WO2022160380A1 - 多级减速挤出机以及3d打印设备 - Google Patents

多级减速挤出机以及3d打印设备 Download PDF

Info

Publication number
WO2022160380A1
WO2022160380A1 PCT/CN2021/076014 CN2021076014W WO2022160380A1 WO 2022160380 A1 WO2022160380 A1 WO 2022160380A1 CN 2021076014 W CN2021076014 W CN 2021076014W WO 2022160380 A1 WO2022160380 A1 WO 2022160380A1
Authority
WO
WIPO (PCT)
Prior art keywords
extrusion
gear
base
extruder
printing
Prior art date
Application number
PCT/CN2021/076014
Other languages
English (en)
French (fr)
Inventor
刘辉林
唐京科
陈春
敖丹军
吴大江
王角
Original Assignee
深圳市创想三维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市创想三维科技有限公司 filed Critical 深圳市创想三维科技有限公司
Publication of WO2022160380A1 publication Critical patent/WO2022160380A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • F16H1/22Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/12Gearings comprising primarily toothed or friction gearing, links or levers, and cams, or members of at least two of these types
    • F16H37/124Gearings comprising primarily toothed or friction gearing, links or levers, and cams, or members of at least two of these types for interconverting rotary motion and reciprocating motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present application relates to the technical field of 3D printing, in particular to a multi-stage deceleration extruder and a 3D printing device.
  • the extruder is often used to convey the printing material to the printing nozzle, and the stability of the extruder conveying the printing material plays a crucial role in the printing quality.
  • the extrusion force of the traditional extruder is too small. In some occasions where high-speed printing is required, the requirements for the extrusion force are also relatively high. If the extrusion force is increased by increasing the spring preload, it will bring planing material. And the risk of material breakage increases the uncertainty of the printing process.
  • the present application provides a multi-stage deceleration extruder and 3D printing equipment, aiming to solve the problem that the stability of the existing extruder in conveying printing materials decreases when the extrusion force is increased, and the extruder is not suitable for proximal and super Problems such as near-end printing.
  • the present application proposes a multi-stage deceleration extruder, which is applied in a 3D printing device, comprising: a base; a drive motor, the drive motor is arranged on one side of the base, and the drive The rotating shaft of the motor passes through the base and is installed with a motor gear; a reduction mechanism, the reduction mechanism includes a double gear and an extrusion gear, and the double gear is linked with the motor gear to perform a first reduction.
  • the extrusion gear includes a driving extrusion gear and a driven extrusion gear linked with the driving extrusion gear, and the driving extrusion gear is linked with the double gear for the second speed reduction; the extrusion mechanism, so
  • the extrusion mechanism includes extrusion rollers coaxially arranged with the extrusion gear, and a feeding channel for conveying printing materials is formed between the extrusion rollers; wherein, when the multi-stage deceleration extruder works,
  • the drive motor drives the speed reduction mechanism and the extrusion mechanism to rotate to convey the printing material.
  • the printing material is extruded through the extrusion roller to increase the extrusion force to improve the stability of conveying the printing material, while reducing the volume and mass of the multi-stage deceleration extruder to achieve near-end or ultra-proximal end Print.
  • the driving extrusion gear and the driven extrusion gear have the same modulus and number of gears, and the extrusion rollers have the same diameter. Based on the design of the structure, the compactness of the structure is improved, and the volume of the multi-stage deceleration extruder is further reduced.
  • the multi-stage deceleration extruder is further provided with a switching component, the driven extrusion gear is mounted on the switching component, and the switching component is used to drive the driven extrusion gear to be opposite to each other.
  • the active extrusion gear moves to switch between the feed position and the feed position. Based on the design of the structure, the feeding operation is convenient and the user experience is improved.
  • the switching assembly includes: a connecting rod, a middle part of the connecting rod is rotatably connected in the base, and the driven extrusion gear is mounted on the first end of the connecting rod; operating A handle, the operating handle is provided with a push portion, the push portion extends into the base and is rotatably connected with the base, and the push portion is also in contact with the second end of the connecting rod; elastic one end of the elastic piece is mounted on the second end of the connecting rod, and the other end of the elastic piece is in contact with the inner side of the side wall of the base; when the operating handle is relative to the base When rotated, the pushing part of the operating handle pushes the connecting rod to rotate relative to the base to make the driven extrusion gear switch between the feeding position and the feeding position.
  • the connecting rod is pushed by the pushing part to rotate with the first bolt as a fulcrum, the structure is simple, and at the same time, it is convenient for the user to operate and improve the user experience by cooperating with the elastic member.
  • the push portion of the operating handle is an eccentric cam structure;
  • the connecting rod is provided with a groove structure matched with the eccentric cam structure, and the eccentric cam structure is rotatably connected to the base and contact with the side wall of the groove structure, the convex point away from the axis can be switched between the first position and the second position when the eccentric cam structure rotates; wherein, the convex point from the first position When moving to the second position, the protruding point moves away from the driven extrusion gear to abut the groove structure, and pushes the connecting rod to rotate relative to the base, so that the driven extrusion gear is driven by the groove structure.
  • the feeding position switches to the feeding position. Based on the design of the structure, the compactness of the structure is improved.
  • the elastic member is a compression spring
  • the base is provided with an adjustment bolt, one end of the adjustment bolt is clamped on the side wall of the base and is located outside the base, and the other end of the adjustment bolt One end is in contact with the inner side of the side wall of the base through a nut
  • the connecting rod is provided with a spring pressing piece, and the adjusting bolt passes through the spring pressing piece and the compression spring and makes the compression spring mounted on the between the spring pressing piece and the nut.
  • the elastic force is provided by the compression spring, the installation method is simple and the cost can be reduced, and the length of the compression spring is adjusted based on the cooperation of the adjusting bolt, the spring pressing piece and the compression spring, and the structure is simple.
  • the multi-stage deceleration extruder is further provided with a roller cleaning brush, and the roller cleaning brush is arranged on one side of the extrusion roller to prevent the contact between the extrusion roller and the printing material surface for cleaning. Based on the design of this structure, it can prevent problems such as the drop of extrusion force caused by debris remaining and the clogging caused by debris entering the printing nozzle, thereby improving the printing quality and improving the safety of the equipment.
  • a cover body is provided on a side of the base away from the driving motor, the cover body is covered with the base, and the roller cleaning brush is mounted on the cover body.
  • an observation window is provided on the cover to observe the conveyance of the printing material.
  • the internal structure of the multi-stage deceleration extruder is protected through the observation window, and the visual operation is increased to improve the user experience.
  • the present application also proposes a 3D printing device, which includes a printing nozzle and a multi-stage deceleration extruder as described above, where the multi-stage deceleration extruder is used to extrude printing materials and deliver them to the printing nozzle for processing. D print. Based on the design of the structure, the printing quality of the device is improved, and near-end or ultra-proximal printing is realized.
  • the multi-stage deceleration extruder Compared with the prior art, the multi-stage deceleration extruder provided by the present application performs the first deceleration through the double gear connected with the motor gear, and performs the second deceleration through the linkage connection with one extrusion gear and the double gear, Then, the extrusion gear is linked and connected to drive the rotation of the extrusion roller coaxially arranged with the extrusion gear, and the extrusion rollers are used to pass through the printing material.
