WO2022161407A1 - 一种货箱搬运系统、机器人和货箱搬运方法 - Google Patents

一种货箱搬运系统、机器人和货箱搬运方法 Download PDF

Info

Publication number
WO2022161407A1
WO2022161407A1 PCT/CN2022/074070 CN2022074070W WO2022161407A1 WO 2022161407 A1 WO2022161407 A1 WO 2022161407A1 CN 2022074070 W CN2022074070 W CN 2022074070W WO 2022161407 A1 WO2022161407 A1 WO 2022161407A1
Authority
WO
WIPO (PCT)
Prior art keywords
telescopic fork
assembly
size
fork
target
Prior art date
Application number
PCT/CN2022/074070
Other languages
English (en)
French (fr)
Inventor
李晓伟
刘凯
白易欣
肖玉辉
Original Assignee
北京极智嘉科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202120247233.7U external-priority patent/CN214651096U/zh
Priority claimed from CN202110118466.1A external-priority patent/CN112758588A/zh
Application filed by 北京极智嘉科技股份有限公司 filed Critical 北京极智嘉科技股份有限公司
Publication of WO2022161407A1 publication Critical patent/WO2022161407A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed

Definitions

  • the present disclosure relates to the field of robot task scheduling, and in particular, to a container handling system, a robot and a container handling method.
  • the telescopic fork mechanism of the robot is often designed to be a fixed size that can access the container of the largest size.
  • Such a telescopic fork mechanism with a fixed size is more adaptable.
  • the telescopic fork mechanism with the inherent size is used to pick up and place the cargo box, the telescopic fork mechanism is relatively large, which leads to waste of the storage space of the cargo box and low utilization rate of the storage space of the cargo box.
  • How to use the same telescopic fork mechanism to meet the access requirements of different sizes and specifications of containers in the warehouse is one of the key issues faced by engineering applications.
  • Embodiments of the present disclosure provide at least a container handling system, a robot, and a container handling method, so as to solve the defect of low utilization rate of container storage space in a warehousing operation scenario.
  • an embodiment of the present disclosure provides a cargo box handling system, the system includes a cargo box having a variety of cargo box sizes, a controller, and a robot; the robot includes a telescopic fork mechanism, and the telescopic fork mechanism has The box size is adjustable;
  • the controller is configured to, in response to a container handling request, generate a container handling instruction and send the container handling instruction to the robot;
  • the robot is configured to, in response to the container handling instruction, adjust the size of the telescopic fork mechanism to match the size of the target container, and use the adjusted telescopic fork mechanism to acquire and transport the target cargo box.
  • an embodiment of the present disclosure provides a robot, which is applied to the robot of the cargo box handling system described in the first aspect.
  • an embodiment of the present disclosure provides a container handling method using a robot, the robot includes a telescopic fork mechanism, and the size of the container taking out of the telescopic fork mechanism is adjustable, and the container handling method includes:
  • the size of the telescopic fork mechanism of the robot is adjusted to match the size of the target container, and the adjusted telescopic fork mechanism is used to acquire and transport the target container box.
  • an embodiment of the present disclosure provides a cargo box handling method, which is applied to a robot.
  • the robot includes a telescopic fork mechanism and a temporary storage mechanism, and the size of the telescopic fork mechanism is adjustable.
  • Box handling methods include:
  • the target container is transported to a preset shelf;
  • the container storage instruction is an instruction issued by the controller to store the target container on the temporary storage mechanism on the preset shelf.
  • the embodiments of the present disclosure provide a container handling system, a robot, and a container handling method.
  • the size of the telescopic fork mechanism for handling containers with various container sizes By adjusting the size of the telescopic fork mechanism for handling containers with various container sizes, the storage of the containers can be more reasonably allocated. position, improve the utilization of the storage space of the cargo box.
  • a follower frame and a second drive unit can also be used, and the follower frame can be used when the fork-holding assembly is extended to obtain the cargo box.
  • the connection with the shelf prevents smaller boxes from falling between the robot and the shelf when picking up.
  • Fig. 1a shows a left side view of a robot provided by an embodiment of the present disclosure
  • Fig. 1b shows a front view of a robot provided by an embodiment of the present disclosure
  • FIG. 2 shows a schematic structural diagram of a telescopic fork mechanism provided by an embodiment of the present disclosure
  • FIG. 3 shows a schematic structural diagram of a telescopic fork mechanism provided by an embodiment of the present disclosure
  • FIG. 4 shows a schematic structural diagram of a telescopic fork mechanism provided by an embodiment of the present disclosure
  • FIG. 5 shows a schematic structural diagram of the extension fork assembly in the telescopic fork mechanism provided by the embodiment of the present disclosure
  • FIG. 6 shows a schematic structural diagram of a second telescopic fork provided by an embodiment of the present disclosure
  • FIG. 7 shows a schematic structural diagram of a container handling system provided by an embodiment of the present disclosure
  • FIG. 8 shows a flowchart of a cargo box handling method provided by an embodiment of the present disclosure
  • FIG. 9 shows a flowchart of another cargo box handling method provided by an embodiment of the present disclosure.
  • references herein to "a plurality or several” means two or more.
  • "And/or" which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" generally indicates that the associated objects are an "or" relationship.
  • the telescopic fork mechanism of the robot in order to be able to access containers of different sizes, the telescopic fork mechanism of the robot is often designed to be able to access the fixed size of the container with the largest size.
  • the adaptability of the mechanism is poor, and at the same time, when the telescopic fork mechanism of the inherent size is used to pick up and place the cargo box, the telescopic fork mechanism is relatively large, so the storage space of the cargo box is wasted and the utilization rate of the storage space of the cargo box is low.
  • the present disclosure provides a container handling system, which can improve the utilization rate of the storage space of the container and the applicability of the robot by adjusting the size of the telescopic fork mechanism to transport the container with various container sizes. Rate.
  • a container handling system provided by the present disclosure includes a robot
  • a robot provided by the present disclosure will be introduced in detail first, and then the container handling system provided by the present disclosure will be described in detail. for a detailed introduction.
  • the robot provided by the present disclosure includes a microcontroller with a certain computing capability, and in some possible implementations, the robot can be realized by a single-chip control method.
  • the robot includes a robot body 11, a telescopic fork mechanism 12, a gantry 13, a lifting mechanism 14, a temporary storage mechanism 15, etc.; the telescopic fork
  • the mechanism 12 is installed on the lifting mechanism 14, the lifting mechanism 14 is installed on the gantry 13, the gantry 13 is vertically installed on the robot body 11, and a plurality of temporary storage mechanisms 15 are also installed on the gantry 13.
  • the temporary storage mechanism 15 It is arranged on the side of the mast 13 away from the telescopic fork mechanism 12 .
  • the robot body 11 is used to support the movement of the robot; the telescopic fork mechanism 12 is used for the acquisition and transportation of the cargo box; the gantry 13 is used to support the telescopic fork mechanism 12 to move to the temporary storage position corresponding to any temporary storage mechanism 15 in the vertical direction;
  • the mechanism 14 can provide the vertical movement power for the telescopic fork mechanism 12; the temporary storage mechanism 15 is used to provide a temporary storage position for the temporary storage of the cargo box.
  • the telescopic fork mechanism 12 includes a fork holding assembly and an adjustment mechanism; the fork holding assembly includes a first telescopic fork 121-1 and a second telescopic fork 121-2 that can be telescopic in a first direction; the adjustment mechanism includes: a first guide rail assembly 122 and a second telescopic fork 121-2.
  • the first drive unit, and the adjustment mechanism is used to adjust the distance between the first telescopic fork 121-1 and the second telescopic fork 121-2 along the second direction.
  • the length direction of the first guide rail assembly 122 is the second direction
  • the telescopic direction of the first telescopic fork 121-1 and the second telescopic fork 121-2 in the fork holding assembly is the first direction
  • the first direction and the second direction vertical is the first direction and the second direction vertical.
  • the first telescopic fork 121-1 and the second telescopic fork 121-2 are slidably assembled on the first guide rail assembly 122; the first driving unit is used for driving the first telescopic fork 121-1 and the second telescopic fork 121-2 along the second The directions move toward or away from each other to adjust the size of the box taking out of the telescopic fork mechanism 12 .
  • the first drive unit includes a drive motor 123-1 (see FIG. 4) and a first timing belt assembly 123-2; the first timing belt assembly 123-2 includes a belt and a pulley; the pulley can divide the belt into a first part For the belt and the second part of the belt, the first telescopic fork 121-1 is fixedly assembled on the first part of the belt, and the second telescopic fork 121-2 is fixedly assembled on the second part of the belt.
  • the first telescopic fork 121-1 can be fixedly connected to the first part of the belt in the first timing belt assembly 123-2 by using a first driving block
  • the second telescopic fork 121-2 can be fixed using a second driving block It is fixedly connected to the second part of the belt in the first synchronous belt assembly 123-2.
  • the driving motor 123-1 drives the first synchronous belt assembly 123-2
  • it can drive the first telescopic belt on the first part of the belt.
  • the fork 121-1 and the second telescopic fork 121-2 on the second part of the belt move toward or away from each other in the second direction.
  • the first synchronous belt assembly 123-2 drives the first telescopic fork 121-1 and the second telescopic fork 121-2 to move toward or away from each other along the second direction on the first guide rail assembly 122 , to adjust the size of the box taking out of the telescopic fork mechanism 12 .
  • the size of taking the box is the size between the first telescopic fork 121-1 and the second telescopic fork 121-2 when the fork-holding assembly telescopically obtains the cargo box.
  • the telescopic fork mechanism 12 also includes a base 1215 (see FIG. 2 ); the first guide rail assembly 122 is mounted on the base 1215, and the first guide rail assembly 122 may include two guide rails and two sets of sliders; The two sliders in the slider are respectively slidably connected with the first guide rail and the second guide rail, and the two sliders in the second set of sliders are respectively slidably connected with the first guide rail and the second guide rail; the first telescopic The fork 121-1 is fixedly connected with the first set of sliding blocks, and can slide on the first guide rail and the second guide rail through the first set of sliding blocks; the second telescopic fork 121-2 is fixedly connected with the second set of sliding blocks, And can slide on the first guide rail and the second guide rail through the second set of sliders.
  • the telescopic fork mechanism 12 further includes a second guide rail assembly 124, a second driving unit 125 (see FIG. 3 for the structure of the second guide rail assembly and the second driving unit), a follower frame 126 and a rear shifting finger 127 (see FIG. 3 ). shown in Figure 2).
  • the second guide rail assembly 124 is mounted on the base 1215 and may include at least one guide rail and at least one set of sliding blocks; the length direction of the second guide rail assembly is parallel to the first direction.
  • the second guide rail assembly 124 includes two sets of sliders, respectively referred to as a third set of sliders and a fourth set of sliders, and two guide rails, respectively referred to as a third guide rail and a fourth guide rail.
  • the two sliders in the third set of sliders are slidably connected with the third guide rail and the fourth guide rail respectively; the two sliders in the fourth set of sliders are respectively slid with the third guide rail and the fourth guide rail Connection;
  • the follower frame 126 is fixedly connected with the third set of sliders and the fourth set of sliders, and can be connected to the third set of sliders and the fourth set of sliders on the third and fourth guide rails along the first Swipe in the direction.
  • the rear shifting fingers 127 are fixedly connected with the first telescopic fork 121 - 1 and the second telescopic fork 121 - 2 in one-to-one correspondence (see FIG. 2 ) for pushing the follower frame 126 .
  • a rear shifting finger 127 may be provided on the first telescopic fork 121-1 and the second telescopic fork 121-2, respectively, for pushing the follower frame 126, so that the force on the follower frame 126 is uniform.
  • the second driving unit 125 is used to pull the follower frame 126 to extend out of the base 1215 along the first direction when the first telescopic fork 121-1 and the second telescopic fork 121-2 are extended; When the first telescopic fork 121-1 and the second telescopic fork 121-2 are retracted, the follower frame 126 is pushed to be retracted to the position where the follower frame 126 is located when the telescopic fork mechanism does not work.
  • the second driving unit 125 will maintain a pulling force on the follower frame 126 , and when the fork holding assembly is extended, pull the follower frame 126 on the second guide rail assembly 124 It moves upward along the first direction, and the extension stroke of the follower frame 126 is limited by the fixed element arranged on the base 1215; when the fork holding assembly is retracted, the follower frame 126 is retracted to the telescopic position by the rear dial finger 127. The position where the follower 126 is located when the fork mechanism 12 is not working.
