WO2022161131A1 - 应用于薄型均温板的复合式毛细结构 - Google Patents

应用于薄型均温板的复合式毛细结构 Download PDF

Info

Publication number
WO2022161131A1
WO2022161131A1 PCT/CN2022/070470 CN2022070470W WO2022161131A1 WO 2022161131 A1 WO2022161131 A1 WO 2022161131A1 CN 2022070470 W CN2022070470 W CN 2022070470W WO 2022161131 A1 WO2022161131 A1 WO 2022161131A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary structure
porous metal
vapor chamber
composite
copper
Prior art date
Application number
PCT/CN2022/070470
Other languages
English (en)
French (fr)
Inventor
陈振贤
Original Assignee
广州力及热管理科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州力及热管理科技有限公司 filed Critical 广州力及热管理科技有限公司
Publication of WO2022161131A1 publication Critical patent/WO2022161131A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure

Definitions

  • the invention relates to a composite capillary structure applied to a thin vapor chamber, in particular to a gap formed between a porous metal capillary structure and a groove side wall of a metal substrate to form a high-efficiency liquid phase transport operation
  • the composite capillary structure of the fluid is not limited to a composite capillary structure applied to a thin vapor chamber, in particular to a gap formed between a porous metal capillary structure and a groove side wall of a metal substrate to form a high-efficiency liquid phase transport operation.
  • the water absorption capacity of the capillary structure is an important parameter in the design of the general temperature chamber element.
  • the capillary structure with high permeability has a high transmission capacity for the liquid-phase working fluid, which is beneficial to the evaporation and condensation of the liquid-phase working fluid, thereby improving the uniformity.
  • Heat transfer performance of warm plate elements When the thickness of the vapor chamber element is thinner, the accommodating space of the upper and lower cover plates becomes smaller, and the thickness of the capillary structure is also limited in order to maintain a sufficient flow space for the gas-phase working fluid.
  • the capillary limit value is also reduced accordingly.
  • the backflow rate of the liquid-phase working fluid from the remote condensation zone to the evaporation zone is also slow, which in turn affects the heat conduction function and heat removal power of the thin vapor chamber.
  • ultra-thin vapor chambers with a thickness of less than 0.8mm are all made of copper mesh as the capillary structure.
  • one or more braided meshes are added to locally strengthen its ability to transport liquid-phase working fluid.
  • the ultra-thin vapor chambers that have achieved mass production in the industry are all above 0.3mm.
  • the purpose of the present invention is to provide a composite capillary structure applied to a thin vapor chamber, which can utilize the design of directional liquid flow between the porous metal capillary structure and the sidewall of the metal substrate groove.
  • a certain gap is formed, and a high-efficiency composite capillary structure that can carry more liquid-phase working fluid and transport it quickly is formed on the surface of the metal substrate of the ultra-thin vapor chamber, which accelerates the liquid-phase working fluid in the thin vapor chamber element.
  • the flow velocity from the condensing zone to the evaporating zone improves the heat transfer and heat removal efficiency of the thin vapor chamber element.
  • the present invention discloses a composite capillary structure applied to a thin uniform temperature plate, which is characterized by comprising:
  • a first metal sheet having a trench structure with a trench bottom surface and two trench sidewalls
  • porous metal capillary structure continuously formed in the trench structure, the porous metal capillary structure has:
  • the side surfaces are gradually retracted from the upper surface to the lower surface, and there is a sidewall gap between the side surfaces and the sidewalls of the trench.
  • the groove structure is a long groove structure
  • the depth of the long groove structure is between 0.05mm and 0.50mm
  • the length of the long groove structure is at least 30mm
  • the length The structure width of the strip groove is between 1.0mm and 3.0mm.
  • it further includes an evaporation area and a remote condensation area, wherein one end of the elongated groove structure points to the evaporation area, and the other end of the elongated groove structure points to the remote condensation area.
  • the porous metal capillary structure is further divided into a first capillary structure and a second capillary structure, the first capillary structure is arranged in the evaporation area, and the porosity of the first capillary structure is greater than that of the second capillary structure Porosity.
  • the width of the upper surface of the porous metal capillary structure is greater than the width of the lower surface, and the width of the upper surface of the porous metal capillary structure is greater than three times the width of a sidewall gap.
  • the distance between the upper surface of the porous metal capillary structure and the sidewall of the trench is between 10um and 200um.
  • the trench structure is further provided with a plurality of support pillars
  • the porous metal capillary structure is further provided with a plurality of through holes corresponding to the support pillars, and there is a perforation gap between the support pillars and the porous metal capillary structure .
  • the porous metal capillary structure is a copper powder sintered capillary structure
  • the copper powder sintered capillary structure is made by a paste through printing, drying, cracking and sintering processes, and the paste contains a plurality of metals Copper powder and a polymer colloid.
  • the porous metal capillary structure is a powder sintered capillary structure
  • the powder sintered capillary structure includes a plurality of chain-like copper members formed by sintering copper oxide powder and a plurality of spherical copper members formed by sintering copper powder.
  • the chain-shaped copper members are combined with each other, the spherical copper members are scattered among the chain-shaped copper members, and a plurality of pores are formed between the chain-shaped copper members and the spherical-shaped copper members.
  • the powder sintered capillary structure is made by printing, drying, cracking and sintering of a paste, and the paste includes a plurality of metal copper powders, a plurality of copper oxide powders and a polymer colloid.
  • the present invention utilizes the formation of a small interval between the porous metal capillary structure and the grooves of the substrate, and forms a composite capillary structure in which the powder sintered capillary structure and the grooved capillary structure of the side gap are integrated into one, so as to speed up the liquid phase operation. Fluid carrying capacity and delivery speed.
  • the composite capillary structure provided by the present invention utilizes the sidewall gap between the porous metal capillary structure and the sidewall of the trench to form the composite capillary structure, so that the liquid-phase working fluid has The belt volume is increased and the conveying speed of the liquid-phase working fluid from the remote condensing area to the evaporation area is accelerated, which improves the thermal conductivity and the heat removal power of the thin vapor chamber element.