  • the printing material is extruded through the extrusion roller, so as to improve the extrusion force, improve the stability of conveying the printing material, and reduce the volume and quality of the multi-stage deceleration extruder.
  • the quality of the small extruder can also improve the printing accuracy and printing speed of the 3D printer, enabling near-end or ultra-proximal printing.
  • FIG. 1 is a perspective view of the multi-stage deceleration extruder of the application, which shows the structure in which the printing material is installed in the multi-stage deceleration extruder;
  • Fig. 2 is the front sectional view of the multi-stage deceleration extruder shown in Fig. 1;
  • Fig. 3 is a side sectional view of the multi-stage deceleration extruder shown in Fig. 1;
  • FIG. 4 is a perspective view of a drive motor, a deceleration mechanism and an extrusion mechanism in the multi-stage deceleration extruder shown in FIG. 1;
  • Fig. 5 is the front view of the drive motor, the deceleration mechanism and the extrusion mechanism in the multi-stage deceleration extruder shown in Fig. 1;
  • FIG. 6 is a perspective view of the multi-stage deceleration extruder shown in FIG. 1, which shows the structure after removing the cover and the observation window;
  • FIG. 7 is a perspective view of the first bearing, the second bearing and the third bearing in the multi-stage deceleration extruder shown in FIG. 1;
  • FIG. 8 is an exploded view of the multi-stage deceleration extruder shown in FIG. 1, which shows the structure of the multi-stage deceleration extruder installed with the printing material;
  • FIG. 9 is a front view of the switching assembly in the multi-stage deceleration extruder shown in FIG. 1, which shows the state in which the driven extrusion gear is at the feeding position;
  • Fig. 10 is a rear view of the switching assembly in the multi-stage deceleration extruder shown in Fig. 1, which shows the state in which the driven extrusion gear is at the feeding position;
  • Fig. 11 is a front view of the switching assembly in the multi-stage deceleration extruder shown in Fig. 1, which shows the state in which the driven extrusion gear is at the feeding position;
  • Fig. 12 is a rear view of the switching assembly in the multi-stage deceleration extruder shown in Fig. 1, which shows the state in which the driven extrusion gear is at the feeding position;
  • FIG. 13 is another perspective view of the multi-stage deceleration extruder shown in FIG. 1 , showing the structure with the viewing window removed.
  • the application also proposes a 3D printing device (not shown in the figure), which includes a printing nozzle (not shown in the figure) and a multi-stage deceleration extruder 2 , and the printing material 1 is input from the feed end of the multi-stage deceleration extruder 2 , the printing nozzle is installed on the discharge end of the multi-stage deceleration extruder 2 through the quick release structure 11, and the printing material 1 is extruded from the multi-stage deceleration extruder 2 and input into the printing nozzle for 3D printing.
  • FIG. 1 to FIG. 3 show schematic structural diagrams of the multi-stage deceleration extruder 2 proposed in the present application.
  • the multi-stage deceleration extruder 2 shown in FIG. 2 includes: a base 3, a drive motor 4, a deceleration mechanism 5 and an extrusion mechanism 6, wherein the drive motor 4 is arranged on one side of the base 3, and the drive motor 4
  • the rotating shaft of the base 3 passes through the base 3 and is installed with a motor gear 41; as shown in Figures 2 and 4 to 7, the reduction mechanism 5 includes a double gear 51 and an extrusion gear 52, and the double gear 51 is linked with the motor gear 41.
  • the extrusion gear 52 Connected to perform the first deceleration, the extrusion gear 52 includes a driving extrusion gear 521 and a driven extrusion gear 522 linked with the driving extrusion gear 521.
  • the driving extrusion gear 521 is linked with the double gear 51 to perform The second deceleration;
  • the extrusion mechanism 6 includes extrusion rollers 61 coaxially arranged with the extrusion gear 52, and a feeding channel for conveying the printing material 1 in the 3D printing device is formed between the extrusion rollers 61;
  • the drive motor 4 drives the deceleration mechanism 5 and the extrusion mechanism 6 to rotate to transport the printing material 1 .
  • the multi-stage deceleration extruder Compared with the prior art, the multi-stage deceleration extruder provided by the present application performs the first deceleration through the double gear 51 linked with the motor gear 41, and is linked with an extrusion gear 52 and the double gear 51 to perform the first deceleration.
  • the second deceleration is then linked by the extrusion gear 52 to drive the rotation of the extrusion roller 61 coaxially arranged with the extrusion gear 52 , and the feeding channel between the extrusion rollers 61 is used for conveying the printing material 1 .
  • the printing material 1 is extruded through the extrusion roller 61, so as to improve the extrusion force, so as to improve the stability of conveying the printing material 1, and at the same time reduce the volume and quality of the multi-stage deceleration extruder 2 , By reducing the mass of the extruder, it can also improve the printing accuracy and printing speed of the 3D printer, and realize near-end or ultra-proximal printing.
  • the double gear 51 is installed in the base 3 through the first bearing 511 .
  • the double gear 51 is composed of two modules.
  • the one-piece gear structure is formed by coaxially setting up the same gears but with different numbers of gears.
  • the gear with more gears is the first gear 512
  • the gear with less gears is the second gear 513.
  • the number of gears of the gear 512 is greater than that of the motor gear 41, the motor gear 41 and the first gear 512 in the double gear 51 are meshed with each other to realize the linkage connection, and the first gear ratio i1 ⁇ 1 of the first gear 512 and the motor gear 41 , to achieve the first deceleration of the motor speed.
  • the driving extrusion gear 521 and the second gear 513 are meshed with each other to achieve a linkage connection.
  • the number of gears of the driving extrusion gear 521 is greater than that of the second gear 513, and the second transmission ratio i2 between the driving extrusion gear 521 and the second gear 513 is i2. ⁇ 1, the second deceleration of the motor speed is realized.
  • the driving extrusion gear 521 and the driven extrusion gear 522 have the same modulus and number of gears
  • the driven extrusion gear 522 meshes with the driving extrusion gear 521 to realize linkage connection
  • the driven extrusion gear 522 Driven by the driving extruding gear 521 to rotate in the opposite direction at the same rotational speed as the driving extruding gear 521 .
  • the diameters of the extrusion rollers 61 coaxially connected to the driving extrusion gear 521 and the driven extrusion gear 522 are the same.
  • the driving extruding gear 521 and the extruding roller 61 mounted thereon are of an integral structure, and the driven extruding gear 522 and the extruding roller 61 mounted thereon are an integral structure.
  • the extrusion roller 61 is driven to rotate in the opposite direction at the same speed, providing extrusion force for the printing material 1 extruded from between the extrusion rollers 61 and extruding
  • the non-slip stripes provided on the roller 61 are in contact with the printing material 1 to drive the printing material 1 to move, so that the multi-stage deceleration extruder 2 extrudes the printing material 1 .
  • the compactness of the structure is improved, and the volume of the multi-stage deceleration extruder is further reduced.
  • the driving extrusion gear 521 is installed in the base 3 through the second bearing 523 and the second bolt 524 , and the multi-stage deceleration extruder 2 is further provided with a switching assembly 7 , the driven extrusion gear 522 is mounted on the switching component 7 through the third bearing 525 and the third bolt 526, and the switching component 7 is used to drive the driven extrusion gear 522 to move relative to the driving extrusion gear 521 to adjust the driven extrusion
  • the gear 522 switches between the feeding position A for convenient feeding and the feeding position B for the automatic feeding state.
  • 9 to 10 show the state where the driven extrusion gear 522 is at the feeding position A, and FIGS.
  • 11 to 12 show the state where the driven extrusion gear 522 is at the feeding position B.
  • the switching assembly 7 is rotated, so that the driven extrusion gear 522 is at the feeding position A away from the driving extrusion gear 521, the distance between the driving extrusion gear 521 and the driven extrusion gear 522 increases, and the driven extrusion gear 522 is installed in the feeding position A of the driven extrusion gear 521.
  • the distance between the upper extrusion rollers 61 of the gear 521 or the driven extrusion gear 522 is also increased, which is convenient for adding printing material 1 between the extrusion rollers 61 or adjusting the existing printing material 1 between the extrusion rollers 61. status.
