7a~7cにより受信した受信光を対応する信号処理装置8に結合する複数の送受分離装置6a~6cを備える。

Description

ライダ装置及び送受分離装置
 本開示は、信号光を空間中に放射し、空間中に存在する測定ターゲットからの散乱光を受信して測定ターゲットまでの距離及び測定ターゲットの速度を算出するライダ装置に関する。
 この種のライダ装置として特許文献1に示されている。
 特許文献1には、光スイッチによりレーザ光の照射方向を切替え、多方向にレーザ光を放射し、測定ターゲットからの散乱光を受信して測定ターゲットまでの距離及び測定ターゲットの速度を算出するモノスタティックライダ装置が示されている。
国際公開2017-130315号公報
 特許文献1に示されたモノスタティックライダ装置では、レーザ光の照射方向をスイッチの切り替えによって行うよう構成されているため、レーザ光の照射方向を機械的に動作させる構成に比べて、装置サイズの縮小や価格の低減が容易であり、信頼性も高い。
 一方、送信光が光スイッチによって後方散乱された光が受信光に混入する恐れがあり、さらなる受信信号のSN比(信号対雑音比)の引き上げが望まれている。
 本開示は上記した点に鑑みてなされたものであり、複数の方向にレーザ光を放射し、測定ターゲットからの散乱光を受信して測定ターゲットまでの距離及び測定ターゲットの速度を算出するライダ装置において、測定ターゲットからの散乱光に基づく受信信号のSN比を引き上げたライダ装置を得ることを目的とする。
 本開示に係るライダ装置は、レーザ光を出力する光源と、光源から出力されたレーザ光を受け、局部発振光と複数の信号光を出力する分波・分配器と、それぞれが分波・分配器から出力された複数の信号光のそれぞれに対応し、対応する信号光を増幅する複数の増幅器と、それぞれが複数の増幅器のそれぞれに対応し、対応する増幅器から出力された信号光を送信光として空間中に放射し、空間中に存在する測定ターゲットからの散乱光を受信光として受信する複数の光送受信装置と、複数の光送受信装置からの受信光と分波・分配器からの局部発振光に基づき測定ターゲットまでの距離及び測定ターゲットの性質を算出する信号処理装置と、それぞれが複数の増幅器及び複数の光送受信装置のそれぞれに対応し、複数の増幅器からの送信光を対応する光送受信装置に結合し、複数の光送受信装置により受信した受信光を対応する信号処理装置に結合複数の送受分離装置と、を備える。
 本開示によれば、送信光の分離が送受分離装置より前に分波・分配器によって行われるため、分波・分配器からの不要な散乱光が受信光に混入することを防げ、受信光に基づく受信信号のSN比を引き上げることができる。
実施の形態1に係るライダ装置を示す構成図である。 実施の形態2に係るライダ装置を示す構成図である。 実施の形態3に係るライダ装置を示す構成図である。 実施の形態4に係るライダ装置を示す構成図である。 実施の形態4に係るライダ装置における送受分離装置を示す構成図である。 実施の形態5に係るライダ装置を示す構成図である。 実施の形態6に係るライダ装置を示す構成図である。
実施の形態1.
 実施の形態1に係るライダ(LIDAR:Light Detection and Ranging、Laser Imaging Detection and Ranging)装置を図1に基づいて説明する。
 実施の形態1に係るライダ装置は、複数の方向にレーザ光を放射し、測定ターゲットからの散乱光を受信して測定ターゲットまでの距離及び測定ターゲットの性質を算出するモノスタティックライダ装置を対象とする。つまり、レーザ光による信号光を送信光として空間中に放射し、空間中に存在する測定ターゲットからの散乱光を受信光として受信する光送受信装置を複数有するライダ装置を対象とする。
 測定ターゲットの性質は、風計測用ドップラーライダ装置を対象とした場合は測定ターゲットである風の速度、つまり風速であり、距離を計測して画像化する三次元高速撮像に用いられるライダ装置を対象とした場合は測定ターゲットである撮影対象の画像のコントラストであり、測定対象ガスの濃度分布を計測するガス濃度計測に用いられるライダ装置を対象とした場合は測定ターゲットである測定対象ガスの濃度である。
 ライダ装置は、光源1と、分波器3及び分配器4を有する分波・分配器2と、複数の増幅器5と、複数の送受分離装置6と、複数の光送受信装置7と、信号処理装置8とを備える。
 実施の形態1では、複数の増幅器5と複数の送受分離装置6と複数の光送受信装置7は、それぞれが第1から第3の3つを有した場合を示している。第1から第3のそれぞれについては符号の後にaからcを追記して区別するが、説明を簡略する場合、例えば共通である事項を説明する場合などは追記するaからcを省略して説明する。
 また、実施の形態1では増幅器5と送受分離装置6と光送受信装置7それぞれの数を3つとしたが、2つでもよく、また、4つ以上であってもよい。
 要するに、複数の方向にレーザ光を放射し、測定ターゲットからの散乱光を受信するために設けられる、光送受信装置7の数と同じ数の増幅器5と送受分離装置6が設けられる。
 すなわち、光送受信装置7と増幅器5と送受分離装置6のそれぞれは対応して設けられる。
 具体的には、第1の光送受信装置7aと第1の増幅器5aと第1の送受分離装置6aが対応し、第2の光送受信装置7bと第2の増幅器5bと第2の送受分離装置6bが対応し、第3の光送受信装置7cと第3の増幅器5cと第3の送受分離装置6cが対応する。
 光源1と分波器3と分配器4と複数の増幅器5と複数の送受分離装置6と信号処理装置8とのそれぞれの間は、光ファイバケーブル9~12、14である光伝送手段により接続される。
 なお、光ファイバケーブル9~12、14である光伝送手段は、光ファイバケーブルに限られるものではなく、光源1と分波器3と分配器4と複数の増幅器5と複数の送受分離装置6と信号処理装置8とのそれぞれの間を自由空間伝搬により光結合するものでも良い。
 複数の送受分離装置6と複数の光送受信装置7との光結合は自由空間伝搬で接続され、図において光伝送手段13として表している。
 光源1はレーザ光を出力する。光源1は単一の波長のレーザ光を出力するもの、もしくは複数の互いに異なる波長のレーザ光を出力するものである。
 光源1が複数の互いに異なる波長のレーザ光を出力するものである場合、時間的に波長を変化させてレーザ光を出力するもの、又は、互いに異なる複数の波長のレーザ光を同時に出力するもののいずれかである。
 光源1は、上記したファイバレーザの他、半導体レーザ又は固体レーザ、もしくはそれらの組み合わせによって構成されるものでもよい。
 分波器3は光源1から出力され、光ファイバケーブル9を介して伝送されたレーザ光を信号光と局部発振光とに分割する。
 信号光と局部発振光との分割割合は、分配器4と信号処理装置8によりあらかじめ決められた一定の強度割合であり、例えば9:1である。
 分波器3は、光ファイバカプラ、ハーフミラー、及びレンズなどにより構成されるビームスプリッタである。
 分配器4は分波器3からの信号光を複数の信号光に分配し、出力する。すなわち、分配器4は分波器3から分割され、光ファイバケーブル10aを介して伝送された信号光を第1の信号光から第3の信号光に分配し、出力する。第1の信号光は光ファイバケーブル11aを介して第1の増幅器5aに入力され、第2の信号光は光ファイバケーブル11bを介して第2の増幅器5bに入力され、第3の信号光は光ファイバケーブル11cを介して第3の増幅器5cに入力される。
