WO2022160533A1 - 电压转换电路及电压转换芯片 - Google Patents
电压转换电路及电压转换芯片 Download PDFInfo
- Publication number
- WO2022160533A1 WO2022160533A1 PCT/CN2021/096663 CN2021096663W WO2022160533A1 WO 2022160533 A1 WO2022160533 A1 WO 2022160533A1 CN 2021096663 W CN2021096663 W CN 2021096663W WO 2022160533 A1 WO2022160533 A1 WO 2022160533A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage conversion
- diode
- voltage
- switch tube
- tube
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims description 103
- 230000003071 parasitic effect Effects 0.000 claims description 12
- 230000001960 triggered effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/10—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
Definitions
- the invention relates to the field of display technology, in particular to a voltage conversion circuit and a voltage conversion chip.
- the on/off voltage of the thin film transistor (TFT) in the liquid crystal display (LCD) product (generally the on-voltage is 28V, and the off-voltage is -10V) is much higher than the power supply voltage (3.3V/0V), Therefore, a voltage conversion chip (Level shift IC) is used, and the power supply voltage is converted into a higher or lower analog voltage.
- TFT thin film transistor
- LCD liquid crystal display
- the voltage conversion chip has a FLT pin.
- the main function is to change the FLT pin from 0V to 5V after detecting that the voltage conversion chip triggers the OCP (overcurrent protection) function, and tell the front-end power chip to turn off the voltage output, thereby protect the entire circuit.
- OCP overcurrent protection
- the voltage conversion chip is an internal partial equivalent circuit.
- P-type substrate (Psub) Three atoms of boron, aluminum, and gallium are doped in the silicon wafer; Nwell is the N-well region of the P-type substrate, Nwell1-Psub-Nwell2 constitutes a parasitic NPN triode.
- Nwell2 DCHG
- the parasitic diode D turns on the voltage drop lower than Psub (VGL)
- the parasitic triode T1 can be triggered to turn on and pull down the potential of Nwell1.
- the memory (OTP) logic circuit causes the memory (OTP) logic circuit to work abnormally.
- the opening of the parasitic diode D will also trigger the opening of the parasitic transistor T2, which will pull down the potential of nwell3, resulting in abnormal operation of the OCP logic circuit.
- the present invention provides a voltage conversion circuit, which can solve the problem of false triggering of an overcurrent protection signal by connecting a first diode in series at the output end and the input end of the voltage conversion module.
- the present invention provides a voltage conversion circuit comprising: a power supply module for outputting a first voltage signal; a voltage conversion module, an input end of the voltage conversion module is connected to the power supply module for receiving the a first voltage signal is amplified and then reduced and then output a second voltage signal; and a first diode, the cathode of the first diode is connected to the output end of the voltage conversion module, the The anode of the first diode is connected to the input end of the voltage conversion module.
- the voltage conversion module includes: a first switch tube, the first end of the first switch tube is connected to the output end of the voltage conversion module; an overcurrent protection unit, the overcurrent protection unit is connected to the first The second end of the switch tube, the overcurrent protection unit is used to trigger the overcurrent protection signal and send it to the power module, and the power module stops outputting the first voltage signal; the second diode, the first voltage The cathodes of the two diodes are respectively connected to the output end of the voltage conversion module and the first end of the first switch tube, and the anodes of the second diodes are connected to the input end of the power supply module.
- the first diode is a Schottky diode.
- the first switch transistor is a parasitic NPN transistor.
- the first voltage signal includes a high voltage signal or a low voltage signal.
- the voltage conversion module also includes:
- the first end of the second switch tube is connected to the output end of the voltage conversion module, the first end of the first switch tube and the negative electrode of the second diode respectively; the storage unit , the storage unit is connected to the second end of the second switch tube.
- the second switch transistor is a parasitic NPN transistor.
- the invention also provides a voltage conversion chip, the voltage conversion chip includes: a multi-function configuration pin, the multi-function configuration pin includes a first input pin and a first output pin; a first power tube, the first The first end of a power tube is connected to the first output pin, the second end of the first power tube is connected to the first input pin; and a comparator, the non-inverting input end of the comparator is connected to a The first end of the constant voltage, the negative input end of the comparator is respectively connected to the first end of the first power tube and the first output pin, and the output end of the comparator is connected to the first power The third end of the tube; the second end of the constant voltage is respectively connected to the second end of the first power tube and the first input pin.
- the voltage conversion chip further includes: a second power tube, the first end of the second power tube is connected to the first output pin, and the second end of the second power tube is connected to the voltage conversion The second input pin of the chip.