  • the switching assembly 7 When the switching assembly 7 is rotated, so that the driven extrusion gear 522 is in the feeding position B close to the driving extrusion gear 521, the distance between the driving extrusion gear 521 and the driven extrusion gear 522 is reduced, and the driven extrusion gear 522 is installed on the driving extrusion gear.
  • the distance between the extrusion rollers 61 on 521 or the driven extrusion gear 522 is also reduced, and the extrusion rollers 61 squeeze the printing material 1 that has been put into it, so that the multi-stage deceleration extruder 2 returns to the automatic feeding state. Based on the design of the structure, the feeding operation is convenient and the user experience is improved.
  • the switch assembly 7 includes a connecting rod 71 .
  • the connecting rod 71 is in the shape of a crankshaft, which saves space while being convenient for stress.
  • the middle of the connecting rod 71 is rotated by a fastener.
  • the switch assembly 7 also includes an operating handle 72, the operating handle 72 is provided with a pushing part, the pushing part extends into the base 3 and Rotatingly connected with the base 3 , the pushing portion also abuts against the second end of the connecting rod 71 .
  • the fastener is the first bolt 73
  • the middle of the connecting rod 71 is provided with a through hole 74 for passing through the first bolt 73
  • the connecting rod 71 is rotatably connected to the base 3 through the first bolt 73
  • the connecting rod 71 can be rotated about the first bolt 73 as a fulcrum.
  • the pushing portion of the operating handle 72 is installed in the base 3 through a pin 75 and is rotatably connected with the base 3 .
  • the switch assembly 7 further includes an elastic member 76 , one end of the elastic member 76 is mounted on the second end of the connecting rod 71 , and the other end of the elastic member 76 abuts against the inner side of the side wall of the base 3 .
  • the pushing portion of the operating handle 72 pushes the connecting rod 71 to rotate relative to the base 3 to make the driven extrusion gear 522 switch between the feeding position and the feeding position.
  • An elastic piece 76 is installed on the second end of the 2 , the elastic piece 76 provides elastic force for the rotation of the connecting rod 71, and the elastic piece 76 makes the driven extrusion gear 522 switch between the feeding position and the feeding position, the driven extrusion
  • the gear 522 can be firmly in the feed position or feed position without requiring the user to keep pressing the operating handle 72 .
  • the connecting rod 71 is pushed by the pushing portion to rotate with the first bolt 73 as a fulcrum, the structure is simple, and the cooperation with the elastic member facilitates user operation and improves user experience.
  • the pushing portion of the operating handle 72 is an eccentric cam structure 721
  • the connecting rod 71 is provided with a groove structure 711 matched with the eccentric cam structure 721
  • the eccentric cam structure 721 rotates
  • the eccentric cam structure 721 is connected to the base 3 and is in contact with the side wall of the groove structure 71 .
  • the eccentric cam structure 721 rotates, its convex point away from the axis can be switched between the first position and the second position.
  • the first position is the position where the bump abuts the sidewall of the groove structure 711 away from the end of the driven extrusion gear 522
  • the second position is the position where the bump abuts the sidewall of the middle of the groove structure 711 .
  • the end of the connecting rod 71 on which the driven extrusion gear 522 is installed moves to the direction away from the driving extrusion gear 521, from The distance between the driving extrusion gear 522 and the driving extrusion gear 521 increases, which facilitates adding the printing material 1 between the extrusion rollers 61 or adjusting the state of the existing printing material 1 between the extrusion rollers 61 .
  • the length of the elastic member 76 becomes longer.
  • the end of the connecting rod 71 on which the driven extrusion gear 522 is installed moves toward the end close to the driving extrusion gear 521.
  • the distance between the driven extrusion gear 522 and the driving extrusion gear 521 becomes smaller, and the extrusion roller 61 squeezes the printing material 1 put into it, so that the multi-stage deceleration extruder 2 returns to the automatic feeding state.
  • the compactness of the structure is improved.
  • the elastic member 76 is a compression spring.
  • the elastic member 76 is a compression spring.
  • the nut 771 is a square nut, and the square nut makes the adjusting bolt 77 more stably installed in the base 3;
  • the connecting rod 71 is provided with a spring pressing piece 712, and the adjusting bolt 77 passes through the spring pressing piece 712 and the compression spring so that the compression spring is installed between the spring pressing piece 712 and the nut 771 .
  • the connecting rod 71 rotates to drive the spring pressing piece 712 to squeeze the compression spring, and the length of the compression spring is shortened; when the operating handle 72 is pressed so that the convex point is in the second position, the connecting rod 71 The rotation drives the spring pressing piece 712 to stretch the compression spring, and the length of the compression spring becomes longer.
  • the elastic force is provided by the compression spring, the installation method is simple, and the cost can be reduced.
  • the multi-stage deceleration extruder 2 is further provided with a roller cleaning brush 8 .
  • the scraps remaining on the extrusion roller 61 after the multi-stage deceleration extruder 2 has been operated for a long time can be removed by the roller cleaning brush 8, which can prevent the reduction of the extrusion force caused by the residual scraps.
  • the printing quality is improved and the safety of the equipment is improved.
  • a cover body 9 is provided on the side of the base 3 away from the driving motor 4 , and the cover body 9 is covered with the base 3 by mounting bolts 91 , and the rollers are cleaned.
  • the brush 8 is mounted on the cover body 9 .
  • two roller cleaning brushes 8 are provided, and the cover body 9 is provided with mounting holes 92 , and one of the roller cleaning brushes is installed in the mounting hole 92 on the cover body 9 through the fourth bolt 81 and the fourth bearing 82 , used to clean the extrusion roller 61 installed on the driven extrusion gear 522 , a protruding shaft 514 is provided in the axial direction of the double gear 51 , and another roller cleaning brush is installed on the protruding shaft of the double gear 51 514 , the protruding shaft 514 abuts in the other mounting hole 92 for cleaning the extrusion roller 61 mounted on the driving extrusion gear 521 . Based on the design of the structure, the stability of the installation of the double gear 51 is improved, and the compactness of the structure is improved.
  • the cover body 9 is provided with an observation window 93 for observation.
  • the observation window 93 is made of glass or other light-transmitting material, and the observation window 93 is fastened to the cover body. 9 to protect the internal structure of the multi-stage deceleration extruder 2, and at the same time, it is convenient for the user to observe the conveying situation of the printing material 1 in real time through the observation window 93, so as to increase the visual operation and improve the user experience.
  • the base 3 is provided with a feeding connecting rod 31 , one end of the feeding connecting rod 31 is fixed in the base 3 , and the other end of the feeding connecting rod 31 extends Between the driving extrusion gear 521 and the driven extrusion gear 522 , the feeding connecting rod 31 is provided with a long straight channel 32 , and the input disc-shaped printing material 1 is input from the end of the feeding connecting rod 31 to The linear input is between the extrusion rollers 61 to improve the stability of the multi-stage deceleration extruder 2 extruding the printing material 1 .
  • the feeding connecting rod 31 is used to input the end of the printing material 1 and is clamped with a detachable feeding guide tube 33.
  • the multi-stage deceleration extruder 2 performs the first deceleration through the double gear 51 linked with the motor gear 41, The gears 51 are linked to perform the second deceleration, and then the extrusion gears 52 are linked to drive the extrusion rollers 61 coaxially arranged with the extrusion gears 52 to rotate.
  • the extrusion rollers 61 are used to pass through the printing material 1 .
  • the printing material 1 is extruded through the extrusion roller 61, so as to improve the extrusion force, improve the stability of conveying the printing material 1, and reduce the volume and quality of the multi-stage deceleration extruder 2.
  • the printing accuracy and printing speed of the 3D printer can also be improved, enabling near-end or ultra-proximal printing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

