WO2023082187A1 - 移相器 - Google Patents
移相器 Download PDFInfo
- Publication number
- WO2023082187A1 WO2023082187A1 PCT/CN2021/130382 CN2021130382W WO2023082187A1 WO 2023082187 A1 WO2023082187 A1 WO 2023082187A1 CN 2021130382 W CN2021130382 W CN 2021130382W WO 2023082187 A1 WO2023082187 A1 WO 2023082187A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- isolation
- conductive bridge
- phase shifter
- conductive
- unit
- Prior art date
Links
- 238000002955 isolation Methods 0.000 claims abstract description 244
- 239000000758 substrate Substances 0.000 claims abstract description 46
- 230000010363 phase shift Effects 0.000 claims description 66
- 239000000463 material Substances 0.000 claims description 15
- 238000009413 insulation Methods 0.000 claims description 4
- 239000002356 single layer Substances 0.000 claims description 3
- 238000001179 sorption measurement Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 9
- 238000013461 design Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000005094 computer simulation Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000001934 delay Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- UMVBXBACMIOFDO-UHFFFAOYSA-N [N].[Si] Chemical compound [N].[Si] UMVBXBACMIOFDO-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/18—Phase-shifters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/18—Phase-shifters
- H01P1/184—Strip line phase-shifters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/207—Hollow waveguide filters
- H01P1/208—Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
- H01P1/2088—Integrated in a substrate
Definitions
- the present application relates to the technical field of micro-electro-mechanical systems, and in particular to a phase shifter.
- phase shifters are essential and critical components.
- Traditional phase shifters mainly include ferrite phase shifters and semiconductor phase shifters.
- ferrite phase shifters have relatively large power capacity and relatively small insertion loss, but they are complex in process, expensive in manufacturing cost, and bulky. This limits its large-scale application.
- the semiconductor phase shifter is small in size and fast in working speed, but its power capacity is relatively small, its power consumption is large, and its process is difficult.
- MEMS Micro-Electro-Mechanical System phase shifters have obvious advantages in terms of insertion loss, power consumption, volume and cost, and are widely used in the fields of radio communication and microwave technology. received widespread attention.
- phase shifter comprising:
- the first wiring and the second wiring are arranged on one side of the substrate; the second wiring is respectively arranged on the opposite sides of the first wiring, and the first wiring and the second wiring are respectively arranged Arranged in parallel and insulated from each other;
- At least one conductive bridge At least one conductive bridge; the conductive bridge and the first wiring are arranged to cross and are insulated from each other; both ends of the conductive bridge are respectively overlapped with the second wiring on both sides of the first wiring , and mutual insulation;
- the first isolation part is arranged on the side of the first trace close to the conductive bridge, and the part of the conductive bridge crossing the first trace is on the substrate
- the orthographic projection is located within the orthographic projection of the first isolation portion on the base; the surface of the first isolation portion near the conductive bridge is not flat.
- the first isolation part includes a first isolation unit and a second isolation unit; the surface of the first isolation unit close to the conductive bridge is flat, and the second isolation unit is arranged on the first isolation unit. one side of the isolation unit close to the conductive bridge;
- the second isolation unit includes a plurality of protrusions arranged in an array; the orthographic projection of the plurality of protrusions on the substrate is located in the portion of the conductive bridge that overlaps with the first isolation unit. within the orthographic projection on the base.
- the shape of the section of the protrusion along the direction perpendicular to the base includes a rectangle, a triangle or a trapezoid.
- the shape of the protrusion includes a cylinder, a cone or a truncated cone.
- the relative permittivity of the first isolation unit is greater than the relative permittivity of the second isolation unit.
- the first isolation unit covers two opposite sides of the overlapping portion of the first trace and the first isolation unit.
- a width of the first isolation unit along a first direction is greater than a width of the conductive bridge along the first direction, and the first direction is the same as the arrangement direction of the first wiring.
- the phase shifter further includes: a second isolation part; the second isolation part is arranged on a side of the second wiring close to the conductive bridge, and the conductive bridge is connected to the first
- the orthographic projection of the overlapped portion of the two wires on the substrate is located within the orthographic projection of the second isolation portion on the substrate.
- the first isolation part includes a first isolation unit and a second isolation unit; the surface of the first isolation unit close to the conductive bridge is flat, and the second isolation unit is arranged on the first isolation unit. one side of the isolation unit close to the conductive bridge;
- a side surface of the second isolation portion close to the conductive bridge is flat, and a thickness of the second isolation portion along a direction perpendicular to the base is the same as a thickness of the first isolation unit along a direction perpendicular to the base .
- the relative permittivity of the second isolation part is the same as that of the first isolation unit.
- the first isolation part and the second isolation part respectively include a single layer of isolation material
- the surface of one side of the second isolation portion close to the conductive bridge is flat, and the thickness of the second isolation portion along the direction perpendicular to the base is the same as the maximum thickness of the first isolation portion along the direction perpendicular to the base same.
- a maximum thickness of the first isolation portion along a direction perpendicular to the substrate includes a range of 100 nm ⁇ 1000 nm.
- the relative permittivity of the second isolation part is the same as that of the first isolation part.
- the range of the relative permittivity of the first isolation part includes 3-9.
- the conductive bridge includes a body part and overlapping parts arranged at both ends of the body part;
- the width along the first direction of the part intersecting with the first routing is uniform, and the width of the part not intersecting with the first routing is not uniform along the first direction.
- a direction is the same as the arrangement direction of the first wiring;
- the overlapping portion includes two independent overlapping ends, and the overlapping ends are in contact with the corresponding second isolation portion.
- the phase shifter also includes a first control unit
- the first control unit is electrically connected to the conductive bridge, and is configured to transmit a driving voltage to the conductive bridge when the phase shifter is in a phase-shifted state.
- the phase shifter also includes a second control unit
- the second control unit is electrically connected to the conductive bridge and the first wiring respectively, and is configured to make the conductive bridge and the first wiring when the phase shifter is in a non-phase-shifted state.
- the wires are electrically connected to discharge the conductive bridge.
- the phase shifter includes a plurality of conductive bridges
- a plurality of the conductive bridges are arranged at intervals along a first direction, and the first direction is the same as the arrangement direction of the first wiring.
- the multiple conductive bridges are divided into a first group and a second group; each group includes at least one conductive bridge;
- the degree of phase shift corresponding to each of the conductive bridges is the same;
- the degrees of phase shift corresponding to each of the conductive bridges are different.
- the degree of phase shift corresponding to the conductive bridges of the first group is greater than the degree of phase shift corresponding to the conductive bridges of the second group.
- Fig. 1 schematically shows a schematic structural diagram of a phase shifter
- Figures 2-8 schematically show various cross-sectional views along the CC direction in Figure 1;
- figure a is a perspective view of the simulation structure, and figure b is a top view.
- phase shifter as shown in FIG. 1 and FIG. 2, the phase shifter includes:
- the base 10 the material of the base is not limited, for example, it may be a rigid material, such as glass.
- the first wiring 1 and the second wiring 2 arranged on one side of the substrate 10; the second wiring 2 is respectively arranged on the opposite sides of the first wiring 1, and the first wiring 1 and the second wiring 2 are arranged in parallel, and insulated from each other.
- At least one conductive bridge 3 is arranged across the first trace 1 and is insulated from each other; the two ends of the conductive bridge 3 are respectively overlapped with the second trace 2 on both sides of the first trace 1 and are insulated from each other .
- the first isolation part 4; the first isolation part 4 is set on the side of the first wiring 1 close to the conductive bridge 3, and the part of the conductive bridge 3 that crosses the first wiring 1 (area B defined by the dotted line in FIG. 1 )
- the orthographic projection on the substrate is located within the orthographic projection of the first isolation portion 4 on the substrate; the surface of the first isolation portion 4 near the conductive bridge 3 is not flat.
- the above-mentioned conductive bridge is configured such that there is a gap between the conductive bridge and the first isolation part when no power is applied, and they are not in contact with each other; deformation on one side.
- the above-mentioned first wiring can be used as a coplanar waveguide (Coplanar Waveguide, CPW) signal line
- the above-mentioned second wiring can be used as a coplanar waveguide ground wire.
- the first trace and the second trace cooperate to form a coplanar waveguide transmission line.
- the phase shifting principle of the phase shifter is: when the conductive bridge is not energized, that is, the driving voltage is not loaded, there is a gap between the conductive bridge and the first isolation part, and there is no contact with each other, and there is no high-frequency signal when passing through the phase shifter. phase change.
- the conductive bridge When the conductive bridge is energized, that is, the driving voltage is applied, the conductive bridge deforms to the side close to the first isolation part under the action of electrostatic force. When the driving voltage is large enough, the electrostatic force pulls down the conductive bridge to contact with the first isolation part. After the conductive bridge is deformed, the distance between the conductive bridge and the first trace is changed, thereby changing the distributed capacitance of the coplanar waveguide transmission line, and then making the coplanar waveguide transmission line a slow wave system for the purpose of phase delay. It should be noted that, in FIGS. 2-5 , a gap exists between the conductive bridge and the first isolation part and they are not in contact with each other.
- the two sides opposite to the above-mentioned first line are respectively provided with second lines, as shown in FIG. ; instead of referring to the upper and lower sides of the first trace 1.