 分配器4は、光源1が単一の波長のレーザ光を出力するものである場合は、光スイッチなどの時間的分配手段が用いられる。
 また、分配器4は、分波器3と同様に、第1の信号光から第3の信号光を一定の強度割合により分割して出力する、光ファイバカプラ、ハーフミラー、及びレンズなどにより構成されるビームスプリッタであってもよい。
 さらに、分配器4は、第1の信号光から第3の信号光を偏光により分割して出力するビームスプリッタであってもよい。
 光源1が複数の互いに異なる波長のレーザ光を出力するものである場合は、分配器4は波長によって分離する手段が用いられる。
 すなわち、分配器4は光源1から入力された光を波長ごとにその波長を増幅可能な増幅器5a~5cに入力するよう選択して分配する。
 分配器4は、光学パワー・スプリッター、光学スイッチ、波長デマルチプレクサ、又は、それらの組み合わせにより構成される。
 なお、分配器4は、光源1が単一の波長のレーザ光を出力するものに対する分配器と同じ分配器でもよい。
 分波器3と分配器4は、光源1から出力されたレーザ光を受け、局部発振光と複数の信号光を出力する分波・分配器2を構成する。
 増幅器5は分配器4によって分配された信号光の強度を増幅する。すなわち、分配器4により分配され、光ファイバケーブル11aを介して伝送された第1の信号光は第1の増幅器5aにより増幅される。分配器4により分配され、光ファイバケーブル11bを介して伝送された第2の信号光は第2の増幅器5bにより増幅される。分配器4により分配され、光ファイバケーブル11cを介して伝送された第3の信号光は第3の増幅器5cにより増幅される。
 増幅器5は、光ファイバ増幅器、導波路型増幅器、スラブ型増幅器等の固体レーザ増幅器、又は半導体光増幅器が用いられる。
 本ライダ装置は、第1の増幅器5aから第3の増幅器5cと複数の増幅器を用いているので、第1の増幅器5aから第3の増幅器5cを異なる形態の増幅器を組み合わせて用いても良い。
 光ファイバケーブル12としてLMAファイバを用いた場合、増幅器5はLMAファイバ増幅器が用いられる。
 光ファイバケーブル12としてLMAファイバを用いると、高強度の光を伝搬させられるなどの利点がある。特に、増幅器5にLMAファイバ増幅器を用いた場合は部品点数を削減できる。
 なお、増幅器5としてLMA増幅器を使用した場合は、光ファイバケーブル12として必ずしもLMAファイバを使用しなくともよい。
 また、増幅器5としてスラブ型増幅器等の固体レーザ増幅器などを用いた場合、光ファイバケーブル12が伝送する光の強度が大きい場合、光ファイバケーブル12として必ずしもLMAファイバを使用しなくともよい。但し、高強度増幅時に伝送時の損失を押さえる場合は、光ファイバケーブル12としてLMAファイバを用いると良い。
 送受分離装置6は、光送受信装置7による送信光の放射時に、増幅器5と光送受信装置7とを光結合し、光送受信装置7による受信光の受信時に、光送受信装置7と信号処理装置8とを光結合する。
 すなわち、送受分離装置6は、光の入力元に応じて出力先を切替える、つまり、光の入力元が増幅器5である場合は光の出力先を光送受信装置7に、光の入力元が光送受信装置7である場合は光の出力先を信号処理装置8に切替える。
 送受分離装置6は、ファラデー素子を用いたアイソレータと偏光ビームスプリッタによって構成される光サーキュレータ、もしくは偏光ビームスプリッタと1/4波長板によって構成される光サーキュレータ、あるいはその組み合わせによって構成される光サーキュレータである。
 第1の送受分離装置6aは、第1の光送受信装置7aによる送信光の放射時に、第1の増幅器5aから出力され、光ファイバケーブル12aを介して伝送された第1の信号光を光伝送手段(自由空間伝搬)13aに出力し、第1の信号光は第1の光送受信装置7aに入力され、第1の光送受信装置7aによる散乱光の受信時に、第1の光送受信装置7aから出力され、光伝送手段(自由空間伝搬)13aを介して伝送された第1の受信光を光ファイバケーブル14aに出力し、第1の受信光は信号処理装置8に入力される。
 第2の送受分離装置6bは、第2の光送受信装置7bによる送信光の放射時に、第2の増幅器5bから出力され、光ファイバケーブル12bを介して伝送された第2の信号光を光伝送手段(自由空間伝搬)13bに出力し、第2の信号光は第2の光送受信装置7bに入力され、第2の光送受信装置7bによる散乱光の受信時に、第2の光送受信装置7bから出力され、光伝送手段(自由空間伝搬)13bを介して伝送された第2の受信光を光ファイバケーブル14bに出力し、第2の受信光は信号処理装置8に入力される。
 第3の送受分離装置6cは、第3の光送受信装置7cによる送信光の放射時に、第3の増幅器5cから出力され、光ファイバケーブル12cを介して伝送された第3の信号光を光伝送手段(自由空間伝搬)13cに出力し、第3の信号光は光送受信装置7cに入力され、第3の光送受信装置7cによる散乱光の受信時に、第3の光送受信装置7cから出力され、光伝送手段(自由空間伝搬)13cを介して伝送された第3の受信光を光ファイバケーブル14cに出力し、第3の受信光は信号処理装置8に入力される。
 光送受信装置7は、増幅器5から出力された信号光を送信光として空間中に放射し、空間中に存在する測定ターゲットからの散乱光を受信光として受信する。
 光送受信装置7は、いわゆる光学望遠鏡のようなものであり、複数の屈折レンズ又は複数のミラーで構成される光アンテナを有する。
 第1の光送受信装置7aは光伝送手段(自由空間伝搬)13aを介して第1の送受分離装置6aに接続され、第2の光送受信装置7bは光伝送手段(自由空間伝搬)13bを介して第2の送受分離装置6bに接続され、第3の光送受信装置7cは光伝送手段(自由空間伝搬)13cを介して第3の送受分離装置6cに接続される。
 第1の光送受信装置7aから第3の光送受信装置7cのそれぞれは互いに放射方向が異なる方向を向くように設置される。
 信号処理装置8は、光送受信装置7からの受信光と分波器3からの局部発振光に基づき解析を行い、空間中に存在する測定ターゲットまでの距離及び測定ターゲットの性質を算出する。
 すなわち、信号処理装置8は、第1の光送受信装置7aにより受信された測定ターゲットからの散乱光に基づく第1の受信光が光伝送手段(自由空間伝搬)13a、第1の送受分離装置6a、及び光ファイバケーブル14aを介して入力された第1の受信光と分波器3からの光ファイバケーブル10bを介して入力された局部発振光に基づき解析を行い、測定ターゲットまでの距離及び測定ターゲットの性質を算出する。
 同様に、信号処理装置8は、第2の光送受信装置7bにより受信された測定ターゲットからの散乱光に基づく第2の受信光が光伝送手段(自由空間伝搬)13b、第2の送受分離装置6b、及び光ファイバケーブル14bを介して入力された第2の受信光と分波器3からの光ファイバケーブル10bを介して入力された局部発振光に基づき解析を行い、測定ターゲットまでの距離及び測定ターゲットの性質を算出する。