一种多级减速挤出机以及3D打印设备,涉及3D打印技术领域。多级减速挤出机包括基座、驱动电机、减速机构以及挤出机构;其中,减速机构包括双联齿轮以及挤出齿轮,双联齿轮与驱动电机的电机齿轮联动连接以进行第一减速,挤出齿轮包括主动挤出齿轮和与主动挤出齿轮联动连接的从动挤出齿轮,主动挤出齿轮与双联齿轮联动连接以进行第二减速;挤出机构包括与挤出齿轮同轴设置的挤出滚轮,挤出滚轮之间形成用于输送打印物料的送料通道;当驱动电机工作时,驱动电机驱动减速机构以及挤出机构转动用以输送打印物料。

Description

多级减速挤出机以及3D打印设备 技术领域
本申请涉及3D打印技术领域,具体是涉及一种多级减速挤出机以及3D打印设备。
背景技术
在计算机数字技术智能化的推动下,3D打印技术应用的领域越来越广,其中通过熔融沉积成型法(Fused Deposition Modeling,FDM)来进行3D打印的技术越来越受到DIY爱好者的青睐。在3D打印的技术中,常通过挤出机为打印喷头输送打印物料,挤出机输送打印物料的稳定性对打印质量起到了至关重要的作用。传统的挤出机挤出力偏小,在一些需要高速打印的场合,对挤出力的要求也比较高,如果通过增加弹簧预压力的方式来增大挤出力,又会带来刨料和断料的风险,增加了打印过程的不确定性。另外,在3D打印过程中,常用到近端和超近端打印,因此对3D打印设备的小型化要求日益提升,然而传统的挤出机由于体积大、重量大,导致3D打印设备负载过大,不适合进行近端和超近端打印。
鉴于此,有必要提供一种多级减速挤出机以及3D打印设备以解决上述缺陷。
发明内容
本申请提供了一种多级减速挤出机以及3D打印设备,旨在解 决现有挤出机在增加挤出力时输送打印物料的稳定性下降,以及挤出机不适合进行近端和超近端打印等问题。
为了解决上述技术问题,本申请提出了一种多级减速挤出机,应用于D打印设备中,其包括:基座;驱动电机,所述驱动电机设于基座的一侧,所述驱动电机的转动轴穿过基座且安装有电机齿轮;减速机构,所述减速机构包括双联齿轮以及挤出齿轮,所述双联齿轮与所述电机齿轮联动连接以进行第一减速,所述挤出齿轮包括主动挤出齿轮和与所述主动挤出齿轮联动连接的从动挤出齿轮,所述主动挤出齿轮与所述双联齿轮联动连接以进行第二减速;挤出机构,所述挤出机构包括与所述挤出齿轮同轴设置的挤出滚轮,所述挤出滚轮之间形成用于输送打印物料的送料通道;其中,当所述多级减速挤出机工作时,所述驱动电机驱动所述减速机构以及所述挤出机构转动以输送所述打印物料。基于该结构的设计,通过挤出滚轮挤出打印物料,实现提高挤出力,以提高输送打印物料的稳定性,同时降低多级减速挤出机的体积和质量,实现近端或超近端打印。
在进一步的方案中,所述主动挤出齿轮与所述从动挤出齿轮具有相同的模数和齿轮数,所述挤出滚轮具有相同的直径。基于该结构的设计,提升结构的紧凑性,进一步降低多级减速挤出机的体积。
在进一步的方案中,所述多级减速挤出机还设有切换组件,所述从动挤出齿轮安装于所述切换组件上,所述切换组件用于驱动所述从动挤出齿轮相对所述主动挤出齿轮移动,以在进料位置和送料位置之间切换。基于该结构的设计,便于进行进料操作,提升用户体验。
在进一步的方案中,所述切换组件包括:连接杆,所述连接杆的中部转动连接于所述基座内,所述从动挤出齿轮安装于所述连接杆的第一端部;操作手柄,所述操作手柄设有推动部,所述推动部伸入所述基座内且与所述基座转动连接,所述推动部还与所述连接杆的第二端部相抵接;弹性件,所述弹性件的一端安装于所述连接杆的第二端部,所述弹性件的另一端与所述基座的侧壁内侧抵接;当所述操作手柄相对于所述基座转动,所述操作手柄的所述推动部推动所述连接杆相对所述基座转动以使所述从动挤出齿轮在所述进料位置和所述送料位置之间切换。基于该结构的设计,通过推动部推动连接杆以第一螺栓为支点转动,结构简单,同时通过与弹性件的配合,便于用户操作,提升用户体验。
在进一步的方案中,所述操作手柄的推动部为偏心凸轮结构;所述连接杆设有与所述偏心凸轮结构相配合的凹槽结构,所述偏心凸轮结构转动连接于所述基座上并与所述凹槽结构的侧壁抵接,所述偏心凸轮结构转动时其远离轴心的凸点可于第一位置和第二位置之间切换;其中,所述凸点从第一位置移动到第二位置时,所述凸点朝远离从动挤出齿轮的方向移动而抵接凹槽结构,推动所述连接杆相对所述基座转动,从而使所述从动挤出齿轮由送料位置切换至进料位置。基于该结构的设计,提升结构的紧凑性。
在进一步的方案中,所述弹性件为压缩弹簧;所述基座内设有调节螺栓,调节螺栓的一端卡置于所述基座的侧壁上并位于基座的外侧,调节螺栓的另一端通过螺母与所述基座的侧壁内侧抵接;所述连接杆上设有弹簧压片,所述调节螺栓穿过所述弹簧压片和所述 压缩弹簧并使得所述压缩弹簧安装于所述弹簧压片和所述螺母之间。由压缩弹簧提供弹性力,安装方式简单且可降低成本,且基于调节螺栓、弹簧压片与压缩弹簧的配合来调整压缩弹簧的长度,结构简单。
在进一步的方案中,所述多级减速挤出机还设有滚轮清洁刷,所述滚轮清洁刷设于所述挤出滚轮的一侧以对所述挤出滚轮与所述打印物料的接触面进行清洁。基于该结构的设计,可防止出现因碎屑残留而造成的挤出力下降,以及碎屑进入打印喷头造成堵头等问题,提升打印质量,提高设备的安全性。
在进一步的方案中,所述基座远离所述驱动电机的一侧设有盖体,所述盖体与所述基座相盖合,所述滚轮清洁刷安装于所述盖体上。基于该结构的设计,提升双联齿轮安装的稳固性,提升结构的紧凑性。
在进一步的方案中,所述盖体上设有观察窗以观察所述打印物料的输送情况。通过观察窗以对多级减速挤出机的内部结构进行保护,同时增加可视化操作,提升用户体验。
本申请还提出了一种D打印设备,其包括打印喷头以及如上所述的多级减速挤出机,所述多级减速挤出机用于挤出打印物料并输送至所述打印喷头以进行D打印。基于该结构的设计,提升设备的打印质量,实现近端或超近端打印。
与现有技术相比,本申请提供的多级减速挤出机通过与电机齿轮联动连接的双联齿轮进行第一减速,通过与一个挤出齿轮与双联齿轮联动连接以进行第二减速,再通过所述挤出齿轮联动连接以带 动与所述挤出齿轮同轴设置的挤出滚轮的转动,所述挤出滚轮之间用以穿过打印物料。通过对电机的转速进行两级减速,通过所述挤出滚轮挤出打印物料,实现提高挤出力,提高输送打印物料的稳定性,同时降低多级减速挤出机的体积和质量,通过减小挤出机的质量还能提高3D打印机的打印精度和打印速度,实现近端或超近端打印。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的多级减速挤出机的立体图,其展示了多级减速挤出机中安装了打印物料的结构;
图2为图1所示的多级减速挤出机的主视剖面图;
图3为图1所示的多级减速挤出机的侧视剖面图;
图4为图1所示的多级减速挤出机中的驱动电机、减速机构以及挤出机构的立体图;
图5为图1所示的多级减速挤出机中的驱动电机、减速机构以及挤出机构的主视图;