- the materials of the above-mentioned first trace, second trace and conductive bridge are not limited; in order to facilitate production and reduce costs, the three can use the same material; for example, the three materials can be conductive such as aluminum, silver or copper. Metal.
- the material of the above-mentioned first isolation part is not limited, as long as it can play the role of insulation and isolation.
- the first isolation part is provided between the above-mentioned conductive bridge and the first wiring, so as to avoid the problem of poor signal transmission caused by the short circuit between the two.
- the surface of the first isolation part close to the conductive bridge is uneven, indicating that the surface of the first isolation part close to the conductive bridge is uneven; here, the specific implementation method for the uneven surface of the first isolation part close to the conductive bridge is not As a limitation, for example, the uneven surface can be obtained by means of surface burr, surface wave or surface granulation; or, a plurality of protrusions can also be provided to form the uneven surface. It should be noted that the above-mentioned unevenness refers to the unevenness caused by structural changes, such as the uneven surface formed by setting protrusions, etc.; the unevenness within the process error range caused by the actual process conditions is not included in this within range.
- the specific shape of the above-mentioned conductive bridge is not limited, for example, the shape of the conductive bridge may be a strip shape, or may also be other shapes.
- the electrostatic force is a key factor for the deformation of the conductive bridge, and the magnitude of the electrostatic force directly affects the degree of deformation of the conductive bridge, which in turn affects the distance between the conductive bridge and the first trace, and finally affects the amount of phase delay.
- the electrostatic force pulls the conductive bridge down to the first isolation part. If the surface of the first isolation part close to the conductive bridge side is very flat, then, after the conductive bridge is pulled down to the first isolation part, the contact area with the first isolation part will be relatively large, and under the action of electrostatic adsorption, the conductive bridge and the first isolation part will be relatively large. There will be a risk of adhesion between the first isolation parts; then, in the process of reducing the driving voltage until it is removed, the conductive bridge will have the risk of being difficult to separate from the first isolation part, thereby reducing the stability of the device.
- the phase shifter provided by the present application can, on the one hand, perform phase delay on high-frequency signals;
- the contact area between the conductive bridge and the first isolation part is greatly reduced, thereby effectively reducing the risk of adhesion between the conductive bridge and the first isolation part caused by electrostatic adsorption, thereby improving the stability of the device.
- the first isolation part 4 in order to reduce manufacturing difficulty, as shown in FIGS. 2-5 , includes a first isolation unit 41 and a second isolation unit 42; One side surface of the first isolation unit 41 is flat, and the second isolation unit 42 is disposed on a side of the first isolation unit 41 close to the conductive bridge 3 .
- the second isolation unit 42 includes a plurality of protrusions 43 arranged in an array; the orthographic projection of the plurality of protrusions on the base is located within the orthographic projection of the part of the conductive bridge that overlaps with the first isolation unit on the base.
- the first isolation part includes two layers of isolation units, the materials of the first isolation unit and the second isolation unit may be the same or different, and in addition, the relative permittivity of the first isolation unit and the relative permittivity of the second isolation unit may be the same Or different, neither is limited here.
- the specific shape and quantity of the protrusions included in the second isolation unit are not limited.
- the surface of the first isolation unit close to the conductive bridge is flat, where the flatness includes unevenness within the range of process error caused by actual process conditions.
- the second isolation unit includes a plurality of protrusions arranged in an array, so that the surface of the first isolation portion near the conductive bridge is not flat.
- the structure is simple and easy to implement.
- the shape of the section of the protrusion along the direction perpendicular to the base includes a rectangle as shown in FIG. 2 , a triangle as shown in FIG. 4 , or a trapezoid as shown in FIG. 3 .
- other regular shapes can also be selected according to actual requirements.
- the shape of the protrusion includes a cylinder, a cone or a truncated cone.
- the plurality of protrusions 43 have the same shape and size.
- the relative permittivity of the first isolation unit is greater than the relative permittivity of the second isolation unit, so that the capacitance between the conductive bridge and the first wiring can be adjusted, thereby achieving a corresponding phase delay.
- the first isolation unit 41 wraps the first wiring 1 and the first isolation unit 41 Two opposite sides in the overlapped portion (side L1 and side L2 shown in FIG. 2 ).
- the width W0 of the first isolation unit 41 along the first direction (the AO direction shown in FIG. 1 ) is the same as the arrangement direction of the first wiring 1 .
- the phase shifter in order to avoid the contact between the second trace and the conductive bridge, and prevent the problem of poor signal transmission due to short circuit between the two, as shown in FIGS. 1-5 , the phase shifter further includes: a second isolation part 5; the second isolation part 5 is arranged on the side of the second wiring 2 close to the conductive bridge 3, and referring to the orthographic projection of the part of the conductive bridge 3 overlapping with the second wiring 2 shown in FIG. 4 on the substrate 10 S1 is located within the orthographic projection S2 of the second isolation portion 5 on the substrate 10 .
- the material of the second isolation part is not limited, as long as it can play the role of insulation and isolation.
- the materials of the second isolation part and the first isolation part may be the same, or may also be different, which is not limited here.
- the thicknesses of the second isolation part and the first isolation part along the direction perpendicular to the base may be the same, or may also be different.
- the two ends of the conductive bridge are respectively overlapped with the second traces located on both sides of the first trace. In the phase shifter provided with the second isolation part, as shown in FIG. 1-5, the conductive bridge The two ends of 3 may respectively contact with the corresponding second isolation part 5 and be fixed together.
- a specific structure of the first isolation part and the second isolation part is provided below.
- the first isolation unit 4 includes a first isolation unit 41 and a second isolation unit 42; the surface of the first isolation unit 41 close to the conductive bridge 3 is flat, and the second isolation unit 42 is arranged on the first isolation unit 42.
- the isolation unit 41 is close to one side of the conductive bridge 3 .
- the surface of the side of the second isolation portion 5 close to the conductive bridge 3 is flat, and referring to FIG. Both are H1.
- the materials of the second isolation part and the first isolation unit may be the same, or may also be different, which is not limited here.
- the relative permittivity of the second isolation part and the first isolation unit may be the same, or may also be different.
- the same material can be selected to manufacture the second isolation part and the first isolation unit through a patterning process.
- the structure of the above-mentioned second isolation unit may be as shown in FIGS. 2-5 , including a plurality of protrusions arranged in an array.
- FIGS. 2-5 The structure of the above-mentioned second isolation unit may be as shown in FIGS. 2-5 , including a plurality of protrusions arranged in an array.
- the distance between the conductive bridge and the first isolation part is the distance between the conductive bridge and the second isolation unit, then by adjusting the second isolation unit along the direction perpendicular to the substrate
- the thickness of the conductive bridge and the second isolation unit can be adjusted to achieve a phase delay corresponding to a degree of phase shift, especially a phase delay with a small degree of phase shift (for example: 5.625°).
- a degree of phase shift for example: 5.625°
- the relative dielectric constant of the second isolation part is the same as that of the first isolation unit.
- the first isolation portion and the second isolation portion respectively comprise a single-layer isolation material; the surface of the second isolation portion near the conductive bridge is flat, and referring to FIG. 5 , the thickness of the second isolation portion 5 along the direction perpendicular to the substrate 10 is equal to The maximum thickness of the first isolation portion 4 along the direction perpendicular to the base 10 is the same, both being td.
- the thickness of the first isolation portion along the direction perpendicular to the base is not uniform, and there is a maximum thickness td as shown in FIG. 5 .
- the surface of the above-mentioned first isolation part close to the conductive bridge side is uneven; here, the specific implementation of the uneven surface of the first isolation part close to the conductive bridge side is not limited.
- surface burr and surface wave Or the uneven surface can be obtained by means of surface granulation; or, a plurality of protrusions can also be provided to form an uneven surface.
- phase delays with different degrees of phase shift can be realized.
- the switch capacitance ratio Cr is a key parameter that determines the phase shift amount of the phase shifter, and the phase shift amount per unit length of the phase shifter increases exponentially with the increase of the switch capacitance ratio.
- the formula for calculating the switch capacitance ratio Cr is:
- C d is the off-state capacitance, that is, when the conductive bridge is loaded with a driving voltage, the conductive bridge deforms to the side close to the first isolation part under the action of the electrostatic force; when the driving voltage is large enough, the electrostatic force will The conductive bridge is pulled down to contact the first isolation part; at this time, the off-state capacitance formed by the conductive bridge, the first isolation part and the first wiring is C d .
- C u is an on-state capacitance, that is, the capacitance formed by the conductive bridge, the air gap, the first isolation part and the first wiring when no driving voltage is applied to the conductive bridge.
- ⁇ r is the relative permittivity of the first isolation part, as shown in Fig.
- g0 is the initial distance between the conductive bridge 3 and the first isolation part 4 (that is, the distance between the two when the conductive bridge is not energized).
- distance) is the thickness of the first isolation portion 4 along the direction perpendicular to the substrate 10 .
