WO2022160250A1 - 移相器及其制备方法、天线 - Google Patents

移相器及其制备方法、天线 Download PDF

Info

Publication number
WO2022160250A1
WO2022160250A1 PCT/CN2021/074425 CN2021074425W WO2022160250A1 WO 2022160250 A1 WO2022160250 A1 WO 2022160250A1 CN 2021074425 W CN2021074425 W CN 2021074425W WO 2022160250 A1 WO2022160250 A1 WO 2022160250A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
signal line
line
phase shifter
insulating layer
Prior art date
Application number
PCT/CN2021/074425
Other languages
English (en)
French (fr)
Inventor
刘宗民
李春昕
李伟
范西超
郭俊伟
黄继景
侯孟军
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/074425 priority Critical patent/WO2022160250A1/zh
Priority to CN202180000093.6A priority patent/CN115152089B/zh
Priority to US17/442,197 priority patent/US20230097839A1/en
Publication of WO2022160250A1 publication Critical patent/WO2022160250A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/003Manufacturing lines with conductors on a substrate, e.g. strip lines, slot lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the invention belongs to the technical field of communication, and in particular relates to a phase shifter, a preparation method thereof, and an antenna.
  • Phase shifters are essential key components in communications and radar applications.
  • Traditional phase shifters mainly include ferrite phase shifters and semiconductor phase shifters.
  • ferrite phase shifters have large power capacity and relatively small insertion loss, but the process is complex, expensive to manufacture, and bulky.
  • Factors limit its large-scale application; the semiconductor phase shifter is small in size and fast in operation, but has a relatively small power capacity, large power consumption, and high process difficulty.
  • the MEMS phase shifter in the prior art has obvious advantages in terms of insertion loss, power consumption, volume and cost. applications in other fields have received extensive attention.
  • the MEMS phase shifter usually has a first substrate, a signal line and a reference line arranged on the first substrate, and a plurality of electrode film bridges arranged on the side of the signal line away from the first substrate, and the electrode film bridges are suspended on the signal line , phase-shift the radio frequency signal by forming a distributed capacitance between the signal line and the electrode film bridge.
  • the DC bias voltage needs to be applied to the signal line through the transmission line, and the signal line is also used to transmit radio frequency signals. Therefore, the radio frequency signal will leak to the transmission line of the DC bias voltage, causing the phase shifter
  • the insertion loss increases and the stability decreases.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and provides a phase shifter, which can avoid the leakage of radio frequency signals to the transmission structure of the DC bias voltage, thereby ensuring the low insertion loss performance of the phase shifter , to improve the stability of the phase shifter.
  • the technical solution adopted to solve the technical problem of the present invention is a phase shifter, including:
  • a signal line and a reference line located on at least one side of the extending direction of the signal line, the signal line and the reference line are both disposed on the first substrate;
  • a first insulating layer disposed on the side of the signal line away from the first substrate
  • a plurality of electrode film bridges are arranged on the side of the first insulating layer away from the signal line; each of the electrode film bridges includes a main body part and at least one connection part; the main body part is on the first substrate.
  • an orthographic projection which at least partially overlaps with the orthographic projection of the signal line on the first substrate, and there is a gap between the main body part and the first insulating layer; at least one of the connecting parts is connected to the main body part , and the orthographic projection of the connecting portion on the first substrate at least partially overlaps the orthographic projection of the reference line on the first substrate;
  • the first transmission structure is disposed on the side of the first insulating layer away from the first substrate, and is electrically connected to the signal line; the orthographic projection of the first transmission structure on the first substrate is connected to the The orthographic projections of the plurality of electrode film bridges on the first substrate do not overlap.
  • the first transmission structure since the first transmission structure is provided, the first transmission structure can load the DC bias voltage to the signal line, and can prevent the radio frequency signal on the signal line from leaking to the first transmission structure, so it can ensure The low insertion loss performance of the phase shifter improves the stability of the phase shifter.
  • the first transmission structure is a high-resistance transmission line
  • the sheet resistance of the high-resistance transmission line is greater than the sheet resistance of the signal line
  • the first end of the high-resistance transmission line is connected to the signal line
  • the second end is connected to the DC bias voltage source.
  • the material of the high resistance transmission line includes at least indium tin oxide.
  • the first transmission structure is a high-frequency transmission line
  • the high-frequency transmission line includes a plurality of first connection segments and a plurality of second connection segments, and the first connection segments and the second connection segments are connected end to end ;
  • a plurality of the first connection segments are arranged at intervals along the same direction; each of the second connection segments is connected between two adjacent first connection segments;
  • a plurality of the first connection segments extend in a first direction, and a plurality of the second connection segments extend in a second direction, and the first direction intersects the second direction.
  • one of the first direction and the second direction is perpendicular to the extending direction of the signal line, and the other is parallel to the extending direction of the signal line.
  • the length of one of the first connecting segments and the length of one of the second connecting segments are different.
  • the first transmission structure includes a first transmission line, and the first transmission line is arranged in a plane spiral to form a plane inductance; the first end of the first transmission line is connected to the signal line, and the second end is connected to the DC Bias voltage source.
  • the first insulating layer is provided with a through hole
  • the first transmission line is divided into a first sub-transmission line and a second sub-transmission line; the first sub-transmission line is arranged on the side of the first insulating layer away from the first substrate, and the second sub-transmission line is arranged on the The first insulating layer is close to the side of the first substrate;
  • the first sub-transmission line is arranged in a plane spiral to form a plane inductor, the first end of which is connected to the signal line, and the second end is connected to the first end of the second sub-transmission line through the through hole;
  • the second end of the sub-transmission line is connected to the DC bias voltage source.
  • the first transmission lines are arranged in a rectangular plane spiral.
  • the first insulating layer has a hollow portion, and the orthographic projection of the first end portion of the signal line on the first substrate is located in the orthographic projection of the hollow portion on the first substrate ;
  • An auxiliary electrode is provided on the side of the first end of the signal line away from the first substrate, and the first end of the first transmission structure is connected to the first end of the signal line through the auxiliary electrode.
  • the orthographic projection of the first transmission structure on the first substrate at least partially overlaps the orthographic projection of the reference line on the first substrate.
  • connection portion is close to an edge of the signal line, and is aligned with an edge of the corresponding reference line close to the signal line.
  • the main body part is two first parts and a second part connected therebetween, and the connecting part connects at least one of the two first parts;
  • the orthographic projection of the first part on the first substrate does not overlap with the orthographic projection of the signal line on the first substrate; the orthographic projection of the second part on the first substrate does not overlap with The orthographic projections of the signal lines on the first substrate at least partially overlap; wherein,
  • the width of the connection portion is not smaller than the width of the first portion; the width of the first portion is not smaller than the width of the second portion.
  • the body portion is provided with a plurality of openings.
  • the present invention also provides a method for preparing a phase shifter, comprising the following steps:
  • a first transmission structure is fabricated on the side of the first insulating layer away from the first substrate to be electrically connected to the signal line; the orthographic projection of the first transmission structure on the first substrate is the same as the The orthographic projections of the plurality of electrode film bridges on the first substrate do not overlap;
  • a plurality of electrode film bridges are formed on the side of the first insulating layer away from the signal line; each of the electrode film bridges includes a main body part and at least one connection part; the positive side of the main body part on the first substrate the projection at least partially overlaps with the orthographic projection of the signal line on the first substrate, and there is a gap between the main body part and the first insulating layer; at least one of the connecting parts is connected to the main body part, And the orthographic projection of the connecting portion on the first substrate at least partially overlaps the orthographic projection of the reference line on the first substrate.
  • the present invention further provides an antenna including a plurality of the above phase shifters.
  • FIG. 1 is a schematic structural diagram of an embodiment of a phase shifter provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic partial structure diagram of an embodiment of a phase shifter provided by an embodiment of the present disclosure
  • Fig. 3 is a sectional view taken along the A-B direction of Fig. 3;
  • FIG. 4 is a cross-sectional view (at the electrode membrane bridge) of an embodiment of the phase shifter provided by the embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an exemplary phase shifter and an additional circuit
  • FIG. 6 is a cross-sectional view taken along the C-D direction of FIG. 3;
  • FIG. 7 is a cross-sectional view (at the first transmission structure) of an embodiment of a phase shifter provided by an embodiment of the present disclosure
  • FIG. 8 is one of the schematic structural diagrams of another embodiment of the phase shifter provided by the embodiment of the present disclosure.
  • FIG. 9 is a cross-sectional view taken along the E-F direction of FIG. 8;
  • FIG. 10 is the second schematic structural diagram of another embodiment of the phase shifter provided by the embodiment of the present disclosure.
  • FIG. 11 is a third schematic structural diagram of another embodiment of the phase shifter provided by the embodiment of the present disclosure.
  • FIG. 12 is an exemplary equivalent circuit diagram of a phase shifter provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another embodiment of a phase shifter provided by an embodiment of the present disclosure.
  • Figure 14 is a cross-sectional view taken along the G-H direction of Figure 13;
  • FIG. 15 is a schematic structural diagram of an embodiment of an electrode film bridge of a phase shifter according to an embodiment of the present disclosure
  • FIG. 16 is a flowchart of a method for fabricating a phase shifter according to an embodiment of the present disclosure.
  • the two structures are "disposed in the same layer” means that the two structures are formed of the same material layer, so they are in the same layer in the stacking relationship, but it does not mean that they are in the same layer with the substrate. Equal distances do not imply that they are identical in structure to other layers between the substrates.
  • FIG. 2 is a schematic partial structure diagram of FIG. 1
  • the phase shifter includes a first substrate 1 , a signal line 2 , a reference line 3 , a first insulating layer 4 , a plurality of electrode film bridges 5 , a first transmission structure 6 and a voltage input line 01 .
  • both the signal line 2 and the reference line 3 are disposed on the first substrate 1 , and the reference line 3 is located on at least one side of the extending direction of the signal line 2 (eg, the first direction S1 ), and the signal line 2 and the Reference line 3 forms a coplanar waveguide (CPW) transmission line.
  • the first insulating layer 4 is disposed on the side of the signal line 2 away from the first substrate 1 to insulate the signal line 2 from the electrode film bridge 5 .
  • each electrode film bridge 5 includes a main body portion 51 and at least one connection portion 52 .
  • the orthographic projection of the main body portion 51 on the first substrate 1 at least partially overlaps with the orthographic projection of the signal line 2 on the first substrate 1; at least one connecting portion 52 is connected to the main body portion 51, and the connecting portion 52 is on the first substrate.
  • the orthographic projection on the first substrate 1 at least partially overlaps with the orthographic projection of the reference line 3 on the first substrate 1 .
  • connection part 52 can support the main body part 51, so that there is a certain gap between the main body part 51 and the first insulating layer 4 on the signal line 2, so that a capacitance is formed between the main body part 51 and the signal line 2, so that the DC bias voltage is loaded
  • the CPW transmission line is made into a variable capacitance periodic transmission line structure, so as to achieve the purpose of phase shifting.
  • different numbers of electrode film bridges 5 can be connected, and the connected electrode film bridges 5 form a phase control unit.
  • the first and second phase control units have an electrode film bridge 5
  • the third, fourth and fifth phase control units have 2, 4 and 8 electrode membrane bridges 5 respectively.
  • phase shifter in the embodiment of the present disclosure may specifically be a Micro-Electro-Mechanical System (MEMS, Micro-Electro-Mechanical System) phase shifter.
  • MEMS Micro-Electro-Mechanical System
  • the reference line 3 may include a first reference line 31 and a second reference line 32 , and the first reference line 31 and the second reference line 32 are respectively arranged in the extension direction of the signal line 2 .
  • the reference line 3 includes the first reference line 31 and the second reference line 32 .
  • each electrode membrane bridge 5 includes only one connecting portion 52, and the other side of the main body portion 51 is not provided with the connecting portion 52; if the phase shifter includes the first reference line 31 and the first reference line 31 and the second If there are two reference lines 32, each electrode membrane bridge 5 includes two connecting parts 52, which are a first connecting part 52a and a second connecting part 52b, and one end of the first connecting part 52a and the second connecting part 52b are respectively connected to the main body The two sides of the part 51 and the other ends are respectively fixed on the first reference line 31 and the second reference line 32 , or respectively fixed on the first insulating layer 4 covering the first reference line 31 and the second reference line 32 .
