WO2022161408A1 - 甲基吡唑取代的吡啶并咪唑类化合物的晶型及其制备方法 - Google Patents

甲基吡唑取代的吡啶并咪唑类化合物的晶型及其制备方法 Download PDF

Info

Publication number
WO2022161408A1
WO2022161408A1 PCT/CN2022/074076 CN2022074076W WO2022161408A1 WO 2022161408 A1 WO2022161408 A1 WO 2022161408A1 CN 2022074076 W CN2022074076 W CN 2022074076W WO 2022161408 A1 WO2022161408 A1 WO 2022161408A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
compound
formula
angles
present
Prior art date
Application number
PCT/CN2022/074076
Other languages
English (en)
French (fr)
Inventor
陈正霞
戴美碧
张杨
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to CA3206502A priority Critical patent/CA3206502A1/en
Priority to EP22745281.0A priority patent/EP4286382A1/en
Priority to AU2022213682A priority patent/AU2022213682B2/en
Priority to KR1020237028047A priority patent/KR20230134545A/ko
Priority to JP2023544759A priority patent/JP2024504437A/ja
Priority to CN202280009914.7A priority patent/CN116783192A/zh
Publication of WO2022161408A1 publication Critical patent/WO2022161408A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the invention relates to a crystal form of a methylpyrazole-substituted pyridoimidazole compound and a preparation method thereof.
  • Fibroblast growth factor receptor is a class of receptor proteins that can specifically bind to fibroblast growth factor (FGF).
  • the FGFRs family includes the following types: FGFR1b, FGFR1c, FGFR2b, FGFR2c, FGFR3b, FGFR3c, FGFR4 .
  • Fibroblast growth factor receptor (FGFR) is a class of biologically active substances with functions such as transducing biological signals, regulating cell growth, and participating in tissue repair. It is clinically found that high expression of FGFR, mutation or fusion and other abnormalities can cause tumor occurrence and development, such as in liver cancer, bladder cancer, lung cancer, breast cancer and other diseases.
  • FGFR binds to the ligand FGF, resulting in autophosphorylation of multiple tyrosine residues in the cell, and downstream signaling, including MEK/MAPK, PLCy/PKC, P13K/AKT, STATS, etc. Therefore, FGFR is considered to be an important anti-tumor target.
  • VEGFR family includes three specific tyrosine kinase receptors, VEGFR-1, VEGFR-2 (KDR) and VEGFR-3.
  • VEGFR-2 is an important regulator of endothelial cell proliferation, increased vascular permeability and angiogenesis through VEGF signaling, and the affinity of VEGFR-2 and VEGF is greater than that of VEGFR-1. Studies have shown that only VEGFR-2 is expressed in endothelial cells, and activation of VEGFR-2 can efficiently stimulate angiogenesis. Therefore, VEGFR-2 is the main target for the development of anti-angiogenesis drugs.
  • VEGFR and FGFR pathways work together to complete the activation and generation of endothelial cells in angiogenesis, and sometimes VEGF requires the presence of FGF to exert its pro-angiogenic effect.
  • the synergistic effect of FGFR and VEGFR pathways can also inhibit tumor immune escape and improve tumor suppressive effect.
  • the present invention provides a compound represented by formula (II),
  • the present invention provides crystal form A of the compound represented by formula (II), characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 7.65 ⁇ 0.20°, 17.70 ⁇ 0.20°, 24.02 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 7.65 ⁇ 0.20°, 16.84 ⁇ 0.20°, 17.70 ⁇ 0.20°, 20.10 ⁇ 0.20°, 20.91 ⁇ 0.20 °, 24.02 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 7.65 ⁇ 0.20°, 16.84 ⁇ 0.20°, 17.70 ⁇ 0.20°, 20.10 ⁇ 0.20°, 20.91 ⁇ 0.20 °, 24.02 ⁇ 0.20°, 24.98 ⁇ 0.20°, 26.60 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned Form A has characteristic diffraction peaks at the following 2 ⁇ angles: 7.65 ⁇ 0.20°, 17.70 ⁇ 0.20°, and/or 24.02 ⁇ 0.20°, and/or 16.84 ⁇ 0.20°, and/or 20.10 ⁇ 0.20°, and/or 20.91 ⁇ 0.20°, and/or 24.98 ⁇ 0.20°, and/or 26.60 ⁇ 0.20°, and/or 12.71 ⁇ 0.20°, and/or 28.08 ⁇ 0.20° .
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.649°, 12.713°, 16.841°, 17.695°, 20.100°, 20.912°, 24.018°, 24.976° , 26.599°, 28.076°.
  • the XRPD pattern of the above-mentioned crystal form A is shown in FIG. 1 .
  • the differential scanning calorimetry curve has an endothermic peak at 283.9 ⁇ 3.0°C.
  • the DSC spectrum of the above-mentioned crystal form A is shown in FIG. 2 .
  • the above-mentioned crystal form A has a weight loss of 0.955% at 200.0 ⁇ 3.0°C in its thermogravimetric analysis curve.
  • the invention provides the B crystal form of the compound represented by formula (II), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 6.75 ⁇ 0.20°, 9.94 ⁇ 0.20°, 23.94 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 6.75 ⁇ 0.20°, 9.94 ⁇ 0.20°, 11.70 ⁇ 0.20°, 17.52 ⁇ 0.20°, 20.36 ⁇ 0.20 °, 23.94 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 6.75 ⁇ 0.20°, 9.94 ⁇ 0.20°, 11.70 ⁇ 0.20°, 14.38 ⁇ 0.20°, 17.52 ⁇ 0.20 °, 18.95 ⁇ 0.20°, 20.36 ⁇ 0.20°, 23.94 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 6.75°, 9.94°, 11.70°, 13.62°, 14.38°, 15.47°, 17.52°, 18.95° , 20.36°, 23.94°, 25.34°, 25.46°, 26.93°, 28.79°.
  • the XRPD pattern of the above-mentioned crystal form B is shown in FIG. 4 .
  • the differential scanning calorimetry curve of the differential scanning calorimetry curve has an endothermic peak starting point at 57.40 ⁇ 3.0°C and 296.86 ⁇ 3.0°C, respectively.
  • the DSC spectrum of the above-mentioned crystal form B is shown in FIG. 5 .
  • the above-mentioned crystal form B has a weight loss of 10.53% in the thermogravimetric analysis curve at 150.0 ⁇ 3.0°C.
  • the above-mentioned crystal form B its TGA spectrum is shown in FIG. 6 .
  • the present invention provides the C crystal form of the compound represented by formula (II), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 10.74 ⁇ 0.20°, 13.64 ⁇ 0.20°, 21.14 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 10.74 ⁇ 0.20°, 13.64 ⁇ 0.20°, 19.62 ⁇ 0.20°, 21.14 ⁇ 0.20°, 25.45 ⁇ 0.20 °, 25.96 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 8.70 ⁇ 0.20°, 10.74 ⁇ 0.20°, 13.64 ⁇ 0.20°, 16.63 ⁇ 0.20°, 19.62 ⁇ 0.20 °, 21.14 ⁇ 0.20°, 25.45 ⁇ 0.20°, 27.47 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 5.44°, 8.70°, 10.74°, 13.64°, 15.85°, 16.63°, 17.44°, 19.62° °, 21.14°, 21.61°, 24.26°, 25.45°, 25.96°, 27.47°, 29.07°.
  • the XRPD pattern of the above-mentioned crystal form C is shown in FIG. 7 .
  • the differential scanning calorimetry curve of the differential scanning calorimetry curve has an endothermic peak starting point at 37.60 ⁇ 3.0°C and 299.00 ⁇ 3.0°C, respectively.
  • the DSC spectrum of the above-mentioned crystal form C is shown in FIG. 8 .
  • the above-mentioned crystal form C has a weight loss of 7.91% at 150.0 ⁇ 3.0°C in its thermogravimetric analysis curve.
  • the above-mentioned crystal form C its TGA spectrum is shown in FIG. 9 .
  • the present invention provides the D crystal form of the compound represented by formula (II), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 10.78 ⁇ 0.20°, 13.64 ⁇ 0.20°, 16.66 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned D crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 10.78 ⁇ 0.20°, 13.64 ⁇ 0.20°, 16.66 ⁇ 0.20°, 19.63 ⁇ 0.20°, 21.13 ⁇ 0.20 °, 25.40 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form D has characteristic diffraction peaks at the following 2 ⁇ angles: 5.51 ⁇ 0.20°, 8.73 ⁇ 0.20°, 10.78 ⁇ 0.20°, 13.64 ⁇ 0.20°, 16.66 ⁇ 0.20 °, 19.63 ⁇ 0.20°, 21.13 ⁇ 0.20°, 25.40 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned D crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.51°, 8.10°, 8.73°, 10.78°, 12.64°, 13.64°, 14.47°, 14.92° , 15.80°, 16.66°, 17.47°, 19.03°, 19.63°, 21.13°, 21.69°, 22.02°, 22.20°, 23.84°, 24.31°, 25.40°, 25.93°, 26.28°, 26.84°, 27.41°, 27.93 °, 29.10°, 30.01°, 30.78°, 32.16°, 32.78°, 33.57°, 38.41°.
  • the XRPD pattern of the above-mentioned D crystal form is shown in FIG. 10 .
  • the differential scanning calorimetry curve of the differential scanning calorimetry curve has an onset of an endothermic peak at 27.1 ⁇ 3.0°C and 298.8 ⁇ 3.0°C, respectively.
  • the DSC spectrum of the above-mentioned D crystal form is shown in FIG. 11 .
  • the above-mentioned crystal form D has a weight loss of 3.15% at 150.0 ⁇ 3.0°C in its thermogravimetric analysis curve.
  • the above-mentioned crystal form D its TGA spectrum is shown in FIG. 12 .
  • the present invention provides a compound represented by formula (III),
  • the present invention provides the E crystal form of the compound represented by formula (III), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 9.56 ⁇ 0.20°, 19.10 ⁇ 0.20°, 27.12 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned crystal form E has characteristic diffraction peaks at the following 2 ⁇ angles: 9.56 ⁇ 0.20°, 10.82 ⁇ 0.20°, 16.94 ⁇ 0.20°, 19.10 ⁇ 0.20°, 27.12 ⁇ 0.20 °, 28.76 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form E has characteristic diffraction peaks at the following 2 ⁇ angles: 9.56 ⁇ 0.20°, 10.82 ⁇ 0.20°, 16.94 ⁇ 0.20°, 17.57 ⁇ 0.20°, 19.10 ⁇ 0.20 °, 25.00 ⁇ 0.20°, 27.12 ⁇ 0.20°, 28.76 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form E has characteristic diffraction peaks at the following 2 ⁇ angles: 7.01°, 9.56°, 10.82°, 13.51°, 13.97°, 16.94°, 17.57°, 19.10° , 21.26°, 23.73°, 24.47°, 25.00°, 26.04°, 26.62°, 27.12°, 28.33°, 28.76°, 29.22°, 30.59°, 31.56°, 32.72°, 35.31°, 36.10°, 37.25°, 38.64 °.
  • the XRPD pattern of the above-mentioned crystal form E is shown in FIG. 13 .
  • the differential scanning calorimetry curve of the differential scanning calorimetry curve has an endothermic peak starting point at 303.8 ⁇ 3.0°C.
  • the DSC spectrum of the above-mentioned crystal form E is shown in FIG. 14 .
  • the above-mentioned crystal form E its thermogravimetric analysis curve has a weight loss of 2.27% at 200.0 ⁇ 3.0°C.
  • the above-mentioned crystal form E its TGA spectrum is shown in FIG. 15 .
  • the present invention provides the F crystal form of the compound represented by formula (III), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 8.08 ⁇ 0.20°, 19.09 ⁇ 0.20°, 26.87 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above crystal form F has characteristic diffraction peaks at the following 2 ⁇ angles: 8.08 ⁇ 0.20°, 9.51 ⁇ 0.20°, 12.40 ⁇ 0.20°, 19.09 ⁇ 0.20°, 24.91 ⁇ 0.20 °, 26.87 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form F has characteristic diffraction peaks at the following 2 ⁇ angles: 8.08 ⁇ 0.20°, 9.51 ⁇ 0.20°, 12.40 ⁇ 0.20°, 16.80 ⁇ 0.20°, 17.70 ⁇ 0.20 °, 19.09 ⁇ 0.20°, 24.91 ⁇ 0.20°, 26.87 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned F crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 8.08°, 9.51°, 12.40°, 13.34°, 14.53°, 16.80°, 17.70°, 19.09° , 20.34°, 22.34°, 24.91°, 26.87°, 28.87°.
  • the XRPD pattern of the above-mentioned F crystal form is shown in FIG. 16 .
  • the present invention provides the G crystal form of the compound represented by formula (III), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 8.79 ⁇ 0.20°, 17.53 ⁇ 0.20°, 26.33 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned crystal form G has characteristic diffraction peaks at the following 2 ⁇ angles: 8.79 ⁇ 0.20°, 12.34 ⁇ 0.20°, 17.53 ⁇ 0.20°, 19.10 ⁇ 0.20°, 25.16 ⁇ 0.20 °, 26.33 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form G has characteristic diffraction peaks at the following 2 ⁇ angles: 8.79 ⁇ 0.20°, 12.34 ⁇ 0.20°, 17.53 ⁇ 0.20°, 19.10 ⁇ 0.20°, 19.65 ⁇ 0.20 °, 21.45 ⁇ 0.20°, 25.16 ⁇ 0.20°, 26.33 ⁇ 0.20°.
  • the above-mentioned crystal form G its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 8.79°, 12.34°, 13.92°, 15.13°, 15.76°, 17.08°, 17.53°, 19.10 °, 19.65°, 20.61°, 21.45°, 21.90°, 23.38°, 25.16°, 26.33°, 26.70°, 29.18°, 35.42°, 37.62°.
  • the XRPD pattern of the above-mentioned G crystal form is shown in FIG. 17 .
  • the present invention provides a compound represented by formula (IV),
  • the invention provides the H crystal form of the compound represented by formula (IV), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 6.65 ⁇ 0.20°, 17.80 ⁇ 0.20°, 18.92 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned H crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.65 ⁇ 0.20°, 13.42 ⁇ 0.20°, 17.80 ⁇ 0.20°, 18.92 ⁇ 0.20°, 21.99 ⁇ 0.20 °, 24.42 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned H crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.65 ⁇ 0.20°, 13.42 ⁇ 0.20°, 17.80 ⁇ 0.20°, 18.92 ⁇ 0.20°, 20.05 ⁇ 0.20 °, 21.99 ⁇ 0.20°, 24.42 ⁇ 0.20°, 26.30 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned H crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.65°, 13.42°, 17.80°, 18.45°, 18.92°, 20.05°, 21.99°, 24.42° , 26.30°, 27.00°.
  • the XRPD pattern of the above-mentioned H crystal form is shown in FIG. 18 .
  • the above-mentioned H crystal form has an onset of an endothermic peak at 275.73 ⁇ 3.0°C and 310.54 ⁇ 3.0°C in its differential scanning calorimetry curve, respectively.
  • the DSC spectrum of the above-mentioned H crystal form is shown in FIG. 19 .
  • the above-mentioned H crystal form has a weight loss of 8.58% at 200.0 ⁇ 3.0°C and a weight loss of 2.45% at 260.0 ⁇ 3.0°C on the thermogravimetric analysis curve.
