WO2022160925A1 - 一种伺服阀的控制方法及伺服阀机构 - Google Patents

一种伺服阀的控制方法及伺服阀机构 Download PDF

Info

Publication number
WO2022160925A1
WO2022160925A1 PCT/CN2021/134810 CN2021134810W WO2022160925A1 WO 2022160925 A1 WO2022160925 A1 WO 2022160925A1 CN 2021134810 W CN2021134810 W CN 2021134810W WO 2022160925 A1 WO2022160925 A1 WO 2022160925A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
curve
motion
actual
servo valve
Prior art date
Application number
PCT/CN2021/134810
Other languages
English (en)
French (fr)
Inventor
樊振华
Original Assignee
深圳市新嘉拓自动化技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市新嘉拓自动化技术有限公司 filed Critical 深圳市新嘉拓自动化技术有限公司
Priority to US18/263,526 priority Critical patent/US20240084915A1/en
Priority to KR1020237028873A priority patent/KR20230130146A/ko
Priority to JP2023546054A priority patent/JP2024504790A/ja
Priority to DE112021006949.7T priority patent/DE112021006949T5/de
Publication of WO2022160925A1 publication Critical patent/WO2022160925A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/047Actuating devices; Operating means; Releasing devices electric; magnetic using a motor characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/52Mechanical actuating means with crank, eccentric, or cam
    • F16K31/524Mechanical actuating means with crank, eccentric, or cam with a cam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/52Mechanical actuating means with crank, eccentric, or cam
    • F16K31/524Mechanical actuating means with crank, eccentric, or cam with a cam
    • F16K31/52408Mechanical actuating means with crank, eccentric, or cam with a cam comprising a lift valve
    • F16K31/5245Mechanical actuating means with crank, eccentric, or cam with a cam comprising a lift valve with a valve member of conical shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of servo valves, in particular to a control method of a servo valve and a servo valve mechanism.
  • the current intermittent coating generally relies on the cylinder to control the intermittent coating step valve to achieve intermittent coating.
  • This control method can achieve a coating speed of 15 m/min; some equipment is changed from pneumatic control to electric.
  • the driven intermittent coating step valve improves a certain coating speed. Under this control method, the coating speed of 15-20/min can be achieved, and the coating speed is improved. However, to continue to improve the intermittent coating speed encountered the bottleneck of electronic control response.
  • the acceleration and deceleration response limit time of servo start and stop is 5-6ms; when the intermittent coating speed is increased to more than 25-30m/min, the coating gap length is 5mm, and the actual start-stop time of the servo is close to 8ms, which has reached the servo limit Response time.
  • the opening and closing process of the servo valve cannot be subdivided and controlled by the electronic control method, and the coating speed cannot be further improved.
  • the existing intermittent coating control method has disadvantages such as uneven thickness of the coating head and tail, poor coating quality, etc., which is not conducive to improving the production quality of the battery.
  • the purpose of the present invention is to provide a new technical solution to solve the existing technical defects.
  • the present invention provides a servo valve control method and a servo valve mechanism, which solves the problem of servo limit response in the prior art, and can break through the servo limit existing in the prior art, enabling gap coating
  • the speed can break through the speed of 30m/min, and at the same time solve the defects of the existing technology such as poor uniformity of the thickness of the coating head and tail.
  • a control method of a servo valve which uses a drive motor to drive a cam to run, and uses the cam to drive the valve core plug of the servo valve to rise and fall to realize the opening and closing functions of the servo valve within the opening range. , select one of the actual active curves, control the cam to reciprocate in the selected actual active curve, and control the actual lifting stroke of the spool plug through the reciprocating motion of the cam in the actual active curve to realize the opening and closing functions of the servo valve.
  • the drive motor controls the cam to reciprocate within the actual activity curve selected by the cam, and the cam moves from the low point to the high point when it is turned on and from the high point to the low point when it is turned off.
  • the motion curve of the cam is a sine motion curve or a cosine motion curve or a compound motion curve composed of a sine motion curve and a cosine motion curve.
  • the rotation range from -90° to 0° is selected as the actual range of motion of the cam, and within the selected range of actual motion, the cam drives the valve core plug The speed is slow first and then fast.
  • the rotation range from -45° to 45° is selected as the actual range of motion of the cam, and within the selected range of actual motion, the cam drives the spool plug The speed is roughly uniform.
  • the rotation range from 0° to 90° is selected as the actual range of motion of the cam, and within the selected range of actual motion, the cam drives the spool plug The speed is fast first and then slow.
  • the actual movement curve of the reciprocating motion of the cam can be refined and intercepted in the above-mentioned three preferred movement curves, thereby forming 6, 9 or more subdivision movement combinations.
  • the present invention also provides a servo valve mechanism.
  • the servo valve mechanism includes a valve body and a drive motor.
  • the valve body is provided with a cam motion track guide block and a valve core plug, and the cam motion track guide block and the valve core plug are provided.
  • the output end of the drive motor is provided with a cam, the cam is movably connected with the cam motion track guide block and can drive the cam motion track guide block to slide in its guiding direction, the drive motor can drive the cam to run and further pass the cam Drive the cam movement track guide block and the valve core plug to move up and down, the actual movement curve of the drive motor driving the cam operation is a part of the theoretical movement curve of the cam, and the cam reciprocates in its actual movement curve.
  • the drive motor is a servo motor
  • the cam has two or more, and different valves can be selected from the three defined preferred motion curves according to the needs of the opening or closing time.
  • the movement curve of the cam forms more combination forms
  • the cam movement track guide block is connected with the valve core plug through the valve stem
  • the valve body is also provided with a valve core matching the valve core plug.
  • the present invention provides a control method and a servo valve mechanism for a servo valve.
  • the control method for a servo valve and the servo valve mechanism drive a cam to operate by driving a motor, and the cam drives the valve core to block during the operation.
  • the head moves up and down within the opening range to realize the opening and closing functions of the servo valve.
  • Within one circle of the theoretical active curve of the cam select one of the actual active curves, and control the cam to reciprocate within the selected actual active curve and pass the cam.
  • the reciprocating motion in the actual active curve controls the actual lifting stroke of the spool plug to realize the opening and closing functions of the servo valve.
  • This control method can solve the problem of the servo response limit of the existing servo valve, and can greatly improve the intermittent coating.
  • the coating speed of the cloth enables the coating speed of intermittent coating to reach or exceed 30m/min, and the coating efficiency is higher;
  • the servo valve control method can effectively alleviate the existing technical defects such as uneven thickness of the head and tail of the intermittent coating, poor quality of the coating head and tail, etc., which is beneficial to improve the coating quality, indirectly improve the quality of subsequent batteries, and improve the yield rate .
  • the servo valve control method and servo valve mechanism solve the problem of servo limit response existing in the prior art, can break through the servo limit existing in the prior art, and enable the gap coating speed to break through the speed of 30m/min, At the same time, the defects of the prior art such as poor thickness uniformity of the coating head and tail are solved.
  • Fig. 1 is the schematic diagram of cam motion curve in the present invention
  • Fig. 2 is the structural representation of the servo valve mechanism in the present invention
  • Fig. 3 is the structural schematic diagram of the valve stem structure of the servo valve in the present invention.
  • Figure 4 is a schematic diagram of the subdivision control of the cam motion curve below the limit response time.
  • Figure 5 is a schematic diagram of the subdivision control of the cam motion curve at the limit response time
  • Figure 6 is a schematic diagram of product head and tail feature defects.
  • the limit time of servo start-stop acceleration and deceleration response is 5-6ms, which is the limit performance and cannot be corrected in advance according to the law.
  • the length of the coating gap is 5mm, and the coating speed is increased to more than 30m/min.
  • the response time required by the servo valve is close to the servo limit response time.
  • the opening and closing process of the servo valve cannot be adjusted by software refinement parameters, and can only be controlled by the rigidity of the mechanism.
  • FIG. 6 shows a schematic cross-sectional view of the coating slurry for intermittent coating in 5.
  • the third type is that the coating head and tail are too thick, which is caused by excessive instantaneous feed; the second and fourth types are too thin or even missing, which is caused by the instantaneous insufficient supply.
  • the fifth type is the ideal coating state. The fifth one is the ideal state, which requires precise and refined control of the opening and closing of the servo valve.
  • the present invention provides a control method for a servo valve.
  • a driving motor is used to drive a cam to run, and a cam is used to drive the spool plug of the servo valve to rise and fall to realize the opening and closing of the servo valve within the opening range.
  • Function select one of the actual moving curves in one circle of the theoretical moving curve of the cam, control the cam to reciprocate within the selected actual moving curve, and control the actual lifting stroke of the spool plug through the reciprocating motion of the cam within the actual moving curve In order to realize the opening and closing function of the servo valve.
  • this servo valve Through the control method of this servo valve, it is possible to break through the speed of intermittent coating of more than 30m/min, achieve the goal of high-speed intermittent coating, and at the same time improve the supply balance of intermittent coating, make the thickness of intermittent coating materials consistent, and improve coating quality. .
  • the actual activity curve of the cam can be selected as a part of its theoretical activity curve and smaller than its theoretical activity curve, and the actual activity curve of the cam reciprocating motion is smaller than the theoretical activity curve of the cam.
  • one-third of the cam lift stroke can be used as its actual activity curve, which is defined as the basic valve spool opening, and the movement curve of the cam lifting can be subdivided. Proportion.
  • the appropriate cam actual activity curve can be selected from the theoretical activity curve of one cam circle, and the drive motor can be used to drive the cam to reciprocate within its actual activity curve, thereby controlling the spool plug. Lift and lower movement within the selected actual stroke.
  • the drive motor controls the cam to reciprocate within its selected actual movement curve, and the cam controls the movement speed of the spool plug in the process from the low point to the high point in the actual movement curve of the cam in three types: Slow then fast or fast then slow or roughly uniform.
  • FIG. 4 shows the running track of the cam and the corresponding rotation range and direction of the cam selected based on the concept of the present invention.
  • the trajectory 1 of the cam is first slow and then fast, the trajectory 2 of the cam is roughly uniform, the trajectory 3 of the cam is fast first and then slow, the trajectory 4 of the cam is fast first, then slow and then fast, and the trajectory 4 is a composite acceleration curve.
  • the rotation range from -90° to 0° is selected as the actual range of motion of the cam.
  • the speed at which the cam drives the spool plug is first slow and then fast.
  • the rotation range from -45° to 45° is selected as the actual range of motion of the cam.
  • the speed at which the cam drives the spool plug is approximately constant.
  • the rotation range from 0° to 90° is selected as the actual range of motion of the cam.
  • the speed at which the cam drives the spool plug is first fast and then slow.
  • the subdivision segment which is intercepted from the cam operation curve at 4 in FIG. 4 can also be formed as the actual operation curve of the cam and the actual operation of the cam.
  • track 5 in Figure 5 is the curve subdivision segment selected in the track 3, and is controlled by the cam inherent sine curve
  • the track 6 is the subdivision segment selected in the track 1, and is controlled by the cam cosine curve
  • track 7 It is a composite subdivision of the segmented acceleration curve, which means that the angle range of one of the above three types of preferred basic curves can be selected or reduced according to the actual valve spool opening, and 6 or 9 more subdivided curves can be derived. and angular range.
  • one-third of the lift stroke of the cam can be used as its actual activity curve, which is defined as the basic valve core opening, and the movement curve of the cam lifting can be subdivided, and other subdivision ratios can be derived based on the basic valve core opening .
  • the motion curve of the cam is a sine motion curve or a cosine motion curve or a compound motion curve formed by compounding a sine motion curve and a cosine motion curve.
  • the quality control of the thickness of the coating head and tail and the segmental control of the cam curve, as well as the matching of the viscosity and speed of the coating can effectively alleviate the defects of the existing technology in the thickness arrangement of the coating head and tail and the poor coating quality. , can improve the coating quality and coating consistency, and improve the product quality rate.
  • the present invention also provides a servo valve mechanism
  • the servo valve mechanism includes a valve body (not shown in the figure), a drive motor 1, and the valve body is provided with a cam motion track guide block 2 and The valve core plug 3, the cam movement track guide block 2 is connected with the valve core plug 3, the output end of the drive motor 1 is provided with a cam 4, and the cam 4 is movably connected with the cam movement track guide block 2 and can be The cam movement track guide block 2 is driven to slide in its guiding direction.
  • the drive motor 1 can drive the cam 4 to run and further drive the cam movement track guide block 2 and the valve core plug 3 to move up and down through the cam 4.
  • the drive motor 1 drives The actual movement curve of the cam 4 operation is a part of the theoretical movement curve of the cam 4 from the lowest point to the highest point, and the cam 4 reciprocates in its actual movement curve.
  • the drive motor 1 is a servo motor
  • the cam 4 has two or more than two different valves. According to the needs of the opening or closing time, each motion curve can be selected from the three defined motion laws. , to form more combinations.
  • the cam movement track guide block 2 is connected with the valve core plug 3 through the valve stem 5 , and a valve core 6 matching the valve core plug 3 is also arranged in the valve body.
  • the drive motor 1 drives the cam seat to rotate through the coupling
  • the cam 4 is installed on the cam seat
  • the cam motion track guide block 2 is provided with a cam installation through groove matching the cam 4
  • the cam 4 is movably arranged in the cam motion
  • the cam of the track guide block 2 is installed in the through groove.
  • the drive motor 1 listens to the coupling to drive the cam seat and the cam 4 to rotate.
  • the cam 4 drives the cam motion track guide block 2 to move in its guiding direction
  • the block 2 drives the valve core plug 3 to move up and down through the valve rod 5, so that the valve core plug 3 cooperates with the valve core 6 to realize the opening and closing functions of the servo valve.
  • this coating valve mechanism can break through the speed of intermittent coating of more than 30m/min, achieve the goal of high-speed intermittent coating, and at the same time improve the supply balance of intermittent coating, make the thickness of intermittent coating materials consistent, and improve coating quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Lift Valve (AREA)

Abstract

一种伺服阀的控制方法及伺服阀机构,其中伺服阀的控制方法,为采用驱动电机(1)带动凸轮(4)运转,利用凸轮(4)带动伺服阀的阀芯堵头(3)升降以实现伺服阀在开度范围内的开、闭功能,在凸轮(4)的一圈理论活动曲线内,选取其中一段实际活动曲线,控制凸轮(4)在选取的实际活动曲线内做往复运动并通过凸轮(4)在实际活动曲线内的往复运动控制阀芯堵头(3)实际升降行程以实现伺服阀的开、闭功能;伺服阀机构,包括阀体、驱动电机(1),阀体内设有凸轮运动轨迹导向块(2)及阀芯堵头(3)、阀杆(5)、及阀芯(6)。

Description

一种伺服阀的控制方法及伺服阀机构 技术领域
本发明涉及一种伺服阀领域,特别是一种伺服阀的控制方法及伺服阀机构。
背景技术
在锂电池涂布领域,目前的间歇涂布普遍依靠气缸控制间歇涂步阀的方式来实现间歇涂布,该种控制方法能够实现15米/min涂布速度;部分设备由气动控制改为电动驱动式间歇涂步阀,提升了一定涂布速度,在该种控制方法下,能够实现15-20/min涂布速度,涂布速度有所提升。然而,想要继续提升间歇涂布速度遇到了电控响应的瓶颈。
一般的,伺服启停加减速响应极限时间为5-6ms;当间歇式涂布速度提速至25-30m/min以上,涂布间隙长度为5mm,伺服实际启停时间接近8ms,已达到伺服极限响应时间。导致伺服阀开合过程无法用电控方法细分控制,涂布速度无法继续提升。
另外,现有的间歇式涂布控制方法在应用时存在涂布头尾厚度不均、涂布质量不佳等缺点,不利于提升电池的生产质量。
因此,如需要进一步提升间歇式涂布速度及涂布质量,需要提出新的技术方案。
有鉴于此,本发明的目的在于提供一种新的技术方案以解决现存的技术缺陷。
发明内容
为了克服现有技术的不足,本发明提供一种伺服阀的控制方法及伺服阀机构,解决了现有技术存在的伺服极限响应的问题,能够突破 现有技术存在的伺服极限,使间隙涂布速度能够突破30m/min的速度,同时解决现有技术存在涂布头尾厚度均匀性不佳等缺陷。
本发明解决其技术问题所采用的技术方案是:
一种伺服阀的控制方法,采用驱动电机带动凸轮运转,利用凸轮带动伺服阀的阀芯堵头升降以实现伺服阀在开度范围内的开、闭功能,在凸轮的一圈理论活动曲线内,选取其中一段实际活动曲线,控制凸轮在选取的实际活动曲线内做往复运动,并通过凸轮在实际活动曲线内的往复运动控制阀芯堵头实际升降行程以实现伺服阀的开、闭功能。
作为上述技术方案的改进,驱动电机控制凸轮在其选取的实际活动曲线内往复运动,凸轮在其实际活动曲线内,开启时由低点到高点及关闭时从高点到低点的过程中,凸轮控制阀芯堵头的活动速度类型具有三种:先慢后快或先快后慢或大致匀速。
作为上述技术方案的进一步改进,凸轮在其实际活动曲线内运动时,凸轮的运动曲线为正弦运动曲线或余弦运动曲线或由正弦运动曲线与余弦运动曲线复合而成的复合运动曲线。
作为上述技术方案的其中一种改进,在凸轮的运动曲线内,选取从-90°至0°的转动范围作为凸轮的实际活动范围,在选取的该实际活动范围内,凸轮带动阀芯堵头的速度为先慢后快。
作为上述技术方案的第二种改进,在凸轮的运动曲线内,选取从-45°至45°的转动范围作为凸轮的实际活动范围,在选取的该实际活动范围内,凸轮带动阀芯堵头的速度大致匀速。
作为上述技术方案的第三种改进,在凸轮的运动曲线内,选取从0°至90°的转动范围作为凸轮的实际活动范围,在选取的该实际活动范围内,凸轮带动阀芯堵头的速度为先快后慢。
作为上述技术方案的进一步改进,凸轮做往复运动的实际活动曲 线,可以在上述三种优选活动曲线内细化截取,继而形成6种、9种或更多的细分运动组合形式。
本发明还提供了一种伺服阀机构,该种伺服阀机构包括阀体、驱动电机,阀体内设有凸轮运动轨迹导向块及阀芯堵头,所述凸轮运动轨迹导向块与阀芯堵头连接,所述驱动电机的输出端设置有凸轮,所述凸轮与凸轮运动轨迹导向块活动连接并可驱动凸轮运动轨迹导向块在其导向方向滑动,所述驱动电机可驱动凸轮运转并进一步通过凸轮带动凸轮运动轨迹导向块及阀芯堵头升降运动,所述驱动电机驱动凸轮运转的实际活动曲线为凸轮一圈理论活动曲线的一部分,凸轮在其实际活动曲线中做往复运动。
作为上述技术方案的改进,所述驱动电机为伺服电机,所述凸轮具有两个或两个以上,不同的阀,可以根据开启或关闭时间的需要,在定义的三种优选运动曲线中选取各自的运动曲线,形成更多的组合形式,所述凸轮运动轨迹导向块通过阀杆与阀芯堵头连接,阀体内还设置有配合所述阀芯堵头的阀芯。
本发明的有益效果是:本发明提供了一种伺服阀的控制方法及伺服阀机构,该种伺服阀的控制方法及伺服阀机构通过驱动电机带动凸轮运转,凸轮在运转过程中带动阀芯堵头在开度范围内升降运动以实现伺服阀的开、闭功能,在凸轮的一圈理论活动曲线内,选取其中一段实际活动曲线,控制凸轮在选取的实际活动曲线内做往复运动并通过凸轮在实际活动曲线内的往复运动控制阀芯堵头实际升降行程以实现伺服阀的开、闭功能,通过该种控制方法能够解决现有伺服阀的伺服响应极限的问题,能够大幅度提升间歇涂布的涂布速度,使得间歇涂布的涂布速度能够达或超过到30m/min,涂布效率更高;
另外,通过该种伺服阀控制方法能够有效缓解现有间歇涂布头尾厚度不均、涂布头尾质量差等技术缺陷,有利于提升涂布质量,间接 提高后续的电池质量,提高良品率。
综上,该种伺服阀的控制方法及伺服阀机构解决了现有技术存在的伺服极限响应的问题,能够突破现有技术存在的伺服极限,使间隙涂布速度能够突破30m/min的速度,同时解决现有技术存在涂布头尾厚度均匀性不佳等缺陷。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1为本发明中凸轮运动曲线示意图;
图2为本发明中伺服阀机构的结构示意图;
图3为本发明中伺服阀阀杆结构的结构示意图;
图4为低于极限响应时间凸轮运动曲线细分控制示意图。
图5为极限响应时间凸轮运动曲线细分控制示意图
图6为产品头尾特征缺陷示意图。
具体实施方式
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。另外,专利中涉及到的所有联接/连接关系,并非单指构件直接相接,而是指可根据具体实施情况,通过添加或减少联接辅件,来组成更优的联接结构。本发明创造中的各个技术特征,在不互相矛盾冲突的前提下可以交互组合,参照图1-6。
在现有技术中,伺服启停加减速响应极限时间为5-6ms,为极限性能,无法根据规律提前修正。
间隙涂布间隙长度为5mm,涂布速度提升到30m/min以上,伺服 阀需要的响应时间接近伺服极限响应时间。
当伺服阀需要的响应时间接近伺服极限响应时间,伺服阀开合过程则无法通过软件细化参数调节,只能依靠机构刚性规律控制。
当伺服阀需要的响应时间接近伺服极限响应时间,则无法实现较短长度内涂布厚度精确控制。
参照图6,另一方面,在涂布间歇涂布过程中,涂布厚度状态如图6,图6中示出了5中间歇涂布的涂布浆料截面示意图,其中第1种和第3种是涂布头尾过厚,由于瞬时供料过量引起;第2种和第4种头尾厚度过薄甚至缺失,是由于瞬时供料不足引起。第5种为理想的涂布状态。其中第5种为理想状态,需要对伺服阀的开合精准细化控制。
上述的种种现有技术中存在的缺陷需要我们提出一种新的技术方案来解决上述的种种问题。
为此,参照图1,本发明提供了一种伺服阀的控制方法,采用驱动电机带动凸轮运转,利用凸轮带动伺服阀的阀芯堵头升降以实现伺服阀在开度范围内的开、闭功能,在凸轮的一圈理论活动曲线内,选取其中一段实际活动曲线,控制凸轮在选取的实际活动曲线内做往复运动并通过凸轮在实际活动曲线内的往复运动控制阀芯堵头实际升降行程以实现伺服阀的开、闭功能。
通过该种伺服阀的控制方法,能够突破间歇涂布30m/min以上速度,实现高速间歇涂布目标,同时提高间歇涂布的供料均衡性,使间歇涂布物料厚度一致,提升涂布质量。
应用时,凸轮的的实际活动曲线可以选取其理论活动曲线的一部分且小于其理论活动曲线,凸轮做往复运动的实际活动曲线小于凸轮的理论活动曲线。
一般情况下,可采用凸轮三分之一升降行程行程作为其实际活动 曲线,定义为基本阀芯开度,凸轮升降的运动曲线予以细分,基于基本阀芯开度可以衍生出的其他细分比例。
实际应用时,根据具体的应用及实施需要,可在凸轮一圈的理论活动曲线内选取合适的凸轮实际活动曲线,利用驱动电机驱动凸轮在其实际活动曲线内往复运动,进而控制阀芯堵头在选取的实际行程内升降运动。
优选地,驱动电机控制凸轮在其选取的实际活动曲线内往复运动,凸轮在其实际活动曲线内,由低点到高点的过程中,凸轮控制阀芯堵头的活动速度类型具有三种:先慢后快或先快后慢或大致匀速。
具体参照图1,当凸轮的实际活动曲线为图1中A框范围,那么凸轮驱动阀芯堵头的上升速度为先慢后快;当凸轮的实际活动曲线为图1中B框范围,那么凸轮驱动阀芯堵头的上升速度为大致匀速;当凸轮的实际活动曲线为图1中C框范围,那么凸轮驱动阀芯堵头的上升速度为先快后慢。
参照图4,图4是基于本发明构思下选取的凸轮的运行轨迹及对应的凸轮转动范围、方向。
图4中,凸轮的轨迹1为先慢后快,凸轮的轨迹2为大致匀速,凸轮的轨迹3为先快后慢,凸轮的轨迹4为先快后慢再快,轨迹4是一种复合的加速运行曲线。
参照图4中的轨迹1及图1中的区域A,作为其中第一种优选实施例,在凸轮的运动曲线内,选取从-90°至0°的转动范围作为凸轮的实际活动范围,在选取的该实际活动范围内,凸轮带动阀芯堵头的速度为先慢后快。
参照图4中的轨迹2及图1中的区域B,作为其中第二种优选实施例,在凸轮的运动曲线内,选取从-45°至45°的转动范围作为凸轮的实际活动范围,在选取的该实际活动范围内,凸轮带动阀芯堵头 的速度大致匀速。
参照图4中的轨迹3及图1中的区域C,作为其中第三种优选实施例,在凸轮的运动曲线内,选取从0°至90°的转动范围作为凸轮的实际活动范围,在选取的该实际活动范围内,凸轮带动阀芯堵头的速度为先快后慢。
除了上述三种优选的实施例外,还可以根据需要在图4中的4找那个凸轮运行曲线中截取其中的细分分段作为凸轮的实际运行曲线及凸轮的实际运行形成。
具体参照5,其中图5中轨迹5为轨迹3中选取的曲线细分分段,按凸轮固有正弦曲线控制;轨迹6为轨迹1中选取的细分分段,按凸轮余弦曲线控制;轨迹7为复合细分分段加速曲线,意味着可根据实际阀芯开度,选择或缩小上述三类优选基本曲线中某一类的角度范围,衍生出6种或9种等更细分的曲线、及角度范围。
优选地,可采用凸轮三分之一升降行程行程作为其实际活动曲线,定义为基本阀芯开度,凸轮升降的运动曲线予以细分,基于基本阀芯开度可以衍生出的其他细分比例。
优选地,凸轮在其实际活动曲线内运动时,凸轮的运动曲线为正弦运动曲线或余弦运动曲线或由正弦运动曲线与余弦运动曲线复合而成的复合运动曲线。
在实际实施时,对涂布头尾厚度质量控制和凸轮曲线分段控制,以及结合涂料粘度、速度进行匹配,能够有效缓解现有技术存在的涂布头尾厚度布置,涂布质量差的缺陷,能够提升涂布质量及涂布一致性,提高产品优良率。
具体参照图2、图3,本发明还提供了一种伺服阀机构,所述伺服阀机构包括阀体(图中未示出)、驱动电机1,阀体内设有凸轮运动轨迹导向块2及阀芯堵头3,所述凸轮运动轨迹导向块2与阀芯堵 头3连接,所述驱动电机1的输出端设置有凸轮4,所述凸轮4与凸轮运动轨迹导向块2活动连接并可驱动凸轮运动轨迹导向块2在其导向方向滑动,所述驱动电机1可驱动凸轮4运转并进一步通过凸轮4带动凸轮运动轨迹导向块2及阀芯堵头3升降运动,所述驱动电机1驱动凸轮4运转的实际活动曲线为凸轮4从其最低点到最高点的理论活动曲线的一部分,凸轮4在其实际活动曲线中做往复运动。
优选地,所述驱动电机1为伺服电机,所述凸轮4具有两个或两个以上,不同的阀,可以根据开启或关闭时间的需要,在定义的3种运动规律中选取各自的运动曲线,形成更多的组合形式。所述凸轮运动轨迹导向块2通过阀杆5与阀芯堵头3连接,阀体内还设置有配合所述阀芯堵头3的阀芯6。
具体地,驱动电机1通过联轴器带动凸轮座转动,凸轮4安装在凸轮座上,凸轮运动轨迹导向块2上设置有匹配所述凸轮4的凸轮安装通槽,凸轮4活动设置在凸轮运动轨迹导向块2的凸轮安装通槽内,开始工作后,驱动电机1听过联轴器带动凸轮座及凸轮4转动,凸轮4带动凸轮运动轨迹导向块2在其导向方向运动,凸轮运动轨迹导向块2通过阀杆5带动阀芯堵头3升降运动,从而使得阀芯堵头3与阀芯6配合实现伺服阀的开、闭功能。
通过该种涂布阀机构,能够突破间歇涂布30m/min以上速度,实现高速间歇涂布目标,同时提高间歇涂布的供料均衡性,使间歇涂布物料厚度一致,提升涂布质量。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种伺服阀的控制方法,其特征在于:采用驱动电机带动凸轮运转,利用凸轮带动伺服阀的阀芯堵头升降以实现伺服阀在开度范围内的开、闭功能,在凸轮的一圈理论活动曲线内,选取其中一段实际活动曲线,控制凸轮在选取的实际活动曲线内做往复运动并通过凸轮在实际活动曲线内的往复运动控制阀芯堵头实际升降行程以实现伺服阀的开、闭功能。
  2. 根据权利要求1所述的一种伺服阀的控制方法,其特征在于:驱动电机控制凸轮在其选取的实际活动曲线内往复运动,凸轮在其实际活动曲线内,由低点到高点的过程中,凸轮控制阀芯堵头的活动速度类型具有三种:先慢后快或先快后慢或大致匀速。
  3. 根据权利要求1所述的一种伺服阀的控制方法,其特征在于:凸轮在其实际活动曲线内运动时,凸轮的运动曲线为正弦运动曲线或余弦运动曲线或由正弦运动曲线与余弦运动曲线复合而成的复合运动曲线。
  4. 根据权利要求1所述的一种伺服阀的控制方法,其特征在于:在凸轮的运动曲线内,选取从-90°至0°的转动范围作为凸轮的实际活动范围,在选取的该实际活动范围内,凸轮带动阀芯堵头的速度为先慢后快。
  5. 根据权利要求1所述的一种伺服阀的控制方法,其特征在于:在凸轮的运动曲线内,选取从-45°至45°的转动范围作为凸轮的实际活动范围,在选取的该实际活动范围内,凸轮带动阀芯堵头的速度大致匀速。
  6. 根据权利要求1所述的一种伺服阀的控制方法,其特征在于:在凸轮的运动曲线内,选取从0°至90°的转动范围作为凸轮的实际活动范围,在选取的该实际活动范围内,凸轮带动阀芯堵头的速度为 先快后慢。
  7. 根据权利要求1所述的一种伺服阀的控制方法,其特征在于:可采用凸轮三分之一升降行程行程作为其实际活动曲线,定义为基本阀芯开度。
  8. 根据权利要求1所述的一种伺服阀的控制方法,其特征在于:凸轮做往复运动的实际活动曲线为凸轮的理论活动曲线的细化选段。
  9. 一种伺服阀机构,其特征在于:包括阀体、驱动电机(1),阀体内设有凸轮运动轨迹导向块(2)及阀芯堵头(3),所述凸轮运动轨迹导向块(2)与阀芯堵头(3)连接,所述驱动电机(1)的输出端设置有凸轮(4),所述凸轮(4)与凸轮运动轨迹导向块(2)活动连接并可驱动凸轮运动轨迹导向块(2)在其导向方向滑动,所述驱动电机(1)可驱动凸轮(4)运转并进一步通过凸轮(4)带动凸轮运动轨迹导向块(2)及阀芯堵头(3)升降运动,所述驱动电机(1)驱动凸轮(4)运转的实际活动曲线为凸轮(4)一圈理论活动曲线的一部分,凸轮(4)在其实际活动曲线中做往复运动。
  10. 根据权利要求9所述的一种伺服阀机构,其特征在于:所述驱动电机(1)为伺服电机,所述凸轮(4)具有两个或两个以上,不同的凸轮(4)在其运动过程中可以根据开启或关闭时间的需要,选取各自的运动曲线,形成更多的组合形式,所述凸轮运动轨迹导向块(2)通过阀杆(5)与阀芯堵头(3)连接,阀体内还设置有配合所述阀芯堵头(3)的阀芯(6)。
PCT/CN2021/134810 2021-01-29 2021-12-01 一种伺服阀的控制方法及伺服阀机构 WO2022160925A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/263,526 US20240084915A1 (en) 2021-01-29 2021-12-01 Servo valve control method and servo valve mechanism
KR1020237028873A KR20230130146A (ko) 2021-01-29 2021-12-01 서보 밸브의 제어 방법 및 서보 밸브 기구
JP2023546054A JP2024504790A (ja) 2021-01-29 2021-12-01 サーボバルブの制御方法及びサーボバルブ機構
DE112021006949.7T DE112021006949T5 (de) 2021-01-29 2021-12-01 Servoventil-Steuerverfahren und Servoventilmechanismus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110129337.2 2021-01-29
CN202110129337.2A CN112963601B (zh) 2021-01-29 2021-01-29 一种伺服阀的控制方法及伺服阀机构

Publications (1)

Publication Number Publication Date
WO2022160925A1 true WO2022160925A1 (zh) 2022-08-04

Family

ID=76272596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134810 WO2022160925A1 (zh) 2021-01-29 2021-12-01 一种伺服阀的控制方法及伺服阀机构

Country Status (6)

Country Link
US (1) US20240084915A1 (zh)
JP (1) JP2024504790A (zh)
KR (1) KR20230130146A (zh)
CN (1) CN112963601B (zh)
DE (1) DE112021006949T5 (zh)
WO (1) WO2022160925A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112963601B (zh) * 2021-01-29 2022-10-21 深圳市新嘉拓自动化技术有限公司 一种伺服阀的控制方法及伺服阀机构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105485414A (zh) * 2014-10-03 2016-04-13 爱默生过程管理调压器技术公司 用于阀的凸轮装置
CN108105425A (zh) * 2018-01-03 2018-06-01 江苏大族展宇新能源科技有限公司 伺服涂布上料阀
JP2019107633A (ja) * 2017-12-20 2019-07-04 株式会社ヒラノテクシード バルブ、そのバルブを用いた間欠塗工装置
CN210715966U (zh) * 2019-08-29 2020-06-09 东莞锂威能源科技有限公司 一种挤压涂布机阀组机构
CN210950110U (zh) * 2019-10-16 2020-07-07 无锡先导智能装备股份有限公司 一种阀门、涂布间歇阀以及涂布机构
CN112963601A (zh) * 2021-01-29 2021-06-15 深圳市新嘉拓自动化技术有限公司 一种伺服阀的控制方法及伺服阀机构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202129186U (zh) * 2011-05-11 2012-02-01 东莞市九州浩德新能源设备有限公司 挤压式间歇涂布机及其涂布装置
CN108180049B (zh) * 2017-12-27 2020-04-03 东风汽车集团有限公司 双轴多滚轮摇臂式可变气门升程机构
CN108591418A (zh) * 2018-06-15 2018-09-28 深圳市益思精密五金有限公司 高压恒流泵、其凸轮以及降低压力脉动的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105485414A (zh) * 2014-10-03 2016-04-13 爱默生过程管理调压器技术公司 用于阀的凸轮装置
JP2019107633A (ja) * 2017-12-20 2019-07-04 株式会社ヒラノテクシード バルブ、そのバルブを用いた間欠塗工装置
CN108105425A (zh) * 2018-01-03 2018-06-01 江苏大族展宇新能源科技有限公司 伺服涂布上料阀
CN210715966U (zh) * 2019-08-29 2020-06-09 东莞锂威能源科技有限公司 一种挤压涂布机阀组机构
CN210950110U (zh) * 2019-10-16 2020-07-07 无锡先导智能装备股份有限公司 一种阀门、涂布间歇阀以及涂布机构
CN112963601A (zh) * 2021-01-29 2021-06-15 深圳市新嘉拓自动化技术有限公司 一种伺服阀的控制方法及伺服阀机构

Also Published As

Publication number Publication date
KR20230130146A (ko) 2023-09-11
CN112963601B (zh) 2022-10-21
DE112021006949T5 (de) 2023-11-16
JP2024504790A (ja) 2024-02-01
US20240084915A1 (en) 2024-03-14
CN112963601A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2022160925A1 (zh) 一种伺服阀的控制方法及伺服阀机构
CN202178333U (zh) 一种蓄电池极板吸盘机构
CN103614496B (zh) 一种数控设备
CN202356258U (zh) 一种涂布机间隙调节机构
CN112943972A (zh) 一种串联式伺服阀机构
CN206474731U (zh) 一种铝带分切机
CN210501546U (zh) 一种新型惯量可控压力机
CN104329136A (zh) 连续可变气门升程控制装置
CN204611063U (zh) 一种凸轮驱动机构
CN203018276U (zh) 一种碱性电池封口剂涂布装置
CN103406622A (zh) 一种双丝筒多层绕丝往复走丝线切割机床走丝机构
CN203368170U (zh) 分体式转子
CN102294525A (zh) 电火花加工微细倒锥孔的锥角滚摆机构
CN110145381A (zh) 一种应用于内燃机可变气门升程系统的锁止机构
CN202845495U (zh) 多盘连续绕线装置
CN102688955A (zh) 一种液压收口机
CN110043340A (zh) 一种用于内燃机的vvl凸轮轴锁止结构
CN204578315U (zh) 一种定子绕线装置
CN202677984U (zh) 全自动并丝机伺服排线机构
CN202388087U (zh) H型钢翼缘板手动切割装置
CN204082251U (zh) 连续可变气门升程控制装置
CN2781137Y (zh) 电子膨胀阀的止动机构
CN219496919U (zh) 一种新型锚链制链机组旋转机控制装置
CN202219365U (zh) 电火花加工微细倒锥孔的锥角滚摆机构
CN220879405U (zh) 一种双针筒切换机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922515

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546054

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18263526

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237028873

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237028873

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 112021006949

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922515

Country of ref document: EP

Kind code of ref document: A1