  • FIG. 1 is a schematic cross-sectional view of a composite capillary structure in an embodiment of the present invention
  • FIG. 2 is a schematic top view of the composite capillary structure of the specific embodiment of FIG. 1;
  • 3 is a schematic diagram showing the structure size of the porous metal capillary structure
  • FIG. 4 is a schematic diagram illustrating a porous metal capillary structure in an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a first capillary structure and a second capillary structure
  • FIG. 6 is a schematic top view of the composite capillary structure in another embodiment of the present invention.
  • FIG. 7 is a schematic diagram illustrating a liquid-phase working fluid and a gas-phase working fluid in an embodiment of the present invention
  • FIG. 8 is a schematic diagram illustrating the flow direction of the liquid-phase working fluid in an embodiment of the present invention.
  • FIGS. 1 and 2 are a schematic cross-sectional view and a top view of a thin vapor chamber with a capillary structure according to an embodiment of the present invention.
  • the present invention provides a composite capillary structure W applied to a thin vapor chamber, comprising a first metal sheet 1 and a porous metal capillary structure 3 .
  • the first metal sheet 1 has one or more trench structures 10 having a trench bottom surface 102 and two trench sidewalls 104 .
  • the porous metal capillary structure 3 is continuously formed in the trench structure 10 , and the porous metal capillary structure 3 has an upper surface 301 , a lower surface 302 and two side surfaces 304 .
  • the upper surface 301 has a middle recessed area 3015 and two edge protrusion areas 3014 .
  • the lower surface 302 is attached and fixed to the groove bottom surface 102 .
  • the side surface 304 is gradually retracted from the connection between the side surface 304 and the upper surface 301 toward the connection between the side surface 304 and the lower surface 302 , and there is a sidewall gap 54 between the side surface 304 and the corresponding trench sidewall 104 .
  • the plurality of trench structures 10 may be separated by one or more support walls 18 .
  • the supporting wall 18 simultaneously isolates the direct exchange of the liquid-phase working fluid between the two adjacent groove structures 10, and must bypass the supporting wall 18 to communicate.
  • the sidewall gaps 54 taper downwardly and inwardly; the side surfaces 304 and raised edge protrusions 3014 make the cross-section of the porous metal capillary structure 3 resemble a boat-like structure.
  • the trench structure 10 is a long trench structure 10 , and the depth D1 of the long trench structure 10 may be between 0.05 mm and 0.50 mm, so that the thickness of the porous metal capillary structure 3 is It can be controlled between 0.02mm and 0.2mm.
  • the elongated trench structure 10 can be fabricated by etching a metal sheet.
  • the length D2 of the elongated trench structure 10 is at least 30 mm, and the width D3 of the elongated trench structure 10 is between 1.0 mm and 3.0 mm.
  • Figure 3 is a schematic diagram of the structure and dimensions of the composite capillary structure.
  • the width D4 of the upper surface 301 of the porous metal capillary structure 3 is greater than the width D5 of the lower surface 302
  • the width D4 of the upper surface 301 of the porous metal capillary structure 3 is greater than four times the width D6 of a sidewall gap 54 .
  • the sidewall gap 54 here refers to the width of the gap when the first metal sheet 1 is viewed from above, that is, the closest distance between the edge of the upper surface 301 and the trench sidewall 104 .
  • the height D7 of the porous metal capillary structure 3 corresponding to the edge protrusion region 3014 is higher than the height D8 of the porous metal capillary structure 3 corresponding to the middle recessed region 3015 .
  • the distance between the edge protrusion region 3014 of the porous metal capillary structure 3 and the trench sidewall 104 is also the minimum width D6 of the sidewall gap 54 , which is between 10um and 200um.
  • the distance between the lower surface 302 of the porous metal capillary structure 3 and the sidewall of the trench, which is also the maximum width D9 of the sidewall gap 54 is between 20um and 300um.
  • the widths of D6 and D9 determine the liquid-phase working fluid carrying capacity in the sidewall gap groove.
  • the composite capillary structure W of the present invention is composed of the boat-shaped porous metal capillary structure 3 , the elongated groove structure 10 and the sidewall gap 54 .
  • the complementary action formed by the channel of the sidewall gap 54 and the ship-shaped porous metal capillary structure 3 together serves as the transport channel of the liquid-phase working fluid in the thin vapor chamber. Since the sidewall gap 54 is in the shape of a long fine groove, it has good liquid-phase working fluid permeability, and the porous metal capillary structure 3 has a good capillary pressure difference, so the resultant force quickly transports the liquid-phase working fluid to the evaporation area .
  • the porous metal capillary structure 3 in the composite capillary structure of the present invention is formed by powder sintering.
  • the porous metal capillary structure 3 is formed by laying a metal slurry in the metal elongated trench structure 10 and then drying, cracking and sintering.
  • FIG. 4 is a schematic diagram of a porous metal capillary structure in an embodiment of the present invention
  • FIG. 5 is a schematic cross-sectional view of the first capillary structure and the second capillary structure.
  • the porous metal capillary structure 3 is a copper powder sintered capillary structure.
  • the porous metal capillary structure 3 includes a plurality of chain-shaped copper members 37 and a plurality of spherical copper members 38.
  • the chain-shaped copper members 37 are connected to each other, and the spherical copper members are similar to each other.
  • 38 is interspersed between the chain-shaped copper members 37, and a plurality of pores are formed between the chain-shaped copper members and the spherical-like copper members.
  • the average diameter of the spherical-like copper members 38 is larger than the average diameter of the chain-shaped copper members 37 .
  • the porous metal capillary structure 3 is made of a paste through a printing process, a drying process, a pyrolysis process and a sintering process.
  • the paste includes a polymer colloid, a plurality of metal copper particles and a plurality of Copper oxide particles.
  • the paste is applied into the trench structure 10 by stencil printing or screen printing. Due to the rheological properties of the slurry, the slurry will evenly cover the trench structure 10 , cover the trench bottom surface 102 and touch the trench sidewall 104 .
  • the solvent is removed to form a solidified product, and the polymer colloid is attached between the metal copper powder and the copper oxide powder.
  • the polymer in the cured product is vaporized and removed in the cracking process, leaving voids between the metallic copper powder and the copper oxide powder.