- the voltage conversion chip further includes: a first switch tube, the first end of the first switch tube is connected to the first input pin and the first output pin respectively; an overcurrent protection unit, The overcurrent protection unit is connected to the second end of the first switch tube, and the overcurrent protection unit is used to trigger an overcurrent protection signal to be sent to the power module, and the power module stops outputting the first voltage signal ; the first diode, the cathode of the first diode is connected to the first output pin, and the anode of the first diode is connected to the first input pin; the second diode, the The cathode of the second diode is respectively connected to the output end of the voltage conversion module and the first end of the first switch tube, and the anode of the second diode is connected to the input end of the power supply module.
- the voltage conversion chip further includes: a second switch tube, the first end of the second switch tube is connected to the first input pin and the first output pin storage unit respectively, the storage unit is The unit is connected to the second end of the second switch tube.
- the present invention provides a voltage conversion circuit and a voltage conversion chip.
- a first diode in series at the output end and the input end of the voltage conversion module, when the voltage VDCHG at the output end of the voltage conversion module 110 ⁇ the When the voltage of the input terminal of the voltage conversion module 110 is VGL, the first diode D1 is non-conductive.
- the first diode D1 When the voltage of the output terminal of the voltage conversion module 110 VDCHG ⁇ the voltage of the input terminal of the voltage conversion module 110 VGL, the first diode D1
- the tube D1 is turned on, so that VDCHG ⁇ (VGL-V1), so VDCHG ⁇ (VGL-0.3V) can be ensured, so the problem of false triggering of the overcurrent protection signal can be solved.
- the present invention provides a voltage conversion chip.
- the comparator COMP is set to High voltage is output, the first power transistor Q3 is turned on, and the negative voltage of the voltage VDCHG of the first output pin DHCG is determined by the current i1 and the on-resistance RDSON of the first power transistor Q3. If the on-resistance RDSON of the first power transistor Q3 is 3 ⁇ , the chip ensures that the maximum output current i1 of VDCHG ⁇ (VGL-0.3V) is 133mA, thus increasing the negative pressure capability of the first output pin DHCG.
- 1 is an equivalent circuit diagram of a voltage conversion chip provided by the background technology
- Embodiment 2 is a specific connection diagram of the voltage conversion circuit provided in Embodiment 1 of the present invention.
- Embodiment 3 is an internal connection diagram of a voltage conversion chip provided in Embodiment 2 of the present invention.
- FIG. 4 is an internal connection diagram of the voltage conversion chip provided in Embodiment 2 of the present invention.
- the present invention provides a voltage conversion circuit 100 , which includes a power module 120 , a voltage conversion module 110 and a first diode D1 .
- the power module 120 is used for outputting a first voltage signal V1; the input end of the voltage conversion module 110 is connected to the power module 120 for receiving the first voltage signal V1 and adjusting the first voltage signal V1 Then, a second voltage signal V2 is output, the output end of the voltage conversion module 110 is connected to the display panel, and the second voltage signal V2 is used to drive the display panel to display.
- the cathode of the first diode D1 is connected to the output terminal of the voltage conversion module 110 , and the anode of the first diode D1 is connected to the input terminal of the voltage conversion module 110 .
- the voltage conversion module 110 includes: a first switch tube Q1, an overcurrent protection unit 111 and a second diode D2.
- the first end of the first switch tube Q1 is connected to the output end of the voltage conversion module 110; the overcurrent protection unit 111 is connected to the second end of the first switch tube Q1, and the overcurrent protection unit 111 uses
- the power module 120 stops outputting the first voltage signal V1 .
- the cathode of the second diode D2 is connected to the output end of the voltage conversion module 110 and the first end of the first switch Q1 respectively, and the anode of the second diode D2 is connected to the power module 120 the input terminal.
- a first diode D1 (normally conducting voltage drop is VD) is connected in series with the output end and the input end of the voltage conversion module 110 .
- VD normally conducting voltage drop
- the following embodiment 1 specifically introduces the specific circuit connection of the voltage conversion circuit 100 of the present invention.
- the voltage conversion circuit 100 includes a power module 120 and a voltage conversion module 110 .
- the power module 120 is used for outputting a first voltage signal V1; the input end of the voltage conversion module 110 is connected to the power module 120 for receiving the first voltage signal V1 and adjusting the first voltage signal V1 Then, a second voltage signal V2 is output, the output end of the voltage conversion module 110 is connected to the display panel, and the second voltage signal V2 is used to drive the display panel to display.
- the first voltage signal V1 includes a high voltage signal VGH or a low voltage signal VGL.
- the cathode of the first diode D1 is connected to the output terminal of the voltage conversion module 110 , and the anode of the first diode D1 is connected to the input terminal of the voltage conversion module 110 .
- the first diode D1 is a Schottky diode.
- the voltage conversion module 110 includes: a first switch transistor Q1 , an overcurrent protection unit 111 , a second switch transistor Q2 and a storage unit 112 .