图6为图1所示的多级减速挤出机的立体图,其展示了移除盖体以及观察窗后的结构;
图7为图1所示的多级减速挤出机中的第一轴承、第二轴承以及第三轴承的立体图;
图8为图1所示的多级减速挤出机的爆炸图,其展示了多级减速挤出机中安装了打印物料的结构;
图9为图1所示的多级减速挤出机中的切换组件的主视图,其展示了从动挤出齿轮处于进料位置处的状态;
图10为图1所示的多级减速挤出机中的切换组件的后视图,其展示了从动挤出齿轮处于进料位置处的状态;
图11为图1所示的多级减速挤出机中的切换组件的主视图,其展示了从动挤出齿轮处于送料位置处的状态;
图12为图1所示的多级减速挤出机中的切换组件的后视图,其展示了从动挤出齿轮处于送料位置处的状态;
图13为图1所示的多级减速挤出机的另一立体图,其展示了移除观察窗后的结构。
主要元件符号说明
打印物料                          1
多级减速挤出机                    2
基座                              3
驱动电机                          4
减速机构                          5
挤出机构                          6
切换组件                          7
滚轮清洁刷                       8
盖体                             9
快拆结构                         11
进料连接杆                       31
槽道                             32
进料导料管                       33
电机齿轮                         41
双联齿轮                         51
第一轴承                         511
第一齿轮                         512
第二齿轮                         513
凸出轴                           514
挤出齿轮                         52
主动挤出齿轮                     521
从动挤出齿轮                     522
第二轴承                         523
第二螺栓                         524
第三轴承                         525
第三螺栓                         526
挤出滚轮                         61
连接杆                           71
凹槽结构                         711
弹簧压片                         712
操作手柄                          72
偏心凸轮结构                      721
第一螺栓                          73
通孔                              74
销轴                              75
弹性件                            76
调节螺栓                          77
螺母                              771
第四螺栓                          81
第四轴承                          82
安装螺栓                          91
安装孔                            92
观察窗                            93
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请所提到的方向用语,例如「上」、「下」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。此外,在附图中,结构相似或相同的结构是 以相同标号表示。
本申请还提出了一种3D打印设备(图未示),其包括打印喷头(图未示)以及多级减速挤出机2,打印物料1于多级减速挤出机2的进料端输入,打印喷头通过快拆结构11安装于多级减速挤出机2的出料端,打印物料1从多级减速挤出机2中挤出并输入至打印喷头中用于进行3D打印。
具体地,请参阅图1至图3,其展示了本申请提出的多级减速挤出机2的结构示意图。如图2所示的多级减速挤出机2,其包括:基座3、驱动电机4、减速机构5以及挤出机构6,其中;驱动电机4设于基座3一侧,驱动电机4的转动轴穿过基座3且安装有电机齿轮41;如图2以及图4至图7所示,减速机构5包括双联齿轮51以及挤出齿轮52,双联齿轮51与电机齿轮41联动连接以进行第一减速,所述挤出齿轮52包括主动挤出齿轮521和与主动挤出齿轮521联动连接的从动挤出齿轮522,主动挤出齿轮521与双联齿轮51联动连接以进行第二减速;挤出机构6包括与挤出齿轮52同轴设置的挤出滚轮61,挤出滚轮61之间形成用于输送3D打印设备中的打印物料1的送料通道;其中,当多级减速挤出机2工作时,驱动电机4驱动减速机构5以及挤出机构6转动用以输送打印物料1。
与现有技术相比,本申请提供的多级减速挤出机通过与电机齿轮41联动连接的双联齿轮51进行第一减速,通过与一个挤出齿轮52与双联齿轮51联动连接以进行第二减速,再通过挤出齿轮52联动连接以带动与挤出齿轮52同轴设置的挤出滚轮61的转动,挤出 滚轮61之间的送料通道用以输送打印物料1。通过对电机的转速进行两级减速,通过挤出滚轮61挤出打印物料1,实现提高挤出力,以提高输送打印物料1的稳定性,同时降低多级减速挤出机2的体积和质量,通过减小挤出机的质量还能提高3D打印机的打印精度和打印速度,实现近端或超近端打印。