  • the above-mentioned H crystal form its TGA spectrum is shown in FIG. 20 .
  • the present invention provides Form I of the compound represented by formula (IV), characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 5.33 ⁇ 0.20°, 13.74 ⁇ 0.20°, 20.66 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above I crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.33 ⁇ 0.20°, 9.02 ⁇ 0.20°, 13.74 ⁇ 0.20°, 18.16 ⁇ 0.20°, 20.66 ⁇ 0.20 °, 21.91 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above I crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.33 ⁇ 0.20°, 9.02 ⁇ 0.20°, 11.77 ⁇ 0.20°, 13.74 ⁇ 0.20°, 17.51 ⁇ 0.20 °, 18.16 ⁇ 0.20°, 20.66 ⁇ 0.20°, 21.91 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above I crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.33°, 9.02°, 10.62°, 11.77°, 13.74°, 15.99°, 17.51°, 18.16° , 19.63°, 20.66°, 21.24°, 21.91°, 23.15°, 24.94°, 26.89°.
  • the present invention provides the J crystal form of the compound represented by formula (IV), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 5.24 ⁇ 0.20°, 18.48 ⁇ 0.20°, 20.79 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned J crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.24 ⁇ 0.20°, 18.48 ⁇ 0.20°, 19.77 ⁇ 0.20°, 20.79 ⁇ 0.20°, 22.67 ⁇ 0.20 °, 23.24 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned J crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.24 ⁇ 0.20°, 18.48 ⁇ 0.20°, 19.77 ⁇ 0.20°, 20.79 ⁇ 0.20°, 22.67 ⁇ 0.20 °, 23.24 ⁇ 0.20°, 24.20 ⁇ 0.20°, 26.28 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form J has characteristic diffraction peaks at the following 2 ⁇ angles: 5.24°, 12.55°, 13.78°, 14.86°, 16.30°, 17.19°, 18.48°, 19.77° °, 20.79°, 22.67°, 23.24°, 24.20°, 26.28°.
  • the XRPD pattern of the above-mentioned J crystal form is shown in FIG. 22 .
  • the present invention provides the K crystal form of the compound represented by formula (IV), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 17.97 ⁇ 0.20°, 20.47 ⁇ 0.20°, 25.16 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned K crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.79 ⁇ 0.20°, 17.97 ⁇ 0.20°, 20.47 ⁇ 0.20°, 23.46 ⁇ 0.20°, 23.87 ⁇ 0.20 °, 25.16 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned K crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.79 ⁇ 0.20°, 17.97 ⁇ 0.20°, 18.74 ⁇ 0.20°, 19.47 ⁇ 0.20°, 20.47 ⁇ 0.20 °, 23.46 ⁇ 0.20°, 23.87 ⁇ 0.20°, 25.16 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned K crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.79°, 7.87°, 8.65°, 11.69°, 16.47°, 17.97°, 18.28°, 18.74° °,19.47°,20.47°,20.76°,21.73°,22.33°,23.46°,23.87°,25.16°,25.94°,26.30°,27.06°,28.07°,29.34°,30.18°,31.69°,33.26°, 34.45°.
  • the XRPD pattern of the above-mentioned K crystal form is shown in FIG. 23 .
  • the present invention provides a compound represented by formula (V),
  • the invention provides the L crystal form of the compound represented by formula (V), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 5.85 ⁇ 0.20°, 16.75 ⁇ 0.20°, 20.67 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned L crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.85 ⁇ 0.20°, 11.57 ⁇ 0.20°, 16.75 ⁇ 0.20°, 20.67 ⁇ 0.20°, 22.50 ⁇ 0.20 °, 25.29 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned L crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.85 ⁇ 0.20°, 11.57 ⁇ 0.20°, 16.75 ⁇ 0.20°, 18.10 ⁇ 0.20°, 20.67 ⁇ 0.20 °, 22.50 ⁇ 0.20°, 23.34 ⁇ 0.20°, 25.29 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned L crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.85°, 8.36°, 11.57°, 16.75°, 18.10°, 20.67°, 22.50°, 23.34° , 25.29°, 27.93°, 31.76°.
  • the XRPD pattern of the above-mentioned L crystal form is shown in FIG. 24 .
  • the invention provides the M crystal form of the compound represented by formula (V), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 5.72 ⁇ 0.20°, 16.77 ⁇ 0.20°, 17.51 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned crystal form M has characteristic diffraction peaks at the following 2 ⁇ angles: 5.72 ⁇ 0.20°, 11.52 ⁇ 0.20°, 16.77 ⁇ 0.20°, 17.51 ⁇ 0.20°, 18.10 ⁇ 0.20 °, 20.05 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form M has characteristic diffraction peaks at the following 2 ⁇ angles: 5.72 ⁇ 0.20°, 11.52 ⁇ 0.20°, 16.77 ⁇ 0.20°, 17.51 ⁇ 0.20°, 18.10 ⁇ 0.20 °, 20.05 ⁇ 0.20°, 22.48 ⁇ 0.20°, 25.30 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form M has characteristic diffraction peaks at the following 2 ⁇ angles: 5.42°, 5.72°, 11.52°, 13.57°, 14.92°, 16.77°, 17.51°, 18.10° , 20.05°, 22.48°, 23.35°, 23.91°, 25.30°, 27.10°, 27.94°, 30.00°, 31.77°.
  • the XRPD pattern of the above-mentioned M crystal form is shown in FIG. 25 .
  • the invention provides the N crystal form of the compound represented by formula (V), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 4.55 ⁇ 0.20°, 16.76 ⁇ 0.20°, 18.30 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned N crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 4.55 ⁇ 0.20°, 16.14 ⁇ 0.20°, 16.76 ⁇ 0.20°, 17.20 ⁇ 0.20°, 18.30 ⁇ 0.20 °, 20.22 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned N crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 4.55 ⁇ 0.20°, 16.14 ⁇ 0.20°, 16.76 ⁇ 0.20°, 17.20 ⁇ 0.20°, 18.30 ⁇ 0.20 °, 20.22 ⁇ 0.20°, 22.63 ⁇ 0.20°, 24.50 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned N crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 4.55°, 16.14°, 16.76°, 17.20°, 18.30°, 20.22°, 22.63°, 24.50° °, 26.73°, 31.76°.
  • the XRPD pattern of the above-mentioned N crystal form is shown in FIG. 26 .
  • the present invention provides the compound represented by formula (VI),
  • the invention provides the O crystal form of the compound represented by formula (VI), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 4.57 ⁇ 0.20°, 5.79 ⁇ 0.20°, 18.06 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above crystal form O has characteristic diffraction peaks at the following 2 ⁇ angles: 4.57 ⁇ 0.20°, 5.79 ⁇ 0.20°, 16.38 ⁇ 0.20°, 18.06 ⁇ 0.20°, 19.32 ⁇ 0.20 °, 20.13 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form O has characteristic diffraction peaks at the following 2 ⁇ angles: 4.57 ⁇ 0.20°, 5.79 ⁇ 0.20°, 9.09 ⁇ 0.20°, 14.52 ⁇ 0.20°, 16.38 ⁇ 0.20 °, 18.06 ⁇ 0.20°, 19.32 ⁇ 0.20°, 20.13 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form O has characteristic diffraction peaks at the following 2 ⁇ angles: 4.57°, 5.79°, 6.45°, 9.09°, 10.09°, 12.20°, 13.04°, 14.52° , 16.38°, 18.06°, 18.33°, 19.32°, 20.13°, 22.42°, 22.74°, 23.32°, 23.90°, 27.37°, 29.29°.
  • the XRPD pattern of the above-mentioned O crystal form is shown in FIG. 27 .
  • the present invention provides the P crystal form of the compound represented by formula (VI), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 9.96 ⁇ 0.20°, 17.02 ⁇ 0.20°, 21.78 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned P crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 9.96 ⁇ 0.20°, 17.02 ⁇ 0.20°, 21.31 ⁇ 0.20°, 21.78 ⁇ 0.20°, 24.71 ⁇ 0.20 °, 25.52 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned P crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 9.96 ⁇ 0.20°, 16.23 ⁇ 0.20°, 17.02 ⁇ 0.20°, 17.81 ⁇ 0.20°, 21.31 ⁇ 0.20 °, 21.78 ⁇ 0.20°, 24.71 ⁇ 0.20°, 25.52 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned P crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.87°, 8.26°, 9.96°, 13.64°, 15.18°, 16.23°, 17.02°, 17.81° , 18.62°, 21.31°, 21.78°, 24.71°, 25.52°, 29.14°, 31.47°.
  • the XRPD pattern of the above-mentioned P crystal form is shown in FIG. 28 .
  • the present invention provides a compound represented by formula (VII),
  • the present invention provides the Q crystal form of the compound represented by formula (VII), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 7.90 ⁇ 0.20°, 16.76 ⁇ 0.20°, 25.94 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned crystal form Q has characteristic diffraction peaks at the following 2 ⁇ angles: 7.90 ⁇ 0.20°, 16.76 ⁇ 0.20°, 17.19 ⁇ 0.20°, 20.09 ⁇ 0.20°, 23.82 ⁇ 0.20 °, 25.94 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form Q has characteristic diffraction peaks at the following 2 ⁇ angles: 7.90 ⁇ 0.20°, 11.53 ⁇ 0.20°, 16.76 ⁇ 0.20°, 17.19 ⁇ 0.20°, 20.09 ⁇ 0.20 °, 20.94 ⁇ 0.20°, 23.82 ⁇ 0.20°, 25.94 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form Q has characteristic diffraction peaks at the following 2 ⁇ angles: 7.90°, 8.53°, 9.90°, 11.53°, 12.98°, 15.12°, 16.76°, 17.19° , 19.68°, 20.09°, 20.94°, 22.50°, 22.86°, 23.82°, 25.32°, 25.94°, 27.16°, 27.83°, 29.17°, 30.11°, 31.83°, 33.48°.
  • the XRPD pattern of the above-mentioned Q crystal form is shown in FIG. 29 .
  • the present invention provides a compound represented by formula (VIII),
  • the present invention provides the R crystal form of the compound represented by formula (VIII), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 3.18 ⁇ 0.20°, 6.43 ⁇ 0.20°, 16.67 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned R crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 3.18 ⁇ 0.20°, 6.43 ⁇ 0.20°, 16.67 ⁇ 0.20°, 18.20 ⁇ 0.20°, 18.63 ⁇ 0.20 °, 19.53 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned R crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 3.18 ⁇ 0.20°, 6.43 ⁇ 0.20°, 16.67 ⁇ 0.20°, 18.20 ⁇ 0.20°, 18.63 ⁇ 0.20 °, 19.53 ⁇ 0.20°, 20.02 ⁇ 0.20°, 27.78 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned R crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 3.18°, 6.43°, 11.35°, 13.24°, 16.67°, 18.20°, 18.63°, 19.53° , 20.02°, 21.59°, 23.44°, 27.78°.
  • the XRPD pattern of the above-mentioned R crystal form is shown in FIG. 30 .
  • the present invention provides a compound represented by formula (X),
  • the invention provides the S crystal form of the compound represented by formula (X), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 4.74 ⁇ 0.20°, 17.04 ⁇ 0.20°, 24.77 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned S crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 4.74 ⁇ 0.20°, 11.97 ⁇ 0.20°, 17.04 ⁇ 0.20°, 20.65 ⁇ 0.20°, 24.77 ⁇ 0.20 °, 31.75 ⁇ 0.20°.
  • the XRPD pattern of the above-mentioned S crystal form is shown in FIG. 31 .
  • the invention provides the T crystal form of the compound represented by formula (I), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 8.37 ⁇ 0.20°, 11.54 ⁇ 0.20°, 16.76 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above crystal form T has characteristic diffraction peaks at the following 2 ⁇ angles: 8.37 ⁇ 0.20°, 11.54 ⁇ 0.20°, 16.76 ⁇ 0.20°, 22.49 ⁇ 0.20°, 23.36 ⁇ 0.20 °, 25.26 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form T has characteristic diffraction peaks at the following 2 ⁇ angles: 8.37 ⁇ 0.20°, 11.54 ⁇ 0.20°, 16.76 ⁇ 0.20°, 19.53 ⁇ 0.20°, 22.49 ⁇ 0.20 °, 23.36 ⁇ 0.20°, 25.26 ⁇ 0.20°, 27.12 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form T has characteristic diffraction peaks at the following 2 ⁇ angles: 8.37°, 9.98°, 11.54°, 13.44°, 15.08°, 16.76°, 18.70°, 19.53° , 20.03°, 21.14°, 22.49°, 23.36°, 25.26°, 27.12°, 27.92°, 31.77°.
  • the XRPD pattern of the above-mentioned T crystal form is shown in FIG. 32 .
  • the above-mentioned T crystal form has an endothermic peak at 282.6 ⁇ 3.0°C in its differential scanning calorimetry curve.
  • the DSC spectrum of the above-mentioned T crystal form is shown in FIG. 33 .
  • the above-mentioned T crystal form has a weight loss of 1.56% in the thermogravimetric analysis curve at 250.0 ⁇ 3.0°C.
  • the TGA spectrum of the above-mentioned T crystal form is shown in FIG. 34 .
  • the present invention also provides the above compound or the above-mentioned A crystal form, B crystal form, C crystal form, D crystal form, E crystal form, F crystal form, G crystal form, H crystal form, I crystal form, J crystal form, K crystal form Crystal form, L crystal form, M crystal form, N crystal form, O crystal form, P crystal form, Q crystal form, R crystal form, S crystal form and T crystal form are related to FGFR/VEGFR dual kinase inhibitor in preparation and treatment The use of medicines for diseases.
  • the above application is characterized in that the FGFR/VEGFR dual kinase inhibitor-related drug is a drug for treating solid tumors.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by their combination with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalents, preferred embodiments include, but are not limited to, the examples of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art. For example, single crystal X-ray diffraction method (SXRD), the cultured single crystal is collected by BrukerD8venture diffractometer, the light source is CuK ⁇ radiation, and the scanning mode is: After scanning and collecting relevant data, the crystal structure was further analyzed by the direct method (Shelxs97), and the absolute configuration could be confirmed.
  • SXRD single crystal X-ray diffraction method
  • the cultured single crystal is collected by BrukerD8venture diffractometer
  • the light source is CuK ⁇ radiation
  • the scanning mode is: After scanning and collecting relevant data, the crystal structure was further analyzed by the direct method (Shelxs97), and the absolute configuration could be confirmed.