  • the following description will be given by taking each electrode film bridge 5 including the first connecting portion 52 a and the second connecting portion 52 b as an example.
  • the main body portion 51 of each electrode film bridge 5 is spanned on the signal line 2 by the connecting portion 52, and the DC bias voltage is applied to the electrode film bridge 5 and the signal line 2, specifically , the DC bias voltage is applied to the connection part 52 of the electrode membrane bridge 5, and then transmitted from the connection part 52 to the main body part 51, so that electrostatic attraction can be generated between the main body part 51 and the signal line 2, so that the main body part 51 can be driven in the In the direction perpendicular to the signal line 2, moving to a position close to the signal line 2, that is, the main body portion 51 can move.
  • the electrode film bridge 5 consists of the main body portion 51 -gap-first insulating layer 4-
  • the signal line 2 constitutes the open-state capacitance Con between them, that is, the capacitance when the signal passes through the switch, which is similar to the parallel plate capacitance, and the capacitance value is lower, about the order of fF.
  • the above-mentioned gap is the gap between the main body portion 51 and the first insulating layer 4 covering the signal line 2 .
  • the main body portion 51 changes the height of the gap under the action of electrostatic attraction.
  • the electrostatic attraction pulls down the main body part 51 to be in close contact with the first insulating layer 4 .
  • the structure constitutes an off-state capacitor Coff with a large capacitance value, which is about the order of pF.
  • the phase shift amount of each electrode film bridge 5 is determined by the overlapping area of the main body portion 51 of the electrode film bridge 5 and the signal line 2 and the value of Con/Coff of the electrode film bridge 5 .
  • the DC bias voltage of the electrode film bridge 5 can be input by the voltage input line 01, that is, the voltage input line 01 is arranged on the first insulating layer 4 away from the first substrate, and each electrode film bridge 5 is connected to a voltage input line 01.
  • One end of the line 01 and the other end of the voltage input line 01 are connected to a DC bias voltage source (not shown in the figure).
  • the first insulating layer 4 may cover the signal line 2 and the reference line 3 (as shown in FIG. 3 ), and the first insulating layer 4 may also only cover the signal line Line 2, without covering the first reference line 31 and the second reference line 32 (as shown in FIG. 4).
  • the phase shifter including the first reference line 31 and the second reference line 32 and the electrode film bridge 5 including the first connection part 52a and the second connection part 52b as an example, if the first insulating layer 4 covers the signal line 2 and the reference line 3, the first connection part 52a of the electrode film bridge 5 is connected between one side of the main body part 51 and the first insulating layer 4 covering the first reference line 31, and the second connection part 52b is connected to the main body part 51 between the other side of the electrode film bridge 5 and the first insulating layer 4 covering the second reference line 32; if the first insulating layer 4 only covers the signal line 2, the first connecting portion 52a of the electrode film bridge 5 is connected to the main body portion 51 between one side of the main body part 51 and the first reference line 31, the second connection part 52b is connected between the other side of the main body part 51 and the second reference line 32, both the first reference line 31 and the second reference line 32 are connected to the reference voltage Therefore, the potential of the electrode film bridge 2 is also the reference voltage provided by the reference voltage source, so only
  • first reference line 31 and the second reference line 32 are covered with the first insulating layer 4, and the first connecting portion 52a and the second connecting portion 52b are connected on the first insulating layer 4 as an example for description.
  • Invention constitutes a limitation.
  • the first transmission structure 6 since the first transmission structure 6 is used for the signal line 2 to input a DC bias voltage , so the first transmission structure 6 can be arranged on the reference line 3 (the first reference line 31 or the second reference line 32 ) and extend to the signal line 2, that is, the first transmission structure 6 and the reference line 3 overlap, so , the area where the first transmission structure 6 and the reference line 3 overlap is also covered with the first insulating layer 4 to insulate the first transmission structure 5 and the reference line 3 .
  • the signal line 2 in order to form a distributed capacitance between the electrode film bridge 5 and the signal line 2, it is necessary to input a DC bias voltage to the signal line 2, and the signal line 2 is also used as the transmission line of the radio frequency signal. Therefore, the signal line 2 will simultaneously receive Low frequency DC bias voltage and high frequency RF signal. In order to prevent the leakage of the RF signal to the transmission line of the DC bias voltage, which increases the insertion loss and reduces the stability of the phase shifter, the DC bias voltage and the RF signal need to be blocked.
  • one end of the signal line 2 can be connected to the T-shaped biaser 200 , and the other end of the signal line 2 can be connected to the isolator 300 , both of which are connected to the external device 400 .
  • the external device 400 can provide a radio frequency signal (or a test signal), and the external device 400 can be, for example, a vector network analyzer (VNA), and the VNA can test the performance of the phase shifter.
  • VNA vector network analyzer
  • the bias tee 200 has a first port P1, a second port P2 and a third port P3, the first port P1 is connected to the signal line 2; the second port P2 is connected to one end of a DC bias voltage source, and the DC bias voltage The other end of the source is connected to the reference voltage, for example, it can be connected to the reference line 3 of the phase shifter; the third port P3 is connected to the external device 400 .
  • the external device 400 inputs the radio frequency signal to the signal line 2 through the isolator 300, wherein the isolator 300 has a capacitor and can isolate the DC bias voltage; the radio frequency signal is input to the first port P1 through the signal line 2, and then passes through the T-shaped biaser
  • the capacitor in 200 is output by the third port P3. Since the capacitor can isolate the DC voltage and pass the AC signal, the RF signal can be output by the third port P3, but the DC bias voltage cannot pass; the DC bias voltage source will The bias voltage is input from the second port P2, and is output to the signal line 2 by the first port P1 after passing through the inductance in the T-shaped biaser 200. Since the inductance can isolate the AC signal and pass the DC signal, the DC bias voltage can pass through the first port P1.
  • a port P1 is output to the signal line 2, and can avoid leakage of radio frequency signals.
  • the above circuit can realize the isolation of the DC bias voltage and the RF signal, and avoid the leakage of the RF signal.
  • the phase shifter is applied to the phased array antenna, that is, the antenna includes multiple phase shifters, it is difficult to assign each shifter. Phasers are provided with the above circuit.
  • the phase shifter provided by the embodiment of the present disclosure is further provided with a first transmission structure 6 , the first transmission junction 6 is provided on the side of the first insulating layer 4 away from the first substrate 1 , and the first transmission structure 6 is connected to the signal The line 2 is electrically connected, and the first transmission structure 6 is used for transmitting the DC bias voltage to the signal line 2 and blocking the radio frequency signal on the signal line 2 .
  • the orthographic projection of the first transmission structure 6 on the first substrate 1 does not overlap with the orthographic projection of the plurality of electrode film bridges 5 on the first substrate 1 .
  • the first transmission structure 6 since the first transmission structure 6 is provided, the first transmission structure 6 can apply a DC bias voltage to the signal line 2, and can prevent the radio frequency signal on the signal line 2 from being transmitted to the first The structure 6 leaks, so the low insertion loss performance of the phase shifter can be ensured, and the stability of the phase shifter can be improved.
  • the specific structure of the first transmission structure 6 may include multiple types, which will be illustrated by examples below.
  • the first transmission structure 6 may be a high-impedance transmission line, and the sheet resistance of the high-impedance transmission line may be greater than that of the signal For the sheet resistance of line 2, the first end of the high-resistance transmission line is connected to the signal line 2, and the second end of the high-resistance transmission line is connected to a DC bias voltage source, and the DC bias voltage source is used to provide a DC bias voltage.
  • the material of the high-resistance transmission line may include various conductive materials with relatively high resistance, for example, the material of the high-resistance transmission line may include indium tin oxide (Indium Tin Oxide, ITO).
  • ITO Indium Tin Oxide
  • the high-resistance transmission line may also use Other conductive materials with higher resistance or a combination of multiple materials are used, which are not limited here.
  • the high-resistance transmission lines can be arranged in a straight line, and can also be arranged in a curved manner, and can be arranged in various directions, which is not limited herein.
  • the high-resistance transmission line extends from the edge of the first substrate to the signal line 2 along the direction perpendicular to the extending direction (eg S1 ) of the signal line 2 as an example for description. , but does not limit the invention.
  • the first insulating layer 4 may cover the side of the signal line 2 , the first reference line 31 and the second reference line 32 away from the first substrate 1 , but in order to make the first transmission structure 6 can be connected to the signal line 2, the first insulating layer 4 may not be provided on the first end 201 of the signal line 2, that is, the first insulating layer 4 has a hollow portion at the position corresponding to the first end 201 of the signal line 2, and the signal The orthographic projection of the first end portion 201 of the wire 2 on the first substrate 1 is located in the orthographic projection of the hollow portion of the first insulating layer 4 on the first substrate 1, so that the first portion of the signal wire 2 is exposed through the hollow portion.
  • the first transmission structure 6 is connected to the first end 201 of the signal line 2 .
  • the first end portion 201 of the signal line 2 is provided with the first insulating layer 4 .
  • problems such as wire breakage are likely to occur in places with large slopes.
  • the first reference line 31 and the second reference line 32 are respectively arranged on both sides of the extension direction (eg S1) of the signal line 2, when the signal line When the first end portion 201 of the signal line 2 faces away from the surface of the first substrate 1 and is on a different plane from the surface of the first insulating layer 4 that faces away from the first substrate 1, the first end portion 201 of the signal line 2 faces away from the first substrate 1 side.
  • the extension direction eg S1
  • the auxiliary electrode 02 is arranged, and the auxiliary electrode 02 is arranged in the hollow portion of the first insulating layer 4 , and the thickness of the auxiliary electrode 02 is approximately equal to the surface of the first end portion 201 of the signal line 2 facing away from the surface of the first substrate 1 and the first insulating layer 4
  • the height difference from the surface facing away from the first substrate 1, that is, the surface of the auxiliary electrode 02 facing away from the first substrate 1 and the surface of the first insulating layer 4 facing away from the first substrate 1 are on the same plane, so that the first end 201 of the signal line 2 can
  • the first end of the first transmission structure 6 can be connected to the first end 201 of the signal line 2 through the auxiliary electrode 6 .
  • the material of the auxiliary electrode 02 may be different from the material of the first transmission structure 6 (as shown in FIG. 6 ), or may be the same as the material of the first transmission structure 6 (as shown in FIG. 7 ) shown), which is not limited here.
  • the first transmission line 6 as a high-resistance transmission line as an example, if the high-resistance transmission line is made of ITO, the auxiliary electrode 02 can be made of other metal materials, or the auxiliary electrode 02 can also be made of ITO, which is layered with the ITO of the high-resistance transmission line. Do limit.
  • Each subsequent first transmission structure 6 can be connected to the signal line 2 by using the auxiliary electrode 02 , which will not be described in detail later.
  • the first transmission structure 6 may be a high-frequency transmission line. Due to parasitic effects, the high-frequency transmission line will generate a large parasitic inductance, Therefore, the first transmission structure 6 using a high-frequency transmission line is equivalent to connecting a large parasitic inductance L1, and its equivalent circuit diagram is shown in Figure 12, where V represents the DC bias voltage source connected to the high-frequency transmission line, and CPWi is The RF signal input terminal of the input signal line 2, CPWo is the connected device, which can provide RF signals, such as VNA, etc.
  • the DC bias voltage can pass through the parasitic inductance L1 formed by the high-frequency transmission line arrangement and then enter the signal line 2, the parasitic inductance L1 hardly affects the DC bias voltage, and if the RF signal passes through the parasitic inductance L1, a self-induced electromotive force will be generated at both ends of the parasitic inductance L1.
  • the direction of the self-induced electromotive force is opposite to the direction of the applied voltage, preventing the passage of the RF signal. Therefore, high
  • the frequency transmission line can effectively block the leakage of the radio frequency signal on the signal line 2 to the high frequency transmission line, thereby ensuring the low insertion loss performance of the phase shifter and improving the stability of the phase shifter.
  • the high-frequency transmission line can be bent and arranged.
  • the high-frequency transmission line can include a plurality of first connection segments 6a and a plurality of second connection segments 6b, and the first connection segments 6a and the second connection segments 6b are formed by connecting end to end.
  • a plurality of first connecting sections 6a are arranged at intervals along the same direction, and each second connecting section 6b is connected between two adjacent first connecting sections 6a.
  • the plurality of first connection segments 6a extend along the first direction S1, the plurality of second connection segments 6b extend along the second direction S2, and the first direction S1 and the second direction S2 intersect.