- the switch capacitance ratio Cr is directly proportional to ⁇ r and g 0 , and is inversely proportional to t d . Therefore, adjusting the relative permittivity of the first isolation part, the initial distance between the conductive bridge and the first isolation part, and the thickness of the first isolation part along the direction perpendicular to the substrate can all change the switching capacitance ratio, thereby achieving different degrees of phase shift. phase delay. The smaller the degree of phase shifting, the accuracy of phase shifting can be further improved. Therefore, the relative permittivity of the first isolation part can be increased, or the initial distance between the conductive bridge and the first isolation part can be increased, or the first isolation part can be lowered. The thickness along the direction perpendicular to the substrate can achieve a small degree of phase shift, thereby improving the phase shift accuracy.
- the maximum thickness of the first isolation part along the direction perpendicular to the substrate ranges from 100 nm to 1000 nm.
- the material of the first isolation part can be nitrogen Silicon.
- the unit phase shift degree of the 4-phase shifter is 22.5°
- the unit phase shift degree of the 5-phase shifter is 11.25°.
- the maximum thickness of the first isolation portion along the direction perpendicular to the substrate may range from 200 nm to 600 nm. If the phase shifter is applied to a 4-phase shifter, the first isolation part can be made of silicon nitride, and its maximum thickness along the direction perpendicular to the substrate can be 300 nm.
- Figure 13 Use the structure shown in Figure 13 for simulation modeling.
- Figure 13 Figure a is a perspective view
- Figure b is a top view.
- silicon nitride with a relative permittivity of 7 is used to form the first isolation part.
- Different degrees of phase shift can be obtained by changing the thickness of the first isolation portion along the direction perpendicular to the substrate.
- the thickness of the first isolation part along the direction perpendicular to the substrate to change the design of the phase shift degree, the influence on the driving voltage of the conductive bridge is not obvious, that is, different phase shift degrees can be achieved without increasing the driving voltage the design of.
- the thicknesses of the first isolation part along the direction perpendicular to the substrate are respectively 150 nm , 300nm, and 450nm, the corresponding phase shift degrees are 39.78°, 22.6°, and 15.55°, respectively.
- ⁇ r is the relative permittivity of the first isolation part
- h is the distance between the conductive bridge and the first isolation part
- S11 is the return loss
- S21 is the insertion loss
- Cang_deg is the phase
- ⁇ is the phase shift Spend.
- the relative permittivity of the second isolation part is the same as that of the first isolation part.
- the range of the relative permittivity of the first isolation part includes 3-9. If the phase shifter is applied to a 4-phase shifter, the first isolation part can be made of silicon nitride with a relative permittivity of 7, and its maximum thickness along the direction perpendicular to the substrate can be 300 nm.
- the thickness of the first isolation portion along the direction perpendicular to the substrate is 300 nm, and the thickness of the first isolation portion along the direction perpendicular to the substrate, as well as the conductive bridge and the first isolation portion Under the condition that the initial distance between them is constant, different degrees of phase shift can be obtained by changing the relative permittivity of the first isolation part.
- the relative permittivity of the first isolation portion is respectively When the values are 5, 7, and 9, the corresponding phase shift degrees are 16.54°, 22.6°, and 28.22°, respectively.
- the meanings of the parameters in each column are the same as those in Table 1, and will not be repeated here. It should be noted that, in the structure adopted for simulation modeling, the surface of the first isolation portion close to the conductive bridge is flat. The simulation results of the phase shifter with uneven surface on the side of the first isolation portion close to the conductive bridge are similar to the above, and will not be described in detail here.
- the conductive bridge 3 includes a main body 30 and overlapping parts 31 disposed at both ends of the main body 30 .
- the portion (the area B defined by the dotted line in FIG. 1) intersecting with the first wiring 1 in the body portion 30 has a uniform width W1 along the first direction (the AO direction shown in FIG. 1), and is consistent with
- the width of the non-intersecting portion of the first trace along the first direction is not uniform, and the first direction (direction AO shown in FIG. 1 ) is the same as the arrangement direction of the first trace 1 .
- the width along the first direction of the portion of the body portion 30 that does not cross the first trace includes W2 , W3 and W4 .
- the overlapping portion 31 includes two independent overlapping ends 311 , and the overlapping ends 311 are in contact with the corresponding second isolation portion 5 .
- the part where the overlapping end 311 is in contact with the second isolation part 5 is a region D defined by a dotted line, and this region can also be called an anchor point region.
- the phase shifter in order to better control the driving voltage of the conductive bridge, as shown in FIG. 1, the phase shifter further includes a first control unit 6; the first control unit 6 is electrically connected to the conductive bridge 3, and It is configured to transmit a driving voltage to the conductive bridge when the phase shifter is in a phase shifting state.
- the first control unit may include a thin film transistor (Thin Film Transistor, TFT), and the thin film transistor includes a gate, a first pole and a second pole, and the first pole may pass through
- TFT Thin Film Transistor
- the first wiring 8 shown in FIG. 1 is connected to one end 311 of the conductive bridge 3, the gate can be connected to the control signal, and the second pole can be connected to the driving voltage signal, then under the control of the control signal, the thin film transistor is turned on, thereby The driving voltage signal is transmitted to the first control unit.
- the phase shifter further includes a second control unit 7; the second control unit 7 is electrically connected to the conductive bridge 3 and the first wiring 1 respectively, and is configured to The phase shifter is in the non-phase shifting state, so that the conductive bridge is electrically connected to the first wiring to discharge the conductive bridge; in this way, the influence of the remaining charge of the conductive bridge on the next phase shift can be avoided, thereby improving the efficiency of the phase shift stability and precision.
- the second control unit 7 may be electrically connected to the conductive bridge 3 through the second wire 9 , and electrically connected to the first wire 1 through the third wire 11 .
- the phase shifter in order to realize the phase delay of more phase shift degrees, as shown in FIGS. 9-12, the phase shifter includes a plurality of conductive bridges 3; ) are arranged at intervals, and the first direction (OA direction) is the same as the direction in which the first wiring 1 is arranged.
- the above multiple conductive bridges can correspond to the same phase shift degree; or, different conductive bridges correspond to different phase shift degrees; or, some conductive bridges correspond to the same phase shift degree, and the rest of the conductive bridges correspond to different phase shift degrees, which will not be done here limited.
- the N phase shifter can include 2 N-1 conductive bridges.
- the phase shifter is composed of 31 conductive bridges cascaded, and the phase shift degree corresponding to each conductive bridge is 11.25°; According to the position of the phase shifter, it can be divided into 5 groups, among which the 11.25° position corresponds to 1 conductive bridge, the 22.5° position corresponds to 2 conductive bridges, the 45° position corresponds to 4 conductive bridges, and the 90° position corresponds to 8 conductive bridges Conductive bridges, 180° positions correspond to 16 conductive bridges, thereby forming 5 MEMS switches (ie, 5 phase shifters).
- different degrees of phase shift can be obtained by changing the relative permittivity of the first isolation part, or the maximum thickness of the first isolation part along the direction perpendicular to the substrate.
- Two types of conductive bridges can be obtained by increasing the relative permittivity of the first isolation part, or reducing the maximum thickness of the first isolation part along the direction perpendicular to the substrate, one type of conductive bridge corresponds to a phase shift of 22.5°, and the other A conductive bridge corresponds to a phase shift degree of 11.25°.
- the 11.25° position corresponds to one conductive bridge
- the 22.5° position corresponds to one conductive bridge
- the 45° position corresponds to two conductive bridges (the conductive bridge with a phase shift of 22.5° )
- the 90° position corresponds to 4 conductive bridges (conductive bridge with a phase shift degree of 22.5°)
- the 180° position corresponds to 8 conductive bridges (conductive bridge with a phase shift degree of 22.5°)
- the number of conductive bridges of the phase shifter only needs 16, compared with the phase shifter shown in Figure 9, the number of conductive bridges is reduced from 31 to 16, which greatly reduces the number of conductive bridges, and the device area is reduced by at least half, thus significantly In order to reduce costs.
- three types of conductive bridges can be obtained by changing the thickness of the second isolation unit along the direction perpendicular to the substrate.
- the first type of conductive bridge corresponds to a phase shift of 5.625°
- the second type of conductive bridge corresponds to
- the phase shift degree of the third conductive bridge is 11.25°
- the phase shift degree corresponding to the third conductive bridge is 22.5°.
- the 5.625° position corresponds to one conductive bridge
- the 11.25° position corresponds to one conductive bridge
- the 22.5° position corresponds to one conductive bridge
- the 45° position corresponds to two conductive bridges ( Conductive bridge with phase shift degree of 22.5°)
- 90° position corresponds to 4 conductive bridges (conductive bridge with phase shift degree of 22.5°)
- 180° position corresponds to 8 conductive bridges (conductive bridge with phase shift degree of 22.5°) , thus forming 6 MEMS switches (that is, 6 phase shifters).
- the number of conductive bridges of this phase shifter only needs 17, compared with the phase shifter shown in Figure 9, the number of conductive bridges is reduced from 31 to 17, which greatly reduces the number of conductive bridges and device area, thereby greatly reducing the cost ;
- the impact on the driving voltage of the conductive bridge is not obvious, that is, the design of various phase shift degrees and the high-precision phase shifting function can be realized without changing the driving voltage.
- four types of conductive bridges can be obtained by changing the thickness of the second isolation unit along the direction perpendicular to the substrate.
- the first type of conductive bridge corresponds to a phase shift of 5.625°
- the second type of conductive bridge corresponds to
- the phase shift degree corresponding to the third conductive bridge is 11.25°
- the phase shift degree corresponding to the third conductive bridge is 22.5°
- the corresponding phase shift degree to the fourth conductive bridge is 45°.
