WO2022022594A1 - 工程机械能量管理系统、方法、装置和存储介质 - Google Patents

工程机械能量管理系统、方法、装置和存储介质 Download PDF

Info

Publication number
WO2022022594A1
WO2022022594A1 PCT/CN2021/109042 CN2021109042W WO2022022594A1 WO 2022022594 A1 WO2022022594 A1 WO 2022022594A1 CN 2021109042 W CN2021109042 W CN 2021109042W WO 2022022594 A1 WO2022022594 A1 WO 2022022594A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
power
range extender
lithium battery
battery system
Prior art date
Application number
PCT/CN2021/109042
Other languages
English (en)
French (fr)
Inventor
易琅琳
Original Assignee
四川鼎鸿智电装备科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川鼎鸿智电装备科技有限公司 filed Critical 四川鼎鸿智电装备科技有限公司
Publication of WO2022022594A1 publication Critical patent/WO2022022594A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present application relates to the technical field of construction machinery, and in particular to a construction machinery energy management system, method, device and storage medium.
  • Construction machinery is an important part of the equipment industry, and it is the necessary mechanical equipment for earthwork construction projects, road construction and maintenance, mobile lifting and unloading operations and comprehensive mechanized construction projects required for various construction projects.
  • the extended-range hybrid construction machinery came into being. On the basis of pure electric drive, it added the internal combustion engine to charge the power battery or directly drive the motor to increase the cruising range of the construction machinery, and solved the problem of pure electric drive.
  • the problem of short cruising range is mainly powered by power batteries. In the power battery power supply scheme, the output energy of the range extender must be converted and consumed by the power battery to supply the load, and the energy efficiency of the range extender is low. The problem.
  • the present application provides an energy management system, method, device and storage medium for construction machinery, aiming to solve the problem that the output energy of the range extender needs to be converted by the power battery in the power battery power supply scheme of the range extender hybrid construction machinery in the prior art. Consuming the supply load, there is a problem of low energy efficiency of the range extender, which improves the working energy efficiency of the range extender for construction machinery.
  • the present application provides an energy management system for construction machinery, including a central controller, a range extender, an energy management unit and a lithium battery system.
  • the energy management unit is used to connect a load, and the load is connected in communication with the central controller, wherein:
  • the central controller is used to control the operation of the range extender, energy management unit, lithium battery system and load respectively;
  • the range extender supplies power to the load according to the preset power, and during the power supply process, when the preset power is greater than the power required by the load, the range extender supplies power to the load and simultaneously charges the lithium battery system;
  • the lithium battery system and the range extender supply power to the load at the same time;
  • the energy management unit is used to control the range extender, the load and the lithium battery system in the process of charging the lithium battery system while the range extender is supplying power to the load, or in the process that the lithium battery system and the range extender are simultaneously supplying power to the load.
  • the lithium battery system is also used to recover the feedback energy formed by the load when the construction machinery brakes or decelerates.
  • the lithium battery system when the power of the lithium battery system reaches the first preset power level, the lithium battery system is used to supply power to the load alone.
  • the lithium battery system is further configured to provide starting power for the range extender when the range extender starts up.
  • the system further includes a supercapacitor system and a one-way conduction device
  • the central controller is further used to respectively control the supercapacitor system and the one-way conduction device
  • the supercapacitor system is electrically connected to the energy management unit
  • the supercapacitor system is electrically connected to the lithium battery system through a one-way conduction device
  • the one-way conduction direction of the one-way conduction device is the direction from the supercapacitor system to the lithium battery system
  • the energy management unit When the preset power is greater than the power required by the load, the energy management unit turns on the circuit between the range extender and the super capacitor, and the circuit between the range extender and the load at the same time, so that the range extender supplies power to the load and provides power to the super capacitor at the same time.
  • the capacitor system is charged, and when the power of the super capacitor system reaches the second preset power, the super capacitor system supplies more than the second preset power to the lithium battery system through the one-way conduction device for charging;
  • the energy management unit turns on the circuit between the supercapacitor system and the load, and the circuit between the range extender and the load at the same time, so that the range extender and the supercapacitor system supply power to the load at the same time .
  • the system further includes a bidirectional voltage converter that is communicatively connected to the central controller, and the bidirectional voltage converter is electrically connected to the supercapacitor system and the energy management unit respectively, wherein:
  • the bidirectional voltage converter is used to step down the input voltage of the supercapacitor system and boost the output voltage of the supercapacitor system.
  • the present application also provides a construction machinery energy management method, which is applied to a central controller, where the central controller is located in the construction machinery energy management system, and the construction machinery energy management system further includes a range extender, an energy management unit and a lithium battery system , the energy management unit is used to connect the load, and the load is connected to the central controller in communication, and the method includes:
  • the on-off state of the circuit between the range extender, the load and the lithium battery system is controlled, so that the range extender and the lithium battery system supply power to the load at the same time.
  • the construction machinery energy management system further includes a one-way conduction device and a supercapacitor system
  • the central controller is further used to control the supercapacitor system and the one-way conduction device respectively, and the supercapacitor system and energy management
  • the unit is electrically connected, and the supercapacitor system is electrically connected to the lithium battery system through a unidirectional conduction device.
  • the on-off state of the circuit between the two, so that the range extender can supply power to the load while charging the lithium battery system including:
  • the energy management unit Controlling the energy management unit to turn on the circuit between the range extender and the supercapacitor system, and the circuit between the range extender and the load at the same time, so that the range extender supplies power to the load while charging the supercapacitor system, and when the supercapacitor system After the power of the super capacitor reaches the second preset power, the super capacitor system is controlled to supply the power with the power of the super capacitor system more than the second preset power to the lithium battery system for charging through the one-way conduction device.
  • the application further provides a construction machinery energy management device, including:
  • the power detection module is used to control the range extender to supply power to the load according to the preset power, and during the power supply process, detect the preset power and the power required by the load;
  • the power supply control module when the preset power is greater than the power required by the load, controls the on-off state of the circuit between the range extender, the load and the lithium battery system, so that the range extender supplies power to the load and also supplies power to the lithium battery system Charge;
  • the on-off state of the circuit between the range extender, the load and the lithium battery system is controlled, so that the range extender and the lithium battery system supply power to the load at the same time.
  • the present application further provides a computer-readable storage medium, on which a computer program is stored, and the computer program is loaded by a processor to execute the steps in the method of any one of the second aspect.
  • the range extender by making the range extender supply power to the load according to the preset power, when the power required by the load is the same as the preset power of the range extender, the range extender independently supplies power to the load, avoiding energy storage.
  • the energy conversion consumption during the charging and discharging process of the system improves the energy efficiency of the range extender.
  • the lithium battery system is used to supplement the required power for the load.
  • the power required by the load is less than
  • the range extender presets the power the excess power is supplied to the lithium battery system for charging, so that the range extender can always work stably in the high-efficiency energy-saving area, which greatly improves the working energy efficiency of the range extender.
  • FIG. 1 is a schematic structural diagram of an embodiment of a construction machinery energy management system provided in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of another embodiment of the construction machinery energy management system provided in the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another embodiment of the construction machinery energy management system provided in the embodiment of the present application.
  • FIG. 4 is a schematic flowchart of an embodiment of the construction machinery energy management method provided in the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an embodiment of the construction machinery energy management device provided in the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an embodiment of the device provided in the embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more of said features. In the description of the present application, “plurality” means two or more, unless otherwise expressly and specifically defined.
  • Embodiments of the present application provide a construction machinery energy management system, method, device, and storage medium, which will be described in detail below.
  • FIG. 1 is a schematic structural diagram of an embodiment of a construction machinery energy management system provided by an embodiment of the present application.
  • the construction machinery energy management system may include: a central controller 100 , a range extender 200 , and an energy management unit 300 With the lithium battery system 400 , the energy management unit 300 is electrically connected with a load 500 , and the load 500 is connected in communication with the central controller 100 .
  • the communication connection between the central controller 100 and the range extender 200 , the energy management unit 300 , the lithium battery system 400 and the load 500 can be realized by any communication method, including but not limited to, serial communication (Serial Communication) method , Wireless communication Communication) method, etc.
  • the central controller 100 can realize data transmission and control with the range extender 200 , the energy management unit 300 , the lithium battery system 400 and the load 500 through the above communication method.
  • the range extender 200 may include an engine, a generator, and a bidirectional AC/DC converter connected in sequence, wherein the engine is mechanically connected to the generator, the generator is electrically connected to the bidirectional AC/DC converter, and the engine is used to generate Kinetic energy, the generator is used to convert the kinetic energy generated by the engine into alternating current, and the bidirectional AC-DC converter is used to convert the alternating current into direct current output, which is used to supply power to the lithium battery system 400 and the load 500, and can also be used to convert the lithium battery system 400 The output DC power is converted into AC power input, which drives the engine to start.
  • the engine may be a gasoline engine, a diesel engine, a compressed natural gas (Compressed Natural Gas (CNG) engine, liquefied natural gas (Liquefied Natural Gas, LNG) engine and other common engines currently on the market
  • generators can be synchronous generators, asynchronous generators, single-phase generators, three-phase generators and other different types
  • the generator and the bidirectional AC/DC converter may be any type of rectifier/inverter currently available, which is not specifically limited here.
  • the generator and the bidirectional AC/DC converter of the embodiments of the present application It can also be replaced with an existing DC generator currently on the market, and the range extender 200 can also be replaced with a fuel cell system.
  • the energy management unit 300 in the embodiment of the present application may be a device such as a power distribution unit (Power Distribution Unit, PDU) for realizing power distribution, and the lithium battery system in the embodiment of the present application may also use a lead-acid battery system, a nickel-metal hydride battery system, Replace the battery system with other battery systems.
  • PDU Power Distribution Unit
  • the load 500 in this embodiment of the present application may be a device that needs to consume energy or can generate feedback energy, such as a motor, a compressor, and a heater.
  • the feedback energy specifically refers to electrical energy that can be recovered and stored, and the electrical energy may also be converted from relevant mechanical energy such as potential energy and kinetic energy.
  • FIG. 1 is only a structural schematic diagram of the solution of the present application, and does not constitute a limitation to the solution of the present application.
  • Other application scenarios may also include more than that shown in FIG. 1 .
  • the construction machinery energy management system may also include two or more communication connections with the central controller 100 and the energy management unit 300 Other energy storage systems that are electrically connected are not specifically limited here.
  • FIG. 1 the schematic structural diagram of the construction machinery energy management system shown in FIG. 1 is only an example, and the construction machinery energy management system and structure described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly. This does not constitute a limitation on the technical solutions provided in the embodiments of the present application. Those of ordinary skill in the art know that with the evolution of the construction machinery energy management system and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are not suitable for similar technologies. question, the same applies.
  • an embodiment of the present application provides an energy management system for construction machinery.