  • first connecting segments 6a and the second connecting segments 6b extend in different directions and are connected end to end, in the arrangement direction of the first connecting segments 6a, the adjacent first connecting segments 6a have a certain overlapping area, A parasitic inductance will be generated between each other, so that the bending structure formed by the end-to-end connection of the plurality of first connection segments 6a and the plurality of second connection segments 6b will constitute a total parasitic inductance, which further increases the parasitic inductance generated by the high-frequency transmission line.
  • Inductor L1 the high-frequency transmission lines are arranged in a zigzag manner, which can reduce the wiring area compared with the straight arrangement.
  • a capacitor C can also be connected to the signal line 2 as an isolator to isolate the DC bias voltage.
  • the capacitor C can be an external capacitor, or an electrode can be set above or below the signal line 2 again.
  • a capacitance is formed with the signal line 2 itself, which is not limited here.
  • the high-frequency transmission line may have various arrangements, and the length of a first connection segment 6a may be different from that of a second connection segment 6a, as long as the first connection segment 6a has a different length.
  • the connection segment 6a and the second connection segment 6b only need to be able to form parasitic inductance.
  • FIG. 8 and FIG. 9 to FIG. 10 the high-frequency transmission line may have various arrangements, and the length of a first connection segment 6a may be different from that of a second connection segment 6a, as long as the first connection segment 6a has a different length.
  • the connection segment 6a and the second connection segment 6b only need to be able to form parasitic inductance.
  • a plurality of first connecting segments 6a extend along a first direction S1, a plurality of second connecting segments 6b extend along a second direction S2, and the first direction S1 and the second direction S2 intersect, wherein the first The direction S1 is perpendicular to the extending direction of the signal line 2, the second direction S2 is parallel to the extending direction of the signal line 2, and the plurality of first connection segments 6a are along the second direction S2 (a direction parallel to the extending direction of the signal line 2)
  • the second connecting sections 6b are respectively on both sides of the first connecting section 6a, each second connecting section 6b is connected between two adjacent first connecting sections 6a, and one first connecting section 6a The length is greater than that of a second connecting segment 6b.
  • the plurality of first connecting segments 6a extend along the first direction S1
  • the plurality of second connecting segments 6b extend along the second direction S2
  • the first direction S1 and the second direction S2 intersect
  • the first direction S1 is parallel to the extending direction of the signal line 2
  • the second direction S2 is perpendicular to the extending direction of the signal line 2
  • the plurality of first connection segments 6a are along the second direction S1 (perpendicular to the extending direction of the signal line 2).
  • the direction of the extension direction is arranged at intervals, the second connecting sections 6b are respectively on both sides of the first connecting section 6a, each second connecting section 6b is connected between two adjacent first connecting sections 6a, and one first connecting section 6b
  • the length of a connecting section 6a is greater than the length of a second connecting section 6b.
  • the second connecting section 6b connected to the first connecting section 6a at the end is connected to the signal line 2
  • the first connecting section 6a at the head is connected to the signal line 2.
  • the connected second connection section 6b is connected to an external DC bias voltage source.
  • the high-frequency signal lines can also be arranged in more ways, such as S-shape arrangement, zigzag arrangement, etc., which are not limited here.
  • the first transmission structure 6 may include a first transmission line, and the first transmission line is arranged in a plane spiral to form a plane inductor.
  • the first end of the first transmission line constituting the planar inductor is connected to the signal line 2, specifically, the first end 201 of the signal line 2, and the second end of the first transmission line is connected to the DC bias voltage source to transmit the DC bias voltage to the signal line 2.
  • Signal line 2. In the same way as the above, the DC bias voltage can be input to the signal line 2 after passing through the planar inductance formed by the first transmission line, and the planar inductance hardly affects the DC bias voltage.
  • planar inductance can effectively block the radio frequency signal on the signal line 2 from leaking to the high frequency transmission line, and thus can ensure the low insertion of the phase shifter. performance and improve the stability of the phase shifter.
  • one end of the planar inductor formed by the first transmission line needs to be connected to the signal line 2, and the other end needs to extend to the edge of the first substrate 1 away from the signal line 2 to connect the DC bias voltage source, and the spiral arrangement
  • One of the two ends of the first transmission line is located in the middle of the helix, so it needs to be designed across layers to be able to extend.
  • the filling pattern of the first sub-transmission line 61 is translucent, but the filling pattern of the first sub-transmission line 61 is not structure is limited.
  • the first sub-transmission line 61 is provided on the side of the first insulating layer 4 away from the first substrate 1, and the second sub-transmission line 62 is provided On the side of the first insulating layer 4 close to the first substrate 1 , that is, the first sub-transmission line 61 and the second sub-transmission line 62 are arranged on the opposite side of the first insulating layer 4 , and a through hole Via is arranged in the first insulating layer 4 , and the orthographic projection of the through hole Via on the first substrate 1 does not overlap with the orthographic projection of the reference line 3 (specifically, the first reference line 31 in the figure) on the first substrate 1 .
  • the first sub-transmission line 61 is arranged in a plane spiral to form a planar inductor, and is disposed on the first insulating layer 4.
  • the first end of the first sub-transmission line 61 is connected to the first end 201 of the signal line 2, and the first sub-transmission line
  • the second end of 61 is connected to the first end of the second sub-transmission line 62 under the first insulating layer 4 through the via Via, and the second end of the second sub-transmission line 62 is connected to the DC bias voltage source, so the first sub-transmission line can be avoided.
  • 61 and the second sub-transmission line 62 are short-circuited and can form a planar inductance.
  • the first sub-transmission line 61 and the second sub-transmission line 62 may be made of the same material or different materials, which are not limited herein.
  • the plane spiral shape of the first transmission line arrangement may include various types, for example, a rectangular spiral shape, a circular spiral shape, a hexagonal spiral shape, an octagonal spiral shape, and the like.
  • the line width and the number of turns of the planar inductor can be designed as required, which are not limited here.
  • the first transmission lines are arranged in a rectangular plane spiral shape as an example for description, but the present invention is not limited.
  • the orthographic projection of the first transmission structure 6 on the first substrate 1 at least partially overlaps with the orthographic projection of the reference line 3 on the first substrate 1 , so that the distance between the first transmission structure 6 and the reference line 3 can be
  • the formation of parasitic inductance can further prevent the leakage of radio frequency signals.
  • the first transmission structure 6 and the first reference line 31 overlap, except that the first connecting section 6a and the second
  • the first connection segment 6a and the second connection segment 6b can respectively form a parasitic inductance with the first reference line 31, thereby increasing the inductance value of the parasitic inductance and having better isolation of radio frequency the effect of the signal.
  • inputting a DC bias voltage to the electrode membrane bridge 5 to reach the voltage transmission line 01 can be of various structures, and in various ways, the material and shape of the voltage transmission line 01 can be the same as the first transmission structure 6 , may also be different, which is not limited here.
  • the thickness of the first insulating layer 4 between the first transmission structure 6 and the first substrate 1 can be increased, and/or the thickness of the material layer of the first transmission structure 6 can be reduced, which can further ensure the phase shift low insertion loss performance.
  • the entire structure of the first transmission structure 6 may be disposed on either side of the two sides of the extending direction of the signal line 2 , thereby reducing the complexity of wiring.
  • connection part 52 of each electrode film bridge 5 is close to the edge of the signal line 2 , and is close to the reference line 3 corresponding to the connection part 52 (ie, the orthographic projections of the two on the first substrate 1 overlap)
  • the edges of the signal line 2 are aligned, so that the electrode film bridge 5 and the reference line 3 can be formed by patterning the electrode layer with the same mask.
  • the electrode film bridge 5 may adopt various types of structures, for example, the main body 51 may be a regular rectangle (as shown in FIG. 1 ).
  • the main body 51 of each electrode membrane bridge 5 is divided into two first parts 511 and a second part 512 connected between the two first parts 511 , and the connecting part 52 is connected to the two first parts 511 At least one of them, in this embodiment, the electrode membrane bridge 5 has two connection parts, the first connection part 52a is connected to one first part 511, and the second connection part 52b is connected to the other first part 511 as an example for description. .
  • the orthographic projection of the first part 511 of the main body part 51 on the first substrate 1 does not overlap with the orthographic projection of the signal line 2 on the first substrate 1 ; the second part 512 of the main body part 51 on the first substrate 1
  • the orthographic projection at least partially overlaps with the orthographic projection of the signal line 2 on the first substrate 1 .
  • the width d1 of the connecting portion 52 (including the first connecting portion 52 a and the second connecting portion 52 b ) is not less than the width of the first portion 511 of the main body portion 51 d2, the width d2 of the first part 511 of the main body part 51 is not smaller than the width d2 of the second part 512 of the main body part 51 , that is, d1 ⁇ d2 ⁇ d3.
  • the first part 511 may be a trapezoid.
  • the width d2 of the first part 511 gradually decreases, the short side of the first part 511 is connected to the second part 512 , and the long side is connected to the second part 512 .
  • the connecting portions 52 are connected, the second portion 512 may be a rectangle, and the width of the connection between the second portion 512 and the first portion 511 is approximately equal to the length of the short side of the first portion 511 .
  • the second portion 512 is narrower, and the second portion 512 forms a capacitance with the signal line 2 and moves downward under the action of electrostatic attraction, the narrower second portion 512 is easier to be pulled, so that the required The DC driving voltage is small; the connecting part 52 is used as the support of the main body part 51, and the larger width can provide a stronger supporting force and ensure the mechanical stability of the electrode membrane bridge 5; the first part 511 is used as the second part 512 to connect with The transition of section 52 is connected between the two.
  • the electrode membrane bridge 5 may also have other structures, which are not limited herein.
  • each electrode membrane bridge 5 may be distributed with a plurality of openings 001 , and the openings 001 play a role of releasing stress , so that the electrode membrane bridge 5 is not easily collapsed, and is easier to move, so a smaller DC bias voltage can be used to drive the electrode membrane bridge 5 to pull down.
  • the openings 001 may have various shapes, such as rectangles, circles, etc., and the number and distribution positions are not limited.
  • an embodiment of the present disclosure further provides a method for preparing a phase shifter, which may include the following steps:
  • a signal line 2 and a reference line 3 located on at least one side of the extending direction of the signal line 2 are fabricated on the first substrate 1 .
  • the first substrate 1 may be a glass substrate or a silicon-based substrate, and the first substrate 1 is prepared by cleaning, drying, and the like.
  • a first electrode layer can be formed on the first substrate 1 by processes such as sputtering, and then patterns of signal lines 2 and reference lines 3 are formed by processes such as exposure, etching, and development.
  • a first insulating layer 4 is deposited on the side of the signal line 2 and the reference line 3 away from the first substrate 1, so that the first insulating layer 4 is wrapped around the signal line 2 and the reference line 3,
  • the first insulating layer 4 is patterned, and the portion of the first insulating layer 4 covering the first end portion 201 of the signal line 2 is removed, so that the first end portion 201 of the signal line 2 is exposed.
  • the first end 201 of the signal line 2 may be away from the first substrate 1
  • a material layer of the auxiliary electrode 02 is deposited on one side, and patterned to form the auxiliary electrode 02 .
  • the material of the first transmission structure 6 is deposited on the side of the auxiliary electrode 02 and the first insulating layer 4 away from the first substrate 1 , and the first transmission structure 6 is patterned so that it is consistent with the auxiliary electrode 02 . Electrode 02 is connected.
  • a sacrificial layer 03 may be deposited on the first insulating layer 4 , and the outer contour of the sacrificial layer 03 is in contact with the inner side of the electrode membrane bridge 5 .
  • a second metal layer is formed on the sacrificial layer 03 , and then the second metal layer is etched to form an electrode film bridge 5 .
  • the phase shifter is rinsed with the sacrificial layer releasing solution to release the sacrificial layer 03 , thereby forming a complete phase shifter.
  • the present invention further provides an antenna, which may include a plurality of the above-mentioned phase shifters, and may also include a plurality of radiating elements.
  • Each phase shifter is connected to at least one radiation unit, and the radiation unit is used for transmitting the radio frequency signal shifted by the phase shifter, or receiving the radio frequency signal and then inputting the radio frequency signal to the phase shifter.
  • the plurality of phase shifters can be arranged in an array to be applied as a phased array antenna, and the first substrate 1 of the plurality of phase shifters can be integrally formed.
  • the antenna can be used as a receiving antenna or a transmitting antenna. By controlling the phase shift amount of multiple phase shifters, the phased array of the phase shifters is realized, so that the antenna can emit beams in different directions, or receive antennas in different directions. This is not limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