- the 5.625° position corresponds to one conductive bridge
- the 11.25° position corresponds to one conductive bridge
- the 22.5° position corresponds to one conductive bridge
- the 45° position corresponds to one conductive bridge.
- the 90° position corresponds to 2 conductive bridges (conductive bridges with a phase shift degree of 45°)
- the 180° position corresponds to 4 conductive bridges (conductive bridges with a phase shift degree of 45°), thus forming 6 MEMS switches.
- the number of conductive bridges of the phase shifter only needs 10, compared with the phase shifter shown in Figure 9, the number of conductive bridges is reduced from 31 to 10, which greatly reduces the number of conductive bridges and device area, thereby greatly reducing the cost ;
- the impact on the driving voltage of the conductive bridge is not obvious, that is, the design of various phase shift degrees and the high-precision phase shifting function can be realized without changing the driving voltage.
- the phase shifter when the phase shifter includes multiple conductive bridges, as shown in Figures 9-12, the phase shifter also includes multiple DC bias points 20, which can be connected to A bias voltage is applied to the corresponding conductive bridge.
- a plurality of conductive bridges are divided into a first group T1 and a second group T2; each group includes at least one conductive bridge; in the first group T1, the corresponding phase shift degree of each conductive bridge The same; in the second group T2, the phase shift degrees corresponding to the conductive bridges are all different.
- the degree of phase shift corresponding to the conductive bridge can be changed.
- the degree of phase shift corresponding to the first group of conductive bridges is greater than the degree of phase shift corresponding to the second group of conductive bridges.
- the phase shift degree corresponding to the conductive bridges of the first group T1 is 22.5°
- the phase shift degree corresponding to the conductive bridges of the second group T2 includes 5.625° and 11.25°
- 22.5° is greater than 5.625°
- the embodiment of the present application also provides a phase shifter, as shown in Figure 6-8, the difference between the structure of the phase shifter and the phase shifter shown in Figure 2-5 is that the first isolation part 4 is close to the conductive bridge 3.
- the surface on one side is flat, the thickness of the first isolation portion along the direction perpendicular to the substrate may range from 100 nm to 1000 nm, and the range of its relative permittivity may range from 3 to 9, and the rest of the structure is the same as that of the above-mentioned phase shifter, I won't go into details here.
- the thickness H of the first isolation part 4 along the direction perpendicular to the base 10 is greater than the thickness H of the first isolation part 4 along the direction perpendicular to the base 10 in Fig. 6.
- the first isolation part 4 is along the vertical
- the thickness along the direction of the base 10 is the same as the thickness of the second isolation portion 5 along the direction perpendicular to the base 10 .
- the first isolation unit 4 includes a first isolation unit 41 and a second isolation unit 42 stacked in layers; different from the structure of the first isolation unit shown in FIGS. 6-8 , the second isolation unit 42 in FIG.
- the surface near the conductive bridge is flat, and the thickness of the second isolation portion 5 along the direction perpendicular to the substrate 10 is the same as the thickness of the first isolation unit 41 along the direction perpendicular to the substrate 10 .
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
本申请提供了一种移相器,涉及微机电系统技术领域,能有效降低静电吸附导致的导电桥与第一隔离部的粘附风险,提升器件的稳定性。移相器包括:基底;设置在基底一侧的第一走线和第二走线;第一走线相对的两侧分别设置第二走线,第一走线和第二走线平行设置、且相互绝缘;至少一个导电桥;导电桥与第一走线交叉设置、且相互绝缘;导电桥的两端分别与位于第一走线两侧的第二走线搭接、且相互绝缘;第一隔离部;第一隔离部设置在第一走线靠近导电桥的一侧、且导电桥中与第一走线交叉的部分在基底上的正投影位于第一隔离部在基底上的正投影以内;第一隔离部靠近导电桥一侧的表面不平坦。
Description
本申请涉及微机电系统技术领域,尤其涉及一种移相器。
随着信息时代迅速发展,具备高集成、小型化、多功能以及低成本的无线终端逐渐成为通信技术的发展趋势。在通信和雷达应用中,移相器是必不可少的关键组件。传统移相器主要包括铁氧体移相器和半导体移相器,其中铁氧体移相器有较大的功率容量,且插入损耗比较小、但工艺复杂、制造成本昂贵、体积庞大等因素限制了其大规模应用。半导体移相器体积小,工作速度快,但功率容量比较小,功耗较大,工艺难度高。MEMS(Micro-Electro-Mechanical System,微机电系统)移相器相比于传统移相器在插损、功耗、体积与成本等方面均具有明显优势,在无线电通讯和微波技术等领域应用受到了广泛关注。
发明内容
本申请的实施例采用如下技术方案:
一方面,提供了一种移相器,包括:
基底;
设置在所述基底一侧的第一走线和第二走线;所述第一走线相对的两侧分别设置所述第二走线,所述第一走线和所述第二走线平行设置、且相互绝缘;
至少一个导电桥;所述导电桥与所述第一走线交叉设置、且相互绝缘;所述导电桥的两端分别与位于所述第一走线两侧的所述第二走线搭接、且相互绝缘;
第一隔离部;所述第一隔离部设置在所述第一走线靠近所述导电桥的一侧、且所述导电桥中与所述第一走线交叉的部分在所述基底上的正投影位于所述第一隔离部在所述基底上的正投影以内;所述第一隔离部靠近所述导电桥一侧的表面不平坦。
可选的,所述第一隔离部包括第一隔离单元和第二隔离单元;所述第一隔离单元靠近所述导电桥的一侧表面平坦,所述第二隔离单元设置在所述第一隔离单元靠近所述导电桥的一侧;