- the first end of the first switch tube Q1 is connected to the output end of the voltage conversion module 110; the overcurrent protection unit 111 is connected to the second end of the first switch tube Q1, and the overcurrent protection unit 111 uses After detecting that the voltage conversion module 110 triggers an overcurrent protection signal and sends it to the power module 120 , the power module 120 turns off the output of the first voltage signal V1 .
- the first switch transistor Q1 is a parasitic NPN transistor.
- the cathode of the second diode D2 is connected to the output end of the voltage conversion module 110 and the first end of the first switch tube Q1 respectively, and the anode of the second diode D2 is connected to the power module 120 input.
- the first end of the second switch tube Q2 is connected to the output end of the voltage conversion module 110 , the first end of the first switch tube Q1 and the cathode of the second diode D2 , respectively.
- the storage unit 112 is connected to the second end of the second switch transistor Q2.
- the first switch transistor Q1 is a parasitic NPN transistor.
- a first diode D1 is connected in series with the output end and the input end of the voltage conversion module 110 (the voltage drop during normal conduction is V1 ).
- the first diode D1 is not conductive when the voltage VDCHG of the output terminal of the voltage conversion module 110 ⁇ the
- the first diode D1 is turned on, so that VDCHG ⁇ (VGL-V1), so it can ensure that VDCHG ⁇ (VGL-0.3V), so it can solve the problem of false triggering of the overcurrent protection signal The problem.
- Embodiment 2 of the present invention provides a voltage conversion chip 200 for enhancing negative pressure capability.
- the voltage conversion chip 200 includes: a multi-function configuration pin (not shown), a first power transistor Q3 and a comparator COMP.
- the multi-function configuration pins include a first input pin VGL and a first output pin DHCG.
- the first end of the first power tube Q3 is connected to the first output pin DHCG, and the second end of the first power tube Q3 is connected to the first input pin VGL.
- the positive phase input terminal of the comparator COMP is connected to a first terminal of a constant voltage of 100mv, and the negative phase input terminal of the comparator COMP is respectively connected to the first terminal of the first power transistor Q3 and the first output lead.
- pin DHCG the output end of the comparator COMP is connected to the third end of the first power tube Q3; the second end of the constant voltage is connected to the second end of the first power tube Q3 and the first power tube Q3 respectively Input pin VGL.
- Embodiment 2 when the output current i1 of the first output pin DHCG is relatively large, and the voltage VDCHG of the first output pin DHCG ⁇ the voltage VGL+100mv of the first input pin VGL, the comparator COMP is set to output When the voltage is high, the first power tube Q3 is turned on, and the negative voltage of the voltage VDCHG of the first output pin DHCG is determined by the current i1 and the on-resistance RDSON of the first power tube Q3. If the on-resistance RDSON of the first power transistor Q3 is 3 ⁇ , the chip ensures that the maximum output current i1 of VDCHG ⁇ (VGL-0.3V) is 133mA, thus increasing the negative pressure capability of the first output pin DHCG.
- the voltage conversion chip 200 further includes: a second power transistor Q4 , a first switch transistor Q1 , an overcurrent protection unit 111 , a first diode D1 , and a second diode The transistor D2 , the second switch transistor Q2 and the storage unit 112 .
- the first end of the second power tube Q4 is connected to the first output pin DHCG, and the second end of the second power tube Q4 is connected to the second input pin VSS of the voltage conversion chip 200 .
- the first end of the first switch tube Q1 is connected to the first output pin DHCG;
- the overcurrent protection unit 111 is connected to the second end of the first switch tube Q1, and the overcurrent protection unit 111 is used for
- the power supply module 120 stops outputting the first voltage signal V1;
- the cathode of the first diode D1 is connected to the The first output pin DHCG, the anode of the first diode D1 is connected to the first input pin VGL.
- the first end of the second switch tube Q2 is connected to the first input pin VGL and the first output pin DHCG respectively; the storage unit 112 is connected to the second end of the second switch tube Q2.
- the cathode of the second diode D2 is respectively connected to the first end of the first switch tube Q1, the first end of the second switch tube Q2 and the first output pin DHCG, the second two
- the negative pole of the pole tube D2 is connected to the second output pin, the first end of the first switch tube Q1 and the first end of the second switch tube Q2 respectively, and the positive pole of the second diode D2 is connected to the first output pin DHCG.
- the first end of the second switch tube Q2 is connected to the first end of the first switch tube Q1 and the first output pin DHCG, respectively.
- the storage unit 112 is connected to the second end of the second switch transistor Q2, and the first switch transistor Q1 is a parasitic NPN transistor.
- a first diode D1 is connected in series between the first output pin DHCG and the first input pin VGL of the voltage conversion chip 200 (the voltage drop during normal conduction is V1 ).