  • the system includes a central controller 100, a range extender 200, an energy management unit 300, and a lithium battery system 400.
  • the energy management unit 300 is used for Connect a load of 500, where:
  • the central controller 100 is respectively connected in communication with the range extender 200 , the energy management unit 300 , the lithium battery system 400 and the load 500 for controlling the operation of the range extender 200 , the energy management unit 300 , the lithium battery system 400 and the load 500 respectively.
  • the central controller 100 communicates with the range extender 200 , the energy management unit 300 , the lithium battery system 400 and the load 500 respectively, and receives the The feedback information is also sent to the range extender 200 , the energy management unit 300 , the lithium battery system 400 and the load 500 to instruct the operation of the range extender 200 , the energy management unit 300 , the lithium battery system 400 and the load 500 .
  • the central controller 100 in this embodiment of the present application may be a device with a control function, or may be composed of different controllers, such as the range extender 200, the energy management unit 300, the lithium battery system 400 and the The loads 500 are respectively configured with a controller to control the range extender 200, the energy management unit 300, the lithium battery system 400 and the load 500, and the central controller 100 of this embodiment also has the functions of fault judgment, allocation strategy adjustment, and real-time monitoring. and other functions, the specific functions of the central controller 100 can be selected and adjusted according to actual application scenarios.
  • the range extender 200 supplies power to the load 500 according to the preset power, and during the power supply process, when the preset power is greater than the power required by the load 500 , the range extender 200 supplies power to the load 500 and simultaneously charges the lithium battery system 400 .
  • the preset power of the range extender 200 is set in the high-efficiency and energy-saving area of the range extender 200, so that the range extender 200 can output stably with the lowest energy consumption and the highest efficiency, and provide working power for the load 500.
  • the range extender 200 When the preset power of the ranger 200 is the same as the power required by the load 500, the range extender 200 independently supplies power to the load 500, and due to the complex working environment of the construction machinery, the power required by the load 500 will not be at a constant value, therefore,
  • the preset power output by the range extender 200 is greater than the power required by the load 500, the range extender 200 supplies power to the load 500 while supplying the excess power, that is, the power not required by the load 500, to the lithium battery system 400, which is a lithium battery system 400 charge.
  • the lithium battery system 400 and the range extender 200 supply power to the load 500 at the same time.
  • the preset power of the range extender 200 is set in the high-efficiency and energy-saving area of the range extender 200, so that the range extender 200 can output stably with the lowest energy consumption and the highest efficiency, and provide working power for the load 500, Since the working environment of the construction machinery is relatively complex, the power required by the load 500 will not be at a constant value. Therefore, when the preset power output by the range extender 200 is less than the power required by the load 500, the range extender 200 is running for the load 500. While supplying power, the lithium battery system 400 will supplement insufficient power for the load 500 to ensure the normal operation of the load 500 .
  • the energy management unit 300 is configured to control the range extension during the process of supplying power to the lithium battery system 400 while the range extender 200 supplies power to the load 500 , or during the process that the lithium battery system 400 and the range extender 200 supply power to the load 500 at the same time.
  • the on-off state of the circuit between the device 200 , the load 500 and the lithium battery system 400 is checked to complete the power supply.
  • the energy management unit 300 includes a first switch K1 and a second switch K2, the range extender 200 is connected to the load 500 through the first switch K1, the lithium battery system 400 is connected to the load 500 through the second switch K2, and the increase The range extender 200 and the lithium battery system 400 are connected through the first switch K1 and the second switch K2, and the energy management unit 300 controls the on-off state of the circuit between the range extender 200, the load 500 and the lithium battery system 400, specifically: :
  • the first switch K1 of the energy management unit 300 is closed to turn on the circuit between the range extender 200 and the load 500, and the second switch K2 disconnects the lithium
  • the circuit between the battery system 400 and the load 500 enables the range extender 200 to independently supply power to the load 500; when the operating conditions of the load 500 change and the preset power of the range extender 200 is greater than the power required by the load 500, the energy management unit
  • the second switch K2 is closed, and the circuit between the range extender 200 and the lithium battery system 400 is turned on through the first switch K1 and the second switch K2, so that the range extender 200 outputs excess power while supplying power to the load 500.
  • the lithium battery system 400 Charge the lithium battery system 400; when the working conditions of the load 500 change and the preset power of the range extender 200 is less than the power required by the load 500, the second switch K2 of the energy management unit is also closed, and the conduction The circuit between the lithium battery system 400 and the load 500 is connected, so that when the range extender 200 supplies power to the load 500 , the lithium battery system 400 also supplies power to the load 500 to supplement the insufficient power of the load 500 .
  • the range extender 200 by causing the range extender 200 to supply power to the load 500 according to the preset power, when the power required by the load 500 is the same as the preset power of the range extender 200, the range extender 200 independently supplies power to the load 500, avoiding The energy conversion consumption during the charging and discharging process of the energy storage system is reduced, and the energy efficiency of the range extender 200 is improved.
  • the lithium battery system 400 is used to supplement the required power for the load 500.
  • the range extender 200 when the power required by the load 500 is less than the preset power of the range extender 200, the excess power is provided to the lithium battery system 400 for charging, so that the range extender 200 can always work in the high-efficiency and energy-saving area, which greatly improves the work of the range extender 200 efficiency.
  • the lithium battery system 400 is also used for recovering the feedback energy formed by the load 500 when the construction machinery brakes or decelerates.
  • the range extender 200 in the process that the range extender 200 supplies power to the load 500, when the construction machinery brakes or decelerates, the load 500 will generate a back electromotive force, thereby generating feedback energy, and the feedback energy of the load 500 passes through the second switch K2 is recovered to the lithium battery system 400. At this time, the power output by the range extender 200 is also supplied to the lithium battery system 400 through the first switch K1 and the second switch K2.
  • the lithium battery system 400 when the power of the lithium battery system 400 reaches the first preset power level, the lithium battery system 400 is used to supply power to the load 500 alone.
  • the first preset power of the lithium battery system 400 is set to be full power, that is, the power percentage is 100%.
  • the power percentage of the lithium battery system 400 reaches 100%, that is, it is fully charged, the first power
  • the switch K1 disconnects the circuit between the range extender 200 and the load 500, so that the range extender 200 stops supplying power to the load 500, or the range extender 200 stops and stops supplying power to the load 500.
  • the lithium battery system 400 passes through the closed No.
  • the two switches K2 independently provide working power for the load 500 .
  • the range extender 200 is restarted, and the load 500 is powered through the first switch K1 , and the cycle is repeated.
  • a preset minimum power level such as 10%
  • the range extender 200 is restarted, and the load 500 is powered through the first switch K1 , and the cycle is repeated.
  • the first preset power level and the preset minimum power level of the lithium battery system 400 may be set according to the performance or application scenario of the lithium battery system. This embodiment is only an example, and the specific values are not limited here. .
  • the lithium battery system 400 is further configured to provide starting power for the range extender 200 when the range extender 200 is started, so that the range extender 200 can quickly reach the high-efficiency and energy-saving operation.
  • the range extender 200 when the range extender 200 is started, the first switch K1 and the second switch K2 of the energy management unit 300 are closed, and the lithium battery system 400 supplies power to the generator through the bidirectional AC-DC converter, so that the generator acts as the starter
  • the motor drives the engine to reach the required rotational speed in a short time, the range extender 200 completes the high energy consumption stage when starting, and starts to supply power to the load 500 to save energy.
  • the construction machinery energy management system further includes a charging device 900 that is communicatively connected to the central controller 100.
  • the charging device 900 is electrically connected to the lithium battery system 400.
  • the charging device 900 in this embodiment may be external The mains charging pile and the mobile charging device can also be other energy storage devices.
  • the charging device 900 can alternately charge the lithium battery system 400 with the range extender 200 , or independently charge the lithium battery system 400 , or it can be used in the range extender 200 to charge the lithium battery system 400 . In the event of a failure, or when the lithium battery system 400 is idle, the lithium battery system 400 is charged.
  • the construction machinery energy management system further includes a supercapacitor system 600 and a one-way conduction device 700
  • the central controller 100 is further configured to control the supercapacitor system 600 and the one-way conduction device respectively.
  • the supercapacitor system 600 is electrically connected to the energy management unit 300
  • the supercapacitor system 600 is electrically connected to the lithium battery system 400 through the one-way conduction device 700
  • the one-way conduction direction of the one-way conduction device 700 is from the supercapacitor system 600 to the lithium Orientation of battery system 400, where:
  • the energy management unit 300 turns on the circuit between the range extender 200 and the super capacitor 600 and the circuit between the range extender 200 and the load 500 at the same time, so as to Make the range extender 200 supply power to the load 500 and the super capacitor system 600 at the same time, when the power of the super capacitor system 600 reaches the second preset power, the super capacitor system 600 will pass the power more than the second preset power through the one-way conduction device 700 supplies the lithium battery system 400 for charging;
  • the energy management unit 300 turns on the circuit between the super capacitor system 600 and the load 500 and the circuit between the range extender 200 and the load 500 at the same time, so that the range extender 200 and the load 500 are connected to each other.
  • the supercapacitor system 600 supplies power to the load 500 at the same time.
  • the energy management unit 300 further includes a third switch K3, and the super capacitor system 600 is electrically connected to the load 500 through the third switch K3.
  • the third switch K3 of the energy management unit 300 is closed, the circuit between the super capacitor system 600 and the range extender 200 is turned on, and the excess electric energy is stored through the third switch K3 in the supercapacitor system 600 .
  • the second preset power of the super capacitor system 600 is set as full power, that is, the power percentage is 100%. When the power percentage of the super capacitor system 600 reaches 100%, the excess power is supplied to the lithium battery system through the one-way conduction device 700 400, charging the lithium battery system 400.
  • the third switch K3 of the energy management unit 300 is also closed to turn on the circuit between the super capacitor system 600 and the load 500, so that the range extender 200 and the super capacitor
  • the capacitor system 600 supplies power to the load 500 at the same time, and if the sum of the power provided by the super capacitor system 600 and the range extender 200 is still less than the power required by the load 500, the second switch K2 of the energy management unit 300 is closed to turn on the lithium battery
  • the circuit between the system 400 and the load 500 enables the lithium battery system 400 , the super capacitor system 600 and the range extender 200 to supply power to the load 500 at the same time.
  • the second preset power amount in this embodiment may be set according to the voltage difference of the one-way conduction device 700 . It can also be set according to the performance or application scenario of the super capacitor system. This embodiment provides only an example, and the specific value is not limited here.
  • the unidirectional conduction device 700 in this embodiment may be a device capable of unidirectional current transmission, such as a unidirectional voltage (Direct Current-Direct Current, DC-DC) converter, a high-power diode, or a boost/ A step-down current unidirectional transfer device. Due to the existence of the one-way conduction device 700, electric energy can only flow from the super capacitor system 600 to the lithium battery system 400, and cannot flow in the reverse direction.