  • the second driving unit 125 can be designed in the form of a spring, one end of the spring is fixed on the base 1215, and the other end is fixedly connected to the follower frame 126.
  • the spring is always kept under pressure.
  • the form of pulling; when the holding fork assembly is extended, the spring pulls the follower 126, and the fixed stroke of the follower 126 along the first direction is limited by the fixing element, and the fixed stroke can be set according to actual needs. Embodiments of the present disclosure This is not limited.
  • the fork-holding assembly When the fork holding assembly is retracted, the follower frame 126 can be pushed by the rear finger 127 until the follower frame 126 is pushed back to the initial position, that is, the position where the follower frame 126 is when the telescopic fork mechanism 12 is not working .
  • FIG. 5 which is a schematic structural diagram of the fork-holding assembly in the telescopic fork mechanism 12 when the fork-holding assembly is extended, here, the fork-holding assembly further includes a multi-stage guide rail assembly, a first telescopic fork 121-1 and a second telescopic fork 121- 2.
  • the multi-level guide rail assembly can be used to achieve telescopic acquisition of cargo boxes at different depths in the rack along the first direction.
  • the second drive unit drives the follower frame 126 to extend a fixed stroke, which can prevent the fork-holding assembly from hooking the smaller-sized target container when it is retracted.
  • the box falls from the gap between the shelf and the robot.
  • the telescopic fork mechanism 12 further includes a first sensor assembly 128 and a second sensor assembly 129, whose installation positions can be referred to as shown in FIG. 2 .
  • the first sensor assembly 128 is installed on the base 1215 and can collect the size of the container to be transported, so as to adjust the size of the telescopic fork mechanism 12 based on the size of the container; it can also collect the actual position of the container to be transported , to adjust the robot's bin picking position based on the actual position.
  • the second sensor assembly 129 is installed on the base 1215.
  • the position of the rear dial finger 127 can be collected in real time, and based on the collected position of the rear dial finger 127, it can be determined whether the follower frame 126 is retracted or not. Return to the position where the follower frame 126 is when the telescopic fork mechanism 12 does not work. Based on the above judgment, it is possible to avoid the occurrence of interference between the fork-holding assembly and the shelf caused by the misoperation of the robot.
  • the telescopic fork mechanism 12 further includes a ball spline assembly, a third driving unit 1211 , a second timing belt assembly 1212 , and a third timing belt 1213 (see FIG. 6 ).
  • the ball spline assembly is mounted on the base 1215, and the ball spline assembly includes a first female member 1210-1 (refer to FIG. 4), a second female member 1210-2 (refer to FIG. 6) and a spline Shaft 1210-3 (see Figure 4); the fork holding assembly also includes a first drive pulley 121-3 and a second drive pulley 121-4; a first telescopic fork 121-1 and a first drive pulley 121- 3.
  • the second telescopic fork 121-2 is fixedly connected with the second drive pulley 121-4; the first wire female part 1210-1 and the second wire female part 1210-2 are both sleeved on the spline shaft 1210-3
  • the first wire female member 1210-1 is fixedly connected with the first driving pulley 121-3; the second wire female member 1210-2 is fixedly connected with the second driving pulley 121-4.
  • the first driving unit drives the first telescopic fork 121-1 to move in the second direction on the first guide rail assembly 122
  • the first telescopic fork 121-1 may also pass through the first female wire 1210-1
  • the spline shaft 1210-3 moves in the second direction; while the first drive unit drives the second telescopic fork 121-2 to move in the second direction, the second telescopic fork 121-2 can also pass through the second female thread 1210-2 moves in the second direction on the splined shaft 1210-3.
  • the third driving unit 1211 is installed on the base 1215, and can drive the spline shaft 1210-3 to rotate, and the spline shaft 1210-3 can drive the first thread 1210-1 and the second thread 1210-2 to rotate.
  • the thread female 1210-1 drives the first telescopic fork 121-1 to complete the telescopic action through the first driving pulley 121-3; the second thread female 1210-2 drives the second telescopic fork through the second driving pulley 121-4 121-2 completes the telescopic action.
  • the third drive unit 1211 is connected to the second timing belt assembly 1212
  • the second timing belt assembly 1212 is connected to the spline shaft 1210-3
  • the spline shaft 1210-3 is connected to the third timing belt assembly 1213
  • the third timing belt assembly 1210-3 is connected to the third timing belt assembly 1213.
  • the fork-holding assembly is fixedly connected to the belt assembly 1213; the multi-stage guide rail assembly is installed on the fork-holding assembly; when the third driving unit 1211 drives the second timing belt assembly 1212, the second timing belt assembly 1212 drives the spline shaft 1210-3 to rotate , the rotation of the spline shaft 1210-3 can drive the first thread 1210-1 and the second thread 1210-2 to rotate, and the first thread 1210-1 and the second thread 1210-2 can rotate
  • the first telescopic fork 121-1 and the second telescopic fork 121-2 on the third timing belt assembly 1213 are telescopic in the first direction on the multi-stage guide rail assembly.
  • the telescopic fork mechanism 12 also includes a slewing bearing assembly 1214 (see FIG. 3 ), a front shifting finger 1216 (see FIG. 2 ), and the like. Among them, the front finger 1216 is used for hooking the target cargo box.
  • the base 1215 is mounted on the lifting mechanism 14 through the slewing bearing assembly 1214, can move along the vertical direction with the lifting mechanism 14, and can rotate under the driving of the slewing bearing assembly 1212.
  • the slewing bearing assembly 1214 is used to support the telescopic fork mechanism to complete the rotational movement.
  • the slewing bearing assembly 1214 can be driven by the telescopic fork rotating motor 1217 (see FIG. 3), such as The telescopic fork mechanism 12 is rotated by 90° through the slewing bearing assembly 1214, so that the telescopic fork mechanism 12 faces the entrance of the temporary storage mechanism 15 for storing the target container, and at this time, the fork-holding assembly is driven to extend and retract, and the temporary storage of the target container can be completed. Task.
  • the robot body 11 in the above-mentioned FIG. 1a is a carrier base for various components inside the robot, including wheels and suspension systems, etc., wherein the wheels are used to support the robot body 11 to complete at least part of the robot movement, such as moving and turning. Wait.
  • the suspension system is a device for transmitting force between the robot body 11 and the wheel, which can transmit the force and torque acting between the wheel and the robot body 11, and buffer the impact force transmitted to the robot body 11 from the uneven road.
  • the gantry 13 may include a third rail assembly.
  • the lifting mechanism 14 is slidably connected with the third guide rail assembly, and is connected with the telescopic fork mechanism 12 through the slewing bearing assembly 1214 in the telescopic fork mechanism 12;
  • the driving mode of the driving element may be a motor-driven synchronous belt drive, a motor-driven chain drive, or a motor-driven rack drive, etc., and the drive element may be set according to actual needs, which is not covered by the embodiments of the present disclosure. be limited.
  • FIG. 7 is a schematic structural diagram of a container handling system, and the system may include: Containers with various container sizes (eg, Container 201-1, Container 201-2, Container 201-3), Controller 202, Robot 203.
  • the robot 203 may be the robot provided in the above embodiments of the present disclosure.
  • the robot 203 is provided with a telescopic fork mechanism 12 .
  • the size of the telescopic fork mechanism 12 can be adjusted, so that it can obtain containers of different container sizes, and can realize container handling.
  • the cargo box carried by the present disclosure may be a rectangular cargo box, and the size of the cargo box may be the length x width x height of the rectangular cargo box, or may also be the three sides of the long side, the wide side and the high side of the rectangular cargo box The size of the length of any side. It can be selected according to the actual application scenario, which is not limited here.
  • the controller 202 may be configured on the server, or set independently, or set on the robot 203 , and is used to respond to a request for moving a container sent by the console 204 .
  • the controller 202 can be a software system running on the server and having data storage and information processing capabilities, and can communicate with the robot 203, a hardware input system, or other software systems through wireless or wired connections. connect.
  • the controller 202 has a processor 2021 and a memory 2022, and the memory 2022 can store the container size of each container in the warehouse.
  • the controller 202 is configured to, in response to the request for the movement of the container, generate and send a container handling instruction to the robot 203 .
  • the robot 203 is configured to, in response to the container handling command, adjust the size of the telescopic fork mechanism 12 to match the size of the target container, and use the adjusted telescopic fork mechanism 12 to acquire and transport the target container.
  • the box handling instruction may include a pick-up position of the target box and/or a target box size of the target box.
  • the staff can make the controller 202 work through the console 204, the controller 202 communicates with the robot 203 wirelessly, and sends the container handling instruction to the robot 203 to control the robot 203 to complete various Handling of cargo boxes of the size of the cargo box.
  • the robot 203 is configured to, in response to the container handling instruction, based on the For the size of the target cargo box, the picking-up size of the telescopic fork mechanism 12 can be adjusted to match the size of the target cargo box, and the adjusted telescopic fork mechanism 12 can be used to obtain and transport the target cargo box.
  • the time for the robot 203 to adjust the container size of the telescopic fork mechanism 12 may be adjusted immediately after receiving the container handling instruction, that is, adjusting while moving; or it may be moved to the container extraction position of the target container and then adjusted Make adjustments, not limited here.
  • the telescopic fork mechanism 12 may utilize the first sensor assembly 128 mounted thereon to acquire the target container At this time, the size of the telescopic fork mechanism 12 can only be adjusted at the position of the target container.
  • the robot 203 is configured to, after running to the fetching position of the target container to be transported, adjust the fetching size of the telescopic fork mechanism 12 to match the size of the target container based on the size of the target container collected by the first sensor assembly 128 match, and utilize the adjusted telescopic fork mechanism 12 to acquire and carry the target case.
  • the first sensor component 128 may be a sensor component capable of detecting distance, such as a vision sensor or a depth sensor, and the specific sensor type is not specifically limited herein.
  • the robot 203 can first adjust the telescopic fork mechanism 12 by using the target container size provided by the container handling instruction , and then use the first sensor assembly 128 to perform verification processing on the initially adjusted telescopic fork mechanism 12 .
  • the robot 203 is configured to, in response to the container handling instruction, and based on the target container size in the container handling instruction, can adjust the size of the telescopic fork mechanism 12 to take out the container to match the target container size; After the pick-up position of the transported target container, it is checked whether the size of the target container matches the actual size of the container based on the actual size of the target container collected by the first sensor component 128; The telescopic fork mechanism 12 acquires and transports the target container; if it does not match, the actual size of the container is used to adjust the size of the telescopic fork mechanism 12 to take out, and the size of the telescopic fork mechanism 12 is determined to match the actual size of the container. In this case, the adjusted telescopic fork mechanism 12 is used to acquire and transport the target container.
  • the robot 203 can adjust the distance between the extended first telescopic fork 121-1 and the second telescopic fork 121-2 in combination with the target container size and the actual size of the container detected by the first sensor assembly 128 in real time.
  • the size of the pick-up box is matched to the minimum size that can obtain the target box, so as to ensure that the robot can keep the position of the target box in the fork-holding assembly when picking up the target box, and avoid abnormal states such as offset, rotation, and inclination. , which maximizes the adaptability of the robot to container storage scenarios with various container sizes.
  • the distance between the boxes stored on the shelf can be adjusted so that the robot 203 can obtain the minimum distance accuracy of the target box, which can improve the quality of the goods.
  • the density of box storage further reduces the waste of storage space.
  • an embodiment of the present disclosure further provides a container handling method, the executive body of which is a robot.
  • a container handling method the executive body of which is a robot.
  • FIG. 8 it is a flow chart of a method for handling a container, including steps S801-S803, wherein:
  • the container handling instruction may include the position for picking up the target container and/or the target container size of the target container.
  • the telescopic fork mechanism includes a fork holding assembly and an adjustment mechanism;
  • the fork holding assembly includes a first telescopic fork and a second telescopic fork that can be telescopic in a first direction;
  • the adjustment mechanism includes a first guide rail assembly and a first driving unit, the first telescopic fork
  • the length direction of a guide rail assembly is a second direction, and the first direction is perpendicular to the second direction.
  • the taking box size may be the size between the first telescopic fork and the second telescopic fork.