在本实施例中,如图6至图7所示,双联齿轮51通过第一轴承511安装于基座3内,如图4至图7所示,双联齿轮51为由两个模数相同但齿轮数不同的齿轮同轴设立而形成的一体式齿轮结构,其中双联齿轮51中齿轮数较多的齿轮为第一齿轮512,齿轮数较少的齿轮为第二齿轮513,第一齿轮512的齿轮数大于电机齿轮41的齿轮数,电机齿轮41与双联齿轮51中的第一齿轮512相互啮合而实现联动连接,第一齿轮512与电机齿轮41的第一传动比i1<1,实现对电机转速的第一减速。主动挤出齿轮521与第二齿轮513相互啮合而实现联动连接,主动挤出齿轮521的齿轮数大于第二齿轮513的齿轮数,主动挤出齿轮521与第二齿轮513的第二传动比i2<1,实现对电机转速的第二减速。在本实施例中,主动挤出齿轮521与从动挤出齿轮522具有相同模数和齿轮数,从动挤出齿轮522与主动挤出齿轮521啮合而实现联动连接,从动挤出齿轮522受主动挤出齿轮521驱动而与主动挤出齿轮521以相同转速沿相反方向转动。分别与主动挤出齿轮521与从动挤出齿轮522同轴连接的挤出滚轮61的直径相同,在本实施例中挤出滚轮61有两个,挤出滚轮61上均设有防滑条纹,主动挤出齿轮521与安装于其上的挤出滚轮61为一体式结构,从动挤出齿轮522与安装于其上的挤出滚轮61为一 体式结构。当从动挤出齿轮522与主动挤出齿轮521转动,带动挤出滚轮61以相同转速沿相反方向转动,为从挤出滚轮61之间挤出的打印物料1提供挤出力,并且挤出滚轮61上设有的防滑条纹与打印物料1接触而带动打印物料1移动,使得多级减速挤出机2挤出打印物料1。基于该结构的设计,提升结构的紧凑性,进一步降低多级减速挤出机的体积。
在本实施例中,如图7及图8所示,主动挤出齿轮521通过第二轴承523以及第二螺栓524安装于基座3内,多级减速挤出机2还设有切换组件7,从动挤出齿轮522通过第三轴承525以及第三螺栓526安装于切换组件7上,切换组件7用于驱动从动挤出齿轮522相对主动挤出齿轮521移动,以调节从动挤出齿轮522在方便进料的进料位置A和自动送料状态的送料位置B之间切换。图9至图10展示了从动挤出齿轮522处于进料位置A的状态,图11至图12展示了从动挤出齿轮522处于送料位置B的状态。当转动切换组件7,使得从动挤出齿轮522处于远离主动挤出齿轮521的进料位置A,主动挤出齿轮521和从动挤出齿轮522之间的距离增大,安装于主动挤出齿轮521或从动挤出齿轮522上个挤出滚轮61之间的距离也增大,便于在挤出滚轮61之间加入打印物料1或是便于调整挤出滚轮61之间已有打印物料1的状态。当转动切换组件7,使得从动挤出齿轮522处于靠近主动挤出齿轮521的送料位置B,主动挤出齿轮521和从动挤出齿轮522之间的距离减小,安装于主动挤出齿轮521或从动挤出齿轮522上个挤出滚轮61之间的距离也减小,挤出滚轮61挤压已放入其中的打印物料1,使得多级减速挤出 机2恢复自动送料状态。基于该结构的设计,便于进行进料操作,提升用户体验。
在本实施例中,如图6至图12所示,切换组件7包括连接杆71,连接杆71为曲轴状,在方便受力的同时更加节省空间,连接杆71的中部通过紧固件转动连接于基座3内,从动挤出齿轮522安装于连接杆71的第一端部,切换组件7还包括操作手柄72,操作手柄72设有一推动部,推动部伸入基座3内且与基座3转动连接,推动部还与连接杆71的第二端部相抵接。在本实施例中,紧固件为第一螺栓73,连接杆71的中部设有用于穿过第一螺栓73的通孔74,连接杆71通过第一螺栓73转动连接于基座3内,连接杆71可以以第一螺栓73为支点转动。操作手柄72的推动部通过销轴75安装于基座3上内且与基座3转动连接。切换组件7还包括弹性件76,弹性件76的一端安装于连接杆71的第二端部,弹性件76的另一端与基座3的侧壁内侧抵接。当操作手柄72相对于基座3转动,操作手柄72的推动部推动连接杆71相对基座3转动以使从动挤出齿轮522在进料位置和送料位置之间切换,同时由于连接杆71的第二端部安装有弹性件76,弹性件76为连接杆71的转动提供弹力,弹性件76使得当从动挤出齿轮522在进料位置和送料位置之间切换时,从动挤出齿轮522可以稳固处于进料位置或送料位置而不需要用户一直按压操作手柄72。基于该结构的设计,通过推动部推动连接杆71以第一螺栓73为支点转动,结构简单,同时通过与弹性件的配合,便于用户操作,提升用户体验。
在本实施例中,如图6至图12所示,操作手柄72的推动部为 偏心凸轮结构721,连接杆71设有与偏心凸轮结构721相配合的凹槽结构711,偏心凸轮结构721转动连接于基座3上并与凹槽结构71的侧壁抵接,偏心凸轮结构721转动时其远离轴心的凸点可于第一位置和第二位置之间切换。其中,第一位置为凸点抵接凹槽结构711的远离从动挤出齿轮522的末端的侧壁的位置,第二位置为凸点抵接凹槽结构711的中部的侧壁的位置。当按压操作手柄72使得凸点处于第一位置,由于偏心凸轮结构推动连接杆71的远离从动挤出齿轮522的一端向靠近主动挤出齿轮521的一侧转动,此时弹性件76长度变短,由于连接杆71的中部转动连接于基座3上,以第一螺栓73为支点,连接杆71上安装了从动挤出齿轮522的一端向远离主动挤出齿轮521的方向移动,从动挤出齿轮522与主动挤出齿轮521之间的距离变大,便于在挤出滚轮61之间加入打印物料1或是便于挤出滚轮61之间已有打印物料1的状态进行调整。当按压操作手柄72使得凸点处于第二位置,弹性件76长度变长,以第一螺栓73为支点,连接杆71上安装了从动挤出齿轮522的一端向靠近主动挤出齿轮521的方向移动,从动挤出齿轮522与主动挤出齿轮521之间的距离变小,挤出滚轮61挤压已放入其中的打印物料1,使得多级减速挤出机2恢复自动送料状态。基于该结构的设计,提升结构的紧凑性。
在本实施例中,如图6至图12所示,弹性件76为压缩弹簧。基座3内设有调节螺栓77,调节螺栓77的一端卡置于基座3的侧壁上并位于基座3的外侧,调节螺栓77的另一端通过螺母771与基座3的侧壁内侧抵接,在本实施例中,螺母771为方形螺母,方形 螺母使得调节螺栓77更加稳固地安装于基座3内;连接杆71上设有弹簧压片712,调节螺栓77穿过弹簧压片712和压缩弹簧并使得压缩弹簧安装于弹簧压片712和螺母771之间。当按压操作手柄72使得凸点处于第一位置,连接杆71转动而带动弹簧压片712挤压压缩弹簧,压缩弹簧长度变短;当按压操作手柄72使得凸点处于第二位置,连接杆71转动而带动弹簧压片712拉伸压缩弹簧,压缩弹簧长度变长。由压缩弹簧提供弹性力,安装方式简单且可降低成本,基于调节螺栓77、弹簧压片712与压缩弹簧的配合来调整压缩弹簧的长度,结构简单。
在本实施例中,如图6以及图8所示,多级减速挤出机2还设有滚轮清洁刷8,滚轮清洁刷8设于挤出滚轮61的一侧以对挤出滚轮61与打印物料1的接触面进行清洁。基于该结构的设计,通过滚轮清洁刷8对多级减速挤出机2长时间工作后挤出滚轮61上残留的碎屑进行清除,可防止出现因碎屑残留而造成的挤出力下降,以及碎屑进入打印喷头造成堵头等问题,提升打印质量,提高设备的安全性。
在本实施例中,如图6、图8以及图13所示,基座3远离驱动电机4的一侧设有盖体9,盖体9通过安装螺栓91与基座3盖合,滚轮清洁刷8安装于盖体9上。在本实施例中设有两个滚轮清洁刷8,盖体9上设有安装孔92,其中一个滚轮清洁刷通过第四螺栓81以及第四轴承82安装于盖体9上的安装孔92内,用于对安装于从动挤出齿轮522上的挤出滚轮61进行清洁,双联齿轮51的轴向设有凸出轴514,另一个滚轮清洁刷安装于双联齿轮51的凸出轴514 上,凸出轴514抵接于另一安装孔92内,用于对安装于主动挤出齿轮521的挤出滚轮61进行清洁。基于该结构的设计,提升双联齿轮51安装的稳固性,提升结构的紧凑性。