  • the lithium battery can be replaced by the super capacitor system 600
  • the peak-shaving and valley-filling function of the system 400 avoids frequent charging and discharging of the lithium battery system 400 , extending the service life of the lithium battery system 400 , and since the low temperature performance of the super capacitor is better than that of the lithium battery, the super capacitor can provide sufficient power during low temperature startup. .
  • the supercapacitor system 600 in this embodiment may be obtained from a plurality of supercapacitor cells in series and parallel, or may be other high-power energy storage systems, such as a flywheel energy storage system, and the rest are the same or similar to the principles of this embodiment
  • the solution also belongs to the protection scope of the present application.
  • the solution of this embodiment can also be implemented by reasonably setting the parameters of the range extender 200 , the super capacitor system 600 and the lithium battery system 400 .
  • the supercapacitor system 600 is also used to recover the feedback energy formed by the load 500 when the construction machinery brakes or decelerates. Similarly, when the power of the supercapacitor system 600 reaches the second preset power level, more than The feedback energy is also supplied to the lithium battery system 400 through the one-way conduction device 700 to charge the lithium battery system 400 .
  • the first switch K1 of the energy management unit 300 disconnects the circuit between the range extender 200 and the load 500, or the range extender 200 stops, and the third switch K1 K3 disconnects the circuit between the super capacitor system 600 and the load 500, so that the range extender 200 and the super capacitor system 600 stop supplying power to the load 500.
  • the second switch K2 of the energy management unit 300 is closed, and the lithium battery system 400 is turned on.
  • the lithium battery system 400 independently provides the load 500 with working power.
  • the first switch K1 of the energy management unit 300 is turned off, the second switch K2 and the third switch K3 are turned on, and the lithium battery system 400 and the super capacitor system 600 form power supply
  • the system reasonably distributes the electric power for the load 500 according to the power required by the load 500 to provide working electric energy for the load 500 .
  • the load 500 in the process that the lithium battery system 400 independently supplies power to the load 500, when the construction machinery brakes or decelerates, the load 500 will generate a back electromotive force, thereby generating feedback energy, and the feedback energy of the load 500 passes through the second The switch K2 is recycled to the lithium battery system 400 .
  • the second switch K2 and the third switch K3 of the energy management unit 300 are turned off, the first switch K1 is turned on, and the range extender 200 and the range extender 200 are turned on.
  • the circuit between the loads 600 enables the range extender 200 to independently supply power to the load 600; if the lithium battery system 400 fails, the second switch K2 of the energy management unit 300 is opened, the first switch K1 and the third switch K3 are closed, The circuit between the range extender 200 and the load 600 and the circuit between the super capacitor system 600 and the load 500 are turned on, so that the range extender 200 and the super capacitor system 600 supply power to the load 600; if the super capacitor system 600 fails, Then the third switch K3 of the energy management unit 300 is turned off, the first switch K1 and the second switch K2 are turned on, and the circuit between the range extender 200 and the load 600 and the circuit between the lithium battery system 400 and the load 500 are turned on, The range extender 200 and the lithium battery system 400 are made to supply power to the load 600 .
  • the construction machinery energy management system further includes a bidirectional voltage converter 800 communicatively connected to the central controller 100 , and the bidirectional voltage converter 800 is respectively connected to the super capacitor system 400 and the energy management unit 300 connections, of which:
  • the bidirectional voltage converter 800 is used to step down the input voltage of the supercapacitor system 800 and boost the output voltage of the supercapacitor system 600 .
  • the supercapacitor system 600 is formed of a plurality of supercapacitor cells in series and parallel, and the bidirectional voltage converter 800 can realize bidirectional step-up/step-down conversion.
  • BUCK circuit topology of the buck-boost circuit or bidirectional boost / buck converter.
  • the one-way conduction device 700 may be a one-way voltage converter with a one-way boost function, or may be composed of a one-way boost (BOOST) circuit, and the super capacitor system 800 inputs the lithium battery system.
  • the voltage of 400 is boosted.
  • the third switch K3 of the energy management unit 300 is electrically connected to the supercapacitor system 600 through the bidirectional voltage converter 800.
  • the bidirectional voltage converter 800 can step down the voltage input to the supercapacitor system 600 from the energy management unit 300, the supercapacitor The voltage output from the system 600 to the energy management unit 300 is boosted, which can reduce the voltage of the supercapacitor system 600 while meeting the voltage of the entire construction machinery energy management system and reduce the number of supercapacitors connected in series and parallel. The cost of the supercapacitor system 600 is reduced, thereby reducing the cost of the entire construction machinery energy management system.
  • the way of controlling the on-off of the circuit through the switches of the energy management unit 300 is only one way to realize the present application, and the other control methods can realize the on-off of the circuit with the same or similar principles. The same applies to the embodiments of the present application.
  • the power of the lithium battery system 400 is sufficient to supply power to the load 500 together with the range extender 200 .
  • the range extender 200 charges the lithium battery system 400
  • the power of the lithium battery system 400 is greater than the power released by the lithium battery system 400 or when the power of the lithium battery system 400 is insufficient, the lithium battery system 400 is charged by the charging device 900 to ensure the normal operation of the system.
  • the construction machinery energy management method includes:
  • the energy management unit 300 is controlled to turn on the circuits between the range extender 200 and the load 500 and between the lithium battery system 400 and the load 500 at the same time, so as to increase the power of the load 500 .
  • the programmer 200 and the lithium battery system 400 supply power to the load 500 at the same time.
  • the preset power of the range extender 200 is set in the high-efficiency and energy-saving area of the range extender 200, so that the range extender 200 can output stably with the lowest energy consumption and the highest efficiency.
  • the preset power of the range extender 200 is equal to the power required by the load 500, the first switch K1 of the energy management unit 300 is closed, and the circuit between the range extender 200 and the load 500 is turned on, so that the range extender 200 is preset The power provides working electrical energy for the load 500 .
  • the second switch K2 of the energy management unit 300 When the preset power of the range extender 200 is greater than the power required by the load 500 , the second switch K2 of the energy management unit 300 is closed, and the circuit between the range extender 200 and the lithium battery system 400 is turned on, so that the range extender 200 While supplying power to the load 500 , excess power is supplied to the lithium battery system 400 to charge the lithium battery system 400 .
  • the second switch K2 of the energy management unit 300 is closed, and the circuit between the range extender 200 and the load 500 and the circuit between the lithium battery system 400 and the load 500 are closed. The circuits are all in an on state. While the range extender 200 supplies power to the load 500, the lithium battery system 400 supplies power to the load 500, so that the load 500 can work normally.
  • the central controller 100 when the construction machine decelerates or brakes, the central controller 100 obtains a deceleration command or a braking command, and the load 500 generates a back electromotive force, thereby generating feedback energy, and the feedback energy of the load 500 passes through the The second switch K2 is recycled to the lithium battery system 400 .
  • the central controller 100 when the power of the lithium battery system 400 reaches a full power state, the central controller 100 obtains a full power command, and the full power command is used to indicate that the power of the lithium battery system 400 is full when the power reaches the first preset power Power; according to the command of full power, the central controller 100 controls the range extender 200 to stop working, and controls the first switch K1 of the energy management unit 300 to disconnect the circuit between the range extender 200 and the load 500 and turn on the lithium battery system 400 A circuit with the load 500, so that the lithium battery system 400 independently supplies power to the load 500.
  • the central controller 100 when the range extender 200 is activated, the central controller 100 obtains a range extender activation instruction; according to the range extender activation instruction, the first switch K1 and the second switch K2 of the energy management unit 300 are controlled to be closed. , the circuit between the lithium battery system 400 and the range extender 200 is turned on, and the lithium battery system 400 supplies power to the generator through the bidirectional AC-DC converter, so that the generator acts as a starter motor to drive the engine to reach the required speed in a short time, increasing the Cheng 200 starts successfully and starts to supply power to the load 500, which can avoid the high energy consumption stage when the engine is started and save energy.
  • the construction machinery energy management system further includes a one-way conduction device 700 and a supercapacitor system 600
  • the central controller 100 is further configured to control the supercapacitor system 600 and the one-way conduction device 700 respectively, and the supercapacitor system 600 is electrically connected to the energy management unit 300, the supercapacitor system 600 is electrically connected to the lithium battery system 400 through the one-way conduction device 700, and the one-way conduction direction of the one-way conduction device 700 is the direction from the supercapacitor system 600 to the lithium battery system 400, Controlling the on-off states of the circuits between the range extender 200 , the load 500 and the lithium battery system 400 , so that the range extender 200 supplies power to the load 500 and simultaneously charges the lithium battery system 400 , including:
  • the device 700 supplies the lithium battery system 400 for charging.
  • the super capacitor system 600 is electrically connected to the load 500 through the third switch K3 of the energy management unit 300.
  • the third switch K3 of the energy management unit 300 is closed, and the circuit between the super capacitor system 600 and the range extender 200 is turned on, and the excess electric energy is stored in the super capacitor system 600 through the third switch K3 .
  • the second preset power of the super capacitor system 600 is set as full power, that is, the power percentage is 100%.
  • the unidirectional conduction device 700 in this embodiment may be a device capable of unidirectional current transmission, such as a unidirectional voltage (Direct Current-Direct Current, DC-DC) converter, a high-power diode, or may be a device capable of increasing/decreasing voltage unidirectional current transfer device. Due to the existence of the one-way conduction device 700, electric energy can only flow from the super capacitor system 600 to the lithium battery system 400, but cannot flow in the reverse direction.
  • a unidirectional voltage (Direct Current-Direct Current, DC-DC) converter a high-power diode
  • the third switch K3 of the energy management unit 300 is also closed to turn on the circuit between the super capacitor system 600 and the load 500 , so that the range extender 200 and the super capacitor system 600 supply power to the load 500 at the same time, and if the sum of the power provided by the super capacitor system 600 and the range extender 200 is still less than the power required by the load 500, the second power of the energy management unit 300
  • the switch K2 is closed to turn on the circuit between the lithium battery system 400 and the load 500 , so that the lithium battery system 400 , the super capacitor system 600 and the range extender 200 supply power to the load 500 at the same time.
  • a bidirectional voltage converter 800 is disposed between the supercapacitor system 600 and the load 500 , and the bidirectional voltage converter 800 is communicatively connected to the central controller 100 and is used to perform a voltage measurement on the input voltage of the supercapacitor system 800 . Step down to boost the output voltage of the supercapacitor system 600 .
  • the supercapacitor system 600 is formed of a plurality of supercapacitor cells in series and parallel, and the bidirectional voltage converter 800 can realize bidirectional step-up/step-down conversion.
  • BUCK circuit topology of the step-up / step-down circuit or bidirectional step-up / step-down converter.