  • the target container size may be the size of the target container to be transported as indicated in the container handling instruction.
  • the first drive unit may be controlled to drive the first telescopic fork and the second telescopic fork on the first guide rail based on the target container size
  • the components are moved toward or away from each other in the second direction, so that the size of the take-out box between the first telescopic fork and the second telescopic fork matches the size of the target box.
  • the first driving unit includes a driving motor and a first synchronous belt assembly; the first synchronous belt assembly can be driven by the driving motor, and at the same time, the first synchronous belt assembly drives the first telescopic fork and the second telescopic fork fixedly connected to it.
  • the forks move toward or away from each other along the second direction on the first guide rail assembly, and the size of the taking-out box between the first telescopic fork and the second telescopic fork is adjusted to match the size of the target container.
  • the first sensor component included in the telescopic fork mechanism may be used to collect the target container of the target container Size; when the robot runs to the position of taking out the target container, based on the size of the target container collected by the first sensor assembly, adjust the container taking size of the telescopic fork mechanism to match the size of the target container. Specifically, based on the size of the target cargo box collected by the first sensor assembly, the size of the taking-out box between the first telescopic fork and the second telescopic fork is adjusted to match the size of the target cargo box.
  • the first sensor component can also collect the actual position of the target container to be transported on the shelf, adjust the pick-up position of the robot again based on the actual position, and again Get the target container at the adjusted pickup position.
  • the actual position of the target container to be transported on the shelf can be collected based on the first sensor assembly, and the robot can be controlled to move to the container taking position, and the robot can control the fork-holding assembly to extend and retract at the container taking position, so that the offset can be obtained. Move the target box placed on the shelf.
  • the adjusted telescopic fork mechanism is used to obtain the target container on the shelf, and the target container is transported and temporarily stored in the temporary storage position of the temporary storage mechanism.
  • the robot includes a temporary storage mechanism and a slewing bearing assembly;
  • the telescopic fork mechanism includes a second guide rail assembly, a second driving unit, a third driving unit, a follower frame, a front finger and a rear finger;
  • the third drive unit is controlled to drive the fork-holding assembly to extend to the position where it can be hooked to the target container.
  • the follower frame is provided by the second drive unit Under the action of the pulling force, the second guide rail assembly moves along the extension direction of the fork holding assembly to the position restricted by the fixed element; after that, the front finger is controlled to rotate to the preset state to hook the target cargo box, and the fork holding fork assembly retracts.
  • the preset state includes a horizontal state or a certain angle with the horizontal direction, and the angle can be specifically defined according to the size of the target cargo box, which is not specifically limited here.
  • the preset state when the container is taken out it can be ensured that the extended fork holding assembly is the smallest size capable of realizing access to the target container, and the utilization rate of the storage space of the container (such as a shelf) can be improved.
  • the robot controls the lifting mechanism to elevate to the first target height of the shelf where the target container to be transported is located; then, based on the size of the target container, adjust the fetching between the first telescopic fork and the second telescopic fork
  • the size matches the size of the target cargo box; after the robot runs to the picking position of the target cargo box to be transported, the second drive unit is controlled to drive the fork-holding assembly to extend to the position where it can be hooked to the target cargo box, for example, the target
  • the long side ⁇ wide side ⁇ high side of the container size is 650mm ⁇ 500mm ⁇ 400mm, and the fork-holding component can be controlled to extend 800mm, including the wide side of the target container and the gap between the shelf and the robot.
  • the follower frame moves on the second guide rail assembly along the extension direction of the fork assembly to a position restricted by the fixing element, where the travel of the follower frame is fixed each time.
  • the front finger is controlled to rotate to a horizontal state, and the second drive unit drives the fork holding assembly and the follower frame to retract the cargo box to the position where the follower frame is when the telescopic fork mechanism is not working.
  • the second sensor assembly collects the position of the rear finger, it can be determined that the follower has retracted to the position of the follower frame when the telescopic fork mechanism is not working, and then the slewing bearing assembly is controlled to drive the telescopic fork mechanism to rotate to
  • the forward finger of the telescopic fork mechanism faces the entrance of the target container in the temporary storage mechanism, and controls the fork holding assembly to store the target container in the temporary storage position of the temporary storage mechanism. So far, the removal of the target container is completed.
  • the robot may further control the lifting mechanism to ascend and descend to the first target location height of the rack where the target container to be handled is located ;
  • the height of the first target cargo space can be the height corresponding to the shelf storage space currently placed by the target cargo box;
  • the first drive unit is controlled to drive the size of the picking box between the first telescopic fork and the second telescopic fork to match the size of the target cargo box ;
  • the mechanism drives the telescopic fork mechanism to rotate to the position where the front finger of the retractable fork mechanism faces the entrance of the cargo box in the temporary storage mechanism, and controls the third drive unit to drive the fork holding assembly to store the target cargo box on the temporary storage mechanism.
  • the specific process of storing the target cargo box on the temporary storage mechanism is as follows: controlling the third The drive unit drives the fork-holding assembly to extend into the temporary storage mechanism, controls the front finger to rotate from the current preset state to the vertical state, and then controls the third drive unit to drive the fork-holding assembly to retract to the state where the telescopic fork mechanism does not work
  • the position of the follower frame completes the process of placing the target container from the follower frame into the temporary storage position of the temporary storage mechanism.
  • FIG. 9 is a flowchart of another method for transporting a container, including steps S901 to S905, wherein:
  • the robot includes a staging mechanism.
  • the container storage instruction is an instruction issued by the controller to store the target container on the temporary storage position of the temporary storage mechanism on the preset shelf.
  • the preset rack may be a designated rack for storing the target container.
  • S902 Adjust the size of the box taking out of the telescopic fork mechanism to match the size of the temporary storage mechanism.
  • the size of the box taking out of the telescopic fork mechanism is adjusted to the size of the temporary storage mechanism, in order to ensure that the telescopic fork mechanism can acquire the target container at any position on the temporary storage position of the temporary storage mechanism.
  • the size of the temporary storage mechanism is the maximum size at the entrance of the temporary storage mechanism.
  • the telescopic fork mechanism includes a holding fork assembly, a first driving unit and a first guide rail assembly;
  • the holding fork assembly includes a first telescopic fork and a second telescopic fork that can be telescopic in a first direction, and the length direction of the first guide rail assembly is the first Two directions, the first direction is perpendicular to the second direction.
  • the storage positions of some target containers on the temporary storage position of the temporary storage mechanism are not standardized.
  • the Size of the target container of the target container is smaller than that of the temporary storage mechanism, the Uncontrollable reasons cause the target container to shift to the temporary storage position of the temporary storage mechanism.
  • the size of the retractable fork mechanism needs to be adjusted to the size of the temporary storage mechanism.
  • the size of the temporary storage mechanism is the size of the temporary storage mechanism. The maximum size at the entrance of the box, so that the target box can be guaranteed to be offset at any position on the temporary storage position.
  • the first driving unit is used to control the first telescopic fork and the second telescopic fork to move toward or away from each other along the second direction on the first guide rail assembly, so that the first telescopic fork and The size of the box taking between the second telescopic forks matches the size of the temporary storage mechanism.
  • the telescopic fork mechanism further includes a second guide rail assembly, a second drive unit, a follower frame, a front finger and a rear finger;
  • the robot includes a lifting mechanism; the lifting mechanism is controlled to be lifted to a temporary location where the target container to be transported is located.
  • the fork-holding assembly is controlled to extend to the position where it can be hooked to the target cargo box.
  • S904 Based on the target container size of the target container, adjust the size of the telescopic fork mechanism to match the size of the target container again.
  • the first telescopic fork and the second telescopic fork can be controlled to move toward or away from each other along the second direction on the first guide rail assembly based on the target container size, so that the space between the first telescopic fork and the second telescopic fork The size of the pickup box matches the size of the target box.
  • the first drive unit drives the first telescopic fork and the second telescopic fork, which can achieve the effect of aligning the target container at the offset position of the temporary storage position.
  • the target box can be picked up by the front finger hook.
  • S905 Use the readjusted telescopic fork mechanism to acquire the target container on the temporary storage position of the temporary storage mechanism, and move the target container to the preset shelf.
  • the adjusted telescopic fork mechanism is used to obtain the target container on the temporary storage position of the temporary storage mechanism, and transport it to the preset rack.
  • the size of the telescopic fork mechanism may be adjusted to the size of the temporary storage mechanism first, and then the lifting mechanism is controlled to drive the telescopic fork mechanism to move vertically to the target.
  • the slewing bearing assembly can also be controlled to drive the telescopic fork mechanism to rotate to the position where the front finger of the telescopic fork mechanism faces the entrance of the cargo box in the temporary storage mechanism;
  • the rear telescopic fork mechanism extends into the temporary storage mechanism, and the size of the first telescopic fork and the second telescopic fork is adjusted again to match the size of the target container, through the clamping action of the first telescopic fork and the second telescopic fork Straighten the target container that may be offset, control the front finger to adjust to the preset state, and hook the target container.
  • the fork-holding assembly retracts, and the target container is hooked to the follower frame, so that the target container can be hooked.
  • the cargo box is retracted onto the telescopic fork mechanism together with the follower frame; after that, the lifting mechanism drives the telescopic fork mechanism to move vertically to the height corresponding to the storage position in the preset rack where the target cargo box is to be stored, and the fork-holding assembly is used to expand and contract, Store the target case on the preset rack.
  • the robot in response to the container storage instruction received from the controller, the robot may further control the lifting mechanism to lift and lower to the third target container of the temporary storage mechanism where the target container to be transported is located bit height; the third target storage slot height is the height of the temporary storage position on the temporary storage mechanism where the target container is currently located; the first drive unit is controlled to drive the size and temporary storage of the box between the first telescopic fork and the second telescopic fork The size of the mechanism is matched; the third drive unit is controlled to drive the fork holding assembly to extend to the position where it can be hooked to the target cargo box, and the follower frame is placed on the second guide rail assembly under the pulling force provided by the second drive unit.
  • control the lifting mechanism to lift to the fourth target cargo space height; the fourth target cargo position height is the height corresponding to the target cargo box to be placed in the preset shelf storage space; control the slewing support mechanism to drive the telescopic fork mechanism to rotate
  • the forward finger to the telescopic fork mechanism faces the container storage entrance position of the preset rack, and controls the third drive unit to drive the fork holding assembly to store the target container on the preset rack.
  • the specific process of storing the target container on the preset rack is as follows: controlling the third The drive unit drives the fork-holding assembly to extend into the storage space of the preset shelf, controls the front finger to rotate from the current preset state to the vertical state, and then controls the third drive unit to drive the fork-holding assembly to retract to the telescopic fork mechanism that does not work In the state where the follower is located, the process of placing the target container from the follower into the storage space of the preset shelf is completed.
  • the first telescopic fork and the second telescopic fork are controlled along the second.