  • the sintering process temperature is controlled between 700 and 900 degrees C, and it is carried out in a strictly controlled nitrogen and hydrogen mixed reducing atmosphere, and a composite type including a boat-shaped porous metal capillary structure 3 and a sidewall gap 54 is formed.
  • Capillary structure W is controlled between 700 and 900 degrees C, and it is carried out in a strictly controlled nitrogen and hydrogen mixed reducing atmosphere, and a composite type including a boat-shaped porous metal capillary structure 3 and a sidewall gap 54 is formed.
  • the average particle size D50 of the metallic copper powder contained in the slurry is about 10um ⁇ 53um. Or in another embodiment, the average particle size D50 of the metallic copper powder contained in the slurry is about 10um-30um.
  • the average diameter of the copper oxide powder is about 0.5um to 5um, and it can be especially the cuprous oxide powder of polygonal crystal.
  • the slurry is laid in the trench structure 10 , and after drying and cracking processes, a reduction sintering process is performed in a mixed atmosphere of nitrogen and hydrogen.
  • the metallic copper powder forms the spherical-like copper member 38
  • the copper oxide powder is reduced, sintered and stretched to form the chain-shaped copper member 37 .
  • the reduced copper oxide powder is stretched along the spheroid-like copper members 38 in the aforementioned cavities, and solidified to form chain-like copper members 37 and spheroid-like copper members 38 interlaced with each other.
  • the composite capillary structure W can be further divided into an evaporation zone W1 and a remote condensation zone W2.
  • One end of the elongated trench structure 10 points to the evaporation area W1, and the other end of the elongated trench structure 10 points to the remote condensation area W2.
  • the porous metal capillary structure 3 is further divided into a first capillary structure 31 and a second capillary structure 32 .
  • the first capillary structure 31 is disposed in the evaporation area W1
  • the second capillary structure 32 is not disposed in the evaporation area W1
  • the second capillary structure 32 is disposed outside the evaporation area W1, especially the remote condensation area W2.
  • the first capillary structure 31 and the second capillary structure 32 are continuous structures, and the first capillary structure and the second capillary structure have different porosity.
  • the porosity of the first capillary structure 31 is greater than that of the second capillary structure 32 .
  • the pore size of the first capillary structure 31 is larger than the pore size of the second capillary structure 32 .
  • the average particle diameter of the first capillary structure 31 is larger than the average particle diameter of the second capillary structure 32 .
  • the average particle diameter of the spherical-like copper members 38 of the first capillary structure 31 is larger than the average particle diameter of the spherical-like copper members 38 of the second capillary structure 32 .
  • the large average particle size of the first capillary structure 31 is conducive to the formation of a large area of water film on the surface when the liquid-phase working fluid is boiled and evaporated, thereby reducing thermal resistance and evaporating into a gas-phase working fluid faster; If the average particle size of the second capillary structure 32 is small, the capillary force for transporting the liquid-phase working fluid is improved, and the flow rate of the liquid-phase working fluid is accelerated. Therefore, the first capillary structure 31 arranged in the evaporation zone W1 is more helpful for the liquid phase to be converted into the gas-phase working fluid, and the second capillary structure 32 arranged at other parts helps the liquid-phase working fluid to return to the condensation end to flow back to the evaporation end.
  • FIG. 6 is a schematic top view of the composite capillary structure in another specific embodiment of the present invention.
  • the trench structure 10 is further provided with a plurality of support columns 19
  • the porous metal capillary structure 3 is further provided with a plurality of through holes 39 corresponding to the plurality of support columns 19 , and there is a space between the plurality of support columns 19 and the porous metal capillary structure 3 .
  • Perforation gap 59 is a schematic top view of the composite capillary structure in another specific embodiment of the present invention.
  • the trench structure 10 is further provided with a plurality of support columns 19
  • the porous metal capillary structure 3 is further provided with a plurality of through holes 39 corresponding to the plurality of support columns 19
  • there is a space between the plurality of support columns 19 and the porous metal capillary structure 3 Perforation gap 59 .
  • the supporting wall 18 and the supporting column 19 are used to support the space of the first metal sheet 1 and the second metal sheet, and the supporting column 19 is especially used in the evaporation area W1 and the remote condensation area W2 where the supporting wall 18 is inconveniently arranged , as the main support element of the evaporation zone W1 and the remote condensation zone W2.
  • the side surfaces of the porous metal capillary structure 3 also taper from top to bottom.
  • FIG. 7 is a schematic diagram of a liquid-phase working fluid and a gas-phase working fluid in an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a flow direction of the liquid-phase working fluid in an embodiment of the present invention.
  • the liquid-phase working fluid 70 in the sidewall gap 54 and the liquid-phase working fluid 70 in the porous metal capillary structure 3 advance toward the same direction (the direction of the arrow in FIG. 8 ).
  • the fluid resistance in the sidewall gap 54 is relatively small, and the liquid-phase working fluid 70 flows faster; the fluid resistance in the porous metal capillary structure 3 is relatively large, and the liquid-phase working fluid 70 flows relatively slowly.
  • the liquid-phase working fluid 70 in the sidewall gap 54 may also be replenished into the porous metal capillary structure 3 .
  • the composite capillary structure of the present invention has a conveying speed of more than 30 mm/sec for pure water, which is more than twice as fast as the pure water conveying speed of the copper mesh capillary structure.
  • the composite capillary structure utilizes the sidewall gap between the porous metal capillary structure and the sidewall of the trench to form the composite capillary structure. Since the sidewall gap also forms the capillary action of elongated micro-grooves, it has a good permeability for the liquid-phase working fluid, and the existence of the sidewall gap also enables the liquid-phase working fluid to be carried in the entire composite capillary structure. The amount of liquid-phase working fluid is increased, and the conveying speed of the liquid-phase working fluid from the remote condensing area to the evaporation area is accelerated, thereby improving the thermal conductivity and the heat removal power of the thin vapor chamber element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明涉及一种应用于薄型均温板的复合式毛细结构,包含有一第一金属片材和一多孔隙金属毛细结构。第一金属片材具有一沟槽结构,沟槽结构具有一沟槽底面和两个沟槽侧壁。多孔隙金属毛细结构连续性地形成于沟槽结构内。多孔隙金属毛细结构具有一上表面、一下表面和两个侧表面。上表面具有一中间凹陷区和两边缘突起区。下表面贴附于沟槽底面。侧表面自上表面向下表面内缩,侧表面和沟槽侧壁之间具有一侧壁间隙。本发明能有效提升薄型均温板中液相工作流体由冷凝区输送往蒸发区的能力。