- the first diode D1 is not conductive when the voltage VDCHG of the output terminal of the voltage conversion module 110 ⁇ the
- the first diode D1 is turned on, so that VDCHG ⁇ (VGL-V1), so it can ensure that VDCHG ⁇ (VGL-0.3V), so it can solve the problem of false triggering of the overcurrent protection signal The problem.
- the voltage conversion circuit 100 provided by the embodiments of the present invention has been described in detail above.
- the principles and implementations of the present invention are described in this document by using specific examples.
- the descriptions of the above embodiments are only used to help understand the present invention. method and its core idea; at the same time, for those skilled in the art, according to the idea of the present invention, there will be changes in the specific implementation and application scope. To sum up, the contents of this specification should not be construed as a limits.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Semiconductor Integrated Circuits (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明提供一种电压转换电路(100)及电压转换芯片(200),通过在电压转换模块(110)的输出端以及输入端串接一第一二极管,可解决误触发过流保护信号的问题。本发明提供电压转换芯片(200),通过设置比较器以及恒定电压源,因此增加电压转换芯片(200)的输出引脚的负压能力。
Description
本发明涉及显示技术领域,具体涉及一种电压转换电路及电压转换芯片。
由于液晶显示器( Liquid Crystal Display,LCD)的产品中薄膜晶体管(TFT)打开/关断的电压(一般导通电压为28V,关断为-10V)远高于电源电压(3.3V/0V),因此都会用到电压转换芯片(Level shift IC),电源电压转换为更高或更低的模拟电压。
一般电压转换芯片的有一个FLT引脚,主要作用是在检测到电压转换芯片触发OCP(过流保护)功能后,FLT 引脚会从0V 变5V,并告知前端的电源芯片关闭电压输出,从而保护整个电路。但在实际应用中有发现在开机时,当电压转换芯片的输出引脚的电压VDCHG<电源芯片的输出引脚的电压VGL,此时并未触发OCP,但FLT引脚会出现误触发的情况,变为高电平。
如图1,电压转换芯片是内部部分等效电路。P 型衬底(Psub):在硅晶片中掺杂了三家硼、铝、镓等原子;Nwell为P 型衬底的N阱区域,
Nwell1-Psub-Nwell2构成一个寄生的NPN三级管,当Nwell2(DCHG)被拉低,且比Psub (VGL)低寄生二极管D 开通压降,就可触发寄生三极管T1开通,拉低Nwell1电位,导致存储器(OTP)逻辑电路工作异常。同理寄生二极管D 开通也会触发寄生三极管T2开通,拉低nwell3电位,导致OCP逻辑电路工作异常。
本发明提供一种电压转换电路,通过在所述电压转换模块的输出端以及输入端串接一第一二极管,可解决误触发过流保护信号的问题。
为了达到上述目的,本发明提供一种电压转换电路包括:电源模块,用以输出一第一电压信号; 电压转换模块,所述电压转换模块的输入端连接所述电源模块,用以接收所述第一电压信号并放大后缩小所述第一电压信号后输出一第二电压信号;以及第一二极管,所述第一二极管的负极连接所述电压转换模块的输出端,所述第一二极管的正极连接所述电压转换模块的输入端。其中,所述电压转换模块包括:第一开关管,所述第一开关管的第一端连接所述电压转换模块的输出端;过流保护单元,所述过流保护单元连接所述第一开关管的第二端,所述过流保护单元用以触发过流保护信号并发送至所述电源模块,所述电源模块停止输出所述第一电压信号;第二二极管,所述第二二极管的负极分别连接所述电压转换模块的输出端以及所述第一开关管的第一端,所述第二二极管的正极连接所述电源模块的输入端。
进一步地,所述第一二极管为肖特基二极管。
进一步地,所述第一开关管为寄生的NPN管。
进一步地,所述第一电压信号包括高电压信号或低电压信号。
进一步地,所述电压转换模块还包括:
第二开关管,所述第二开关管的第一端连分别连接所述电压转换模块的输出端、所述第一开关管的第一端以及所述第二二极管的负极;存储单元,所述存储单元连接所述第二开关管的第二端。
进一步地,所述第二开关管为寄生的NPN管。