Abstract

一种货箱搬运系统、机器人和货箱搬运方法,其中,系统包括具有多种货箱尺寸的货箱、控制器(202)和机器人(203);该机器人(203)包括伸缩叉机构(12),该伸缩叉机构(12)的取箱尺寸是可调节的;该控制器(202)配置为,响应于货箱搬运请求,生成并向机器人(203)发送货箱搬运指令;该机器人(203)配置为,响应于所述货箱搬运指令,调整伸缩叉机构(12)的取箱尺寸与所述目标货箱尺寸相匹配,并利用调整后的伸缩叉机构(12)获取并搬运所述目标货箱。在仓储作业场景中,通过调整伸缩叉机构的取箱尺寸用以搬运具有多种货箱尺寸的货箱,能够更加合理的分配货箱存放位置,提高货箱存储空间的使用率。

Description

一种货箱搬运系统、机器人和货箱搬运方法
相关申请
本公开要求于2021年01月28日递交的申请号为202110118466.1的中国发明专利申请,以及于2021年01月28日递交的申请号为202120247233.7的中国实用新型专利申请的优先权,并引用上述专利申请公开的内容作为本公开的一部分。
技术领域
本公开涉及机器人任务调度领域,具体而言,涉及一种货箱搬运系统、机器人和货箱搬运方法。
背景技术
在仓储作业场景中,为了能够存取不同尺寸规格的货箱,往往将机器人的伸缩叉机构设计为能够存取最大尺寸规格的货箱的固定尺寸,这样的固定尺寸的伸缩叉机构适应性较差,同时,由于该固有尺寸的伸缩叉机构在取放货箱时,伸缩叉机构体型较大,因此导致货箱存储空间浪费,货箱存储空间使用率低。如何用同一款伸缩叉机构满足仓库内不同尺寸规格货箱的存取需求,是工程应用面临的关键问题之一。
发明内容
本公开实施例至少提供一种货箱搬运系统、机器人和货箱搬运方法,用以解决在仓储作业场景中,货箱存储空间使用率低的缺陷。
第一方面,本公开实施例提供了一种货箱搬运系统,所述系统包括具有多种货箱尺寸的货箱、控制器和机器人;所述机器人包括伸缩叉机构,所述伸缩叉机构的取箱尺寸是可调节的;
所述控制器配置为,响应于货箱搬运请求,生成货箱搬运指令并向所述机器人发送所述货箱搬运指令;
所述机器人配置为,响应于所述货箱搬运指令,调整所述伸缩叉机构的取箱尺寸与所述目标货箱的尺寸相匹配,并利用调整后的伸缩叉机构获取并搬运所述目标货箱。
第二方面,本公开实施例提供了一种机器人,所述机器人应用于上述第一方面中所述的货箱搬运系统的机器人。
第三方面,本公开实施例提供了一种利用机器人的货箱搬运方法,所述机器人包括伸缩 叉机构,所述伸缩叉机构的取箱尺寸是可调节的,所述货箱搬运方法包括:
响应于从控制器接收的货箱搬运指令,调整所述机器人的所述伸缩叉机构的取箱尺寸与目标货箱的尺寸相匹配,并利用调整后的伸缩叉机构获取并搬运所述目标货箱。
第四方面,本公开实施例提供了一种货箱搬运方法,应用于机器人,所述机器人包括伸缩叉机构和暂存机构,所述伸缩叉机构的取箱尺寸是可调节的,所述货箱搬运方法包括:
响应于从控制器接收到的货箱存放指令,调整所述伸缩叉机构的取箱尺寸与所述暂存机构的尺寸相匹配;
将调整后的伸缩叉机构伸入存放有所要搬运的目标货箱所在的暂存机构中;
基于所述目标货箱的尺寸,再次调整所述伸缩叉机构的取箱尺寸与所述目标货箱的尺寸相匹配,并利用再次调整后的伸缩叉机构获取所述暂存机构上的目标货箱,搬运所述目标货箱至预设货架上;所述货箱存放指令为所述控制器下发的将暂存机构上的目标货箱存放至预设货架上的指令。
本公开实施例提供的一种货箱搬运系统、机器人和货箱搬运方法,通过调整伸缩叉机构的取箱尺寸用以搬运具有多种货箱尺寸的货箱,能够更加合理的分配货箱存放位置,提高货箱存储空间的使用率。
进一步,本公开实施例提供的一种货箱搬运系统、机器人和货箱搬运方法,还可以利用随动架和第二驱动单元,在抱叉组件伸出获取货箱的同时,利用随动架与货架之间的衔接,避免尺寸较小的货箱在抱取时掉落在机器人和货架之间。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,此处的附图被并入说明书中并构成本说明书中的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1a示出了本公开实施例所提供的一种机器人的左视图;
图1b示出了本公开实施例所提供的一种机器人的主视图;
图2示出了本公开实施例所提供的伸缩叉机构的结构示意图;
图3示出了本公开实施例所提供的伸缩叉机构的结构示意图;
图4示出了本公开实施例所提供的伸缩叉机构的结构示意图;
图5示出了本公开实施例所提供的伸缩叉机构中抱叉组件伸出时的结构示意图;
图6示出了本公开实施例所提供的第二伸缩叉的结构示意图;
图7示出了本公开实施例所提供的货箱搬运系统的结构示意图;
图8示出了本公开实施例所提供的一种货箱搬运方法的流程图;
图9示出了本公开实施例所提供的另一种货箱搬运方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中附图,对本公开中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本公开的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
另外,本公开中的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。
在本文中提及的“多个或者若干个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
经研究发现,在仓储作业场景中,为了能够存取不同尺寸规格的货箱,往往将机器人的伸缩叉机构设计为能够存取最大尺寸规格的货箱的固定尺寸,这样的固定尺寸的伸缩叉机构适应性较差,同时,由于该固有尺寸的伸缩叉机构在取放货箱时,伸缩叉机构体型较大,因此导致货箱存储空间浪费,货箱存储空间使用率低。
基于上述研究,本公开提供了一种货箱搬运系统,通过调整伸缩叉机构的取箱尺寸用以搬运具有多种货箱尺寸的货箱,能够提高货箱存储空间的使用率与机器人的适用率。
针对以上方案所存在的缺陷,均是发明人在经过实践并仔细研究后得出的结果,因此,上述问题的发现过程以及下文中本公开针对上述问题所提出的解决方案,都应该是发明人在本公开过程中对本公开做出的贡献。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
由于本公开所提供的一种货箱搬运系统中包括机器人,因此,为便于对本公开进行理解,首先对本公开所提供的一种机器人进行详细介绍,之后,再对本公开所提供的货箱搬运系统进行详细介绍。具体地,本公开所提供的机器人中包括具有一定计算能力的微控制器,在一 些可能的实现方式中,上述机器人可以通过单片机控制方式来实现。
参见图1a所示,其为本公开实施例所提供的一种机器人的结构示意图,该机器人包括机器人本体11、伸缩叉机构12、门架13、升降机构14和暂存机构15等;伸缩叉机构12安装于升降机构14上,升降机构14安装于门架13上,门架13竖直安装于机器人本体11上,门架13上还安装有多个暂存机构15,该暂存机构15设置在门架13的远离伸缩叉机构12的一侧。
机器人本体11用于支撑机器人运动;伸缩叉机构12用于货箱的获取和搬运;门架13用于支撑伸缩叉机构12沿竖直方向移动到任意暂存机构15对应的暂存位;升降机构14能够为伸缩叉机构12提供竖直方向移动的动力;暂存机构15用于为货箱提供暂时存放的暂存位。
参见图2所示,其为伸缩叉机构的结构示意图。该伸缩叉机构12包括抱叉组件以及调整机构;抱叉组件包括可沿第一方向伸缩的第一伸缩叉121-1和第二伸缩叉121-2;调整机构包括:第一导轨组件122和第一驱动单元,调整机构用于调整第一伸缩叉121-1和第二伸缩叉121-2沿第二方向的间距。
这里,第一导轨组件122的长度方向为第二方向,抱叉组件中第一伸缩叉121-1和第二伸缩叉121-2的伸缩方向为第一方向,并且第一方向与第二方向垂直。
第一伸缩叉121-1和第二伸缩叉121-2滑动装配在第一导轨组件122上;第一驱动单元用于驱动第一伸缩叉121-1和第二伸缩叉121-2沿第二方向相向或相背运动,以调整伸缩叉机构12的取箱尺寸。
第一驱动单元包括驱动电机123-1(参见图4所示)和第一同步带组件123-2;第一同步带组件123-2包括皮带和带轮;带轮可以将皮带分为第一部分皮带和第二部分皮带,第一伸缩叉121-1固定装配在第一部分皮带上,第二伸缩叉121-2固定装配在第二部分皮带上。示例性的,可以将第一伸缩叉121-1利用第一驱动块固定连接在第一同步带组件123-2中的第一部分皮带上,可以将第二伸缩叉121-2利用第二驱动块固定连接在第一同步带组件123-2中的第二部分皮带上,此时,当驱动电机123-1驱动第一同步带组件123-2时,就可以带动第一部分皮带上的第一伸缩叉121-1和第二部分皮带上的第二伸缩叉121-2沿第二方向相向或相背运动。
第一同步带组件123-2在驱动电机123-1的驱动下,带动第一伸缩叉121-1和第二伸缩叉121-2在第一导轨组件122上沿第二方向相向或相背移动,以调整伸缩叉机构12的取箱尺寸。其中,取箱尺寸为抱叉组件伸缩获取货箱时,第一伸缩叉121-1和第二伸缩叉121-2之间的尺寸。
伸缩叉机构12还包括基座1215(参见图2所示);第一导轨组件122安装于基座1215上,第一导轨组件122可以包括两条导轨和两套滑块;其中,第一套滑块中的两个滑块分别与第一条导轨和第二条导轨滑动连接,第二套滑块中的两个滑块分别与第一条导轨和第二条 导轨滑动连接;第一伸缩叉121-1与第一套滑块固定连接,并可以通过第一套滑块在第一条导轨和第二条导轨上滑动;第二伸缩叉121-2与第二套滑块固定连接,并可以通过第二套滑块在在第一条导轨和第二条导轨上滑动。
另外,伸缩叉机构12还包括第二导轨组件124、第二驱动单元125(第二导轨组件和第二驱动单元的结构可以参见图3所示)、随动架126和后拨指127(参见图2所示)。
第二导轨组件124安装于基座1215上,可以包括至少一条导轨和至少一套滑块;第二导轨组件的长度方向平行于第一方向。例如,第二导轨组件124包括两套滑块,分别称为第三套滑块和第四套滑块,还包括两条导轨,分别称为第三条导轨和第四条导轨。其中,第三套滑块中的两个滑块分别与第三条导轨和第四条导轨滑动连接;第四套滑块中的两个滑块分别与第三条导轨和第四条导轨滑动连接;随动架126与第三套滑块和第四套滑块固定连接,并可以通过与第三套滑块和第四套滑块在第三条导轨和第四条导轨上沿第一方向滑动。
后拨指127与第一伸缩叉121-1和第二伸缩叉121-2一一对应固定连接(参见图2所示),用于推动随动架126。示例性的,可以在第一伸缩叉121-1和第二伸缩叉121-2上分别设置一个后拨指127,用于推动随动架126时,使随动架126的受力均匀。
