WO2022160420A1 - 燃料电池的功率控制系统及方法 - Google Patents

燃料电池的功率控制系统及方法 Download PDF

Info

Publication number
WO2022160420A1
WO2022160420A1 PCT/CN2021/080392 CN2021080392W WO2022160420A1 WO 2022160420 A1 WO2022160420 A1 WO 2022160420A1 CN 2021080392 W CN2021080392 W CN 2021080392W WO 2022160420 A1 WO2022160420 A1 WO 2022160420A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
control
power
command
voltage
Prior art date
Application number
PCT/CN2021/080392
Other languages
English (en)
French (fr)
Inventor
胡刚毅
秦琅
张同国
高锦宏
王亚杰
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Priority to EP21922019.1A priority Critical patent/EP4286216A1/en
Publication of WO2022160420A1 publication Critical patent/WO2022160420A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to the technical field of fuel cells, in particular, to a power control system and method of a fuel cell.
  • Fuel cells have the advantages of high power generation efficiency and less environmental pollution, so they are widely used in vehicle energy power systems.
  • the DC/DC converter and auxiliary machines such as air compressors need to work together to complete the power generation.
  • the DC/DC converters and auxiliary machines such as air compressors are distributed in a distributed connection relationship, so the vehicle control system needs to control the DC/DC converters and auxiliary machines such as air compressors separately.
  • the control of the control system is relatively complex, and the vehicle control system also needs to receive the respective feedback operating states of the DC/DC converters and air compressors and other auxiliary machines, resulting in more communication resources of the vehicle control system being occupied.
  • the above-mentioned vehicle control system controls auxiliary machines such as DC/DC converters and air compressors, and receives feedback from the DC/DC converters and auxiliary machines such as air compressors. control and communication have adverse effects.
  • embodiments of the present invention provide a fuel cell power control system and method, so as to solve the problem that the vehicle control system controls auxiliary machines such as DC/DC converters and air compressors, and receives DC/DC converters and air compressors.
  • auxiliary machines such as DC/DC converters and air compressors
  • receives DC/DC converters and air compressors The process of running state feedback from auxiliary machines such as air compressors brings adverse effects to the control and communication of the vehicle control system.
  • an embodiment of the present invention provides a power control system for a fuel cell, including: a main control unit, an inverter control unit, a plurality of DC/DC control units, a high-voltage power distribution management unit, a first DC filter circuit, and a first DC filter circuit. Two DC filter circuits;
  • the main control unit is connected to the vehicle controller, the inverter control unit, each of the DC/DC control units, and the high-voltage power distribution management unit, respectively, for requesting based on the vehicle controller
  • the power and start-stop instructions generate corresponding control instructions for controlling the inverter control unit, each of the DC/DC control units and the high-voltage power distribution management unit to perform corresponding operations;
  • the inverter control unit is connected to the air compressor of the fuel stack, and controls the output demand speed of the air compressor based on the received demand torque control command;
  • the high-voltage power distribution management unit is connected to the high-voltage supporting equipment BOP of the fuel stack, and controls the high-voltage BOP to power on and off based on the received power-on and power-off control instructions;
  • the plurality of DC/DC control units are connected in parallel, and each of the DC/DC control units receives the filtered and shunted first high-voltage direct current through the first direct-current filter circuit, and the first high-voltage direct current is supplied by the high-voltage BOP , the air compressor and each of the DC/DC control units control the generation of the fuel stack;
  • Each of the DC/DC control units outputs a second high-voltage direct current based on the first high-voltage direct current, the received demand current command and the phase-shift angle command, and is condensed to the second direct-current filter circuit through the direct-current bus ;
  • the second DC filter circuit filters the second high voltage DC and then connects to the vehicle drive system.
  • the main control unit is specifically configured to generate a first demanded torque control instruction corresponding to controlling the inverter control unit based on the demanded power and the starting instruction sent by the vehicle controller, and generate a corresponding control instruction for each control unit.
  • the first demand current command and the first phase shift angle command of the DC/DC control unit, and the power-on control command corresponding to the control of the high-voltage power distribution management unit is generated, and the demand power is for the main control unit to control the fuel
  • the inverter control unit configured to control the air compressor to output a first required rotational speed based on the received first required torque control command
  • the high-voltage power distribution management unit configured to control the power-on of the high-voltage BOP based on the received power-on control instruction
  • Each of the DC/DC control units is configured to receive the filtered and shunted first high-voltage direct current through the first direct-current filter circuit, and each of the DC/DC control units is based on the first high-voltage direct current, and receives The obtained first demand current command and first phase shift angle command output a second high-voltage direct current, which is condensed to the second direct current filter circuit through the direct current bus.
  • the main control unit is specifically configured to generate the second demanded torque control command based on the stop command sent by the vehicle controller, and obtain the second demand torque control command according to the preset working speed of the air compressor during the shutdown process. a second demand torque, and generating a power-off control command corresponding to controlling the high-voltage power distribution management unit;
  • the inverter control unit configured to receive the second demanded torque control command and the second demanded torque, and control the air compressor to output a second demanded rotational speed based on the second demanded torque control command;
  • the high-voltage power distribution management unit is configured to control the power-off of the high-voltage BOP based on the received power-off control instruction.
  • the main control unit includes: an external power supply interface, a communication interface, an EMC filter circuit, a power supply circuit, a communication circuit, a first microcontroller and peripheral circuits, an analog quantity acquisition circuit and a digital quantity output circuit;
  • the power supply circuit is connected with the EMC filter circuit, the communication circuit, the first microcontroller and peripheral circuits, the analog quantity acquisition circuit, and the digital quantity output circuit;
  • the EMC filter circuit is connected to the communication circuit
  • the communication circuit is connected with the first microcontroller and peripheral circuits;
  • the first microcontroller and peripheral circuits are connected to the analog quantity acquisition circuit and the digital quantity output circuit.
  • the inverter control unit includes: a first low-voltage power supply circuit, a second microcontroller circuit, an inverter drive unit, an inverter power module, and an AC filter circuit;
  • the first low-voltage power supply circuit is connected to the second microcontroller circuit and the inverter drive unit;
  • the second microcontroller circuit is connected to the inverter drive unit and the inverter power module;
  • the inverter drive unit is connected to the inverter power module
  • the inverter power module is connected to the AC filter circuit and the DC bus;
  • the AC filter circuit is connected to the air compressor.
  • the DC/DC control unit includes: a second low-voltage power supply circuit, a third microcontroller circuit, a DC/DC drive unit and a DC/DC power module;
  • the second low-voltage power supply circuit is connected to the third microcontroller circuit and the DC/DC driving unit;
  • the third microcontroller circuit is connected to the DC/DC drive unit and the DC/DC power module;
  • the DC/DC drive unit is connected to the DC/DC power module
  • the DC/DC power module is connected to the first DC filter circuit.
  • the system further includes: a cold plate temperature sensor
  • the cold plate temperature sensor is connected to the main control unit, and is used for collecting the temperature value of the cold plate and sending it to the main control unit.
  • an embodiment of the present invention provides a power control method for a fuel cell, which is applied to the power control system as described above.
  • the power control method includes:
  • the main control unit determines the current working mode based on the required power and start-stop instructions sent by the vehicle controller, and generates corresponding control inverter control units, each DC/DC control unit and high-voltage power distribution management unit according to different working modes.
  • Control instructions for corresponding operations, the working modes include a startup mode, a normal loading mode and a shutdown mode;
  • the main control unit When in the startup mode, the main control unit generates a startup demand torque control command based on the startup command, and sends it to the inverter control unit, and generates a power-on control command and sends it to the high-voltage power distribution management unit ;
  • the inverter control unit adjusts the torque of the air compressor based on the starting demand torque control command, so that the air compressor outputs a starting demand rotation speed;
  • the high-voltage power distribution management unit controls the high-voltage BOP to power on based on the power-on control instruction
  • the main control unit When in the normal load mode, the main control unit generates a normal load demand torque control command based on the demand power command and sends it to the inverter control unit, and generates a current control command and sends it to each of the DC /DC control unit;
  • the inverter control unit adjusts the torque of the air compressor based on the normal load demand torque control command, so that the air compressor outputs a normal load demand speed;
  • Each of the DC/DC control units outputs corresponding high-voltage direct current based on the current control command
  • the main control unit When in the stop mode, the main control unit generates a stop demand torque control command based on the stop command, and sends it to the inverter control unit, and generates a power-off control command, and sends it to the high-voltage power distribution management unit ;
  • the inverter control unit adjusts the torque of the air compressor based on the shutdown demand torque control command, so that the air compressor outputs a shutdown demand rotation speed;
  • the high-voltage power distribution management unit controls the power-off of the high-voltage BOP based on the power-off control instruction
  • the main control unit, the inverter control unit, and each of the DC/DC control units are preset with a micro-control for realizing core functions related to the operation or control to be realized by the unit in which it is located device.
  • the main control unit generates a current control command based on the required power command, and sends it to each of the DC/DC control units, including:
  • the main control unit generates a first demand current command and a first phase shift angle command corresponding to controlling each of the DC/DC control units based on the demand power command, and sends them to each of the DC/DC control units;
  • each of the DC/DC control units outputs corresponding high-voltage direct current based on the first demand current command and the first phase shift angle command.
  • the main control unit generates a stop demand torque control command based on the stop command, and sends it to the inverter control unit, including:
  • the main control unit calculates the shutdown demand torque based on the stop command and the operating speed of the air compressor in the preset shutdown process, generates a shutdown demand torque control command, and sends it to the inverter for control. unit;
  • the inverter control unit adjusts the torque of the air compressor based on the shutdown demand torque control command, so that the air compressor outputs a shutdown demand rotational speed.
  • the main control unit is respectively connected to the vehicle controller, the inverter control unit, each DC/DC control unit, and the high-voltage power distribution management unit, and is used for Based on the required power and start-stop commands sent by the vehicle controller, the corresponding control commands for controlling the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit to perform corresponding operations are generated; the inverter control unit and the fuel cell stack
  • the high-voltage power distribution management unit is connected to the high-voltage BOP of the fuel stack, and controls the high-voltage based on the received power-on and power-off control commands.
  • the BOP is powered on and off; multiple DC/DC control units are connected in parallel, each DC/DC control unit receives the filtered and shunted first high-voltage direct current through the first direct-current filter circuit, and the first high-voltage direct current is generated by the high-voltage BOP, the air compressor and each DC/DC control unit to control the generation of the fuel stack; each DC/DC control unit outputs a second high-voltage direct current based on the first high-voltage direct current, and the received demand current command and phase-shift angle command, and busses through the DC bus to the second direct current filter circuit; the second direct current filter circuit filters the second high voltage direct current and then connects to the vehicle drive system.
  • the main control unit controls the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit to perform corresponding operations, without the need for vehicle control
  • the inverter individually controls the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit, and the main control unit can feed back the feedback from the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit.
  • the status is sent to the vehicle controller without the need for the vehicle controller to separately receive the status feedback from the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit, thereby reducing the control complexity of the vehicle controller and reducing the communication burden the goal of.
  • FIG. 1 is an application architecture diagram of a power control of a fuel cell according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a fuel cell power control system provided by an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of another fuel cell power control system provided by an embodiment of the present invention.