所述第二隔离单元包括阵列排布的多个凸起;多个所述凸起在所述基底 上的正投影位于所述导电桥中与所述第一隔离单元交叠的部分在所述基底上的正投影以内。
可选的,所述凸起沿垂直于所述基底方向的截面的形状包括矩形、三角形或者梯形。
可选的,所述凸起的形状包括圆柱、圆锥或者圆台。
可选的,所述第一隔离单元的相对介电常数大于所述第二隔离单元的相对介电常数。
可选的,所述第一隔离单元包覆所述第一走线与所述第一隔离单元相交叠的部分中相对的两个侧边。
可选的,所述第一隔离单元沿第一方向的宽度大于所述导电桥沿所述第一方向的宽度,所述第一方向与所述第一走线的设置方向相同。
可选的,所述移相器还包括:第二隔离部;所述第二隔离部设置在所述第二走线靠近所述导电桥的一侧、且所述导电桥中与所述第二走线搭接的部分在所述基底上的正投影位于所述第二隔离部在所述基底上的正投影以内。
可选的,所述第一隔离部包括第一隔离单元和第二隔离单元;所述第一隔离单元靠近所述导电桥的一侧表面平坦,所述第二隔离单元设置在所述第一隔离单元靠近所述导电桥的一侧;
所述第二隔离部靠近所述导电桥的一侧表面平坦,且所述第二隔离部沿垂直于所述基底方向的厚度与所述第一隔离单元沿垂直于所述基底方向的厚度相同。
可选的,所述第二隔离部的相对介电常数与所述第一隔离单元的相对介电常数相同。
可选的,所述第一隔离部和所述第二隔离部分别包括单层隔离材料;
所述第二隔离部靠近所述导电桥的一侧表面平坦,且所述第二隔离部沿垂直于所述基底方向的厚度与所述第一隔离部沿垂直于所述基底方向的最大厚度相同。
可选的,所述第一隔离部沿垂直于所述基底方向的最大厚度的范围包括100nm~1000nm。
可选的,所述第二隔离部的相对介电常数与所述第一隔离部的相对介电常数相同。
可选的,所述第一隔离部的相对介电常数的范围包括3~9。
可选的,所述导电桥包括本体部和设置在所述本体部两端的搭接部;
所述本体部中,与所述第一走线交叉的部分沿第一方向的宽度均一,且与所述第一走线非交叉的部分沿所述第一方向的宽度不均一,所述第一方向与所述第一走线的设置方向相同;
所述搭接部包括两个独立的搭接端,所述搭接端与对应的所述第二隔离部相接触。
可选的,所述移相器还包括第一控制单元;
所述第一控制单元与所述导电桥电连接,且被配置为在所述移相器处于移相状态下,向所述导电桥传输驱动电压。
可选的,所述移相器还包括第二控制单元;
所述第二控制单元分别与所述导电桥和所述第一走线电连接,且被配置为在所述移相器处于非移相状态下,使得所述导电桥和所述第一走线电连接,以对所述导电桥进行放电。
可选的,所述移相器包括多个所述导电桥;
多个所述导电桥沿第一方向间隔设置,所述第一方向与所述第一走线的设置方向相同。
可选的,多个所述导电桥分为第一组和第二组;每组包括至少一个所述导电桥;
第一组中,各所述导电桥对应的移相度相同;
第二组中,各所述导电桥对应的移相度均不同。
可选的,第一组的所述导电桥对应的移相度大于第二组的所述导电桥对应的移相度。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性地示出了一种移相器的结构示意图;
图2-8示意性地示出了沿图1中CC方向的多种截面图;
图9-12示意性地示出了多种移相器的结构示意图;
图13中,a图为仿真结构立体图,b图为俯视图。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的实施例中,采用“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,仅为了清楚描述本申请实施例的技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。另外,“多个”的含义是两个或两个以上,“至少一个”的含义是一个或一个以上,除非另有明确具体的限定。
本申请的实施例提供了一种移相器,结合图1和图2所示,该移相器包括:
基底10;该基底的材料不做限定,示例的,可以为刚性材料,例如:玻璃等。
设置在基底10一侧的第一走线1和第二走线2;第一走线1相对的两侧分别设置第二走线2,第一走线1和第二走线2平行设置、且相互绝缘。
至少一个导电桥3;导电桥3与第一走线1交叉设置、且相互绝缘;导电桥3的两端分别与位于第一走线1两侧的第二走线2搭接、且相互绝缘。
第一隔离部4;第一隔离部4设置在第一走线1靠近导电桥3的一侧、且导电桥3中与第一走线1交叉的部分(图1中虚线限定的区域B)在基底上的正投影位于第一隔离部4在基底上的正投影以内;第一隔离部4靠近导电桥3一侧的表面不平坦。
需要说明的是,上述导电桥被配置为在未通电的情况下,导电桥与第一隔离部之间存在间隙、且互不接触;在通电的情况下,导电桥向靠近第一隔离部的一侧产生形变。
上述第一走线可用作共面波导(Coplanar Waveguide,CPW)信号线,上述第二走线可用作共面波导地线。第一走线和第二走线配合形成共面波导传输线。该移相器的移相原理为:在导电桥未通电即未加载驱动电压的情况下,导电桥与第一隔离部之间存在间隙、且互不接触,高频信号经过移相器时无相位变化。在导电桥通电即加载驱动电压的情况下,导电桥在静电力的 作用下向靠近第一隔离部的一侧产生形变。当驱动电压足够大时,静电力将导电桥下拉至与第一隔离部相接触。导电桥形变后,改变了导电桥与第一走线之间的距离,从而改变共面波导传输线的分布电容,进而使得共面波导传输线成为一个慢波系统,起到相位延迟的目的。需要说明的是,图2-图5均以导电桥与第一隔离部之间存在间隙、且互不接触为例进行绘示。
上述第一走线相对的两侧分别设置第二走线,参考图1所示,这里第一走线1相对的两侧是指第一走线1的左右两侧分别设置第二走线2;而不是指第一走线1的上下两侧。
上述第一走线、第二走线和导电桥的材料不做限定;为了便于制作、且降低成本,三者可以采用相同的材料;示例的,三者材料可以为铝、银或者铜等导电金属。
上述第一隔离部的材料不做限定,只要能够起到绝缘隔离的作用即可。上述导电桥和第一走线之间通过设置第一隔离部,从而避免因两者发生短路出现信号传输不良的问题。
上述第一隔离部靠近导电桥一侧的表面不平坦,说明第一隔离部靠近导电桥一侧的表面凹凸不平;这里对于第一隔离部靠近导电桥一侧的表面不平坦的具体实现方式不做限定,示例的,可以通过表面毛刺化、表面波浪化或者表面颗粒化等方式得到不平坦的表面;或者,还可设置多个凸起,从而形成不平坦的表面。需要说明的是,上述不平坦是指通过结构的变化产生的不平坦,例如通过设置凸起等形成不平坦的表面;而由实际工艺条件所限导致的在工艺误差范围内的不平坦不在该范围内。
上述导电桥的具体形状不做限定,示例的,该导电桥的形状可以是条状,或者,还可以是其他形状。
需要说明的是,静电力是导电桥产生形变的关键因素,静电力的大小直接影响导电桥的形变程度,进而影响导电桥与第一走线之间的距离,并最终影响相位延迟量。在导电桥加载足够大的驱动电压的情况下,静电力将导电桥下拉至第一隔离部。若第一隔离部靠近导电桥一侧的表面非常平坦,那么,导电桥下拉至第一隔离部后,与第一隔离部的接触面积会比较大,则在静电吸附作用下,导电桥与第一隔离部之间会出现粘附风险;那么,在驱动电压减小直到去掉的过程中,导电桥会出现与第一隔离部分离难的风险,从而降低了器件的稳定性。
本申请提供的移相器,一方面可以对高频信号进行相位延迟;另一方面, 第一隔离部靠近导电桥一侧的表面不平坦,那么在导电桥下拉至第一隔离部时,能够大幅减少导电桥与第一隔离部的接触面积,从而有效降低静电吸附导致的导电桥与第一隔离部的粘附风险,进而提升了器件的稳定性。
在一个或者多个实施例中,为了降低制作难度,参考图2-图5所示,第一隔离部4包括第一隔离单元41和第二隔离单元42;第一隔离单元41靠近导电桥3的一侧表面平坦,第二隔离单元42设置在第一隔离单元41靠近导电桥3的一侧。
第二隔离单元42包括阵列排布的多个凸起43;多个凸起在基底上的正投影位于导电桥中与第一隔离单元交叠的部分在基底上的正投影以内。
上述第一隔离部包括两层隔离单元,第一隔离单元和第二隔离单元的材料可以相同或者不同,另外,第一隔离单元的相对介电常数和第二隔离单元的相对介电常数可以相同或者不同,这里均不做限定。上述第二隔离单元包括的凸起的具体形状和数量不做限定。
上述第一隔离单元靠近导电桥的一侧表面平坦,此处平坦包括由实际工艺条件所限导致的在工艺误差范围内的不平坦。
第二隔离单元包括阵列排布的多个凸起,从而使得第一隔离部靠近导电桥一侧的表面不平坦。该结构简单、容易实现。
可选的,为了便于制作,降低制作难度,凸起沿垂直于基底方向的截面的形状包括图2所示的矩形、图4所示的三角形、或者图3所示的梯形。当然,还可以是其他规则形状,可以根据实际要求选择。
可选的,为了便于制作,降低制作难度,凸起的形状包括圆柱、圆锥或者圆台。为了进一步降低制作难度和生产成本,参考图2-5所示,多个凸起43的形状、大小均相同。
可选的,第一隔离单元的相对介电常数大于第二隔离单元的相对介电常数,从而可以调节导电桥与第一走线之间的电容大小,进而实现相应相位的延迟。
可选的,为了进一步保护第一走线,从而更好地防止第一走线与导电桥短路,参考图2所示,第一隔离单元41包覆第一走线1与第一隔离单元41相交叠的部分中相对的两个侧边(图2所示的侧边L1和侧边L2)。
可选的,为了进一步避免第一走线与导电桥接触,防止两者短路,参考图1所示,第一隔离单元41沿第一方向(图1所示的AO方向)的宽度W0大于导电桥3沿第一方向(图1所示的AO方向)的宽度W1,第一方向(图 1所示的AO方向)与第一走线1的设置方向相同。
在一个或者多个实施例中,为了避免第二走线与导电桥接触,防止因两者发生短路出现信号传输不良的问题,参考图1-5所示,移相器还包括:第二隔离部5;第二隔离部5设置在第二走线2靠近导电桥3的一侧、且参考图4所示导电桥3中与第二走线2搭接的部分在基底10上的正投影S1位于第二隔离部5在基底10上的正投影S2以内。
上述第二隔离部的材料不做限定,只要能够起到绝缘隔离的作用即可。上述第二隔离部和第一隔离部的材料可以相同,或者,也可以不同,这里不做限定。另外,第二隔离部和第一隔离部沿垂直于基底方向的厚度可以相同,或者也可以不同。需要说明的是,导电桥的两端分别与位于第一走线两侧的第二走线搭接,在设置有第二隔离部的移相器中,参考图1-5所示,导电桥3的两端可以分别与对应的第二隔离部5相接触、且固定在一起。
下面提供一种第一隔离部和第二隔离部的具体结构。
参考图2-5所示,第一隔离部4包括第一隔离单元41和第二隔离单元42;第一隔离单元41靠近导电桥3的一侧表面平坦,第二隔离单元42设置在第一隔离单元41靠近导电桥3的一侧。
第二隔离部5靠近导电桥3的一侧表面平坦,且参考图4所示第二隔离部5沿垂直于基底10方向的厚度与第一隔离单元41沿垂直于基底10方向的厚度相同,均为H1。
上述第二隔离部和第一隔离单元的材料可以相同,或者,也可以不同,这里不做限定。另外,第二隔离部和第一隔离单元的相对介电常数可以相同,或者,也可以不同。为了简化制作工艺,降低制作成本,可以选择同一材料通过一次构图工艺制作第二隔离部和第一隔离单元。