 さらに、信号処理装置8は、第3の光送受信装置7cにより受信された測定ターゲットからの散乱光に基づく第3の受信光が光伝送手段(自由空間伝搬)13c、第3の送受分離装置6c、及び光ファイバケーブル14cを介して入力された第3の受信光と分波器3からの光ファイバケーブル10bを介して入力された局部発振光に基づき解析を行い、測定ターゲットまでの距離及び測定ターゲットの性質を算出する。
 ライダ装置として風速を計測する風計測用ドップラーライダ装置を対象とした場合は、信号処理装置8は、ヘテロダイン受信機とA/D変換器と高速フーリエ変換装置と周波数シフト解析装置と速度演算装置とを含む構成とされる。
 ヘテロダイン受信機は、分波器3からの局部発振光と送受分離装置6からの受信光を干渉させ、バランスドディテクタで信号を検出する、つまり、ヘテロダイン検波を実行する。
 A/D変換器は、ヘテロダイン受信機により変換されたアナログ電気信号をデジタル変換する。
 高速フーリエ変換装置は、A/D変換器からのデジタル電気信号に対して高速フーリエ変換(FFT)を実施する。
 周波数シフト解析装置は、高速フーリエ変換装置によりフーリエ変換された信号スペクトルからピーク周波数を算出することで、散乱光のドップラーシフト量を得る。
 速度演算装置は、周波数シフト解析装置により得られたドップラーシフト量から測定ターゲットの速度を算出する。
 高速フーリエ変換装置と周波数シフト解析装置と速度演算装置は、CPU(Central Processing Unit)とメモリとにより構成され、メモリに記憶されたプログラムをCPUが実行することにより、測定ターゲットの速度が算出される。
 以上では信号処理装置8を、ヘテロダイン検波を用いた処理を行うものとして説明したが、ビデオ検波など、ヘテロダイン以外の検波方法を用いた処理としても良い。
 次に動作について説明する。
 測定ターゲットが存在する空間中に送信光を送信する動作について説明する。
 光源1が単一の波長のレーザ光を出力する場合と、光源1が複数の互いに異なる波長のレーザ光を出力する場合では、動作について差異はない。
 光源1から単位時間ごとに出力されたレーザ光が分波器3により分波され、分波された信号光が光ファイバケーブル10aを介して分配器4に伝送される。
 分配器4から、第1の信号光が光ファイバケーブル11aを介して第1の増幅器5aに、第2の信号光が光ファイバケーブル11bを介して第2の増幅器5bに、第3の信号光が光ファイバケーブル11cを介して第3の増幅器5cに順次伝送される。
 分配器4から分配された信号光を受けた増幅器5は信号光を増幅し、増幅された信号光は光ファイバケーブル12を介して送受分離装置6へ伝送される。
 送受分離装置6は、増幅器5によって増幅され、光ファイバケーブル12を伝搬してきた信号光を、光送受信装置7に入力されるように光伝送手段(自由空間伝搬)13に出力する。
 すなわち、第1の送受分離装置6aは、第1の増幅器5aによって増幅され、光ファイバケーブル12aを伝搬してきた第1の信号光を、第1の光送受信装置7aに入力されるように光伝送手段(自由空間伝搬)13aに出力する。
 第2の送受分離装置6bは、第2の増幅器5bによって増幅され、光ファイバケーブル12bを伝搬してきた第2の信号光を、第2の光送受信装置7bに入力されるように光伝送手段(自由空間伝搬)13bに出力する。
 第3の送受分離装置6cは、第3の増幅器5cによって増幅され、光ファイバケーブル12aを伝搬してきた第3の信号光を、第3の光送受信装置7cに入力されるように光伝送手段(自由空間伝搬)13cに出力する。
 光送受信装置7は、光伝送手段13を介して入力された信号光を送信光として空間中に放射する。
 すなわち、第1の光送受信装置7aが第1の送信光を放射し、第2の光送受信装置7bが第2の送信光を放射し、第3の光送受信装置7cが第3の送信光を放射する。
 このようにして、第1の光送受信装置7aから第1の送信光が、第2の光送受信装置7bから第2の送信光が、第3の光送受信装置7cから第3の送信光が空間中のそれぞれ異なった方向に放射される。
 一方、送信光が測定ターゲットによって散乱される。この散乱光は光送受信装置7によって集光され、受信光として光伝送手段(自由空間伝搬)13を介して送受分離装置6に伝送される。
 送受分離装置6は、光伝送手段(自由空間伝搬)13を伝搬してきた光送受信装置7からの受信光を信号処理装置8に入力されるように光ファイバケーブル14に出力する。
 すなわち、第1の送受分離装置6aは、光伝送手段(自由空間伝搬)13aを伝搬してきた第1の光送受信装置7aからの第1の受信光を信号処理装置8に入力されるように光ファイバケーブル14aに出力する。
 第2の送受分離装置6bは、光伝送手段(自由空間伝搬)13bを伝搬してきた第2の光送受信装置7bからの第2の受信光を信号処理装置8に入力されるように光ファイバケーブル14bに出力する。
 第3の送受分離装置6cは、光伝送手段(自由空間伝搬)13caを伝搬してきた第3の光送受信装置7cからの第3の受信光を信号処理装置8に入力されるように光ファイバケーブル14cに出力する。
 信号処理装置8は、光ファイバケーブル14、送受分離装置6、及び光伝送手段(自由空間伝搬)13を介して伝送された光送受信装置7からの受信光と、光ファイバケーブル10bを介して伝送された分波器3からの局部発振光に基づき解析を行い、空間中に存在する測定ターゲットまでの距離及び測定ターゲットの性質を算出する。
 以上に述べたように、複数の光送受信装置と光スイッチによる照射方向の切り替えを組み合わせたライダ構成は、複数の方向の測定を装置サイズとコストを抑え、信頼性を保って実現できる一方で光スイッチにおける散乱によるSN比低下が発生していたが、実施の形態1に係るライダ装置は、複数の光送受信装置7a~7cのそれぞれに対して、対応する増幅器5a~5c及び送受分離装置6a~6cを設け、増幅器5a~5cの前段に、光送受信装置7a~7cのそれぞれに対する信号光を出力する分配器4を配置したので、光送受信装置7a~7cから送受分離装置6a~6cを経て信号処理装置8に至る受信系に、分配器4によって信号光が散乱されて生じる後方散乱光が混入する可能性がなくなり、信号処理装置8に入力されることもないので、受信信号のSN比の劣化を抑制できる。
 また、光スイッチと増幅器を用いた場合、光スイッチによって発生する後方散乱光が増幅器に入射すると、この後方散乱光の増幅によって増幅器のエネルギーを消費してしまい、送信光の増幅に使用されるエネルギーの割合が低下する。
 しかし、実施の形態1に係るライダ装置は、分配器4が増幅器5a~5cの前段に配置されているため、分配器4によって発生する後方散乱光は増幅器5a~5cに入力されず、増幅器5a~5cにおける増幅率を高く維持できる。
 さらに、分配器4へ入力される光強度を小さく保つことを可能にし、高出力強度を維持しつつ、分配器4として耐光性の低い光スイッチを用いることができる。
実施の形態2.
 実施の形態2に係るライダ装置を図2に基づいて説明する。
 図2中、図1に付された符号と同一符号は同一又は相当部分を示す。
 実施の形態2に係るライダ装置は、実施の形態1に係るライダ装置に対して、分波・分配器2を構成する分波器3と分配器4との間に、分波器3によって分配された信号光を増幅する前置増幅器15を配置したものである。