  • FIG. 4 is a block diagram of a power control principle of a fuel cell according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a power control method for a fuel cell according to an embodiment of the present invention.
  • the terms “comprising”, “comprising” or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device comprising a list of elements includes not only those elements, but also no Other elements expressly listed, or which are also inherent to such a process, method, article or apparatus.
  • an element qualified by the phrase “comprising a" does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
  • the vehicle control system independently controls auxiliary machines such as DC/DC converters and air compressors, and receives the feedback of the respective operating states of the DC/DC converters and air compressors and other auxiliary machines to the vehicle.
  • auxiliary machines such as DC/DC converters and air compressors
  • the control and communication of the control system have adverse effects.
  • embodiments of the present invention provide a fuel cell power control system and method, so as to solve the problem that the vehicle control system controls auxiliary equipment such as DC/DC converters and air compressors, and receives DC/DC converters and air compressors.
  • auxiliary equipment such as DC/DC converters and air compressors
  • receives DC/DC converters and air compressors The process of feedback of the running state of auxiliary machines such as the press has brought a problem of bad influence to the control and communication of the vehicle control system.
  • FIG. 1 it is a power control application architecture diagram of a fuel cell according to an embodiment of the present invention.
  • the architecture includes: a main control unit 10 , an inverter control unit 20 , a plurality of DC/DC control units, and a high-voltage power distribution management unit 40 .
  • the multiple DC/DC control units include a DC/DC control unit 31, a DC/DC control unit 32... a DC/DC control unit 3n, where n is a positive integer.
  • the main control unit 10 is connected to the vehicle controller, the inverter control unit 20, each of the DC/DC control units and the high voltage power distribution management unit 40, respectively.
  • the vehicle controller may be the vehicle controller VCU, the fuel cell system controller FCU, or the vehicle controller.
  • a separate electronic control unit ECU may be the vehicle controller VCU, the fuel cell system controller FCU, or the vehicle controller.
  • the inverter control unit 20 each of the DC/DC control units and the high voltage power distribution management unit 40 are connected to the fuel cell.
  • the main control unit receives the control command from the vehicle controller, and based on the control command, the main control unit controls the inverter control unit, each DC/DC control unit and the high-voltage power distribution unit respectively.
  • the snap-in performs the corresponding action.
  • the main control unit controls the inverter control unit to adjust the output speed of the air compressor
  • the main control unit controls each DC/DC control unit to adjust the output current of the fuel cell
  • the main control unit controls the high-voltage power distribution management
  • the unit completes the power-on and power-off control of the fuel cell.
  • the main control unit controls the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit to perform corresponding operations based on the control commands sent by the vehicle controller, without the need for vehicle control
  • the inverter individually controls the inverter control unit, each DC/DC control unit and the high voltage distribution management unit, and the master control unit can receive feedback from the inverter control unit, each DC/DC control unit and the high voltage distribution management unit It is not necessary for the vehicle controller to separately receive the feedback status of the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit, which reduces the control complexity of the vehicle controller and The purpose of reducing the communication burden. The following is further described in detail through specific embodiments.
  • FIG. 2 shows a structural block diagram of a fuel cell power control system provided by an embodiment of the present invention.
  • the control system includes: a main control unit 201 , an inverter control unit 202 , a plurality of DC/DC control units, a high-voltage power distribution management unit 203 , a first DC filter circuit 204 and a second DC filter circuit 205 .
  • the multiple DC/DC control units include a DC/DC control unit 2031, a DC/DC control unit 2032... a DC/DC control unit 203n, and n is a positive integer.
  • the main control unit 201 is respectively connected with the vehicle controller, the inverter control unit 202, each DC/DC control unit, and the high-voltage power distribution management unit 203, and is used to generate corresponding power based on the required power and the start-stop command sent by the vehicle controller.
  • the inverter control unit 202, each of the DC/DC control units, and the high-voltage power distribution management unit 203 are controlled to execute control instructions for corresponding operations.
  • the main control unit and the inverter control unit, each DC/DC control unit, and the high-voltage power distribution management unit can be connected by high-speed communication, and the same time reference is used to realize the inverter. Synchronized control of the control unit, each DC/DC control unit, and the high voltage distribution management unit.
  • the main control unit, the inverter control unit and each DC/DC control unit are provided with a micro controller, which is only used to realize the operation or control related to the unit where it is located. core function. For example, when performing algorithm operations such as power loop and distribution unit in the main control unit, the requirements for control response are relatively low, so the main control unit can choose to use an ARM core controller.
  • the inverter control unit and each DC/DC control unit perform arithmetic operations such as current loop and torque loop, the requirements for control response are relatively high, and the inverter control unit and each DC/DC control unit correspond to
  • the control function of the inverter is relatively simple, so the inverter control unit and each DC/DC control unit can choose to use the corresponding micro DSP or FPGA or other microcontrollers.
  • the inverter control unit 202 is connected to the air compressor of the fuel cell stack, and controls the output demand speed of the air compressor based on the received demand torque control command.
  • the high-voltage power distribution management unit 203 is connected to the high-voltage supporting equipment (Balance of Plant, BOP) of the fuel stack, and controls the high-voltage BOP to power on and off based on the received power-on and power-off control instructions.
  • BOP high-voltage supporting equipment
  • a plurality of DC/DC control units are connected in parallel, and each DC/DC control unit receives the filtered and shunted first high-voltage direct current through the first direct-current filter circuit 204, and the first high-voltage direct current is generated by the high-voltage BOP, the air compressor and each The DC/DC control unit controls the fuel stack generation.
  • Each DC/DC control unit outputs a second high-voltage direct current based on the first high-voltage direct current, and the received demand current command and phase-shift angle command, and is condensed to the second direct-current filter circuit 205 through the DC bus.
  • the number of parallel DC/DC control units can be increased or decreased to meet the usage requirements of fuel cells with various powers. It should also be noted that the main control unit calculates the phase shift angle of each DC/DC control unit according to the total number of actually used DC/DC control units, so as to realize interleaving control and reduce system ripple.
  • the second DC filter circuit 205 filters the second high voltage DC and then connects to the vehicle drive system.
  • the main control unit controls the inverter control unit, each DC/DC control unit, and the high-voltage power distribution management unit to perform corresponding operations, without the need for vehicle control
  • the inverter individually controls the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit, and the main control unit can feed back the feedback from the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit.
  • the status is sent to the vehicle controller without the need for the vehicle controller to separately receive the status feedback from the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit, thereby reducing the control complexity of the vehicle controller and reducing the communication burden the goal of.
  • the vehicle controller controls the main control unit, and then controls the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit to perform corresponding operations, and hierarchical control can achieve control flexibility, and no need
  • the vehicle controller independently controls the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit, so it is not necessary to configure the vehicle controller with a controller with complex functions and high cost, and the inverter control unit,
  • Each DC/DC control unit and high-voltage power distribution management unit only needs to use a microcontroller to complete their corresponding function processing, which effectively reduces the cost.
  • the main control unit is used to generate corresponding power based on the required power and start-stop instructions sent by the vehicle controller.
  • the specific implementation process of the control instructions for controlling the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit to perform corresponding operations is introduced, including:
  • the main control unit is specifically configured to generate a first demanded torque control command corresponding to the control of the inverter control unit based on the required power and the starting command sent by the vehicle controller. Specifically, the main control unit is based on the required power and the starting command sent by the vehicle controller.
  • the start command invokes a preset air compressor speed adjustment algorithm for calculation, obtains the first demand torque control command, and outputs it to the inverter control unit.
  • the required power is the power value to be output when the main control unit controls the fuel cell to start working.
  • an inverter control unit configured to control the air compressor to output a first required rotational speed based on the received first required torque control command, so that the air compressor operates at a first rotational speed corresponding to the first required torque .
  • the main control unit is specifically used to generate a power-on control command corresponding to the control of the high-voltage power distribution management unit based on the required power and the startup command sent by the vehicle controller. Specifically, the main control unit calls based on the required power and the startup command sent by the vehicle controller The preset power-on control logic obtains the power-on control command and outputs it to the high-voltage power distribution management unit.
  • the high-voltage power distribution management unit is used to control the power-on of the high-voltage BOP based on the received power-on control command.
  • the main control unit is specifically configured to generate a first demand current command and a first phase shift angle command corresponding to controlling each DC/DC control unit based on the required power and the start command sent by the vehicle controller. Specifically, the main control unit is based on the vehicle controller.
  • the required power and start-up commands sent by the controller call the preset power regulation algorithm, current distribution and phase calculation algorithm for calculation, obtain the first required current command and the first phase shift angle command, and output them to each DC/DC control unit .
  • Each DC/DC control unit is configured to receive the filtered and shunted first high-voltage direct current through the first direct-current filter circuit, and each DC/DC control unit is based on the first high-voltage direct current, and the received first demand current command and The first phase-shift angle command outputs the second high-voltage direct current, which is condensed to the second direct-current filter circuit through the direct-current bus.
  • the main control unit is specifically configured to generate the second demand torque control command based on the stop command sent by the vehicle controller, and calculate and obtain the second demand torque according to the working speed of the air compressor during the preset shutdown process.
  • the main control The unit invokes a preset air compressor speed adjustment algorithm for calculation based on the stop command sent by the vehicle controller, obtains a second demand torque control command, and outputs it to the inverter control unit.
  • the inverter control unit is configured to receive the second demand torque control command and the second demand torque, and control the air compressor to output the second demand speed based on the received second demand torque control command, so that the air compressor It operates at a second rotational speed corresponding to the second demanded torque. It can be understood that the value of the second rotational speed is smaller than the value of the first rotational speed, that is, the inverter control unit controls the air compressor to remove the reactants.
  • the main control unit is specifically configured to generate a power-off control instruction corresponding to the control of the high-voltage power distribution management unit based on the stop instruction sent by the vehicle controller. Specifically, the main control unit calls the preset power-off control based on the stop instruction sent by the vehicle controller. The logic algorithm performs calculation, obtains the power-off control command, and outputs it to the high-voltage power distribution management unit.
  • the high-voltage power distribution management unit is used to control the power-off of the high-voltage BOP based on the received power-off control command.
  • the main control unit controls the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit to perform corresponding start-up operations, without the need for a vehicle
  • the controller individually controls the inverter control unit, each DC/DC control unit and the high voltage distribution management unit, and the main control unit can feed back the inverter control unit, each DC/DC control unit and the high voltage distribution management unit
  • the start-up status is sent to the vehicle controller, without the need for the vehicle controller to separately receive the start-up status feedback from the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit; based on the stop command sent by the vehicle controller, the main control unit
  • the unit controls the inverter control unit, each DC/DC control unit and the high voltage distribution management unit to perform the corresponding stop operation without the need for the vehicle controller to individually control the inverter control unit, each DC/DC control unit and the high voltage distribution management unit, and the