  • DSC spectra as used herein are downward endothermic.
  • the solvent used in the present invention is commercially available.
  • DCM stands for dichloromethane
  • DMF stands for N,N-dimethylformamide
  • DMSO stands for dimethyl sulfoxide
  • EtOH stands for ethanol
  • MeOH stands for methanol
  • TFA trifluoroacetic acid
  • ATP stands for Adenosine triphosphate
  • HEPES 4-hydroxyethylpiperazineethanesulfonic acid
  • MgCl 2 stands for magnesium dichloride
  • Pd(PPh 3 ) 2 Cl 2 stands for bistriphenylphosphine palladium dichloride.
  • the crystal form of the compound of the present invention has good stability and is easy to prepare medicine; the compound crystal form of the present invention has excellent DNA-PK kinase inhibitory activity.
  • X-ray powder diffraction X-ray powder diffractometer, XRPD
  • Test Method Approximately 10 mg of sample was used for XRPD detection.
  • Light tube voltage 45kV
  • light tube current 40mA
  • DSC Differential Scanning Calorimeter
  • Test method Take a sample (about 1-5mg) and place it in a DSC aluminum pan for testing. Under the condition of 50mL/min N2 , at a heating rate of 10°C/min, heat the sample from 25°C (room temperature) to before the sample decomposes. .
  • Test method Take a sample (about 1-5mg) and place it in a TGA aluminum pan for testing, and heat the sample from room temperature to 350°C at a heating rate of 10°C/min under the condition of 10mL/min N2 .
  • Test conditions Take a sample (10-30 mg) and place it in the DVS sample tray for testing.
  • the hygroscopicity evaluation is classified as follows:
  • Hygroscopic classification ⁇ W% deliquescence Absorbs enough water to form a liquid Very hygroscopic ⁇ W% ⁇ 15% hygroscopic 15%> ⁇ W% ⁇ 2% slightly hygroscopic 2%> ⁇ W% ⁇ 0.2% No or almost no hygroscopicity ⁇ W% ⁇ 0.2%
  • ⁇ W% represents the hygroscopic weight gain of the test product at 25 ⁇ 1°C and 80 ⁇ 2%RH.
  • Fig. 1 is the XRPD spectrum of the Cu-K ⁇ radiation of compound A of formula (II);
  • Fig. 2 is the DSC spectrogram of the crystal form of compound A of formula (II);
  • Fig. 3 is the TGA spectrum of formula (II) compound A crystal form
  • Fig. 4 is the XRPD spectrum of the Cu-K ⁇ radiation of compound B of formula (II);
  • Fig. 5 is the DSC spectrogram of the crystal form of compound B of formula (II);
  • Fig. 6 is the TGA spectrum of formula (II) compound B crystal form
  • Fig. 7 is the XRPD spectrum of the Cu-K ⁇ radiation of compound C of formula (II);
  • Fig. 8 is the DSC spectrogram of the crystal form of compound C of formula (II);
  • Fig. 9 is the TGA spectrum of formula (II) compound C crystal form
  • Fig. 10 is the Cu-K ⁇ radiation XRPD spectrum of compound D of formula (II);
  • Fig. 11 is the DSC spectrum of compound D of formula (II) crystalline form
  • Figure 12 is the TGA spectrum of the compound D crystal form of formula (II);
  • Fig. 13 is the Cu-K ⁇ radiation XRPD spectrum of compound E of formula (III);
  • Figure 14 is the DSC spectrogram of the crystal form of compound E of formula (III);
  • Figure 15 is the TGA spectrum of the compound E crystal form of formula (III);
  • Fig. 16 is the Cu-K ⁇ radiation XRPD spectrum of compound F of formula (III);
  • Figure 17 is the Cu-K ⁇ radiation XRPD spectrum of compound G of formula (III);
  • Fig. 18 is the Cu-K ⁇ radiation XRPD spectrum of compound H of formula (IV);
  • Figure 19 is the DSC spectrogram of the compound H crystal form of formula (IV).
  • Figure 20 is the TGA spectrum of the compound H crystal form of formula (IV);
  • Fig. 21 is the XRPD spectrum of Cu-K ⁇ radiation of compound I of formula (IV);
  • Fig. 22 is the XRPD spectrum of Cu-K ⁇ radiation of compound J of formula (IV);
  • Fig. 23 is the XRPD spectrum of the Cu-K ⁇ radiation of compound K of formula (IV);
  • Figure 24 is the XRPD spectrum of the Cu-K ⁇ radiation of the compound L crystal form of the formula (V);
  • Fig. 25 is the XRPD spectrum of the Cu-K ⁇ radiation of compound M of formula (V);
  • Fig. 26 is the XRPD spectrum of Cu-K ⁇ radiation of compound N of formula (V);
  • Fig. 27 is the XRPD spectrum of the Cu-K ⁇ radiation of compound O of formula (VI);
  • Fig. 28 is the XRPD spectrum of Cu-K ⁇ radiation of compound P of formula (VI);
  • Figure 29 is the Cu-K ⁇ radiation XRPD spectrum of compound Q of formula (VII);
  • Figure 30 is the Cu-K ⁇ radiation XRPD spectrum of compound R of formula (VIII);
  • Fig. 31 is the XRPD spectrum of the Cu-K ⁇ radiation of compound S of formula (X);
  • Fig. 32 is the XRPD spectrum of the Cu-K ⁇ radiation of compound T crystal form of formula (I);
  • Figure 33 is the DSC spectrogram of the compound T crystal form of formula (I);
  • Figure 34 is the TGA spectrum of the compound T crystal form of formula (I);
  • Figure 35 is the DVS spectrum of the crystalline form of compound A of formula (II).
  • the filter cake was placed in a 50 degree oven for 48 hours.
  • a metal scavenger (1000g), activated carbon (1000g), and magnesium sulfate (1000g) were added to the 50L reaction kettle, and stirring was continued at 60° C. for 18 hours.
  • the reaction solution was lowered to room temperature, it was filtered through diatomaceous earth to collect the filtrate.
  • the filtrate was concentrated to obtain crude product.
  • the reaction solution was filtered while hot under reduced pressure, and the filter cake was rinsed with anhydrous dioxane (4L*2) to obtain a filtrate.
  • the filtrate was spin-dried under reduced pressure at 40-50 degrees to obtain a residue.
  • the concentrated crude product was transferred to a 50 L reaction kettle, 15 L of n-heptane and 1.5 L of dichloromethane were added, and the mixture was stirred at 25-35° C. for 16 hours.
  • the suspension in the reaction kettle was sucked into a desktop filter for suction filtration, the filter cake was rinsed with n-heptane (2L*2), the solid was collected, and the solid was spin-dried under reduced pressure at 40-50 degrees to obtain compound 3.
  • the filtrate was concentrated by oil pump under reduced pressure to about 1/3 of the reaction volume.
  • the pH of the phase was adjusted to 5-6 with 3M aqueous hydrochloric acid solution, a large amount of yellow solid particles were precipitated, and then filtered through a tabletop suction filter funnel to collect the solid, and the filter cake was dried in a 50-degree vacuum drying oven to obtain compound 5.
  • the filter cake was added to the reaction flask under stirring, and the reaction was heated to an internal temperature of 60° C., stirring was continued for 16 hours, suction filtration was performed under reduced pressure, and 500 mL of THF was added for washing, and the filter cake was collected.
  • the filter cake was vacuum-dried at 40 to 50 degrees to obtain a crude product; 20.0 L of water was added to a 50 L reaction kettle at 10 to 30° C.
  • the filter cake was added to the reaction kettle under stirring, and the pH was adjusted to 5 to 6.
  • the reaction kettle was heated to 40° C., continue stirring for 16 hours, filter under reduced pressure, add 2 L of water to wash, and collect the filter cake; the filter cake is vacuum-dried at 40-50 degrees to obtain the compound of formula (I).
  • the compound of formula (I) was characterized as T crystal form by XRPD.
  • the XRPD spectrum is shown in Figure 32
  • the DSC spectrum is shown in Figure 33
  • the TGA spectrum is shown in Figure 34.
  • the compound of formula (I) (740 g) was added to DMSO (7.4 L), and methanesulfonic acid (155.41 g, 1.62 mol, 115.12 mL, 1.05 eq) was added to the reaction solution at 20-30 °C, and the reaction was stirred at 20-30 °C for 4 hours, 37L of ethyl acetate was added to the reaction solution, the reaction continued to stir for 16 hours, a large amount of solid was precipitated, filtered, and the filter cake was washed with ethyl acetate (2L*2), and the filter cake was spin-dried under reduced pressure at 40 to 50 ° C to obtain Crystal form of compound A of formula (II).
  • the XRPD spectrum of Form A is shown in FIG. 1
  • the DSC spectrum is shown in FIG. 2
  • the TGA spectrum is shown in FIG. 3 .
  • the crude product was added to ethanol (450mL), stirred at 20-30°C for 24 hours, filtered, the filter cake was washed with ethanol (10mL*2), and the filter cake was spin-dried under reduced pressure at 40-50°C to obtain the compound D crystal form of formula (II) .
  • the hygroscopic weight gain of the crystal form of Compound A of the formula (II) at 25° C. and 80% RH is 1.708%, and it has hygroscopicity.
  • the samples were put into double-layer medicinal low-density polyethylene bags, each layer of medicinal low-density polyethylene bags was sealed with a buckle, and then the double-layer low-density polyethylene bags were put into Heat seal in foil bag.
  • the samples at each condition time point were weighed in parallel for 6 parts (1.1 g/part, the prepared samples were placed under each condition, and the samples were taken for analysis after the time point was reached.
  • the compounds of the present invention can target and inhibit the FGFR and VEGFR pathways, and inhibit the growth of tumor cells by inhibiting the VEGF/VEGFR and FGF/FGFR signaling pathways.
  • human non-small cell lung cancer cells NCI-H1581 with high FGFR1 expression, gastric cancer cell SNU-16 with high FGFR2 expression, and human bladder cancer cells RT112/84 with high FGFR3 expression were selected.
  • the effects of the compounds on cell proliferation in vitro were investigated in tumor cell lines NCI-H1581, SNU-16, RT-112/84.
  • the tumor cell lines were cultured under the culture conditions shown in Table 22 in a 37°C, 5% CO2 incubator. Periodically passaged, cells in logarithmic growth phase were taken for plating.
  • the culture plate was incubated overnight in an incubator at 37°C, 5% CO 2 , and 100% relative humidity.
  • the culture plate was placed at room temperature for 10 minutes to stabilize the luminescence signal.
  • IR(%) (1-(RLU compound-RLU blank control)/(RLU vehicle control-RLU blank control))*100%.
  • the inhibition rates of different concentrations of compounds were calculated in Excel, and then the GraphPad Prism software was used to plot the inhibition curves and calculate the relevant parameters, including the minimum inhibition rate, the maximum inhibition rate and IC 50 .
  • the following formula calculates IC50 .
  • VEGFR-expressing engineered cells Ba/F3-TEL-FLT1 (VEGFR1), Ba/F3-TEL-FLT4 (VEGFR3), Ba/F3-TEL-VEGFR2) were selected to evaluate the effect of compound A of formula (II) on the In vitro proliferation inhibitory effect of BaF3 cell line.
  • the crystalline form of compound A of formula (II) was dissolved in a 10 mM stock solution prepared in DMSO. Prepare 10.0000mM, 2.5000mM, 0.6250mM, 0.1563mM, 0.0391mM, 0.0098mM, 0.0024mM, 0.0006mM, 0.0002mM according to 4-fold dilution and store in 96-well plate (Beaver, Suzhou), a total of 9 concentration gradients , and the same volume of DMSO solvent was used as a negative control.
  • the plasma concentration was determined by LC-MS/MS method, and the relevant pharmacokinetic parameters were calculated by non-compartmental model linear logarithmic trapezoidal method using WinNonlin TM Version 6.3 (Pharsight, MountainView, CA) pharmacokinetic software.
  • the plasma concentration was determined by LC-MS/MS method, and the relevant pharmacokinetic parameters were calculated by non-compartmental model linear logarithmic trapezoidal method using WinNonlin TM Version 6.3 (Pharsight, Mountain View, CA) pharmacokinetic software.
  • mice Female Balb/c mice (6-8 weeks old)
  • Mouse renal cancer Renca cells (ATCC-CRL-2947) were adherently cultured in vitro in RPMI 1640 medium with 10% fetal bovine serum, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate, 2 mM glutamine, 100 U/mL penicillin and 100 ⁇ g/mL streptomycin, 37°C 5% CO 2 incubator. Routine treatment passaging was performed twice a week. When the cell saturation is 80%-90% and the number reaches the requirement, the cells are collected, counted, and seeded.
  • Renca cells were subcutaneously inoculated on the dorsal side of the right upper limb of each mouse, and group administration was started when the average tumor volume reached about 50-80 mm 3 .
  • Tumor diameters were measured with vernier calipers twice a week.
  • TGI percent or relative tumor proliferation rate T/C (%).
  • Relative tumor proliferation rate T/C (%) T RTV /C RTV ⁇ 100% (T RTV : the average RTV of the treatment group; C RTV : the average RTV of the negative control group).
  • TGI (%) reflecting tumor growth inhibition rate.
  • TGI(%) [(1-(average tumor volume at the end of administration of a certain treatment group-average tumor volume at the beginning of administration of this treatment group))/(average tumor volume at the end of treatment in the solvent control group-the start of treatment in the solvent control group time average tumor volume)] ⁇ 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Liquid Crystal Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种甲基吡唑取代的吡啶并咪唑类化合物(II)的晶型及其制备方法。