Description

应用于薄型均温板的复合式毛细结构 技术领域
本发明系关于一种应用于薄型均温板的复合式毛细结构,尤其是指一种多孔隙金属毛细结构和金属基板沟槽侧壁之间形成一间隙而构成一种高效率输送液相工作流体的复合式毛细结构。
背景技术
毛细结构的吸水能力是一般均温板元件设计的重要参数,高渗透率的毛细结构对于液相工作流体具有较高的传输能力,有利于于液相工作流体的蒸发和冷凝回流,从而提高均温板元件的传热性能。当均温板元件的厚度越薄时,上下盖板的容置空间变小,为了维持足够的气相工作流体的流动空间,也限制了毛细结构的厚度。
当毛细结构厚度越薄,其承载液相工作流体的量就越少,毛细极限值也随的降低。液相工作流体从远端冷凝区回流到蒸发区的速度也慢,进而影响了薄型均温板的热传导功能及解热功率。
目前,元件厚度小于0.8mm的超薄均温板,都是以铺置铜网做为毛细结构。在许多超薄均温板的设计应用中,为了弥补铜网本身毛细力的不足,还加铺了一条或多条编织网来局部的补强其对液相工作流体的输送能力。目前产业上实现量产的超薄均温板皆在0.3mm以上。一旦均温板的元件厚度低于0.3mm时,铜网毛细结构将面临毛细极限的问题,在制作工艺上加铺编织网难度亦高,而且此问题随着元件厚度的降低而越加严重。产业界急需一种同时能满足功效以及制程要求的新型毛细结构,来解决目前超薄均温板元件因厚度降低及铜网毛细极限造成液相工作流体输送速度及携带量不足的问题。
发明内容
有鉴于此,本发明的目的在于提供一种应用于薄型均温板的复合式毛细结构,其能利用指向性液相流的设计,在多孔隙金属毛细结构和金属基板沟槽侧壁之间形成一定的间隙,而在超薄均温板的金属基板的表面形成一种能携带更多液相工作流体并快速输送的高效复合式毛细结构,加快薄形均温板元件中液相工作流体从冷凝区输送至蒸发区的流动速度,进而提升了薄型均温板元件的传热及解热功效。
为实现上述目的,本发明公开了一种应用于薄型均温板的复合式毛细结构,其特征在于包含有:
一第一金属片材,具有一沟槽结构,该沟槽结构具有一沟槽底面和两沟槽侧壁;以及
一多孔隙金属毛细结构,连续性地形成于该沟槽结构内,该多孔隙金属毛细结构具有:
一上表面,具有一中间凹陷区和两边缘突起区;
一下表面,贴附于该沟槽底面;以及
两侧表面,自该上表面向该下表面逐渐内缩,该些侧表面和该些沟槽侧壁之间具有一侧壁间隙。
其中,该沟槽结构为一长条型沟槽结构,该长条型沟槽结构的深度介于0.05mm~0.50mm之间,该长条型沟槽的结构长度至少为30mm,且该长条型沟槽的结构宽度介于1.0mm~3.0mm之间。
其中,进一步包含有一蒸发区和一远端冷凝区,其中该长条型沟槽结构的一端指向该蒸发区,该长条型沟槽结构的另一端指向该远端冷凝区。
其中,该多孔隙金属毛细结构进一步分为一第一毛细结构和一第二毛细结构,该第一毛细结构设置于该蒸发区,且该第一毛细结构的孔隙率大于该第二毛细结构的孔隙率。
其中,该多孔隙金属毛细结构的上表面的宽度大于下表面的宽度,该多孔隙金属毛细结构的上表面的宽度大于一个侧壁间隙的三倍宽度。
其中,该多孔隙金属毛细结构的上表面和该沟槽侧壁之间距离介于10um~200um之间。
其中,该沟槽结构上进一步设置有多个支撑柱,该多孔隙金属毛细结构进一步有多个穿孔对应该些支撑柱,且该些支撑柱和该多孔隙金属毛细结构之间具有一穿孔间隙。
其中,该多孔隙金属毛细结构为一铜粉末烧结的毛细结构,该铜粉末烧结的毛细结构为一浆料经印刷、烘干、裂解和烧结工艺所制成,该浆料包含有多个金属铜粉末以及一聚合物胶体。
其中,该多孔隙金属毛细结构为一粉末烧结的毛细结构,该粉末烧结的毛细结构包含有多个由铜氧化物粉末烧结形成的链状铜构件和多个由铜粉末烧结形成的类球状铜构件,该些链状铜构件相互结合,该些类球状铜构件散布于该些链状铜构件之间,多个孔隙形成于该些链状铜构件及该些类球状铜构件之间。
其中,该粉末烧结毛细结构为一浆料经印刷、烘干、裂解和烧结工艺所制成,该浆料包含有多个金属铜粉末、多个铜氧化物粉末以及一聚合物胶体。
由此,本发明利用了在多孔隙金属毛细结构与基板沟槽之间形成微小间隔,而形成粉末烧结毛细结构与侧边间隙的沟槽毛细结构结合为一体的复合毛细结构,加快液相工作流体携载量及输送速度。
综上所述,本发明提供的复合式毛细结构,利用多孔隙金属毛细结构和沟槽侧壁之间的侧壁间隙来形成复合式毛细结构,使得液相工作流体的
Figure PCTCN2022070470-appb-000001
带量增加并加快液相工作流体由远端冷凝区往蒸发区的输送速度,进行提升了薄型均温板元件的热传导能力及解热功率。
附图说明
图1绘示本发明一具体实施例中复合式毛细结构的直剖面示意图;
图2绘示图1具体实施例的复合式毛细结构的俯瞰示意图;
图3绘示多孔隙金属毛细结构的结构尺寸示意图;