  • FIG. 3 a structural block diagram of another fuel cell power control system provided by an embodiment of the present invention is shown.
  • the control system includes: a main control unit 301, an inverter control unit 302, a plurality of DC/DC control units, a high-voltage power distribution management unit 303, a first DC filter circuit 304, a second DC filter circuit 305, and a cold plate temperature sensor 306 .
  • the multiple DC/DC control units include a DC/DC control unit 3031, a DC/DC control unit 3032... a DC/DC control unit 303n, and n is a positive integer.
  • the plurality of DC/DC control units are connected in parallel.
  • main control unit 301 the inverter control unit 302, each DC/DC control unit, the high-voltage power distribution management unit 303, the first DC filter circuit 304, the second DC filter circuit 305, the air compressor , the connection relationship between the high-voltage BOP and the fuel cell stack, and the interaction process can refer to the relevant content recorded in the embodiment of FIG. 2 , and will not be repeated here.
  • the main control unit 301 may include: an external power supply interface, a communication interface, an EMC filter circuit, a power supply circuit, a communication circuit, a first microcontroller and peripheral circuits, an analog quantity acquisition circuit and a digital quantity output circuit.
  • the power supply circuit is connected with the EMC filter circuit, the communication circuit, the first microcontroller and peripheral circuits, the analog quantity acquisition circuit, and the digital quantity output circuit.
  • the EMC filter circuit is connected with the communication circuit.
  • the communication circuit is connected with the first microcontroller and peripheral circuits.
  • the first microcontroller and the peripheral circuit are connected with the analog quantity acquisition circuit and the digital quantity output circuit.
  • the first microcontroller is a preset controller that can realize the basic functions of the main control unit.
  • the main control unit communicates with the vehicle controller, the inverter control unit, each DC/DC control unit, and the high-voltage power distribution management unit based on the communication interface, the communication circuit and the peripheral circuit.
  • the power supply circuit is connected to the external power supply based on the external power supply interface, and supplies power to other circuits of the main control unit.
  • the power supply circuit includes an input low-voltage power supply circuit and a third low-voltage power supply circuit.
  • the input low-voltage power supply circuit is connected to an external power supply based on an external power supply interface, and transmits to the main control unit through the third low-voltage power supply circuit. of other circuits.
  • the first microcontroller receives the required power and the start-stop instruction sent by the vehicle controller based on the communication circuit, and outputs the first microcontroller to generate a corresponding control inverter control unit and each DC/DC control unit based on the required power and the start-stop instruction. and the high-voltage power distribution management unit to execute the corresponding control commands.
  • the inverter control unit 302 may include: a first low-voltage power supply circuit, a second microcontroller circuit, an inverter drive unit, an inverter power module, and an AC filter circuit.
  • the first low-voltage power supply circuit is connected with the second microcontroller circuit and the inverter drive unit.
  • the second microcontroller circuit is connected with the inverter drive unit and the inverter power module.
  • the second microcontroller circuit is a preset controller circuit that can realize the basic functions of the inverter control unit.
  • the inverter drive unit is connected with the inverter power module.
  • the inverter power module is connected with the AC filter circuit and the DC bus.
  • the AC filter circuit is connected with the air compressor.
  • the DC/DC control unit may include: a second low voltage power supply circuit, a third microcontroller circuit, a DC/DC drive unit and a DC/DC power module.
  • the second low-voltage power supply circuit is connected to the third microcontroller circuit and the DC/DC driving unit.
  • the third microcontroller circuit is connected to the DC/DC drive unit and the DC/DC power module.
  • the third microcontroller circuit is a preset controller circuit that can realize the basic functions of the DC/DC control unit.
  • the DC/DC drive unit is connected to the DC/DC power module.
  • the first end of the DC/DC power module is connected to the first DC filter circuit, and the second end of the DC/DC power module is connected to the second filter circuit through the DC bus.
  • DC/DC power modules of each DC/DC control unit are connected in parallel.
  • the cold plate temperature sensor 306 is connected to the main control unit 301 for collecting the temperature value of the cold plate and sending it to the main control unit.
  • the cold plate temperature sensor sends the collected cold plate temperature value to the main control unit, so that the main control unit can adjust and control the cold plate temperature according to the cold plate temperature value.
  • the main control unit calculates the current actual power P through the internal total output power calculation module, and makes the calculation result P and the demand power command signal P * Difference processing, and input the processed difference result e P to the power conditioner for power loop adjustment, the power conditioner inputs the output adjustment signal I Lsum * to the current distribution and phase calculation module for calculation, current distribution and phase
  • the calculation module will calculate the obtained current signal Output to the current regulator of each DC/DC control unit for adjustment, the current regulator of each DC/DC control unit outputs the PWM duty cycle signal D, and according to the PWM duty cycle signal D and the current distribution and phase calculation module
  • the calculated phase signal ⁇ generates the drive signal of the DC/DC power module of the DC/DC control unit.
  • the main control unit calculates the demand speed n * through the internal speed demand calculation module, and the speed demand calculation module estimates the position according to the calculation result n * and the internal position of the inverter control unit
  • the estimated position signal output by the module is the actual speed estimated value obtained by differential operation Do difference processing, and input the processed difference result e n to the speed regulator, and the speed regulator outputs the given demand torque signal T * ;
  • the inverter control unit will receive the received demand torque signal T * and the estimated actual torque output by the torque estimation module Do difference processing, and input the processed difference result e T to the torque regulator.
  • the torque regulator uses the vector control algorithm to calculate, it outputs the drive signal Drv of the inverter power module of the inverter control unit, Thereby, the speed of the air compressor operation is controlled by the inverter power module.
  • the current difference signal eIli generated by the DC/DC control unit is sent to the forward channel of the air compressor control loop after weighted average processing, so that the rotation speed of the air compressor can be output to the DC/DC control at the fuel stack.
  • the load of the unit changes, it responds in advance, which is beneficial to improve the response speed and stability of the fuel stack.
  • the main control unit controls the inverter control unit, each DC/DC control unit, and the high-voltage power distribution management unit to perform corresponding operations, without the need for vehicle control
  • the inverter individually controls the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit, and the main control unit can feed back the feedback from the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit.
  • the status is sent to the vehicle controller without the need for the vehicle controller to separately receive the status feedback from the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit, thereby reducing the control complexity of the vehicle controller and reducing the communication burden the goal of. Moreover, by providing a forward channel between the DC/DC control unit and the air compressor control loop, the response speed and stability of the fuel stack can be improved.
  • the embodiments of the present invention further provide a power control method for a fuel cell, as shown in FIG. 5 .
  • the control method includes:
  • the main control unit determines the current working mode based on the required power and the start-stop instruction sent by the vehicle controller, and generates corresponding control inverter control units, each DC/DC control unit and high-voltage power distribution management according to different working modes The unit executes the control instructions for the corresponding operation.
  • the working mode includes a startup mode, a normal loading mode, and a shutdown mode.
  • the startup mode refers to a mode that controls the start-up operation of the fuel cell
  • the normal loading mode refers to a mode that controls the output target current of the fuel cell
  • the shutdown mode refers to a mode that controls the fuel cell to stop working.
  • the main control unit determines that the current working mode is the startup mode based on the required power and the start-stop instruction sent by the vehicle controller, and then executes S502; the main control unit is based on the required power and start-stop instructions sent by the vehicle controller.
  • the instruction determines that the current working mode is the normal loading mode, then executes S503; the main control unit determines that the current working mode is the shutdown mode based on the required power and the start-stop instruction sent by the vehicle controller, and executes S504.
  • the main control unit generates a start-up demand torque control command based on the start-up command, and sends it to the inverter control unit, and generates a power-on control command, and sends it to the high-voltage power distribution management unit; the inverter control unit is based on the start-up demand.
  • the torque control command adjusts the torque of the air compressor, so that the air compressor outputs the required speed for starting; the high-voltage power distribution management unit controls the high-voltage BOP to power on based on the power-on control command.
  • the main control unit invokes the preset air compressor speed adjustment algorithm for calculation based on the starting instruction, obtains the starting demand torque control instruction, and sends it to the inverter control unit; the inverter control unit is based on the The received start-up demand torque control command controls the air compressor to output the start-up demand speed, so that the air compressor operates at a speed corresponding to the start-up demand torque.
  • the main control unit invokes the preset power-on control logic based on the startup command, obtains the power-on control command, and sends it to the high-voltage power distribution management unit; the high-voltage power distribution management unit controls the high-voltage BOP to power on based on the received power-on control command.
  • the main control unit generates a normal load demand torque control command based on the demand power command, and sends it to the inverter control unit, and generates a current control command, and sends it to each DC/DC control unit; the inverter control unit is based on the The normal loading demand torque control command adjusts the torque of the air compressor, so that the air compressor outputs the normal loading demand speed; each DC/DC control unit outputs corresponding high-voltage direct current based on the current control command.
  • the main control unit invokes the preset air compressor speed adjustment algorithm for calculation based on the demand power command, obtains the normal load demand torque control command, and sends it to the inverter control unit; the inverter controls The unit controls the air compressor to output a normal load request speed based on the received normal load request torque control command, so that the air compressor operates at a speed corresponding to the normal load request torque.
  • the main control unit invokes the preset power adjustment algorithm, current distribution and phase calculation algorithm based on the demand power command to perform calculation, and obtains the first demand current command and the first phase shift angle command corresponding to controlling each DC/DC control unit, and It is sent to each DC/DC control unit; each DC/DC control unit outputs corresponding high-voltage direct current based on the received first demand current command and the first phase shift angle command.
  • the main control unit generates a shutdown demand torque control command based on the stop command, and sends it to the inverter control unit, and generates a power-off control command, and sends it to the high-voltage power distribution management unit; the inverter control unit is based on the shutdown demand.
  • the torque control command adjusts the torque of the air compressor, so that the air compressor outputs the required speed for shutdown; the high-voltage power distribution management unit controls the high-voltage BOP to power off based on the power-off control command.
  • the main control unit calculates and obtains the shutdown demand torque based on the stop command and the working speed of the air compressor in the preset shutdown process, generates a shutdown demand torque control command, and sends it to the inverter The control unit; the inverter control unit controls the output stop demand rotation speed of the air compressor based on the received stop demand torque control instruction, so that the air compressor operates at a rotation speed corresponding to the stop demand torque.
  • the main control unit invokes the preset power-off control logic based on the stop command, obtains the power-off control command, and sends it to the high-voltage power distribution management unit; the high-voltage power distribution management unit controls the high-voltage BOP to power off based on the received power-off control command.
  • the main control unit determines the current working mode, and controls the inverter control unit, each DC/DC control unit and the The high-voltage power distribution management unit performs corresponding operations without the need for the vehicle controller to individually control the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit, and the main control unit can control the inverter control unit, each DC / The state fed back by the DC control unit and the high-voltage power distribution management unit is sent to the vehicle controller, without the need for the vehicle controller to separately receive the feedback status of the inverter control unit, each DC/DC control unit and the high-voltage power distribution management unit, so as to realize The purpose of reducing the control complexity of the vehicle controller and reducing the communication burden.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