在本实施例中,如图1及图8所示,盖体9上设有用于观察的观察窗93,观察窗93由玻璃或其他可透光的材质构成,观察窗93扣合于盖体9以对多级减速挤出机2的内部结构进行保护,同时便于用户通过观察窗93实时观察打印物料1的输送情况,增加可视化操作,提升用户体验。
在本实施例中,如图7至图8所示,基座3内设有进料连接杆31,进料连接杆31的一端固定于基座3内,进料连接杆31的另一端延伸至主动挤出齿轮521和从动挤出齿轮522之间,进料连接杆31内设有长直形槽道32,输入的盘状打印物料1从进料连接杆31的端部输入后以直线形输入挤出滚轮61之间,提高多级减速挤出机2挤出打印物料1的稳定性。另外进料连接杆31用于输入打印物料1的端部卡置以可拆卸的进料导料管33,当将打印物料1的端部穿过进料导料管33并将进料导料管33卡置于进料连接杆31上,推动打印物料1的端部穿过进料导料管33和长直形槽道32并位于挤出滚轮61之间,便于用户进行进料操作,提升用户体验。
本申请提供的多级减速挤出机以及3D打印设备,其中多级减速挤出机2通过与电机齿轮41联动连接的双联齿轮51进行第一减速,通过与一个挤出齿轮52与双联齿轮51联动连接以进行第二减速,再通过挤出齿轮52联动连接以带动与挤出齿轮52同轴设置的挤出滚轮61的转动,挤出滚轮61之间用以穿过打印物料1。通过 对电机的转速进行两级减速,通过挤出滚轮61挤出打印物料1,实现提高挤出力,提高输送打印物料1的稳定性,同时降低多级减速挤出机2的体积和质量,通过减小挤出机的质量还能提高3D打印机的打印精度和打印速度,实现近端或超近端打印。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种多级减速挤出机,应用于3D打印设备中,其特征在于,包括:
    基座(3);
    驱动电机(4),所述驱动电机(4)设于基座(3)一侧,所述驱动电机(4)的转动轴穿过基座(3)且安装有电机齿轮(41);
    减速机构(5),所述减速机构(5)包括双联齿轮(51)以及挤出齿轮(52),所述双联齿轮(51)与所述电机齿轮(41)联动连接以进行第一减速,所述挤出齿轮(52)包括主动挤出齿轮(521)和与所述主动挤出齿轮(521)联动连接的从动挤出齿轮(522),所述主动挤出齿轮(521)与所述双联齿轮(51)联动连接以进行第二减速;以及
    挤出机构(6),所述挤出机构(6)包括与所述挤出齿轮(52)同轴设置的挤出滚轮(61),所述挤出滚轮(61)之间形成用于输送打印物料(1)的送料通道;其中,当所述多级减速挤出机(2)工作时,所述驱动电机(4)驱动所述减速机构(5)以及所述挤出机构(6)转动以输送所述打印物料(1)。
  2. 根据权利要求1所述的多级减速挤出机,其特征在于:所述主动挤出齿轮(521)与所述从动挤出齿轮(522)具有相同的模数和齿轮数,所述挤出滚轮(61)具有相同的直径。
  3. 根据权利要求1所述的多级减速挤出机,其特征在于:所述多级减速挤出机还设有切换组件(7),所述从动挤出齿轮(522)安装于所述切换组件(7)上,所述切换组件(7)用于驱动所述从动 挤出齿轮(522)相对所述主动挤出齿轮(521)移动,以在进料位置和送料位置之间切换。
  4. 根据权利要求3所述的多级减速挤出机,其特征在于:所述切换组件(7)包括:
    连接杆(71),所述连接杆(71)的中部转动连接于所述基座(3)内,所述从动挤出齿轮(522)安装于所述连接杆(71)的第一端部;
    操作手柄(72),所述操作手柄(72)设有推动部,所述推动部伸入所述基座(3)内且与所述基座(3)转动连接,所述推动部还与所述连接杆(71)的第二端部相抵接;
    弹性件(76),所述弹性件(76)的一端安装于所述连接杆(71)的第二端部,所述弹性件(76)的另一端与所述基座(3)的侧壁内侧抵接;
    当所述操作手柄(72)相对于所述基座(3)转动,所述操作手柄(72)的所述推动部推动所述连接杆(71)相对所述基座(3)转动以使所述从动挤出齿轮(522)在所述进料位置和所述送料位置之间切换。
  5. 根据权利要求4所述的多级减速挤出机,其特征在于:
    所述操作手柄(72)的推动部为偏心凸轮结构(721);
    所述连接杆(71)设有与所述偏心凸轮结构(721)相配合的凹槽结构(711),所述偏心凸轮结构(721)转动连接于所述基座(3)上并与所述凹槽结构(711)的侧壁抵接,所述偏心凸轮结构(721)转动时其远离轴心的凸点可于第一位置和第二位置之间切换;
    其中,所述凸点从第一位置移动到第二位置时,所述凸点朝远 离从动挤出齿轮(522)的方向移动而抵接凹槽结构(711),推动所述连接杆(71)相对所述基座(3)转动,从而使所述从动挤出齿轮(522)由送料位置切换至进料位置。
  6. 根据权利要求5所述的多级减速挤出机,其特征在于:
    所述弹性件(76)为压缩弹簧;
    所述基座(3)内设有调节螺栓(77),调节螺栓(77)的一端卡置于所述基座(3)的侧壁上并位于基座(3)的外侧,调节螺栓(77)的另一端通过螺母(771)与所述基座(3)的侧壁内侧抵接;
    所述连接杆(71)上设有弹簧压片(712),所述调节螺栓(77)穿过所述弹簧压片(712)和所述压缩弹簧并使得所述压缩弹簧安装于所述弹簧压片(712)和所述螺母(771)之间。
  7. 根据权利要求1所述的多级减速挤出机,其特征在于:所述多级减速挤出机还设有滚轮清洁刷(8),所述滚轮清洁刷(8)设于所述挤出滚轮(61)的一侧以对所述挤出滚轮(61)与所述打印物料(1)的接触面进行清洁。
  8. 根据权利要求7所述的多级减速挤出机,其特征在于:
    所述基座(3)远离所述驱动电机(4)的一侧设有盖体(9),所述盖体(9)与所述基座(3)相盖合,所述滚轮清洁刷(8)安装于所述盖体(9)上。
  9. 根据权利要求8所述的多级减速挤出机,其特征在于:所述盖体(9)上设有观察窗(93)以观察所述打印物料(1)的输送情况。
  10. 一种3D打印设备,其特征在于:包括打印喷头以及如权利 要求1-9中任一项所述的多级减速挤出机(2),所述多级减速挤出机用于挤出打印物料(1)并输送至所述打印喷头以进行3D打印。
PCT/CN2021/076014 2021-01-29 2021-02-08 多级减速挤出机以及3d打印设备 WO2022160380A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110126099.X 2021-01-29
CN202110126099.XA CN112923017B (zh) 2021-01-29 2021-01-29 多级减速挤出机以及3d打印设备