  • the one-way conduction device 700 may be a one-way voltage converter with a one-way boost function, or may be formed by a one-way boost (BOOST) circuit, and the super capacitor system 800 inputs the lithium battery system. The voltage of 400 is boosted.
  • the third switch K3 of the energy management unit 300 is electrically connected to the supercapacitor system 600 through the bidirectional voltage converter 800 .
  • the voltage output from the system 600 to the energy management unit 300 is boosted, which can reduce the voltage of the supercapacitor system 600 while meeting the voltage of the entire construction machinery energy management system, reduce the number of supercapacitors connected in series and parallel, and reduce the cost of the supercapacitor system 600 . In turn, the cost of the entire construction machinery energy management system is reduced.
  • a construction machinery energy management device is also provided in the embodiment of the present application, and the construction machinery energy management device is applied to the central control
  • the central controller 100 is located in the construction machinery energy management system.
  • the construction machinery energy management device 5000 includes:
  • the power detection module 501 is used to control the range extender 200 to supply power to the load 500 according to the preset power, and during the power supply process, detect the preset power and the power required by the load 500;
  • the power supply control module 502 when the preset power is greater than the power required by the load 500, controls the on-off state of the circuit between the range extender 200, the load 500 and the lithium battery system 400, so that the range extender 200 is the load 500 Charge the lithium battery system 400 while supplying power;
  • the on-off states of the circuits between the range extender 200 , the load 500 and the lithium battery system 400 are controlled, so that the range extender 200 and the lithium battery system 400 are the loads at the same time 500 powered.
  • an apparatus and its modules shown in FIG. 5 can be implemented in various ways.
  • an apparatus and its modules may be implemented in hardware, software, or a combination of software and hardware.
  • the hardware part can be realized by using dedicated logic;
  • the software part can be stored in a memory and executed by a suitable instruction execution system, such as a microprocessor or specially designed hardware.
  • processor control code for example on a carrier medium such as a disk, CD or DVD-ROM, such as a read-only memory (firmware) ) of a programmable memory or a data carrier such as an optical or electronic signal carrier such a code is provided.
  • the apparatus and its modules of the present application can not only be implemented by hardware circuits such as very large scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc. , can also be implemented by software executed by various types of processors, for example, or by a combination of the above-mentioned hardware circuits and software (eg, firmware).
  • the above description of the device and its modules is only for the convenience of description, and does not limit the present application to the scope of the illustrated embodiments. It can be understood that for those skilled in the art, after understanding the principle of the system, various modules may be combined arbitrarily, or a subsystem may be formed to connect with other modules without departing from the principle.
  • the power detection module 501 and the power supply control module 502 disclosed in FIG. 5 may be different modules in a system, or one module may implement the functions of the above-mentioned two or more modules, such as the power detection module 501, the power supply
  • the control module 502 may be two modules with detection and control functions respectively, or may be one module with both detection and control functions.
  • the embodiments of the present application further provide a construction machinery energy management device, which integrates any construction machinery energy management device provided by the embodiments of the present application.
  • FIG. 6 it shows a schematic structural diagram of a device involved in an embodiment of the present application, specifically:
  • the device may include a processor 601 of one or more processing cores, a memory 602 of one or more computer-readable storage media, a power supply 603 and an input unit 604 and other components.
  • the processor 601 corresponds to the central controller 100, and the power supply 603 can be used to provide the central controller 100, the energy management unit 300 and the like with a working voltage.
  • the device structure shown in FIG. 6 does not constitute a limitation on the device, and may include more or less components than the one shown, or combine some components, or arrange different components. in:
  • the processor 601 is the control center of the device, using various interfaces and lines to connect various parts of the entire device, by running or executing the software programs and/or modules stored in the memory 602, and calling the data stored in the memory 602, Execute various functions of the device and process data to monitor the device as a whole.
  • the processor 601 may include one or more processing cores; the processor 601 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, DSP) ), Application Specific Integrated Circuit (ASIC), Off-the-shelf Programmable Gate Array (Field-Programmable Gate Array) Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the processor 601 can integrate an application processor and a modulation and demodulation processor, wherein the application processor mainly processes the operating system, User interface and applications, etc., the modem processor mainly handles wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 601.
  • the memory 602 can be used to store software programs and modules, and the processor 601 executes various functional applications and data processing by running the software programs and modules stored in the memory 602 .
  • the memory 602 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function, and the like; the storage data area may store data created according to the use of the central controller 100, etc. .
  • memory 602 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device. Accordingly, memory 602 may also include a memory controller to provide processor 601 access to memory 602 .