本申请提供燃料电池的功率控制系统及方法,主控单元分别与车辆控制器、逆变器控制单元、每个DC/DC控制单元以及高压配电管理单元相连,基于车辆控制器发送的需求功率和启停指令生成控制指令;逆变器控制单元控制空压机输出需求转速;高压配电管理单元控制高压BOP上下电;多个DC/DC控制单元并联,每个DC/DC控制单元接收第一高压直流电和输出第二高压直流电,并汇流至第二直流滤波电路;其进行滤波后接至整车驱动系统。基于车辆控制器发送的需求功率和启停指令,主控单元控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元执行相应操作,无需车辆控制器单独控制各个单元和单独接收各个单元反馈的状态,实现降低车辆控制器控制复杂性和减轻通信负担目的。

Description

燃料电池的功率控制系统及方法
本申请要求于2021年01月27日提交中国专利局、申请号为202110113152.2、发明名称为“燃料电池的功率控制系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及燃料电池技术领域,具体地说,涉及一种燃料电池的功率控制系统及方法。
背景技术
燃料电池具有发电效率高、环境污染少等优点,因而在车载能源动力系统中被广泛使用。
燃料电池在正常工作进行发电的过程中,需要DC/DC变换器以及空压机等辅机协同工作,才能完成发电。然而,DC/DC变换器以及空压机等辅机之间为分布式的连接关系,因此整车控制系统需要单独对DC/DC变换器和空压机等辅机进行控制,因而使得整车控制系统的控制较为复杂,且整车控制系统也需要接收DC/DC变换器和空压机等辅机各自反馈的运行状态,从而导致整车控制系统的通信资源被较多占用。
由此可见,上述整车控制系统对DC/DC变换器和空压机等辅机进行控制,以及接收DC/DC变换器和空压机等辅机反馈的运行状态的过程给整车控制系统的控制和通信带来了不良的影响。
发明内容
有鉴于此,本发明实施例提供一种燃料电池的功率控制系统及方法,以解决整车控制系统对DC/DC变换器和空压机等辅机进行控制,以及接收DC/DC变换器和空压机等辅机反馈的运行状态的过程给整车控制系统的控制和通信带来了不良的影响的问题。
为实现上述目的,本发明实施例提供如下技术方案:
一方面,本发明实施例提供一种燃料电池的功率控制系统包括:主控单元、 逆变器控制单元、多个DC/DC控制单元、高压配电管理单元、第一直流滤波电路和第二直流滤波电路;
所述主控单元分别与车辆控制器、所述逆变器控制单元、每个所述DC/DC控制单元,以及所述高压配电管理单元相连,用于基于所述车辆控制器发送的需求功率和启停指令生成对应控制所述逆变器控制单元、每个所述DC/DC控制单元和所述高压配电管理单元执行相应操作的控制指令;
所述逆变器控制单元与燃料电堆的空压机相连,并基于接收到的需求转矩控制指令控制所述空压机输出需求转速;
所述高压配电管理单元与所述燃料电堆的高压配套设备BOP相连,并基于接收到的上下电控制指令控制所述高压BOP上下电;
所述多个DC/DC控制单元并联,每个所述DC/DC控制单元通过所述第一直流滤波电路接收经过滤波分流的第一高压直流电,所述第一高压直流电由所述高压BOP、所述空压机和每个所述DC/DC控制单元控制所述燃料电堆生成;
每个所述DC/DC控制单元基于所述第一高压直流电,以及接收到的需求电流指令和移相角度指令输出第二高压直流电,并通过所述直流总线汇流至所述第二直流滤波电路;
所述第二直流滤波电路对所述第二高压直流电滤波后接至整车驱动系统。
可选的,所述主控单元,具体用于基于所述车辆控制器发送的需求功率和启动指令生成对应控制所述逆变器控制单元的第一需求转矩控制指令、生成对应控制每个所述DC/DC控制单元的第一需求电流指令和第一移相角度指令,以及生成对应控制所述高压配电管理单元的上电控制指令,所述需求功率为所述主控单元控制燃料电池启动工作时需输出的功率值;
所述逆变器控制单元,用于基于接收到的第一需求转矩控制指令控制所述空压机输出第一需求转速;
所述高压配电管理单元,用于基于接收到的上电控制指令控制所述高压BOP上电;
每个所述DC/DC控制单元,用于通过所述第一直流滤波电路接收经过滤波分流的第一高压直流电,每个所述DC/DC控制单元基于所述第一高压直流电,以及接收到的第一需求电流指令和第一移相角度指令输出第二高压直流 电,并通过所述直流总线汇流至所述第二直流滤波电路。
可选的,所述主控单元,具体用于基于所述车辆控制器发送的停止指令生成第二需求转矩控制指令,以及根据预设的停机过程中所述空压机的工作转速计算得到第二需求转矩,以及生成对应控制所述高压配电管理单元的下电控制指令;
所述逆变器控制单元,用于接收所述第二需求转矩控制指令和第二需求转矩,并基于所述第二需求转矩控制指令控制所述空压机输出第二需求转速;
所述高压配电管理单元,用于基于接收到的下电控制指令控制所述高压BOP下电。
可选的,所述主控单元包括:外部供电接口、通信接口、EMC滤波电路、电源电路、通信电路、第一微控制器及外围电路、模拟量采集电路和数字量输出电路;
所述电源电路与所述EMC滤波电路、所述通信电路、所述第一微控制器及外围电路、所述模拟量采集电路,以及所述数字量输出电路均相连;
所述EMC滤波电路与所述通信电路相连;
所述通信电路与所述第一微控制器及外围电路相连;
所述第一微控制器及外围电路与所述模拟量采集电路,以及所述数字量输出电路均相连。
可选的,所述逆变器控制单元包括:第一低压供电电路、第二微控制器电路、逆变驱动单元、逆变功率模块和交流滤波电路;
所述第一低压供电电路与所述第二微控制器电路、以及所述逆变驱动单元均相连;
所述第二微控制器电路与所述逆变驱动单元、以及所述逆变功率模块均相连;
所述逆变驱动单元与所述逆变功率模块相连;
所述逆变功率模块与所述交流滤波电路、以及所述直流总线均相连;
所述交流滤波电路与所述空压机相连。
可选的,所述DC/DC控制单元包括:第二低压供电电路、第三微控制器电路、DC/DC驱动单元和DC/DC功率模块;
所述第二低压供电电路与所述第三微控制器电路、以及所述DC/DC驱动单元均相连;
所述第三微控制器电路与所述DC/DC驱动单元、以及所述DC/DC功率模块均相连;
所述DC/DC驱动单元与所述DC/DC功率模块相连;
所述DC/DC功率模块与所述第一直流滤波电路相连。
可选的,所述系统还包括:冷板温度传感器;
所述冷板温度传感器与所述主控单元相连,用于采集冷板温度值,并发送给所述主控单元。
另一方面,本发明实施例提供一种燃料电池的功率控制方法,应用于如上所述的功率控制系统,所述功率控制方法包括:
主控单元基于车辆控制器发送的需求功率和启停指令确定当前的工作模式,并根据不同的工作模式生成对应控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元执行相应操作的控制指令,所述工作模式包括启动模式、正常加载模式和停机模式;
当处于启动模式时,所述主控单元基于启动指令生成启动需求转矩控制指令,并发送给所述逆变器控制单元,以及生成上电控制指令,并发送给所述高压配电管理单元;
所述逆变器控制单元基于所述启动需求转矩控制指令调节空压机的转矩,使所述空压机输出启动需求转速;
所述高压配电管理单元基于所述上电控制指令控制高压BOP上电;
当处于正常加载模式时,所述主控单元基于需求功率指令生成正常加载需求转矩控制指令,并发送给所述逆变器控制单元,以及生成电流控制指令,并发送给每个所述DC/DC控制单元;
所述逆变器控制单元基于所述正常加载需求转矩控制指令调节空压机的转矩,使所述空压机输出正常加载需求转速;
每个所述DC/DC控制单元基于所述电流控制指令输出相应的高压直流电;
当处于停机模式时,所述主控单元基于停止指令生成停机需求转矩控制指 令,并发送给所述逆变器控制单元,以及生成下电控制指令,并发送给所述高压配电管理单元;
所述逆变器控制单元基于所述停机需求转矩控制指令调节空压机的转矩,使所述空压机输出停机需求转速;
所述高压配电管理单元基于所述下电控制指令控制高压BOP下电;
其中,所述主控单元、所述逆变器控制单元以及每个所述DC/DC控制单元中均预设有用于实现与自身所处单元要实现的运算或控制相关的核心功能的微控制器。
可选的,所述主控单元基于需求功率指令生成电流控制指令,并发送给每个所述DC/DC控制单元,包括:
所述主控单元基于需求功率指令生成对应控制每个所述DC/DC控制单元的第一需求电流指令和第一移相角度指令,并发送给每个所述DC/DC控制单元;
相应的,每个所述DC/DC控制单元基于所述第一需求电流指令和第一移相角度指令输出相应的高压直流电。
可选的,所述主控单元基于停止指令生成停机需求转矩控制指令,并发送给所述逆变器控制单元,包括:
所述主控单元基于停止指令,并根据预设的停机过程中所述空压机的工作转速计算得到停机需求转矩,并生成停机需求转矩控制指令,并发送给所述逆变器控制单元;
相应的,所述逆变器控制单元基于所述停机需求转矩控制指令调节空压机的转矩,使所述空压机输出停机需求转速。
基于上述本发明实施例提供的燃料电池的功率控制系统及方法,主控单元分别与车辆控制器、逆变器控制单元、每个DC/DC控制单元,以及高压配电管理单元相连,用于基于车辆控制器发送的需求功率和启停指令生成对应控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元执行相应操作的控制指令;逆变器控制单元与燃料电堆的空压机相连,并基于接收到的需求转矩控制指令控制空压机输出需求转矩;高压配电管理单元与燃料电堆的高压BOP相连,并基于接收到的上下电控制指令控制高压BOP上下电;多个DC/DC 控制单元并联,每个DC/DC控制单元通过第一直流滤波电路接收经过滤波分流的第一高压直流电,所述第一高压直流电由高压BOP、空压机和每个DC/DC控制单元控制燃料电堆生成;每个DC/DC控制单元基于第一高压直流电,以及接收到的需求电流指令和移相角度指令输出第二高压直流电,并通过直流总线汇流至第二直流滤波电路;第二直流滤波电路对第二高压直流电滤波后接至整车驱动系统。可见,在本方案中,基于车辆控制器发送的需求功率和启停指令,主控单元控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元执行相应操作,无需车辆控制器单独控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元,且主控单元可以将逆变器控制单元、每个DC/DC控制单元和高压配电管理单元反馈的状态发送给车辆控制器,无需车辆控制器单独接收逆变器控制单元、每个DC/DC控制单元和高压配电管理单元反馈的状态,从而实现降低车辆控制器的控制复杂性和减轻通信负担的目的。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种燃料电池的功率控制应用架构图;