 実施の形態2に係るライダ装置においても実施の形態1に係るライダ装置と同様の効果が得られる。
 しかも、前置増幅器15を配置したことにより、外乱及び伝搬に伴う減衰の影響を抑えることができ、増幅器5a~5cにおいて、安定した増幅率が得られるとともにSN比を向上させることができる。
実施の形態3.
 実施の形態3に係るライダ装置を図3に基づいて説明する。
 図3中、図1に付された符号と同一符号は同一又は相当部分を示す。
 実施の形態3に係るライダ装置は、実施の形態1に係るライダ装置に対して、分波・分配器2を構成する分波器3と分配器4との間に、光変調器16を配置したものである。光変調器16は、分波器3によって分配された信号光に対し、時間的に光変調をかける、例えばLN(ニオブ酸リチウム、LiNbO3)変調器である。
 実施の形態3に係るライダ装置においても実施の形態1に係るライダ装置と同様の効果が得られる。
 しかも、光変調器16を配置したことにより、第1にパルス化により高ピークエネルギーを得て、SN比が向上し、第2に周波数変調によってヘテロダイン検波が使用できる。
実施の形態4.
 実施の形態4に係るライダ装置を図4及び図5に基づいて説明する。
 図4及び図5中、図1に付された符号と同一符号は同一又は相当部分を示す。
 実施の形態4に係るライダ装置は、実施の形態1に係るライダ装置に対して、送受分離装置6が開口数変換器22を備えた点が相違し、開口数変換器22を備えた送受分離装置6を使用することにより、増幅器5と送受分離装置6とを光結合する光ファイバケーブル12としてLMAファイバを用いたものに特定した点が相違する。
 実施の形態4に係るライダ装置におけるその他の構成要件については実施の形態1に係るライダ装置における構成要件と同様の構成である。
 具体的には、実施の形態4に係るライダ装置における光源1と分波器3と分配器4と複数の光送受信装置7と信号処理装置8は、実施の形態1に係るライダ装置における光源1と分波器3と分配器4と複数の光送受信装置7と信号処理装置8と同じである。
 実施の形態4に係るライダ装置は、増幅器5と送受分離装置6とを光結合する光ファイバケーブル12としてLMAファイバを用いたものに特定したので、増幅器5から送受分離装置6までの光強度が最も大きく、強度密度が最も大きくなる区間での光伝送媒質による非線形現象、特に誘導ブリユアン散乱が引き起こされることで伝送中の光損失が生ずるのを抑制することができる。
 増幅器5はLMAファイバ増幅器もしくはスラブ型増幅器等の固体レーザ増幅器などが用いられる。
 また、送受分離装置6と信号処理装置8とを光結合する光ファイバケーブル14は、光伝送として比較的低強度でよいので、LMAファイバではない通常の光ファイバ、つまり、LMAファイバより基本モードに対する実効断面積が小さい光ファイバを用いたものを使用することにより、コストの低減化が図れる。
 光ファイバケーブル14は、ビーム品質の要求程度又は要求コストによってはLMAファイバを用いてもよい。
 同様に、光伝送として比較的低強度でよい、光源1と分波器3とを光結合する光ファイバケーブル9、分波器3と分配器4とを光結合する光ファイバケーブル10a、分波器3と信号処理装置8とを光結合する光ファイバケーブル10b、分配器4と増幅器5とを光結合する光ファイバケーブル11も、通常の光ファイバを用いたものを使用することにより、コストの低減化が図れる。
 光ファイバケーブル10a、10b、11、14は、ビーム品質の要求程度又は要求コストによってはLMAファイバを用いてもよい。
 なお、送受分離装置6と光送受信装置7との光結合は自由空間伝搬(光伝送手段13)で接続される。
 光ファイバケーブル12に用いるLMAファイバと光ファイバケーブル14に用いる通常の光ファイバは基本モードに対する実効断面積が異なる、つまり、開口数が異なる光伝送手段である。
 従って、送受分離装置6は、光ファイバケーブル12を伝搬してきた増幅器5からの信号光を、光送受信装置7に入力されるように光伝送手段(自由空間伝搬)13へ出力する信号光系光路、及び光伝送手段(自由空間伝搬)13を伝搬してきた光送受信装置7からの受信光を、信号処理装置8に入力されるように光ファイバケーブル14へ出力する受信光系光路を有する分離器と、分離器とにより、信号光系光路と受信光系光路とで異なる開口数変換を行う開口数変換器22とを備える。
 すなわち、送受分離装置6は、図5に示すように、偏光ビームスプリッタ(PBS)19と、レンズ20と、1/4λ波長板21と、開口数変換器22とで構成される光サーキュレータである。
 偏光ビームスプリッタ19とレンズ20と1/4λ波長板21とにより、対応する増幅器5によって増幅され、光ファイバケーブル12を伝搬してきた信号光を対応する光送受信装置7に入力されるように光伝送手段13へ出力する信号光系光路と、光伝送手段13を伝搬してきた対応する光送受信装置7からの受信光を信号処理装置8に入力されるように光ファイバケーブル14へ出力する受信光系光路を有する分離器が構成される。
 光ファイバケーブル12の一端が偏光ビームスプリッタ19に光結合する。
 光ファイバケーブル14の一端が開口数変換器22に光結合する。
 分離器を構成する偏光ビームスプリッタ19とレンズ20と1/4λ波長板21は、光ファイバケーブル12の開口数と光送受信装置7の開口数とを相互に変換するように構成されている。
 つまり、送受分離装置6の信号光系光路において、光ファイバケーブル12を伝搬してきた信号光が、偏光ビームスプリッタ19とレンズ20と1/4λ波長板21により、LMAファイバである光ファイバケーブル12の開口数から光送受信装置7の開口数に変換されて、光伝送手段13に出力される。
 一方、送受分離装置6の受信光系光路において、光伝送手段13を伝搬してきた光送受信装置7からの受信光が、1/4λ波長板21とレンズ20と偏光ビームスプリッタ19により、光送受信装置7の開口数からLMAファイバの開口数に変換され、さらに、開口数変換器22によりLMAファイバの開口数から通常の光ファイバである光ファイバケーブル14の開口数に変換されて、信号処理装置8に入力されるように光ファイバケーブル14に出力される。
 開口数変換器22は開口数変換レンズである。
 従って、送受分離装置6により、光ファイバケーブル12を介して伝搬してきた信号光が、偏光ビームスプリッタ19-レンズ20-1/4λ波長板21を介してLMAファイバである光ファイバケーブル12の開口数から光送受信装置7の開口数に変換されて、光送受信装置7に入力されるように光伝送手段13に出力される。
 また、送受分離装置6により、光送受信装置7が受信光を受信すると、光伝送手段13を介して伝搬してきた光送受信装置7からの受信光が、1/4λ波長板21-レンズ20-偏光ビームスプリッタ19-開口数変換器22を介して、光送受信装置7の開口数からLMAファイバの開口数へ、LMAファイバの開口数から通常の光ファイバである光ファイバケーブル14の開口数に変換されて、信号処理装置8に入力されるように光ファイバケーブル14に出力される。
 次に動作について説明する。
 基本的動作は実施の形態1に示されたライダ装置と同じであるので、送受分離装置6における動作を中心に述べる。