本发明提供一种移相器及其制备方法、天线,属于通信技术领域。本发明提供的一种移相器,包括第一基板,设置在第一基板上的信号线和参考线,设置在信号线上的第一绝缘层,和设置在第一绝缘层背离信号线一侧的多个电极膜桥以及设置在绝缘层上的第一传输结构,其与信号线电连接,且第一传输结构在第一基板上的正投影,与多个电极膜桥在第一基板上的正投影无重叠。由于设置了第一传输结构,因此能够阻隔射频信号对直流偏置电压的影响,从而能够保证移相器的低插损性能,提高移相器的稳定性。

Description

移相器及其制备方法、天线 技术领域
本发明属于通信技术领域,具体涉及一种移相器及其制备方法、天线。
背景技术
随着信息时代迅速发展,具备高集成、小型化、多功能以及低成本的无线终端逐渐成为通信技术的发展趋势。在通信和雷达应用中,移相器是必不可少的关键组件。传统的移相器主要包括铁氧体移相器和半导体移相器,其中铁氧体移相器有较大的功率容量,且插入损耗比较小、但工艺复杂、制造成本昂贵、体积庞大等因素限制了其大规模应用;半导体移相器体积小,工作速度快,但功率容量比较小,功耗较大,工艺难度高。
现有技术的微机电系统(Micro-Electro-Mechanical System,MEMS)移相器相比于传统移相器在插损、功耗、体积与成本等方面均具有明显优势,在无线电通讯和微波技术等领域应用受到了广泛关注。MEMS移相器通常具有第一基板,设置在第一基板上的信号线和参考线,以及设置在信号线背离第一基板一侧的多个电极膜桥,电极膜桥悬空设置在信号线上,通过信号线与电极膜桥之间形成分布电容对射频信号进行移相。为了能够形成可变电容,需要将直流偏置电压通过传输线加载至信号线上,而同时信号线还用于传输射频信号,因此,射频信号会向直流偏置电压的传输线泄露,造成移相器的插损增大,稳定性降低等问题。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种移相器,其能够避免射频信号向直流偏置电压的传输结构泄露,从而能够保证移相器的低插损性能,提高移相器的稳定性。
第一方面,解决本发明技术问题所采用的技术方案是一种移相器,包括:
第一基板;
信号线和位于所述信号线的延伸方向的至少一侧的参考线,所述信号线和所述参考线均设置在所述第一基板上;
第一绝缘层,设置在所述信号线背离所述第一基板一侧;
多个电极膜桥,设置在所述第一绝缘层背离所述信号线一侧;每个所述电极膜桥包括主体部和至少一个连接部;所述主体部在所述第一基板上的正投影,与所述信号线在所述第一基板上的正投影至少部分重叠,且所述主体部与所述第一绝缘层之间具有间隙;至少一个所述连接部连接所述主体部,且所述连接部在所述第一基板上的正投影,与所述参考线在所述第一基板上的正投影至少部分重叠;
第一传输结构,设置在所述第一绝缘层背离所述第一基板的一侧,且与所述信号线电连接;所述第一传输结构在所述第一基板上的正投影,与多个所述电极膜桥在所述第一基板上的正投影无重叠。
本发明提供的移相器,由于设置了第一传输结构,第一传输结构能够将直流偏置电压加载至信号线,并且能够避免信号线上的射频信号向第一传输结构泄露,因此能够保证移相器的低插损性能,提高移相器的稳定性。
优选的是,所述第一传输结构为高阻传输线,所述高阻传输线的方块电阻大于所述信号线的方块电阻,其第一端连接所述信号线,第二端连接直流偏置电压源。
优选的是,所述高阻传输线的材料至少包括氧化铟锡。
优选的是,所述第一传输结构为高频传输线,所述高频传输线包括多个第一连接段和多个第二连接段,所述第一连接段和所述第二连接段首尾相连;多个所述第一连接段沿同一方向间隔排布;每个所述第二连接段连接在相邻的两个所述第一连接段之间;其中,
多个所述第一连接段沿第一方向延伸,多个所述第二连接段沿第二方向 延伸,所述第一方向与所述第二方向相交。
优选的是,所述第一方向与第二方向中的一者与所述信号线的延伸方向相垂直,另一者与所述信号线的延伸方向相平行。
优选的是,一个所述第一连接段的长度,和一个所述第二连接段的长度不同。
优选的是,所述第一传输结构包括第一传输线,所述第一传输线呈平面螺旋形排布构成平面电感;所述第一传输线的第一端连接所述信号线,第二端连接直流偏置电压源。
优选的是,所述第一绝缘层设置有一通孔;
所述第一传输线分为第一子传输线和第二子传输线;所述第一子传输线设置在所述第一绝缘层背离所述第一基板一侧,所述第二子传输线设置在所述第一绝缘层靠近所述第一基板一侧;其中,
所述第一子传输线呈平面螺旋形排布构成平面电感,其第一端连接所述信号线,第二端通过所述通孔连接所述第二子传输线的第一端;所述第二子传输线的第二端连接直流偏置电压源。
优选的是,所述第一传输线呈矩形的平面螺旋形排布。
优选的是,所述第一绝缘层具有镂空部,所述信号线的第一端部在所述第一基板上的正投影,位于所述镂空部在所述第一基板上的正投影內;
所述信号线的第一端部背离所述第一基板一侧设置有辅助电极,所述第一传输结构的第一端通过所述辅助电极与所述信号线的第一端部连接。
优选的是,所述第一传输结构在所述第一基板上的正投影,与所述参考线在所述第一基板上的正投影至少部分重叠。
优选的是,所述连接部靠近所述信号线的边缘,和与之对应的所述参考线靠近所述信号线的边缘对齐。
优选的是,所述主体部分为两个第一部分和连接在二者之间的第二部 分,所述连接部连接两个所述第一部分中的至少一者;
所述第一部分在所述第一基板上的正投影,与所述信号线在所述第一基板上的正投影无重叠;所述第二部分在所述第一基板上的正投影,与所述信号线在所述第一基板上的正投影至少部分重叠;其中,
沿所述信号线的延伸方向,所述连接部的宽度不小于所述第一部分的宽度;所述第一部分的宽度不小于所述第二部分的宽度。
优选的是,所述主体部分布有多个开口。
第二方面,本发明还提供一种移相器的制备方法,包括以下步骤:
在第一基板上制作信号线和位于所述信号线的延伸方向的至少一侧的参考线;
在所述信号线背离所述第一基板一侧制作第一绝缘层;
在所述第一绝缘层背离所述第一基板的一侧制作第一传输结构,使其与所述信号线电连接;所述第一传输结构在所述第一基板上的正投影,与多个电极膜桥在所述第一基板上的正投影无重叠;
在所述第一绝缘层背离所述信号线一侧制作多个电极膜桥;每个所述电极膜桥包括主体部和至少一个连接部;所述主体部在所述第一基板上的正投影,与所述信号线在所述第一基板上的正投影至少部分重叠,且所述主体部与所述第一绝缘层之间具有间隙;至少一个所述连接部连接所述主体部,且所述连接部在所述第一基板上的正投影,与所述参考线在所述第一基板上的正投影至少部分重叠。
第三方面,本发明还提供一种天线,包括多个上述移相器。
附图说明
图1为本公开实施例提供的移相器的一种实施例的结构示意图;
图2为本公开实施例提供的移相器的一种实施例的局部结构示意图;
图3为沿图3的A-B方向剖切的剖面图;
图4为本公开实施例提供的移相器的一种实施例的剖面图(电极膜桥处);
图5为一种示例性的移相器以及附加电路的结构示意图;
图6为沿图3的C-D方向剖切的剖面图;
图7为本公开实施例提供的移相器的一种实施例的剖面图(第一传输结构处);
图8为本公开实施例提供的移相器的另一种实施例的结构示意图之一;
图9为沿图8的E-F方向剖切的剖面图;
图10为本公开实施例提供的移相器的另一种实施例的结构示意图之二;
图11为本公开实施例提供的移相器的另一种实施例的结构示意图之三;
图12为本公开实施例提供的移相器的一种示例性的等效电路图;
图13为本公开实施例提供的移相器的另一种实施例的结构示意图;
图14为沿图13的G-H方向剖切的剖面图;
图15为本公开实施例提供的移相器的电极膜桥的一种实施例的结构示意图;
图16为本公开实施例提供的移相器的制备方法的流程图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等 同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
需要说明的是,在本发明中,两结构“同层设置”是指二者是由同一个材料层形成的,故它们在层叠关系上处于相同层中,但并不代表它们与基底间的距离相等,也不代表它们与基底间的其它层结构完全相同。
以下将参照附图更详细地描述本发明。在各个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。此外,在图中可能未示出某些公知的部分。
第一方面,参见图1-图3,其中,为了更清楚地示出结构,图2为图1的局部结构示意图,本公开实施例提供一种移相器,以移相器100为例,该移相器包括第一基板1、信号线2、参考线3、第一绝缘层4、多个电极膜桥5、第一传输结构6和电压输入线01。
具体地,参见图3,信号线2和参考线3均设置在第一基板1上,且参考线3位于信号线2的延伸方向(例如第一方向S1)的至少一侧,信号线2与参考线3形成共面波导(CPW)传输线。第一绝缘层4设置在信号线2背离第一基板1一侧,以对信号线2与电极膜桥5进行绝缘。
进一步地,多个电极膜桥5设置在第一绝缘层4背离信号线2一侧,每个电极膜桥5包括主体部51和至少一个连接部52。其中,主体部51在第一基板1上的正投影,与信号线2在第一基板1上的正投影至少部分重叠;至少一个连接部52连接主体部51,且连接部52在第一基板1上的正投影,与参考线3在第一基板1上的正投影至少部分重叠。连接部52能够支撑起主体部51,使主体部51与信号线2上的第一绝缘层4之间具有一定间隙,从而主体部51与信号线2之间形成电容,从而直流偏置电压加载到主体部51和信 号线2上,使CPW传输线成为一个可变电容周期传输线结构,以达到移相的目的。为了调节移相量,可以将不同数量的电极膜桥5相连接,相连接的电极膜桥5组成一个相控单元,例如图1中,第一、二个相控单元具有一个电极膜桥5,第三、四、五个相控单元分别具有2、4、8个电极膜桥5。由于不同的相控单元具有不同数量的电极膜桥5,因此不同数量的电极膜桥5与信号线2的正对面积不同,从而可以形成大小不同的电容,进而对应的移相量不同,因此,可以设置多个相控单元,通过所需的移相量驱动对应的一个或多个相控单元,能够调节移相器的移相量。需要说明的是,本公开实施例的移相器具体可以为微机电系统(MEMS,Micro-Electro-Mechanical System)移相器。