图2为本发明实施例提供的一种燃料电池的功率控制系统的结构框图;
图3为本发明实施例提供的另一种燃料电池的功率控制系统的结构框图;
图4为本发明实施例提供的一种燃料电池的功率控制原理框图;
图5为本发明实施例提供的一种燃料电池的功率控制方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。
根据背景技术可知,整车控制系统单独对DC/DC变换器和空压机等辅机进行控制,以及接收DC/DC变换器和空压机等辅机各自反馈的运行状态的过程给整车控制系统的控制和通信带来了不良的影响。
为此,本发明实施例提供一种燃料电池的功率控制系统及方法,以解决整车控制系统对DC/DC变换器和空压机等辅机进行控制,以及接收DC/DC变换器和空压机等辅机反馈的运行状态的过程给整车控制系统的控制和通信带来了不良的影响的问题。
如图1所示,为本发明实施例提供的一种燃料电池的功率控制应用架构图。该架构包括:主控单元10、逆变器控制单元20、多个DC/DC控制单元和高压配电管理单元40。
其中,多个DC/DC控制单元包括DC/DC控制单元31、DC/DC控制单元32......DC/DC控制单元3n,n为正整数。
主控单元10分别与车辆控制器、逆变器控制单元20、每个DC/DC控制单元和高压配电管理单元40相连。
需要说明的是,在本申请中,并不对车辆控制器的物理位置以及功能类型进行限定,例如,车辆控制器可以为整车控制器VCU,也可以为燃料电池系统控制器FCU,还可以为一个单独的电子控制单元ECU。
逆变器控制单元20、每个DC/DC控制单元和高压配电管理单元40均与燃料电池相连。
在具体实现对燃料电池的功率控制过程中,主控单元接收车辆控制器的控制指令,基于该控制指令,主控单元分别控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元执行相应操作。具体的,主控单元控制逆变器控制单元完成对空压机输出转速的调节,主控单元控制每个DC/DC控制单元完成对燃料电池输出电流的调节,主控单元控制高压配电管理单元完成对燃料电池的上、下电控制。
在上述对燃料电池的功率控制过程中,由主控单元基于车辆控制器发送的控制指令控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元执行相应操作,无需车辆控制器单独控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元,并且,主控单元可以接收逆变器控制单元、每个DC/DC控制单元和高压配电管理单元反馈的状态,并发送给车辆控制器,无需车辆控制器单独接收逆变器控制单元、每个DC/DC控制单元和高压配电管理单元反馈的状态,实现了降低车辆控制器的控制复杂性和减轻通信负担的目的。下面通过具体实施例进一步详细说明。
基于上述本发明实施例公开的应用架构,请参见图2,示出了本发明实施例提供的一种燃料电池的功率控制系统的结构框图。该控制系统包括:主控单元201、逆变器控制单元202、多个DC/DC控制单元、高压配电管理单元203、第一直流滤波电路204和第二直流滤波电路205。
其中,多个DC/DC控制单元包括DC/DC控制单元2031、DC/DC控制单元2032......DC/DC控制单元203n,n为正整数。
主控单元201分别与车辆控制器、逆变器控制单元202、每个DC/DC控制单元,以及高压配电管理单元203相连,用于基于车辆控制器发送的需求功率和启停指令生成对应控制逆变器控制单元202、每个DC/DC控制单元和高压配电管理单元203执行相应操作的控制指令。
在具体实现中,主控单元与逆变器控制单元、每个DC/DC控制单元,以及高压配电管理单元之间可以采用高速通信的方式进行连接,并选用同一时间基准实现对逆变器控制单元、每个DC/DC控制单元,以及高压配电管理单元的同步控制。
在本发明实施例中,主控单元、逆变器控制单元和每个DC/DC控制单元内部都设置有一个微型的控制器,仅用于实现与自身所处单元要实现的运算或控制相关的核心功能即可。例如主控单元中进行功率环、分配单元等算法运算时,对于控制响应的要求较低,因此主控单元可选择采用ARM内核控制器。逆变器控制单元、每个DC/DC控制单元中进行电流环、转矩环等算法运算时,对于控制响应的要求较高,而逆变器控制单元以及每个DC/DC控制单元所对应的控制功能较单一,因此逆变器控制单元以及每个DC/DC控制单元选择采用相应的微型DSP或者FPGA或者其它单片机即可。
逆变器控制单元202与燃料电堆的空压机相连,并基于接收到的需求转矩控制指令控制空压机输出需求转速。
高压配电管理单元203与燃料电堆的高压配套设备(Balance of Plant,BOP)相连,并基于接收到的上下电控制指令控制高压BOP上下电。
多个DC/DC控制单元并联,每个DC/DC控制单元通过第一直流滤波电路204接收经过滤波分流的第一高压直流电,所述第一高压直流电由高压BOP、空压机和每个DC/DC控制单元控制燃料电堆生成。
每个DC/DC控制单元基于第一高压直流电,以及接收到的需求电流指令和移相角度指令输出第二高压直流电,并通过直流总线汇流至第二直流滤波电路205。
需要说明的是,在具体实现中,可以通过增加或者减少并联的DC/DC控制单元的数量,以满足对多种功率燃料电池的使用需求。还需要说明的是,主控单元根据实际使用的DC/DC控制单元的总数进行计算每个DC/DC控制单元的移相角度,以实现交错控制和降低系统纹波。
第二直流滤波电路205对第二高压直流电滤波后接至整车驱动系统。
在本发明实施例中,基于车辆控制器发送的需求功率和启停指令,主控单元控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元执行相应操作,无需车辆控制器单独控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元,且主控单元可以将逆变器控制单元、每个DC/DC控制单元和高压配电管理单元反馈的状态发送给车辆控制器,无需车辆控制器单独接收逆变器控制单元、每个DC/DC控制单元和高压配电管理单元反馈的状态,从而实现降 低车辆控制器的控制复杂性和减轻通信负担的目的。
另外,车辆控制器通过控制主控单元,进而控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元执行相应操作,分层控制,可以实现控制的灵活性,并且,无需车辆控制器单独控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元,因此不需要给车辆控制器配置功能复杂且成本较高的控制器,而且逆变器控制单元、每个DC/DC控制单元和高压配电管理单元的内部只需采用微型控制器即可完成各自相应的功能处理,有效地降低了成本。
基于上述本发明实施例图2公开的燃料电池的功率控制系统,下面从控制燃料电池启动工作和停止工作两方面,对主控单元用于基于车辆控制器发送的需求功率和启停指令生成对应控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元执行相应操作的控制指令的具体实现过程进行介绍,包括:
1)、控制燃料电池启动工作的过程:
主控单元,具体用于基于车辆控制器发送的需求功率和启动指令生成对应控制逆变器控制单元的第一需求转矩控制指令,具体的,主控单元基于车辆控制器发送的需求功率和启动指令调用预设的空压机转速调节算法进行计算,得到第一需求转矩控制指令,并输出给逆变器控制单元。其中,需求功率为主控单元控制燃料电池启动工作时需输出的功率值。
逆变器控制单元,用于基于接收到的第一需求转矩控制指令控制空压机输出第一需求转速,以使得空压机运转在与所述第一需求转矩所对应的第一转速。
主控单元,具体用于基于车辆控制器发送的需求功率和启动指令生成对应控制高压配电管理单元的上电控制指令,具体的,主控单元基于车辆控制器发送的需求功率和启动指令调用预设的上电控制逻辑,得到上电控制指令,并输出给高压配电管理单元。
高压配电管理单元,用于基于接收到的上电控制指令控制高压BOP上电。
主控单元,具体用于基于车辆控制器发送的需求功率和启动指令生成对应控制每个DC/DC控制单元的第一需求电流指令和第一移相角度指令,具体的,主控单元基于车辆控制器发送的需求功率和启动指令调用预设的功率调节算 法、电流分配及相位计算算法进行计算,得到第一需求电流指令和第一移相角度指令,并输出给每个DC/DC控制单元。
每个DC/DC控制单元,用于通过第一直流滤波电路接收经过滤波分流的第一高压直流电,每个DC/DC控制单元基于第一高压直流电,以及接收到的第一需求电流指令和第一移相角度指令输出第二高压直流电,并通过直流总线汇流至第二直流滤波电路。
2)、控制燃料电池停止工作的过程:
主控单元,具体用于基于车辆控制器发送的停止指令生成第二需求转矩控制指令,以及根据预设的停机过程中空压机的工作转速计算得到第二需求转矩,具体的,主控单元基于车辆控制器发送的停止指令调用预设的空压机转速调节算法进行计算,得到第二需求转矩控制指令,并输出给逆变器控制单元。
逆变器控制单元,用于接收第二需求转矩控制指令和第二需求转矩,并基于接收到的第二需求转矩控制指令控制空压机输出第二需求转速,以使得空压机运转在与所述第二需求转矩所对应的第二转速。可以理解的是,第二转速的数值比第一转速的数值小,也就是说,逆变器控制单元控制空压机进行参与反应物的清除。
主控单元,具体用于基于车辆控制器发送的停止指令生成对应控制高压配电管理单元的下电控制指令,具体的,主控单元基于车辆控制器发送的停止指令调用预设的下电控制逻辑算法进行计算,得到下电控制指令,并输出给高压配电管理单元。
高压配电管理单元,用于基于接收到的下电控制指令控制高压BOP下电。