上述第二隔离单元的结构可以如图2-5所示,包括阵列排布的多个凸起,具体可以参考前述说明,这里不再赘述。
该移相器在导电桥未通电的情况下,导电桥与第一隔离部之间的距离即为导电桥与第二隔离单元之间的距离,那么通过调节第二隔离单元沿垂直于基底方向的厚度,可以调节导电桥与第二隔离单元之间的距离,进而实现相应移相度的相位延迟,尤其是移相度很小(例如:5.625°)的相位延迟。当然,还可以通过调节第一隔离单元沿垂直于基底方向的厚度,从而最终实现相应移相度的相位延迟。
可选的,为了简化制作工艺,降低制作成本,第二隔离部的相对介电常 数与第一隔离单元的相对介电常数相同。
下面提供另一种第一隔离部和第二隔离部的具体结构。
第一隔离部和第二隔离部分别包括单层隔离材料;第二隔离部靠近导电桥的一侧表面平坦,且参考图5所示,第二隔离部5沿垂直于基底10方向的厚度与第一隔离部4沿垂直于基底10方向的最大厚度相同,均为td。
需要说明的是,由于第一隔离部靠近导电桥的一侧表面不平坦,则第一隔离部沿垂直于基底方向的厚度不均一,存在如图5所示的最大厚度td。
上述第一隔离部靠近导电桥一侧的表面凹凸不平;这里对于第一隔离部靠近导电桥一侧的表面不平坦的具体实现方式不做限定,示例的,可以通过表面毛刺化、表面波浪化或者表面颗粒化等方式得到不平坦的表面;或者,还可设置多个凸起,从而形成不平坦的表面。
通过调整第一隔离部沿垂直于基底方向的最大厚度,或者调整第一隔离部的介电常数,均可以实现不同移相度的相位延迟。
对于MEMS移相器而言,开关电容比Cr是决定移相器相移量的关键参数,移相器单位长度的相移量随开关电容比的增加呈指数增加。开关电容比Cr的计算公式为:
其中,C
d为关态电容,即在导电桥加载驱动电压的情况下,导电桥在静电力的作用下向靠近第一隔离部的一侧产生形变;当驱动电压足够大时,静电力将导电桥下拉至与第一隔离部相接触;此时,导电桥、第一隔离部和第一走线形成的关态电容即为C
d。C
u为开态电容,即在未向导电桥加载驱动电压的情况下,导电桥、空气间隙、第一隔离部和第一走线形成的电容。ε
r为第一隔离部的相对介电常数,参考图5所示,g
0为导电桥3和第一隔离部4之间的初始距离(即导电桥不通电的情况下两者之间的距离),td为第一隔离部4沿垂直于基底10方向的厚度。
从C
r的公式中可以得出,开关电容比Cr与ε
r、g
0呈正比关系,与t
d呈反比关系。因此,调整第一隔离部的相对介电常数、导电桥和第一隔离部之间的初始距离和第一隔离部沿垂直于基底方向的厚度均可以改变开关电容比,进而实现不同移相度的相位延迟。移相度越小,则可以进一步提高移相精度,因此,可以通过提高第一隔离部的相对介电常数,或者提高导电桥和第一隔离部之间的初始距离,或者降低第一隔离部沿垂直于基底方向的厚度, 从而实现较小的移相度,进而提高移相精度。
可选的,为了兼容高位数的移相器和45°移相器,第一隔离部沿垂直于基底方向的最大厚度的范围包括100nm~1000nm,此时,第一隔离部的材料可以采用氮化硅。目前4位移相器的单元移相度为22.5°,5位移相器的单元移相度为11.25°。为了得到较小的移相度,第一隔离部沿垂直于基底方向的最大厚度的范围可以包括200nm~600nm。若将该移相器应用于4位移相器中,第一隔离部可以采用氮化硅,其沿垂直于基底方向的最大厚度可以为300nm。
采用图13所示结构进行仿真建模,图13中,a图为立体图,b图为俯视图。该结构采用相对介电常数为7的氮化硅形成第一隔离部,在第一隔离部的相对介电常数、以及导电桥和第一隔离部之间的初始距离不变的情况下,通过改变第一隔离部沿垂直于基底方向的厚度得到不同移相度。同时,通过改变第一隔离部沿垂直于基底方向的厚度从而改变移相度的设计,对于导电桥的驱动电压的影响不明显,即可以在不增加驱动电压的情况下,实现不同移相度的设计。
表一
ε r | td/nm | h/mm | S11(17.7GHz)/dB | S21(17.7GHz)/dB | Cang_deg(17.7GHz)/dB | Δ/° |
7 | 150 | 0 | -3.75 | -2.65 | -71.19 | |
0.0014 | -30.49 | -0.10 | -31.41 | 39.78 | ||
7 | 300 | 0 | -7.92 | -0.92 | -54.09 | |
0.0014 | -29.79 | -0.10 | -31.49 | 22.6 | ||
7 | 450 | 0 | -10.71 | -0.52 | -47.15 | |
0.0014 | -28.08 | -0.11 | -31.60 | 15.55 |
参考表一所示,在第一隔离部的相对介电常数、以及导电桥和第一隔离部之间的初始距离不变的情况下,第一隔离部沿垂直于基底方向的厚度分别为150nm、300nm和450nm时,那么对应的移相度分别为39.78°、22.6°、15.55°。表一中,ε
r为第一隔离部的相对介电常数,h为导电桥和第一隔离部之间的距离,S11表示回波损耗,S21表示插入损耗,Cang_deg表示相位,△表示移相度。需要说明的是,仿真建模采用的结构中,第一隔离部靠近导电桥的一侧表面平坦。第一隔离部靠近导电桥的一侧表面不平坦的移相器的仿真结果与上述类似,这里不再具体说明。
可选的,为了简化工艺,降低制作成本,第二隔离部的相对介电常数与第一隔离部的相对介电常数相同。
可选的,为了兼容高位数的移相器和提高移相精度,第一隔离部的相对 介电常数的范围包括3~9。若将该移相器应用于4位移相器中,第一隔离部可以采用相对介电常数为7的氮化硅,其沿垂直于基底方向的最大厚度可以为300nm。
采用图13所示结构进行仿真建模,该结构中,第一隔离部沿垂直于基底方向的厚度为300nm,在第一隔离部沿垂直于基底方向的厚度、以及导电桥和第一隔离部之间的初始距离不变的情况下,通过改变第一隔离部的相对介电常数得到不同移相度。
表二
ε r | td/nm | h/mm | S11(17.7GHz)/dB | S21(17.7GHz)/dB | Cang_deg(17.7GHz)/dB | Δ/° |
5 | 300 | 0 | -10.36 | -0.56 | -48.11 | |
0.0014 | -31.37 | -0.10 | -31.37 | 16.54 | ||
7 | 300 | 0 | -7.92 | -0.92 | -54.09 | |
0.0014 | -29.79 | -0.10 | -31.49 | 22.6 | ||
9 | 300 | 0 | -28.86 | -1.38 | -59.78 | |
0.0014 | -6.21 | -0.10 | -31.56 | 28.22 |
参考表二所示,在第一隔离部沿垂直于基底方向的厚度为300nm、以及导电桥和第一隔离部之间的初始距离不变的情况下,第一隔离部的相对介电常数分别为5、7和9时,对应的移相度分别为16.54°、22.6°、28.22°。表二中,各列参数含义与表一相同,这里不再赘述。需要说明的是,仿真建模采用的结构中,第一隔离部靠近导电桥的一侧表面平坦。第一隔离部靠近导电桥的一侧表面不平坦的移相器的仿真结果与上述类似,这里不再具体说明。同时,通过改变第一隔离部的相对介电常数,从而改变移相度的设计,对于导电桥的驱动电压的影响不明显,即可以在不增加驱动电压的情况下,实现不同移相度的设计。
下面提供一种导电桥的具体结构。
为了实现更好的搭接效果,同时利于导电桥的下拉,参考图1所示,导电桥3包括本体部30和设置在本体部30两端的搭接部31。
参考图1所示,本体部30中,与第一走线1交叉的部分(图1中虚线限定的区域B)沿第一方向(图1所示的AO方向)的宽度W1均一,且与第一走线非交叉的部分沿第一方向的宽度不均一,第一方向(图1所示的AO方向)与第一走线1的设置方向相同。图1中,本体部30中与第一走线非交叉的部分沿第一方向的宽度包括W2、W3和W4。
参考图1所示,搭接部31包括两个独立的搭接端311,搭接端311与对应的第二隔离部5相接触。参考图1所示,搭接端311与第二隔离部5接触的部分为虚线限定的区域D,该区域还可称为锚点区域。
在一个或者多个实施例中,为了更好控制导电桥的驱动电压,参考图1所示,移相器还包括第一控制单元6;第一控制单元6与导电桥3电连接,且被配置为在移相器处于移相状态下,向导电桥传输驱动电压。
上述第一控制单元的结构不做限定,示例的,该第一控制单元可以包括薄膜晶体管(Thin Film Transistor,TFT),薄膜晶体管包括栅极、第一极和第二极,第一极可以通过图1所示的第一走线8与导电桥3的一端311相连,栅极可以接入控制信号,第二极可以接入驱动电压信号,则在控制信号的控制下,薄膜晶体管打开,从而使得驱动电压信号传输至第一控制单元。
在一个或者多个实施例中,参考图1所示,移相器还包括第二控制单元7;第二控制单元7分别与导电桥3和第一走线1电连接,且被配置为在移相器处于非移相状态下,使得导电桥和第一走线电连接,以对导电桥进行放电;这样,可以避免导电桥残存的电荷对于下次移相的影响,从而提高移相的稳定性和精度。参考图1所示,第二控制单元7可以通过第二走线9与导电桥3电连接,通过第三走线11与第一走线1电连接。
在一个或者多个实施例中,为了实现更多移相度的相位延迟,参考图9-12所示,移相器包括多个导电桥3;多个导电桥3沿第一方向(OA方向)间隔设置,第一方向(OA方向)与第一走线1的设置方向相同。
上述多个导电桥可以对应同一个移相度;或者,不同导电桥对应不同的移相度;或者,部分导电桥对应同一个移相度,其余导电桥对应不同的移相度,这里不做限定。
N位移相器可以包括2
N-1个导电桥,以5位移相器为例,参考图9所示,移相器由31个导电桥级联构成,每个导电桥对应的移相度为11.25°;按照移相器的位态可分为5组,其中11.25°位对应1个导电桥,22.5°位对应2个导电桥,45°位对应4个导电桥,90°位对应8个导电桥,180°位对应16个导电桥,从而形成5个MEMS开关(即5位移相器)。当5位移相器直流偏置点列的直流偏置点20均未接入偏置电压时,高频信号通过移相器时无相位变化。当分别对22.5°位、45°位、90°位、180°位MEMS开关相对应的至少一个偏置点加载偏置电压后,与该直流偏置点20相对应的所有MEMS开关的高度发生变化,那么高频信号通过移相器时相位会对应改变;示例的,当分别对22.5°位、45°位、90°位、180°位MEMS开关相对应的偏置点加载偏置电压后,高频信号通过移相器时相位将分别改变22.5°、45°、90°、180°。每一组的导电桥均并联连接。该结构中,导电 桥对应一种移相度;该结构需要的导电桥的数量多,器件面积大,生产成本高。