第二驱动单元125用于在第一伸缩叉121-1和第二伸缩叉121-2伸出时,拉动随动架126沿第一方向伸出到基座1215外;后拨指127用于在第一伸缩叉121-1和第二伸缩叉121-2回缩时推动随动架126回缩到伸缩叉机构不工作的状态时,随动架126所在的位置。具体地,第二驱动单元125在伸缩叉机构12不工作的状态时,会保持对随动架126的拉力作用,并且在抱叉组件伸出时,拉动随动架126在第二导轨组件124上沿第一方向移动,并通过设置在基座1215上的固定元件限制随动架126伸出的行程;在抱叉组件缩回时,利用后拨指127带动随动架126缩回到伸缩叉机构12不工作的状态时,随动架126所在的位置。示例性的,第二驱动单元125可以设计为弹簧形式,弹簧一端固定在基座1215上,另一端固定连接在随动架126上,在伸缩叉机构12不工作的状态下,弹簧始终保持受拉的形式;在抱叉组件伸出时,弹簧拉动随动架126,通过固定元件限制随动架126沿第一方向的固定行程,该固定行程可以根据实际需求进行设定,本公开实施例对此不进行限定。在抱叉组件缩回时,可以利用后拨指127推动随动架126,直至将随动架126推回到初始位置,即伸缩叉机构12不工作的状态时,随动架126所在的位置。参见图5所示,其为伸缩叉机构12中抱叉组件伸出时的结构示意图,这里,抱叉组件中还包括多级导轨组件,第一伸缩叉121-1和第二伸缩叉121-2可以通过该多级导轨组件实现沿第一方向伸缩获取货架中不同深度位置的货箱。
在抱叉组件伸出钩取目标货箱时,基于上述第二驱动单元带动随动架126伸出固定行程,可以避免抱叉组件在缩回时所钩取的目标货箱尺寸较小的货箱从货架和机器人之间的缝隙处掉落。
另外,伸缩叉机构12还包括第一传感器组件128、第二传感器组件129,其安装位置可 以参见图2所示。
第一传感器组件128安装于基座1215上,可以采集所要搬运的货箱的货箱尺寸,以基于货箱尺寸调整伸缩叉机构12的取箱尺寸;还可以采集所要搬运的货箱的实际位置,以基于实际位置调整机器人的取箱位置。
第二传感器组件129安装于基座1215上,在抱叉组件伸缩时,可以实时采集后拨指127所在位置,并基于采集到的后拨指127的位置,可以判断出随动架126是否缩回到伸缩叉机构12不工作的状态时,随动架126所在的位置。基于上述判断,能够避免机器人误操作所导致的抱叉组件与货架干涉等情况的发生。
另外,参见图4所示,伸缩叉机构12还包括滚珠花键组件、第三驱动单元1211、第二同步带组件1212、第三同步带1213(参见图6所示)。
滚珠花键组件安装于基座1215上,滚珠花键组件包括第一丝母件1210-1(参见图4所示)、第二丝母件1210-2(参见图6所示)和花键轴1210-3(参见图4所示);抱叉组件还包括第一驱动带轮121-3和第二驱动带轮121-4;第一伸缩叉121-1与第一驱动带轮121-3固定连接;第二伸缩叉121-2与第二驱动带轮121-4固定连接;第一丝母件1210-1和第二丝母件1210-2均套接在花键轴1210-3上;第一丝母件1210-1与第一驱动带轮121-3固定连接;第二丝母件1210-2与第二驱动带轮121-4固定连接。示例性的,在第一驱动单元驱动第一伸缩叉121-1在第一导轨组件122上沿第二方向移动的同时,第一伸缩叉121-1还可以通过第一丝母件1210-1在花键轴1210-3上沿第二方向移动;在第一驱动单元驱动第二伸缩叉121-2沿第二方向移动的同时,第二伸缩叉121-2还可以通过第二丝母件1210-2在花键轴1210-3上沿第二方向移动。
第三驱动单元1211安装于基座1215上,可以驱动花键轴1210-3转动,花键轴1210-3可以带动第一丝母件1210-1和第二丝母件1210-2转动,第一丝母件1210-1通过第一驱动带轮121-3带动第一伸缩叉121-1完成伸缩动作;第二丝母件1210-2通过第二驱动带轮121-4带动第二伸缩叉121-2完成伸缩动作。具体地,第三驱动单元1211与第二同步带组件1212相连,第二同步带组件1212与花键轴1210-3相连,花键轴1210-3与第三同步带组件1213相连,第三同步带组件1213上固定连接抱叉组件;抱叉组件上安装有多级导轨组件;当第三驱动单元1211驱动第二同步带组件1212时,第二同步带组件1212带动花键轴1210-3转动,花键轴1210-3转动可以分别带动第一丝母件1210-1和第二丝母件1210-2转动,第一丝母件1210-1和第二丝母件1210-2转动可以带动第三同步带组件1213上的第一伸缩叉121-1和第二伸缩叉121-2在多级导轨组件上沿第一方向伸缩。
另外,伸缩叉机构12还包括回转支承组件1214(参见图3所示)、前拨指1216(参见图2所示)等。其中,前拨指1216用于钩取目标货箱。
基座1215通过回转支承组件1214安装于升降机构14上,可随升降机构14沿竖直方向 移动,并可在回转支承组件1212的带动下旋转运动。
回转支承组件1214用于支承伸缩叉机构完成旋转运动。示例性的,当准备将随动架126上的目标货箱存放到暂存机构15的暂存位上时,可以通过伸缩叉旋转电机1217(参见图3所示)驱动回转支承组件1214,比如通过回转支承组件1214将伸缩叉机构12旋转90°,使伸缩叉机构12正对暂存机构15存放目标货箱的入口处,此时驱动抱叉组件伸缩,就可以完成目标货箱临时存放的任务。
另外,上述图1a中的机器人本体11为机器人内部各种组件的承载基体,包括车轮和悬挂系统等,其中,车轮用于支撑该机器人本体11,以完成机器人的至少部分运动,比如移动和转向等。悬挂系统为机器人本体11与车轮之间传递力的装置,能够传递作用在车轮和机器人本体11之间的力和扭矩,缓冲由不平路面传给机器人本体11的冲击力。
门架13可以包括第三导轨组件。升降机构14与第三导轨组件滑动连接,并通过伸缩叉机构12中的回转支承组件1214与伸缩叉机构12连接;升降机构14在驱动元件带动下,在门架13中的第三导轨组件上沿竖直方向移动,其中,驱动元件的驱动方式可以为电机驱动同步带传动、电机驱动链条传动或电机驱动齿条传动等,驱动元件可以根据实际需求进行设定,本公开实施例对此不进行限定。
基于上述本公开实施例对一种机器人的详细介绍,进一步的本公开实施例提出一种货箱搬运系统,可以参见图7所示,其为货箱搬运系统的结构示意图,该系统可以包括:具有多种货箱尺寸的货箱(比如货箱201-1、货箱201-2、货箱201-3)、控制器202、机器人203。其中,该机器人203可以是上述本公开实施例中提供的机器人。机器人203上设置有伸缩叉机构12,该伸缩叉机构12的取箱尺寸是可调节的,能够获取不同货箱尺寸的货箱,能够实现货箱搬运。
本公开所搬运的货箱可以为矩形货箱,货箱尺寸可以是矩形货箱的长×宽×高的尺寸,或者,还可以是矩形货箱的长边、宽边和高边这三边中任意一边长的尺寸。可以根据实际应用场景进行选择,在此不进行限定。
控制器202可以配置在服务器上、或者独立设置、又或者设置在机器人203上,用于响应操控台204发送的货箱搬运请求。
在控制器202配置在服务器上的情况下,控制器202可以为在服务器上运行的、具有数据存储、信息处理能力的软件系统,可通过无线或有线与机器人203、硬件输入系统、其它软件系统连接。控制器202具有处理器2021和存储器2022,存储器2022可以存储仓库中每一货箱的货箱尺寸。
在一种可能的实施方式中,控制器202配置为,响应于货箱搬运请求,生成并向机器人203发送货箱搬运指令。机器人203配置为,响应于货箱搬运指令,调整伸缩叉机构12的取箱尺寸与目标货箱尺寸相匹配,并利用调整后的伸缩叉机构12获取并搬运目标货箱。
这里,货箱搬运指令可以包括目标货箱的取箱位置和/或目标货箱的目标货箱尺寸。
具体实施时,如图7所示,工作人员可以通过操控台204使控制器202工作,控制器202与机器人203进行无线通信,通过向机器人203发送货箱搬运指令,控制机器人203完成对多种货箱尺寸的货箱的搬运工作。
在一种可能的实施方式中,在控制器202能够为机器人203提供目标货箱的目标货箱尺寸的情况下,机器人203配置为,响应于货箱搬运指令,并基于货箱搬运指令中的目标货箱尺寸,可以调整伸缩叉机构12的取箱尺寸与目标货箱尺寸相匹配,并利用调整后的伸缩叉机构12获取并搬运目标货箱。这里,机器人203调整伸缩叉机构12的取箱尺寸的时间可以是在接到货箱搬运指令后立即调整,即边运动边调整;又或者还可以是移动到目标货箱的取箱位置后再做调整,在这里不进行限定。
在一种可能的实施方式中,在控制器202不能为机器人203提供目标货箱的目标货箱尺寸的情况下,伸缩叉机构12可以利用安装在其上的第一传感器组件128采集目标货箱的目标货箱尺寸,此时,伸缩叉机构12的取箱尺寸只能在目标货箱的取箱位置处调整。具体地,机器人203配置为,运行至所要搬运的目标货箱的取箱位置之后,基于第一传感器组件128采集的目标货箱尺寸,调整伸缩叉机构12的取箱尺寸与目标货箱尺寸相匹配,并利用调整后的伸缩叉机构12获取并搬运目标货箱。其中,第一传感器组件128可以为能够探测距离的传感器组件,比如视觉传感器或深度传感器等,具体传感器类型在此不进行具体限定。
在一种可能的实施方式中,在控制器202能够为机器人203提供目标货箱的目标货箱尺寸的情况下,机器人203可以先利用货箱搬运指令提供的目标货箱尺寸调整伸缩叉机构12,再利用第一传感器组件128对初始调整后的伸缩叉机构12进行校验处理。具体地,机器人203配置为,响应于货箱搬运指令,并基于货箱搬运指令中的目标货箱尺寸,可以调整伸缩叉机构12的取箱尺寸与目标货箱尺寸相匹配;在运行至所要搬运的目标货箱的取箱位置之后,基于第一传感器组件128采集的目标货箱的货箱实际尺寸校验目标货箱尺寸是否与货箱实际尺寸相匹配;如果相匹配,则利用调整后的伸缩叉机构12获取并搬运目标货箱;如果不相匹配,则利用货箱实际尺寸调整伸缩叉机构12的取箱尺寸,在确定伸缩叉机构12的取箱尺寸与货箱实际尺寸相匹配的情况下,利用调整后的伸缩叉机构12获取并搬运目标货箱。
基于上述系统,在结合目标货箱尺寸和第一传感器组件128实时检测到的货箱实际尺寸,机器人203能够调节伸出的第一伸缩叉121-1和第二伸缩叉121-2之间的取箱尺寸匹配为能够获取到目标货箱的最小尺寸,从而保证机器人在抱取目标货箱时,能够保持目标货箱在抱叉组件中的位置,避免出现偏移,旋转,倾斜等异常状态,最大化提高了机器人对多种货箱尺寸的货箱存储场景的适应性。同时,通过机器人203主动调节伸缩叉机构12的取箱尺寸的方式,可以将货架上所存储的货箱之间的间距调整为,机器人203能够获取到目标货箱的最小间距精度,可以提高货箱存储的密度,进一步减少了仓储空间的浪费。
基于上述货箱搬运系统中的机器人,本公开实施例还提供了一种货箱搬运方法,其执行主体为机器人。参见图8所示,其为一种货箱搬运方法的流程图,包括步骤S801~S803,其中:
S801:响应于从控制器接收的货箱搬运指令。
本步骤中,货箱搬运指令可以包括目标货箱的取箱位置和/或目标货箱的目标货箱尺寸。
S802:调整伸缩叉机构的取箱尺寸与目标货箱尺寸相匹配。
本步骤中,伸缩叉机构包括抱叉组件以及调整机构;抱叉组件包括可沿第一方向伸缩的第一伸缩叉和第二伸缩叉;调整机构包括第一导轨组件和第一驱动单元,第一导轨组件的长度方向为第二方向,第一方向与所述第二方向垂直。
这里,取箱尺寸可以是第一伸缩叉和第二伸缩叉之间的尺寸。目标货箱尺寸可以为货箱搬运指令中指示的,所要搬运的目标货箱的尺寸。