本发明还一种电压转换芯片,所述电压转换芯片包括:多功能配置引脚,所述多功能配置引脚包括第一输入引脚以及第一输出引脚;第一功率管,所述第一功率管的第一端连接所述第一输出引脚,所述第一功率管的第二端连接所述第一输入引脚;以及比较器,所述比较器的正相输入端连接一恒定电压的第一端,所述比较器的负相输入端分别连接所述第一功率管的第一端以及所述第一输出引脚,所述比较器的输出端连接所述第一功率管的第三端;所述恒定电压的第二端分别连接所述第一功率管的第二端以及所述第一输入引脚。
进一步地,所述电压转换芯片还包括:第二功率管,所述第二功率管的第一端连接所述第一输出引脚,所述第二功率管的第二端连接所述电压转换芯片的第二输入引脚。
进一步地,所述电压转换芯片还包括:第一开关管,所述第一开关管的第一端连分别连接所述第一输入引脚以及所述第一输出引脚;过流保护单元,所述过流保护单元连接所述第一开关管的第二端,所述过流保护单元用以触发过流保护信号发送至所述电源模块,所述电源模块停止输出所述第一电压信号;第一二极管,所述第一二极管的负极连接所述第一输出引脚,所述第一二极管的正极连接所述第一输入引脚;第二二极管,所述第二二极管的负极分别连接所述电压转换模块的输出端以及所述第一开关管的第一端,所述第二二极管的正极连接所述电源模块的输入端。
进一步地,所述电压转换芯片还包括:第二开关管,所述第二开关管的第一端连分别连接所述第一输入引脚以及所述第一输出引脚存储单元,所述存储单元连接所述第二开关管的第二端。
本发明提供一种电压转换电路及电压转换芯片,通过在所述电压转换模块的输出端以及输入端串接一第一二极管,当所述电压转换模块110的输出端的电压VDCHG≥所述电压转换模块110的输入端的电压VGL时,第一二极管D1不导通当所述电压转换模块110的输出端的电压VDCHG<所述电压转换模块110的输入端的电压VGL时,第一二极管D1导通,使得VDCHG≥(VGL-V1),因此可确保VDCHG≥(VGL-0.3V),因此可解决误触发过流保护信号的问题。
本发明提供电压转换芯片,当第一输出引脚DHCG向外输出电流i1较大时,第一输出引脚DHCG的电压VDCHG<第一输入引脚VGL的电压VGL+100mv时,比较器COMP置输出高电压,第一功率管Q3导通,第一输出引脚DHCG的电压VDCHG负压大小由电流i1和第一功率管Q3的导通电阻RDSON决定。若第一功率管Q3的导通电阻RDSON为3Ω,则芯片确保VDCHG≥(VGL-0.3V) 的最大输出电流i1为133mA,因此增加了第一输出引脚DHCG的负压能力。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是背景技术提供的电压转换芯片的等效电路图;
图2是本发明实施例1提供的电压转换电路的具体连接图;
图3是本发明实施例2提供的电压转换芯片的内部连接图;
图4是本发明实施例2提供的电压转换芯片的内部连接图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
如图2所示,本发明提供一种电压转换电路100,包括:电源模块120、电压转换模块110以及第一二极管D1。
所述电源模块120用以输出一第一电压信号V1;所述电压转换模块110的输入端连接所述电源模块120,用以接收所述第一电压信号V1并调整所述第一电压信号V1后输出一第二电压信号V2,所述电压转换模块110的输出端连接显示面板,所述第二电压信号V2用以驱动显示面板进行显示。
所述第一二极管D1的负极连接所述电压转换模块110的输出端,所述第一二极管D1的正极连接所述电压转换模块110的输入端。
所述电压转换模块110包括:第一开关管Q1、过流保护单元111以及第二二极管D2。所述第一开关管Q1的第一端连接所述电压转换模块110的输出端;所述过流保护单元111连接所述第一开关管Q1的第二端,所述过流保护单元111用以检测到所述电压转换模块110触发过流保护信号并发送至所述电源模块120,所述电源模块120停止输出所述第一电压信号V1。所述第二二极管D2的负极分别连接所述电压转换模块110的输出端以及所述第一开关管Q1的第一端,所述第二二极管D2的正极连接所述电源模块120的输入端。
本发明通过在所述电压转换模块110的输出端以及输入端串接一第一二极管D1(正常导通压降为VD)。当所述电压转换模块110的输出端的电压VDCHG≥所述电压转换模块110的输入端的电压VGL时,第一二极管D1不导通当所述电压转换模块110的输出端的电压VDCHG<所述电压转换模块110的输入端的电压VGL时,第一二极管D1导通,使得VDCHG≥(VGL-VD),因此可确保VDCHG≥(VGL-VD),因此可解决误触发过流保护信号的问题。
如下实施例1具体介绍本发明的所述的电压转换电路100的具体电路连接。
如图2所示,所述电压转换电路100,包括:电源模块120以及电压转换模块110。
所述电源模块120用以输出一第一电压信号V1;所述电压转换模块110的输入端连接所述电源模块120,用以接收所述第一电压信号V1并调整所述第一电压信号V1后输出一第二电压信号V2,所述电压转换模块110的输出端连接显示面板,所述第二电压信号V2用以驱动显示面板显示。所述第一电压信号V1包括高电压信号VGH或低电压信号VGL。
所述第一二极管D1的负极连接所述电压转换模块110的输出端,所述第一二极管D1的正极连接所述电压转换模块110的输入端。所述第一二极管D1为肖特基二极管。
所述电压转换模块110包括:第一开关管Q1、过流保护单元111、第二开关管Q2以及存储单元112。
所述第一开关管Q1的第一端连接所述电压转换模块110的输出端;所述过流保护单元111连接所述第一开关管Q1的第二端,所述过流保护单元111用以检测到所述电压转换模块110触发过流保护信号并发送至所述电源模块120,所述电源模块120关闭所述第一电压信号V1输出。所述第一开关管Q1为寄生的NPN管。