为了减小导电桥的数量,可以通过改变第一隔离部的相对介电常数,或者,第一隔离部沿垂直于基底方向的最大厚度从而得到不同移相度。可以通过增大第一隔离部的相对介电常数,或者减小第一隔离部沿垂直于基底方向的最大厚度,得到两种导电桥,一种导电桥对应的移相度为22.5°,另一种导电桥对应的移相度为11.25°。为了进一步减少导电桥的数量,参考图10所示,11.25°位对应1个导电桥,22.5°位对应1个导电桥,45°位对应2个导电桥(移相度为22.5°的导电桥),90°位对应4个导电桥(移相度为22.5°的导电桥),180°位对应8个导电桥(移相度为22.5°的导电桥),从而形成5个MEMS开关(即5位移相器)。该移相器的导电桥的数量仅需要16个,比图9所示的移相器,导电桥数量从31个减少至16,大幅缩减了导电桥的数量,器件面积至少减少一半,从而大幅了降低成本。
在一个或者多个实施例中,可以通过改变第二隔离单元沿垂直于基底方向的厚度,得到三种导电桥,第一种导电桥对应的移相度为5.625°,第二种导电桥对应的移相度为11.25°,第三种导电桥对应的移相度为22.5°。
为了进一步减少导电桥的数量,参考图11所示,5.625°位对应1个导电桥,11.25°位对应1个导电桥,22.5°位对应1个导电桥,45°位对应2个导电桥(移相度为22.5°的导电桥),90°位对应4个导电桥(移相度为22.5°的导电桥),180°位对应8个导电桥(移相度为22.5°的导电桥),从而形成6个MEMS开关(即6位移相器)。该移相器的导电桥的数量仅需要17个,比图9所示的移相器,导电桥数量从31个减少至17,大幅缩减了导电桥的数量和器件面积,从而大幅了降低成本;同时,对于导电桥的驱动电压的影响不明显,即可以在不改变驱动电压的情况下,实现多种移相度的设计和高精度的移相功能。
在一个或者多个实施例中,可以通过改变第二隔离单元沿垂直于基底方向的厚度,得到四种导电桥,第一种导电桥对应的移相度为5.625°,第二种导电桥对应的移相度为11.25°,第三种导电桥对应的移相度为22.5°,第四种导电桥对应的移相度为45°。
为了进一步减少导电桥的数量,参考图12所示,5.625°位对应1个导电桥,11.25°位对应1个导电桥,22.5°位对应1个导电桥,45°位对应1个导电桥,90°位对应2个导电桥(移相度为45°的导电桥),180°位对 应4个导电桥(移相度为45°的导电桥),从而形成6个MEMS开关。该移相器的导电桥的数量仅需要10个,比图9所示的移相器,导电桥数量从31个减少至10,大幅缩减了导电桥的数量和器件面积,从而大幅了降低成本;同时,对于导电桥的驱动电压的影响不明显,即可以在不改变驱动电压的情况下,实现多种移相度的设计和高精度的移相功能。
在一个或者多个实施中,当移相器中包括多个导电桥,则参考图9-12所示,移相器中也相应包括多个直流偏置点20,可以通过直流偏置点向对应的导电桥施加偏置电压。
需要说明的是,相关MEMS移相器之所以不能实现高精度单元设计,一方面受限于驱动电压的精确控制;另一方面受限于工艺制作能力,无法制作更小的导电桥。本申请提供的高精度移相器,对这两者均没有特殊要求,更利于量产实现,具有非常高的实际生产应用价值。
可选的,参考图10-12所示,多个导电桥分为第一组T1和第二组T2;每组包括至少一个导电桥;第一组T1中,各导电桥对应的移相度相同;第二组T2中,各导电桥对应的移相度均不同。
通过改变改变第一隔离部的介电常数或者厚度等,可以改变导电桥对应的移相度。
进一步可选的,为了减少导电桥的数量,第一组导电桥对应的移相度大于第二组导电桥对应的移相度。示例的,参考图11所示,第一组T1的导电桥对应的移相度为22.5°,第二组T2的导电桥对应的移相度包括5.625°和11.25°,22.5°大于5.625°,同时大于11.25°。
本申请实施例还提供了一种移相器,参考图6-8所示,该移相器的结构与图2-5所示的移相器的区别在于,第一隔离部4靠近导电桥3一侧的表面平坦,该第一隔离部沿垂直于基底方向的厚度的范围可以包括100nm~1000nm,其相对介电常数的范围可以包括3~9,其余结构均与上述移相器相同,这里不再赘述。图7中第一隔离部4沿垂直于基底10方向的厚度H大于图6中第一隔离部4沿垂直于基底10方向的厚度H,图6和图7中,第一隔离部4沿垂直于基底10方向的厚度与第二隔离部5沿垂直于基底10方向的厚度相同。图8中,第一隔离部4包括叠层设置的第一隔离单元41和第二隔离单元42;与图6-8所示的第一隔离部的结构不同,图8中第二隔离单元42靠近导电桥一侧的表面平坦,第二隔离部5沿垂直于基底10方向的厚度与第一隔离单元41沿垂直于基底10方向的厚度相同。通过 调节第一隔离部沿垂直于基底方向的厚度或者第一隔离部的相对介电常数,从而实现不同移相度的相位延迟。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (20)
- 一种移相器,其中,包括:基底;设置在所述基底一侧的第一走线和第二走线;所述第一走线相对的两侧分别设置所述第二走线,所述第一走线和所述第二走线平行设置、且相互绝缘;至少一个导电桥;所述导电桥与所述第一走线交叉设置、且相互绝缘;所述导电桥的两端分别与位于所述第一走线两侧的所述第二走线搭接、且相互绝缘;第一隔离部;所述第一隔离部设置在所述第一走线靠近所述导电桥的一侧、且所述导电桥中与所述第一走线交叉的部分在所述基底上的正投影位于所述第一隔离部在所述基底上的正投影以内;所述第一隔离部靠近所述导电桥一侧的表面不平坦。
- 根据权利要求1所述的移相器,其中,所述第一隔离部包括第一隔离单元和第二隔离单元;所述第一隔离单元靠近所述导电桥的一侧表面平坦,所述第二隔离单元设置在所述第一隔离单元靠近所述导电桥的一侧;所述第二隔离单元包括阵列排布的多个凸起;多个所述凸起在所述基底上的正投影位于所述导电桥中与所述第一隔离单元交叠的部分在所述基底上的正投影以内。
- 根据权利要求2所述的移相器,其中,所述凸起沿垂直于所述基底方向的截面的形状包括矩形、三角形或者梯形。
- 根据权利要求3所述的移相器,其中,所述凸起的形状包括圆柱、圆锥或者圆台。
- 根据权利要求2所述的移相器,其中,所述第一隔离单元的相对介电常数大于所述第二隔离单元的相对介电常数。
- 根据权利要求2所述的移相器,其中,所述第一隔离单元包覆所述第一走线与所述第一隔离单元相交叠的部分中相对的两个侧边。
- 根据权利要求2所述的移相器,其中,所述第一隔离单元沿第一方向的宽度大于所述导电桥沿所述第一方向的宽度,所述第一方向与所述第一走线的设置方向相同。
- 根据权利要求1-6任一项所述的移相器,其中,所述移相器还包括:第二隔离部;所述第二隔离部设置在所述第二走线靠近所述导电桥的一侧、 且所述导电桥中与所述第二走线搭接的部分在所述基底上的正投影位于所述第二隔离部在所述基底上的正投影以内。
- 根据权利要求8所述的移相器,其中,所述第一隔离部包括第一隔离单元和第二隔离单元;所述第一隔离单元靠近所述导电桥的一侧表面平坦,所述第二隔离单元设置在所述第一隔离单元靠近所述导电桥的一侧;所述第二隔离部靠近所述导电桥的一侧表面平坦,且所述第二隔离部沿垂直于所述基底方向的厚度与所述第一隔离单元沿垂直于所述基底方向的厚度相同。
- 根据权利要求9所述的移相器,其中,所述第二隔离部的相对介电常数与所述第一隔离单元的相对介电常数相同。
- 根据权利要求8所述的移相器,其中,所述第一隔离部和所述第二隔离部分别包括单层隔离材料;所述第二隔离部靠近所述导电桥的一侧表面平坦,且所述第二隔离部沿垂直于所述基底方向的厚度与所述第一隔离部沿垂直于所述基底方向的最大厚度相同。
- 根据权利要求11所述的移相器,其中,所述第一隔离部沿垂直于所述基底方向的最大厚度的范围包括100nm~1000nm。
- 根据权利要求11所述的移相器,其中,所述第二隔离部的相对介电常数与所述第一隔离部的相对介电常数相同。
- 根据权利要求13所述的移相器,其中,所述第一隔离部的相对介电常数的范围包括3~9。
- 根据权利要求8所述的移相器,其中,所述导电桥包括本体部和设置在所述本体部两端的搭接部;所述本体部中,与所述第一走线交叉的部分沿第一方向的宽度均一,且与所述第一走线非交叉的部分沿所述第一方向的宽度不均一,所述第一方向与所述第一走线的设置方向相同;所述搭接部包括两个独立的搭接端,所述搭接端与对应的所述第二隔离部相接触。
- 根据权利要求1所述的移相器,其中,所述移相器还包括第一控制单元;所述第一控制单元与所述导电桥电连接,且被配置为在所述移相器处于移相状态下,向所述导电桥传输驱动电压。
- 根据权利要求1所述的移相器,其中,所述移相器还包括第二控制单元;所述第二控制单元分别与所述导电桥和所述第一走线电连接,且被配置为在所述移相器处于非移相状态下,使得所述导电桥和所述第一走线电连接,以对所述导电桥进行放电。
- 根据权利要求1所述的移相器,其中,所述移相器包括多个所述导电桥;多个所述导电桥沿第一方向间隔设置,所述第一方向与所述第一走线的设置方向相同。
- 根据权利要求18所述的移相器,其中,多个所述导电桥分为第一组和第二组;每组包括至少一个所述导电桥;第一组中,各所述导电桥对应的移相度相同;第二组中,各所述导电桥对应的移相度均不同。
- 根据权利要求19所述的移相器,其中,第一组的所述导电桥对应的移相度大于第二组的所述导电桥对应的移相度。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/920,681 US20240222833A1 (en) | 2021-11-12 | 2021-11-12 | Phase shifter |
CN202180003371.3A CN116458006A (zh) | 2021-11-12 | 2021-11-12 | 移相器 |
PCT/CN2021/130382 WO2023082187A1 (zh) | 2021-11-12 | 2021-11-12 | 移相器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/130382 WO2023082187A1 (zh) | 2021-11-12 | 2021-11-12 | 移相器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023082187A1 true WO2023082187A1 (zh) | 2023-05-19 |
Family
ID=86334883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/130382 WO2023082187A1 (zh) | 2021-11-12 | 2021-11-12 | 移相器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240222833A1 (zh) |
CN (1) | CN116458006A (zh) |