  • the device also includes a power supply 603 for supplying power to various components.
  • the power supply 603 can be logically connected to the processor 601 through a power management system, so that functions such as charging, discharging, and power consumption management are implemented through the power management system.
  • Power source 603 may also include one or more DC or AC power sources, recharging systems, power failure detection circuits, power converters or inverters, power status indicators, and any other components.
  • the device may also include an input unit 604 that may be operable to receive input numerical or character information and generate keyboard, mouse, joystick, optical, or trackball signal input related to user settings and functional control.
  • an input unit 604 may be operable to receive input numerical or character information and generate keyboard, mouse, joystick, optical, or trackball signal input related to user settings and functional control.
  • the device may also include a display unit and the like, which will not be described herein again.
  • the processor 601 in the device loads the executable files corresponding to the processes of one or more application programs into the memory 602 according to the following instructions, and the processor 601 executes them and stores them in the memory 602, so as to realize various functions, as follows:
  • the energy management unit 300 is controlled to turn on the circuit between the range extender 200 and the lithium battery system 400 , so that the range extender 200 is the load 500 and the lithium battery system 400 at the same time.
  • the battery system 400 is charged;
  • the energy management unit 300 is controlled to turn on the circuits between the range extender 200 and the load 500 and between the lithium battery system 400 and the load 500 at the same time, so as to increase the power of the load 500 .
  • the programmer 200 and the lithium battery system 400 supply power to the load 500 at the same time.
  • an embodiment of the present application provides a computer-readable storage medium, where the storage medium may include: a read only memory (Read Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, etc. .
  • a computer program is stored thereon, and the computer program is loaded by the processor to execute the steps in any of the construction machinery energy management methods provided in the embodiments of the present application.
  • a computer program loaded by a processor may perform the following steps:
  • the energy management unit 300 is controlled to turn on the circuit between the range extender 200 and the lithium battery system 400 , so that the range extender 200 is the load 500 and the lithium battery system 400 at the same time.
  • the battery system 400 is charged;
  • the energy management unit 300 is controlled to turn on the circuits between the range extender 200 and the load 500 and between the lithium battery system 400 and the load 500 at the same time, so as to increase the power of the load 500 .
  • the programmer 200 and the lithium battery system 400 supply power to the load 500 at the same time.
  • the above units or structures can be implemented as independent entities, or can be arbitrarily combined to be implemented as the same or several entities.
  • the specific implementation of the above units or structures can refer to the previous embodiments. Repeat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

提供一种工程机械能量管理系统、方法、装置和存储介质,该系统中的中央控制器(100)用于分别控制增程器(200)、能量管理单元(300)、锂电池系统(400)和负载(500)的运作;增程器(200)按照预设功率为负载(500)供电,并在供电过程中,当预设功率大于负载(500)所需功率时,增程器(200)为负载(500)供电的同时为锂电池系统(400)充电;当增程器(200)的预设功率小于负载(500)所需功率时,锂电池系统(400)和增程器(200)同时为负载(500)供电;能量管理单元(300)用于控制增程器(200)、负载(500)和锂电池系统(400)两两之间的电路导通或断开。

Description

工程机械能量管理系统、方法、装置和存储介质
本申请要求于2020年7月29日提交中国专利局、申请号为202010742299.3、发明名称为“工程机械能量管理系统、方法、装置和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及工程机械技术领域,具体涉及一种工程机械能量管理系统、方法、装置和存储介质。
背景技术
工程机械是装备工业的重要组成部分,是土石方施工工程、路面建设与养护、流动式起重装卸作业和各种建筑工程所需的综合性机械化施工程所必需的机械装备。
传统的工程机械采用单一的能源驱动的方式,比如采用柴油内燃机驱动工程机械工作,或者是采用新型的纯电驱动的方式为工程机械提供工作能源。但是柴油内燃机驱动的方式对于能源的消耗较大,并且对环境会有一定程度的污染,成本较高;而纯电驱动的方式对于需要长时间工作的工程机械来说,需要频繁停止工作对动力电池进行充电,续航时间和续航里程都不太理想。
基于技术的发展,增程式混合动力工程机械应运而生,其在纯电驱动的基础之上,增加了内燃机给动力电池充电或直接驱动电机使工程机械工作增加续航里程,解决了纯电驱动的续航里程短的问题。但是,现有的增程式混合动力工程机械大多是以动力电池供电为主,在动力电池供电方案中,增程器的输出能量要经过动力电池的转换消耗供给负载,存在增程器能效较低的问题。
技术问题
本申请提供一种工程机械能量管理系统、方法、装置和存储介质,旨在解决现有技术中增程式混合动力工程机械的动力电池供电方案中,增程器的输出能量要经过动力电池的转换消耗供给负载,存在增程器能效较低的问题,提高了工程机械增程器的工作能效。
技术解决方案
本申请提供一种工程机械能量管理系统,包括中央控制器、增程器、能量管理单元和锂电池系统,能量管理单元用于连接负载,负载与中央控制器通信连接,其中:
中央控制器用于分别控制增程器、能量管理单元、锂电池系统和负载的运作;
增程器按照预设功率为负载供电,并在供电过程中,当预设功率大于负载所需功率时,增程器为负载供电的同时为锂电池系统充电;
当预设功率小于负载所需功率时,锂电池系统和增程器同时为负载供电;
能量管理单元用于在增程器为负载供电的同时为锂电池系统充电的过程中,或者在锂电池系统和增程器同时为负载供电的过程中,控制增程器、负载和锂电池系统两两之间的电路的通断状态,以完成供电。
在本申请一种可能的实现方式中,锂电池系统还用于在工程机械制动或减速时,回收负载形成的回馈能量。
在本申请一种可能的实现方式中,当锂电池系统的电量达到第一预设电量时,锂电池系统用于单独为负载供电。
在本申请一种可能的实现方式中,锂电池系统还用于在增程器启动时,为增程器提供启动电能。
在本申请一种可能的实现方式中,系统还包括超级电容系统和单向导通装置,中央控制器还用于分别控制超级电容系统和单向导通装置,超级电容系统与能量管理单元电连接,超级电容系统通过单向导通装置与锂电池系统电连接,单向导通装置的单向导通方向为从超级电容系统到锂电池系统的方向,其中:
当预设功率大于负载所需功率时,能量管理单元同时导通增程器与超级电容之间的电路、增程器与负载之间的电路,以使得增程器为负载供电的同时为超级电容系统充电,并且当超级电容系统的电量达到第二预设电量后,超级电容系统将多于第二预设电量的电量通过单向导通装置供给锂电池系统进行充电;
当预设功率小于负载所需功率时,能量管理单元同时导通超级电容系统与负载之间的电路、增程器与负载之间的电路,以使得增程器和超级电容系统同时为负载供电。
在本申请一种可能的实现方式中,系统还包括与中央控制器通信连接的双向电压变换器,双向电压变换器分别与超级电容系统和能量管理单元电连接,其中:
双向电压变换器用于对超级电容系统的输入电压进行降压,对超级电容系统的输出电压进行升压。
第二方面,本申请还提供一种工程机械能量管理方法,应用于中央控制器,中央控制器位于工程机械能量管理系统,工程机械能量管理系统还包括增程器、能量管理单元和锂电池系统,能量管理单元用于连接负载,负载与中央控制器通信连接,该方法包括:
控制增程器按照预设功率为负载供电,并在供电过程中,检测预设功率和负载所需功率;
当预设功率大于负载所需功率时,控制增程器、负载和锂电池系统两两之间的电路的通断状态,以使得增程器为负载供电的同时为锂电池系统充电;
当预设功率小于负载所需功率时,控制增程器、负载和锂电池系统两两之间的电路的通断状态,以使得增程器和锂电池系统同时为负载供电。
在本申请一种可能的实现方式中,工程机械能量管理系统还包括单向导通装置和超级电容系统,中央控制器还用于分别控制超级电容系统和单向导通装置,超级电容系统与能量管理单元电连接,超级电容系统通过单向导通装置与锂电池系统电连接,单向导通装置的单向导通方向为从超级电容系统到锂电池系统的方向,控制增程器、负载和锂电池系统两两之间的电路的通断状态,以使得增程器为负载供电的同时为锂电池系统充电,包括:
控制能量管理单元同时导通增程器与超级电容系统之间的电路、增程器与负载之间的电路,以使得增程器为负载供电的同时为超级电容系统充电,并且当超级电容系统的电量达到第二预设电量后,控制超级电容系统将超级电容系统的电量多于第二预设电量的电量通过单向导通装置供给锂电池系统进行充电。
第三方面,本申请还提供一种工程机械能量管理装置,包括:
功率检测模块,用于控制增程器按照预设功率为负载供电,并在供电过程中,检测预设功率和负载所需功率;
供电控制模块,当预设功率大于负载所需功率时,控制增程器、负载和锂电池系统两两之间的电路的通断状态,以使得增程器为负载供电的同时为锂电池系统充电;
当预设功率小于负载所需功率时,控制增程器、负载和锂电池系统两两之间的电路的通断状态,以使得增程器和锂电池系统同时为负载供电。
第四方面,本申请还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器进行加载,以执行第二方面任一项的方法中的步骤。
有益效果
相较于现有技术,本申请通过使增程器按照预设功率为负载供电,当负载所需功率与增程器的预设功率相同时,增程器独立为负载供电,避免了储能系统充放电过程中的能量转换消耗,提高了增程器的能效,当负载工况不稳定,需要更高的工作功率时,通过锂电池系统为负载补充所需功率,当负载所需功率小于增程器预设功率时,将多余功率提供给锂电池系统充电,可以使增程器始终稳定工作于高效节能区,大大提高了增程器的工作能效。