在一种可能的实施方式中,在货箱搬运指令中包括目标货箱尺寸的情况下,可以基于目标货箱尺寸,控制第一驱动单元带动第一伸缩叉和第二伸缩叉在第一导轨组件上沿第二方向相向或相背移动,以使第一伸缩叉和第二伸缩叉之间的取箱尺寸与目标货箱尺寸相匹配。具体地,第一驱动单元包括驱动电机和第一同步带组件;可以利用驱动电机驱动第一同步带组件,同时,第一同步带组件带动固定连接在其上的第一伸缩叉和第二伸缩叉在第一导轨组件上沿第二方向相向或相背移动,调整第一伸缩叉和第二伸缩叉之间的取箱尺寸与目标货箱尺寸相匹配。
在另一种可能的实施方式中,在货箱搬运指令中仅包括目标货箱的取箱位置的情况下,可以利用伸缩叉机构中包括的第一传感器组件,采集目标货箱的目标货箱尺寸;当机器人运行至目标货箱的取箱位置处,基于第一传感器组件采集到的目标货箱尺寸,调整伸缩叉机构的取箱尺寸与目标货箱尺寸相匹配。具体地,基于第一传感器组件采集到的目标货箱尺寸,调整第一伸缩叉和第二伸缩叉之间的取箱尺寸与目标货箱尺寸相匹配。
这里,当机器人运行至目标货箱的取箱位置处后,第一传感器组件还可以采集所要搬运的目标货箱在货架上的实际位置,基于实际位置再次调整机器人的取箱位置,并在再次调整后的取箱位置处获取目标货箱。示例性的,可以基于第一传感器组件采集所要搬运的目标货箱在货架上的实际位置,控制机器人移动到取箱位置,机器人在该取箱位置处控制抱叉组件伸缩,就能获取到偏移放置在货架上的目标货箱。
S803:利用调整后的伸缩叉机构获取并搬运目标货箱。
这里,利用调整后的伸缩叉机构获取货架上的目标货箱,并搬运目标货箱临时存放至暂存机构的暂存位上。
在一种可能的实施方式中,机器人包括暂存机构和回转支承组件;伸缩叉机构包括第二导轨组件、第二驱动单元、第三驱动单元、随动架、前拨指和后拨指;在机器人运行至所要 搬运的目标货箱的取箱位置之后,控制第三驱动单元驱动抱叉组件伸出至可钩取到目标货箱的位置,同时,随动架在第二驱动单元提供的拉力作用下,在第二导轨组件上沿抱叉组件伸出方向移动到被固定元件限制的位置;之后,控制前拨指转动到预设状态,以钩取目标货箱,在抱叉组件缩回时,利用后拨指带动随动架缩回到伸缩叉机构不工作的状态时随动架所在的位置;在第二传感器组件检测到随动架缩回到伸缩叉机构不工作的状态时随动架所在的位置时,控制回转支承组件带动伸缩叉机构旋转至伸缩叉机构的前拨指朝向暂存机构中货箱的入口位置,并控制抱叉组件将目标货箱存放到暂存机构的暂存位上。
这里,预设状态包括水平状态或与水平方向具有一定的角度,该角度具体可以根据目标货箱尺寸进行定义,在此不进行具体限定,需要说明的是,在结合取箱尺寸与前拨指在取箱时的预设状态,可以保证伸出的抱叉组件是能够实现存取目标货箱的最小尺寸,可以提高货箱存储空间(比如货架)的利用率。
示例性的,首先机器人控制升降机构升降至所要搬运的目标货箱所在货架的第一目标货位高度;之后,基于目标货箱尺寸,调整第一伸缩叉和第二伸缩叉之间的取箱尺寸与目标货箱尺寸相匹配;在机器人运行至所要搬运的目标货箱的取箱位置之后,控制第二驱动单元驱动抱叉组件伸出至可钩取到目标货箱的位置,比如,目标货箱尺寸的长边×宽边×高边为650mm×500mm×400mm,可以控制抱叉组件伸出800mm,包括目标货箱的宽边加货架与机器人之间的缝隙部分。同时,随动架在弹簧拉力的作用下,在第二导轨组件上沿抱叉组件伸出方向移动到被固定元件限制的位置,这里,随动架每次伸出的行程固定。之后,控制前拨指转动到水平状态,第二驱动单元驱动抱叉组件与随动架一起带动货箱缩回到伸缩叉机构不工作的状态时随动架所在的位置。当第二传感器组件采集到后拨指的位置时,可以确定随动件已经缩回到伸缩叉机构不工作的状态时随动架所在的位置,之后,控制回转支承组件带动伸缩叉机构旋转至伸缩叉机构的前拨指朝向暂存机构中目标货箱的入口位置,并控制抱叉组件将目标货箱存放到暂存机构的暂存位上,至此,完成目标货箱的取箱工作。
基于上述S801,在一种可能的实施方式中,在响应于从控制器接收的货箱搬运指令之后,机器人还可以控制升降机构升降至所要搬运的目标货箱所在货架的第一目标货位高度;第一目标货位高度可以为目标货箱当前放置的货架存储空间对应的高度;控制第一驱动单元带动第一伸缩叉和第二伸缩叉之间的取箱尺寸与目标货箱尺寸相匹配;控制第三驱动单元驱动抱叉组件伸出至可钩取到目标货箱的位置,并控制前拨指转动到预设状态,以钩取目标货箱,随动架在第二驱动单元提供的拉力作用下,在第二导轨组件上沿抱叉组件伸出方向移动到被固定元件限制的位置;在前拨指钩取到目标货箱后,控制抱叉组件缩回到伸缩叉机构不工作的状态时随动架所在的位置;控制升降机构升降至第二目标货位高度;第二目标货位高度可以为目标货箱将要放置在暂存机构的暂存位的高度;控制回转支承机构带动伸缩叉机构旋转至缩叉机构的前拨指朝向暂存机构中货箱的入口位置,并控制第三驱动单元驱动抱叉组件将 目标货箱存放到暂存机构上。
这里,当控制回转支承机构带动伸缩叉机构旋转至伸缩叉机构的前拨指朝向暂存机构中货箱的入口位置之后,具体将目标货箱存放到暂存机构上的过程为:控制第三驱动单元驱动抱叉组件伸入暂存机构内,控制前拨指由当前的预设状态旋转为竖直状态,之后控制第三驱动单元驱动抱叉组件缩回到伸缩叉机构不工作的状态时随动架所在的位置,完成将目标货箱从随动架上放入暂存机构的暂存位的过程。
基于上述货箱搬运系统中的机器人,本公开实施例还提供了另一种货箱搬运方法,其执行主体为机器人。参见图9所示,其为另一种货箱搬运方法的流程图,包括步骤S901~S905,其中:
S901:响应于从控制器接收到的货箱存放指令。
这里,机器人包括暂存机构。
本步骤中,货箱存放指令为控制器下发的将暂存机构的暂存位上的目标货箱存放至预设货架上的指令。
这里,预设货架可以为存储目标货箱的指定货架。
S902:调整伸缩叉机构的取箱尺寸与暂存机构的尺寸相匹配。
本步骤中,将伸缩叉机构的取箱尺寸调整为暂存机构的尺寸,为了保证伸缩叉机构能够获取到暂存机构的暂存位上任意位置处的目标货箱。这里,暂存机构的尺寸为暂存机构取箱入口处的最大尺寸。
这里,伸缩叉机构包括抱叉组件、第一驱动单元和第一导轨组件;抱叉组件包括可沿第一方向伸缩的第一伸缩叉和第二伸缩叉,第一导轨组件的长度方向为第二方向,第一方向与所述第二方向垂直。
示例性的,存在一些目标货箱在暂存机构的暂存位上的存放位置不规范,比如,在目标货箱的目标货箱尺寸相比于暂存机构的尺寸较小的情况下,由不可控原因导致目标货箱偏移在暂存机构的暂存位上,此时,伸缩叉机构的取箱尺寸需要调整为暂存机构的尺寸,该暂存机构的尺寸即为暂存机构取箱入口处的最大尺寸,这样,就能保证获取到偏移在暂存位上的任意位置处的目标货箱。具体调整伸缩叉机构的取箱尺寸可以为,利用第一驱动单元控制第一伸缩叉和第二伸缩叉在第一导轨组件上沿第二方向相向或相背移动,以使第一伸缩叉和第二伸缩叉之间的取箱尺寸与暂存机构的尺寸相匹配。
S903:将调整后的伸缩叉机构伸入存放有所要搬运的目标货箱所在的暂存机构中。
具体实施时,伸缩叉机构还包括第二导轨组件、第二驱动单元、随动架、前拨指和后拨指;机器人包括升降机构;控制升降机构升降至所要搬运的目标货箱所在的暂存机构的入口处,并基于调整后的伸缩叉机构,控制抱叉组件伸出至可钩取到目标货箱的位置。
S904:基于目标货箱的目标货箱尺寸,再次调整伸缩叉机构的取箱尺寸与目标货箱尺寸 相匹配。
具体实施时,可以基于目标货箱尺寸,控制第一伸缩叉和第二伸缩叉在第一导轨组件上沿第二方向相向或相背移动,以使第一伸缩叉和第二伸缩叉之间的取箱尺寸与目标货箱尺寸相匹配。
延续上例,在第一伸缩叉和第二伸缩叉之间的取箱尺寸与暂存机构的尺寸相匹配的情况下,可以根据目标货箱的目标货箱尺寸,再次调整第一伸缩叉和第二伸缩叉之间的取箱尺寸,此时,第一驱动单元驱动第一伸缩叉和第二伸缩叉,能够实现将目标货箱在暂存位的偏移位置摆正的作用,之后,利用取箱尺寸与目标货箱尺寸相匹配就能通过前拨指钩取到目标货箱。
S905:利用再次调整后的伸缩叉机构获取暂存机构的暂存位上的目标货箱,搬运目标货箱至预设货架上。
这里,利用调整后的伸缩叉机构获取暂存机构的暂存位上的目标货箱,并搬运至预设货架上。
示例性的,在响应于从控制器接收到的货箱存放指令,可以先将伸缩叉机构的取箱尺寸调整为暂存机构的尺寸,之后,控制升降机构带动伸缩叉机构竖向移动至目标货箱所在的暂存机构的入口处,在此过程中,还可以控制回转支承组件带动伸缩叉机构旋转至伸缩叉机构的前拨指朝向暂存机构中货箱的入口位置;之后,将调整后的伸缩叉机构伸入暂存机构中,并再次调整第一伸缩叉和第二伸缩叉的取箱尺寸与目标货箱尺寸相匹配,通过第一伸缩叉和第二伸缩叉的夹持动作将可能存在偏移的目标货箱摆正,控制前拨指调整为预设状态,钩取目标货箱,此时抱叉组件缩回,将目标货箱钩取到随动架上,使目标货箱随着随动架一起缩回伸缩叉机构上;之后,升降机构带动伸缩叉机构竖向移动至目标货箱所要存放的预设货架中的存放位置对应的高度,利用抱叉组件伸缩,将目标货箱存放到预设货架上。
基于上述S901,在一种可能的实施方式中,响应于从控制器接收到的货箱存放指令之后,机器人还可以控制升降机构升降至所要搬运的目标货箱所在暂存机构的第三目标货位高度;第三目标货位高度为目标货箱当前所在暂存机构上的暂存位的高度;控制第一驱动单元带动第一伸缩叉和第二伸缩叉之间的取箱尺寸与暂存机构的尺寸相匹配;控制第三驱动单元驱动所述抱叉组件伸出至可钩取到目标货箱的位置,随动架在第二驱动单元提供的拉力作用下,在第二导轨组件上沿第一方向移动到被固定元件限制的位置;基于目标货箱的目标货箱尺寸,再次控制第一驱动单元带动第一伸缩叉和所述第二伸缩叉之间的取箱尺寸与目标货箱尺寸相匹配,并控制前拨指转动到预设状态,以钩取目标货箱;在前拨指钩取到目标货箱后,控制抱叉组件缩回到伸缩叉机构不工作的状态时随动架所在的位置;控制升降机构升降至第四目标货位高度;第四目标货位高度为目标货箱将要放置在预设货架存储空间对应的高度;控制回转支承机构带动伸缩叉机构旋转至伸缩叉机构的前拨指朝向预设货架的货箱存放入口位置,并控制第三驱动单元驱动抱叉组件将目标货箱存放到预设货架上。
这里,当控制回转支承机构带动伸缩叉机构旋转至缩叉机构的前拨指朝向预设货架的货箱存放入口位置之后,具体将目标货箱存放到预设货架上的过程为:控制第三驱动单元驱动抱叉组件伸入预设货架的存储空间内,控制前拨指由当前的预设状态旋转为竖直状态,之后控制第三驱动单元驱动抱叉组件缩回到伸缩叉机构不工作的状态时随动架所在的位置,完成将目标货箱从随动架上放入预设货架的存储空间的过程。
上述实施方式,先调整伸缩叉机构的取箱尺寸为暂存机构取箱入口处的最大尺寸,这样就能保证抱叉组件伸出后,在控制第一伸缩叉和第二伸缩叉沿第二方向移动时,能够有机会将偏移在暂存位上的任意位置处的目标货箱摆正,之后,再次调整伸缩叉机构的取箱尺寸为目标货箱尺寸,就能利用前拨指钩取到目标货箱,此时,就不需要再根据目标货箱尺寸来安装不同尺寸的暂存机构。
以上所述,仅为本公开实施例较佳的具体实施方式,这些具体实施方式都是基于本公开实施例整体构思下的不同实现方式,而且本公开实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖本公开实施例的保护范围之内。