所述第二二极管D2的负极分别连接所述电压转换模块110的输出端以及所述第一开关管Q1的第一端以及,所述第二二极管D2的正极连接所述电源模块120的输入端。
所述第二开关管Q2的第一端连分别连接所述电压转换模块110的输出端、所述第一开关管Q1的第一端以及所述第二二极管D2的负极。
所述存储单元112连接所述第二开关管Q2的第二端。所述第一开关管Q1为寄生的NPN管。
实施例1通过在所述电压转换模块110的输出端以及输入端串接一第一二极管D1(正常导通压降为V1)。当所述电压转换模块110的输出端的电压VDCHG≥所述电压转换模块110的输入端的电压VGL时,第一二极管D1不导通当所述电压转换模块110的输出端的电压VDCHG<所述电压转换模块110的输入端的电压VGL时,第一二极管D1导通,使得VDCHG≥(VGL-V1),因此可确保VDCHG≥(VGL-0.3V),因此可解决误触发过流保护信号的问题。
如图3所示,本发明实施例2提供一种电压转换芯片200,用以加强负压能力。所述电压转换芯片200包括:多功能配置引脚(未标出)、第一功率管Q3以及比较器COMP。
所述多功能配置引脚包括第一输入引脚VGL以及第一输出引脚DHCG。所述第一功率管Q3的第一端连接所述第一输出引脚DHCG,所述第一功率管Q3的第二端连接所述第一输入引脚VGL。所述比较器COMP的正相输入端连接一恒定电压100mv的第一端,所述比较器COMP的负相输入端分别连接所述第一功率管Q3的第一端以及所述第一输出引脚DHCG,所述比较器COMP的输出端连接所述第一功率管Q3的第三端;所述恒定电压的第二端分别连接所述第一功率管Q3的第二端以及所述第一输入引脚VGL。
在实施例2中,当第一输出引脚DHCG向外输出电流i1较大时,第一输出引脚DHCG的电压VDCHG<第一输入引脚VGL的电压VGL+100mv时,比较器COMP置输出高电压,第一功率管Q3导通,第一输出引脚DHCG的电压VDCHG负压大小由电流i1和第一功率管Q3的导通电阻RDSON决定。若第一功率管Q3的导通电阻RDSON为3Ω,则芯片确保VDCHG≥(VGL-0.3V) 的最大输出电流i1为133mA,因此增加了第一输出引脚DHCG的负压能力。
如图4所示,在实施例2中,所述电压转换芯片200还包括:第二功率管Q4、第一开关管Q1、过流保护单元111、第一二极管D1、第二二极管D2、第二开关管Q2以及存储单元112。
所述第二功率管Q4的第一端连接所述第一输出引脚DHCG,所述第二功率管Q4的第二端连接所述电压转换芯片200的第二输入引脚VSS。所述第一开关管Q1的第一端连接所述第一输出引脚DHCG;所述过流保护单元111连接所述第一开关管Q1的第二端,所述过流保护单元111用以检测到所述电压转换模块110触发过流保护信号并发送至所述电源模块120,所述电源模块120停止输出所述第一电压信号V1;所述第一二极管D1的负极连接所述第一输出引脚DHCG,所述第一二极管D1的正极连接所述第一输入引脚VGL。所述第二开关管Q2的第一端连分别连接所述第一输入引脚VGL以及所述第一输出引脚DHCG;所述存储单元112连接所述第二开关管Q2的第二端。所述第二二极管D2的负极分别连接所述第一开关管Q1的第一端、所述第二开关管Q2的第一端以及所述第一输出引脚DHCG,所述第二二极管D2的负极分别连接所述第二输出引脚、所述第一开关管Q1的第一端以及所述第二开关管Q2的第一端,所述第二二极管D2的正极连接所述第一输出引脚DHCG。所述第二开关管Q2的第一端连分别连接所述第一开关管Q1的第一端以及所述第一输出引脚DHCG。所述存储单元112连接所述第二开关管Q2的第二端,所述第一开关管Q1为寄生的NPN管。
并且实施例2通过在所述电压转换芯片200的第一输出引脚DHCG以及第一输入引脚VGL之间串接一第一二极管D1(正常导通压降为V1)。当所述电压转换模块110的输出端的电压VDCHG≥所述电压转换模块110的输入端的电压VGL时,第一二极管D1不导通当所述电压转换模块110的输出端的电压VDCHG<所述电压转换模块110的输入端的电压VGL时,第一二极管D1导通,使得VDCHG≥(VGL-V1),因此可确保VDCHG≥(VGL-0.3V),因此可解决误触发过流保护信号的问题。
以上对本发明实施例所提供的一种电压转换电路100进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (10)
- 一种电压转换电路,包括:电源模块,用以输出一第一电压信号;电压转换模块,所述电压转换模块的输入端连接所述电源模块,用以接收所述第一电压信号并放大后缩小所述第一电压信号后输出一第二电压信号;以及第一二极管,所述第一二极管的负极连接所述电压转换模块的输出端,所述第一二极管的正极连接所述电压转换模块的输入端;其中,所述电压转换模块包括:第一开关管,所述第一开关管的第一端连接所述电压转换模块的输出端;过流保护单元,所述过流保护单元连接所述第一开关管的第二端,所述过流保护单元用以触发过流保护信号并发送至所述电源模块,所述电源模块停止输出所述第一电压信号;第二二极管,所述第二二极管的负极分别连接所述电压转换模块的输出端以及所述第一开关管的第一端,所述第二二极管的正极连接所述电源模块的输入端。
- 根据权利要求1所述的电压转换电路,所述第一二极管为肖特基二极管。
- 根据权利要求1所述的电压转换电路,所述第一开关管为寄生的NPN管。
- 根据权利要求1所述的电压转换电路,所述第一电压信号包括高电压信号或低电压信号。
- 根据权利要求1所述的电压转换电路,所述电压转换模块还包括:第二开关管,所述第二开关管的第一端连分别连接所述电压转换模块的输出端、所述第一开关管的第一端以及所述第二二极管的负极;存储单元,所述存储单元连接所述第二开关管的第二端。