 増幅器によって増幅され、光ファイバケーブルを伝搬してきた信号光は、送受分離装置6において、偏光ビームスプリッタ19-レンズ20-1/4λ波長板21により、LMAファイバである光ファイバケーブル12の開口数から光送受信装置7の開口数に変換されて、光送受信装置7に入力されるように光伝送手段13に出力される。
 一方、光送受信装置7が受信光を受信すると、光伝送手段13を伝搬してきた光送受信装置7からの受信光は、1/4λ波長板21-レンズ20-偏光ビームスプリッタ19により、光送受信装置7の開口数からLMAファイバの開口数へ、開口数変換器22により、LMAファイバの開口数から通常の光ファイバである光ファイバケーブル14の開口数に変換されて、信号処理装置8に入力されるように光ファイバケーブル14に出力される。
 以上に述べたように、実施の形態4に係るライダ装置においても実施の形態1に係るライダ装置と同様の効果が得られる他、光ファイバケーブル12をLMAファイバとしたので、増幅器5から送受分離装置6への光信号の伝送中の光損失が生ずるのを抑えられ、送受分離装置6は送信光と受信光に対しそれぞれに異なる開口数変換を行うように構成されたので、送信光の送受分離装置6への入力時及び受信光の光ファイバケーブル14への入力時に開口数の不一致による光の損失を防ぐことができ、結果としてSN比の低下が抑えられる。
 また、光ファイバケーブル12と光ファイバケーブル14の開口数差により、送信光の送受分離装置6への入力時及び受信光の光ファイバケーブル14への入力時に開口数の不一致による光の損失を防ぐことができる。
 さらに、送受分離装置6に開口数変換器22を設けることにより、部品点数を抑えつつ、様々な開口数の光送受信装置7a~7c、光伝送手段9~12、14、及び増幅器5a~5cとの組み合わせが可能となり、設計自由度が向上する。
 なお、実施の形態4に係るライダ装置において、開口数変換器22を偏光ビームスプリッタ19と光ファイバケーブル14との間に配置されているものを示したが、開口数変換器22を光ファイバケーブル12と偏光ビームスプリッタ19との間に配置したものでもよい。
 この場合、開口数変換器22は、LMAファイバである光ファイバケーブル12の開口数から光送受信装置7の開口数に変換する開口数変換レンズにする。
 また、開口数変換器22を偏光ビームスプリッタ19と光ファイバケーブル14との間及び光ファイバケーブル12と偏光ビームスプリッタ19との間の両者に配置したものでもよい。
 この場合、光ファイバケーブル12と偏光ビームスプリッタ19との間に配置する開口数変換器22は、LMAファイバである光ファイバケーブル12の開口数から光送受信装置7の開口数に変換する開口数変換レンズにし、偏光ビームスプリッタ19と光ファイバケーブル14との間に配置する開口数変換器22は光送受信装置7の開口数から通常の光ファイバである光ファイバケーブル14の開口数に変換する開口数変換レンズにする。
 さらに、第1の光送受信装置7aから第3の光送受信装置7cをそれぞれ異なる開口数の光送受信装置としてもよく、計測距離に応じて適切な分解能を与えることができる。
実施の形態5.
 実施の形態5に係るライダ装置を図6に基づいて説明する。
 図6中、図1に付された符号と同一符号は同一又は相当部分を示す。
 実施の形態5に係るライダ装置は、実施の形態1に係るライダ装置に対して、実施の形態1に係るライダ装置が分波・分配器2を構成する分波器3と分配器4の配列が分波器3-分配器4の順に光ファイバケーブル10aにより光結合されていたのに対して、実施の形態5に係るライダ装置は分波・分配器2を構成する分波器3と分配器4の配列が分配器4-複数の分波器3の順に光ファイバケーブル24により光結合されたものである。
 分波・分配器2は実施の形態1に係るライダ装置における分波・分配器2と同様に光源1から出力されたレーザ光を受け、局部発振光と複数の信号光を出力する。
 分波・分配器2を構成する分配器4は、光源1から出力され、光ファイバケーブル9を介して伝送されたレーザ光を複数のレーザ光に分配し、出力する。すなわち、分配器4は光ファイバケーブル9を介して伝送されたレーザ光を第1のレーザ光から第3のレーザ光に分配し、出力する。第1のレーザ光は光ファイバケーブル24aを介して第1の分波器3aに入力され、第2のレーザ光は光ファイバケーブル24bを介して第2の分波器3bに入力され、第3のレーザ光は光ファイバケーブル24cを介して第3の分波器3cに入力される。
 分配器4は実施の形態1に係るライダ装置における分配器4と同様の分配器である。
 分波・分配器2を構成する分波器3は、分配器4から分配されて出力されたレーザ光を局部発振光と信号光とに分割する。信号光と局部発振光との分割割合は、例えば9:1である。
 第1の分波器3aは、分配器4により分配され、光ファイバケーブル24aを介して伝送された第1のレーザ光を第1の信号光と第1の局部発振光とに分割する。第1の信号光は光ファイバケーブル25aを介して第1の増幅器5aに入力され、第1の局部発振光は光ファイバケーブル26aを介して信号処理装置8に入力される。
 第2の分波器3bは、分配器4により分配され、光ファイバケーブル24bを介して伝送された第2のレーザ光を第2の信号光と第2の局部発振光とに分割する。第2の信号光は光ファイバケーブル25bを介して第2の増幅器5bに入力され、第2の局部発振光は光ファイバケーブル26bを介して信号処理装置8に入力される。
 第3の分波器3cは、分配器4により分配され、光ファイバケーブル24cを介して伝送された第3のレーザ光を第3の信号光と第3の局部発振光とに分割する。第3の信号光は光ファイバケーブル25cを介して第3の増幅器5cに入力され、第3の局部発振光は光ファイバケーブル26cを介して信号処理装置8に入力される。
 第1の分波器3aから第3の分波器3cは実施の形態1に係るライダ装置における分波器3と同様の分波器である。
 信号処理装置8は、送信モードにおいては実施の形態1に係るライダ装置における信号処理装置8と同様に動作し、受信モードにおいて、第1の光送受信装置7aにより受信された測定ターゲットからの散乱光に基づく第1の受信光と第1の分波器3aからの第1の局部発振光に基づき解析を行い、第2の光送受信装置7bにより受信された測定ターゲットからの散乱光に基づく第2の受信光と第2の分波器3bからの第2の局部発振光に基づき解析を行い、第3の光送受信装置7cにより受信された測定ターゲットからの散乱光に基づく第3の受信光と第3の分波器3cからの第3の局部発振光に基づき解析を行い、測定ターゲットまでの距離及び測定ターゲットの性質を算出する。
 実施の形態5に係るライダ装置においても実施の形態1に係るライダ装置と同様の効果が得られる。
 分波・分配器2において、分配器4から第1の分波器3aから第3の分波器3cに至る順にしたので、ライダ装置内での機械的な配置が柔軟になる。
 なお、実施の形態5に係るライダ装置において、分配器4により分配される第1のレーザ光から第3のレーザ光は単純な強度分割により得られるため、第1の分波器3aから第3の分波器3cにより分波された第1の信号光から第3の信号光をそれぞれ第1の増幅器5aから第3の増幅器5cが同時並行的に増幅し、信号処理装置8を、第1の受信光と第1の局部発振光に基づき解析を行う第1の信号処理装置と、第2の受信光と第2の局部発振光に基づき解析を行う第2の信号処理装置と、第3の受信光と第3の局部発振光に基づき解析を行う第3の信号処理装置と有する構成とし、第1の信号処理装置から第3の信号処理装置が同時並行的に解析を行い、測定ターゲットまでの距離及び測定ターゲットの性質を算出するものでもよい。