图4绘示本发明一具体实施例中多孔隙金属毛细结构的示意图;
图5绘示第一毛细结构和第二毛细结构的横剖面示意图;
图6绘示本发明另一具体实施例中复合式毛细结构的俯瞰示意图;
图7绘示本发明一具体实施例中液相工作流体及气相工作流体的示意图;
图8绘示本发明一具体实施例中液相工作流体流向的示意图。
具体实施方式
为了让本发明的优点,精神与特征可以更容易且明确地了解,后续将以具体实施例并参照所附图式进行详述与讨论。需注意的是,这些具体实施例仅为本发明代表性的具体实施例,其中所举例的特定方法、装置、条件、材质等并非用以限定本发明或对应的具体实施例。又,图中垂直方向、水平方向和各元件仅系用于表达其相对位置,且未按其实际比例绘述,合先叙明。
请参阅图1和图2。图1和图2绘示本发明一具体实施例中具毛细结构的薄型均温板的剖面示意图和俯瞰示意图。本发明提供一种应用于薄型均温板的复合式毛细结构W,包含有一第一金属片材1、一多孔隙金属毛细结构3。第一金属片材1具有一个或多个沟槽结构10,沟槽结构10具有一个沟槽底面102和两个沟槽侧壁104。多孔隙金属毛细结构3连续性地形成于沟槽结构10内,多孔隙金属毛细结构3具有一上表面301、一下表面302和两个侧表面304。上表面301具有一中间凹陷区3015和两个边缘突起区3014。下表面302贴附并固着于沟槽底面102。侧表面304自侧表面304与上表面301连接处朝向侧表面304与下表面302连接处逐渐内缩,侧表面304和对应的沟槽侧壁104之间具有一侧壁间隙54。
多个沟槽结构10可以是被一个到多个支撑墙体18所隔开。支撑墙体18同时隔 绝邻近的两个沟槽结构10液相工作流体直接的交换,而必须绕开支撑墙体18才能连通。
侧壁间隙54向下向内渐缩;侧表面304和高起的边缘突起区3014使多孔隙金属毛细结构3的横剖面像是一个船型结构。于实际应用中,该船型多孔隙金属毛细结构3上表面301中间凹陷区3015和两边缘突起区3014所形成的曲面的曲率越大则毛细力越佳。
一具体实施例中,沟槽结构10为一长条型沟槽结构10,长条型沟槽结构10深度D1可介于0.05mm~0.50mm之间,以使得多孔隙金属毛细结构3的厚度可以控制在0.02mm~0.2mm之间。长条型沟槽结构10可由一金属片材经蚀刻方式制成。长条型沟槽结构10长度D2至少为30mm,长条型沟槽结构10宽度D3介于1.0mm~3.0mm之间。
请参阅图3。图3系复合式毛细结构的结构尺寸示意图。多孔隙金属毛细结构3的上表面301的宽度D4大于下表面302的宽度D5,多孔隙金属毛细结构3的上表面301的宽度D4大于一个侧壁间隙54宽度D6的四倍。此处所述的侧壁间隙54是指自上方俯瞰第一金属片材1时所目视道的间隙宽度,也就是上表面301的边缘与沟槽侧壁104的最近距离。边缘突起区3014对应的多孔隙金属毛细结构3的高度D7高于中间凹陷区3015对应的该多孔隙金属毛细结构3的高度D8。
多孔隙金属毛细结构3的边缘突起区3014和沟槽侧壁104之间距离,也是侧壁间隙54最小宽度D6,介于10um~200um之间。多孔隙金属毛细结构3的下表面302和沟槽侧壁之间距离,也是侧壁间隙54最大宽度D9,介于20um~300um之间。D6及D9的宽度决定了侧壁间隙沟槽内的液相工作流体承载量。
本发明的复合式毛细结构W是由船型的多孔隙金属毛细结构3与长条型沟槽结构10以及侧壁间隙54所构成的。侧壁间隙54的通道与船型的多孔隙金属毛细结构3形成的互补作用,共同做为薄型均温板内液相工作流体的输送渠道。由于侧壁间隙54是一长条微细沟槽形状,具有良好的液相工作流体渗透率,加上多孔隙金属毛细结构3具良好的毛细压差,合力将液相工作流体快速输送至蒸发区。
于实际应用中,本发明复合式毛细结构中的多孔隙金属毛细结构3是以粉末烧结方式而形成。或者,多孔隙金属毛细结构3是以一金属浆料铺置于金属长条型沟槽结构10中,然后经过烘干,裂解及烧结工艺而形成的。
请参阅图2、图4和图5。图4绘示本发明一具体实施例中多孔隙金属毛细结构的示意图;图5绘示第一毛细结构和第二毛细结构的横剖面示意图。多孔隙金属毛细结构3系为铜粉末烧结毛细结构,多孔隙金属毛细结构3包含有多个链状铜构件37和多个类球状铜构件38,链状铜构件37相互连结,类球状铜构件38散布于链状铜构件37之间,多个孔隙形成于该等链状铜构件及该等类球状铜构件之间。于一 具体实施例中,类球状铜构件38的平均直径大于链状铜构件37的平均直径。
于一具体实施例中,多孔隙金属毛细结构3为一浆料经印刷工艺、烘干工艺、裂解工艺和烧结工艺所制成,浆料包含有一聚合物胶体、多个金属铜颗粒和多个铜氧化物颗粒。浆料藉由钢板印刷或网版印刷被铺设到沟槽结构10当中。由于浆料的流变性,此时浆料会均匀铺满沟槽结构10,覆盖掉沟槽底面102并且碰触到沟槽侧壁104。