- 根据权利要求5所述的电压转换电路,所述第二开关管为寄生的NPN管。
- 一种电压转换芯片,所述电压转换芯片包括:多功能配置引脚,所述多功能配置引脚包括第一输入引脚以及第一输出引脚;第一功率管,所述第一功率管的第一端连接所述第一输出引脚,所述第一功率管的第二端连接所述第一输入引脚;以及比较器,所述比较器的正相输入端连接一恒定电压的第一端,所述比较器的负相输入端分别连接所述第一功率管的第一端以及所述第一输出引脚,所述比较器的输出端连接所述第一功率管的第三端;所述恒定电压的第二端分别连接所述第一功率管的第二端以及所述第一输入引脚。
- 根据权利要求7所述的电压转换芯片,所述电压转换芯片还包括:第二功率管,所述第二功率管的第一端连接所述第一输出引脚,所述第二功率管的第二端连接所述电压转换芯片的第二输入引脚。
- 根据权利要求7所述的电压转换芯片,所述电压转换芯片还包括:第一开关管,所述第一开关管的第一端连分别连接所述第一输入引脚以及所述第一输出引脚;过流保护单元,所述过流保护单元连接所述第一开关管的第二端,所述过流保护单元用以触发过流保护信号发送至所述电源模块,所述电源模块停止输出所述第一电压信号;第一二极管,所述第一二极管的负极连接所述第一输出引脚,所述第一二极管的正极连接所述第一输入引脚;第二二极管,所述第二二极管的负极分别连接所述电压转换模块的输出端以及所述第一开关管的第一端,所述第二二极管的正极连接所述电源模块的输入端。
- 根据权利要求7所述的电压转换芯片,所述电压转换芯片还包括:第二开关管,所述第二开关管的第一端连分别连接所述第一输入引脚以及所述第一输出引脚;存储单元,所述存储单元连接所述第二开关管的第二端。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110101706.7A CN112910236B (zh) | 2021-01-26 | 2021-01-26 | 电压转换电路及电压转换芯片 |
CN202110101706.7 | 2021-01-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022160533A1 true WO2022160533A1 (zh) | 2022-08-04 |
Family
ID=76120256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/096663 WO2022160533A1 (zh) | 2021-01-26 | 2021-05-28 | 电压转换电路及电压转换芯片 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112910236B (zh) |
WO (1) | WO2022160533A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070197168A1 (en) * | 2006-01-31 | 2007-08-23 | Advantest Corporation | Measurement apparatus, test apparatus, and measurement method |
CN201965891U (zh) * | 2010-09-15 | 2011-09-07 | 成都芯源系统有限公司 | Led旁路控制电路 |
CN105024547A (zh) * | 2015-07-17 | 2015-11-04 | 深圳市理邦精密仪器股份有限公司 | 一种冗余电源 |
CN107393491A (zh) * | 2017-07-18 | 2017-11-24 | 深圳市华星光电半导体显示技术有限公司 | 时钟信号输出电路及液晶显示装置 |
CN109239449A (zh) * | 2018-11-22 | 2019-01-18 | 中国电子科技集团公司第五十八研究所 | 一种过流检测电路 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5229707A (en) * | 1991-05-14 | 1993-07-20 | National Semiconductor Corporation | Apparatus and method for eliminating false current limit triggering in a grounded source-emitter power switching circuit |
JP3267108B2 (ja) * | 1995-07-07 | 2002-03-18 | 松下電器産業株式会社 | モータの制御装置 |
JP3779904B2 (ja) * | 2001-10-05 | 2006-05-31 | 三菱電機株式会社 | レベルシフト回路 |
CN101572485B (zh) * | 2008-04-30 | 2012-06-06 | 杭州茂力半导体技术有限公司 | 用于副边同步整流管的智能驱动控制方法及装置 |
US8354799B2 (en) * | 2010-09-07 | 2013-01-15 | Monolithic Power Systems, Inc. | Bypass circuitry for serially coupled light emitting diodes and associated methods of operation |
CN203289314U (zh) * | 2013-06-27 | 2013-11-13 | 武汉能创技术有限公司 | 短路自恢复时防峰值误锁死的llc谐振电路结构 |