附图说明
图1是本申请实施例提供的工程机械能量管理系统的一个实施例结构示意图;
图2是本申请实施例中提供的工程机械能量管理系统的又一个实施例结构示意图;
图3是本申请实施例中提供的工程机械能量管理系统的又一个实施例结构示意图;
图4是本申请实施例中提供的工程机械能量管理方法的一个实施例流程示意图;
图5是本申请实施例中提供的工程机械能量管理装置的一个实施例结构示意图;
图6是本申请实施例中提供的设备的一个实施例结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,“示例性”一词用来表示“用作例子、例证或说明”。本申请中被描述为“示例性”的任何实施例不一定被解释为比其它实施例更优选或更具优势。为了使本领域任何技术人员能够实现和使用本申请,给出了以下描述。在以下描述中,为了解释的目的而列出了细节。应当明白的是,本领域普通技术人员可以认识到,在不使用这些特定细节的情况下也可以实现本申请。在其它实例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本申请的描述变得晦涩。因此,本申请并非旨在限于所示的实施例,而是与符合本申请所公开的原理和特征的最广范围相一致。
本申请实施例提供一种工程机械能量管理系统、方法、装置和存储介质,以下分别进行详细说明。
请参阅图1,图1为本申请实施例所提供的工程机械能量管理系统的一个实施例结构示意图,该工程机械能量管理系统可以包括:中央控制器100、增程器200、能量管理单元300和锂电池系统400,能量管理单元300电连接有负载500,负载500与中央控制器100通信连接。
请参考图1,中央控制器100与增程器200、能量管理单元300、锂电池系统400和负载500之间可通过任何通信方式实现通信连接,包括但不限于,串口通信(Serial Communication)方式、无线通信(Wireless Communication)方式等。中央控制器100可以通过上述通信方式与增程器200、能量管理单元300、锂电池系统400和负载500实现数据传输与控制。
本申请实施例中,增程器200可以包括依次连接的发动机、发电机和双向交直流变换器,其中,发动机与发电机机械连接,发电机与双向交直流变换器电连接,发动机用于产生动能,发电机用于将发动机产生的动能转换为交流电,双向交直流变换器用于将该交流电转换为直流电输出,用于为锂电池系统400和负载500供电,也可以用于将锂电池系统400输出的直流电转换为交流电输入,带动发动机启动。
本申请实施例中,发动机可以是汽油发动机、柴油发动机、压缩天然气(Compressed Natural Gas,CNG)发动机、液化天然气(Liquefied Natural Gas,LNG)发动机等目前市面上常见的发动机,发电机可以是同步发电机、异步发电机、单相发电机、三相发电机等不同类型的发电机,双向交直流变换器可以是目前已有的任意类型的整流(Rectifier)/逆变器(Inverter),具体此处不做限定,另外本申请实施例的发电机和双向交直流变换器还可以用目前市面上现有的直流发电机进行替换,增程器200还可以用燃料电池系统代替。
本申请实施例中的能量管理单元300可以是电源分配单元(Power Distribution Unit,PDU)等用于实现电力分配的器件,本申请实施例中的锂电池系统还可以用铅酸蓄电池系统、镍氢蓄电池系统等其他蓄电池系统进行替换。
本申请实施例中的负载500可以是电机、压缩机、加热器等需要消耗能量或可产生回馈能量的装置。该回馈能量,具体指的是可以回收并进行存储的电能,该电能还可能由相关的位能、动能等机械能转化得到。
本领域技术人员可以理解,图1中示出的结构示意图,仅仅是本申请方案的一种结构示意图,并不构成对本申请方案的限定,其他的应用场景还可以包括比图1中所示更多的储能系统,例如图1中仅示出1个锂电池系统,可以理解的,该工程机械能量管理系统还可以包括2个或多个与中央控制器100通信连接以及和能量管理单元300电连接的其他储能系统,具体此处不做限定。
需要说明的是,图1所示的工程机械能量管理系统的结构示意图仅仅是一个示例,本申请实施例描述的工程机械能量管理系统以及结构是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着工程机械能量管理系统的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
首先,本申请实施例提供一种工程机械能量管理系统,如图1所示,该系统包括中央控制器100、增程器200、能量管理单元300和锂电池系统400,能量管理单元300用于连接负载500,其中:
中央控制器100分别与增程器200、能量管理单元300、锂电池系统400和负载500通信连接,用于分别控制增程器200、能量管理单元300、锂电池系统400和负载500的运作。
本申请实施例中,中央控制器100分别与增程器200、能量管理单元300、锂电池系统400和负载500通信,接收增程器200、能量管理单元300、锂电池系统400和负载500的反馈信息,同时也向增程器200、能量管理单元300、锂电池系统400和负载500发送控制指令,以指示增程器200、能量管理单元300、锂电池系统400和负载500的运作。需要说明的是,本申请实施例中的中央控制器100可以是一个具有控制功能的器件,也可以由不同控制器组成,比如可以为增程器200、能量管理单元300、锂电池系统400和负载500分别配置一个控制器,来对增程器200、能量管理单元300、锂电池系统400和负载500进行控制,并且本实施例的中央控制器100还具有故障判断、分配策略调整、实时监控等功能,中央控制器100的具体功能可以根据实际应用场景进行选择调整。
增程器200按照预设功率为负载500供电,并在供电过程中,当预设功率大于负载500所需功率时,增程器200为负载500供电的同时为锂电池系统400充电。
本申请实施例中,将增程器200的预设功率设置在该增程器200的高效节能区,使增程器200以最低能耗最高效率稳定输出,为负载500提供工作电能,当增程器200的预设功率与负载500所需功率相同时,由增程器200独立为负载500供电,而由于工程机械工作环境较为复杂,负载500所需功率并不会处于恒定值,因此,当增程器200输出的预设功率大于负载500所需功率时,增程器200在为负载500供电的同时将多余功率,即负载500不需要的功率供给锂电池系统400,为锂电池系统400充电。
当增程器200的预设功率小于负载500所需功率时,锂电池系统400和增程器200同时为负载500供电。
同上,本申请实施例中,将增程器200的预设功率设置在该增程器200的高效节能区,使增程器200以最低能耗最高效率稳定输出,为负载500提供工作电能,而由于工程机械工作环境较为复杂,负载500所需功率并不会处于恒定值,因此,当增程器200输出的预设功率小于负载500所需功率时,在增程器200在为负载500供电的同时,锂电池系统400会为负载500补充不够的功率,以保证负载500正常运行。
能量管理单元300用于在增程器200为负载500供电的同时为锂电池系统400供电的过程中,或者在锂电池系统400和增程器200同时为负载500供电的过程中,控制增程器200、负载500和锂电池系统400两两之间的电路的通断状态,以完成供电。
本申请实施例中,能量管理单元300包括第一开关K1和第二开关K2,增程器200通过第一开关K1与负载500连接,锂电池系统400通过第二开关K2与负载500连接,增程器200与锂电池系统400通过第一开关K1和第二开关K2连接,能量管理单元300控制增程器200、负载500和锂电池系统400两两之间的电路的通断状态,具体为:
当增程器200的预设功率恰好等于负载500所需功率时,能量管理单元300的第一开关K1闭合,导通增程器200与负载500之间的电路,第二开关K2断开锂电池系统400与负载500之间的电路,使得增程器200独立为负载500供电;当负载500的工况发生变化,增程器200的预设功率大于负载500所需功率时,能量管理单元的第二开关K2闭合,通过第一开关K1和第二开关K2导通增程器200与锂电池系统400之间的电路,使得增程器200在为负载500供电的同时,将多余功率输出给锂电池系统400,为锂电池系统400充电;当负载500的工况发生变化,增程器200的预设功率小于负载500所需功率时,能量管理单元的第二开关K2同样闭合,导通锂电池系统400与负载500之间的电路,使得增程器200在为负载500供电的同时,锂电池系统400也为负载500供电,以补充负载500不够的功率。
本申请实施例中,通过使增程器200按照预设功率为负载500供电,当负载500所需功率与增程器200的预设功率相同时,增程器200独立为负载500供电,避免了储能系统充放电过程中的能量转换消耗,提高了增程器200的能效,当负载500工况不稳定,需要更高的工作功率时,通过锂电池系统400为负载500补充所需功率,当负载500所需功率小于增程器200预设功率时,将多余功率提供给锂电池系统400充电,可以使增程器200始终工作于高效节能区,大大提高了增程器200的工作能效。
在本申请一些实施例中,锂电池系统400还用于在工程机械制动或减速时,回收负载500形成的回馈能量。
本申请实施例中,在增程器200为负载500供电的过程中,当工程机械制动或减速时,负载500会产生反向电动势,进而产生回馈能量,负载500的回馈能量通过第二开关K2回收至锂电池系统400,此时,增程器200输出的功率同样通过第一开关K1和第二开关K2供给锂电池系统400。
在本申请一些实施例中,当锂电池系统400的电量达到第一预设电量时,锂电池系统400用于单独为负载500供电。
本申请实施例中,设置锂电池系统400的第一预设电量为满电量,即电量百分比为100%,当锂电池系统400的电量百分比达到100%即充满时,能量管理单元300的第一开关K1断开增程器200与负载500之间的电路,使得增程器200停止为负载500供电,或者增程器200停机,停止为负载500供电,此时锂电池系统400通过闭合的第二开关K2独立为负载500提供工作电能。当锂电池系统400的电量降低至预设最低电量如10%时,增程器200重新启动,通过第一开关K1为负载500供电,如此循环。需要说明的是,锂电池系统400的第一预设电量和预设最低电量可以根据锂电池系统的性能或应用场景进行设置,本实施例提供的仅仅是一个示例,具体数值此处不做限定。
在本申请一些实施例中,锂电池系统400还用于在增程器200启动时,为增程器200提供启动电能,使增程器200能快速达到高效节能区运行。
本申请实施例中,当增程器200启动时,能量管理单元300的第一开关K1和第二开关K2闭合,锂电池系统400通过双向交直流变换器供电给发电机,使发电机作为启动电机带动发动机在短时间内达到所需转速,增程器200完成启动时的高能耗阶段,开始对负载500供电,节约能源。
在本申请一些实施例中,工程机械能量管理系统还包括与中央控制器100通信连接的充电装置900,充电装置900与锂电池系统400电连接,本实施例中的充电装置900可以是外接的市电充电桩、移动充电装置也可以是其他的储能装置,充电装置900可以与增程器200交替为锂电池系统400充电,或独立为锂电池系统400充电,也可以在增程器200出现故障时,或在锂电池系统400空闲时,为锂电池系统400充电。
如图2所示,在本申请一些实施例中,工程机械能量管理系统还包括超级电容系统600和单向导通装置700,中央控制器100还用于分别控制超级电容系统600和单向导通装置700,超级电容系统600与能量管理单元300电连接,超级电容系统600通过单向导通装置700与锂电池系统400电连接,单向导通装置700的单向导通方向为从超级电容系统600到锂电池系统400的方向,其中:
当增程器200的预设功率大于负载500所需功率时,能量管理单元300同时导通增程器200与超级电容600之间的电路、增程器200与负载500之间的电路,以使得增程器200同时为负载500和超级电容系统600供电,当超级电容系统600的电量达到第二预设电量后,超级电容系统600将多于第二预设电量的电量通过单向导通装置700供给锂电池系统400进行充电;
当预设功率小于负载500所需功率时,能量管理单元300同时导通超级电容系统600与负载500之间的电路、增程器200与负载500之间的电路,以使得增程器200和超级电容系统600同时为负载500供电。
本申请实施例中,能量管理单元300还包括第三开关K3,超级电容系统600通过第三开关K3与负载500电连接,在增程器200为负载500供电的过程中,当增程器200的预设功率大于负载500所需功率时,能量管理单元300的第三开关K3闭合,导通超级电容系统600与增程器200之间的电路,多出来的电能便通过第三开关K3存储于超级电容系统600中。设置超级电容系统600的第二预设电量为满电量,即电量百分比为100%,当超级电容系统600的电量百分比达到100%时,多于的电量便通过单向导通装置700供给锂电池系统400,为锂电池系统400充电。
当增程器200的预设功率小于负载500所需功率时,能量管理单元300的第三开关K3同样闭合,导通超级电容系统600与负载500之间的电路,使得增程器200与超级电容系统600同时为负载500供电,并且若超级电容系统600和增程器200所提供的功率之和仍然小于负载500所需功率时,能量管理单元300的第二开关K2闭合,导通锂电池系统400与负载500之间的电路,使得锂电池系统400、超级电容系统600和增程器200三者同时为负载500供电。
需要说明的是,本实施例中的第二预设电量可以根据单向导通装置700的电压差来进行设定。也可以根据超级电容系统的性能或应用场景进行设置,本实施例提供的仅仅是一个示例,具体数值此处不做限定。本实施例中的单向导通装置700可以是单向电压(Direct Current-Direct Current,DC-DC)变换器、大功率二极管等能够实现电流单向传输的器件,也可以是能实现升压/降压的电流单向传输器件。由于单向导通装置700的存在,电能只能由超级电容系统600流向锂电池系统400,不能反向流动。
由于锂电池的一个生命周期的循环次数有限,而超级电容的循环次数可达100万次,其具有高功率、高循环寿命的优点,因此,本申请实施例可以通过超级电容系统600替代锂电池系统400的削峰填谷功能,避免锂电池系统400频繁充放电,延长了锂电池系统400的使用寿命,并且由于超级电容的低温性能比锂电池优异,超级电容可以在低温启动时提供足够功率。本实施例中的超级电容系统600可以是由多个超级电容单体串并联得到,也可以是其他高功率储能系统,比如飞轮储能系统等,其余与本实施例的原理相同或相似的方案也属于本申请的保护范围,比如通过合理设置增程器200、超级电容系统600和锂电池系统400的参数也能实现本实施例的方案。