Description

甲基吡唑取代的吡啶并咪唑类化合物的晶型及其制备方法
本申请主张如下优先权
CN202110106007.1,申请日:2021年01月26日。
技术领域
本发明涉及一种甲基吡唑取代的吡啶并咪唑类化合物的晶型及其制备方法。
背景技术
成纤维细胞生长因子受体(FGFR)是一类可与成纤维细胞生长因子(FGF)特异性结合的受体蛋白,FGFRs家族包括以下类型:FGFR1b、FGFR1c、FGFR2b、FGFR2c、FGFR3b、FGFR3c、FGFR4。成纤维细胞生长因子受体(FGFR)是一类具有传导生物信号、调节细胞生长、参与组织修复等功能的生物活性物质。临床发现FGFR高表达,突变或融合等异常都会引起肿瘤发生、发展,比如在肝癌,膀胱癌,肺癌,乳腺癌等疾病中。FGFR与配体FGF结合,导致胞内多个酪氨酸残基的自身磷酸化,下游进行信号传到,包括MEK/MAPK、PLCy/PKC、P13K/AKT、STATS等。因此,FGFR被认为是抗肿瘤重要靶点。
VEGFR家族包括VEGFR-1、VEGFR-2(KDR)和VEGFR-3三种特异的酪氨酸激酶受体。VEGFR-2是VEGF信号传导引起内皮细胞增殖,增加血管通透性效应和促进血管生成的重要调节因子,而且VEGFR-2和VEGF的亲和力要大于VEGFR-1。研究表明,内皮细胞中只表达VEGFR-2,激活VEGFR-2后能高效的刺激血管生成。因此VEGFR-2是抗新生血管生成药物研发的主要靶点。
VEGFR和FGFR通路共同完成血管生成中内皮细胞的激活和生成,有时VEGF需要FGF的存在才能发挥其促血管生成作用。FGFR和VEGFR通路协同作用还可以抑制肿瘤免疫逃逸作用提高肿瘤抑制效果。
发明内容
本发明提供了式(II)所示化合物,
Figure PCTCN2022074076-appb-000001
本发明提供了式(II)所示化合物的A晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.65±0.20°,17.70±0.20°,24.02±0.20°,
Figure PCTCN2022074076-appb-000002
本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.65±0.20°,16.84±0.20°,17.70±0.20°,20.10±0.20°,20.91±0.20°,24.02±0.20°。
本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.65±0.20°,16.84±0.20°,17.70±0.20°,20.10±0.20°,20.91±0.20°,24.02±0.20°,24.98±0.20°,26.60±0.20°。
本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.65±0.20°,17.70±0.20°,和/或24.02±0.20°,和/或16.84±0.20°,和/或20.10±0.20°,和/或20.91±0.20°,和/或24.98±0.20°,和/或26.60±0.20°,和/或12.71±0.20°,和/或28.08±0.20°。
本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.649°,12.713°,16.841°,17.695°,20.100°,20.912°,24.018°,24.976°,26.599°,28.076°。
本发明的一些方案中,上述A晶型,其XRPD图谱如图1所示。
本发明的一些方案中,上述A晶型的XRPD图谱解析数据如表1所示:
表1式(II)化合物A晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000003
本发明的一些方案中,上述A晶型,其差示扫描量热曲线在283.9±3.0℃有一个吸热峰的峰值。
本发明的一些方案中,上述A晶型,其DSC图谱如图2所示。
本发明的一些方案中,上述A晶型,其热重分析曲线在200.0±3.0℃处失重达0.955%。
本发明的一些方案中,上述A晶型,其TGA图谱如图3所示。
本发明提供了式(II)所示化合物的B晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.75±0.20°,9.94±0.20°,23.94±0.20°,
Figure PCTCN2022074076-appb-000004
本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.75±0.20°,9.94±0.20°,11.70±0.20°,17.52±0.20°,20.36±0.20°,23.94±0.20°。
本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.75±0.20°,9.94±0.20°,11.70±0.20°,14.38±0.20°,17.52±0.20°,18.95±0.20°,20.36±0.20°,23.94±0.20°。
本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.75°,9.94°,11.70°,13.62°,14.38°,15.47°,17.52°,18.95°,20.36°,23.94°,25.34°,25.46°,26.93°,28.79°。
本发明的一些方案中,上述B晶型,其XRPD图谱如图4所示。
本发明的一些方案中,上述B晶型的XRPD图谱解析数据如表2所示:
表2式(II)化合物B晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000005
本发明的一些方案中,上述B晶型,其差示扫描量热曲线分别在57.40±3.0℃和296.86±3.0℃有一个吸热峰的起始点。
本发明的一些方案中,上述B晶型,其DSC图谱如图5所示。
本发明的一些方案中,上述B晶型,其热重分析曲线在150.0±3.0℃处失重达10.53%。
本发明的一些方案中,上述B晶型,其TGA图谱如图6所示。
本发明提供了式(II)所示化合物的C晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.74±0.20°,13.64±0.20°,21.14±0.20°,
Figure PCTCN2022074076-appb-000006
本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.74±0.20°,13.64±0.20°,19.62±0.20°,21.14±0.20°,25.45±0.20°,25.96±0.20°。
本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.70±0.20°,10.74±0.20°,13.64±0.20°,16.63±0.20°,19.62±0.20°,21.14±0.20°,25.45±0.20°,27.47±0.20°。
本发明的一些方案中,上述C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.44°,8.70°,10.74°,13.64°,15.85°,16.63°,17.44°,19.62°,21.14°,21.61°,24.26°,25.45°,25.96°,27.47°,29.07°。
本发明的一些方案中,上述C晶型,其XRPD图谱如图7所示。
本发明的一些方案中,上述C晶型的XRPD图谱解析数据如表3所示:
表3式(II)化合物C晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000007
本发明的一些方案中,上述C晶型,其差示扫描量热曲线分别在37.60±3.0℃和299.00±3.0℃有一个吸热峰的起始点。
本发明的一些方案中,上述C晶型,其DSC图谱如图8所示。
本发明的一些方案中,上述C晶型,其热重分析曲线在150.0±3.0℃处失重达7.91%。
本发明的一些方案中,上述C晶型,其TGA图谱如图9所示。
本发明提供了式(II)所示化合物的D晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.78±0.20°,13.64±0.20°,16.66±0.20°,
Figure PCTCN2022074076-appb-000008
本发明的一些方案中,上述D晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.78±0.20°,13.64±0.20°,16.66±0.20°,19.63±0.20°,21.13±0.20°,25.40±0.20°。
本发明的一些方案中,上述D晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.51±0.20°,8.73±0.20°,10.78±0.20°,13.64±0.20°,16.66±0.20°,19.63±0.20°,21.13±0.20°,25.40±0.20°。
本发明的一些方案中,上述D晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.51°,8.10°,8.73°,10.78°,12.64°,13.64°,14.47°,14.92°,15.80°,16.66°,17.47°,19.03°,19.63°,21.13°,21.69°,22.02°,22.20°,23.84°,24.31°,25.40°,25.93°,26.28°,26.84°,27.41°,27.93°,29.10°,30.01°,30.78°,32.16°,32.78°,33.57°,38.41°。
本发明的一些方案中,上述D晶型,其XRPD图谱如图10所示。
本发明的一些方案中,上述D晶型的XRPD图谱解析数据如表4所示:
表4式(II)化合物D晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000009
Figure PCTCN2022074076-appb-000010
本发明的一些方案中,上述D晶型,其差示扫描量热曲线分别在27.1±3.0℃和298.8±3.0℃有一个吸热峰的起始点。
本发明的一些方案中,上述D晶型,其DSC图谱如图11所示。
本发明的一些方案中,上述D晶型,其热重分析曲线在150.0±3.0℃处失重达3.15%。
本发明的一些方案中,上述D晶型,其TGA图谱如图12所示。
本发明提供了式(III)所示化合物,
Figure PCTCN2022074076-appb-000011
本发明提供了式(III)所示化合物的E晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.56±0.20°,19.10±0.20°,27.12±0.20°,
Figure PCTCN2022074076-appb-000012
本发明的一些方案中,上述E晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.56±0.20°,10.82±0.20°,16.94±0.20°,19.10±0.20°,27.12±0.20°,28.76±0.20°。
本发明的一些方案中,上述E晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.56±0.20°,10.82±0.20°,16.94±0.20°,17.57±0.20°,19.10±0.20°,25.00±0.20°,27.12±0.20°,28.76±0.20°。
本发明的一些方案中,上述E晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.01°,9.56°,10.82°,13.51°,13.97°,16.94°,17.57°,19.10°,21.26°,23.73°,24.47°,25.00°,26.04°,26.62°,27.12°,28.33°,28.76°,29.22°,30.59°,31.56°,32.72°,35.31°,36.10°,37.25°,38.64°。
本发明的一些方案中,上述E晶型,其XRPD图谱如图13所示。
本发明的一些方案中,上述E晶型的XRPD图谱解析数据如表5所示:
表5式(III)化合物E晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000013
本发明的一些方案中,上述E晶型,其差示扫描量热曲线在303.8±3.0℃有一个吸热峰的起始点。
本发明的一些方案中,上述E晶型,其DSC图谱如图14所示。
本发明的一些方案中,上述E晶型,其热重分析曲线在200.0±3.0℃处失重达2.27%。
本发明的一些方案中,上述E晶型,其TGA图谱如图15所示。
本发明提供了式(III)所示化合物的F晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.08±0.20°,19.09±0.20°,26.87±0.20°,
Figure PCTCN2022074076-appb-000014
本发明的一些方案中,上述F晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.08±0.20°,9.51±0.20°,12.40±0.20°,19.09±0.20°,24.91±0.20°,26.87±0.20°。
本发明的一些方案中,上述F晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.08±0.20°,9.51±0.20°,12.40±0.20°,16.80±0.20°,17.70±0.20°,19.09±0.20°,24.91±0.20°,26.87±0.20°。
本发明的一些方案中,上述F晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.08°,9.51°,12.40°,13.34°,14.53°,16.80°,17.70°,19.09°,20.34°,22.34°,24.91°,26.87°,28.87°。
本发明的一些方案中,上述F晶型,其XRPD图谱如图16所示。
本发明的一些方案中,上述F晶型的XRPD图谱解析数据如表6所示:
表6式(III)化合物F晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000015
本发明提供了式(III)所示化合物的G晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.79±0.20°,17.53±0.20°,26.33±0.20°,
Figure PCTCN2022074076-appb-000016
本发明的一些方案中,上述G晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.79±0.20°,12.34±0.20°,17.53±0.20°,19.10±0.20°,25.16±0.20°,26.33±0.20°。
本发明的一些方案中,上述G晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.79±0.20°,12.34±0.20°,17.53±0.20°,19.10±0.20°,19.65±0.20°,21.45±0.20°,25.16±0.20°,26.33±0.20°。
本发明的一些方案中,上述G晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.79°,12.34°,13.92°,15.13°,15.76°,17.08°,17.53°,19.10°,19.65°,20.61°,21.45°,21.90°,23.38°,25.16°,26.33°,26.70°,29.18°,35.42°,37.62°。
本发明的一些方案中,上述G晶型,其XRPD图谱如图17所示。
本发明的一些方案中,上述G晶型的XRPD图谱解析数据如表7所示:
表7式(III)化合物G晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000017
本发明提供了式(IV)所示化合物,
Figure PCTCN2022074076-appb-000018
本发明提供了式(IV)所示化合物的H晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.65±0.20°,17.80±0.20°,18.92±0.20°,
Figure PCTCN2022074076-appb-000019
本发明的一些方案中,上述H晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.65±0.20°,13.42±0.20°,17.80±0.20°,18.92±0.20°,21.99±0.20°,24.42±0.20°。
本发明的一些方案中,上述H晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.65±0.20°,13.42±0.20°,17.80±0.20°,18.92±0.20°,20.05±0.20°,21.99±0.20°,24.42±0.20°,26.30±0.20°。
本发明的一些方案中,上述H晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.65°,13.42°,17.80°,18.45°,18.92°,20.05°,21.99°,24.42°,26.30°,27.00°。
本发明的一些方案中,上述H晶型,其XRPD图谱如图18所示。
本发明的一些方案中,上述H晶型的XRPD图谱解析数据如表8所示:
表8式(IV)化合物H晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000020
本发明的一些方案中,上述H晶型,其差示扫描量热曲线分别在275.73±3.0℃和310.54±3.0℃有一个吸热峰的起始点。
本发明的一些方案中,上述H晶型,其DSC图谱如图19所示。