需要说明的是,本公开实施例提供的移相器中,可以只在第一基板1上设置一条参考线3,该参考线3设置在信号线2的延伸方向的任一侧;也可以在第一基板上设置两条参考线3,即参考线3可以包括第一参考线31和第二参考线32,第一参考线31和第二参考线32分别设置在信号线2的延伸方向的两对侧。以下皆以参考线3包括第一参考线31和第二参考线32进行说明。若移相器仅包括一条参考线3,则每个电极膜桥5仅包括一个连接部52,主体部51的另一侧不设置连接部52;若移相器包括第一参考线31和第二参考线32,则每个电极膜桥5包括两个连接部52,分别为第一连接部52a和第二连接部52b,第一连接部52a和第二连接部52b的一端分别连接在主体部51的两侧,另一端分别固定在第一参考线31和第二参考线32上,或分别固定在覆盖在第一参考线31和第二参考线32上的第一绝缘层4上。以下皆以每个电极膜桥5包括第一连接部52a和第二连接部52b为例进行说明。
在本公开实施例提供的移相器中,每个电极膜桥5的主体部51由连接部52架设在信号线2上,直流偏置电压加载至电极膜桥5和信号线2,具体地,直流偏置电压加载至电极膜桥5的连接部52,再由连接部52传输至主 体部51,从而能够在主体部51和信号线2之间产生静电引力,从而能够驱动主体部51在垂直于信号线2的方向上,向靠近信号线2的位置移动,即主体部51能够活动。具体地,当直流偏置电压未由电极膜桥5的连接部52施加在其主体部51和信号线2之间时,电极膜桥5中由主体部51-间隙-第一绝缘层4-信号线2构成了它们之间的开态电容Con,即信号通过开关时的电容,与平行板电容相似,电容值较低,约为fF数量级。其中,上述间隙为主体部51与覆盖在信号线2上的第一绝缘层4之间的间隙,当直流偏置电压由电极膜桥5的连接部52施加在其主体部51和信号线2之间时,主体部51在静电引力作用下使间隙的高度发生变化。当所加的直流偏置电压足够大时,静电引力将主体部51下拉至与第一绝缘层4紧密接触,电极膜桥5中由主体部51-第一绝缘层4-信号线2的三层结构构成电容值较大的关态电容Coff,约为pF数量级。每个电极膜桥5的移相量由该电极膜桥5的主体部51与信号线2的重叠面积,以及该电极膜桥5的Con/Coff的值决定。
需要说明的是,电极膜桥5的直流偏置电压可以由电压输入线01输入,即电压输入线01设置在第一绝缘层4背离第一基板上,每个电极膜桥5连接一条电压输入线01的一端,电压输入线01的另一端连接直流偏置电压源(图中未示出)。
需要说明的是,本公开实施例提供的移相器中,第一绝缘层4可以覆盖在信号线2和参考线3上(如图3所示),第一绝缘层4也可以仅覆盖信号线2,而不覆盖第一参考线31和第二参考线32(如图4所示)。以移相器包括第一参考线31和第二参考线32,电极膜桥5包括第一连接部52a和第二连接部52b为例,若第一绝缘层4覆盖在信号线2和参考线3上,则电极膜桥5的第一连接部52a连接在主体部51的一侧与覆盖在第一参考线31上的第一绝缘层4之间,第二连接部52b连接在主体部51的另一侧与覆盖在第二参考线32上的第一绝缘层4之间;若第一绝缘层4仅覆盖信号线2,则电极膜桥 5的第一连接部52a连接在主体部51的一侧与第一参考线31之间,第二连接部52b连接在主体部51的另一侧与第二参考线32之间,第一参考线31和第二参考线32均连接参考电压源,因此电极膜桥2的电位也为参考电压源提供的参考电压,则仅在信号线2上输入直流偏置电压即可。以下皆以第一参考线31和第二参考线32上覆盖有第一绝缘层4,第一连接部52a和第二连接部52b连接在第一绝缘层4上为例进行说明,但不对本发明构成限制。
需要说明的是,在第一绝缘层4覆盖信号线2,而不覆盖参考线3(如图4所示)的实施例中,由于第一传输结构6用于信号线2输入直流偏置电压,因此第一传输结构6可以设置在参考线3(第一参考线31或第二参考线32)上并延伸至信号线2处,即第一传输结构6与参考线3有交叠,因此,第一传输结构6与参考线3相交叠的区域也覆盖有第一绝缘层4,以对第一传输结构5与参考线3进行绝缘。
由上述可知,为了在电极膜桥5和信号线2之间形成分布电容,需要向信号线2输入直流偏置电压,而信号线2也作为射频信号的传输线,因此,信号线2会同时接收低频的直流偏置电压和高频的射频信号。为了防止避免射频信号向直流偏置电压的传输线泄露,使得移相器的插损增高,稳定性降低,需要对直流偏置电压和射频信号进行阻隔设计。
参见图5,以图1的移相器100为例,可以在信号线2的一端连接T形偏置器200,在信号线2的另一端连接隔离器300,二者均连接外部设备400,外部设备400能够提供射频信号(或测试信号),外部设备400例如可以是矢量网络分析仪(VNA),VNA能够对移相器的性能进行测试。其中,T形偏置器200具有第一端口P1、第二端口P2和第三端口P3,第一端口P1连接信号线2;第二端口P2连接直流偏置电压源的一端,直流偏置电压源的另一端接参考电压,例如,可以接在移相器的参考线3上;第三端口P3连接外部设备400。外部设备400将射频信号经由隔离器300输入信号线2,其中, 隔离器300具有电容,能够隔离直流偏置电压;射频信号经由信号线2后输入第一端口P1,再经过T形偏置器200内的电容后由第三端口P3输出,由于电容能够隔离直流电压,通过交流信号,因此射频信号可以由第三端口P3输出,而直流偏置电压无法通过;直流偏置电压源将直流偏置电压由第二端口P2输入,经过T形偏置器200内的电感后由第一端口P1输出给信号线2,由于电感能够隔离交流信号,通过直流信号,因此直流偏置电压可以通过第一端口P1输出给信号线2,且能够避免射频信号泄露。以上电路可以实现直流偏置电压和射频信号的隔离,避免射频信号外泄,但若移相器应用到相控阵天线中,即天线中包括多个移相器,则较难给每个移相器都设置上述电路。
因此,本公开实施例提供的移相器中还设置了第一传输结构6,第一传输结6设置在第一绝缘层4背离第一基板1的一侧,且第一传输结构6与信号线2电连接,第一传输结构6用于将直流偏置电压传输至信号线2,且阻隔信号线2上的射频信号。第一传输结构6在第一基板1上的正投影,与多个电极膜桥5在第一基板1上的正投影无重叠。
本公开实施例提供的移相器,由于设置了第一传输结构6,第一传输结构6能够将直流偏置电压加载至信号线2,并且能够避免信号线2上的射频信号向第一传输结构6泄露,因此能够保证移相器的低插损性能,提高移相器的稳定性。
在本公开实施例中,第一传输结构6的具体结构可以包括多种,以下举例说明。
在一些示例中,参见图1-图2、图6-图7,在本公开实施例提供的移相器中,第一传输结构6可以为高阻传输线,高阻传输线的方块电阻可以大于信号线2的方块电阻,高阻传输线的第一端连接信号线2,高阻传输线的第二端连接直流偏置电压源,直流偏置电压源用于提供直流偏置电压。由于高阻传输线的电阻较大,根据电路原理可知,对于稳态电路而言,几乎没有电 流,因此直流偏置电压通过高阻传输线几乎不受影响,而高频交流的射频信号则几乎无法通过高阻传输线,因此,使用高阻传输线将直流偏置电压输入给信号线2,能够使直流偏置电压不受影响,提高移相器的稳定性,且能够有效防止信号线2上的射频信号向高阻传输线输出,因此能够防止射频信号泄露,从而能够保证移相器的低插损性能。
在一些示例中,高阻传输线的材料可以包括各种电阻较高的可导电材料,例如,高阻传输线的材料可以包括氧化铟锡(Indium Tin Oxide,ITO),当然,高阻传输线还可以采用其他电阻较高的可导电材料,或者采用多种材料的组合,在此不做限定。
在一些示例中,高阻传输线能够沿直线排布,也可以弯曲排布,且可以沿各个方向排布,在此不做限定。在本实施例中,如图1、图2所述,以高阻传输线沿垂直于信号线2的延伸方向(例如S1)的方向,由第一基板的边缘延伸至信号线2为例进行说明,但不对本发明构成限制。
需要说明的是,参见图2、图6,第一绝缘层4可以覆盖在信号线2、第一参考线31和第二参考线32背离第一基板1一侧,但为了使第一传输结构6能够与信号线2连接,信号线2的第一端部201上可以不设置第一绝缘层4,即第一绝缘层4对应信号线2的第一端部201的位置具有镂空部,信号线2的第一端部201在第一基板1上的正投影,位于第一绝缘层4的镂空部在第一基板1上的正投影内,以通过镂空部裸露出信号线2的第一端部201,第一传输结构6连接在信号线2的第一端部201上。
进一步地,参见图6、图7,由于信号线2的第一端部201上没有第一绝缘层4,而其他部分上设置了第一绝缘层4,因此信号线2的第一端部201背离第一基板1的表面,与第一绝缘层4背离第一基板1的表面存在高度差,第一端部201背离第一基板1的表面所在平面,低于第一绝缘层4背离第一基板1的表面所在平面,若直接设置第一传输结构6,容易在坡度较大的地 方产生断线等问题。以参考线3包括第一参考线31和第二参考线32,第一参考线31和第二参考线32分别设置在信号线2的延伸方向(例如S1)的两侧为例,当信号线2的第一端部201背离第一基板1的表面,与第一绝缘层4背离第一基板1的表面位于不同平面时,信号线2的第一端部201背离第一基板1一侧可以设置辅助电极02,且辅助电极02设置在第一绝缘层4的镂空部中,辅助电极02的厚度大致等于信号线2的第一端部201背离第一基板1的表面与第一绝缘层4背离第一基板1的表面的高度差,即辅助电极02背离第一基板1的表面与第一绝缘层4背离第一基板1的表面位于同一平面,从而信号线2的第一端部201能够实现平坦化,第一传输结构6的第一端能够通过辅助电极6与信号线2的第一端部201连接。可选地,参见图6、图7,辅助电极02的材料可以与第一传输结构6的材料不同(如图6所示),也可以与第一传输结构6的材料相同(如图7所示),在此不做限定。以第一传输线6为高阻传输线为例,若高阻传输线采用ITO,辅助电极02可以采用其他金属材料,或者,辅助电极02也采用ITO,与高阻传输线的ITO分层沉积,在此不做限定。后续各第一传输结构6均可采用辅助电极02与信号线2实现连接,后续不再赘述。
在一些示例中,参见图8-图11,在本公开实施例提供的移相器中,第一传输结构6可以为高频传输线,由于寄生效应,高频传输线会产生较大的寄生电感,因此采用高频传输线的第一传输结构6相当于连接了一个较大的寄生电感L1,其等效电路图如图12所示,其中,V表示高频传输线连接的直流偏置电压源,CPWi为输入信号线2的射频信号输入端,CPWo为接入的设备,能够提供射频信号,例如VNA等,直流偏置电压能够通过高频传输线排布形成的寄生电感L1后输入信号线2,寄生电感L1几乎不影响直流偏置电压,而射频信号若通过寄生电感L1,寄生电感L1两端将会产生自感电动势,自感电动势的方向与外加电压的方向相反,阻碍射频信号通过,因此, 高频传输线能够有效阻隔信号线2上的射频信号向高频传输线泄露,且从而能够保证移相器的低插损性能,提高移相器的稳定性。
进一步地,高频传输线可以弯折排布,具体地,高频传输线可以包括多个第一连接段6a和多个第二连接段6b,第一连接段6a和第二连接段6b首尾相连构成弯折结构,多个第一连接段6a沿同一方向间隔排布,每个第二连接段6b连接在相邻的两个第一连接段6a之间。其中,多个第一连接段6a沿第一方向S1延伸,多个第二连接段6b沿第二方向S2延伸,且第一方向S1与第二方向S2相交。由于第一连接段6a和第二连接段6b的延伸方向不同,且首尾连接,因此,在第一连接段6a的排布方向上,相邻的第一连接段6a具有一定的交叠面积,彼此之间会产生寄生电感,从而多个第一连接段6a和多个第二连接段6b首尾相连构成的弯折结构,将构成一个总的寄生电感,进一步增,大高频传输线产生的寄生电感L1。并且,高频传输线采用弯折排布,相比直线排布,能够减少其布线面积。