浆料经烘干后去除溶剂形成一固化物,聚合物胶体附着于金属铜粉末和铜氧化物粉末之间。固化物内的聚合物在裂解工艺中气化并被排除,在金属铜粉末和铜氧化物粉末之间留下孔洞。实际应用时,烧结工艺温度控制在700~900度C之间,并且在严格控制的氮氢混合还原气氛下进行,而形成了包含有船型多孔隙金属毛细结构3以及侧壁间隙54的复合型毛细结构W。
于一实施例中,浆料中含有的金属铜粉末的平均粒径D50约为10um~53um之间。或者在另一实施例中,浆料中含有的金属铜粉末的平均粒径D50约为10um~30um之间。
铜氧化物粉末的平均例径约为0.5um~5um,尤其可以是多角形晶体的氧化亚铜粉末。
浆料铺置在沟槽结构10中,经烘干及裂解工艺后再于氮氢混合气氛下进行还原烧结工艺。烧结后金属铜粉末形成类球状铜构件38,铜氧化物粉末则还原烧结并拉伸形成链状铜构件37。还原的铜氧化物粉末在前述孔洞中沿着类球状铜构件38拉伸,固化后形成彼此交错的链状铜构件37和类球状铜构件38。
复合式毛细结构W进一步可分为一蒸发区W1和一远端冷凝区W2。长条型沟槽结构10的一端指向蒸发区W1,长条型沟槽结构10的另一端指向远端冷凝区W2。多孔隙金属毛细结构3进一步分为一第一毛细结构31和一第二毛细结构32。第一毛细结构31设置于蒸发区W1,第二毛细结构32不设置于蒸发区W1,第二毛细结构32设置于蒸发区W1以外的地方,尤其是远端冷凝区W2。
第一毛细结构31和第二毛细结构32为连续性结构,且第一毛细结构与第二毛细结构具有不同的孔隙率。于一具体实施例中,第一毛细结构31的孔隙率大于第二毛细结构32。第一毛细结构31的孔径大于第二毛细结构32的孔径。第一毛细结构31的平均粒径大于第二毛细结构32的平均粒径。尤其,第一毛细结构31的类球状铜构件38的平均粒径大于第二毛细结构32的类球状铜构件38的平均粒径。
第一毛细结构31的平均粒径大有利于液相工作流体沸腾时在表面形成较大面积的水薄膜而蒸发,进而降低热阻,蒸发成气相工作流体的速度较快;相对来说,第二毛细结构32的平均粒径小则有利于提升输送液相工作流体的毛细力,使液相工作流体的流动速度加快。因此,第一毛细结构31设置于蒸发区W1较有助于液相 转成气相工作流体,第二毛细结构32设置于其他部分有助于液相工作流体回冷凝端回流至蒸发端。
请参阅图6。图6是本发明另一具体实施例中复合式毛细结构的俯瞰示意图。沟槽结构10上进一步设置有多个支撑柱19,多孔隙金属毛细结构3进一步有多个穿孔39对应多个支撑柱19,且多个支撑柱19和多孔隙金属毛细结构3之间具有一穿孔间隙59。支撑墙体18和支撑柱19用于支撑第一金属片材1和第二金属片材的空间,支撑柱19尤其用于在不便设置支撑墙体18的蒸发区W1和远端冷凝区W2当中,作为蒸发区W1和远端冷凝区W2的主要支撑元件。在穿孔间隙59处,多孔隙金属毛细结构3的侧表面同样是从上向下渐缩。
请参阅图7和图8。图7绘示本发明一具体实施例中液相工作流体及气相工作流体的示意图;图8绘示本发明一具体实施例中液相工作流体流向的示意图。第一金属片材和复合式毛细结构3上装设第二金属片材时可形成薄型均温板元件。此时可灌注液相工作流体70至薄型均温板元件内。液相工作流体70会吸附于多孔隙金属毛细结构3之内及侧壁间隙54之中。侧壁间隙54中液相工作流体70的水位可能会高于多孔隙金属毛细结构3之内液相工作流体70的平均水位。
实际运作时,侧壁间隙54中的液相工作流体70和多孔隙金属毛细结构3之内的液相工作流体70朝向相同方向前进(图8箭头方向)。但是侧壁间隙54中的流体阻力较小,液相工作流体70流动速度较快;多孔隙金属毛细结构3之内的流体阻力较大,液相工作流体70流动速度较慢。侧壁间隙54中的液相工作流体70也可以补充至多孔隙金属毛细结构3内。
本发明的复合式毛细结构在反重力垂直吸水测试中,对于纯水的输送速度可达30mm/sec以上,远比铜网毛细结构的纯水输送速度快上两倍以上。对于薄型均温板元件的毛细力而言,具有显著的效益。
综上所述,本发明提供的复合式毛细结构,利用多孔隙金属毛细结构和沟槽侧壁之间的侧壁间隙来形成复合式毛细结构。由于侧壁间隙亦形成了长条型微沟槽毛细作用,对液相工作流体而言有很好的渗透率,同时侧壁间隙的存在也使得液相工作流体的在整个复合毛细结构的携带量增加,并加快液相工作流体由远端冷凝区往蒸发区的输送速度,进而提升了薄型均温板元件的热传导能力及解热功率。
藉由以上较佳具体实施例的详述,系希望能更加清楚描述本发明的特征与精神,而并非以上述所揭露的较佳具体实施例来对本发明的范畴加以限制。相反地,其目的是希望能涵盖各种改变及具相等性的安排于本发明所欲申请的专利范围的范畴内。因此,本发明所申请的专利范围的范畴应该根据上述的说明作最宽广的解释,以致使其涵盖所有可能的改变以及具相等性的安排。