在本发明实施例中,基于车辆控制器发送的需求功率和启动指令,主控单元控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元执行相应的启动操作,无需车辆控制器单独控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元,且主控单元可以将逆变器控制单元、每个DC/DC控制单元和高压配电管理单元反馈的启动状态发送给车辆控制器,无需车辆控制器单独接收逆变器控制单元、每个DC/DC控制单元和高压配电管理单元反馈的启动状态;基于车辆控制器发送的停止指令,主控单元控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元执行相应的停止操作,无需车辆控制器单 独控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元,且主控单元可以将逆变器控制单元、每个DC/DC控制单元和高压配电管理单元反馈的停止状态发送给车辆控制器,无需车辆控制器单独接收逆变器控制单元、每个DC/DC控制单元和高压配电管理单元反馈的停止状态,从而实现降低车辆控制器的控制复杂性和减轻通信负担的目的。
基于上述本发明实施例图2公开的燃料电池的功率控制系统,参见图3,示出了本发明实施例提供的另一种燃料电池的功率控制系统的结构框图。该控制系统包括:主控单元301、逆变器控制单元302、多个DC/DC控制单元、高压配电管理单元303、第一直流滤波电路304、第二直流滤波电路305和冷板温度传感器306。
其中,多个DC/DC控制单元包括DC/DC控制单元3031、DC/DC控制单元3032......DC/DC控制单元303n,n为正整数。所述多个DC/DC控制单元并联。
需要说明的是,主控单元301、逆变器控制单元302、每个DC/DC控制单元、高压配电管理单元303、第一直流滤波电路304、第二直流滤波电路305、空压机、高压BOP和燃料电堆之间的连接关系,以及交互过程可参考图2实施例中对应记载的相关内容,这里不再进行赘述。
在具体实现中,主控单元301可以包括:外部供电接口、通信接口、EMC滤波电路、电源电路、通信电路、第一微控制器及外围电路、模拟量采集电路和数字量输出电路。
电源电路与EMC滤波电路、通信电路、第一微控制器及外围电路、模拟量采集电路,以及数字量输出电路均相连。
EMC滤波电路与通信电路相连。
通信电路与第一微控制器及外围电路相连。
第一微控制器及外围电路与模拟量采集电路,以及数字量输出电路均相连。
其中,第一微控制器为预先设置的可以实现主控单元基本功能的控制器。
具体的,主控单元基于通信接口、通信电路和外围电路,与车辆控制器、逆变器控制单元、每个DC/DC控制单元以及高压配电管理单元进行通信。
电源电路基于外部供电接口与外部供电电源连接,并向主控单元的其他电路供电。可选的,所述电源电路包括输入低压电源电路和第三低压供电电路,具体的,所述输入低压电源电路基于外部供电接口与外部供电电源连接,并通过第三低压供电电路向主控单元的其他电路供电。
第一微控制器基于通信电路接收车辆控制器发送的需求功率和启停指令,输出第一微控制器基于需求功率和启停指令生成对应控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元执行相应操作的控制指令。
逆变器控制单元302可以包括:第一低压供电电路、第二微控制器电路、逆变驱动单元、逆变功率模块和交流滤波电路。
第一低压供电电路与第二微控制器电路、逆变驱动单元均相连。
第二微控制器电路与逆变驱动单元、逆变功率模块均相连。
其中,第二微控制器电路为预先设置的可以实现逆变控制单元基本功能的控制器电路。
逆变驱动单元与逆变功率模块相连。
逆变功率模块与交流滤波电路、直流总线均相连。
交流滤波电路与空压机相连。
DC/DC控制单元(以任意一个DC/DC控制单元进行示例)可以包括:第二低压供电电路、第三微控制器电路、DC/DC驱动单元和DC/DC功率模块。
第二低压供电电路与第三微控制器电路、DC/DC驱动单元均相连。
第三微控制器电路与DC/DC驱动单元、DC/DC功率模块均相连。
其中,第三微控制器电路为预先设置的可以实现DC/DC控制单元基本功能的控制器电路。
DC/DC驱动单元与DC/DC功率模块相连。
DC/DC功率模块的第一端与第一直流滤波电路相连,DC/DC功率模块的第二端通过直流总线与第二滤波电路相连。
需要说明的是,每个DC/DC控制单元的DC/DC功率模块并联。
冷板温度传感器306与主控单元301相连,用于采集冷板温度值,并发送给主控单元。冷板温度传感器将采集的冷板温度值发送给主控单元,以便于主控单元根据该冷板温度值进行冷板温度的调节控制。
为便于理解主控单元对DC/DC控制单元及逆变器控制单元的控制过程,结合图3,以图4示出的内容进行介绍。
主控单元基于DC/DC控制单元输入的电流信号I out和电压信号U out,通过内部的总输出功率计算模块进行计算得到当前的实际功率P,将计算结果P和需求功率指令信号P *做差值处理,并将处理后的差值结果e P输入至功率调节器进行功率环调节,功率调节器将输出的调节信号I Lsum *输入至电流分配和相位计算模块进行计算,电流分配和相位计算模块将计算得到的电流信号
Figure PCTCN2021080392-appb-000001
输出至每个DC/DC控制单元的电流调节器进行调节,每个DC/DC控制单元的电流调节器输出PWM占空比信号D,并依据PWM占空比信号D与电流分配和相位计算模块计算得到的相位信号θ,生成DC/DC控制单元的DC/DC功率模块的驱动信号。
主控单元基于车辆控制器发送的需求功率指令信号P *,通过内部的转速需求计算模块进行计算得到需求转速n *,转速需求计算模块依据计算结果n *和逆变器控制单元内部的位置估算模块输出的估算位置信号经过微分运算得到的实际转速估算值
Figure PCTCN2021080392-appb-000002
做差值处理,并将处理后的差值结果e n输入至转速调节器,转速调节器输出给定的需求转矩信号T *;逆变器控制单元将接收到的需求转矩信号T *与转矩估算模块输出的预估实际转矩
Figure PCTCN2021080392-appb-000003
做差值处理,并将处理后的差值结果e T输入至转矩调节器,转矩调节器使用矢量控制算法进行计算之后,输出逆变器控制单元的逆变功率模块的驱动信号Drv,从而通过逆变功率模块控制空压机运转的转速大小。
另外,将DC/DC控制单元生成的电流差值信号eIli经过加权平均处理后送至空压机控制环路的前向通道,能够使得空压机的转速在燃料电堆输出给DC/DC控制单元的负载发生变化时提前响应,有利于提高燃料电堆的响应速度及稳定性。
在本发明实施例中,基于车辆控制器发送的需求功率和启停指令,主控单元控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元执行相应操作,无需车辆控制器单独控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元,且主控单元可以将逆变器控制单元、每个DC/DC控制单元和高压配电管理单元反馈的状态发送给车辆控制器,无需车辆控制器单独接收逆变器 控制单元、每个DC/DC控制单元和高压配电管理单元反馈的状态,从而实现降低车辆控制器的控制复杂性和减轻通信负担的目的。并且,通过设置DC/DC控制单元与空压机控制环路之间的前向通道,能够提高燃料电堆的响应速度及稳定性。
结合上述本发明实施例中记载的燃料电池的功率控制系统的工作过程,本发明实施例还提供一种燃料电池的功率控制方法,参见图5。该控制方法包括:
S501:主控单元基于车辆控制器发送的需求功率和启停指令确定当前的工作模式,并根据不同的工作模式生成对应控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元执行相应操作的控制指令。
在S501中,工作模式包括启动模式、正常加载模式和停机模式。其中,启动模式指的是控制燃料电池启动工作的模式,正常加载模式指的是控制燃料电池输出目标电流的模式,停机模式指的是控制燃料电池停止工作的模式。
在具体实现S501的过程中,主控单元基于车辆控制器发送的需求功率和启停指令确定当前的工作模式为启动模式,则执行S502;主控单元基于车辆控制器发送的需求功率和启停指令确定当前的工作模式为正常加载模式,则执行S503;主控单元基于车辆控制器发送的需求功率和启停指令确定当前的工作模式为停机模式,则执行S504。
S502:主控单元基于启动指令生成启动需求转矩控制指令,并发送给逆变器控制单元,以及生成上电控制指令,并发送给高压配电管理单元;逆变器控制单元基于该启动需求转矩控制指令调节空压机的转矩,使空压机输出启动需求转速;高压配电管理单元基于该上电控制指令控制高压BOP上电。
在具体实现S502的过程中,主控单元基于启动指令调用预设的空压机转速调节算法进行计算,得到启动需求转矩控制指令,并发送给逆变器控制单元;逆变器控制单元基于接收到的启动需求转矩控制指令控制空压机输出启动需求转速,以使得空压机运转在与所述启动需求转矩所对应的转速。以及主控单元基于启动指令调用预设的上电控制逻辑,得到上电控制指令,并发送给高压配电管理单元;高压配电管理单元基于接收到的上电控制指令控制高压BOP上电。
S503:主控单元基于需求功率指令生成正常加载需求转矩控制指令,并发 送给逆变器控制单元,以及生成电流控制指令,并发送给每个DC/DC控制单元;逆变器控制单元基于该正常加载需求转矩控制指令调节空压机的转矩,使空压机输出正常加载需求转速;每个DC/DC控制单元基于该电流控制指令输出相应的高压直流电。
在具体实现S503的过程中,主控单元基于需求功率指令调用预设的空压机转速调节算法进行计算,得到正常加载需求转矩控制指令,并发送给逆变器控制单元;逆变器控制单元基于接收到的正常加载需求转矩控制指令控制空压机输出正常加载需求转速,以使得空压机运转在与所述正常加载需求转矩所对应的转速。以及主控单元基于需求功率指令调用预设的功率调节算法、电流分配及相位计算算法进行计算,得到对应控制每个DC/DC控制单元的第一需求电流指令和第一移相角度指令,并发送给每个DC/DC控制单元;每个DC/DC控制单元基于接收到的第一需求电流指令和第一移相角度指令输出相应的高压直流电。
S504:主控单元基于停止指令生成停机需求转矩控制指令,并发送给逆变器控制单元,以及生成下电控制指令,并发送给高压配电管理单元;逆变器控制单元基于该停机需求转矩控制指令调节空压机的转矩,使空压机输出停机需求转速;高压配电管理单元基于该下电控制指令控制高压BOP下电。
在具体实现S504的过程中,主控单元基于停止指令,并根据预设的停机过程中空压机的工作转速计算得到停机需求转矩,并生成停机需求转矩控制指令,并发送给逆变器控制单元;逆变器控制单元基于接收到的停机需求转矩控制指令控制空压机输出停机需求转速,以使得空压机运转在与所述停机需求转矩所对应的转速。以及主控单元基于停止指令调用预设的下电控制逻辑,得到下电控制指令,并发送给高压配电管理单元;高压配电管理单元基于接收到的下电控制指令控制高压BOP下电。
在本发明实施例中,基于车辆控制器发送的需求功率和启停指令,主控单元确定当前的工作模式,并根据不同的工作模式控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元执行相应操作,无需车辆控制器单独控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元,且主控单元可以将逆变器控制单元、每个DC/DC控制单元和高压配电管理单元反馈的状态发送 给车辆控制器,无需车辆控制器单独接收逆变器控制单元、每个DC/DC控制单元和高压配电管理单元反馈的状态,从而实现降低车辆控制器的控制复杂性和减轻通信负担的目的。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的系统及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种燃料电池的功率控制系统,其特征在于,包括:主控单元、逆变器控制单元、多个DC/DC控制单元、高压配电管理单元、第一直流滤波电路和第二直流滤波电路;
    所述主控单元分别与车辆控制器、所述逆变器控制单元、每个所述DC/DC控制单元,以及所述高压配电管理单元相连,用于基于所述车辆控制器发送的需求功率和启停指令生成对应控制所述逆变器控制单元、每个所述DC/DC控制单元和所述高压配电管理单元执行相应操作的控制指令;
    所述逆变器控制单元与燃料电堆的空压机相连,并基于接收到的需求转矩控制指令控制所述空压机输出需求转速;
    所述高压配电管理单元与所述燃料电堆的高压配套设备BOP相连,并基于接收到的上下电控制指令控制所述高压BOP上下电;
    所述多个DC/DC控制单元并联,每个所述DC/DC控制单元通过所述第一直流滤波电路接收经过滤波分流的第一高压直流电,所述第一高压直流电由所述高压BOP、所述空压机和每个所述DC/DC控制单元控制所述燃料电堆生成;
    每个所述DC/DC控制单元基于所述第一高压直流电,以及接收到的需求电流指令和移相角度指令输出第二高压直流电,并通过所述直流总线汇流至所述第二直流滤波电路;
    所述第二直流滤波电路对所述第二高压直流电滤波后接至整车驱动系统。
  2. 根据权利要求1所述的系统,其特征在于,
    所述主控单元,具体用于基于所述车辆控制器发送的需求功率和启动指令生成对应控制所述逆变器控制单元的第一需求转矩控制指令、生成对应控制每个所述DC/DC控制单元的第一需求电流指令和第一移相角度指令,以及生成对应控制所述高压配电管理单元的上电控制指令,所述需求功率为所述主控单元控制燃料电池启动工作时需输出的功率值;
    所述逆变器控制单元,用于基于接收到的第一需求转矩控制指令控制所述空压机输出第一需求转速;
    所述高压配电管理单元,用于基于接收到的上电控制指令控制所述高压 BOP上电;
    每个所述DC/DC控制单元,用于通过所述第一直流滤波电路接收经过滤波分流的第一高压直流电,每个所述DC/DC控制单元基于所述第一高压直流电,以及接收到的第一需求电流指令和第一移相角度指令输出第二高压直流电,并通过所述直流总线汇流至所述第二直流滤波电路。
  3. 根据权利要求1所述的系统,其特征在于,
    所述主控单元,具体用于基于所述车辆控制器发送的停止指令生成第二需求转矩控制指令,以及根据预设的停机过程中所述空压机的工作转速计算得到第二需求转矩,以及生成对应控制所述高压配电管理单元的下电控制指令;
    所述逆变器控制单元,用于接收所述第二需求转矩控制指令和第二需求转矩,并基于所述第二需求转矩控制指令控制所述空压机输出第二需求转速;
    所述高压配电管理单元,用于基于接收到的下电控制指令控制所述高压BOP下电。
  4. 根据权利要求1所述的系统,其特征在于,所述主控单元包括:外部供电接口、通信接口、EMC滤波电路、电源电路、通信电路、第一微控制器及外围电路、模拟量采集电路和数字量输出电路;
    所述电源电路与所述EMC滤波电路、所述通信电路、所述第一微控制器及外围电路、所述模拟量采集电路,以及所述数字量输出电路均相连;
    所述EMC滤波电路与所述通信电路相连;
    所述通信电路与所述第一微控制器及外围电路相连;
    所述第一微控制器及外围电路与所述模拟量采集电路,以及所述数字量输出电路均相连。
  5. 根据权利要求1所述的系统,其特征在于,所述逆变器控制单元包括:第一低压供电电路、第二微控制器电路、逆变驱动单元、逆变功率模块和交流滤波电路;
    所述第一低压供电电路与所述第二微控制器电路、以及所述逆变驱动单元均相连;
    所述第二微控制器电路与所述逆变驱动单元、以及所述逆变功率模块均相连;
    所述逆变驱动单元与所述逆变功率模块相连;
    所述逆变功率模块与所述交流滤波电路、以及所述直流总线均相连;
    所述交流滤波电路与所述空压机相连。
  6. 根据权利要求1所述的系统,其特征在于,所述DC/DC控制单元包括:第二低压供电电路、第三微控制器电路、DC/DC驱动单元和DC/DC功率模块;
    所述第二低压供电电路与所述第三微控制器电路、以及所述DC/DC驱动单元均相连;
    所述第三微控制器电路与所述DC/DC驱动单元、以及所述DC/DC功率模块均相连;
    所述DC/DC驱动单元与所述DC/DC功率模块相连;
    所述DC/DC功率模块与所述第一直流滤波电路相连。
  7. 根据权利要求1至6中任一项所述的系统,其特征在于,还包括:冷板温度传感器;
    所述冷板温度传感器与所述主控单元相连,用于采集冷板温度值,并发送给所述主控单元。
  8. 一种燃料电池的功率控制方法,其特征在于,应用于权利要求1至7所述的功率控制系统,所述功率控制方法包括:
    主控单元基于车辆控制器发送的需求功率和启停指令确定当前的工作模式,并根据不同的工作模式生成对应控制逆变器控制单元、每个DC/DC控制单元和高压配电管理单元执行相应操作的控制指令,所述工作模式包括启动模式、正常加载模式和停机模式;
    当处于启动模式时,所述主控单元基于启动指令生成启动需求转矩控制指令,并发送给所述逆变器控制单元,以及生成上电控制指令,并发送给所述高压配电管理单元;
    所述逆变器控制单元基于所述启动需求转矩控制指令调节空压机的转矩,使所述空压机输出启动需求转速;
    所述高压配电管理单元基于所述上电控制指令控制高压BOP上电;
    当处于正常加载模式时,所述主控单元基于需求功率指令生成正常加载需求转矩控制指令,并发送给所述逆变器控制单元,以及生成电流控制指令,并 发送给每个所述DC/DC控制单元;
    所述逆变器控制单元基于所述正常加载需求转矩控制指令调节空压机的转矩,使所述空压机输出正常加载需求转速;
    每个所述DC/DC控制单元基于所述电流控制指令输出相应的高压直流电;
    当处于停机模式时,所述主控单元基于停止指令生成停机需求转矩控制指令,并发送给所述逆变器控制单元,以及生成下电控制指令,并发送给所述高压配电管理单元;
    所述逆变器控制单元基于所述停机需求转矩控制指令调节空压机的转矩,使所述空压机输出停机需求转速;
    所述高压配电管理单元基于所述下电控制指令控制高压BOP下电;
    其中,所述主控单元、所述逆变器控制单元以及每个所述DC/DC控制单元中均预设有用于实现与自身所处单元要实现的运算或控制相关的核心功能的微控制器。
  9. 根据权利要求8所述的方法,其特征在于,所述主控单元基于需求功率指令生成电流控制指令,并发送给每个所述DC/DC控制单元,包括:
    所述主控单元基于需求功率指令生成对应控制每个所述DC/DC控制单元的第一需求电流指令和第一移相角度指令,并发送给每个所述DC/DC控制单元;
    相应的,每个所述DC/DC控制单元基于所述第一需求电流指令和第一移相角度指令输出相应的高压直流电。
  10. 根据权利要求8所述的方法,其特征在于,所述主控单元基于停止指令生成停机需求转矩控制指令,并发送给所述逆变器控制单元,包括:
    所述主控单元基于停止指令,并根据预设的停机过程中所述空压机的工作转速计算得到停机需求转矩,并生成停机需求转矩控制指令,并发送给所述逆变器控制单元;
    相应的,所述逆变器控制单元基于所述停机需求转矩控制指令调节空压机的转矩,使所述空压机输出停机需求转速。
PCT/CN2021/080392 2021-01-27 2021-03-12 燃料电池的功率控制系统及方法 WO2022160420A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21922019.1A EP4286216A1 (en) 2021-01-27 2021-03-12 Power control system and method for fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110113152.2A CN112721742B (zh) 2021-01-27 2021-01-27 燃料电池的功率控制系统及方法
CN202110113152.2 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022160420A1 true WO2022160420A1 (zh) 2022-08-04

Family

ID=75594212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080392 WO2022160420A1 (zh) 2021-01-27 2021-03-12 燃料电池的功率控制系统及方法

Country Status (3)

Country Link
EP (1) EP4286216A1 (zh)
CN (1) CN112721742B (zh)
WO (1) WO2022160420A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113085551B (zh) * 2021-05-14 2022-09-23 潍柴动力股份有限公司 一种整车系统和电机控制器的电源管理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6321145B1 (en) * 2001-01-29 2001-11-20 Delphi Technologies, Inc. Method and apparatus for a fuel cell propulsion system
CN101651349A (zh) * 2009-09-10 2010-02-17 浙江大学 一种燃料电池发电装置
CN103595096A (zh) * 2013-11-11 2014-02-19 江苏超洁绿色能源科技有限公司 一种用于质子交换膜燃料电池备用电源系统的dc/dc变换及控制系统
CN108621798A (zh) * 2018-03-27 2018-10-09 广东陆地方舟新能源电动车辆有限公司 一种新能源汽车整车控制系统及其方法
CN209993680U (zh) * 2019-06-17 2020-01-24 烟台东德实业有限公司 一种燃料电池控制系统
CN111703336A (zh) * 2020-05-15 2020-09-25 智新科技股份有限公司 一种燃料电池车的下电控制系统及其控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7028793B2 (en) * 2002-02-08 2006-04-18 Green Vision Technology, Llc Internal combustion engines for hybrid powertrain
US7281595B2 (en) * 2005-12-13 2007-10-16 International Truck Intellectual Property Company, Llc System for integrating body equipment with a vehicle hybrid powertrain
US9143056B2 (en) * 2011-12-16 2015-09-22 Empower Micro Systems, Inc. Stacked voltage source inverter with separate DC sources
CN104539218A (zh) * 2015-01-30 2015-04-22 株洲南车时代电气股份有限公司 牵引变流器
CN107054140B (zh) * 2017-04-24 2019-03-22 哈尔滨理工大学 基于弹性储能的燃料电池混合动力汽车储能系统及能量分配方法
CN107415730B (zh) * 2017-07-11 2019-11-19 电子科技大学 一种车用燃料电池电源系统的功率控制方法
DE102019206009A1 (de) * 2019-04-26 2020-10-29 Siemens Mobility GmbH Diagnosesystem für zustandsorientierte Instandhaltung von Brennstoffzellenfiltern

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6321145B1 (en) * 2001-01-29 2001-11-20 Delphi Technologies, Inc. Method and apparatus for a fuel cell propulsion system
CN101651349A (zh) * 2009-09-10 2010-02-17 浙江大学 一种燃料电池发电装置
CN103595096A (zh) * 2013-11-11 2014-02-19 江苏超洁绿色能源科技有限公司 一种用于质子交换膜燃料电池备用电源系统的dc/dc变换及控制系统
CN108621798A (zh) * 2018-03-27 2018-10-09 广东陆地方舟新能源电动车辆有限公司 一种新能源汽车整车控制系统及其方法
CN209993680U (zh) * 2019-06-17 2020-01-24 烟台东德实业有限公司 一种燃料电池控制系统
CN111703336A (zh) * 2020-05-15 2020-09-25 智新科技股份有限公司 一种燃料电池车的下电控制系统及其控制方法

Also Published As

Publication number Publication date
EP4286216A1 (en) 2023-12-06
CN112721742A (zh) 2021-04-30
CN112721742B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN202737808U (zh) 具有能量积蓄部的电动机驱动装置
US7687929B2 (en) Electric power generation system with multiple inverters
JP2007290483A5 (zh)
JP2013039028A (ja) ハイブリッド発電機セット
CN101636901A (zh) 具有多个发电机和/或逆变器的发电系统
EP3063854A1 (en) Power supply control
WO2020077786A1 (zh) 能源控制方法、装置以及能源管理系统和存储介质
CN111725865A (zh) 一种宽电压逆控一体机及其控制方法
WO2022160420A1 (zh) 燃料电池的功率控制系统及方法
JP2018007546A (ja) 電気自動車の充電制御方法及びそのシステム
JP2019149863A (ja) 蓄電装置を有するモータ駆動システム
JP2019088175A (ja) モータ制御装置、電力変換装置、補助電源装置、及び補助電源制御方法
KR20240024967A (ko) 차량 장착형 충전기에 대한 작업 모드 스위칭 제어 방법 및 디바이스와, 차량 장착형 충전기
CN110758143A (zh) 减少电解电容的单三相兼容充电机控制电路和控制方法
CN113794218A (zh) 一种基于升降压电路的电动车退役电池二次利用系统
JP2015109746A (ja) 発電システム
JP2018207753A (ja) 蓄電装置の異常検出部を有するモータ駆動システム
JP5326786B2 (ja) 電圧変換器制御装置
JP2012244642A (ja) 昇降圧双方向dc/dcコンバータ及びこれを用いた交流モータ駆動装置
CN111731152B (zh) 一种功率控制方法、装置、车辆和存储介质
WO2008063612A2 (en) Electric power generation system with multiple generators and/or inverters
JP2010233384A (ja) 電源装置
JP2019092239A (ja) 蓄電装置を有するモータ駆動システム
JP2018133907A (ja) 充電制御装置
WO2022022594A1 (zh) 工程机械能量管理系统、方法、装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922019

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021922019

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021922019

Country of ref document: EP

Effective date: 20230828