Claims (23)

  1. 一种货箱搬运系统,包括:具有多种货箱尺寸的货箱、控制器和机器人;所述机器人包括伸缩叉机构,所述伸缩叉机构的取箱尺寸是可调节的;
    所述控制器配置为,响应于货箱搬运请求,生成货箱搬运指令并向所述机器人发送所述货箱搬运指令;
    所述机器人配置为,响应于所述货箱搬运指令,调整所述伸缩叉机构的取箱尺寸与目标货箱的尺寸相匹配,并利用调整后的伸缩叉机构获取并搬运所述目标货箱。
  2. 根据权利要求1所述的货箱搬运系统,其中,所述伸缩叉机构包括抱叉组件以及调整机构;其中,所述抱叉组件包括可沿第一方向伸缩的第一伸缩叉和第二伸缩叉;
    所述调整机构用于调整所述第一伸缩叉和所述第二伸缩叉沿第二方向的间距,所述调整机构包括:第一导轨组件和第一驱动单元;所述第一导轨组件的长度方向为第二方向,所述第一方向与所述第二方向垂直;
    所述第一伸缩叉和所述第二伸缩叉滑动装配在所述第一导轨组件;所述第一驱动单元用于驱动所述第一伸缩叉和所述第二伸缩叉相向或相背运动,以调整所述伸缩叉机构的取箱尺寸。
  3. 根据权利要求2所述的货箱搬运系统,其中,所述第一驱动单元包括驱动电机和第一同步带组件;所述第一同步带组件包括皮带和带轮;
    所述带轮将所述皮带分为第一部分皮带和第二部分皮带,所述第一伸缩叉固定装配在所述第一部分皮带上,所述第二伸缩叉固定装配在所述第二部分皮带上;
    所述第一同步带组件在所述驱动电机的驱动下,带动所述第一伸缩叉和所述第二伸缩叉在所述第一导轨组件上沿第二方向相向或相背移动,以调整所述伸缩叉机构的取箱尺寸。
  4. 根据权利要求2所述的货箱搬运系统,其中,所述伸缩叉机构还包括基座、第二导轨组件、第二驱动单元、随动架和后拨指;
    所述第二导轨组件固定在所述基座,且所述第二导轨组件的长度方向平行于所述第一方向;
    所述后拨指与所述第一伸缩叉和所述第二伸缩叉一一对应固定连接;
    所述随动架与所述第二导轨组件滑动连接;
    所述第二驱动单元用于在所述第一伸缩叉和所述第二伸缩叉伸出时拉动所述随动架沿所述第一方向伸出到所述基座外;所述后拨指用于在所述第一伸缩叉和所述第二伸缩叉回缩时推动所述随动架回缩到所述伸缩叉机构不工作的状态时所述随动架所在的位置。
  5. 根据权利要求1所述的货箱搬运系统,其中,所述机器人配置为,响应于所述货箱搬运指令,并基于所述货箱搬运指令中的目标货箱的尺寸,调整所述伸缩叉机构的取箱尺寸与 所述目标货箱的尺寸相匹配,并利用调整后的所述伸缩叉机构获取并搬运所述目标货箱。
  6. 根据权利要求1所述的货箱搬运系统,其中,所述伸缩叉机构包括第一传感器组件;所述第一传感器组件用于采集所要搬运的目标货箱的尺寸;
    所述机器人配置为,运行至所要搬运的所述目标货箱的取箱位置之后,基于第一传感器组件采集的目标货箱的所述尺寸,调整所述伸缩叉机构的取箱尺寸与目标货箱的所述尺寸相匹配,并利用调整后的所述伸缩叉机构获取并搬运所述目标货箱。
  7. 根据权利要求6所述的货箱搬运系统,其中,所述第一传感器组件还用于采集所要搬运的所述目标货箱的实际位置,以使得所述机器人基于该实际位置调整所述机器人的取箱位置。
  8. 根据权利要求4所述的货箱搬运系统,其中,所述伸缩叉机构还包括第二传感器组件;
    所述第二传感器组件用于检测所述后拨指的位置,以基于所述后拨指的位置确定所述随动架是否缩回到在所述伸缩叉机构不工作的状态时所述随动架所在的位置。
  9. 根据权利要求2所述的货箱搬运系统,其中,所述伸缩叉机构还包括滚珠花键组件;所述滚珠花键组件包括第一丝母件、第二丝母件和花键轴;所述抱叉组件还包括第一驱动带轮和第二驱动带轮;所述第一伸缩叉与所述第一驱动带轮固定连接;所述第二伸缩叉与所述第二驱动带轮固定连接;所述第一丝母件和所述第二丝母件均套接在所述花键轴上;所述第一丝母件与所述第一驱动带轮固定连接;所述第二丝母件与所述第二驱动带轮固定连接。
  10. 根据权利要求9所述的货箱搬运系统,其中,所述伸缩叉机构还包括第三驱动单元;
    所述第三驱动单元驱动所述花键轴转动,所述花键轴带动所述第一丝母件和所述第二丝母件转动,所述第一丝母件通过所述第一驱动带轮带动所述第一伸缩叉完成伸缩动作;所述第二丝母件通过所述第二驱动带轮带动所述第二伸缩叉完成伸缩动作。
  11. 根据权利要求10所述的货箱搬运系统,其中,所述伸缩叉机构还包括第二同步带组件和第三同步带组件;所述第二同步带组件分别与所述第三驱动单元和所述滚珠花键组件连接;所述第三同步带组件分别与所述滚珠花键组件和所述抱叉组件连接;
    所述第三驱动单元驱动所述第二同步带组件带动所述滚珠花键组件转动,所述滚珠花键组件转动带动所述第三同步带组件转动,所述第三同步带组件转动带动所述抱叉组件伸缩移动。
  12. 根据权利要求1所述的货箱搬运系统,其中,所述机器人还包括机器人本体、门架、升降机构和暂存机构;所述门架包括第三导轨组件;所述升降机构包括驱动元件;
    所述机器人本体包括车轮;所述机器人本体用于承载所述机器人上设置的至少部分组件;所述车轮用于支撑所述机器人本体,以完成所述机器人的至少部分运动;
    所述门架竖直安装于所述机器人本体上;所述门架上安装有暂存机构,所述暂存机构设置在所述门架的远离所述伸缩叉机构的一侧,用于存储所述目标货箱;
    所述升降机构与所述第三导轨组件滑动连接,并通过所述伸缩叉机构中的回转支承组件与所述伸缩叉机构连接;所述升降机构在所述驱动元件带动下,在所述门架中的第三导轨组件上移动。
  13. 一种应用于权利要求1至12任一项所述的货箱搬运系统的机器人。
  14. 一种利用机器人的货箱搬运方法,所述机器人包括伸缩叉机构,所述伸缩叉机构的取箱尺寸是可调节的,所述货箱搬运方法包括:
    响应于从控制器接收的货箱搬运指令,调整所述机器人的所述伸缩叉机构的取箱尺寸与目标货箱的尺寸相匹配,并利用调整后的伸缩叉机构获取并搬运所述目标货箱。
  15. 根据权利要求14所述的货箱搬运方法,其中,所述伸缩叉机构包括抱叉组件以及调整机构;所述抱叉组件包括可沿第一方向伸缩的第一伸缩叉和第二伸缩叉;调整机构包括第一导轨组件和第一驱动单元;所述第一导轨组件的长度方向为第二方向,所述第一方向与所述第二方向垂直;
    所述调整所述伸缩叉机构的取箱尺寸与所述目标货箱的尺寸相匹配,包括:
    基于所述目标货箱的尺寸,控制所述第一驱动单元带动所述第一伸缩叉和所述第二伸缩叉在所述第一导轨组件上沿第二方向相向或相背移动,以使所述第一伸缩叉和所述第二伸缩叉之间的取箱尺寸与所述目标货箱的尺寸相匹配。
  16. 根据权利要求15所述的货箱搬运方法,其中,所述第一驱动单元包括驱动电机和第一同步带组件;
    所述调整所述伸缩叉机构的取箱尺寸与所述目标货箱的尺寸相匹配,包括:
    基于所述目标货箱的尺寸,控制所述驱动电机驱动所述第一同步带组件;
    所述第一同步带组件带动所述第一伸缩叉和所述第二伸缩叉在所述第一导轨组件上沿第二方向相向或相背移动,以使所述第一伸缩叉和所述第二伸缩叉之间的取箱尺寸与所述目标货箱的尺寸相匹配。
  17. 根据权利要求16所述的货箱搬运方法,其中,所述伸缩叉机构还包括第二导轨组件、第二驱动单元、随动架、前拨指和后拨指;
    在调整所述伸缩叉机构的取箱尺寸与所述目标货箱的尺寸相匹配之后,还包括:
    在运行至所要搬运的目标货箱的取箱位置之后,控制所述抱叉组件伸出至可钩取到所述目标货箱的位置;
    所述随动架在所述第二驱动单元提供的拉力作用下,在所述第二导轨组件上沿所述抱叉组件伸出方向移动到被固定元件限制的位置,以获取所述目标货箱。
  18. 根据权利要求17所述的货箱搬运方法,其中,所述机器人包括暂存机构和回转支承组件;所述伸缩叉机构还包括第二传感器组件;
    在所述抱叉组件伸出至可钩取到所述目标货箱的位置之后,还包括:
    控制所述前拨指转动到预设状态,并钩取所述目标货箱,其中,所述预设状态包括水平状态;
    在所述抱叉组件缩回时,利用所述后拨指带动所述随动架缩回到在伸缩叉机构不工作的状态时所述随动架所在的位置;
    在所述抱叉组件缩回,并所述第二传感器组件检测到所述随动架缩回到伸缩叉机构不工作的状态时所述随动架所在的位置时,控制所述回转支承组件带动所述伸缩叉机构旋转至所述伸缩叉机构的前拨指朝向所述暂存机构中货箱的入口位置,并控制所述抱叉组件将所述目标货箱存放到所述暂存机构上。
  19. 根据权利要求14所述的货箱搬运方法,其中,所述机器人包括升降机构、暂存机构、回转支承组件和伸缩叉机构;所述伸缩叉机构包括抱叉组件、第一驱动单元、第二导轨组件、第二驱动单元、第三驱动单元、随动架、前拨指和后拨指;所述抱叉组件包括可沿第一方向伸缩的第一伸缩叉和第二伸缩叉;调整机构包括第一导轨组件和第一驱动单元;所述第一导轨组件的长度方向为第二方向,所述第一方向与所述第二方向垂直;
    在响应于从控制器接收的货箱搬运指令之后,还包括:
    控制所述升降机构升降至所要搬运的目标货箱所在货架的第一目标货位高度;所述第一目标货位高度为所述目标货箱当前放置的货架存储空间对应的高度;
    控制所述第一驱动单元带动所述第一伸缩叉和所述第二伸缩叉之间的取箱尺寸与所述目标货箱的尺寸相匹配;
    控制所述第三驱动单元驱动所述抱叉组件伸出至可钩取到所述目标货箱的位置,并控制所述前拨指转动到预设状态,以钩取所述目标货箱;
    所述随动架在所述第二驱动单元提供的拉力作用下,在所述第二导轨组件上沿第一方向移动到被固定元件限制的位置;
    在所述前拨指钩取到所述目标货箱后,控制所述抱叉组件缩回到所述伸缩叉机构不工作的状态时所述随动架所在的位置;
    控制所述升降机构升降至第二目标货位高度;所述第二目标货位高度为所述目标货箱将要放置在暂存机构的暂存位的高度;
    控制所述回转支承机构带动所述伸缩叉机构旋转至所述伸缩叉机构的前拨指朝向所述暂存机构中货箱的入口位置,并控制所述第三驱动单元驱动所述抱叉组件将所述目标货箱存放到所述暂存机构上。
  20. 一种货箱搬运方法,应用于机器人,所述机器人包括伸缩叉机构和暂存机构,所述伸缩叉机构的取箱尺寸是可调节的,所述货箱搬运方法包括:
    响应于从控制器接收到的货箱存放指令,调整所述伸缩叉机构的取箱尺寸与所述暂存机构的尺寸相匹配;
    将调整后的伸缩叉机构伸入存放有所要搬运的目标货箱所在的暂存机构中;
    基于所述目标货箱的尺寸,再次调整所述伸缩叉机构的取箱尺寸与所述目标货箱的尺寸相匹配,并利用再次调整后的伸缩叉机构获取所述暂存机构上的目标货箱,搬运所述目标货箱至预设货架上;所述货箱存放指令为所述控制器下发的将暂存机构上的目标货箱存放至预设货架上的指令。
  21. 根据权利要求20所述的货箱搬运方法,其中,所述伸缩叉机构包括抱叉组件以及调整机构;所述抱叉组件包括可沿第一方向伸缩的第一伸缩叉和第二伸缩叉;调整机构包括第一导轨组件和第一驱动单元;所述第一导轨组件的长度方向为第二方向,所述第一方向与所述第二方向垂直;
    所述调整所述伸缩叉机构的取箱尺寸与所述暂存机构的尺寸相匹配,包括:
    控制第一驱动单元带动所述第一伸缩叉和所述第二伸缩叉在所述第一导轨组件上沿第二方向相向或相背移动,以使所述第一伸缩叉和所述第二伸缩叉之间的取箱尺寸与所述暂存机构的尺寸相匹配。
  22. 根据权利要求21所述的货箱搬运方法,其中,所述伸缩叉机构还包括第二导轨组件、第二驱动单元、随动架、前拨指和后拨指;所述机器人包括升降机构;
    所述将调整后的伸缩叉机构伸入存放有所要搬运的目标货箱所在的暂存机构中,包括:
    控制所述升降机构升降至所要搬运的目标货箱所在的暂存机构的入口处,并基于调整后的伸缩叉机构,控制所述抱叉组件伸出至可钩取到所述目标货箱的位置,以获取所述目标货箱。
  23. 根据权利要求20所述的货箱搬运方法,其中,所述机器人包括升降机构、暂存机构、回转支承组件和伸缩叉机构;所述伸缩叉机构包括抱叉组件、第一驱动单元、第二导轨组件、第二驱动单元、第三驱动单元、随动架、前拨指和后拨指;所述抱叉组件包括可沿第一方向伸缩的第一伸缩叉和第二伸缩叉;调整机构包括第一导轨组件和第一驱动单元;所述第一导轨组件的长度方向为第二方向,所述第一方向与所述第二方向垂直;
    所述方法还包括:
    控制所述升降机构升降至所要搬运的目标货箱所在暂存机构的第三目标货位高度;所述第三目标货位高度为所述目标货箱当前所在暂存机构上的暂存位的高度;
    控制第一驱动单元带动所述第一伸缩叉和所述第二伸缩叉之间的取箱尺寸与所述暂存机构的尺寸相匹配;
    控制第三驱动单元驱动所述抱叉组件伸出至可钩取到所述目标货箱的位置;
    所述随动架在所述第二驱动单元提供的拉力作用下,在所述第二导轨组件上沿所述第一方向移动到被固定元件限制的位置;
    基于所述目标货箱的尺寸,再次控制第一驱动单元带动所述第一伸缩叉和所述第二伸缩 叉之间的取箱尺寸与所述目标货箱的尺寸相匹配,并控制所述前拨指转动到预设状态,以钩取所述目标货箱;
    在所述前拨指钩取到所述目标货箱后,控制所述抱叉组件缩回到在所述伸缩叉机构不工作的状态时所述随动架所在的位置;
    控制所述升降机构升降至第四目标货位高度;所述第四目标货位高度为所述目标货箱将要放置在的预设货架存储空间对应的高度;
    控制所述回转支承机构带动所述伸缩叉机构旋转至所述伸缩叉机构的前拨指朝向所述预设货架的货箱存放入口位置,并控制第三驱动单元驱动所述抱叉组件将所述目标货箱存放到所述预设货架上。
PCT/CN2022/074070 2021-01-28 2022-01-26 一种货箱搬运系统、机器人和货箱搬运方法 WO2022161407A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202120247233.7U CN214651096U (zh) 2021-01-28 2021-01-28 一种货箱搬运系统和机器人
CN202110118466.1 2021-01-28
CN202110118466.1A CN112758588A (zh) 2021-01-28 2021-01-28 一种货箱搬运系统、机器人和货箱搬运方法
CN202120247233.7 2021-01-28