本实施例中,超级电容系统600还用于在工程机械制动或减速时,回收负载500形成的回馈能量,并且同样的,当超级电容系统600的电量达到第二预设电量时,多于的回馈能量同样是通过单向导通装置700供给锂电池系统400,为锂电池系统400充电。
当锂电池系统400的电量达到第一预设电量即充满时,能量管理单元300的第一开关K1断开增程器200与负载500之间的电路,或增程器200停机,第三开关K3断开超级电容系统600与负载500之间的电路,使得增程器200和超级电容系统600停止为负载500供电,此时能量管理单元300的第二开关K2闭合,导通锂电池系统400与负载500之间的电路,由锂电池系统400独立为负载500提供工作电能。
本申请实施例中,当增程器200出现故障时,能量管理单元300的第一开关K1断开,第二开关K2和第三开关K3闭合,由锂电池系统400和超级电容系统600组成供电系统根据为负载500所需功率合理分配电量为负载500提供工作电能。
本申请实施例中,在锂电池系统400独立为负载500供电的过程中,当工程机械制动或减速时,负载500会产生反向电动势,进而产生回馈能量,负载500的回馈能量通过第二开关K2回收至锂电池系统400。
本申请实施例中,若锂电池系统400和超级电容系统600出现故障,则能量管理单元300的第二开关K2和第三开关K3断开,第一开关K1闭合,导通增程器200与负载600之间的电路,使得增程器200独立为负载600供电;若锂电池系统400出现故障,则能量管理单元300的第二开关K2断开,第一开关K1和第三开关K3闭合,导通增程器200与负载600之间的电路,以及超级电容系统600与负载500之间的电路,使得增程器200和超级电容系统600为负载600供电;若超级电容系统600出现故障,则能量管理单元300第三开关K3断开,第一开关K1和第二开关K2闭合,导通增程器200与负载600之间的电路,以及锂电池系统400与负载500之间的电路,使得增程器200和锂电池系统400为负载600供电。
如图3所示,在本申请一些实施例中,工程机械能量管理系统还包括与中央控制器100通信连接的双向电压变换器800,双向电压变换器800分别与超级电容系统400和能量管理单元300连接,其中:
双向电压变换器800用于对超级电容系统800的输入电压进行降压,对超级电容系统600的输出电压进行升压。
本申请实施例中,超级电容系统600由多个超级电容单体串并联而成,双向电压变换器800可以实现双向升/降压变换,其可以是由具有升压(BOOST)/降压(BUCK)电路拓扑的升降压电路或双向升/降压变换器构成。并且本实施例中,单向导通装置700可以是具有单向升压功能的单向电压变换器,也可以是由单向升压(BOOST)电路构成,对由超级电容系统800输入锂电池系统400的电压进行升压。能量管理单元300的第三开关K3通过双向电压变换器800与超级电容系统600电连接,由于双向电压变换器800可以对由能量管理单元300输入超级电容系统600的电压进行降压,由超级电容系统600输出至能量管理单元300的电压进行升压,能够降低超级电容系统600的电压而又满足整个工程机械能量管理系统的电压,减少串并联的超级电容的数量,由于超级电容价格昂贵,能够降低超级电容系统600成本,进而降低整个工程机械能量管理系统的成本。
需要说明的是,本申请实施例中通过能量管理单元300的各开关对电路通断进行控制的方式仅是实现本申请的一种方式,其余能够实现电路通断的相同或相似原理的控制方式同样适用于本申请实施例。此外,本领域技术人员应当理解,为了实现本申请实施例,锂电池系统400的电量是足够满足与增程器200一同为负载500供电的,具体的,增程器200给锂电池系统400充电的电量大于锂电池系统400释放的电量或在锂电池系统400电量不够时,通过充电装置900为锂电池系统400充电,以确保系统正常运行。
为了更好实施本申请实施例中的工程机械能量管理系统,在工程机械能量管理系统基础之上,本申请实施例中还提供一种工程机械能量管理方法,工程机械能量管理方法应用于中央控制器100,中央控制器100位于工程机械能量管理系统,如图4所示,工程机械能量管理方法包括:
401、控制增程器200按照预设功率为负载500供电,并在供电过程中,检测预设功率和负载500所需功率。
402、当增程器200的预设功率大于负载500所需功率时,控制能量管理单元300导通增程器200与锂电池系统400之间的电路,以使得增程器200为负载500供电的同时为锂电池系统400充电;
当增程器200的预设功率小于负载500所需功率时,控制能量管理单元300同时导通增程器200与负载500之间以及锂电池系统400与负载500之间的电路,以使得增程器200和锂电池系统400同时为负载500供电。
本申请实施例中,将增程器200的预设功率设置在该增程器200的高效节能区,使增程器200以最低能耗最高效率稳定输出。当增程器200的预设功率等于负载500所需功率时,能量管理单元300的第一开关K1闭合,导通增程器200与负载500之间的电路,使得增程器200按照预设功率为负载500提供工作电能。当增程器200的预设功率大于负载500所需功率时,能量管理单元300的第二开关K2闭合,导通增程器200与锂电池系统400之间的电路,以使得增程器200在为负载500供电的同时,将多余的电能供给锂电池系统400,给锂电池系统400充电。当增程器200的预设功率小于负载500所需功率时,能量管理单元300的第二开关K2闭合,增程器200与负载500之间的电路以及锂电池系统400与负载500之间的电路均为导通状态,增程器200为负载500供电的同时,锂电池系统400为负载500补充供电,使负载500能够正常工作。
在本申请一些实施例中,当工程机械减速或制动时,中央控制器100获取到减速指令或制动指令,负载500会产生反向电动势,进而产生回馈能量,负载500的回馈能量通过第二开关K2回收至锂电池系统400。
在本申请一些实施例中,当锂电池系统400的电量达到满电量状态,则中央控制器100获取电量充满指令,电量充满指令用于指示锂电池系统400的电量达到第一预设电量即满电量;根据电量充满指令,中央控制器100控制增程器200停止工作,并控制能量管理单元300的第一开关K1断开增程器200与负载500之间的电路,导通锂电池系统400与负载500之间的电路,以使得锂电池系统400独立为负载500供电。
在本申请一些实施例中,增程器200启动时,中央控制器100获取增程器启动指令;根据该增程器启动指令,控制能量管理单元300的第一开关K1和第二开关K2闭合,导通锂电池系统400与增程器200之间的电路,锂电池系统400通过双向交直流变换器供电给发电机,使发电机作为启动电机带动发动机在短时间内达到所需转速,增程200器启动成功,开始对负载500供电,能够避免发动机启动时的高能耗阶段,节约能源。
在本申请一些实施例中,工程机械能量管理系统还包括单向导通装置700和超级电容系统600,中央控制器100还用于分别控制超级电容系统600和单向导通装置700,超级电容系统600与能量管理单元300电连接,超级电容系统600通过单向导通装置700与锂电池系统400电连接,单向导通装置700的单向导通方向为从超级电容系统600到锂电池系统400的方向,控制增程器200、负载500和锂电池系统400两两之间的电路的通断状态,以使得增程器200为负载500供电的同时为锂电池系统400充电,包括:
控制能量管理单元300同时导通增程器200与超级电容系统600之间的电路以及增程器200与负载500之间的电路,以使得增程器200为负载500供电的同时为超级电容系统600充电,并且当超级电容系统600的电量达到第二预设电量后,控制超级电容系统600通过单向导通装置700将超级电容系统600的电量多于第二预设电量的电量通过单向导通装置700供给锂电池系统400进行充电。
本申请实施例中,超级电容系统600通过能量管理单元300的第三开关K3与负载500电连接,在增程器200为负载500供电的过程中,当增程器200的预设功率大于负载500所需功率时,能量管理单元300的第三开关K3闭合,导通超级电容系统600与增程器200之间的电路,多出来的电能便通过第三开关K3存储于超级电容系统600中。设置超级电容系统600的第二预设电量为满电量,即电量百分比为100%,当超级电容系统600的电量百分比达到100%时,多于的电量便通过单向导通装置700供给锂电池系统400,为锂电池系统400充电。本实施例中的单向导通装置700可以是单向电压(Direct Current-Direct Current,DC-DC)变换器、大功率二极管等能够实现电流单向传输的器件,也可以是能实现升/降压的电流单向传输器件。由于单向导通装置700的存在,电能只能由超级电容系统600流向锂电池系统400,而不能反向流动。
另外,本申请实施例中,当增程器200的预设功率小于负载500所需功率时,能量管理单元300的第三开关同样K3闭合,导通超级电容系统600与负载500之间的电路,使得增程器200与超级电容系统600同时为负载500供电,并且若超级电容系统600和增程器200所提供的功率之和仍然小于负载500所需功率时,能量管理单元300的第二开关K2闭合,导通锂电池系统400与负载500之间的电路,使得锂电池系统400、超级电容系统600和增程器200三者同时为负载500供电。
在本申请一些实施例中,超级电容系统600与负载500之间设置有双向电压变换器800,该双向电压变换器800与中央控制器100通信连接,用于对超级电容系统800的输入电压进行降压,对超级电容系统600的输出电压进行升压。
本申请实施例中,超级电容系统600由多个超级电容单体串并联而成,双向电压变换器800可以实现双向升/降压变换,其可以是由具有升压(BOOST)/降压(BUCK)电路拓扑的升/降压电路或双向升/降压变换器构成。并且本实施例中,单向导通装置700可以是具有单向升压功能的单向电压变换器,也可以是由单向升压(BOOST)电路构成,对由超级电容系统800输入锂电池系统400的电压进行升压。能量管理单元300的第三开关K3通过双向电压变换器800与超级电容系统600电连接,由于双向电压变换器800可以对由能量管理单元300输入超级电容系统600的电压进行降压,由超级电容系统600输出至能量管理单元300的电压进行升压,能够降低超级电容系统600的电压而又满足整个工程机械能量管理系统的电压,减少串并联的超级电容的数量,降低超级电容系统600成本,进而降低整个工程机械能量管理系统的成本。
为了更好实施本申请实施例中的工程机械能量管理方法,在工程机械能量管理方法基础之上,本申请实施例中还提供一种工程机械能量管理装置,工程机械能量管理装置应用于中央控制器100,中央控制器100位于工程机械能量管理系统,如图5所示,工程机械能量管理装置5000包括:
功率检测模块501,用于控制增程器200按照预设功率为负载500供电,并在供电过程中,检测预设功率和负载500所需功率;
供电控制模块502,当预设功率大于负载500所需功率时,控制增程器200、负载500和锂电池系统400两两之间的电路的通断状态,以使得增程器200为负载500供电的同时为锂电池系统400充电;
当预设功率小于负载500所需功率时,控制增程器200、负载500和锂电池系统400两两之间的电路的通断状态,以使得增程器200和锂电池系统400同时为负载500供电。
应当理解,图5所示的装置及其模块可以利用各种方式来实现。例如,在一些实施例中,装置及其模块可以通过硬件、软件或者软件和硬件的结合来实现。其中,硬件部分可以利用专用逻辑来实现;软件部分则可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域技术人员可以理解上述的方法和系统可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本申请的装置及其模块不仅可以有诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用例如由各种类型的处理器所执行的软件实现,还可以由上述硬件电路和软件的结合(例如,固件)来实现。
需要注意的是,以上对于装置及其模块的描述,仅为描述方便,并不能把本申请限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可能在不背离这一原理的情况下,对各个模块进行任意组合,或者构成子系统与其他模块连接。例如,图5中披露的功率检测模块501、供电控制模块502可以是一个系统中的不同模块,也可以是一个模块实现上述的两个或两个以上模块的功能,例如功率检测模块501、供电控制模块502可以是分别具有检测和控制功能的两个模块,也可以是同时具有检测和控制功能的一个模块。
本申请实施例还提供一种工程机械能量管理设备,其集成了本申请实施例所提供的任一种工程机械能量管理装置。如图6所示,其示出了本申请实施例所涉及的设备的结构示意图,具体来讲:
该设备可以包括一个或者一个以上处理核心的处理器601、一个或一个以上计算机可读存储介质的存储器602、电源603和输入单元604等部件。处理器601与中央控制器100相对应,电源603可以用于为中央控制器100、能量管理单元300等提供工作电压。本领域技术人员可以理解,图6中示出的设备结构并不构成对设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
处理器601是该设备的控制中心,利用各种接口和线路连接整个设备的各个部分,通过运行或执行存储在存储器602内的软件程序和/或模块,以及调用存储在存储器602内的数据,执行设备的各种功能和处理数据,从而对设备进行整体监控。可选的,处理器601可包括一个或多个处理核心;处理器601可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,优选的,处理器601可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器601中。
存储器602可用于存储软件程序以及模块,处理器601通过运行存储在存储器602的软件程序以及模块,从而执行各种功能应用以及数据处理。存储器602可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据中央控制器100的使用所创建的数据等。此外,存储器602可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器602还可以包括存储器控制器,以提供处理器601对存储器602的访问。
该设备还包括给各个部件供电的电源603,优选的,电源603可以通过电源管理系统与处理器601逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。电源603还可以包括一个或一个以上的直流或交流电源、再充电系统、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。
该设备还可包括输入单元604,该输入单元604可用于接收输入的数字或字符信息,以及产生与用户设置以及功能控制有关的键盘、鼠标、操作杆、光学或者轨迹球信号输入。