本发明的一些方案中,上述H晶型,其热重分析曲线在200.0±3.0℃处失重达8.58%,在260.0±3.0℃处又失重达2.45%。
本发明的一些方案中,上述H晶型,其TGA图谱如图20所示。
本发明提供了式(IV)所示化合物的I晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.33±0.20°,13.74±0.20°,20.66±0.20°,
Figure PCTCN2022074076-appb-000021
本发明的一些方案中,上述I晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.33±0.20°,9.02±0.20°,13.74±0.20°,18.16±0.20°,20.66±0.20°,21.91±0.20°。
本发明的一些方案中,上述I晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.33±0.20°,9.02±0.20°,11.77±0.20°,13.74±0.20°,17.51±0.20°,18.16±0.20°,20.66±0.20°,21.91±0.20°。
本发明的一些方案中,上述I晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.33°,9.02°,10.62°,11.77°,13.74°,15.99°,17.51°,18.16°,19.63°,20.66°,21.24°,21.91°,23.15°,24.94°,26.89°。
本发明的一些方案中,上述I晶型,其XRPD图谱如图21所示。
本发明的一些方案中,上述I晶型的XRPD图谱解析数据如表9所示:
表9式(IV)化合物I晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000022
本发明提供了式(IV)所示化合物的J晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.24±0.20°,18.48±0.20°,20.79±0.20°,
Figure PCTCN2022074076-appb-000023
本发明的一些方案中,上述J晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.24±0.20°,18.48±0.20°,19.77±0.20°,20.79±0.20°,22.67±0.20°,23.24±0.20°。
本发明的一些方案中,上述J晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.24±0.20°,18.48±0.20°,19.77±0.20°,20.79±0.20°,22.67±0.20°,23.24±0.20°,24.20±0.20°,26.28±0.20°。
本发明的一些方案中,上述J晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.24°,12.55°,13.78°,14.86°,16.30°,17.19°,18.48°,19.77°,20.79°,22.67°,23.24°,24.20°,26.28°。
本发明的一些方案中,上述J晶型,其XRPD图谱如图22所示。
本发明的一些方案中,上述J晶型的XRPD图谱解析数据如表10所示:
表10式(IV)化合物J晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000024
本发明提供了式(IV)所示化合物的K晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:17.97±0.20°,20.47±0.20°,25.16±0.20°,
Figure PCTCN2022074076-appb-000025
本发明的一些方案中,上述K晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.79±0.20°,17.97±0.20°,20.47±0.20°,23.46±0.20°,23.87±0.20°,25.16±0.20°。
本发明的一些方案中,上述K晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.79±0.20°,17.97±0.20°,18.74±0.20°,19.47±0.20°,20.47±0.20°,23.46±0.20°,23.87±0.20°,25.16±0.20°。
本发明的一些方案中,上述K晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.79°,7.87°,8.65°,11.69°,16.47°,17.97°,18.28°,18.74°,19.47°,20.47°,20.76°,21.73°,22.33°,23.46°,23.87°,25.16°,25.94°,26.30°,27.06°,28.07°,29.34°,30.18°,31.69°,33.26°,34.45°。
本发明的一些方案中,上述K晶型,其XRPD图谱如图23所示。
本发明的一些方案中,上述K晶型的XRPD图谱解析数据如表11所示:
表11式(IV)化合物K晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000026
Figure PCTCN2022074076-appb-000027
本发明提供了式(V)所示化合物,
Figure PCTCN2022074076-appb-000028
本发明提供了式(V)所示化合物的L晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.85±0.20°,16.75±0.20°,20.67±0.20°,
Figure PCTCN2022074076-appb-000029
本发明的一些方案中,上述L晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.85±0.20°,11.57±0.20°,16.75±0.20°,20.67±0.20°,22.50±0.20°,25.29±0.20°。
本发明的一些方案中,上述L晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.85±0.20°,11.57±0.20°,16.75±0.20°,18.10±0.20°,20.67±0.20°,22.50±0.20°,23.34±0.20°,25.29±0.20°。
本发明的一些方案中,上述L晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.85°,8.36°,11.57°,16.75°,18.10°,20.67°,22.50°,23.34°,25.29°,27.93°,31.76°。
本发明的一些方案中,上述L晶型,其XRPD图谱如图24所示。
本发明的一些方案中,上述L晶型的XRPD图谱解析数据如表12所示:
表12式(V)化合物L晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000030
本发明提供了式(V)所示化合物的M晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.72±0.20°,16.77±0.20°,17.51±0.20°,
Figure PCTCN2022074076-appb-000031
本发明的一些方案中,上述M晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.72±0.20°,11.52±0.20°,16.77±0.20°,17.51±0.20°,18.10±0.20°,20.05±0.20°。
本发明的一些方案中,上述M晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.72±0.20°,11.52±0.20°,16.77±0.20°,17.51±0.20°,18.10±0.20°,20.05±0.20°,22.48±0.20°,25.30±0.20°。
本发明的一些方案中,上述M晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.42°,5.72°,11.52°,13.57°,14.92°,16.77°,17.51°,18.10°,20.05°,22.48°,23.35°,23.91°,25.30°,27.10°,27.94°,30.00°,31.77°。
本发明的一些方案中,上述M晶型,其XRPD图谱如图25所示。
本发明的一些方案中,上述M晶型的XRPD图谱解析数据如表13所示:
表13式(V)化合物M晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000032
Figure PCTCN2022074076-appb-000033
本发明提供了式(V)所示化合物的N晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.55±0.20°,16.76±0.20°,18.30±0.20°,
Figure PCTCN2022074076-appb-000034
本发明的一些方案中,上述N晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.55±0.20°,16.14±0.20°,16.76±0.20°,17.20±0.20°,18.30±0.20°,20.22±0.20°。
本发明的一些方案中,上述N晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.55±0.20°,16.14±0.20°,16.76±0.20°,17.20±0.20°,18.30±0.20°,20.22±0.20°,22.63±0.20°,24.50±0.20°。
本发明的一些方案中,上述N晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.55°,16.14°,16.76°,17.20°,18.30°,20.22°,22.63°,24.50°,26.73°,31.76°。
本发明的一些方案中,上述N晶型,其XRPD图谱如图26所示。
本发明的一些方案中,上述N晶型的XRPD图谱解析数据如表14所示:
表14式(V)化合物N晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000035
本发明提供了式(VI)所示化合物,
Figure PCTCN2022074076-appb-000036
本发明提供了式(VI)所示化合物的O晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.57±0.20°,5.79±0.20°,18.06±0.20°,
Figure PCTCN2022074076-appb-000037
本发明的一些方案中,上述O晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.57±0.20°,5.79±0.20°,16.38±0.20°,18.06±0.20°,19.32±0.20°,20.13±0.20°。
本发明的一些方案中,上述O晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.57±0.20°,5.79±0.20°,9.09±0.20°,14.52±0.20°,16.38±0.20°,18.06±0.20°,19.32±0.20°,20.13±0.20°。
本发明的一些方案中,上述O晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.57°,5.79°,6.45°,9.09°,10.09°,12.20°,13.04°,14.52°,16.38°,18.06°,18.33°,19.32°,20.13°,22.42°,22.74°,23.32°,23.90°,27.37°,29.29°。
本发明的一些方案中,上述O晶型,其XRPD图谱如图27所示。
本发明的一些方案中,上述O晶型的XRPD图谱解析数据如表15所示:
表15式(VI)化合物O晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000038
Figure PCTCN2022074076-appb-000039
本发明提供了式(VI)所示化合物的P晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.96±0.20°,17.02±0.20°,21.78±0.20°,
Figure PCTCN2022074076-appb-000040
本发明的一些方案中,上述P晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.96±0.20°,17.02±0.20°,21.31±0.20°,21.78±0.20°,24.71±0.20°,25.52±0.20°。
本发明的一些方案中,上述P晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.96±0.20°,16.23±0.20°,17.02±0.20°,17.81±0.20°,21.31±0.20°,21.78±0.20°,24.71±0.20°,25.52±0.20°。
本发明的一些方案中,上述P晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.87°,8.26°,9.96°,13.64°,15.18°,16.23°,17.02°,17.81°,18.62°,21.31°,21.78°,24.71°,25.52°,29.14°,31.47°。
本发明的一些方案中,上述P晶型,其XRPD图谱如图28所示。
本发明的一些方案中,上述P晶型的XRPD图谱解析数据如表16所示:
表16式(VI)化合物P晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000041
Figure PCTCN2022074076-appb-000042
本发明提供了式(VII)所示化合物,
Figure PCTCN2022074076-appb-000043
本发明提供了式(VII)所示化合物的Q晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.90±0.20°,16.76±0.20°,25.94±0.20°,
Figure PCTCN2022074076-appb-000044
本发明的一些方案中,上述Q晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.90±0.20°,16.76±0.20°,17.19±0.20°,20.09±0.20°,23.82±0.20°,25.94±0.20°。
本发明的一些方案中,上述Q晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.90±0.20°,11.53±0.20°,16.76±0.20°,17.19±0.20°,20.09±0.20°,20.94±0.20°,23.82±0.20°,25.94±0.20°。
本发明的一些方案中,上述Q晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.90°,8.53°,9.90°,11.53°,12.98°,15.12°,16.76°,17.19°,19.68°,20.09°,20.94°,22.50°,22.86°,23.82°,25.32°,25.94°,27.16°,27.83°,29.17°,30.11°,31.83°,33.48°。
本发明的一些方案中,上述Q晶型,其XRPD图谱如图29所示。
本发明的一些方案中,上述Q晶型的XRPD图谱解析数据如表17所示:
表17式(VI)化合物Q晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000045
Figure PCTCN2022074076-appb-000046
本发明提供了式(VIII)所示化合物,
Figure PCTCN2022074076-appb-000047
本发明提供了式(VIII)所示化合物的R晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.18±0.20°,6.43±0.20°,16.67±0.20°,
Figure PCTCN2022074076-appb-000048
本发明的一些方案中,上述R晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.18±0.20°,6.43±0.20°,16.67±0.20°,18.20±0.20°,18.63±0.20°,19.53±0.20°。
本发明的一些方案中,上述R晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.18±0.20°,6.43±0.20°,16.67±0.20°,18.20±0.20°,18.63±0.20°,19.53±0.20°,20.02±0.20°,27.78±0.20°。
本发明的一些方案中,上述R晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.18°,6.43°,11.35°,13.24°,16.67°,18.20°,18.63°,19.53°,20.02°,21.59°,23.44°,27.78°。
本发明的一些方案中,上述R晶型,其XRPD图谱如图30所示。
本发明的一些方案中,上述R晶型的XRPD图谱解析数据如表18所示:
表18式(VIII)化合物R晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000049