WO (1) | WO2023082187A1 (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030146079A1 (en) * | 2002-02-05 | 2003-08-07 | Goldsmith Charles L. | Proximity micro-electro-mechanical system |
US20040112723A1 (en) * | 2002-11-25 | 2004-06-17 | Jung Moon Youn | Electric switching device and electric circuit device having the same |
US20040124073A1 (en) * | 2002-05-07 | 2004-07-01 | Pillans Brandon W. | Micro-electro-mechanical switch, and methods of making and using it |
US20060091983A1 (en) * | 2002-11-28 | 2006-05-04 | Philippe Robert | Electrostatic microswitch for low-voltage-actuation component |
US20100001355A1 (en) * | 2008-07-07 | 2010-01-07 | Honeywell International Inc. | RF MEMS Switch |
CN101763987A (zh) * | 2009-12-30 | 2010-06-30 | 中国电子科技集团公司第十三研究所 | Rf mems开关及其制备方法 |
CN103746157A (zh) * | 2014-01-24 | 2014-04-23 | 中国工程物理研究院电子工程研究所 | 一种移相单元及其构成的mems太赫兹移相器 |
CN104170048A (zh) * | 2012-04-30 | 2014-11-26 | 雷斯昂公司 | 射频微机电系统(mems)的电容式开关 |
CN114447544A (zh) * | 2020-10-30 | 2022-05-06 | 京东方科技集团股份有限公司 | 移相器、天线装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10009453A1 (de) * | 2000-02-29 | 2002-04-04 | Daimler Chrysler Ag | Phasenschieber und Anordnung aus mehreren Phasenschiebern |
CN114497929B (zh) * | 2020-10-23 | 2023-12-15 | 京东方科技集团股份有限公司 | 一种移相器 |
CN115084805B (zh) * | 2021-03-16 | 2023-08-08 | 北京京东方技术开发有限公司 | Mems移相器 |
-
2021
- 2021-11-12 US US17/920,681 patent/US20240222833A1/en active Pending
- 2021-11-12 WO PCT/CN2021/130382 patent/WO2023082187A1/zh active Application Filing
- 2021-11-12 CN CN202180003371.3A patent/CN116458006A/zh active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030146079A1 (en) * | 2002-02-05 | 2003-08-07 | Goldsmith Charles L. | Proximity micro-electro-mechanical system |
US20040124073A1 (en) * | 2002-05-07 | 2004-07-01 | Pillans Brandon W. | Micro-electro-mechanical switch, and methods of making and using it |
US20040112723A1 (en) * | 2002-11-25 | 2004-06-17 | Jung Moon Youn | Electric switching device and electric circuit device having the same |
US20060091983A1 (en) * | 2002-11-28 | 2006-05-04 | Philippe Robert | Electrostatic microswitch for low-voltage-actuation component |
US20100001355A1 (en) * | 2008-07-07 | 2010-01-07 | Honeywell International Inc. | RF MEMS Switch |
CN101763987A (zh) * | 2009-12-30 | 2010-06-30 | 中国电子科技集团公司第十三研究所 | Rf mems开关及其制备方法 |
CN104170048A (zh) * | 2012-04-30 | 2014-11-26 | 雷斯昂公司 | 射频微机电系统(mems)的电容式开关 |
CN103746157A (zh) * | 2014-01-24 | 2014-04-23 | 中国工程物理研究院电子工程研究所 | 一种移相单元及其构成的mems太赫兹移相器 |
CN114447544A (zh) * | 2020-10-30 | 2022-05-06 | 京东方科技集团股份有限公司 | 移相器、天线装置 |
Non-Patent Citations (1)
Title |
---|
高杨等 (GAO, YANG ET AL.): "五位分布式MEMS传输线移相器的优化设计 (Optimized Design of 5-bit Distributed MEMS Transmission Line Phase Shifters)", 微纳电子技术 (MICRONANOELECTRONIC TECHNOLOGY), vol. 48, no. 10, 31 October 2011 (2011-10-31), pages 658 - 659, XP009546228 * |
Also Published As
Publication number | Publication date |
---|---|
US20240222833A1 (en) | 2024-07-04 |
CN116458006A (zh) | 2023-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102368374B1 (ko) | 액정 위상 시프터, 그 동작 방법, 액정 안테나, 및 통신 장치 | |
US11158916B2 (en) | Phase shifter and liquid crystal antenna | |
CN107453013B (zh) | 一种基于液晶材料的移相器 | |
EP4016733B1 (en) | Feed structure, microwave radio-frequency device and antenna | |
US20220393330A1 (en) | Signal Conditioner, Antenna Device and Manufacturing Method | |
US11631928B2 (en) | Phase shifter and manufacturing method thereof | |
CN106773338B (zh) | 一种液晶微波移相器 | |
WO2021189238A1 (zh) | 移相器及天线 | |
US11189920B2 (en) | Control substrate, liquid crystal phase shifter and method of forming control substrate | |
CN114300821B (zh) | 一种移相器、天线 | |
US20060125052A1 (en) | Lateral tunable capacitor and high frequency tunable device having the same | |
WO2023082187A1 (zh) | 移相器 | |
WO2016157374A1 (ja) | 移相回路及びアンテナ装置 | |
KR100401965B1 (ko) | 이중모드 대역통과 필터 | |
WO2022160250A1 (zh) | 移相器及其制备方法、天线 | |
US20240266703A1 (en) | Waveguide conversion device and electronic apparatus | |
JP6478397B2 (ja) | フェーズドアレイアンテナ | |
US9099763B2 (en) | Tunable slow wave coplanar waveguide transmission line having a movable shielding plane | |
CN113809491B (zh) | 枝节加载的快速响应型电调谐液晶移相器 | |
WO2022178800A1 (zh) | 天线 | |
US20240266705A1 (en) | Phase shifter and electronic device | |
CN118367321A (zh) | 一种移相器、天线装置、显示装置 | |
WO2023159635A1 (zh) | 移相器和天线 | |
CN110165352B (zh) | 一种定向耦合器及其制作方法 | |
US7365616B2 (en) | Non-reciprocal element with three central conductors and communication apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202180003371.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 17920681 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21963635 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |