WO2022160871A1 - 像素结构、显示基板及其驱动方法、显示装置 - Google Patents

像素结构、显示基板及其驱动方法、显示装置 Download PDF

Info

Publication number
WO2022160871A1
WO2022160871A1 PCT/CN2021/130807 CN2021130807W WO2022160871A1 WO 2022160871 A1 WO2022160871 A1 WO 2022160871A1 CN 2021130807 W CN2021130807 W CN 2021130807W WO 2022160871 A1 WO2022160871 A1 WO 2022160871A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
filter unit
unit
distance
Prior art date
Application number
PCT/CN2021/130807
Other languages
English (en)
French (fr)
Inventor
徐飞
洪俊
李京勇
王颜彬
田文红
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/802,540 priority Critical patent/US11832491B2/en
Publication of WO2022160871A1 publication Critical patent/WO2022160871A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the embodiments of the present disclosure relate to, but are not limited to, the field of display technology, and in particular, relate to a pixel structure, a display substrate, a method for driving the same, and a display device.
  • OLED display devices have the advantages of thin thickness, light weight, wide viewing angle, active light emission, continuously adjustable light emission color, low cost, fast response speed, low driving voltage, wide operating temperature range, production With the advantages of simple process and flexible display, it is more and more widely used in display fields such as mobile phones, tablet computers, and digital cameras.
  • an embodiment of the present disclosure provides a pixel structure, including: a plurality of pixel units; wherein each pixel unit includes: a first sub-pixel, a second sub-pixel, a third sub-pixel and a center sub-pixel, the center sub-pixel
  • the sub-pixel is located inside the area enclosed by the first sub-pixel, the second sub-pixel and the third sub-pixel; the central sub-pixel in the same pixel unit and at least one of the first sub-pixel, the second sub-pixel and the third sub-pixel
  • the minimum distance between one is smaller than the distance between two adjacent pixel units.
  • an embodiment of the present disclosure provides a display substrate, including: a base substrate, a pixel driving circuit, and the pixel structure in the above-mentioned embodiments, which are stacked in sequence.
  • an embodiment of the present disclosure provides a method for driving a display substrate, wherein the display substrate is the display substrate in the foregoing embodiments;
  • the driving method includes: for at least one pixel unit in the plurality of pixel units, in a data writing stage, a first sub-pixel, a second sub-pixel and a third sub-pixel in the at least one pixel unit are sent to the first sub-pixel, the second sub-pixel and the third sub-pixel in the at least one pixel unit through a pixel driving circuit.
  • At least one of the input data signals; in the data writing stage and the light-emitting stage after the data writing stage, a high-impedance state signal is input to the central sub-pixel through the pixel driving circuit, so as to connect the first sub-pixel in the at least one pixel unit.
  • the leakage current between at least one of the pixel, the second sub-pixel and the third sub-pixel and the central sub-pixel is led to the central sub-pixel to drive the central sub-pixel to emit light.
  • an embodiment of the present disclosure provides a display device, including: the display substrate in the above embodiment.
  • 1A is a schematic diagram of a pixel structure in some techniques
  • FIG. 1B is another schematic diagram of a pixel structure in some technologies
  • FIG. 2 is a schematic structural diagram of a pixel structure in an embodiment of the disclosure
  • FIG. 3 is another schematic structural diagram of a pixel structure in an embodiment of the disclosure.
  • FIG. 4 is still another structural schematic diagram of a pixel structure in an embodiment of the disclosure.
  • FIG. 5 is another structural schematic diagram of a pixel structure in an embodiment of the disclosure.
  • FIG. 6A is a partial structural schematic diagram of the A-A’ cross-section when the display substrate includes the pixel structure shown in FIG. 5 according to an embodiment of the disclosure;
  • 6B is a schematic diagram of a partial structure of a cross-section B-B' when the display substrate includes the pixel structure shown in FIG. 5 in an embodiment of the disclosure;
  • FIG. 7 is a signal timing diagram of a method for driving a display substrate according to an embodiment of the disclosure.
  • a transistor refers to an element including at least three terminals of a gate electrode, a drain electrode, and a source electrode.
  • a transistor has a channel region between a drain electrode (drain electrode terminal, drain region, or drain electrode) and a source electrode (source electrode terminal, source region, or source electrode), and current can flow through the drain electrode, the channel region, and the source electrode .
  • the channel region refers to a region through which current mainly flows.
  • the functions of the "source electrode” and the “drain electrode” may be interchanged when using transistors of opposite polarities or when the direction of the current changes during circuit operation. Therefore, herein, “source electrode” and “drain electrode” may be interchanged with each other.
  • an embodiment of the present disclosure provides a pixel structure
  • the pixel structure may include: a plurality of pixel units; wherein each pixel unit may include: a first sub-pixel, a second sub-pixel, a third sub-pixel and a center sub-pixel, the center sub-pixel
  • the sub-pixel is located inside the area enclosed by the first sub-pixel, the second sub-pixel and the third sub-pixel; the central sub-pixel in the same pixel unit and at least one of the first sub-pixel, the second sub-pixel and the third sub-pixel
  • the minimum distance between one is smaller than the distance between two adjacent pixel units.
  • the central sub-pixel in the same pixel unit by arranging the central sub-pixel in the same pixel unit to be located within the area enclosed by the first sub-pixel, the second sub-pixel and the third sub-pixel, in a single pixel unit, the first sub-pixel, the second sub-pixel and the third sub-pixel can surround the central sub-pixel, and since the minimum distance between the central sub-pixel and at least one of the first sub-pixel, the second sub-pixel and the third sub-pixel in the same pixel unit is less than The distance between two adjacent pixel units, then, when holes are injected into at least one of the first sub-pixel, the second sub-pixel and the third sub-pixel in the same pixel unit, the leakage current will flow. To the central sub-pixel, in this way, the leakage current can be used to make the central sub-pixel emit light. Therefore, transmittance and luminous efficiency can be improved, and power consumption can be reduced.
  • the geometric center of the central sub-pixel may coincide with the geometric center of the area enclosed by the first sub-pixel, the second sub-pixel and the third sub-pixel.
  • the minimum distance between the central sub-pixel and the first sub-pixel in the same pixel unit is the first distance; the distance between the central sub-pixel and the second sub-pixel in the same pixel unit is the first distance; The minimum distance is the second distance; the minimum distance between the central sub-pixel and the third sub-pixel in the same pixel unit is the third distance; the distance between two adjacent pixel units is the fourth distance; the same pixel
  • the minimum distance between the central sub-pixel in the unit and at least one of the first sub-pixel, the second sub-pixel and the third sub-pixel is smaller than the distance between two adjacent pixel units, which may include: the first distance and the The ratio of the fourth distance may be about 0.4 to 0.6, the ratio of the second distance to the fourth distance may be about 0.4 to 0.6, and the ratio of the third distance to the fourth distance may be about one or more of 0.4 to 0.6 kind.
  • the shape of the pixel unit may be a polygon, such as a triangle or a rectangle.
  • the shape of the first sub-pixel may be a polygon, such as a triangle or a rectangle.
  • the shape of the second sub-pixel may be a polygon, such as a triangle or a rectangle.
  • the shape of the third sub-pixel may be a polygon, such as a triangle or a rectangle.
  • the shape of the central sub-pixel may be a polygon, such as a triangle or a rectangle.
  • the shapes of the first sub-pixel, the second sub-pixel, the third sub-pixel, and the center sub-pixel and the shape of each pixel unit may be a triangle.
  • the shape of the first sub-pixel, the second sub-pixel, the third sub-pixel and the central sub-pixel in each pixel unit and the shape of each pixel unit may be an isosceles triangle.
  • the shapes of the first sub-pixel, the second sub-pixel, the third sub-pixel and the central sub-pixel in each pixel unit and the shape of each pixel unit may be a right triangle.
  • the shapes of the first sub-pixel, the second sub-pixel, the third sub-pixel and the central sub-pixel in each pixel unit and the shape of each pixel unit and the shape of each pixel unit are possible, for example, equilateral triangles or isosceles right triangles, etc. This embodiment of the present disclosure does not limit this.
  • the shape of the pixel unit and the sub-pixels in the pixel unit is designed as a triangle, and the central sub-pixel in the same pixel unit is set to be located inside the area enclosed by the first sub-pixel, the second sub-pixel and the third sub-pixel , so that in a single pixel unit, the first sub-pixel, the second sub-pixel and the third sub-pixel surround the three sides of the central sub-pixel, and because the central sub-pixel in the same pixel unit and the first sub-pixel,
  • the minimum distance between at least one of the second sub-pixel and the third sub-pixel is smaller than the distance between two adjacent pixel units, then, the first sub-pixel, the second sub-pixel and the When holes are injected into at least one of the third sub-pixels, the leakage current will flow to the corresponding central sub-pixel, so that the central sub-pixel can emit light by utilizing the leakage current. Therefore, transmittance and luminous efficiency can be improved, and power consumption can be reduced. Also, the cross-color problem between the first sub-
  • the areas of the first sub-pixel, the second sub-pixel and the third sub-pixel in the same pixel unit may all be larger than the area of the central sub-pixel.
  • the areas of the first sub-pixel, the second sub-pixel and the third sub-pixel in the same pixel unit are equal.
  • the central sub-pixel, the first sub-pixel, the second sub-pixel and the third sub-pixel in the same pixel unit have different emission colors.
  • the emission color of the central subpixel is any one of white and yellow; the emission color of the first subpixel is any one of red, green and blue; the emission color of the second subpixel is red, green and blue Any one of; the emission color of the third sub-pixel is any one of red, green and blue, and the emission colors of the first sub-pixel, the second sub-pixel and the third sub-pixel are different.
  • the pixel structure provided by the embodiment of the present disclosure is described below by taking the shape of the pixel unit as a triangle, and taking the shape of the first sub-pixel, the second sub-pixel, the third sub-pixel, and the center sub-pixel in the pixel unit as triangles as an example. illustrate.
  • FIG. 2 is a schematic structural diagram of a pixel structure in an embodiment of the disclosure.
  • FIG. 2 shows two pixel units in the pixel structure, including: a first pixel unit 20 and a second pixel unit 21.
  • the shapes of the first pixel unit 20 and the second pixel unit 21 are both isosceles triangles, and both the first pixel unit 20 and the second pixel unit 21 may include: a first sub-pixel P1, a second sub-pixel P2, A third sub-pixel P3 and a central sub-pixel Pc are in the same pixel unit, and the central sub-pixel Pc is located in the area enclosed by the first sub-pixel P1, the second sub-pixel P2 and the third sub-pixel P3.
  • FIG. 2 shows two pixel units in the pixel structure, including: a first pixel unit 20 and a second pixel unit 21.
  • the shapes of the first pixel unit 20 and the second pixel unit 21 are both isosceles triangles, and both the first pixel unit 20 and the second pixel
  • the shapes of the first sub-pixel P1 , the second sub-pixel P2 , the third sub-pixel P3 and the central sub-pixel Pc in the first pixel unit 20 and the second pixel unit 21 are all isosceles triangles.
  • 2 pixel units may form a repeating structure in the shape of a rhombus.
  • FIG. 3 is another schematic structural diagram of a pixel structure in an embodiment of the disclosure.
  • FIG. 3 shows two pixel units in the pixel structure, including: a first pixel unit 20 and a second pixel Unit 21, the shape of the first pixel unit 20 and the second pixel unit 21 are both right triangles, and both the first pixel unit 20 and the second pixel unit 21 may include: a first sub-pixel P1, a second sub-pixel P2, A third sub-pixel P3 and a central sub-pixel Pc; in the same pixel unit, the central sub-pixel Pc is located in the area enclosed by the first sub-pixel P1, the second sub-pixel P2 and the third sub-pixel P3;
  • the shapes of the first sub-pixel P1 , the second sub-pixel P2 , the third sub-pixel P3 and the central sub-pixel Pc in one pixel unit 20 and the second pixel unit 21 are all right triangles.
  • 2 pixel units may form a repeating structure in the shape
  • the pixel unit may include: a first sub-pixel P1, a second sub-pixel P2, a The third subpixel P3 and one central subpixel Pc, wherein the central subpixel Pc may include: a first side 201 (eg, a bottom side), a second side 202 (eg, a waist), and a third side 203 (eg, a waist) ); the first sub-pixel P1 may include: a fourth side 204 (eg, a bottom side), a fifth side 205 (eg, a waist), and a sixth side 206 (eg, a waist), and the fourth side 204 and the first side 201 Correspondingly adjacent; the second sub-pixel P2 may include: a seventh side 207 (eg, a bottom side), an eighth side 208 (eg, a waist), and a ninth side 209 (eg, a waist), the seventh side 207 and
  • the center sub-pixel Pc can be arranged on the fourth side 204 of the first sub-pixel P1 and the second sub-pixel Inside the polygonal area enclosed by the seventh side 207 of P2 and the tenth side 210 of the third sub-pixel P3.
  • the distance between the fourth side 204 and the first side 201 (that is, the minimum distance between the central sub-pixel Pc and the first sub-pixel P1 in the first pixel unit 20 ) is the first distance d1, and the seventh side 207
  • the distance from the second side 202 (that is, the minimum distance between the central sub-pixel Pc and the second sub-pixel P2 in the first pixel unit 20 ) is the second distance d2
  • the distance between the tenth side 210 and the third side 203 The distance between them (ie, the minimum distance between the central sub-pixel Pc and the third sub-pixel P3 in the first pixel unit 20 ) is the third distance d3 .
  • the third distance d3 As shown in FIG.
  • the distance between the first pixel unit 20 and the second pixel unit 21 (that is, the distance between two adjacent pixel units) is the fourth distance d4, then, the center in the same pixel unit
  • the minimum distance between the sub-pixel and at least one of the first sub-pixel, the second sub-pixel and the third sub-pixel is smaller than the distance between two adjacent pixel units, which may include: the first distance d1 is smaller than the fourth distance Any one or more of d4, the second distance d2 is smaller than the fourth distance d4, and the third distance d3 is smaller than the fourth distance d4.
  • the first distance d1, the second distance d2, and the third distance d3 may be equal. In this way, the leakage current can be uniformly flowed to the central sub-pixel, thereby more effectively improving the transmittance and luminous efficiency, and reducing power consumption.
  • the ratio of the first distance d1 to the fourth distance d4 may be about 0.4 to 0.6.
  • the ratio of the first distance d1 to the fourth distance d4 may be about 0.5.
  • the ratio of the second distance d2 to the fourth distance d4 may be approximately 0.4 to 0.6.
  • the ratio of the second distance d2 to the fourth distance d4 may be about 0.5.
  • the ratio of the third distance d3 to the fourth distance d4 may be about 0.4 to 0.6.
  • the ratio of the second distance d2 to the fourth distance d4 may be about 0.5.
  • the size information of the pixel structure can be set as follows:
  • the distance between the central sub-pixel and the first sub-pixel in the same pixel unit may be about 0.6 ⁇ m (micrometer).
  • the distance between the fourth side 204 and the first side 201 may be about 0.6 ⁇ m (micrometer). is 0.6 ⁇ m;
  • the distance between the central sub-pixel and the second sub-pixel in the same pixel unit may be about 0.6 ⁇ m, for example, as shown in FIG. 4 , the distance between the seventh side 207 and the second side 202 may be about 0.6 ⁇ m ;
  • the distance between the central sub-pixel and the third sub-pixel in the same pixel unit may be about 0.6 ⁇ m, for example, as shown in FIG. 4 , the distance between the tenth side 210 and the third side 203 may be about 0.6 ⁇ m ;
  • the distance between two adjacent pixel units may be about 1.20 ⁇ m, for example, as shown in FIG. 2 , the fourth distance d4 may be about 1.20 ⁇ m;
  • the first sub-pixel, the second sub-pixel and the third sub-pixel can all be isosceles triangles with a base of about 10.58 ⁇ m and a side of about 7.48 ⁇ m.
  • the fourth side 204 and the seventh side 207 and the tenth side 210 may be about 10.58 ⁇ m
  • the fifth side 205 , the sixth side 206 , the eighth side 208 , the ninth side 209 , the eleventh side 211 and the twelfth side 212 may be about 7.48 ⁇ m;
  • the center subpixel may be an isosceles triangle with a base of about 6.64 ⁇ m and a side of about 4.69 ⁇ m.
  • the first side 201 may be about 6.64 ⁇ m
  • the second side 202 and the third side 203 may be about 6.64 ⁇ m. about 4.69 ⁇ m;
  • the minimum distance between two adjacent vertices in the first sub-pixel, the second sub-pixel and the third sub-pixel may be twice the fifth distance g.
  • the fifth distance g may be about 0.85 ⁇ m.
  • the emission colors of the first sub-pixel P1, the second sub-pixel P2 and the third sub-pixel P3 may be any of red (R), green (G) and blue (B), respectively One.
  • the arrangement order of the emission colors of the first sub-pixel P1, the second sub-pixel P2 and the third sub-pixel P3 can be set arbitrarily, for example, red (R), green (G) and blue (B) can be respectively Corresponding to the third sub-pixel P3, the first sub-pixel P1 and the second sub-pixel P2, or, red (R), green (G) and blue (B) may correspond to the first sub-pixel P1, the third sub-pixel P1, the third sub-pixel
  • the pixel P3 and the second sub-pixel P2, or red (R), green (G), and blue (B) may correspond to the second sub-pixel P2, the third sub-pixel P3, and the first sub-pixel P1, etc., respectively.
  • the disclosed embodiments do not limit this.
  • the emission color of the central sub-pixel Pc may be a color other than red, green and blue, for example, the emission color of the central sub-pixel Pc may be any one of white and yellow.
  • the emission color of the central subpixel Pc may be white, the emission color of the first subpixel P1 is green, the emission color of the second subpixel P2 is blue, and the emission color of the third subpixel P3 is red.
  • the white sub-pixel inside the area enclosed by the red sub-pixel, the green sub-pixel and the blue sub-pixel, not only the transmittance and light efficiency of the device can be improved, but also the color mixing effect can be improved, thereby improving the display image. quality.
  • An embodiment of the present disclosure provides a display substrate, and in a direction perpendicular to the display substrate, the display substrate may include: a substrate substrate, a pixel driving circuit, and the pixel structure in one or more of the foregoing embodiments stacked in sequence.
  • the first sub-pixel may include: first light-emitting elements stacked in sequence and a first filter unit; the second sub-pixel may include: a second light-emitting element and a second filter unit stacked in sequence; the third sub-pixel may include: a third light-emitting element and a third filter unit stacked in sequence
  • the central sub-pixel may include: a central light-emitting element and a central filter unit stacked in sequence; the orthographic projection of the central filter unit on the substrate is related to the first filter unit, the second filter unit and the third filter unit The orthographic projections on the base substrate all have overlapping regions.
  • the colors of the central filter unit, the first filter unit, the second filter unit and the third filter unit in the same pixel unit are different.
  • the central filter unit may be any one of the white filter unit and the yellow filter unit;
  • the first filter unit may be any one of the red filter unit, the green filter unit and the blue filter unit;
  • the first filter unit may be any one of the red filter unit, the green filter unit and the blue filter unit;
  • the second filter unit can be any one of the red filter unit, the green filter unit and the blue filter unit;
  • the third filter unit can be any one of the red filter unit, the green filter unit and the blue filter unit anyone.
  • the arrangement order of the central filter unit, the first filter unit, the second filter unit and the third filter unit can be set arbitrarily, for example, the red filter unit, the green filter unit and the blue filter unit may correspond to the third filter unit, the first filter unit and the second filter unit respectively, or the red filter unit, the green filter unit and the blue filter unit may respectively correspond to the first filter unit, the first filter unit and the second filter unit.
  • the three filter units and the second filter unit, or the red filter unit, the green filter unit and the blue filter unit may respectively correspond to the second filter unit, the third filter unit and the first filter unit, etc. , which is not limited in this embodiment of the present disclosure.
  • FIG. 5 is another structural schematic diagram of the pixel structure in the embodiment of the disclosure.
  • the white sub-pixel W corresponds to the central sub-pixel Pc, the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B Taking respectively the third sub-pixel P3, the first sub-pixel P1 and the second sub-pixel P2 as an example, 8 pixel units in the pixel structure are shown.
  • the structure of the display substrate will be described below by taking the display substrate including the pixel structure as shown in FIG. 5 as an example.
  • FIG. 6A is a schematic diagram of a partial structure of a cross section AA′ when the display substrate includes the pixel structure shown in FIG. 5 according to the embodiment of the disclosure
  • FIG. 6B is the display substrate according to the embodiment of the disclosure including the pixel structure shown in FIG. 5 .
  • the display substrate may include: a base substrate 10 , a pixel driving circuit 11 disposed on the base substrate 10 , and a pixel driving circuit 11 disposed away from the substrate.
  • the pixel driving circuit 11 may include a plurality of pixel circuits configured to drive a plurality of light emitting elements in a subsequently formed pixel structure.
  • the transistor T1 in each pixel circuit in the pixel driving circuit 11 is schematically shown in FIGS. 6A and 6B , and the transistor T1 is configured to be coupled with a subsequently formed light-emitting element.
  • the pixel driving circuit 11 may further include various wirings such as scan signal lines and data signal lines, which are not limited in this embodiment of the present disclosure.
  • the base substrate 10 may be a silicon-based base substrate, but is not limited thereto.
  • each of the transistors T1 in the pixel driving circuit 11 may include a gate electrode G, a source electrode S and a drain electrode D.
  • the three electrodes are respectively electrically connected to the three electrode connecting parts, for example, through a tungsten metal-filled via hole (ie, a tungsten via hole, W-via) for electrical connection; further, the three electrodes can be respectively connected through corresponding electrodes
  • the connection portion is electrically connected to other electrical structures (eg, transistors, wires, light-emitting elements, etc.).
  • the pixel structure 12 may include: a plurality of light emitting elements 13 formed on the pixel driving circuit 11 .
  • each light-emitting element 13 may include a first electrode 131 (eg, serving as an anode), an organic light-emitting functional layer 132 and a second electrode 133 (eg, serving as a cathode) stacked in sequence.
  • the first electrode 131 can be electrically connected to the source electrode S of the corresponding transistor T1 through a tungsten via hole (via the connection portion corresponding to the source electrode S), where the positions of the source electrode S and the drain electrode D can be interchanged, that is, the first An electrode 131 can be replaced to be electrically connected to the drain electrode D.
  • the organic light-emitting function 132 may include an organic light-emitting layer and one or more of an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer.
  • the second electrode 133 may be a transparent electrode.
  • the second electrode 133 may be a common electrode, that is, the second electrode 133 shared by a plurality of light emitting elements 13 on a whole surface.
  • the pixel structure 12 may further include: a first encapsulation layer 14 , a The color filter layer 15 , the second encapsulation layer 16 , and the display substrate may further include: a cover plate 17 disposed on the side of the second encapsulation layer 16 away from the base substrate 11 .
  • the color filter layer 15 may include a plurality of filter units, and one filter unit and one corresponding light-emitting element may be divided into one sub-pixel.
  • the first encapsulation layer 14 and the second encapsulation layer 16 may be any one or more of polymer and ceramic thin film encapsulation layers, but are not limited thereto.
  • the material of the filter unit may be photoresist, but is not limited thereto.
  • the cover plate 17 may be a glass cover plate, but is not limited thereto.
  • the color filter layer 15 may include a red filter unit R, a green filter unit G, a blue filter unit B, and a white filter unit W.
  • the red filter unit R, the green filter unit G, the blue filter unit B and the white filter unit W may respectively correspond to the red sub-pixel, the green sub-pixel, the blue sub-pixel and the white sub-pixel.
  • the color filter layer when preparing the color filter layer, can be a two-layer photoresist, wherein the green photoresist layer for forming the green filter unit G and the red photoresist layer for forming the red filter unit R are prepared first. A photoresist layer is formed to form a first layer of photoresist; then, a white photoresist layer for forming the white filter unit W and a blue photoresist layer for forming the blue filter unit B are prepared to form The second layer of photoresist.
  • the first sub-pixel, the second sub-pixel and the third sub-pixel may be sub-pixels of different colors among red sub-pixels, green sub-pixels, and blue sub-pixels, for example,
  • the color-resist overlapping structure of the filter layer may include the following structure: inside a single pixel unit, the orthographic projection of the white photoresist layer corresponding to the white sub-pixel on the base substrate is the blue sub-pixel adjacent to the white sub-pixel.
  • the orthographic projections of the blue photoresist layer corresponding to the pixel, the green photoresist layer corresponding to the green sub-pixel, and the red photoresist layer corresponding to the red sub-pixel on the substrate have overlapping areas (at this time, the white sub-pixel is located at The area enclosed by the blue sub-pixel, green sub-pixel and red sub-pixel); between two adjacent pixel units, when the red sub-pixel is adjacent to the green sub-pixel, the red sub-pixel corresponding to the red sub-pixel
  • the orthographic projection of the photoresist layer on the base substrate is in contact with the orthographic projection of the green photoresist layer corresponding to the green sub-pixel on the base substrate, but there is no overlapping area; between two adjacent pixel units, When the blue sub-pixel is adjacent to the green sub-pixel, the orthographic projection of the blue photoresist layer corresponding to the blue sub-pixel on the base substrate is the same as the orthographic projection of the green photo-resist layer corresponding to the green sub-pixel on the
  • the color filter layer 15 may include a red filter unit R, a green filter unit G, a blue filter unit R, and a yellow filter unit Y.
  • the red filter unit R, the green filter unit G, and the yellow filter unit Y may correspond to the red sub-pixels, the green sub-pixels, the blue sub-pixels, and the yellow sub-pixels, respectively.
  • the arrangement order of the emission colors of the first sub-pixel P1, the second sub-pixel P2, the third sub-pixel P3, and the center sub-pixel Pc can be arbitrarily set.
  • red, green, and blue may correspond to the emission color of the third sub-pixel P3, the emission color of the first sub-pixel P1, and the emission color of the second sub-pixel P2, respectively
  • white corresponds to the emission color of the center sub-pixel Pc
  • the red sub-pixel, green sub-pixel and blue sub-pixel may correspond to the third sub-pixel P3, the first sub-pixel P1 and the second sub-pixel P2 respectively
  • the white sub-pixel may correspond to the center sub-pixel Pc
  • one red sub-pixel, one green sub-pixel, one blue sub-pixel, and the white sub-pixel located inside the area enclosed by the red sub-pixel, green sub-pixel and blue sub-pixel can be divided into one pixel unit.
  • red, green, and blue may correspond to the emission color of the third sub-pixel P3, the emission color of the first sub-pixel P1, and the emission color of the second sub-pixel P2, respectively, and yellow corresponds to the emission color of the center sub-pixel Pc.
  • the red sub-pixel, the green sub-pixel and the blue sub-pixel may correspond to the third sub-pixel P3, the first sub-pixel P1 and the second sub-pixel P2 respectively, and the yellow sub-pixel may correspond to the center sub-pixel Pc , then, a red sub-pixel, a green sub-pixel, a blue sub-pixel, and a yellow sub-pixel inside the area enclosed by the red sub-pixel, green sub-pixel and blue sub-pixel can be divided into a pixel unit.
  • the red filter unit R, the green filter unit G and the blue filter unit B may correspond to
  • the third filter unit 151 in the third sub-pixel, the first filter unit 152 in the first sub-pixel, and the second filter unit 154 in the second sub-pixel are taken as examples, as shown in FIG. 6A , for adjacent two pixel units, when the red filter unit 151 is adjacent to the green filter unit 152, the orthographic projection of the red filter unit 151 on the base substrate is the same as the orthographic projection of the green filter unit 152 on the base substrate but there is no overlapping area; as shown in FIG.
  • the white filter unit W corresponds to the center filter unit 153 in the center sub-pixel, the red filter unit R, the green filter unit G and the blue filter unit
  • the color filter unit B may respectively correspond to the third filter unit 151 in the third sub-pixel, the first filter unit 152 in the first sub-pixel, and the second filter unit 154 in the second sub-pixel, for example, Inside each pixel unit, the orthographic projection of the white filter unit W on the base substrate is the same as the red filter unit R, the green filter unit G, and the blue filter unit B adjacent to the white filter unit W.
  • the orthographic projections on the base substrate have overlapping regions.
  • FIG. 6A shows in the same pixel unit, the orthographic projection of the white filter unit W on the base substrate is different from the red color filter unit W located on the different side of the white filter unit W and adjacent to the white filter unit W
  • the orthographic projection of the filter unit R and the blue filter unit B on the base substrate has an overlapping area.
  • FIG. 6B shows in the same pixel unit, the orthographic projection of the white filter unit W on the base substrate and the red filter located on the different side of the white filter unit W and adjacent to the white filter unit W are shown in FIG. 6B .
  • the orthographic projection of the unit R and the green filter unit G on the base substrate has an overlapping area.
  • the display substrate may include, but is not limited to, an OLED display substrate or a Micro OLED display substrate.
  • this embodiment of the present disclosure does not limit this.
  • the central sub-pixel in the same pixel unit is located inside the area enclosed by the first sub-pixel, the second sub-pixel and the third sub-pixel, so that the In a single pixel unit, the first sub-pixel, the second sub-pixel and the third sub-pixel surround the central sub-pixel, and because the central sub-pixel in the same pixel unit is different from the first sub-pixel, the second sub-pixel and the third sub-pixel.
  • the minimum distance between at least one of the three sub-pixels is smaller than the distance between two adjacent pixel units, then, the first sub-pixel, the second sub-pixel and the third sub-pixel in the same pixel unit When at least one hole is injected, the leakage current flows to the corresponding central sub-pixel, and the central sub-pixel emits light by utilizing the leakage current.
  • Embodiments of the present disclosure further provide a method for driving a display substrate, where the display substrate is the display substrate provided in any of the foregoing embodiments.
  • the driving method provided in this embodiment may include four stages, namely a reset stage S1, a data writing stage S2, a light-emitting stage S3, and a non-light-emitting stage S4.
  • FIG. 7 is a driving method of a display substrate in an embodiment of the present disclosure.
  • the signal timing diagram of FIG. 7 shows the timing waveforms of the signals input to different sub-pixels in the pixel unit in each stage.
  • the level of the potential in the signal timing diagram shown in FIG. 7 is only schematic, and does not represent the actual potential value or relative ratio.
  • the driving method may include:
  • Step 701 For at least one pixel unit in the plurality of pixel units, in the data writing phase S2, the pixel driving circuit sends the data to the first sub-pixel P1, the second sub-pixel P2 and the third sub-pixel P3 in the at least one pixel unit. At least one of the input data signals V_data;
  • Step 702 In the data writing stage S2 and the light emitting stage S3 after the data writing stage S2, the high-impedance state signal Hiz is input to the central sub-pixel through the pixel driving circuit, so that the first sub-pixel P1 in the at least one pixel unit is , the leakage current between at least one of the second sub-pixel P2 and the third sub-pixel P3 and the central sub-pixel Pc is led to the central sub-pixel Pc, and the central sub-pixel Pc is driven to emit light.
  • the data signal appears as a pulse signal with high and low levels; the high-impedance signal appears as a disconnected signal, neither a high level nor a low level, No voltage.
  • the central sub-pixel in the same pixel unit is located inside the area enclosed by the first sub-pixel, the second sub-pixel and the third sub-pixel, and because The minimum distance between the central sub-pixel in the same pixel unit and at least one of the first sub-pixel, the second sub-pixel and the third sub-pixel is smaller than the distance between two adjacent pixel units, then, in the same pixel unit When holes are injected into at least one of the first sub-pixel, the second sub-pixel and the third sub-pixel in one pixel unit, the leakage current flows to the corresponding central sub-pixel, and the central sub-pixel emits light by utilizing the leakage current.
  • a high-impedance state signal can be connected to the central sub-pixel, and passing through the pixel during the data writing stage
  • the driving circuit accesses a data signal to at least one of the first sub-pixel, the second sub-pixel and the third sub-pixel, so that not only can the central sub-pixel receive the leakage current normally, but also the leakage current flowing into the central sub-pixel can be effectively improved. Therefore, the transmittance and luminous efficiency of the display substrate can be improved, and the power consumption can be reduced. Moreover, since the leakage currents all flow to the central sub-pixel, the cross-color problem among the first sub-pixel, the second sub-pixel and the third sub-pixel in the display substrate can be improved.
  • the central sub-pixel in the same pixel unit The distance from the first sub-pixel is 0.6 ⁇ m (micrometer), the distance between the central sub-pixel and the second sub-pixel in the same pixel unit is 0.6 ⁇ m, the central sub-pixel in the same pixel unit and the third sub-pixel are The distance between sub-pixels is 0.6 ⁇ m, the distance between two adjacent pixel units is 1.20 ⁇ m, the first sub-pixel, the second sub-pixel and the third sub-pixel are all 10.58 ⁇ m in bottom and 7.48 in waist
  • the center subpixel is an isosceles triangle with a base of 6.64 ⁇ m and a waist of 4.69 ⁇ m as an example, the inventor of the present disclosure obtained the transmittance and luminescence of the 0.71-inch full HD
  • the driving method may further include: a reset stage S1 before the data writing stage S2 and a non-light-emitting stage S4 after the light-emitting stage S3, and the pixel driving circuit to The center sub-pixel Pc in at least one pixel unit is input with the ground signal GND.
  • the ground signal appears as a DC signal, such as zero voltage, which is the reference signal of the pixel driving circuit.
  • the voltage of the data signal is greater than the voltage of the ground signal.
  • the reset can be performed for the injection of the leakage current in the next frame, which can more effectively improve the transmittance and luminous efficiency, more effectively reduce power consumption, and more effectively improve the problem of cross-color.
  • Embodiments of the present disclosure further provide a display device, including the display substrate provided in any of the above embodiments.
  • the display device may be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, and a navigator.
  • a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, and a navigator.
  • the embodiment of the present disclosure does not limit the type of the display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种像素结构、显示基板及其驱动方法、显示装置,该像素结构包括:多个像素单元;其中,每个像素单元包括:第一子像素、第二子像素、第三子像素以及中心子像素,中心子像素位于第一子像素、第二子像素和第三子像素围成的区域内部;同一个像素单元内的中心子像素与第一子像素、第二子像素和第三子像素中的至少一个之间的最小距离小于相邻的两个像素单元之间的距离。

Description

像素结构、显示基板及其驱动方法、显示装置
本申请要求于2021年01月28日提交中国专利局、申请号为202110116042.1、发明名称为“像素结构、显示基板及其驱动方法、显示装置”的中国专利申请的优先权,其内容应理解为通过引用的方式并入本申请中。
技术领域
本公开实施例涉及但不限于显示技术领域,尤其涉及一种像素结构、显示基板及其驱动方法、显示装置。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)显示器件具有厚度薄、质量轻、宽视角、主动发光、发光颜色连续可调、成本低、响应速度快、驱动电压低、工作温度范围宽、生产工艺简单及可柔性显示等优点,在手机、平板电脑、数码相机等显示领域的应用越来越广泛。
目前,大部分OLED显示器件采用标准RGB(红绿蓝)排列或者Delta排列的像素结构设计,存在透过率较低、发光效率较低和功耗较大的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例主要提供如下技术方案:
第一方面,本公开实施例提供了一种像素结构,包括:多个像素单元;其中,每个像素单元包括:第一子像素、第二子像素、第三子像素以及中心子像素,中心子像素位于第一子像素、第二子像素和第三子像素围成的区域内部;同一个像素单元内的中心子像素与第一子像素、第二子像素和第三子像素中的至少一个之间的最小距离小于相邻的两个像素单元之间的距离。
第二方面,本公开实施例提供了一种显示基板,包括:依次叠设的衬底基板、像素驱动电路以及上述实施例中的像素结构。
第三方面,本公开实施例提供了一种显示基板的驱动方法,其中,所述显示基板为上述实施例中的显示基板;
所述驱动方法包括:针对多个像素单元中的至少一个像素单元,在数据写入阶段通过像素驱动电路向所述至少一个像素单元中的第一子像素、第二子像素和第三子像素中的至少一个输入数据信号;在数据写入阶段和在数据写入阶段之后的发光阶段通过像素驱动电路向中心子像素输入高阻态信号,以将所述至少一个像素单元中的第一子像素、第二子像素和第三子像素中至少一个与中心子像素之间的漏电流引流至中心子像素,驱动中心子像素发光。
第四方面,本公开实施例提供了一种显示装置,包括:上述实施例中的显示基板。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的其他优点可通过在说明书以及附图中所描述的方案来实现和获得。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。附图中各部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
图1A为一些技术中的像素结构的一种示意图;
图1B为一些技术中的像素结构的另一种示意图;
图2为本公开实施例中的像素结构的一种结构示意图;
图3为本公开实施例中的像素结构的另一种结构示意图;
图4为本公开实施例中的像素结构的再一种结构示意图;
图5为本公开实施例中的像素结构的又一种结构示意图;
图6A为本公开实施例中显示基板包括如图5所示的像素结构时的A-A’ 截面的局部结构示意图;
图6B为本公开实施例中显示基板包括如图5所示的像素结构时的B-B’截面的局部结构示意图;
图7为本公开实施例中的一种显示基板的驱动方法的信号时序图。
具体实施方式
本文描述了多个实施例,但是该描述是示例性的,而不是限制性的,在本文所描述的实施例包含的范围内可以有更多的实施例和实现方案。尽管在附图中示出了许多可能的特征组合,并在具体实施方式中进行了讨论,但是所公开的特征的许多其它组合方式也是可能的。除非特意加以限制的情况以外,任何实施例的任何特征或元件可以与任何其它实施例中的任何其他特征或元件结合使用,或可以替代任何其它实施例中的任何其他特征或元件。
在描述具有代表性的实施例时,说明书可能已经将方法和/或过程呈现为特定的步骤序列。然而,在该方法或过程不依赖于本文步骤的特定顺序的程度上,该方法或过程不应限于的特定顺序的步骤。如本领域普通技术人员将理解的,其它的步骤顺序也是可能的。因此,说明书中阐述的步骤的特定顺序不应被解释为对权利要求的限制。此外,针对该方法和/或过程的权利要求不应限于按照所写顺序执行它们的步骤,本领域技术人员可以容易地理解,这些顺序可以变化,并且仍然保持在本公开实施例的精神和范围内。
在附图中,有时为了明确起见,夸大表示了各构成要素的大小、层的厚度或区域。因此,本公开的一个方式并不一定限定于该尺寸,附图中各部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的一个方式不局限于附图所示的形状或数值等。
本文中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。
在本文中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本文和简化描述,而不是 指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述各构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本文中,晶体管是指至少包括栅电极、漏电极以及源电极这三个端子的元件。晶体管在漏电极(漏电极端子、漏区域或漏电极)与源电极(源电极端子、源区域或源电极)之间具有沟道区域,并且电流能够流过漏电极、沟道区域以及源电极。在本文中,沟道区域是指电流主要流过的区域。在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况等下,“源电极”及“漏电极”的功能有时互相调换。因此,在本文中,“源电极”和“漏电极”可以互相调换。
本公开中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。
大部分显示器件,如Micro OLED(微OLED)显示器件采用如图1A所示的标准RGB(红绿蓝)排列或者如图1B所示的Delta排列的像素设计,使得大部分OLED显示器件存在相邻阳极之间容易发生漏电和透过率较低的问题,导致功耗偏大、发光光效偏低,并伴随有串色问题。而且OLED显示器件的分辨率(Pixel Per Inch,PPI)越高,相邻阳极之间的距离会越小,使得OLED显示器件的PPI越高漏电就越严重。例如,本公开发明人通过实验得到0.71英寸的全高清(Full High Definition,FHD)Micro OLED显示器件的相邻阳极之间的漏电约在40%左右。
本公开实施例提供一种像素结构,该像素结构可以包括:多个像素单元;其中,每个像素单元可以包括:第一子像素、第二子像素、第三子像素以及中心子像素,中心子像素位于第一子像素、第二子像素和第三子像素围成的区域内部;同一个像素单元内的中心子像素与第一子像素、第二子像素和第三子像素中的至少一个之间的最小距离小于相邻的两个像素单元之间的距离。如此,通过设置同一个像素单元内的中心子像素位于第一子像素、第二子像素和第三子像素围成的区域内部,使得在单个像素单元内,第一子像素、第二子像素和第三子像素可以围绕在中心子像素的周围,而且由于同一个像素 单元内的中心子像素与第一子像素、第二子像素和第三子像素中的至少一个之间的最小距离小于相邻的两个像素单元之间的距离,那么,在同一个像素单元内的第一子像素、第二子像素和第三子像素中的至少一个有空穴注入时,漏电流就会流往中心子像素,这样,就可以实现利用漏电流使中心子像素发光。从而,能够提升透过率和发光效率,降低功耗。
在一种示例性实施例中,中心子像素的几何中心可以与第一子像素、第二子像素和第三子像素围成的区域的几何中心重合。
在一种示例性实施例中,同一个像素单元内的中心子像素与第一子像素之间的最小距离为第一距离;同一个像素单元内的中心子像素与第二子像素之间的最小距离为第二距离;同一个像素单元内的中心子像素与第三子像素之间的最小距离为第三距离;相邻的两个像素单元之间的距离为第四距离;同一个像素单元内的中心子像素与第一子像素、第二子像素和第三子像素中的至少一个之间的最小距离小于相邻的两个像素单元之间的距离,可以包括:第一距离与第四距离的比值可以约为0.4至0.6、第二距离与第四距离的比值可以约为0.4至0.6、以及第三距离与第四距离的比值可以约为0.4至0.6中的一种或多种。
在一种示例性实施例中,像素单元的形状可以为多边形,如三角形或矩形等。
在一种示例性实施例中,第一子像素的形状可以为多边形,如三角形或矩形等。
在一种示例性实施例中,第二子像素的形状可以为多边形,如三角形或矩形等。
在一种示例性实施例中,第三子像素的形状可以为多边形,如三角形或矩形等。
在一种示例性实施例中,中心子像素的形状可以为多边形,如三角形或矩形等。
在一种示例性实施例中,第一子像素、第二子像素、第三子像素和中心子像素的形状以及每个像素单元的形状均可以为三角形。例如,每个像素单 元内的第一子像素、第二子像素、第三子像素和中心子像素的形状以及每个像素单元的形状均可以为等腰三角形。或者,每个像素单元内的第一子像素、第二子像素、第三子像素和中心子像素的形状以及每个像素单元的形状均可以为直角三角形。在其它示例性实施例中,除了上述示例的两种形状外,每个像素单元内的第一子像素、第二子像素、第三子像素和中心子像素的形状以及每个像素单元的形状可以为其它形状的三角形,例如,等边三角形或等腰直角三角形等。本公开实施例对此不做限定。如此,通过将像素单元和像素单元内的子像素的形状设计成三角形,并设置同一个像素单元内的中心子像素位于第一子像素、第二子像素和第三子像素围成的区域内部,使得在单个像素单元内,第一子像素、第二子像素和第三子像素围绕在中心子像素的三边的周围,而且由于同一个像素单元内的中心子像素与第一子像素、第二子像素和第三子像素中的至少一个之间的最小距离小于相邻的两个像素单元之间的距离,那么,在同一个像素单元内的第一子像素、第二子像素和第三子像素中的至少一个有空穴注入时,漏电流就会流往对应的中心子像素,这样,就可以实现利用漏电流使中心子像素发光。从而,能够提升透过率和发光效率,降低功耗。而且,能够改善第一子像素、第二子像素和第三子像素之间的串色问题。
在一种示例性实施例中,同一个像素单元内的第一子像素、第二子像素和第三子像素的面积均可以大于中心子像素的面积。
在一种示例性实施例中,同一个像素单元内的第一子像素、第二子像素和第三子像素的面积相等。
在一种示例性实施例中,同一个像素单元内的中心子像素、第一子像素、第二子像素和第三子像素的发光颜色不相同。例如,中心子像素的发光颜色为白色和黄色中的任意一个;第一子像素的发光颜色为红色、绿色和蓝色中的任意一个;第二子像素的发光颜色为红色、绿色和蓝色中的任意一个;第三子像素的发光颜色为红色、绿色和蓝色中的任意一个,第一子像素、第二子像素和第三子像素的发光颜色不相同。
下面以像素单元的形状为三角形,并以像素单元内的第一子像素、第二子像素、第三子像素以及中心子像素的形状均为三角形为例,对本公开实施 例提供的像素结构进行说明。
图2为本公开实施例中的像素结构的一种结构示意图,如图2所示,图2中示出了像素结构中的2个像素单元,包括:第一像素单元20和第二像素单元21,第一像素单元20和第二像素单元21的形状均为等腰三角形,第一像素单元20和第二像素单元21均可以包括:一个第一子像素P1、一个第二子像素P2、一个第三子像素P3以及一个中心子像素Pc,在同一个像素单元内,中心子像素Pc位于第一子像素P1、第二子像素P2和第三子像素P3所围成的区域内部。在图2中,第一像素单元20和第二像素单元21内的第一子像素P1、第二子像素P2、第三子像素P3以及中心子像素Pc的形状均为等腰三角形。例如,如图2所示,2个像素单元可以形成形状为菱形的重复结构。
图3为本公开实施例中的像素结构的另一种结构示意图,如图3所示,图3中示出了像素结构中的2个像素单元,包括:第一像素单元20和第二像素单元21,第一像素单元20和第二像素单元21的形状均为直角三角形,第一像素单元20和第二像素单元21均可以包括:一个第一子像素P1、一个第二子像素P2、一个第三子像素P3以及一个中心子像素Pc;在同一个像素单元内,中心子像素Pc位于第一子像素P1、第二子像素P2和第三子像素P3所围成的区域内部;第一像素单元20和第二像素单元21内的第一子像素P1、第二子像素P2、第三子像素P3以及中心子像素Pc的形状均为直角三角形。例如,如图3所示,2个像素单元可以形成形状为矩形的重复结构。
在一种示例性实施例中,如图4所示,图4中示出了像素结构中的一个像素单元,该像素单元可以包括:一个第一子像素P1、一个第二子像素P2、一个第三子像素P3以及一个中心子像素Pc,其中,中心子像素Pc可以包括:第一边201(例如,底边)、第二边202(例如,腰)和第三边203(例如,腰);第一子像素P1可以包括:第四边204(例如,底边)、第五边205(例如,腰)和第六边206(例如,腰),第四边204与第一边201对应相邻;第二子像素P2可以包括:第七边207(例如,底边)、第八边208(例如,腰)和第九边209(例如,腰),第七边207与第二边202对应相邻;第三子像素P3可以包括:第十边210、第十一边211(例如,腰)和第十二边212 (例如,腰),第十边210与第三边203对应相邻。如此,通过设置第一子像素P1的第四边204与中心子像素Pc的第一边201对应相邻、第二子像素P2的第七边207与中心子像素Pc的第二边202对应相邻、以及第三子像素P3的第十边210与中心子像素Pc的第三边203对应相邻,可以将中心子像素Pc设置在第一子像素P1的第四边204、第二子像素P2的第七边207和第三子像素P3的第十边210围成的多边形区域内部。其中,第四边204与第一边201之间的距离(即第一像素单元20内的中心子像素Pc与第一子像素P1之间的最小距离)为第一距离d1,第七边207与第二边202之间的距离(即第一像素单元20内的中心子像素Pc与第二子像素P2之间的最小距离)为第二距离d2,第十边210与第三边203之间的距离(即同第一像素单元20内的中心子像素Pc与第三子像素P3之间的最小距离)为第三距离d3。如图2所示,第一像素单元20和第二像素单元21之间的距离(即相邻的两个像素单元之间的距离)为第四距离d4,那么,同一个像素单元内的中心子像素与第一子像素、第二子像素和第三子像素中的至少一个之间的最小距离小于相邻的两个像素单元之间的距离,可以包括:第一距离d1小于第四距离d4、第二距离d2小于第四距离d4、以及第三距离d3小于第四距离d4中的任意一种或多种。
在一种示例性实施例中,第一距离d1、第二距离d2和第三距离d3可以相等。如此,能够使得漏电流均匀地流向中心子像素,从而,更有效地提升透过率和发光效率,降低功耗。
在一种示例性实施例中,第一距离d1与第四距离d4的比值可以约为0.4至0.6。例如,第一距离d1与第四距离d4的比值可以约为0.5。
在一种示例性实施例中,第二距离d2与第四距离d4的比值可以约为0.4至0.6。例如,第二距离d2与第四距离d4的比值可以约为0.5。
在一种示例性实施例中,第三距离d3与第四距离d4的比值可以约为0.4至0.6。例如,第二距离d2与第四距离d4的比值可以约为0.5。
举例来说,以本公开实施例中的像素结构应用到0.71英寸的全高清Micro OLED显示器件中为例,像素结构的尺寸信息可以设置如下:
同一个像素单元内的中心子像素与第一子像素之间的距离可以约为 0.6μm(微米),例如,如图4所示,第四边204与第一边201之间的距离可以约为0.6μm;
同一个像素单元内的中心子像素与第二子像素之间的距离可以约为0.6μm,例如,如图4所示,第七边207与第二边202之间的距离可以约为0.6μm;
同一个像素单元内的中心子像素与第三子像素之间的距离可以约为0.6μm,例如,如图4所示,第十边210与第三边203之间的距离可以约为0.6μm;
相邻的两个像素单元之间的距离可以约为1.20μm,例如,如图2所示,第四距离d4可以约为1.20μm;
第一子像素、第二子像素和第三子像素均可以为底边约为10.58μm且腰约为7.48μm的等腰三角形,例如,如图4所示,第四边204、第七边207和第十边210可以约为10.58μm,第五边205、第六边206、第八边208、第九边209、第十一边211和第十二边212可以约为7.48μm;
中心子像素可以为底边约为6.64μm且腰约为4.69μm的等腰三角形,例如,如图4所示,第一边201可以约为6.64μm,第二边202和第三边203可以约为4.69μm;
在一种示例性实施例中,如图4所示,第一子像素、第二子像素和第三子像素中两个相邻顶点之间的最小距离可以为二倍的第五距离g。例如,第五距离g可以约为0.85μm。
在一种示例性实施例中,第一子像素P1、第二子像素P2和第三子像素P3的发光颜色分别可以为红色(R)、绿色(G)和蓝色(B)中的任意一个。这里,第一子像素P1、第二子像素P2和第三子像素P3的发光颜色的排布顺序可以任意设定,例如,红色(R)、绿色(G)和蓝色(B)可以分别对应于第三子像素P3、第一子像素P1和第二子像素P2,或者,红色(R)、绿色(G)和蓝色(B)可以分别对应于第一子像素P1、第三子像素P3和第二子像素P2,或者,红色(R)、绿色(G)和蓝色(B)可以分别对应于第二子像素P2、第三子像素P3和第一子像素P1等,本公开实施例对此不做限定。
在一种示例性实施例中,中心子像素Pc的发光颜色可以为除红色、绿色和蓝色之外的颜色,例如,中心子像素Pc的发光颜色可以为白色和黄色中的任意一个。
例如,中心子像素Pc的发光颜色可以为白色,第一子像素P1的发光颜色为绿色,第二子像素P2的发光颜色为蓝色,第三子像素P3的发光颜色为红色。如此,通过将白色子像素设置在红色子像素、绿色子像素和蓝色子像素所围成的区域的内部,不但可以提高器件的透过率和光效,而且能够提高混色效果,进而提高显示画面的品质。
本公开实施例提供一种显示基板,在垂直于显示基板的方向,该显示基板可以包括:依次叠设的衬底基板、像素驱动电路以及上述一个或多个实施例中的像素结构。
在一种示例性实施例中,针对同一个像素单元内的第一子像素、第二子像素、第三子像素以及中心子像素,第一子像素可以包括:依次叠设的第一发光元件和第一滤光单元;第二子像素可以包括:依次叠设的第二发光元件和第二滤光单元;第三子像素可以包括:依次叠设的第三发光元件和第三滤光单元;中心子像素可以包括:依次叠设的中心发光元件和中心滤光单元;中心滤光单元在衬底基板上的正投影与第一滤光单元、第二滤光单元和第三滤光单元在衬底基板上的正投影均存在重叠区域。
在一种示例性实施例中,同一个像素单元内的中心滤光单元、第一滤光单元、第二滤光单元和第三滤光单元的颜色不相同。例如,中心滤光单元可以为白色滤光单元和黄色滤光单元中的任意一个;第一滤光单元可以为红色滤光单元、绿色滤光单元和蓝色滤光单元中的任意一个;第二滤光单元可以为红色滤光单元、绿色滤光单元和蓝色滤光单元中的任意一个;第三滤光单元可以为红色滤光单元、绿色滤光单元和蓝色滤光单元中的任意一个。
这里,中心滤光单元、第一滤光单元、第二滤光单元和第三滤光单元的排布顺序可以任意设定,例如,红色滤光单元、绿色滤光单元和蓝色滤光单元可以分别对应于第三滤光单元、第一滤光单元和第二滤光单元,或者,红色滤光单元、绿色滤光单元和蓝色滤光单元可以分别对应于第一滤光单元、 第三滤光单元和第二滤光单元,或者,红色滤光单元、绿色滤光单元和蓝色滤光单元可以分别对应于第二滤光单元、第三滤光单元和第一滤光单元等,本公开实施例对此不做限定。
图5为本公开实施例中的像素结构的又一种结构示意图,在图5中,以白色子像素W对应于中心子像素Pc,红色子像素R、绿色子像素G和蓝色子像素B可以分别对应于第三子像素P3、第一子像素P1和第二子像素P2为例,示出了像素结构中的8个像素单元。下面以显示基板包括如图5所示的像素结构为例,对显示基板的结构进行说明。
图6A为本公开实施例中显示基板包括如图5所示的像素结构时的A-A’截面的局部结构示意图,图6B为本公开实施例中显示基板包括如图5所示的像素结构时的B-B’截面的局部结构示意图。
如图6A和图6B所示,在垂直于显示基板的方向,该显示基板可以包括:衬底基板10、设置在衬底基板10上的像素驱动电路11以及设置在像素驱动电路11远离衬底基板10一侧的像素结构12。例如,像素驱动电路11可以包括多个像素电路,像素电路设置为驱动后续形成的像素结构中的多个发光元件。为了清晰和简洁,图6A和图6B中仅示意性地示出了像素驱动电路11中每个像素电路中的一个晶体管T1,该晶体管T1设置为与后续形成的发光元件耦接。例如,像素驱动电路11还可以包括扫描信号线和数据信号线等各种走线,本公开实施例对此不作限定。例如,衬底基板10可以为硅基衬底基板,但不限于此。
在一种示例性实施例中,如图6A和图6B所示,以晶体管T1为例,像素驱动电路11中的晶体管T1均可以包括栅电极G、源电极S和漏电极D。例如,该三个电极分别与三个电极连接部电连接,例如通过钨金属填充的过孔(即钨过孔,W-via)进行电连接;进而,该三个电极可以分别通过对应的电极连接部与其他电学结构(例如,晶体管、走线、发光元件等)进行电连接。
在一种示例性实施例中,如图6A和图6B所示,在垂直于显示基板的方向,像素结构12可以包括:形成在像素驱动电路11之上的多个发光元件13。例如,每个发光元件13可以包括依次叠设的第一电极131(例如,作为阳极)、 有机发光功能层132和第二电极133(例如,作为阴极)。例如,第一电极131可以通过钨过孔与对应的晶体管T1的源电极S电连接(经由源电极S对应的连接部),这里,源电极S和漏电极D的位置可以互换,即第一电极131可以换成与漏电极D电连接。例如,有机发光功能132可以包括有机发光层以及电子注入层、电子传输层、空穴注入层和空穴传输层中的一种或多种。例如,第二电极133可以为透明电极。例如,第二电极133可以为公共电极,即多个发光元件13共用一整面的第二电极133。
在一种示例性实施例中,如图6A和图6B所示,在垂直于显示基板的方向,像素结构12还可以包括:依次设置在多个发光元件13之上的第一封装层14、彩色滤光层15、第二封装层16,显示基板还可以包括:设置在第二封装层16远离衬底基板11的一侧的盖板17。例如,彩色滤光层15可以包括多个滤光单元,一个滤光单元与对应的一个发光元件可以划分为一个子像素。例如,第一封装层14和第二封装层16可以为聚合物和陶瓷薄膜封装层中的任意一种或多种,但不限于此。例如,滤光单元的材料可以为光刻胶,但不限于此。例如,盖板17可以为玻璃盖板,但不限于此。
在一种示例性实施例中,彩色滤光层15可以包括红色滤光单元R、绿色滤光单元G、蓝色滤光单元B和白色滤光单元W。其中,红色滤光单元R、绿色滤光单元G、蓝色滤光单元B和白色滤光单元W可以分别对应于红色子像素、绿色子像素、蓝色子像素和白色子像素。
例如,在制备彩色滤光层时,彩色滤光层可以为两层光刻胶,其中,先制备用于形成绿色滤光单元G的绿色光刻胶层和用于形成红色滤光单元R的红色光刻胶层,形成第一层光刻胶;然后,再制备用于形成白色滤光单元W的白色光刻胶层和用于形成蓝色滤光单元B的蓝色光刻胶层,形成第二层光刻胶。
例如,以中心子像素为白色子像素,第一子像素、第二子像素和第三子像素可以为红色子像素、绿色子像素、蓝色子像素中的不同颜色的子像素为例,彩色滤光层的彩胶交叠的结构可以包括以下结构:在单个像素单元内部,白色子像素对应的白色光刻胶层在衬底基板上的正投影与该白色子像素相邻的蓝色子像素对应的蓝色光刻胶层、绿色子像素对应的绿色光刻胶层和红色 子像素对应的红色光刻胶层在衬底基板上的正投影存在重叠区域(此时,白色子像素位于该蓝色子像素、绿色子像素和红色子像素所围成的区域内部);在相邻的两个像素单元之间,当红色子像素与绿色子像素相邻时,红色子像素对应的红色光刻胶层在衬底基板上的正投影与绿色子像素对应的绿色光刻胶层在衬底基板上的正投影相接但不存在重叠区域;在相邻的两个像素单元之间,当蓝色子像素与绿色子像素相邻时,蓝色子像素对应的蓝色光刻胶层在衬底基板上的正投影与绿色子像素对应的绿色光刻胶层在衬底基板上的正投影存在重叠区域;在相邻的两个像素单元之间,当蓝色子像素与红色子像素相邻时,蓝色子像素对应的蓝色光刻胶层在衬底基板上的正投影与红色子像素对应的红色光刻胶层在衬底基板上的正投影存在重叠区域。
在一种示例性实施例中,彩色滤光层15可以包括红色滤光单元R、绿色滤光单元G、蓝色滤光单元R和黄色滤光单元Y。其中,红色滤光单元R、绿色滤光单元G和和黄色滤光单元Y可以分别对应红色子像素、绿色子像素、蓝色子像素和黄色子像素。
在一种示例性实施例中,第一子像素P1、第二子像素P2、第三子像素P3、中心子像素Pc的发光颜色的排布顺序可以任意设定。例如,以红色、绿色和蓝色可以分别对应于第三子像素P3的发光颜色、第一子像素P1的发光颜色和第二子像素P2的发光颜色,且白色对应于中心子像素Pc的发光颜色为例,则红色子像素、绿色子像素和蓝色子像素可以分别对应于第三子像素P3、第一子像素P1和第二子像素P2,白色子像素可以对应于中心子像素Pc,那么,一个红色子像素、一个绿色子像素、一个蓝色子像素以及位于该红色子像素、绿色子像素和蓝色子像素所围成的区域内部的白色子像素可以划分为一个像素单元。又例如,以红色、绿色和蓝色可以分别对应于第三子像素P3的发光颜色、第一子像素P1的发光颜色和第二子像素P2的发光颜色,且黄色对应于中心子像素Pc的发光颜色为例,则红色子像素、绿色子像素和蓝色子像素可以分别对应于第三子像素P3、第一子像素P1和第二子像素P2,黄色子像素可以对应于中心子像素Pc,那么,一个红色子像素、一个绿色子像素、一个蓝色子像素以及位于该红色子像素、绿色子像素和蓝色子像素所围成的区域内部的黄色子像素可以划分为一个像素单元。
在一种示例性实施例中,以白色滤光单元W对应于中心子像素中的中心滤光单元153,红色滤光单元R、绿色滤光单元G和蓝色滤光单元B可以分别对应于第三子像素中的第三滤光单元151、第一子像素中的第一滤光单元152和第二子像素中的第二滤光单元154为例,如图6A所示,针对相邻的两个像素单元,当红色滤光单元151与绿色滤光单元152相邻时,红色滤光单元151在衬底基板上的正投影与绿色滤光单元152在衬底基板上的正投影相接但不存在重叠区域;如图6A所示,针对相邻的两个像素单元,当蓝色滤光单元154与绿色滤光单元152相邻时,蓝色滤光单元154在衬底基板上的正投影与绿色滤光单元152在衬底基板上的正投影存在重叠区域;如图6B所示,针对相邻的两个像素单元,当蓝色滤光单元154与红色滤光单元151相邻时,蓝色滤光单元154在衬底基板上的正投影与红色滤光单元151在衬底基板上的正投影存在重叠区域。
在一种示例性实施例中,如图6A和图6B所示,以白色滤光单元W对应于中心子像素中的中心滤光单元153,红色滤光单元R、绿色滤光单元G和蓝色滤光单元B可以分别对应于第三子像素中的第三滤光单元151、第一子像素中的第一滤光单元152和第二子像素中的第二滤光单元154为例,在每个像素单元内部,白色滤光单元W在衬底基板上的正投影与与该白色滤光单元W相邻的红色滤光单元R、绿色滤光单元G和蓝色滤光单元B在衬底基板上的正投影存在重叠区域。这里,图6A中示出了同一个像素单元内,白色滤光单元W在衬底基板上的正投影与位于该白色滤光单元W的不同侧且与该白色滤光单元W相邻的红色滤光单元R和蓝色滤光单元B在衬底基板上的正投影存在重叠区域。图6B中示出了同一个像素单元内,白色滤光单元W在衬底基板上的正投影与位于该白色滤光单元W的不同侧且与该白色滤光单元W相邻的红色滤光单元R和绿色滤光单元G在衬底基板上的正投影存在重叠区域。
在一种示例性实施例中,该显示基板可以包括但不限于为OLED显示基板或Micro OLED显示基板。这里,本公开实施例对此不做限定。
如此,在本公开实施例中的显示基板的像素结构中,通过设置同一个像素单元内的中心子像素位于第一子像素、第二子像素和第三子像素围成的区 域内部,使得在单个像素单元内,第一子像素、第二子像素和第三子像素围绕在中心子像素的周围,而且由于同一个像素单元内的中心子像素与第一子像素、第二子像素和第三子像素中的至少一个之间的最小距离小于相邻的两个像素单元之间的距离,那么,在同一个像素单元内的第一子像素、第二子像素和第三子像素中的至少一个有空穴注入时,漏电流就会流往对应的中心子像素,利用漏电流使中心子像素发光。
本公开实施例还提供一种显示基板的驱动方法,该显示基板为上述任意实施例提供的显示基板。本实施例提供的驱动方法可以包括四个阶段,分别为复位阶段S1、数据写入阶段S2、发光阶段S3以及非发光阶段S4,图7为本公开实施例中的一种显示基板的驱动方法的信号时序图,图7中示出了每个阶段中输入给像素单元中不同子像素的信号的时序波形。下面结合图7所示的信号时序图,对本公开的实施例提供的显示基板的驱动方法进行说明。这里,图7中所示的信号时序图的电位的高低仅是示意性的,不代表真实电位值或相对比例。
如图7所示,该驱动方法可以包括:
步骤701:针对多个像素单元中的至少一个像素单元,在数据写入阶段S2通过像素驱动电路向该至少一个像素单元中的第一子像素P1、第二子像素P2和第三子像素P3中的至少一个输入数据信号V_data;
步骤702:在数据写入阶段S2和在数据写入阶段S2之后的发光阶段S3通过像素驱动电路向中心子像素输入高阻态信号Hiz,以将该至少一个像素单元中的第一子像素P1、第二子像素P2和第三子像素P3中至少一个与中心子像素Pc之间的漏电流引流至中心子像素Pc,驱动中心子像素Pc发光。
这里,对显示基板中的子像素的电压进行测量时,数据信号表现为有高低电平的脉冲信号;高阻态信号表现为信号是断开的,既不是高电平也不是低电平,无电压。
如此,在本公开实施例中的显示基板的像素结构中,通过设置同一个像素单元内的中心子像素位于第一子像素、第二子像素和第三子像素围成的区域内部,而且由于同一个像素单元内的中心子像素与第一子像素、第二子像 素和第三子像素中的至少一个之间的最小距离小于相邻的两个像素单元之间的距离,那么,在同一个像素单元内的第一子像素、第二子像素和第三子像素中的至少一个有空穴注入时,漏电流就会流往对应的中心子像素,利用漏电流使中心子像素发光。因此,就可以在数据写入阶段和在数据写入阶段之后的发光阶段不给中心子像素接入数据信号,而是给中心子像素接入高阻态信号,并在数据写入阶段通过像素驱动电路向第一子像素、第二子像素和第三子像素中的至少一个接入数据信号,这样,不但可以保证中心子像素正常接收到漏电流,而且可以有效改善流入至中心子像素的漏电流,从而,可以实现提升显示基板的透过率和发光效率,并降低功耗。而且,由于漏电流均流到中心子像素,可以改善显示基板中的第一子像素、第二子像素和第三子像素之间的串色问题。
举例来说,以本公开实施例中的显示基板应用于0.71英寸的全高清Micro OLED显示器件为例,并设置在0.71英寸的全高清Micro OLED显示器件中,同一个像素单元内的中心子像素与第一子像素之间的距离为0.6μm(微米),同一个像素单元内的中心子像素与第二子像素之间的距离为0.6μm,同一个像素单元内的中心子像素与第三子像素之间的距离为0.6μm,相邻的两个像素单元之间的距离为1.20μm,第一子像素、第二子像素和第三子像素均为底边为10.58μm且腰为7.48μm的等腰三角形,中心子像素为底边为6.64μm且腰为4.69μm的等腰三角形为例,本公开发明人通过实验得到该0.71英寸的全高清Micro OLED显示器件的透过率和发光效率可以提升约在75%左右。
在一种示例性实施例中,如图7所示,该驱动方法还可以包括:在数据写入阶段S2之前的复位阶段S1和在发光阶段S3之后的非发光阶段S4,通过像素驱动电路向至少一个像素单元中的中心子像素Pc输入接地信号GND。
这里,对显示基板中的子像素的电压进行测量时,接地信号表现为直流信号,如零电压,为像素驱动电路的基准信号。
在一种示例性实施例中,数据信号的电压大于接地信号的电压。
如此,通过像素驱动电路向中心子像素输入接地信号来进行复位,可以保证中心子像素上没有空穴或者电荷积累,从而,可以避免误发光。而且, 可以为下一帧漏电流的注入进行复位,能够更为有效地提升透过率和发光效率,更为有效地降低功耗,并更为有效地改善串色问题。
本公开实施例还提供一种显示装置,包括上述任意实施例提供的显示基板。
在一种示例性实施例中,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。本公开实施例对显示装置的类型不做限定。
虽然本公开所揭露的实施方式如上,但上述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (19)