Publications (1)

Publication Number Publication Date
WO2022161407A1 true WO2022161407A1 (zh) 2022-08-04

Family

ID=82653021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074070 WO2022161407A1 (zh) 2021-01-28 2022-01-26 一种货箱搬运系统、机器人和货箱搬运方法

Country Status (2)

Country Link
TW (1) TW202229137A (zh)
WO (1) WO2022161407A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116513699A (zh) * 2023-03-02 2023-08-01 广东科技学院 一种搬运移动装置
CN117429891A (zh) * 2023-05-10 2024-01-23 广州市德奥模具有限公司 一种变速箱体毛坯装箱机构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209192822U (zh) * 2018-11-02 2019-08-02 杭州海康机器人技术有限公司 搬运小车
CN111137808A (zh) * 2018-11-02 2020-05-12 杭州海康机器人技术有限公司 搬运小车
CN111348361A (zh) * 2020-01-21 2020-06-30 深圳市海柔创新科技有限公司 取、放货控制方法、装置、搬运装置及搬运机器人
CN111348362A (zh) * 2019-09-30 2020-06-30 深圳市海柔创新科技有限公司 取货控制方法、装置、搬运装置及机器人
CN111470240A (zh) * 2020-06-05 2020-07-31 北京极智嘉科技有限公司 一种货箱搬运机器人及其使用方法
CN112744498A (zh) * 2020-12-28 2021-05-04 上海快仓智能科技有限公司 搬运机器人、搬运控制方法、控制设备和仓储系统
CN112758588A (zh) * 2021-01-28 2021-05-07 北京极智嘉科技股份有限公司 一种货箱搬运系统、机器人和货箱搬运方法
CN214651096U (zh) * 2021-01-28 2021-11-09 北京极智嘉科技股份有限公司 一种货箱搬运系统和机器人
CN215624480U (zh) * 2020-12-28 2022-01-25 上海快仓智能科技有限公司 搬运机器人、仓储装置和仓储系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209192822U (zh) * 2018-11-02 2019-08-02 杭州海康机器人技术有限公司 搬运小车
CN111137808A (zh) * 2018-11-02 2020-05-12 杭州海康机器人技术有限公司 搬运小车
CN111348362A (zh) * 2019-09-30 2020-06-30 深圳市海柔创新科技有限公司 取货控制方法、装置、搬运装置及机器人
CN212197049U (zh) * 2019-09-30 2020-12-22 深圳市海柔创新科技有限公司 搬运装置及搬运机器人
CN111348361A (zh) * 2020-01-21 2020-06-30 深圳市海柔创新科技有限公司 取、放货控制方法、装置、搬运装置及搬运机器人
CN111470240A (zh) * 2020-06-05 2020-07-31 北京极智嘉科技有限公司 一种货箱搬运机器人及其使用方法
CN112744498A (zh) * 2020-12-28 2021-05-04 上海快仓智能科技有限公司 搬运机器人、搬运控制方法、控制设备和仓储系统
CN215624480U (zh) * 2020-12-28 2022-01-25 上海快仓智能科技有限公司 搬运机器人、仓储装置和仓储系统
CN112758588A (zh) * 2021-01-28 2021-05-07 北京极智嘉科技股份有限公司 一种货箱搬运系统、机器人和货箱搬运方法
CN214651096U (zh) * 2021-01-28 2021-11-09 北京极智嘉科技股份有限公司 一种货箱搬运系统和机器人

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116513699A (zh) * 2023-03-02 2023-08-01 广东科技学院 一种搬运移动装置
CN116513699B (zh) * 2023-03-02 2024-03-15 广东科技学院 一种搬运移动装置
CN117429891A (zh) * 2023-05-10 2024-01-23 广州市德奥模具有限公司 一种变速箱体毛坯装箱机构

Also Published As

Publication number Publication date
TW202229137A (zh) 2022-08-01

Similar Documents

Publication Publication Date Title
WO2022161407A1 (zh) 一种货箱搬运系统、机器人和货箱搬运方法
CN109969781B (zh) 取出装置、传送装置、取出方法以及控制装置
CN104891195B (zh) 铜锭自动堆叠装置
CN210794517U (zh) 一种搬运机器人
KR20220145887A (ko) 자재 취급 차량 및 이동식 보관 카트, 운송기 및 자재 취급 차량을 포함하는 물품 보관 및 회수 시스템
EP2468662B1 (en) Article transfer device and stacker crane with same
WO2014029202A1 (zh) 悬挂式自动存取系统
CN106826820B (zh) 直角坐标机器人的控制方法及系统
WO2023151444A1 (zh) 一种仓储货物的出库方法、入库方法及搬运机器人
WO2023061223A1 (zh) 容器装卸装置、仓储系统及取放容器方法
CN112758588A (zh) 一种货箱搬运系统、机器人和货箱搬运方法
WO2015003437A1 (zh) 堆垛机用货叉组件及堆垛机、搬送卡匣的方法
KR20220143129A (ko) 토트 전달 구역, 자재 취급 차량, 운송기를 포함하는 다중 레벨 창고 랙 시스템을 포함하는 시스템, 및 그 사용 방법
WO2019154433A2 (zh) 货物搬运机器人及其控制方法
CN215045861U (zh) 一种货箱搬运机器人
CN214651096U (zh) 一种货箱搬运系统和机器人
EP4039618A1 (en) Cargo taking and placing control method, device, handling device and handling robot
CN110329702A (zh) 一种组合式立体货架、及其自动装卸料机构
CN113415559A (zh) 一种物流仓储分拣设备及分拣系统
KR20200061114A (ko) 승강수단이 구비된 운반 로봇
EP4046943A1 (en) Transport system, transport method, and non-transitory storage medium
WO2022156780A1 (zh) 一种货箱搬运系统和机器人
US20240025058A1 (en) Robotic apparatuses, systems, and methods for moving objects
CN112573060B (zh) 一种搬运机器人
CN211077248U (zh) 一种旋转式堆垛机拣货夹爪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 22745280

Country of ref document: EP

Kind code of ref document: A1