 このように構成したことにより、第1の光送受信装置7aから第3の光送受信装置7cにより、複数の異なった方向に対して同一波長で同時に計測できる利点がある。
 なお、分配器4から分配される信号は第1の信号光から第3の信号光の3つの信号光に限るものではなく、2つの信号光もしくは4つ以上の信号光であってもよく、その場合、複数の信号光それぞれに対応して信号処理装置8を設ければよい。
実施の形態6.
 実施の形態6に係るライダ装置を図7に基づいて説明する。
 図7中、図1に付された符号と同一符号は同一又は相当部分を示す。
 実施の形態6に係るライダ装置は、実施の形態1に係るライダ装置に対して、一つの励起光源27と励起光源27からの出力光を分岐する励起光分波器28を設け、励起光分波器28から分岐された励起光によって各増幅器5の励起を行うように構成された点が相違する。
 また、実施の形態6に係るライダ装置では、特に、増幅器5としてエルビウムイオン添加ファイバ増幅器(以下、EDFAと称す。)を用い、増幅器5に励起光を与えるための励起光源27としてカスケードラマンファイバレーザ(以下、CRFLと称す。)を用いたものについて説明する。
 励起光源27であるカスケードラマンファイバレーザは、1.48μm帯のシングルモードのレーザ光を出力する光源である。
 EDFAは1.5μm帯に広い利得を持ち、1.48μmの光によって最も効率よく励起される。
 そのため、光源1から出力されたレーザ光が分波器3により分波され、さらに、分配器4により分配された信号光が1.5μm帯であるとき、増幅器5にEDFA、励起光源27にCRFLを用いることで高強度・高効率にアイセーフ帯の信号光を増幅することができる。
 なお、増幅器5として高出力を目指す場合は、LMAファイバタイプのエルビウムイオン添加ファイバ増幅器(LMA-EDFA)を増幅器5として用いるのが好ましい。
 励起光源27から出力されたレーザ光は、励起光分波器28により複数の励起光に分配され、分配された励起光が増幅器5に入力される。
 すなわち、励起光分波器28は、光ファイバケーブル29を介して伝送された励起光源27から出力されたレーザ光を第1の励起光から第3の励起光に分配し、出力する。
 第1の励起光は光ファイバケーブル30aを介して第1の増幅器5aに入力され、第2の励起光は光ファイバケーブル30bを介して第2の増幅器5bに入力され、第3の励起光は光ファイバケーブル30cを介して第3の増幅器5cに入力される。
 励起光分波器28における励起光の分配は強度等分の単純な分岐でもよく、分配器4と同期させて信号光が増幅器5に入力されるときに増幅器5に対して励起が行われるように制御してもよい。
 実施の形態6に係るライダ装置において、増幅器5にEDFA、励起光源27にCRFLを用いて高強度に1.5μm帯の信号光を増幅する以外の基本的動作は実施の形態1に係るライダ装置における動作と同様であるので説明は省略する。
 以上に述べたように、実施の形態6に係るライダ装置は、励起光源27からの励起光を励起光分波器28を用いて複数ある増幅器5に対して共通としているため、ライダ装置としてのコスト及びサイズを抑えることが可能である。
 また、実施の形態6に係るライダ装置は、光源1からの信号光をアイセーフ帯である1.5μm帯とし、増幅器5に1.5μm帯を増幅可能なEDFAを用いるため、屋外において高出力動作可能である。
 さらに、実施の形態6に係るライダ装置は、光源1からの信号光を1.5μm帯とし、増幅器5にEDFAを用い、励起光源27からの励起光を励起光分波器28を用いて複数ある増幅器5に対して共通としているため、EDFAの励起に1.48μm帯の励起光源27であるCRFLを用いたとしても、屋外において高出力動作可能である上に、増幅器5が高効率で増幅でき、ライダ装置としてのコスト及びサイズを抑えることが可能である。
 なお、実施の形態6に係るライダ装置においても実施の形態1に係るライダ装置と同様の効果が得られる。
 すなわち、第1に、単一の励起光源27からの励起光を励起光分波器28により分岐し、分岐した励起光を複数の増幅器5に入力する構成としたので、ライダ装置としてのコスト及びサイズを抑えられる。
 第2に、光源1からの信号光をアイセーフ帯の信号光とし、増幅器5にEDFAを用いることにより、安全に、屋外での高出力動作を可能とする。
 第3に、光源1からの信号光をアイセーフ帯の信号光とし、増幅器5にEDFAを用い、EDFAに1.48μm帯のCRFLの励起光源27を組み合わせて用いることにより、1.5μm帯の信号光を高効率励起によって高出力動作を装置能力として可能にする。
 第4に、光源1からの信号光をアイセーフ帯の信号光とし、EDFAの増幅器5にCRFLの励起光源27を組み合わせて用い、励起光源27から出力されるレーザ光を励起光分波器28により複数の励起光に分配して複数の増幅器5a~5cに入力することにより、複数の増幅器5a~5cに対して励起光源27を共通化、つまり単一化することができるため、屋外において使用でき、アイセーフ帯の信号光を高出力かつ高効率により増幅できるライダ装置をコスト及びサイズの低減を図って得られる。
 要するに、励起光源27として、イッテルビウムイオン添加ファイバレーザ(YDFL)などのレーザ光を誘導ラマン散乱によって波長変更し、多段階の構造をとる、高コストの1.48μm帯のシングルモードのレーザ光を出力するCRFLを用いても、励起光分波器28を用いることにより、複数の増幅器5a~5cに対して励起光源27の共通化、つまり、単一の励起光源27にできるので、励起光源27に対するコスト及びサイズが削減でき、ライダ装置としてサイズの縮小及びコストの低減が図れる。
 なお、実施の形態6に係るライダ装置は、励起光分波器28を用いて励起光源27から出力された励起光を増幅器5全て、つまり、第1の増幅器5aから第3の増幅器5c全てに入力されるものとしたが、EDFAの増幅器5とCRFLの励起光源27の組み合わせが少なくとも1組あればよいものにあっては、励起光源27から出力された励起光を複数の増幅器5a~5cの少なくとも1つの増幅器に入力するものでもよい。
 また、実施の形態6に係るライダ装置は、増幅器5にEDFAを用い、励起光源27にCRFLを用いたものとしたが、増幅器5と励起光源27との組み合わせはこれに限られるものではなく、設計に応じて任意の増幅器5と任意の励起光源27の組み合わせを用いてもよい。
 なお、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本開示に係るライダ装置は、風計測用ドップラーライダ装置、三次元高速撮像に用いられるライダ装置、ガス濃度計測に用いられるライダ装置に好適である。
 1 光源、2 分波・分配器、3 分波器、4 分配器、5a~5c 増幅器、6a~6c 送受分離装置、7a~7c 光送受信装置、8 信号処理装置、15  前置増幅器、16 光変調器、22a~22c 開口数変換器、27 励起光源、28励起光分波器。