本发明提供了式(X)所示化合物,
Figure PCTCN2022074076-appb-000050
本发明提供了式(X)所示化合物的S晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.74±0.20°,17.04±0.20°,24.77±0.20°,
Figure PCTCN2022074076-appb-000051
本发明的一些方案中,上述S晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.74±0.20°,11.97±0.20°,17.04±0.20°,20.65±0.20°,24.77±0.20°,31.75±0.20°。
本发明的一些方案中,上述S晶型,其XRPD图谱如图31所示。
本发明的一些方案中,上述S晶型的XRPD图谱解析数据如表19所示:
表19式(X)化合物S晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000052
本发明提供了式(I)所示化合物的T晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.37±0.20°,11.54±0.20°,16.76±0.20°,
Figure PCTCN2022074076-appb-000053
本发明的一些方案中,上述T晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.37±0.20°,11.54±0.20°,16.76±0.20°,22.49±0.20°,23.36±0.20°,25.26±0.20°。
本发明的一些方案中,上述T晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.37±0.20°,11.54±0.20°,16.76±0.20°,19.53±0.20°,22.49±0.20°,23.36±0.20°,25.26±0.20°,27.12±0.20°。
本发明的一些方案中,上述T晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.37°,9.98°,11.54°,13.44°,15.08°,16.76°,18.70°,19.53°,20.03°,21.14°,22.49°,23.36°,25.26°,27.12°,27.92°,31.77°。
本发明的一些方案中,上述T晶型,其XRPD图谱如图32所示。
本发明的一些方案中,上述T晶型的XRPD图谱解析数据如表20所示:
表20式(I)化合物T晶型的XRPD解析数据
Figure PCTCN2022074076-appb-000054
Figure PCTCN2022074076-appb-000055
本发明的一些方案中,上述T晶型,其差示扫描量热曲线在282.6±3.0℃有一个吸热峰的峰值。
本发明的一些方案中,上述T晶型,其DSC图谱如图33所示。
本发明的一些方案中,上述T晶型,其热重分析曲线在250.0±3.0℃处失重达1.56%。
本发明的一些方案中,上述T晶型,其TGA图谱如图34所示。
本发明还提供了上述化合物或上述A晶型、B晶型、C晶型、D晶型、E晶型、F晶型、G晶型、H晶型、I晶型、J晶型、K晶型、L晶型、M晶型、N晶型、O晶型、P晶型、Q晶型、R晶型、S晶型和T晶型在制备治疗与FGFR/VEGFR双激酶抑制剂相关疾病的药物中的应用。
本发明的一些方案中,上述的应用,其特征在于,FGFR/VEGFR双激酶抑制剂相关药物是用于治疗实体瘤的药物。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用BrukerD8venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2022074076-appb-000056
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
除非另有说明,本文所用的DSC图谱为向下吸热。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:DCM代表二氯甲烷;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOH代表乙醇;MeOH代表甲醇;TFA代表三氟乙酸;ATP代表三磷酸腺苷;HEPES代表4-羟乙基哌嗪乙磺酸;MgCl 2代表二氯化镁;Pd(PPh 3) 2Cl 2代表双三苯基膦二氯化钯。
技术效果
本发明化合物的晶型稳定性好,易于成药;本发明化合晶型具有优异的DNA-PK激酶抑制活性。
本发明X-射线粉末衍射(X-ray powder diffractometer,XRPD)
仪器型号:PANalytical(帕纳科)公司的X’Pert 3型X-射线衍射仪
测试方法:大约10mg样品用于XRPD检测。
详细的XRPD参数如下:
射线源:Cu,kα(
Figure PCTCN2022074076-appb-000057
Kα2/Kα1强度比例:0.5)
光管电压:45kV,光管电流:40mA
发散狭缝:固定1/8deg
第一索拉狭缝:0.04rad,第二索拉狭缝:0.04rad
接收狭缝:无,防散射狭缝:7.5mm
测量时间:5min
扫描角度范围:3-40deg
步宽角度:0.0263deg
步长:46.665秒
样品盘转速:15rpm
本发明差示扫描量热(Differential Scanning Calorimeter,DSC)
仪器型号:TA Discovery DSC 2500差示扫描量热仪
测试方法:取样品(约1-5mg)置于DSC铝盘内进行测试,在50mL/min N 2条件下,以10℃/min的升温速率,加热样品从25℃(室温)到样品分解前。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)
仪器型号:TA Discovery TGA 5500热重分析仪
测试方法:取样品(约1-5mg)置于TGA铝盘内进行测试,在10mL/min N 2条件下,以10℃/min的升温速率,加热样品从室温到350℃。
本发明动态蒸汽吸附分析(Dynamic Vapor Sorption,DVS)方法
仪器型号:SMS Intrinsic动态蒸汽吸附仪
测试条件:取样品(10~30mg)置于DVS样品盘内进行测试。
详细的DVS参数如下:
温度:25℃
平衡:dm/dt=0.002%/min(最短:10min,最长:180min)
RH范围:0%RH-95%RH-0%RH
RH梯度:10%(90%RH-0%RH-90%RH)
5%(95%RH-90%RH and 90%RH-95%RH)
引湿性评价分类如下:
吸湿性分类 ΔW%
潮解 吸收足量水分形成液体
极具吸湿性 ΔW%≥15%
有吸湿性 15%>ΔW%≥2%
略有吸湿性 2%>ΔW%≥0.2%
无或几乎无吸湿性 ΔW%<0.2%
注:ΔW%表示受试品在25±1℃和80±2%RH下的吸湿增重。
附图说明
图1为式(II)化合物A晶型的Cu-Kα辐射的XRPD谱图;
图2为式(II)化合物A晶型的DSC谱图;
图3为式(II)化合物A晶型的TGA谱图;
图4为式(II)化合物B晶型的Cu-Kα辐射的XRPD谱图;
图5为式(II)化合物B晶型的DSC谱图;
图6为式(II)化合物B晶型的TGA谱图;
图7为式(II)化合物C晶型的Cu-Kα辐射的XRPD谱图;
图8为式(II)化合物C晶型的DSC谱图;
图9为式(II)化合物C晶型的TGA谱图;
图10为式(II)化合物D晶型的Cu-Kα辐射的XRPD谱图;
图11为式(II)化合物D晶型的DSC谱图;
图12为式(II)化合物D晶型的TGA谱图;
图13为式(III)化合物E晶型的Cu-Kα辐射的XRPD谱图;
图14为式(III)化合物E晶型的DSC谱图;
图15为式(III)化合物E晶型的TGA谱图;
图16为式(III)化合物F晶型的Cu-Kα辐射的XRPD谱图;
图17为式(III)化合物G晶型的Cu-Kα辐射的XRPD谱图;
图18为式(IV)化合物H晶型的Cu-Kα辐射的XRPD谱图;
图19为式(IV)化合物H晶型的DSC谱图;
图20为式(IV)化合物H晶型的TGA谱图;
图21为式(IV)化合物I晶型的Cu-Kα辐射的XRPD谱图;
图22为式(IV)化合物J晶型的Cu-Kα辐射的XRPD谱图;
图23为式(IV)化合物K晶型的Cu-Kα辐射的XRPD谱图;
图24为式(V)化合物L晶型的Cu-Kα辐射的XRPD谱图;
图25为式(V)化合物M晶型的Cu-Kα辐射的XRPD谱图;
图26为式(V)化合物N晶型的Cu-Kα辐射的XRPD谱图;
图27为式(VI)化合物O晶型的Cu-Kα辐射的XRPD谱图;
图28为式(VI)化合物P晶型的Cu-Kα辐射的XRPD谱图;
图29为式(VII)化合物Q晶型的Cu-Kα辐射的XRPD谱图;
图30为式(VIII)化合物R晶型的Cu-Kα辐射的XRPD谱图;
图31为式(X)化合物S晶型的Cu-Kα辐射的XRPD谱图;
图32为式(I)化合物T晶型的Cu-Kα辐射的XRPD谱图;
图33为式(I)化合物T晶型的DSC谱图;
图34为式(I)化合物T晶型的TGA谱图;
图35为式(II)化合物A晶型的DVS谱图。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
实施例1:式(II)化合物A晶型的制备
Figure PCTCN2022074076-appb-000058
在10~30℃将二氧六环15L、水5L加入到50L反应釜中。搅拌下将化合物1(1500g)和化合物2(1335g)一次性加入到反应釜中。搅拌下将碳酸钾1930g一次性加入反应釜中。氮气置换10分钟,再将Pd(dppf)Cl 2100g一次性加入到反应釜中。反应加热至内温88~90℃,继续搅拌16小时。取10L反应液加入到50L反应釜中,搅拌下加入30L水,室温搅拌15分钟。余下10L同上操作。减压抽滤,得滤饼。滤饼置50度烘箱中烘48小时。向50L反应釜中加入金属清除剂(1000g),活性炭(1000g),硫酸镁(1000g),60℃下继续搅拌18小时,反应液降至室温后,通过硅藻土过滤,收集滤液。将滤液浓缩得粗品。反应液趁热减压过滤,滤饼用无水二氧六环(4L*2)淋洗,得到滤液。滤液40~50度减压旋干,得到残余物。将浓缩的粗品转移至50L中的反应釜中,分别加入正庚烷15L和二氯甲烷1.5L,25-35℃搅拌16小时。将反应釜中的混悬液抽入桌面过滤器中抽滤,滤饼用正庚烷(2L*2)淋洗,收集固体,固体40~50度减压旋干,得到化合物3。
Figure PCTCN2022074076-appb-000059
在10~30℃将N,N-二甲基甲酰胺15L加入到50L反应瓶中,搅拌下将化合物3(1.5kg)和化合物4(619.5g)一次性加入到反应瓶中,搅拌下将碳酸钾(1.81kg)和Xphos(415.5g)一次性加入反应釜中,氮气置换10分钟,再将Pd2(dba)3(399g)一次性加入到反应釜中,反应加热至内温90~95℃(外温100度),继续搅拌8小时;HPLC跟踪至化合物化合物3≤1%;在桌面抽滤漏斗中加入硅藻土1kg,用桌面抽滤减压抽滤,再加入DMF(1L*2)洗涤,收集滤液。滤液经油泵减压浓缩约1/3的反应体积。向50L反应釜中加入上述浓缩液,在加入3V的水,用4M氢氧化钠水溶液调pH至11~12,减压抽滤,滤液加入乙酸乙酯(15L*2)萃取除部分杂质,水相再用3M的盐酸水溶液调pH至5~6,有大量黄色固体颗粒物析出,再通过桌面抽滤漏斗过滤,收集固体,滤饼置50度真空干燥箱烘干,得到化合物5。
Figure PCTCN2022074076-appb-000060
在20~30℃将乙二醇二甲醚11.5L,水3.8L加入到50L反应釜,搅拌下将化合物5(1150g)和化合物6(676.15g)一次性加入到反应瓶中,搅拌下将碳酸钾(1183.60g)一次性加入反应瓶中,氮气置换10分钟,再将Pd(dppf)Cl 2(208.87g)一次性加入到反应瓶中,反应加热至内温77~80℃,继续搅拌16 小时;HPLC跟踪至化合物化合物5≤1%;用桌面抽滤漏斗减压抽滤,再加入乙二醇二甲醚1L洗涤,收集滤液。滤液经油泵减压浓缩约1/3的反应体积,向50L反应釜中加入上述浓缩液,在加入3V的水,用4M氢氧化钠水溶液调pH至13,再用3M的盐酸水溶液调pH至6,有大量棕黄色固体颗粒物析出,再通过桌面抽滤漏斗过滤,收集滤饼,滤饼置50度烘箱中烘干得到粗产物。
在20~30℃将DCM 10.0L加入到50L反应釜,搅拌下将粗产品(1000g)和DPPE(37.94g)和丙二胺(81.11mL)一次性加入到反应釜中,反应加热至内温40℃,继续搅拌16小时,减压抽滤,再加入DCM(500mL)洗涤,收集滤饼;上述操作重复3次。在10~30℃将THF 3.0L,加入到50L反应瓶,搅拌下将滤饼加入到反应釜中,反应加热至内温60℃,继续搅拌16小时,减压抽滤,再加入THF500mL洗涤,收集滤饼;滤饼40~50度真空干燥;在10~30℃将DMF 5.0L和二氧六环5.0L,加入到50L反应釜,搅拌下将粗产物加入到反应釜中,反应加热至内温50℃,继续搅拌16小时,减压抽滤,再加入二氧六环500mL洗涤,收集滤饼;滤饼40~50度真空干燥;在10~30℃将THF 10.0L,加入到50L反应釜。搅拌下将滤饼加入到反应瓶中,反应加热至内温60℃,继续搅拌16小时,减压抽滤,再加入THF 500mL洗涤,收集滤饼。滤饼40~50度真空干燥得到粗产物;在10~30℃将水20.0L,加入到50L反应釜,搅拌下将滤饼加入到反应釜中,调节pH至5~6,反应釜加热至40℃,继续搅拌16小时,减压抽滤,再加入水2L洗涤,收集滤饼;滤饼40~50度真空干燥,得到化合物式(I)化合物。经XRPD表征式(I)化合物为T晶型。XRPD谱图如图32所示,DSC谱图如图33所示,TGA谱图如图34所示。
Figure PCTCN2022074076-appb-000061
式(I)化合物(740g)加入到DMSO(7.4L)中,20~30℃下向反应液中加入甲磺酸(155.41g,1.62mol,115.12mL,1.05eq)反应20~30℃搅拌4小时,向反应液中加入37L乙酸乙酯,反应继续搅拌16小时,有大量固体析出,过滤,滤饼用乙酸乙酯(2L*2)洗涤,滤饼40~50℃减压旋干,得到式(II)化合物A晶型。A晶型的XRPD谱图如图1所示,DSC谱图如图2所示,TGA谱图如图3所示。
1H NMR(400MHz,DMSO-d 6)δ8.83(d,J=4.0Hz,1H),8.60(s,1H),8.46(s,1H),8.27(s,1H),8.10-8.04(m,2H),7.76(s,1H),7.72(d,J=4.0Hz,1H),7.50-7.32(m,2H),7.24(s,1H),3.93(s,3H),3.47(s,3H),2.30(s,3H).
实施例2:
式(II)化合物B晶型的制备
称取20mg式(I)化合物和甲磺酸(1eq)分别加入到HPLC小瓶中混合加入0.5mL丙酮,室温搅拌4天后离心,将固体转移至50℃真空干燥半小时,得到式(II)化合物B晶型。
式(II)化合物C晶型的制备
称取20mg式(I)化合物和甲磺酸(1eq)分别加入到HPLC小瓶中混合加入0.5mL EtOH/H 2O(19∶1,v/v),室温搅拌4天后离心,将固体转移至50℃真空干燥半小时,得到式(II)化合物C晶型。
式(II)化合物D晶型的制备
将式(I)化合物75g加入到DMSO(750mL)中,20-30℃下向反应液加入甲磺酸(15g,1eq),反应液溶清,搅拌4小时,向反应液中加入1.5L乙酸乙酯,搅拌20小时,有固体析出,过滤,滤饼乙酸乙酯洗涤(50mL*2),浓缩至干得到粗产品(约45g)。将粗产品加入到乙醇(450mL)中,20-30℃搅拌24小时,过滤,滤饼乙醇洗涤(10mL*2),滤饼40-50℃减压旋干得到式(II)化合物D晶型。
1H NMR(400MHz,DMSO-d 6)δ11.07(brs,1H),8.86(d,J=4.0Hz,1H),8.63(s,1H),8.56(s,1H),8.26(s,1H),8.15(s,1H),8.08-8.06(m,1H),7.79-7.77(m,2H),7.48-7.30(m,2H),7.27(s,1H),3.93(s,3H),3.47(s,3H),2.41(s,3H)。
式(III)化合物E晶型的制备
称取100mg式(I)化合物加入到DMSO(1mL)中,20~30℃下向反应液中加入盐酸(20.51mg,208.12μmol,17.34μL,37%纯度)反应,20~30℃搅拌24小时,过滤,滤饼用乙酸乙酯(1mL*2)洗涤,滤饼40~50℃减压旋干,得到式(III)化合物E晶型。
1H NMR(400MHz,DMSO-d 6)δ11.04(brs,1H),8.85(d,J=4.0Hz,1H),8.63(s,1H),8.49(s,1H),8.29(s,1H),8.08-8.06(m,2H),7.77-7.72(m,2H),7.49-7.34(m,2H),7.26(s,1H),3.94(s,3H),3.46(s,3H)。
式(III)化合物F晶型的制备
称取20mg式(I)化合物和盐酸(1eq)分别加入到HPLC小瓶中混合加入0.5mL EtOH/H 2O(19∶1,v/v),室温搅拌4天后离心,将固体转移至50℃真空干燥半小时,得到式(III)化合物F晶型。
式(III)化合物G晶型的制备
称取100mg式(I)化合物加入到DMSO(1mL)中,20~30℃下向反应液中加入盐酸(20.51mg,208.12μmol,17.34μL,37%纯度)反应,20~30℃搅拌24小时,过滤,滤饼用乙酸乙酯(1mL*2)洗涤,滤饼40~50℃减压旋干,得到式(III)化合物G晶型。
式(IV)化合物H晶型的制备
称取20mg式(I)化合物和硫酸(1eq)分别加入到HPLC小瓶中混合加入0.5mL乙醇,室温搅拌4天后离心,将固体转移至50℃真空干燥半小时,得到式(IV)化合物H晶型。
式(IV)化合物I晶型的制备
称取20mg式(I)化合物和硫酸(1eq)分别加入到HPLC小瓶中混合加入0.5mL EtOH/H2O(19∶1,v/v),室温搅拌4天后离心,将固体转移至50℃真空干燥半小时,得到式(IV)化合物I晶型。
式(IV)化合物J晶型的制备