在本实施例中,还可以在信号线2上连接一个电容C作为隔离器,隔绝直流偏置电压,该电容C可以采用外置电容,也可以在信号线2上方或下方再设置一次电极,与信号线2自身形成电容,在此不做限定。
可选地,参见图8、图9-图10,高频传输线具体可以具有多种排布方式,且一个第一连接段6a的长度可以与一个第二连接段6a的长度不同,只要第一连接段6a与第二连接段6b能够形成寄生电感即可。例如,参见图8,多个第一连接段6a沿第一方向S1延伸,多个第二连接段6b沿第二方向S2延伸,且第一方向S1与第二方向S2相交,其中,第一方向S1垂直于信号线2的延伸方向,而第二方向S2平行于信号线2的延伸方向,且多个第一连接段6a沿第二方向S2(平行于信号线2的延伸方向的方向)间隔排布,第二连接段6b分别在第一连接段6a的两侧,每个第二连接段6b连接在相邻的两个第一连接段6a之间,且一个第一连接段6a的长度大于一个第二连接段6b的长 度。
又例如,参见图10、图11,多个第一连接段6a沿第一方向S1延伸,多个第二连接段6b沿第二方向S2延伸,且第一方向S1与第二方向S2相交,其中,第一方向S1平行于信号线2的延伸方向,而第二方向S2垂直于信号线2的延伸方向,且多个第一连接段6a沿第二方向S1(垂直于于信号线2的延伸方向的方向)间隔排布,第二连接段6b分别在第一连接段6a的两侧,每个第二连接段6b连接在相邻的两个第一连接段6a之间,且一个第一连接段6a的长度大于一个第二连接段6b的长度。参见图10,以信号线2指向第一参考线31的方向,可以将第一连接段6a和第二连接段6b组成的弯折结构中,最头部的第一连接段6a所连接的第二连接段6b连接信号线2,最尾部的第一连接段6a所连接的第二连接段6b连接外部直流偏置电压源;参见图11,以信号线2指向第一参考线31的方向,可以将第一连接段6a和第二连接段6b组成的弯折结构中,最尾部的第一连接段6a所连接的第二连接段6b连接信号线2,最头部的第一连接段6a所连接的第二连接段6b连接外部直流偏置电压源。当然,除了上述弓字形排布的高频信号线,高频信号线还可以按照更多种方式排布,例如可以按S形排布、折线形排布等,在此不做限定。
在一些示例中,参见图13、图14,在本公开实施例提供的移相器中,第一传输结构6可以包括第一传输线,第一传输线呈平面螺旋形排布,以构成平面电感。构成平面电感的第一传输线的第一端连接信号线2,具体可以连接信号线2的第一端部201,第一传输线的第二端连接直流偏置电压源,以传输直流偏置电压给信号线2。与上述同理,直流偏置电压能够通过第一传输线形成的平面电感后输入信号线2,平面电感几乎不影响直流偏置电压,而射频信号若通过平面电感,平面电感两端将会产生自感电动势,自感电动势的方向与外加电压的方向相反,阻碍射频信号通过,因此,平面电感能够 有效阻隔信号线2上的射频信号向高频传输线泄露,且从而能够保证移相器的低插损性能,提高移相器的稳定性。
在一些示例中,由于第一传输线构成的平面电感的一端需要连接信号线2,另一端需要延伸到第一基板1背离信号线2的边缘,以连接直流偏置电压源,而螺旋形排布的第一传输线的两端中的一端位于螺旋线中部位置,因此,需要进行跨层设计才能够延伸出来。参见图13、图14,图13中为了示出第一子传输线61和第二子传输线62的位置关系,对第一子传输线61的填充图案进行半透明化,但并不对第一子传输线的结构进行限定。为第一传输线的第一传输结构6分为第一子传输线61和第二子传输线62,第一子传输线61设置在第一绝缘层4背离第一基板1一侧,第二子传输线62设置在第一绝缘层4靠近第一基板1一侧,即第一子传输线61和第二子传输线62设置在第一绝缘层4的对侧,并且,第一绝缘层4中设置有一通孔Via,且通孔Via在第一基板1上的正投影,与参考线3(图中具体为第一参考线31)在第一基板1上的正投影无重叠。其中,第一子传输线61呈平面螺旋形排布构成平面电感,设置在第一绝缘层4上,第一子传输线61的第一端连接信号线2的第一端部201,第一子传输线61的第二端通过通孔Via连接第一绝缘层4下的第二子传输线62的第一端,第二子传输线62的第二端连接直流偏置电压源,因此能够避免第一子传输线61和第二子传输线62短路,且能够形成平面电感。第一子传输线61和第二子传输线62可以采用同一种材料,也可以采用不同的材料,在此不做限定。
需要说明的是,本实施例中第一传输线排布的平面螺旋形可以包括多种类型,例如,矩形螺旋形、圆形螺旋形、六边形螺旋形、八边形螺旋形等,且对平面电感的线宽、匝数等可以根据需要设计,在此均不限定。本实施例中以第一传输线呈矩形的平面螺旋形排布为例进行说明,但不对本发明构成限制。
在一些示例中,第一传输结构6在第一基板1上的正投影,与参考线3在第一基板1上的正投影至少部分重叠,从而第一传输结构6与参考线3之间能够形成寄生电感,能够进一步防止射频信号泄露。例如,参见图8,采用高频传输线形成的弯折结构作为第一传输结构6的实施例中,第一传输结构6与第一参考线31存在交叠,除了第一连接段6a与第二连接段6b之间形成的寄生电感外,第一连接段6a与第二连接段6b可以分别与第一参考线31形成寄生电感,从而增大了寄生电感的电感值,具有更好的隔离射频信号的效果。
需要说明的是,在上述示例中,给电极膜桥5输入直流偏置电压达到电压传输线01可以为各种结构,采用各种方式,电压传输线01的材料和形状可以与第一传输结构6相同,也可以不同,在此不做限定。
在一些示例中,可以增加第一传输结构6与第一基板1之间的第一绝缘层4的厚度,和/或,可以减少第一传输结构6的材料层的厚度,可以进一步保证移相器的低插损性能。
在一些示例中,第一传输结构6的整个结构可以均设置在信号线2的延伸方向的两侧中的任一侧,从而减少布线的复杂度。
在一些示例中,每个电极膜桥5的连接部52靠近信号线2的边缘,和与该连接部52对应的参考线3(即二者在第一基板1上的正投影存在重叠)靠近信号线2的边缘对齐,从而能够采用同一道掩膜版图案化电极层形成电极膜桥5和参考线3。
可选地,本实施例提供的移相器中,电极膜桥5可以采用多种类型的结构,例如,主体部51可以为一规则的矩形(如图1所示)。又例如,参见图15,每个电极膜桥5的主体部51分为两个第一部分511和连接在两个第一部分511之间的第二部分512,连接部52连接在两个第一部分511中的至少一者,本实施例中,以电极膜桥5具有两个连接部,则第一连接部52a连接一 个第一部分511上,第二连接部52b连接另一个第一部分511为例进行说明。其中,主体部51的511第一部分在第一基板1上的正投影,与信号线2在第一基板1上的正投影无重叠;主体部51的第二部分512在第一基板1上的正投影,与信号线2在第一基板1上的正投影至少部分重叠。其中,沿信号线2的延伸方向(例如图中第一方向S1),连接部52(包括第一连接部52a和第二连接部52b)的宽度d1不小于主体部51的第一部分511的宽度d2,主体部51的第一部分511的宽度d2不小于主体部51的第二部分512的宽度d2,即d1≥d2≥d3。在一些示例中,第一部分511可以为梯形,由第二部分512指向第一部分511的方向上,第一部分511的宽度d2逐渐减小,第一部分511的短边连接第二部分512,长边与连接部52相连,第二部分512可以为矩形,第二部分512与第一部分511连接处的宽度,大致等于第一部分511的短边的边长。从而,由于第二部分512较窄,而第二部分512又与信号线2形成电容,在静电引力的作用下往下运动,因此,较窄的第二部分512更容易被拉动,从而所需的直流驱动电压较小;而连接部52作为主体部51的支撑,宽度较大能够提供更强的支撑力,保证电极膜桥5的机械稳定性;第一部分511则作为第二部分512与连接部52的过渡,连接在二者之间。当然,电极膜桥5还可以为其他结构,在此不做限定。
在一些示例中,参见图15,本公开实施例提供的移相器中,每个电极膜桥5的主体部51的至少部分区域可以分布有多个开口001,开口001起到释放应力的作用,使电极膜桥5不易塌陷,且更容易活动,因此能够使用较小的直流偏置电压即可驱动电极膜桥5下拉。开口001可以为多种形状,例如矩形、圆形等,且数量、分布位置不做限制。
第二方面,参见图16,本公开实施例还提供一种移相器的制备方法,可以包括以下步骤:
S1、在第一基板1上制作信号线2和位于信号线2的延伸方向的至少一 侧的参考线3。
具体地,第一基板1可以为玻璃基板或硅基基板,对第一基板1进行清洗、烘干等准备。参见图16(a),可以在第一基板1上通过溅射等工艺形成第一电极层,再通过曝光、刻蚀、显影等工艺形成信号线2和参考线3的图形。
S2、在信号线2和参考线3上制作第一绝缘层4。
具体地,参见图16(b),在信号线2和参考线3背离第一基板1一侧沉积第一绝缘层4,使第一绝缘层4包覆在信号线2和参考线3外,并对第一绝缘层4进行图案化,除去第一绝缘层4覆盖在信号线2的第一端部201的部分,使信号线2的第一端部201裸露。
S3、在第一绝缘层4上制作第一传输结构6。
具体地,参见图16(c),由于信号线2的上表面与第一绝缘层4的上表面具有高度差,为了方便连接,可以在信号线2的第一端部201背离第一基板1一侧沉积辅助电极02的材料层,并进行图案化形成辅助电极02。
进一步地,参见图16(d)在辅助电极02和第一绝缘层4背离第一基板1一侧沉积第一传输结构6的材料,并对第一传输结构6进行图案化,使其与辅助电极02连接。
S4、在第一绝缘层4上制作多个电极膜桥5。
具体地,参见图16(e),可以在第一绝缘层4沉积牺牲层03,牺牲层03的外轮廓与电极膜桥5的内侧相贴合。参见图16(f),在牺牲层03上衬底第二金属层,再对第二金属层进行刻蚀,形成电极膜桥5。参见图16(g),用牺牲层释放液冲洗移相器,释放牺牲层03,从而形成完整的移相器。
第三方面,本发明还提供一种天线,可以包括多个上述移相器,还可以包括多个辐射单元。每个移相器连接至少一个辐射单元,辐射单元用于发射经过移相器移相的射频信号,或接收射频信号后输入至移相器。多个移相器 可以阵列排布应用为相控阵天线,且多个移相器的第一基板1可以一体成型。天线可以作为接收天线,也可以作为发射天线,通过控制多个移相器的移相量,实现对移相器的相控阵,使天线能够发出不同方向的波束,或接收不同方向的天线,在此不做限定。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (15)