Claims (15)

  1.  レーザ光を出力する光源と、
     前記光源から出力されたレーザ光を受け、局部発振光と複数の信号光を出力する分波・分配器と、
     それぞれが前記分波・分配器から出力された複数の信号光のそれぞれに対応し、対応する信号光を増幅する複数の増幅器と、
     それぞれが前記複数の増幅器のそれぞれに対応し、対応する増幅器から出力された信号光を送信光として空間中に放射し、前記空間中に存在する測定ターゲットからの散乱光を受信光として受信する複数の光送受信装置と、
     前記複数の光送受信装置からの受信光と前記分波・分配器からの局部発振光に基づき前記測定ターゲットまでの距離及び前記測定ターゲットの性質を算出する信号処理装置と、
     それぞれが前記複数の増幅器及び前記複数の光送受信装置のそれぞれに対応し、前記複数の増幅器からの送信光を対応する前記光送受信装置に結合し、前記複数の光送受信装置により受信した受信光を対応する前記信号処理装置に結合する複数の送受分離装置と、
     を備えたライダ装置。
  2.  前記分波・分配器は、
     前記光源から出力されたレーザ光を局部発振光と信号光とに分割する分波器と、
     前記分波器からの信号光を複数の信号光に分配し、出力する分配器と、
     を有する請求項1記載のライダ装置。
  3.  前記分波器からの信号光を増幅し、前記分配器に出力する前置増幅器を備えた請求項2に記載のライダ装置。
  4.  前記分波器からの信号光を変調し、前記分配器に出力する変調器を備えた請求項2に記載のライダ装置。
  5.  前記光源は複数の互いに異なる波長の光を出力し、
     前記複数の増幅器のそれぞれは互いに異なる波長の光に増幅し、
     前記分波・分配器は、前記光源から入力された光を波長ごとにその波長を増幅可能な増幅器に入力するよう選択して分配する請求項1から請求項4のいずれか1項に記載のライダ装置。
  6.  前記光源から出力されるレーザ光は波長がアイセーフ帯のレーザ光である請求項1から請求項5のいずれか1項に記載のライダ装置。
  7.  前記複数の送受分離装置のそれぞれが、
     対応する前記増幅器によって増幅され、光ファイバケーブルを伝搬してきた信号光を対応する前記光送受信装置に入力されるように光伝送手段へ出力する信号光系光路と、光伝送手段を伝搬してきた対応する前記光送受信装置からの受信光を前記信号処理装置に入力されるように光ファイバケーブルへ出力する受信光系光路を有する分離器と、
     前記分離器とにより、前記信号光系光路と前記受信光系光路とで異なる開口数変換を行う開口数変換器と、
     を有する請求項1から請求項6のいずれか1項に記載のライダ装置。
  8.  前記開口数変換器は、前記分離器と前記信号処理装置に前記受信光を伝搬する光ファイバケーブルとの間に設置され、
     前記分離器が前記増幅器からの信号光を伝搬する光ファイバケーブルの開口数から前記光送受信装置の開口数に変換し、
     前記分離器が前記光送受信装置の開口数から前記増幅器からの信号光を伝搬する光ファイバケーブルの開口数に変換し、前記開口数変換器が前記分離器により前記増幅器からの信号光を伝搬する光ファイバケーブルの開口数に変換された開口数を前記信号処理装置に前記受信光を伝搬する光ファイバケーブルの開口数に変換する請求項7に記載のライダ装置。
  9.  前記増幅器からの信号光を伝搬する光ファイバケーブルがLMAファイバを用いた光ファイバケーブルであり、
     前記信号処理装置に前記受信光を伝搬する光ファイバケーブルがLMAファイバより基本モードに対する実効断面積が小さい光ファイバを用いた光ファイバケーブルである請求項7又は請求項8に記載のライダ装置。
  10.  励起光を前記複数の増幅器の少なくとも1つの増幅器に出力する励起光源を備えた請求項1から請求項9のいずれか1項に記載のライダ装置。
  11.  励起光を出力する励起光源と、
     前記励起光源から出力された励起光を分配し、前記複数の増幅器の少なくとも1つの増幅器に分配した励起光を出力する励起光分波器と、
     を備えた請求項1から請求項9のいずれか1項に記載のライダ装置。
  12.  前記励起光源はカスケードラマンファイバレーザを有し、
     前記複数の増幅器のそれぞれはエルビウムイオン添加ファイバ増幅器を有する請求項10又は請求項11に記載のライダ装置。
  13.  前記分波・分配器は、
     前記光源から出力されたレーザ光を複数のレーザ光に分配し、出力する分配器と、
     前記分配器から出力された複数のレーザ光のそれぞれに対応し、対応するレーザ光を局部発振光と信号光とに分割する複数の分波器と、
     を有する請求項1記載のライダ装置。
  14.  増幅器によって増幅され、光ファイバケーブルを伝搬してきた信号光を光送受信装置に入力されるように光伝送手段に出力する信号光系光路と、光伝送手段を伝搬してきた前記光送受信装置からの受信光を信号処理装置に入力されるように光ファイバケーブルへ出力する受信光系光路を有する分離器と
     前記分離器とにより、前記信号光系光路と前記受信光系光路とで異なる開口数変換を行う開口数変換器と、
     を備えたライダ装置の送受分離装置。
  15.  前記開口数変換器は、前記分離器と前記信号処理装置に前記受信光を伝搬する光ファイバケーブルとの間に設置され、
     前記分離器が前記増幅器からの信号光を伝搬する光ファイバケーブルの開口数から前記光送受信装置の開口数に変換し、
     前記分離器が前記光送受信装置の開口数から前記増幅器からの信号光を伝搬する光ファイバケーブルの開口数に変換し、前記開口数変換器が前記分離器により前記増幅器からの信号光を伝搬する光ファイバケーブルの開口数に変換された開口数を前記信号処理装置に前記受信光を伝搬する光ファイバケーブルの開口数に変換する請求項14に記載のライダ装置の送受分離装置。
PCT/JP2021/002938 2021-01-28 2021-01-28 ライダ装置及び送受分離装置 WO2022162810A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180089335.3A CN116670540A (zh) 2021-01-28 2021-01-28 激光雷达装置和收发分离装置
EP21922830.1A EP4266081A4 (en) 2021-01-28 2021-01-28 LIDAR DEVICE AND TRANSMISSION/RECEPTION SEPARATION DEVICE
JP2021529379A JP7019870B1 (ja) 2021-01-28 2021-01-28 ライダ装置及び送受分離装置
PCT/JP2021/002938 WO2022162810A1 (ja) 2021-01-28 2021-01-28 ライダ装置及び送受分離装置
US18/197,917 US20230280448A1 (en) 2021-01-28 2023-05-16 Lidar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002938 WO2022162810A1 (ja) 2021-01-28 2021-01-28 ライダ装置及び送受分離装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/197,917 Continuation US20230280448A1 (en) 2021-01-28 2023-05-16 Lidar device