CN106058796B (zh) * | 2016-07-29 | 2018-10-19 | 中国电子科技集团公司第四十一研究所 | 一种程控过流保护电路及实现方法 |
-
2021
- 2021-01-26 CN CN202110101706.7A patent/CN112910236B/zh active Active
- 2021-05-28 WO PCT/CN2021/096663 patent/WO2022160533A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070197168A1 (en) * | 2006-01-31 | 2007-08-23 | Advantest Corporation | Measurement apparatus, test apparatus, and measurement method |
CN201965891U (zh) * | 2010-09-15 | 2011-09-07 | 成都芯源系统有限公司 | Led旁路控制电路 |
CN105024547A (zh) * | 2015-07-17 | 2015-11-04 | 深圳市理邦精密仪器股份有限公司 | 一种冗余电源 |
CN107393491A (zh) * | 2017-07-18 | 2017-11-24 | 深圳市华星光电半导体显示技术有限公司 | 时钟信号输出电路及液晶显示装置 |
CN109239449A (zh) * | 2018-11-22 | 2019-01-18 | 中国电子科技集团公司第五十八研究所 | 一种过流检测电路 |
Also Published As
Publication number | Publication date |
---|---|
CN112910236B (zh) | 2022-04-08 |
CN112910236A (zh) | 2021-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9960766B2 (en) | Insulated gate bipolar transistor driving circuit | |
WO2017185422A1 (zh) | 一种过流保护电路及液晶显示器 | |
US10903840B2 (en) | Pad tracking circuit for high-voltage input-tolerant output buffer | |
US9818359B2 (en) | Scanning-driving circuit and liquid crystal display device having the same | |
US20150309550A1 (en) | Mobile terminal and display panel driver | |
WO2013166895A1 (zh) | 一种无源射频识别上电复位电路及无源射频识别标签 | |
TW201414156A (zh) | 具有電源備源機制的電源供應裝置 | |
TW202046611A (zh) | 同步整流裝置的驅動電路 | |
US9698667B2 (en) | Semiconductor device and power converter equipment | |
WO2022160533A1 (zh) | 电压转换电路及电压转换芯片 | |
WO2020077783A1 (zh) | 一种驱动电路及显示装置 | |
US20080180418A1 (en) | Liquid crystal panel control circuit having reset circuit and liquid crystal display driving circuit with same | |
CN110635797B (zh) | 驱动电路 | |
US11621550B2 (en) | Overcurrent protection circuit, overcurrent protection method, clock signal generation circuit and display device | |
US20090168465A1 (en) | Power supply circuit with protecting circuit | |
CN115940110A (zh) | 电压选择电路、电压选择系统及电子设备 | |
TW202249381A (zh) | 快充驅動器 | |
CN102624376B (zh) | 负向电压转换电路 | |
US12087193B2 (en) | Driving circuit | |
KR101920282B1 (ko) | 전원 리셋 장치 및 이를 포함하는 표시 장치와 전자 기기 | |
US8450987B2 (en) | Switching apparatus and control signal generator thereof | |
TWI806735B (zh) | 高穩定度之電腦裝置 | |
CN105405422B (zh) | 一种稳压电源电路及液晶显示装置 | |
CN215581093U (zh) | 推挽式驱动装置 | |
TWI851351B (zh) | 降低功率消耗之電源供應器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21922131 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21922131 Country of ref document: EP Kind code of ref document: A1 |