  1. 一种移相器,其特征在于,包括:
    第一基板;
    信号线和位于所述信号线的延伸方向的至少一侧的参考线,所述信号线和所述参考线均设置在所述第一基板上;
    第一绝缘层,设置在所述信号线背离所述第一基板一侧;
    多个电极膜桥,设置在所述第一绝缘层背离所述信号线一侧;每个所述电极膜桥包括主体部和至少一个连接部;所述主体部在所述第一基板上的正投影,与所述信号线在所述第一基板上的正投影至少部分重叠,且所述主体部与所述第一绝缘层之间具有间隙;至少一个所述连接部连接所述主体部,且所述连接部在所述第一基板上的正投影,与所述参考线在所述第一基板上的正投影至少部分重叠;
    第一传输结构,设置在所述第一绝缘层背离所述第一基板的一侧,且与所述信号线电连接;所述第一传输结构在所述第一基板上的正投影,与多个所述电极膜桥在所述第一基板上的正投影无重叠。
  2. 根据权利要求1所述的移相器,其特征在于,所述第一传输结构为高阻传输线,所述高阻传输线的方块电阻大于所述信号线的方块电阻,其第一端连接所述信号线,第二端连接直流偏置电压源;所述高阻传输线的材料至少包括氧化铟锡。
  3. 根据权利要求1所述的移相器,其特征在于,所述第一传输结构为高频传输线,所述高频传输线包括多个第一连接段和多个第二连接段,所述第一连接段和所述第二连接段首尾相连;多个所述第一连接段沿同一方向间隔排布;每个所述第二连接段连接在相邻的两个所述第一连接段之间;其中,
    多个所述第一连接段沿第一方向延伸,多个所述第二连接段沿第二方向 延伸,所述第一方向与所述第二方向相交。
  4. 根据权利要求3所述的移相器,其特征在于,所述第一方向与第二方向中的一者与所述信号线的延伸方向相垂直,另一者与所述信号线的延伸方向相平行。
  5. 根据权利要求3所述的移相器,其特征在于,一个所述第一连接段的长度,和一个所述第二连接段的长度不同。
  6. 根据权利要求1所述的移相器,其特征在于,所述第一传输结构包括第一传输线,所述第一传输线呈平面螺旋形排布构成平面电感;所述第一传输线的第一端连接所述信号线,第二端连接直流偏置电压源。
  7. 根据权利要求6所述的移相器,其特征在于,所述第一绝缘层设置有一通孔;
    所述第一传输线分为第一子传输线和第二子传输线;所述第一子传输线设置在所述第一绝缘层背离所述第一基板一侧,所述第二子传输线设置在所述第一绝缘层靠近所述第一基板一侧;其中,
    所述第一子传输线呈平面螺旋形排布构成平面电感,其第一端连接所述信号线,第二端通过所述通孔连接所述第二子传输线的第一端;所述第二子传输线的第二端连接直流偏置电压源。
  8. 根据权利要求6所述的移相器,其特征在于,所述第一传输线呈矩形的平面螺旋形排布。
  9. 根据权利要求1-8任一所述的移相器,其特征在于,所述第一绝缘层具有镂空部,所述信号线的第一端部在所述第一基板上的正投影,位于所述 镂空部在所述第一基板上的正投影內;
    所述信号线的第一端部背离所述第一基板一侧设置有辅助电极,所述第一传输结构的第一端通过所述辅助电极与所述信号线的第一端部连接。
  10. 根据权利要求1-8任一所述的移相器,其特征在于,所述第一传输结构在所述第一基板上的正投影,与所述参考线在所述第一基板上的正投影至少部分重叠。
  11. 根据权利要求1-8任一所述的移相器,其特征在于,所述连接部靠近所述信号线的边缘,和与之对应的所述参考线靠近所述信号线的边缘对齐。
  12. 根据权利要求1-8任一所述的移相器,其特征在于,所述主体部分为两个第一部分和连接在二者之间的第二部分,所述连接部连接两个所述第一部分中的至少一者;
    所述第一部分在所述第一基板上的正投影,与所述信号线在所述第一基板上的正投影无重叠;所述第二部分在所述第一基板上的正投影,与所述信号线在所述第一基板上的正投影至少部分重叠;其中,
    沿所述信号线的延伸方向,所述连接部的宽度不小于所述第一部分的宽度;所述第一部分的宽度不小于所述第二部分的宽度。
  13. 根据权利要求1-8任一所述的移相器,其特征在于,所述主体部分布有多个开口。
  14. 一种移相器的制备方法,其特征在于,包括以下步骤:
    在第一基板上制作信号线和位于所述信号线的延伸方向的至少一侧的参考线;
    在所述信号线背离所述第一基板一侧制作第一绝缘层;
    在所述第一绝缘层背离所述第一基板的一侧制作第一传输结构,使其与所述信号线电连接;所述第一传输结构在所述第一基板上的正投影,与多个电极膜桥在所述第一基板上的正投影无重叠;
    在所述第一绝缘层背离所述信号线一侧制作多个电极膜桥;每个所述电极膜桥包括主体部和至少一个连接部;所述主体部在所述第一基板上的正投影,与所述信号线在所述第一基板上的正投影至少部分重叠,且所述主体部与所述第一绝缘层之间具有间隙;至少一个所述连接部连接所述主体部,且所述连接部在所述第一基板上的正投影,与所述参考线在所述第一基板上的正投影至少部分重叠。
  15. 一种天线,其特征在于,包括多个权利要求1-13任一所述的移相器。
PCT/CN2021/074425 2021-01-29 2021-01-29 移相器及其制备方法、天线 WO2022160250A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/074425 WO2022160250A1 (zh) 2021-01-29 2021-01-29 移相器及其制备方法、天线
CN202180000093.6A CN115152089B (zh) 2021-01-29 2021-01-29 移相器及其制备方法、天线
US17/442,197 US20230097839A1 (en) 2021-01-29 2021-01-29 Phase shifter, manufacturing method thereof and antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074425 WO2022160250A1 (zh) 2021-01-29 2021-01-29 移相器及其制备方法、天线