  1. 一种像素结构,包括:多个像素单元;其中,
    每个像素单元包括:第一子像素、第二子像素、第三子像素以及中心子像素,中心子像素位于第一子像素、第二子像素和第三子像素围成的区域内部;
    同一个像素单元内的中心子像素与第一子像素、第二子像素和第三子像素中的至少一个之间的最小距离小于相邻的两个像素单元之间的距离。
  2. 根据权利要求1所述的像素结构,其中,
    同一个像素单元内的中心子像素与第一子像素之间的距离为第一距离;
    同一个像素单元内的中心子像素与第二子像素之间的距离为第二距离;
    同一个像素单元内的中心子像素与第三子像素之间的距离为第三距离;
    相邻的两个像素单元之间的距离为第四距离;
    所述同一个像素单元内的中心子像素与第一子像素、第二子像素和第三子像素中的至少一个之间的最小距离小于相邻的两个像素单元之间的距离,包括:第一距离与第四距离的比值为0.4至0.6、第二距离与第四距离的比值为0.4至0.6、以及第三距离与第四距离的比值为0.4至0.6中的一种或多种。
  3. 根据权利要求2所述的像素结构,其中,
    第一距离、第二距离和第三距离相等。
  4. 根据权利要求1所述的像素结构,其中,
    同一个像素单元内的中心子像素、第一子像素、第二子像素和第三子像素的发光颜色不相同。
  5. 根据权利要求4所述的像素结构,其中,
    中心子像素的发光颜色为白色和黄色中的任意一个;
    第一子像素的发光颜色为红色、绿色和蓝色中的任意一个;
    第二子像素的发光颜色为红色、绿色和蓝色中的任意一个;
    第三子像素的发光颜色为红色、绿色和蓝色中的任意一个。
  6. 根据权利要求1所述的像素结构,其中,每个像素单元的形状为三角形。
  7. 根据权利要求6所述的像素结构,其中,
    第一子像素、第二子像素、第三子像素和中心子像素的形状均为三角形。
  8. 根据权利要求7所述的像素结构,其中,
    第一子像素、第二子像素、第三子像素和中心子像素的形状以及每个像素单元的形状均为等腰三角形;
    或者,第一子像素、第二子像素、第三子像素和中心子像素的形状以及每个像素单元的形状均为直角三角形。
  9. 根据权利要求1所述的像素结构,其中,
    同一个像素单元内的第一子像素的面积、第二子像素的面积和第三子像素的面积均大于中心子像素的面积。
  10. 根据权利要求9所述的像素结构,其中,
    第一子像素、第二子像素和第三子像素的面积相等。
  11. 一种显示基板,包括:依次叠设的衬底基板、像素驱动电路以及如权利要求1至10中任意一项所述的像素结构。
  12. 根据权利要求11所述的显示基板,其中,针对同一个像素单元内的第一子像素、第二子像素、第三子像素以及中心子像素:
    第一子像素包括:依次叠设的第一发光元件和第一滤光单元;
    第二子像素包括:依次叠设的第二发光元件和第二滤光单元;
    第三子像素包括:依次叠设的第三发光元件和第三滤光单元;
    中心子像素包括:依次叠设的中心发光元件和中心滤光单元;中心滤光单元在衬底基板上的正投影与第一滤光单元、第二滤光单元和第三滤光单元在衬底基板上的正投影均存在重叠区域。
  13. 根据权利要求12所述的显示基板,其中,
    中心滤光单元、第一滤光单元、第二滤光单元和第三滤光单元的颜色不相同。
  14. 根据权利要求13所述的显示基板,其中,
    中心滤光单元为白色滤光单元和黄色滤光单元中的任意一个;
    第一滤光单元为红色滤光单元、绿色滤光单元和蓝色滤光单元中的任意一个;
    第二滤光单元为红色滤光单元、绿色滤光单元和蓝色滤光单元中的任意一个;
    第三滤光单元为红色滤光单元、绿色滤光单元和蓝色滤光单元中的任意一个。
  15. 根据权利要求14所述的显示基板,其中,
    针对相邻的两个像素单元,当蓝色滤光单元与绿色滤光单元相邻时,蓝色滤光单元在衬底基板上的正投影与绿色滤光单元在衬底基板上的正投影存在重叠区域;
    当蓝色滤光单元与红色滤光单元相邻时,蓝色滤光单元在衬底基板上的正投影与红色滤光单元在衬底基板上的正投影存在重叠区域;
    当红色滤光单元与绿色滤光单元相邻时,红色滤光单元在衬底基板上的正投影与绿色滤光单元在衬底基板上的正投影相接但不存在重叠区域。
  16. 一种显示基板的驱动方法,其中,
    所述显示基板为如权利要求11至15中任意一项所述的显示基板;
    所述驱动方法包括:
    针对多个像素单元中的至少一个像素单元,在数据写入阶段通过像素驱动电路向所述至少一个像素单元中的第一子像素、第二子像素和第三子像素中的至少一个输入数据信号;
    在数据写入阶段和在数据写入阶段之后的发光阶段通过像素驱动电路向中心子像素输入高阻态信号,以将所述至少一个像素单元中的第一子像素、第二子像素和第三子像素中至少一个与中心子像素之间的漏电流引流至中心子像素,驱动中心子像素发光。
  17. 根据权利要求16所述的驱动方法,还包括:
    在数据写入阶段之前的复位阶段和在发光阶段之后的非发光阶段,通过像素驱动电路向中心子像素输入接地信号。
  18. 根据权利要求17所述的驱动方法,其中,
    数据信号的电压大于接地信号的电压。
  19. 一种显示装置,包括:如权利要求11至15中任意一项所述的显示基板。
PCT/CN2021/130807 2021-01-28 2021-11-16 像素结构、显示基板及其驱动方法、显示装置 WO2022160871A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/802,540 US11832491B2 (en) 2021-01-28 2021-11-16 Pixel structure with different distance between adjacent subpixels and pixels, display substrate and driving method therefor, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110116042.1 2021-01-28
CN202110116042.1A CN112909058B (zh) 2021-01-28 2021-01-28 像素结构、显示基板及其驱动方法、显示装置