称取20mg式(I)化合物和硫酸(1eq)分别加入到HPLC小瓶中混合加入0.5mL四氢呋喃,室温搅拌4天后离心,将固体转移至50℃真空干燥半小时,得到式(IV)化合物J晶型。
式(IV)化合物K晶型的制备
称取100mg式(I)化合物加入到DMSO(1mL)中,20~30℃下向反应液中加入硫酸(20.41mg,208.12μmol,11.09μL,1eq),反应20~30℃搅拌20小时,向反应液中加入2mL乙酸乙酯,反应继续搅拌20小时,过滤,滤饼用乙酸乙酯(1mL*2)洗涤,滤饼40~50℃减压旋干,得到式(IV)化合物K晶型。
1H NMR(400MHz,DMSO-d 6)δ11.05(brs,1H),8.85(d,J=4.0Hz,1H),8.63(s,1H),8.53(s,1H),8.30(s,1H),8.09-8.06(m,2H),7.77-7.75(m,2H),7.49-7.33(m,2H),7.24(s,1H),3.94(s,3H),3.46(s,3H)。
式(V)化合物L晶型的制备
称取20mg式(I)化合物和磷酸(1eq)分别加入到HPLC小瓶中混合加入0.5mL乙醇,室温搅拌4天后离心,将固体转移至50℃真空干燥半小时,得到式(V)化合物L晶型。
1H NMR(400MHz,DMSO-d 6)δ8.84(d,J=4.0Hz,1H),8.63(s,1H),8.47(s,1H),8.28(s,1H),8.09-8.02(m,2H),7.77-7.70(m,2H),7.50-7.45(m,3H),7.36(t,J=4.0Hz,1H),7.24(s,1H),7.11(d,J=4.0Hz,2H),3.94(s,3H),2.29(s,3H)。
式(V)化合物M晶型的制备
称取20mg式(I)化合物和磷酸(1eq)分别加入到HPLC小瓶中混合加入0.5mL EtOH/H2O(19∶1,v/v),室温搅拌4天后离心,将固体转移至50℃真空干燥半小时,得到式(V)化合物M晶型。
式(V)化合物N晶型的制备
称取20mg式(I)化合物和磷酸(1eq)分别加入到HPLC小瓶中混合加入0.5mL四氢呋喃,室温搅拌4天后离心,将固体转移至50℃真空干燥半小时,得到式(V)化合物N晶型。
式(VI)化合物O晶型的制备
称取20mg式(I)化合物和对甲苯磺酸(1eq)分别加入到HPLC小瓶中混合加入0.5mL丙酮,室温搅拌4天后离心,将固体转移至50℃真空干燥半小时,得到式(VI)化合物O晶型。
式(VI)化合物P晶型的制备
称取20mg式(I)化合物和对甲苯磺酸(1eq)分别加入到HPLC小瓶中混合加入0.5mL四氢呋喃,室温搅拌4天后离心,将固体转移至50℃真空干燥半小时,得到式(VI)化合物P晶型。
式(VII)化合物Q晶型的制备
称取20mg式(I)化合物和草酸(1eq)分别加入到HPLC小瓶中混合加入0.5mL EtOH/H2O(19∶1,v/v), 室温搅拌4天后离心,将固体转移至50℃真空干燥半小时,得到式(VII)化合物Q晶型。
式(VIII)化合物R晶型的制备
称取20mg式(I)化合物和马来酸(1eq)分别加入到HPLC小瓶中混合加入0.5mL丙酮,室温搅拌4天后离心,将固体转移至50℃真空干燥半小时,得到式(VIII)化合物R晶型。
1H NMR(400MHz,DMSO-d 6)δ8.73(d,J=4.0Hz,1H),8.47(s,1H),8.21(s,2H),8.09-8.03(m,2H),7.99(s,1H),7.75(s,1H),7.49-7.30(m,3H),7.23(s,1H),6.22(s,2H),3.92(s,3H),3.46(s,3H)。
式(X)化合物S晶型的制备
称取20mg式(I)化合物和酒石酸(1eq)分别加入到HPLC小瓶中混合加入0.5mL丙酮,室温搅拌4天后离心,将固体转移至50℃真空干燥半小时,得到式(X)化合物S晶型。
1H NMR(400MHz,DMSO-d 6)δ8.68(d,J=4.0Hz,1H),8.47(s,1H),8.13(s,1H),8.09-8.02(m,2H),7.95(s,1H),7.77(s,1H),7.49-7.33(m,3H),7.24(s,1H),4.32(s,3H),3.94(s,3H)。
实验例3:式(II)化合物A晶型的吸湿性研究
实验材料:
SMS Intrinsic动态蒸汽吸附仪
实验方法:
取式(II)化合物A晶型10~30mg置于DVS样品盘内进行测试。
实验结果:
式(II)化合物A晶型的DVS谱图如图35所示,ΔW=1.708%。
实验结论:
式(II)化合物A晶型在25℃和80%RH下的吸湿增重为1.708%,有吸湿性。
实验例4:式(II)化合物A晶型的稳定性数据
高温、高湿和光照条件试验,将样品放入敞口的干净称量瓶中,摊成≤5mm的薄层,每个条件时间点样品平行称量3份(1.1g/份,准备好的样品于各条件下放置,分别于时间点到达后取样分析。
加速稳定性和长期稳定性试验,将样品装入双层药用低密聚乙烯袋中,每层药用低密聚乙烯袋分别用扎扣密封,再将双层低密聚乙烯袋放入铝箔袋中热封。每个条件时间点样品平行称量6份(1.1g/份,准备好的样品于各条件下放置,分别于时间点到达后取样分析。
考察式(II)化合物A晶型在如下条件放置并在不同的时间点取样检测物理性质,HPLC分析含量和总的杂质。研究条件和检测项目如下表21。
表21式(II)化合物A晶型的稳定性试验
Figure PCTCN2022074076-appb-000062
Figure PCTCN2022074076-appb-000063
实验结论:式(II)化合物A晶型稳定性良好。
生物测试数据:
实验例1:式(II)化合物A晶型细胞增殖抑制作用的研究
实验目的:
本发明化合物可靶向抑制FGFR和VEGFR通路,通过抑制VEGF/VEGFR,FGF/FGFR信号通路,进行肿瘤细胞生长抑制。在本试验中,选取FGFR1高表达的人非小细胞肺癌细胞NCI-H1581、FGFR2高表达的胃癌细胞SNU-16,FGFR3高表达的人膀胱癌细胞RT112/84,本实验通过检测本发明化合物在肿瘤细胞系NCI-H1581、SNU-16、RT-112/84中对体外细胞活性的影响而研究化合物抑制细胞增殖的作用。
实验方法及步骤:
细胞培养
将肿瘤细胞系按表22所示的培养条件在37℃,5%CO 2的培养箱中进行培养。定期传代,取处于对数生长期的细胞用于铺板。
表22细胞系及培养方法
Figure PCTCN2022074076-appb-000064
细胞铺板
(1).用台盼兰进行细胞染色并计数活细胞。
(2).将细胞浓度调整至合适浓度。
细胞系 密度(每孔)
NCI-H1581 4000
SNU-16 7000
RT-112/84 8000
(3).在培养板中每孔加入90μL细胞悬液,在空白对照空中加入不含细胞的培养液。
(4).将培养板在37℃,5%CO 2,及100%相对湿度的培养箱中培养过夜。
10X化合物工作液的配制化合物处理细胞
(1).10X化合物工作液的配制:在V形底的96孔板中加入78μL细胞培养液,从400X化合物存储板中吸取2μL化合物加入96孔板的细胞培养液中。在溶媒对照和空白对照中加入2μL DMSO。加入化合物或DMSO后用排枪吹打混匀。
(2).加药:取10μL的10X化合物工作液加入到细胞培养板中。在溶媒对照和空白对照中加入10μL DMSO-细胞培养液混合液。DMSO终浓度为0.25%。
(3).将96孔细胞板放回培养箱中培养3天后检测。
CellTiter-Glo发光法细胞活性测试
以下步骤按照Promega CellTiter-Glo发光法细胞活性检测试剂盒(Promega-G7573)的说明书来进行。
(1).将CellTiter-Glo缓冲液融化并放置至室温。
(2).将CellTiter-Glo底物放置至室温。
(3).在一瓶CellTiter-Glo底物中加入CellTiter-Glo缓冲液以溶解底物,从而配制CellTiter-Glo工作液。
(4).缓慢涡旋震荡使充分溶解。
(5).取出细胞培养板放置30分钟使其平衡至室温。
(6).在每孔中加入50μL(等于每孔中细胞培养液一半体积)的CellTiter-Glo工作液。用铝箔纸包裹细胞板以避光。
(7).将培养板在轨道摇床上振摇2分钟以诱导细胞裂解。
(8).培养板在室温放置10分钟以稳定发光信号。
(9).在2104EnVision读板器上检测发光信号。
数据分析:
用下列公式来计算检测化合物的抑制率(Inhibition rate,IR):IR(%)=(1-(RLU化合物-RLU空白对照)/(RLU溶媒对照-RLU空白对照))*100%。在Excel中计算不同浓度化合物的抑制率,然后用GraphPadPrism软件作抑制曲线图和计算相关参数,包括最小抑制率,最大抑制率及IC 50。以下公式计算出IC 50
Y=最小抑制率+(最大抑制率-最小抑制率)/(1+10^((LogIC 50-X)*HillSlope))
X:log(浓度)
Y:反应值,数值与X负相关
HillSlope:斜率因素
实验结果:见表23。
表23式(II)化合物A晶型细胞增殖抑制作用的研究
  肿瘤细胞系 NCI-H1581 SNU-16 RT-112/84
IC50(nM) 式(II)化合物A晶型 116.7 44.5 166.8
实验结论:式(II)化合物A晶型对FGFR高表达的三种肿瘤细胞系显示出一定的抗细胞增殖活性。
实验例2:式(II)化合物A晶型体外BaF3细胞系活性
实验目的:
本实验选取VEGFR表达的工程细胞(Ba/F3-TEL-FLT1(VEGFR1)、Ba/F3-TEL-FLT4(VEGFR3)、Ba/F3-TEL-VEGFR2)来评价式(II)化合物A晶型对BaF3细胞系的体外增殖抑制效果。
实验方法及步骤:
1000×式(II)化合物A晶型溶液的配制
式(II)化合物A晶型溶于DMSO中配成的10mM的母液。按照4倍稀释制备成10.0000mM、2.5000mM、0.6250mM、0.1563mM、0.0391mM、0.0098mM、0.0024mM、0.0006mM、0.0002mM储存于96孔药板中(Beaver,Suzhou),共9个浓度梯度,同时采用同等体积的DMSO溶剂作为阴性对照。
1、取对数生长期细胞悬液,接种于96孔白色细胞培养板(Corning 3917,NY,USA),每孔体积为95μl(2000个细胞/孔)。
2、分别加入稀释后的培养基-化合物混合液,每孔体积为5μl,Ba/F3-TEL-FLT1(VEGFR1)、Ba/F3-TEL-FLT4(VEGFR3)、Ba/F3-TEL-VEGFR2细胞中DMSO终浓度为0.1%。
表24细胞及培养条件
细胞 培养基 培养条件
Ba/F3-TEL-FLT1(VEGFR1) RPMI 1640+10%FBS+I%PS+IL-3 37℃,5%CO2培养
Ba/F3-TEL-FLT4(VEGFR3) RPMI 1640+10%FBS+1%PS 37℃,5%CO 2培养
Ba/F3-TEL-VEGFR2 RPMI 1640+10%FBS+1%PS 37℃,5%CO 2培养
3、37℃、5%CO 2培养箱中孵育72小时
4、CellTiter-Glo法化合物的增殖抑制活性及数据分析同实验例1
实验结果:见表25。
表25式(II)化合物A晶型体外BaF3细胞系活性
Figure PCTCN2022074076-appb-000065
实验结论:在VEGFR表达的工程细胞(Ba/F3-TEL-FLT1(VEGFR1)、Ba/F3-TEL-FLT4(VEGFR3)、Ba/F3-TEL-VEGFR2)上,式(II)化合物A晶型显示出一定的抗细胞增殖活性,其中Ba/F3-TEL-VEGFR2显示出较强抗增殖活性。
实验例3:式(II)化合物A晶型药代动力学评价
实验目的:通过SD大鼠单次静脉推注和灌胃给药后,评价式(II)化合物A晶型的动物口服吸收情况
实验材料:SD大鼠,EDTA-K2
实验操作:
实验过程:将5%DMSO/10%Solutol/85%水作为溶媒,浓度5mg/mL式(II)化合物A晶型的澄清溶液经静脉注射到雄性和雌性SD大鼠(过夜禁食,7-11周龄)体内,给药剂量为10mg/kg。
将1mg/mL、3mg/mL、10mg/mL 5%DMSO/10%Kolliphor HS15/85%(0.2%(v/v)Tween80水溶液)的式(II)化合物A晶型灌胃给予到雄性和雌性SD大鼠(过夜禁食,7-11周龄),给药剂量为10 mg/kg、30mg/kg、100mg/kg。四组动物均于给药后0.25、0.5、1.0、2.0、4.0、8.0和24h(IV组增加0.083h)从颈静脉采血约0.2mL置于添加了EDTA-K2的抗凝管中,离心分离血浆。采用LC-MS/MS法测定血药浓度,使用WinNonlin TMVersion 6.3(Pharsight,MountainView,CA)药动学软件,以非房室模型线性对数梯形法计算相关药代动力学参数。
实验结果:
雄性和雌性SD大鼠单次静脉推注1mg/kg的式(II)化合物A晶型后,血浆清除率(Cl)分别为8.78和7.03mL/min/kg,稳态表观分布容积(Vd ss)为0.419和0.366L/kg,消除半衰期(T 1/2)分别为0.675和0.765h,0点到最后一个可定量时间点血浆浓度-时间曲线下面积(AUC 0-last)的值分别为3980和4930nM·h。
在静脉推注剂量下,雌雄SD大鼠的系统暴露量(AUC 0-last与C 0)均无明显性别差异。
雄性SD大鼠单次灌胃给予10、30和100mg/kg的式(II)化合物A晶型后,式(II)化合物A晶型的达峰浓度(C max)分别为3780、16700和19900nM,达峰时间(T max)分别出现在给药后0.500、1.00和0.833h。AUC 0-last分别为7150、38200和113000nM·h。10mg/kg灌胃剂量组中药物的生物利用度为18.0%。
雌性SD大鼠单次灌胃给予10、30和100mg/kg的式(II)化合物A晶型后,式(II)化合物A晶型的达峰浓度(C max)分别为9170、24500和27400nM,达峰时间(T max)分别出现在给药后0.667、1.00和0.500h。AUC 0-last分别为24800、65600和125000nM·h。10mg/kg灌胃剂量组中药物的生物利用度为50.3%。
在30和100mg/kg灌胃剂量下,雌雄SD大鼠的系统暴露量(AUC 0-last与C max)均无明显性别差异。
结论:式(II)化合物A晶型在大鼠种属中,具有较低的清除率,可接受的口服生物利用度,具有不错的可成药性。
实验例4:本发明化合物大鼠药代动力学研究
实验动物:
SD大鼠(过夜禁食,7-11周龄)
实验操作:
实验过程:将5%DMSO/10%Solutol/85%水作为溶媒,浓度10mg/mL本发明化合物或其晶型的澄清溶液经静脉注射到雄性SD大鼠(过夜禁食,7-11周龄)体内,给药剂量为100mg/kg。
将10mg/mL 5%DMSO/10%Kolliphor HS15/85%(0.2%(v/v)Tween80水溶液)的本发明化合物或其晶型灌胃给予到雄性SD大鼠(过夜禁食,7-11周龄),给药剂量为100mg/kg。三组动物均于给药后0.25、0.5、1.0、2.0、4.0、8.0和24h从颈静脉采血约0.2mL置于添加了EDTA-K2的抗凝管中,离 心分离血浆。采用LC-MS/MS法测定血药浓度,使用WinNonlin TMVersion6.3(Pharsight,Mountain View,CA)药动学软件,以非房室模型线性对数梯形法计算相关药代动力学参数。
实验结果:
表26药代动力学试验结果
Figure PCTCN2022074076-appb-000066
实验结论:同等剂量下式(II)化合物D晶型展现出比式(III)化合物E晶型、式(I)化合物更高的暴露量和Cmax。
实验例5:式(II)化合物A晶型在体内动物肿瘤模型上的抗肿瘤活性测试
实验目的:
本试验使用Renca皮下异种移植肿瘤裸小鼠模型评价式(II)化合物A晶型的抗肿瘤作用
实验动物:
雌性Balb/c小鼠(6-8周龄)
实验方法:
细胞培养
小鼠肾癌Renca细胞(ATCC-CRL-2947)体外贴壁培养,培养条件为RPMI 1640培养基中加10%胎牛血清,0.1mM非必需氨基酸,1mM丙酮酸钠,2mM的谷氨酰胺,100U/mL青霉素和100μg/mL链霉素,37℃ 5%CO 2孵箱培养。一周两次进行常规处理传代。当细胞饱和度为80%-90%,数量到达要求时,收取细胞,计数,接种。
细胞接种
将0.1mL(1×10 5个)Renca细胞皮下接种于每只小鼠的右上肢背侧,肿瘤平均体积达到约50-80mm 3时开始分组给药。
肿瘤测量和实验指标
每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b 2,a和b分别表示肿瘤 的长径和短径。
化合物的抑瘤疗效用TGI(%)或相对肿瘤增殖率T/C(%)评价。相对肿瘤增殖率T/C(%)=T RTV/C RTV×100%(T RTV:治疗组平均RTV;C RTV:阴性对照组平均RTV)。根据肿瘤测量的结果计算出相对肿瘤体积(relative tumorvolume,RTV),计算公式为RTV=V t/V 0,其中V 0是分组给药时(即D0)测量所得肿瘤体积,V t为对应小鼠某一次测量时的肿瘤体积,T RTV与C RTV取同一天数据。
TGI(%),反映肿瘤生长抑制率。TGI(%)=[(1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积))/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。
统计分析基于试验结束时RTV的数据运用SPSS软件进行分析。两组间比较用T test进行分析,三组或多组间比较用one-wayANOVA进行分析,如果方差齐(F值无显著性差异),应用Tukey‘s法进行分析,如果方差不齐(F值有显著性差异),应用Games-Howell法进行检验。p<0.05认为有显著性差异。
实验结果:
式(II)化合物A晶型(100mg/kg)剂量组有明显的抑制肿瘤生长的作用,与溶剂对照组相比p=0.031,具有显著性差异。
表27小鼠体内抗肿瘤活性试验结果
  Renca异种移植瘤模型 TGI%(末次第19天给药) p值
式(II)化合物A晶型 100mg/kg QD 72% 0.031
注:QD:一天一次给药,TGI%:肿瘤生长抑制率
实验结论:式(II)化合物A晶型在Renca异种移植瘤模型中,展示出优异的肿瘤抑制效果。