Publications (1)

Publication Number Publication Date
WO2022160380A1 true WO2022160380A1 (zh) 2022-08-04

Family

ID=76168534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076014 WO2022160380A1 (zh) 2021-01-29 2021-02-08 多级减速挤出机以及3d打印设备

Country Status (2)

Country Link
CN (1) CN112923017B (zh)
WO (1) WO2022160380A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204955448U (zh) * 2015-08-31 2016-01-13 渭南高新区火炬科技发展有限责任公司 一种3d打印驱动结构
CN206633428U (zh) * 2017-04-06 2017-11-14 无锡太尔时代科技有限公司 一种3d打印机的送进机构
CN206812445U (zh) * 2017-04-05 2017-12-29 广州城建职业学院 一种3d打印机同步送料机构
CN208812570U (zh) * 2018-07-27 2019-05-03 中科院广州电子技术有限公司 一种3d打印机进料机构
US20200001534A1 (en) * 2017-03-17 2020-01-02 3Dp Unlimited, Llc D/B/A 3D Platform Dual hob drive quick release high flow filament extruder
CN209955323U (zh) * 2019-04-30 2020-01-17 齐炳岩 一种新型3d打印机远近程送料机
CN211730246U (zh) * 2019-12-30 2020-10-23 深圳市越疆科技有限公司 一种工艺熔融沉积制造三维打印机及其挤出装置
CN212194228U (zh) * 2020-01-10 2020-12-22 张树泳 3d打印机挤出机
CN212242147U (zh) * 2020-03-23 2020-12-29 深圳市创想三维科技有限公司 送丝机构及3d打印机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208410763U (zh) * 2018-05-23 2019-01-22 福建工程学院 双齿轮减速的3d打印机挤出装置
CN208410782U (zh) * 2018-05-31 2019-01-22 福州万象三维电子科技有限公司 三维打印机送料组件
CN209409311U (zh) * 2019-01-21 2019-09-20 锐力斯传动系统(苏州)有限公司 3d打印机用耗材挤出机构
CN110271185A (zh) * 2019-07-01 2019-09-24 严铜 用于熔融沉积型3d打印机的进料装置
CN111037918A (zh) * 2019-12-30 2020-04-21 深圳市越疆科技有限公司 一种工艺熔融沉积制造三维打印机及其挤出装置
CN212331848U (zh) * 2020-06-01 2021-01-12 深圳市众创三维科技有限公司 一种3d打印机用挤出送料装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204955448U (zh) * 2015-08-31 2016-01-13 渭南高新区火炬科技发展有限责任公司 一种3d打印驱动结构
US20200001534A1 (en) * 2017-03-17 2020-01-02 3Dp Unlimited, Llc D/B/A 3D Platform Dual hob drive quick release high flow filament extruder
CN206812445U (zh) * 2017-04-05 2017-12-29 广州城建职业学院 一种3d打印机同步送料机构
CN206633428U (zh) * 2017-04-06 2017-11-14 无锡太尔时代科技有限公司 一种3d打印机的送进机构
CN208812570U (zh) * 2018-07-27 2019-05-03 中科院广州电子技术有限公司 一种3d打印机进料机构
CN209955323U (zh) * 2019-04-30 2020-01-17 齐炳岩 一种新型3d打印机远近程送料机
CN211730246U (zh) * 2019-12-30 2020-10-23 深圳市越疆科技有限公司 一种工艺熔融沉积制造三维打印机及其挤出装置
CN212194228U (zh) * 2020-01-10 2020-12-22 张树泳 3d打印机挤出机
CN212242147U (zh) * 2020-03-23 2020-12-29 深圳市创想三维科技有限公司 送丝机构及3d打印机

Also Published As

Publication number Publication date
CN112923017B (zh) 2022-10-11
CN112923017A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
CN110259124B (zh) 一种建筑用模板清理装置
FR3024892A3 (fr) Actionneur lineaire double vis
WO2022160380A1 (zh) 多级减速挤出机以及3d打印设备
CN110697122A (zh) 自裁膜型铝型材双侧面同步贴膜机
EP2527278A1 (en) Automatic device for dispensing adhesive tape
CN112743845B (zh) 3d打印挤出装置以及具有其的3d打印机
DE112009005440T5 (de) Stichsäge
CN115138610B (zh) 一种带有搓纸轮自动清理的印刷装置
CN111774636B (zh) 铝型材连续夹持进给定长切断装置
WO2009001556A1 (ja) ベルトジャンクションコンベヤ
CN218857828U (zh) 螺旋纸管加工用皮带辊机构、螺旋纸管卷管机
KR101573376B1 (ko) 추로스용 반죽 압출장치
CN214999149U (zh) 多级减速挤出机以及3d打印设备
CN215656922U (zh) 一种铁皮石斛加工前清洗装置
CN216657159U (zh) 一种机械加工的限位装置
CN214983196U (zh) 一种pvc地板的覆膜设备
CN116061254A (zh) 一种聚乙烯复合管材加工用的固定装置
EP0385853B1 (fr) Dispositif de déplacement du fourreau d'une machine d'extrusion et machine d'extrusion munie d'un tel dispositif
CN210684012U (zh) 一种超细纤维挤出装置
CN217755812U (zh) 一种自动出料转送器
CN115148423B (zh) 汽车喷油用输油线束及其高效挤出装置
CN108478100B (zh) 一种废玻璃清理装置
CN221157883U (zh) 一种化工产品生产清洗装置
CN215247727U (zh) 一种蜜桔加工输料装置
CN117245587A (zh) 一种外牙刀具锁紧螺母机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921979

Country of ref document: EP

Kind code of ref document: A1