Publications (1)

Publication Number Publication Date
WO2022160250A1 true WO2022160250A1 (zh) 2022-08-04

Family

ID=82654128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074425 WO2022160250A1 (zh) 2021-01-29 2021-01-29 移相器及其制备方法、天线

Country Status (3)

Country Link
US (1) US20230097839A1 (zh)
CN (1) CN115152089B (zh)
WO (1) WO2022160250A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101202369A (zh) * 2007-12-11 2008-06-18 中国电子科技集团公司第五十五研究所 一种小型化mems开关线移相器
CN110661064A (zh) * 2019-09-29 2020-01-07 京东方科技集团股份有限公司 移相器及其制备和封装方法
CN110943299A (zh) * 2019-11-29 2020-03-31 北京京东方传感技术有限公司 移相器和相控阵天线
US20200102213A1 (en) * 2018-09-27 2020-04-02 Sofant Technologies Ltd. Mems devices and circuits including same
US20200257149A1 (en) * 2018-08-10 2020-08-13 Beijing Boe Optoelectronics Technology Co., Ltd. Liquid Crystal Phase Shifter, Method for Operating the Same, Liquid Crystal Antenna, and Communication Apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785250B (zh) * 2016-12-23 2019-01-25 西安电子科技大学 基于射频微机电开关的螺旋五位分布式微机电移相器
EP3609017A1 (en) * 2018-08-06 2020-02-12 ALCAN Systems GmbH Radio frequency phase shifting device
CN110137636B (zh) * 2019-05-23 2021-08-06 京东方科技集团股份有限公司 移相器和液晶天线
CN111864317B (zh) * 2020-06-23 2022-03-01 京东方科技集团股份有限公司 移相器及天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101202369A (zh) * 2007-12-11 2008-06-18 中国电子科技集团公司第五十五研究所 一种小型化mems开关线移相器
US20200257149A1 (en) * 2018-08-10 2020-08-13 Beijing Boe Optoelectronics Technology Co., Ltd. Liquid Crystal Phase Shifter, Method for Operating the Same, Liquid Crystal Antenna, and Communication Apparatus
US20200102213A1 (en) * 2018-09-27 2020-04-02 Sofant Technologies Ltd. Mems devices and circuits including same
CN110661064A (zh) * 2019-09-29 2020-01-07 京东方科技集团股份有限公司 移相器及其制备和封装方法
CN110943299A (zh) * 2019-11-29 2020-03-31 北京京东方传感技术有限公司 移相器和相控阵天线

Also Published As

Publication number Publication date
CN115152089B (zh) 2024-03-15
CN115152089A (zh) 2022-10-04
US20230097839A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
JP7424977B2 (ja) 液晶移相器およびその操作方法、液晶アンテナ、通信機器
US6310526B1 (en) Double-throw miniature electromagnetic microwave (MEM) switches
CN107453013A (zh) 一种基于液晶材料的移相器
US8917150B2 (en) Waveguide balun having waveguide structures disposed over a ground plane and having probes located in channels
WO2021259142A1 (zh) 移相器及天线
KR20190042072A (ko) 멀티-레이어 소프트웨어 정의된 안테나 및 그 제조 방법
CN114497929B (zh) 一种移相器
WO2021088519A1 (zh) Mems移相器及其制作方法
EP1672661A2 (en) MEMS switch and method of fabricating the same
CN104737365A (zh) 具有可变频率响应的方向性耦合器
US20230116249A1 (en) Phase shifter and antenna
WO2022001567A1 (zh) 一种硅基行波电极调制器
CN113950772B (zh) 移相器及其制备方法、天线
CN110235301B (zh) 基于液晶的高频装置和高频开关
WO2022160250A1 (zh) 移相器及其制备方法、天线
US20220302566A1 (en) Mems phase shifter
US20060125052A1 (en) Lateral tunable capacitor and high frequency tunable device having the same
CN114824698A (zh) 一种移相器
CN114300821B (zh) 一种移相器、天线
KR101648685B1 (ko) 마이크로전자기계 및 다른 시스템에 사용을 위한 스위치,및 이를 제작하기 위한 공정
CN116544635A (zh) 一种液晶移相器、液晶天线和移相方法
WO2023082187A1 (zh) 移相器
KR102425683B1 (ko) 액정에 기반한 고주파 장치 및 그를 포함하는 고주파 스위치
WO2022178800A1 (zh) 天线
CN113067155B (zh) 传输线结构及其制作方法、液晶天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 13.11.2023)