Publications (1)

Publication Number Publication Date
WO2022162810A1 true WO2022162810A1 (ja) 2022-08-04

Family

ID=80929717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002938 WO2022162810A1 (ja) 2021-01-28 2021-01-28 ライダ装置及び送受分離装置

Country Status (5)

Country Link
US (1) US20230280448A1 (ja)
EP (1) EP4266081A4 (ja)
JP (1) JP7019870B1 (ja)
CN (1) CN116670540A (ja)
WO (1) WO2022162810A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024000938A (ja) * 2022-06-21 2024-01-09 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び測距システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307567A (ja) * 2002-04-16 2003-10-31 Mitsubishi Electric Corp コヒーレントレーザレーダ装置
JP2011519424A (ja) * 2008-04-30 2011-07-07 オプティカル エアー データ システムズ,エルエルシー レーザードップラー速度計
CN105005054A (zh) * 2015-08-24 2015-10-28 中国科学技术大学 一种基于时分复用的非扫描连续光相干测速激光雷达
US20160226210A1 (en) * 2015-01-29 2016-08-04 John J. Zayhowski Systems and methods for light amplification
WO2017130315A1 (ja) 2016-01-27 2017-08-03 三菱電機株式会社 コヒーレントライダー装置
US20200041616A1 (en) * 2018-06-29 2020-02-06 Perceptive Inc. Perception systems for use in autonomously controlling systems
WO2020217267A1 (ja) * 2019-04-22 2020-10-29 三菱電機株式会社 レーザレーダ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087380A1 (ja) * 2013-12-09 2015-06-18 三菱電機株式会社 レーザレーダ装置
JP6511733B2 (ja) * 2014-05-30 2019-05-15 株式会社デンソー 光飛行型測距装置
DE102017222969A1 (de) * 2017-12-15 2019-06-19 Ibeo Automotive Systems GmbH Verfahren zur verbesserten Nah- und Ferndetektion einer LIDAR Empfangseinheit
US11650296B2 (en) * 2018-02-16 2023-05-16 Xiaotian Steve Yao Optical sensing based on wavelength division multiplexed (WDM) light at different wavelengths in light detection and ranging LiDAR systems
US11150535B2 (en) * 2018-05-17 2021-10-19 Optilab, Llc Apparatus and method for transmitting light in different directions by changing wavelength of the light

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307567A (ja) * 2002-04-16 2003-10-31 Mitsubishi Electric Corp コヒーレントレーザレーダ装置
JP2011519424A (ja) * 2008-04-30 2011-07-07 オプティカル エアー データ システムズ,エルエルシー レーザードップラー速度計
US20160226210A1 (en) * 2015-01-29 2016-08-04 John J. Zayhowski Systems and methods for light amplification
CN105005054A (zh) * 2015-08-24 2015-10-28 中国科学技术大学 一种基于时分复用的非扫描连续光相干测速激光雷达
WO2017130315A1 (ja) 2016-01-27 2017-08-03 三菱電機株式会社 コヒーレントライダー装置
US20200041616A1 (en) * 2018-06-29 2020-02-06 Perceptive Inc. Perception systems for use in autonomously controlling systems
WO2020217267A1 (ja) * 2019-04-22 2020-10-29 三菱電機株式会社 レーザレーダ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4266081A4

Also Published As

Publication number Publication date
JP7019870B1 (ja) 2022-02-15
JPWO2022162810A1 (ja) 2022-08-04
US20230280448A1 (en) 2023-09-07
EP4266081A4 (en) 2023-12-27
CN116670540A (zh) 2023-08-29
EP4266081A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
JP6223644B1 (ja) レーザレーダ装置
JP5738436B2 (ja) レーザレーダ装置
US9689968B2 (en) Wholly optically controlled phased array radar transmitter
US6263139B1 (en) Optical transmission system with group velocity dispersion compensation
US10790909B1 (en) Efficient multi-channel coherent optical system
US20160291137A1 (en) Laser radar device
JP7419395B2 (ja) 戻り路に光増幅器を備えたlidar装置
US20090097508A1 (en) Fiber Laser Arrangement Having A High Beaming Power
US20230280448A1 (en) Lidar device
JPWO2016047100A1 (ja) 空間光受信装置、空間光通信システムおよび空間光通信方法
CN116593996A (zh) 激光雷达及可移动设备
CN109244801B (zh) 基于随机布里渊光纤激光器的可调谐光电振荡器及方法
CN114839644A (zh) 一种激光雷达系统
US20180254832A1 (en) Optical reception device, optical modulator and optical modulation method
JP6774753B2 (ja) ラマン増幅用光源システム、ラマン増幅器、ラマン増幅システム
ES2900382T3 (es) Aparato y método para reducir la distorsión de una señal óptica
JP2012207934A (ja) ドップラーライダ装置
WO2017164037A1 (ja) 光源装置
JP6705610B1 (ja) レーザ装置
KR101453948B1 (ko) 간섭형 잡음억제장치를 포함하는 파장무관 광송신기
CN114744480B (zh) 光分布式放大结构
CN114024194B (zh) 光纤激光相干合成系统
WO2022118361A1 (ja) デポラライザ及び光増幅器励起装置
US20240103338A1 (en) Wavelength converter and optical transmission system
JP5788814B2 (ja) ラマン増幅器励起装置及びラマン増幅器の励起方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021529379

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922830

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180089335.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021922830

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021922830

Country of ref document: EP

Effective date: 20230828