尽管未示出,该设备还可以包括显示单元等,在此不再赘述。具体在本实施例中,设备中的处理器601会按照如下的指令,将一个或一个以上的应用程序的进程对应的可执行文件加载到存储器602中,并由处理器601来运行存储在存储器602中的应用程序,从而实现各种功能,如下:
控制增程器200按照预设功率为负载500供电,并在供电过程中,检测预设功率和负载500所需功率;
当增程器200的预设功率大于负载500所需功率时,控制能量管理单元300导通增程器200与锂电池系统400之间的电路,以使得增程器200同时为负载500和锂电池系统400充电;
当增程器200的预设功率小于负载500所需功率时,控制能量管理单元300同时导通增程器200与负载500之间以及锂电池系统400与负载500之间的电路,以使得增程器200和锂电池系统400同时为负载500供电。
本领域普通技术人员可以理解,上述实施例的各种方法中的全部或部分步骤可以通过指令来完成,或通过指令控制相关的硬件来完成,该指令可以存储于一计算机可读存储介质中,并由处理器进行加载和执行。
为此,本申请实施例提供一种计算机可读存储介质,该存储介质可以包括:只读存储器(Read Only Memory,ROM)、随机存取记忆体(Random Access Memory,RAM)、磁盘或光盘等。其上存储有计算机程序,计算机程序被处理器进行加载,以执行本申请实施例所提供的任一种工程机械能量管理方法中的步骤。例如,计算机程序被处理器进行加载可以执行如下步骤:
控制增程器200按照预设功率为负载500供电,并在供电过程中,检测预设功率和负载500所需功率;
当增程器200的预设功率大于负载500所需功率时,控制能量管理单元300导通增程器200与锂电池系统400之间的电路,以使得增程器200同时为负载500和锂电池系统400充电;
当增程器200的预设功率小于负载500所需功率时,控制能量管理单元300同时导通增程器200与负载500之间以及锂电池系统400与负载500之间的电路,以使得增程器200和锂电池系统400同时为负载500供电。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见上文针对其他实施例的详细描述,此处不再赘述。
具体实施时,以上各个单元或结构可以作为独立的实体来实现,也可以进行任意组合,作为同一或若干个实体来实现,以上各个单元或结构的具体实施可参见前面的实施例,在此不再赘述。
以上对本申请实施例所提供的一种工程机械能量管理系统、方法、装置和存储介质进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种工程机械能量管理系统,其中,所述系统包括中央控制器、增程器、能量管理单元和锂电池系统,所述能量管理单元用于连接负载,所述负载与所述中央控制器通信连接,其中:
    所述中央控制器用于分别控制所述增程器、所述能量管理单元、所述锂电池系统和所述负载的运作;
    所述增程器按照预设功率为所述负载供电,并在供电过程中,当所述预设功率大于所述负载所需功率时,所述增程器为所述负载供电的同时为所述锂电池系统充电;
    当所述预设功率小于所述负载所需功率时,所述锂电池系统和所述增程器同时为所述负载供电;
    所述能量管理单元用于在所述增程器为所述负载供电的同时为所述锂电池系统充电的过程中,或者在所述锂电池系统和所述增程器同时为所述负载供电的过程中,控制所述增程器、所述负载和所述锂电池系统两两之间的电路的通断状态,以完成供电。
  2. 根据权利要求1所述的系统,其中,所述锂电池系统还用于在工程机械制动或减速时,回收所述负载形成的回馈能量。
  3. 根据权利要求1所述的系统,其中,当所述锂电池系统的电量达到第一预设电量时,所述锂电池系统用于单独为所述负载供电。
  4. 根据权利要求1所述的系统,其中,所述锂电池系统还用于在所述增程器启动时,为所述增程器提供启动电能。
  5. 根据权利要求1所述的系统,其中,所述系统还包括超级电容系统和单向导通装置,所述中央控制器还用于分别控制所述超级电容系统和所述单向导通装置,所述超级电容系统与所述能量管理单元电连接,所述超级电容系统通过所述单向导通装置与所述锂电池系统电连接,所述单向导通装置的单向导通方向为从所述超级电容系统到所述锂电池系统的方向,其中:
    当所述预设功率大于所述负载所需功率时,所述能量管理单元同时导通所述增程器与所述超级电容之间的电路、所述增程器与所述负载之间的电路,以使得所述增程器为所述负载供电的同时为所述超级电容系统充电,并且当所述超级电容系统的电量达到第二预设电量后,所述超级电容系统将多于所述第二预设电量的电量通过所述单向导通装置供给所述锂电池系统进行充电;
    当所述预设功率小于所述负载所需功率时,所述能量管理单元同时导通所述超级电容系统与所述负载之间的电路、所述增程器与所述负载之间的电路,以使得所述增程器和所述超级电容系统同时为所述负载供电。
  6. 根据权利要求5所述的系统,其中,所述系统还包括与所述中央控制器通信连接的双向电压变换器,所述双向电压变换器分别与所述超级电容系统和所述能量管理单元电连接,其中:
    所述双向电压变换器用于对所述超级电容系统的输入电压进行降压,对所述超级电容系统的输出电压进行升压。
  7. 一种工程机械能量管理方法,其中,所述方法应用于中央控制器,所述中央控制器位于工程机械能量管理系统,所述工程机械能量管理系统还包括增程器、能量管理单元和锂电池系统,所述能量管理单元用于连接负载,所述负载与所述中央控制器通信连接,所述方法包括:控制所述增程器按照预设功率为所述负载供电,并在供电过程中,检测所述预设功率和所述负载所需功率;
    当所述预设功率大于所述负载所需功率时,控制所述增程器、所述负载和所述锂电池系统两两之间的电路的通断状态,以使得所述增程器为所述负载供电的同时为所述锂电池系统充电;
    当所述预设功率小于所述负载所需功率时,控制所述增程器、所述负载和所述锂电池系统两两之间的电路的通断状态,以使得所述增程器和所述锂电池系统同时为所述负载供电。
  8. 根据权利要求7所述的方法,其中,所述工程机械能量管理系统还包括单向导通装置和超级电容系统,所述中央控制器还用于分别控制所述超级电容系统和所述单向导通装置,所述超级电容系统与所述能量管理单元电连接,所述超级电容系统通过所述单向导通装置与所述锂电池系统电连接,所述单向导通装置的单向导通方向为从所述超级电容系统到所述锂电池系统的方向,所述控制所述增程器、所述负载和所述锂电池系统两两之间的电路的通断状态,以使得所述增程器为所述负载供电的同时为所述锂电池系统充电,包括:
    控制所述能量管理单元同时导通所述增程器与所述超级电容系统之间的电路、所述增程器与所述负载之间的电路,以使得所述增程器为所述负载供电的同时为所述超级电容系统充电,并且当所述超级电容系统的电量达到第二预设电量后,控制所述超级电容系统将所述超级电容系统的电量多于所述第二预设电量的电量通过所述单向导通装置供给所述锂电池系统。
  9. 一种工程机械能量管理装置,其中,包括:
    功率检测模块,用于控制所述增程器按照预设功率为所述负载供电,并在供电过程中,检测所述预设功率和所述负载所需功率;
    供电控制模块,当所述预设功率大于所述负载所需功率时,控制所述增程器、所述负载和所述锂电池系统两两之间的电路的通断状态,以使得所述增程器为所述负载供电的同时为所述锂电池系统充电;
    当所述预设功率小于所述负载所需功率时,控制所述增程器、所述负载和所述锂电池系统两两之间的电路的通断状态,以使得所述增程器和所述锂电池系统同时为所述负载供电。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器进行加载,以执行权利要求7或8任一项所述的工程机械能量管理方法中的步骤。
PCT/CN2021/109042 2020-07-29 2021-07-28 工程机械能量管理系统、方法、装置和存储介质 WO2022022594A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010742299.3A CN114030364A (zh) 2020-07-29 2020-07-29 工程机械能量管理系统、方法、装置和存储介质
CN202010742299.3 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022022594A1 true WO2022022594A1 (zh) 2022-02-03

Family

ID=80037200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109042 WO2022022594A1 (zh) 2020-07-29 2021-07-28 工程机械能量管理系统、方法、装置和存储介质

Country Status (2)

Country Link
CN (1) CN114030364A (zh)
WO (1) WO2022022594A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114560091A (zh) * 2022-03-07 2022-05-31 西北工业大学 一种基于模型预测的多电飞机混合能源能量管理系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102616148A (zh) * 2012-04-20 2012-08-01 北京汽车新能源汽车有限公司 一种增程式电动汽车控制系统及其控制方法
CN108638874A (zh) * 2018-04-09 2018-10-12 浙江吉利控股集团有限公司 一种基于增程式车辆的储能管理系统
CN109177749A (zh) * 2018-09-20 2019-01-11 哈尔滨理工大学 增程式电动客车三能源动力系统及能量管理方法
EP3546276A1 (en) * 2018-03-27 2019-10-02 Kabushiki Kaisha Toyota Jidoshokki Vehicle provided with generator
CN111114530A (zh) * 2019-12-03 2020-05-08 一汽解放汽车有限公司 增程式车辆的能量管理方法、装置、控制器和存储介质
CN212400925U (zh) * 2020-07-29 2021-01-26 四川鼎鸿智电装备科技有限公司 增程式混合动力工程机械能量管理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102616148A (zh) * 2012-04-20 2012-08-01 北京汽车新能源汽车有限公司 一种增程式电动汽车控制系统及其控制方法
EP3546276A1 (en) * 2018-03-27 2019-10-02 Kabushiki Kaisha Toyota Jidoshokki Vehicle provided with generator
CN108638874A (zh) * 2018-04-09 2018-10-12 浙江吉利控股集团有限公司 一种基于增程式车辆的储能管理系统
CN109177749A (zh) * 2018-09-20 2019-01-11 哈尔滨理工大学 增程式电动客车三能源动力系统及能量管理方法
CN111114530A (zh) * 2019-12-03 2020-05-08 一汽解放汽车有限公司 增程式车辆的能量管理方法、装置、控制器和存储介质
CN212400925U (zh) * 2020-07-29 2021-01-26 四川鼎鸿智电装备科技有限公司 增程式混合动力工程机械能量管理系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114560091A (zh) * 2022-03-07 2022-05-31 西北工业大学 一种基于模型预测的多电飞机混合能源能量管理系统及方法
CN114560091B (zh) * 2022-03-07 2024-02-06 西北工业大学 一种基于模型预测的多电飞机混合能源管理系统及方法

Also Published As

Publication number Publication date
CN114030364A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
CN104470842B (zh) 电梯电力管理
US9705357B2 (en) Hybrid electric generator set
CN212400925U (zh) 增程式混合动力工程机械能量管理系统
CN204928358U (zh) 一种间歇性运转持续性供电的柴油发电机节能系统
CN103171452A (zh) 电动车双电源管理系统及方法
WO2018184352A1 (zh) 车辆多能源供给系统及方法、太阳能汽车
CN105262127A (zh) 一种光伏发电混合储能系统的功率自适应控制方法
CN202737555U (zh) 船舶用复合能源装置及设置有复合能源装置的船舶
CN103312004A (zh) 一种通信基站的智能油电混合电源系统
CN115347655B (zh) 一种适用于电动汽车的复合电源能量管理系统
CN201647835U (zh) 混合动力rtg电气系统
CN112072781A (zh) 全水冷永磁同步柴油发电机组应急无缝切换系统及方法
CN109606136B (zh) 一种混合动力能量存储系统及其控制方法、混合动力汽车
TW201620813A (zh) 輪胎式龍門起重機(rtg)雙動力節能系統
JP2017011883A (ja) 燃料電池自動車
CN212400926U (zh) 多动力源工程机械能量管理系统
WO2022022594A1 (zh) 工程机械能量管理系统、方法、装置和存储介质
CN212676951U (zh) 全水冷永磁同步柴油发电机组应急无缝切换系统
JP2014166103A (ja) 電力システム及び燃料電池車両
CN205472296U (zh) 用于以柴油发电机组为动力源的港口提升机械节能系统
CN115473329B (zh) 氢燃料电池备用电源能量管理方法和装置
CN203707864U (zh) 一种新型混合能源48v直流变频发电系统
CN207150225U (zh) 一种基于高电压平台的电梯能量回收系统
CN215907951U (zh) 一种储能型柴油发电机组控制系统
Pancholi et al. Comparative analysis of hybrid electric vehicle FED through DC-DC converter and operated with battery and ultracapacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849724

Country of ref document: EP

Kind code of ref document: A1