Claims (30)

  1. 式(II)所示化合物,
    Figure PCTCN2022074076-appb-100001
  2. 式(II)所示化合物的A晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.65±0.20°,17.70±0.20°,24.02±0.20°,
    Figure PCTCN2022074076-appb-100002
  3. 根据权利要求2所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.65±0.20°,16.84±0.20°,17.70±0.20°,20.10±0.20°,20.91±0.20°,24.02±0.20°。
  4. 根据权利要求3所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.65±0.20°,16.84±0.20°,17.70±0.20°,20.10±0.20°,20.91±0.20°,24.02±0.20°,24.98±0.20°,26.60±0.20°。
  5. 根据权利要求4所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.649°,12.713°,16.841°,17.695°,20.100°,20.912°,24.018°,24.976°,26.599°,28.076°。
  6. 根据权利要求5所述的A晶型,其XRPD图谱如图1所示。
  7. 根据权利要求2~6任意一项所述的A晶型,其差示扫描量热曲线283.9±3.0℃有一个吸热峰的峰值。
  8. 根据权利要求7所述的A晶型,其DSC图谱如图2所示。
  9. 根据权利要求2~6任意一项所述的A晶型,其热重分析曲线在200.0±3.0℃处失重达0.955%。
  10. 根据权利要求9所述的A晶型,其TGA图谱如图3所示。
  11. 式(II)所示化合物的B晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.75±0.20°,9.94±0.20°,23.94±0.20°。
  12. 根据权利要求11所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.75±0.20°,9.94±0.20°,11.70±0.20°,17.52±0.20°,20.36±0.20°,23.94±0.20°,
    Figure PCTCN2022074076-appb-100003
  13. 根据权利要求12所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.75±0.20°,9.94±0.20°,11.70±0.20°,14.38±0.20°,17.52±0.20°,18.95±0.20°,20.36±0.20°,23.94±0.20°。
  14. 根据权利要求13所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.75°,9.94°,11.70°,13.62°,14.38°,15.47°,17.52°,18.95°,20.36°,23.94°,25.34°,25.46°,26.93°,28.79°。
  15. 根据权利要求14所述的B晶型,其XRPD图谱如图4所示。
  16. 根据权利要求11~15任意一项所述的B晶型,其差示扫描量热曲线分别在57.40±3.0℃和296.86±3.0℃有一个吸热峰的起始点。
  17. 根据权利要求16所述的B晶型,其DSC图谱如图5所示。
  18. 根据权利要求11~15任意一项所述的B晶型,其热重分析曲线在150.0±3.0℃处失重达10.53%。
  19. 根据权利要求18所述的B晶型,其TGA图谱如图6所示。
  20. 式(II)所示化合物的D晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.78±0.20°,13.64±0.20°,16.66±0.20°,
    Figure PCTCN2022074076-appb-100004
  21. 根据权利要求20所述的D晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.78±0.20°,13.64±0.20°,16.66±0.20°,19.63±0.20°,21.13±0.20°,25.40±0.20°。
  22. 根据权利要求21所述的D晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.51±0.20°,8.73±0.20°,10.78±0.20°,13.64±0.20°,16.66±0.20°,19.63±0.20°,21.13±0.20°,25.40±0.20°。
  23. 根据权利要求22所述的D晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.51°,8.10°,8.73°,10.78°,12.64°,13.64°,14.47°,14.92°,15.80°,16.66°,17.47°,19.03°,19.63°,21.13°,21.69°,22.02°,22.20°,23.84°,24.31°,25.40°,25.93°,26.28°,26.84°,27.41°,27.93°,29.10°,30.01°,30.78°,32.16°,32.78°,33.57°,38.41°。
  24. 根据权利要求23所述的D晶型,其XRPD图谱如图10所示。
  25. 根据权利要求20~24任意一项所述的D晶型,其差示扫描量热曲线分别在27.1±3.0℃和298.8±3.0℃有一个吸热峰的起始点。
  26. 根据权利要求25所述的D晶型,其DSC图谱如图11所示。
  27. 根据权利要求20~24任意一项所述的D晶型,其热重分析曲线在150.0±3.0℃处失重达3.15%。
  28. 根据权利要求27所述的D晶型,其TGA图谱如图12所示。
  29. 根据权利要求1所述的化合物或根据2~10任意一项所述的A晶型、11~19任意一项所述的B晶型或20~28任意一项所述的D晶型在制备治疗FGFR/VEGFR双激酶抑制剂相关疾病的药物中的应用。
  30. 根据权利要求29所述的应用,其特征在于,所述FGFR/VEGFR双激酶抑制剂相关药物是用于治疗实体瘤的药物。
PCT/CN2022/074076 2021-01-26 2022-01-26 甲基吡唑取代的吡啶并咪唑类化合物的晶型及其制备方法 WO2022161408A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3206502A CA3206502A1 (en) 2021-01-26 2022-01-26 Crystal form of methylpyrazole-substituted pyridoimidazole compound and preparation method therefor
EP22745281.0A EP4286382A1 (en) 2021-01-26 2022-01-26 Crystal form of methylpyrazole-substituted pyridoimidazole compound and preparation method therefor
AU2022213682A AU2022213682B2 (en) 2021-01-26 2022-01-26 Crystal form of methylpyrazole-substituted pyridoimidazole compound and preparation method therefor
KR1020237028047A KR20230134545A (ko) 2021-01-26 2022-01-26 메틸피라졸로로 치환된 피리도 이미다졸계 화합물의결정형 및 이의 제조방법
JP2023544759A JP2024504437A (ja) 2021-01-26 2022-01-26 メチルピラゾール置換ピリドイミダゾール系化合物の結晶及びその製造方法
CN202280009914.7A CN116783192A (zh) 2021-01-26 2022-01-26 甲基吡唑取代的吡啶并咪唑类化合物的晶型及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110106007 2021-01-26
CN202110106007.1 2021-01-26

Publications (1)

Publication Number Publication Date
WO2022161408A1 true WO2022161408A1 (zh) 2022-08-04

Family

ID=82653020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074076 WO2022161408A1 (zh) 2021-01-26 2022-01-26 甲基吡唑取代的吡啶并咪唑类化合物的晶型及其制备方法

Country Status (6)

Country Link
EP (1) EP4286382A1 (zh)
JP (1) JP2024504437A (zh)
KR (1) KR20230134545A (zh)
CN (1) CN116783192A (zh)
CA (1) CA3206502A1 (zh)
WO (1) WO2022161408A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078091A1 (en) * 2006-12-22 2008-07-03 Astex Therapeutics Limited Bicyclic heterocyclic compounds as fgfr inhibitors
CN101827844A (zh) * 2007-10-17 2010-09-08 诺瓦提斯公司 可用作ALK抑制剂的咪唑并[1,2-a]吡啶衍生物
WO2020135878A1 (zh) * 2018-12-29 2020-07-02 南京明德新药研发有限公司 作为fgfr和vegfr双重抑制剂的咪唑并吡啶衍生物
WO2021018047A1 (zh) * 2019-07-26 2021-02-04 南京明德新药研发有限公司 作为fgfr和vegfr双重抑制剂的吡啶衍生物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078091A1 (en) * 2006-12-22 2008-07-03 Astex Therapeutics Limited Bicyclic heterocyclic compounds as fgfr inhibitors
CN101827844A (zh) * 2007-10-17 2010-09-08 诺瓦提斯公司 可用作ALK抑制剂的咪唑并[1,2-a]吡啶衍生物
WO2020135878A1 (zh) * 2018-12-29 2020-07-02 南京明德新药研发有限公司 作为fgfr和vegfr双重抑制剂的咪唑并吡啶衍生物
WO2021018047A1 (zh) * 2019-07-26 2021-02-04 南京明德新药研发有限公司 作为fgfr和vegfr双重抑制剂的吡啶衍生物

Also Published As

Publication number Publication date
AU2022213682A1 (en) 2023-09-14
KR20230134545A (ko) 2023-09-21
CA3206502A1 (en) 2022-08-04
JP2024504437A (ja) 2024-01-31
CN116783192A (zh) 2023-09-19
EP4286382A1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
KR101933843B1 (ko) 피라졸릴 퀴녹살린 키나제 억제제
KR101914720B1 (ko) 암 질환의 치료를 위한 fgfr 키나제 억제제로서의 치환된 벤조피라진 유도체
CN105254615B (zh) 苯胺嘧啶衍生物及其在制备抗恶性肿瘤药物中的用途
US20200361908A1 (en) Crystals of aniline pyrimidine compound serving as egfr inhibitor
KR20140096033A (ko) 신규 화합물
US20230174549A1 (en) Salt and crystal forms of 4-amino-5-(6-(4-methylpiperazin-1-yl)-1h-benzo[d]imidazol-2-yl)thieno[2,3-b]pyridin-6(7h)-one
AU2017295628A1 (en) Heterocyclic compound used as FGFR inhibitor
EP1741714A1 (en) Heterocyclic compound and anti-malignant-tumor agent containing the same as active ingredient
WO2017152707A1 (zh) 吡啶胺基嘧啶衍生物甲磺酸盐的结晶形式及其制备和应用
CN109593102B (zh) 一种氘代二苯氨基嘧啶类化合物的制备方法及其晶型
WO2020147838A1 (zh) 一种egfr抑制剂的盐、晶型及其制备方法
WO2022161408A1 (zh) 甲基吡唑取代的吡啶并咪唑类化合物的晶型及其制备方法
WO2022048545A1 (zh) 一种吡啶并嘧啶化合物的晶型
TW202313034A (zh) Egfr抑制劑的鹽、晶型及其組合物和應用
AU2022213682B2 (en) Crystal form of methylpyrazole-substituted pyridoimidazole compound and preparation method therefor
US11919898B2 (en) Crystal form of azaindole derivative and use thereof
CN114940674B (zh) 基于crbn配体诱导fgfr3-tacc3降解的化合物及其制备方法和应用
CN117126142A (zh) 杂环类egfr突变抑制剂及其应用
CN118772111A (zh) 一种取代的氨基嘧啶类化合物、药物组合物及其用途
JP2024520920A (ja) イミダゾリジノン類化合物の多形体、調製方法及びその使用
EP4045484A1 (en) The salts of a compound and the crystalline forms thereof
CN110229143A (zh) 一类嘧啶化合物的盐、多晶型物及其药物组合物、制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745281

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280009914.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023544759

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3206502

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237028047

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237028047

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022213682

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022745281

Country of ref document: EP

Effective date: 20230828

ENP Entry into the national phase

Ref document number: 2022213682

Country of ref document: AU

Date of ref document: 20220126

Kind code of ref document: A