Claims (10)

  1. 一种应用于薄型均温板的复合式毛细结构,其特征在于包含有:
    一第一金属片材,具有一沟槽结构,该沟槽结构具有一沟槽底面和两沟槽侧壁;以及
    一多孔隙金属毛细结构,连续性地形成于该沟槽结构内,该多孔隙金属毛细结构具有:
    一上表面,具有一中间凹陷区和两边缘突起区;
    一下表面,贴附于该沟槽底面;以及
    两侧表面,自该上表面向该下表面逐渐内缩,该些侧表面和该些沟槽侧壁之间具有一侧壁间隙。
  2. 如权利要求1所述的应用于薄型均温板的复合式毛细结构,其特征在于,该沟槽结构为一长条型沟槽结构,该长条型沟槽结构的深度介于0.05mm~0.50mm之间,该长条型沟槽的结构长度至少为30mm,且该长条型沟槽的结构宽度介于1.0mm~3.0mm之间。
  3. 如权利要求2所述的应用于薄型均温板的复合式毛细结构,其特征在于,进一步包含有一蒸发区和一远端冷凝区,其中该长条型沟槽结构的一端指向该蒸发区,该长条型沟槽结构的另一端指向该远端冷凝区。
  4. 如权利要求3所述的应用于薄型均温板的复合式毛细结构,其特征在于,该多孔隙金属毛细结构进一步分为一第一毛细结构和一第二毛细结构,该第一毛细结构设置于该蒸发区,且该第一毛细结构的孔隙率大于该第二毛细结构的孔隙率。
  5. 如权利要求1所述的应用于薄型均温板的复合式毛细结构,其特征在于,该多孔隙金属毛细结构的上表面的宽度大于下表面的宽度,该多孔隙金属毛细结构的上表面的宽度大于一个侧壁间隙的三倍宽度。
  6. 如权利要求1所述的应用于薄型均温板的复合式毛细结构,其特征在于,该多孔隙金属毛细结构的上表面和该沟槽侧壁之间距离介于10um~200um之间。
  7. 如权利要求1所述的应用于薄型均温板的复合式毛细结构,其特征在于,该沟槽结构上进一步设置有多个支撑柱,该多孔隙金属毛细结构进一步有多个穿孔对应该些支撑柱,且该些支撑柱和该多孔隙金属毛细结构之间具有一穿孔间隙。
  8. 如权利要求1所述的应用于薄型均温板的复合式毛细结构,其特征在于,该多孔隙金属毛细结构为一铜粉末烧结的毛细结构,该铜粉末烧结的毛细结构为一浆料经印刷、烘干、裂解和烧结工艺所制成,该浆料包含有多个金属铜粉末以及一聚合物胶体。
  9. 如权利要求1所述的应用于薄型均温板的复合式毛细结构,其特征在于,该 多孔隙金属毛细结构为一粉末烧结的毛细结构,该粉末烧结的毛细结构包含有多个由铜氧化物粉末烧结形成的链状铜构件和多个由铜粉末烧结形成的类球状铜构件,该些链状铜构件相互结合,该些类球状铜构件散布于该些链状铜构件之间,多个孔隙形成于该些链状铜构件及该些类球状铜构件之间。
  10. 如权利要求9所述的应用于薄型均温板的复合式毛细结构,其特征在于,该粉末烧结毛细结构为一浆料经印刷、烘干、裂解和烧结工艺所制成,该浆料包含有多个金属铜粉末、多个铜氧化物粉末以及一聚合物胶体。
PCT/CN2022/070470 2021-01-28 2022-01-06 应用于薄型均温板的复合式毛细结构 WO2022161131A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110114324.8 2021-01-28
CN202110114324.8A CN114812241B (zh) 2021-01-28 2021-01-28 应用于薄型均温板的复合式毛细结构