Publications (1)

Publication Number Publication Date
WO2022160871A1 true WO2022160871A1 (zh) 2022-08-04

Family

ID=76119345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130807 WO2022160871A1 (zh) 2021-01-28 2021-11-16 像素结构、显示基板及其驱动方法、显示装置

Country Status (3)

Country Link
US (1) US11832491B2 (zh)
CN (1) CN112909058B (zh)
WO (1) WO2022160871A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909058B (zh) * 2021-01-28 2024-04-16 合肥京东方光电科技有限公司 像素结构、显示基板及其驱动方法、显示装置
CN113823193B (zh) * 2021-10-15 2023-09-29 京东方科技集团股份有限公司 一种柔性显示屏、车灯及汽车

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935198A (zh) * 2017-04-17 2017-07-07 京东方科技集团股份有限公司 一种像素驱动电路、其驱动方法及有机发光显示面板
JP2017211484A (ja) * 2016-05-25 2017-11-30 株式会社ジャパンディスプレイ 表示装置
CN109037287A (zh) * 2018-07-27 2018-12-18 京东方科技集团股份有限公司 子像素排列结构、掩膜装置、显示面板及显示装置
CN112909058A (zh) * 2021-01-28 2021-06-04 合肥京东方光电科技有限公司 像素结构、显示基板及其驱动方法、显示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI368456B (en) * 2007-04-20 2012-07-11 Au Optronics Corp Organic electro-luminescence display
CN101051649A (zh) * 2007-05-10 2007-10-10 友达光电股份有限公司 有机电激发光显示装置、光电装置及其形成方法
KR101388582B1 (ko) * 2007-10-26 2014-04-23 삼성디스플레이 주식회사 전기 영동 표시 장치
TWI405018B (zh) * 2009-10-29 2013-08-11 Au Optronics Corp 電泳顯示面板
CN104299523A (zh) * 2014-10-14 2015-01-21 京东方科技集团股份有限公司 像素结构、显示基板和显示装置
CN106920832B (zh) * 2017-05-12 2019-02-15 合肥鑫晟光电科技有限公司 一种像素结构、其制作方法及显示面板
CN108807498A (zh) * 2018-08-30 2018-11-13 上海天马微电子有限公司 有机发光显示面板和显示装置
CN109713027B (zh) * 2019-02-28 2020-12-11 上海天马有机发光显示技术有限公司 一种有机发光显示面板的像素排布及有机发光显示面板
CN109871159B (zh) * 2019-03-01 2020-09-11 信利(惠州)智能显示有限公司 触控显示模组及触控显示屏
CN110783383A (zh) * 2019-09-19 2020-02-11 纳晶科技股份有限公司 一种显示基板以及显示装置
CN110690360B (zh) * 2019-09-26 2022-06-17 武汉天马微电子有限公司 一种显示面板和显示装置
WO2021102713A1 (zh) 2019-11-27 2021-06-03 重庆康佳光电技术研究院有限公司 一种像素排列结构、电致发光器件及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211484A (ja) * 2016-05-25 2017-11-30 株式会社ジャパンディスプレイ 表示装置
CN106935198A (zh) * 2017-04-17 2017-07-07 京东方科技集团股份有限公司 一种像素驱动电路、其驱动方法及有机发光显示面板
CN109037287A (zh) * 2018-07-27 2018-12-18 京东方科技集团股份有限公司 子像素排列结构、掩膜装置、显示面板及显示装置
CN112909058A (zh) * 2021-01-28 2021-06-04 合肥京东方光电科技有限公司 像素结构、显示基板及其驱动方法、显示装置

Also Published As

Publication number Publication date
US20230101671A1 (en) 2023-03-30
US11832491B2 (en) 2023-11-28
CN112909058B (zh) 2024-04-16
CN112909058A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2021068571A1 (zh) 显示面板及显示装置
WO2021208665A1 (zh) 显示面板及显示装置
US20210091145A1 (en) Pixel arrangement structure and driving method thereof, display substrate and display device
US9935156B2 (en) Display device having sub-pixel array structure
WO2021082534A1 (zh) 显示面板及显示装置
WO2022160871A1 (zh) 像素结构、显示基板及其驱动方法、显示装置
US11696478B2 (en) Display panel for improving display effect in low-resolution area, manufacturing method thereof, and display device
US11176898B2 (en) Display panel and electronic apparatus
US20220278260A1 (en) Display apparatus using semiconductor light emitting device
WO2023109137A1 (zh) 显示面板及显示装置
WO2022237141A1 (zh) 显示面板及显示装置
WO2022226754A1 (zh) 像素结构及其驱动方法、显示面板及显示装置
EP4369400A1 (en) Display panel
WO2024022069A1 (zh) 一种显示面板、显示装置
WO2024022084A1 (zh) 显示基板及显示装置
WO2021189484A1 (zh) 显示基板及其制作方法、显示装置
CN218851230U (zh) 显示面板及显示装置
WO2022110015A1 (zh) 显示基板、显示面板、显示装置
WO2022061543A1 (zh) 显示基板及显示装置
WO2023150902A1 (zh) 显示面板及显示装置
WO2023070524A1 (zh) 像素排布结构及其驱动方法和显示基板及其制备方法
US20220376139A1 (en) Light-emitting diode and display module using the same
US11997897B2 (en) Display substrate including connection line and power line surrounding display area, preparation method thereof, and display device
WO2024044971A1 (zh) 显示面板及显示装置
WO2024000292A1 (zh) 显示基板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/11/2023)