Publications (1)

Publication Number Publication Date
WO2022161131A1 true WO2022161131A1 (zh) 2022-08-04

Family

ID=82524821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070470 WO2022161131A1 (zh) 2021-01-28 2022-01-06 应用于薄型均温板的复合式毛细结构

Country Status (2)

Country Link
CN (1) CN114812241B (zh)
WO (1) WO2022161131A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489777A (en) * 1982-01-21 1984-12-25 Del Bagno Anthony C Heat pipe having multiple integral wick structures
TWM327021U (en) * 2007-08-30 2008-02-11 Tai Ye Technology Co Ltd Structure of isothermal plate with supporting members covered with capillary tissues
CN201772793U (zh) * 2010-08-24 2011-03-23 山东大学 一种平板热管
CN202329324U (zh) * 2011-10-26 2012-07-11 讯凯国际股份有限公司 薄型热管
TW201321706A (zh) * 2011-11-25 2013-06-01 Chaun Choung Technology Corp 均溫板複合毛細結構改良
CN103217039A (zh) * 2012-01-19 2013-07-24 奇鋐科技股份有限公司 热管散热结构
US20190353431A1 (en) * 2018-05-18 2019-11-21 Microsoft Technology Licensing, Llc Two-phase thermodynamic system having compensational wick geometry to enhance fluid flow
TWI708919B (zh) * 2019-10-31 2020-11-01 建準電機工業股份有限公司 均溫板及其毛細薄片
CN214502178U (zh) * 2021-01-28 2021-10-26 广州力及热管理科技有限公司 应用于薄型均温板的复合式毛细结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588463B (zh) * 2014-10-22 2018-12-07 奇鋐科技股份有限公司 薄型热管结构
CN105658032B (zh) * 2016-01-22 2019-06-04 白鹏飞 一种超薄均热板及其制作方法
CN111761050B (zh) * 2019-04-01 2022-06-03 广州力及热管理科技有限公司 以金属浆料制作毛细结构的方法
TWI742993B (zh) * 2021-01-28 2021-10-11 大陸商廣州力及熱管理科技有限公司 應用於薄型均溫板之複合式毛細結構

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489777A (en) * 1982-01-21 1984-12-25 Del Bagno Anthony C Heat pipe having multiple integral wick structures
TWM327021U (en) * 2007-08-30 2008-02-11 Tai Ye Technology Co Ltd Structure of isothermal plate with supporting members covered with capillary tissues
CN201772793U (zh) * 2010-08-24 2011-03-23 山东大学 一种平板热管
CN202329324U (zh) * 2011-10-26 2012-07-11 讯凯国际股份有限公司 薄型热管
TW201321706A (zh) * 2011-11-25 2013-06-01 Chaun Choung Technology Corp 均溫板複合毛細結構改良
CN103217039A (zh) * 2012-01-19 2013-07-24 奇鋐科技股份有限公司 热管散热结构
US20190353431A1 (en) * 2018-05-18 2019-11-21 Microsoft Technology Licensing, Llc Two-phase thermodynamic system having compensational wick geometry to enhance fluid flow
TWI708919B (zh) * 2019-10-31 2020-11-01 建準電機工業股份有限公司 均溫板及其毛細薄片
CN214502178U (zh) * 2021-01-28 2021-10-26 广州力及热管理科技有限公司 应用于薄型均温板的复合式毛细结构

Also Published As

Publication number Publication date
CN114812241B (zh) 2024-06-25
CN114812241A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN214502178U (zh) 应用于薄型均温板的复合式毛细结构
US20100181048A1 (en) Heat pipe
CN111465293A (zh) 一种超薄均热板及其制造方法
TWI784248B (zh) 一種用於製作均溫板中毛細結構之金屬漿料
TWI750769B (zh) 一種鏈狀銅金屬毛細結構及其製作方法
CN111761050B (zh) 以金属浆料制作毛细结构的方法
Chen et al. Fabrication and characterization of ultra-thin vapour chambers with printed copper powder wick
CN212324593U (zh) 一种超薄均热板
TWI742993B (zh) 應用於薄型均溫板之複合式毛細結構
CN110828404A (zh) 一种带凹穴结构的微通道均热板
CN114025562A (zh) 一种具有梯度吸液芯结构的均热板及其制备方法
WO2022161131A1 (zh) 应用于薄型均温板的复合式毛细结构
CN115371474A (zh) 具有船型多孔隙毛细结构的管形元件及热导管元件的制造方法
TWI789753B (zh) 一種具有船型多孔隙毛細結構之管形元件及熱導管
TWI747437B (zh) 兼具指向性液相流及非指向性氣相流之超薄均溫板元件
CN112414189B (zh) 一种适用于浇筑式毛细芯的平板式蒸发器
TWI783488B (zh) 具有船型多孔隙毛細結構之管形元件及熱導管元件之製造方法
TW202323752A (zh) 吸液芯製備方法及包含該吸液芯的熱管
CN115307468A (zh) 一种具有船型多孔隙毛细结构的管形元件及热导管
TWI827071B (zh) 超薄型均溫板元件結構及其製造方法
CN114812239B (zh) 具双相单向流的超薄型均温板元件
CN113976886A (zh) 多孔结构、均温板、其制作方法及应用
CN114659396B (zh) 图形化设计毛细结构元件及其制作方法
CN201131113Y (zh) 高效能导热装置
TWI807232B (zh) 均溫板結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745009

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/12/2023)