WO2022178800A1 - 天线 - Google Patents

天线 Download PDF

Info

Publication number
WO2022178800A1
WO2022178800A1 PCT/CN2021/078020 CN2021078020W WO2022178800A1 WO 2022178800 A1 WO2022178800 A1 WO 2022178800A1 CN 2021078020 W CN2021078020 W CN 2021078020W WO 2022178800 A1 WO2022178800 A1 WO 2022178800A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
bridge
membrane
port
Prior art date
Application number
PCT/CN2021/078020
Other languages
English (en)
French (fr)
Inventor
吴倩红
郭景文
李春昕
方家
曲峰
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/621,126 priority Critical patent/US11881631B2/en
Priority to PCT/CN2021/078020 priority patent/WO2022178800A1/zh
Priority to CN202180000325.8A priority patent/CN115250642B/zh
Publication of WO2022178800A1 publication Critical patent/WO2022178800A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • the invention belongs to the technical field of communication, and in particular relates to an antenna.
  • a polarization-agile antenna refers to an antenna whose polarization state can change constantly.
  • polarization diversity technology can be used to transmit two kinds of signals through two orthogonal polarization modes, so that frequency band resources can be saved.
  • the number of antennas can be used as little as possible (for example, only one antenna) can be used to switch between multiple polarization modes, which greatly reduces the size and weight of the antenna, and reduces the cost of the radio frequency system. cost.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and provides an antenna.
  • an antenna which includes:
  • a first reference electrode disposed on the first surface of the substrate
  • a radiating element is arranged on the second surface of the substrate, and the first port and the second port of the radiating element have different feeding directions; at least one transmission structure is arranged on the second surface of the substrate, and the The transmission structure is connected to at least one of the first port and the second port of the radiation element;
  • the transmission structure includes:
  • the signal electrode is configured to feed a microwave signal to the radiating element, which is located between the membrane bridge and the membrane bridge.
  • the signal electrode and the membrane bridge are insulated by an interlayer dielectric layer; the membrane bridge and the orthographic projection of the second reference electrode on the substrate overlap.
  • both the first port and the second port of the radiation element are connected with the transmission structure.
  • the second reference electrode includes a first sub-electrode and a second sub-electrode; the first sub-electrode and the second sub-electrode are respectively arranged on both sides of the extending direction of the signal electrode;
  • the transmission structure includes a bridge a surface, a first connection part and a second connection part; one end of the first connection part is connected to the bridge surface, and the other end is located on the side of the first sub-electrode away from the substrate, and is connected to the first sub-electrode
  • the projections of the electrodes on the substrate at least partially overlap; one end of the second connection portion is connected to the bridge deck, and the other end is located on the side of the second sub-electrode away from the substrate, and is connected to the second sub-electrode.
  • the projections of the electrodes on the substrate at least partially overlap.
  • first connection part is in contact with the first sub-electrode; the second connection part is in contact with the second sub-electrode.
  • the second reference electrode is only located on one side of the extending direction of the signal electrode;
  • the membrane bridge includes a bridge deck and a connecting part; one end of the connecting part is connected to the bridge deck, and the other end is located on the first a side of the sub-electrode facing away from the substrate and at least partially overlapped with the projection of the first sub-electrode on the substrate; or, one end of the connecting portion is connected to the bridge deck, and the other end is located at the second The side of the sub-electrode facing away from the substrate overlaps with the orthographic projection of the second sub-electrode on the substrate.
  • connection part is in contact with the second reference electrode.
  • the number of membrane bridges in each of the transmission structures is one.
  • the number of membrane bridges in each of the transmission structures is multiple, and the multiple membrane bridges are arranged at intervals.
  • the number of membrane bridges in each of the transmission structures is multiple, and the bridge deck width of one of the multiple membrane bridges is the first width, and the bridge deck widths of the other membrane bridges are the first width.
  • the first width is greater than the second width; each of the membrane bridges with the second width deck is located on the same side of the membrane bridge with the first width deck.
  • the feeding direction of one of the first port and the second port in the radiating element is a vertical direction, and the other is a horizontal direction.
  • the radiation element, the signal electrode, the first reference line, and the second reference line are arranged in the same layer.
  • the material of the substrate includes any one of glass, polyimide, and polyethylene terephthalate.
  • FIG. 1 is a top view of an antenna according to an embodiment of the disclosure.
  • FIG. 2 is a cross-sectional view of a transmission structure according to an embodiment of the disclosure.
  • FIG. 3 is a graph of S-parameters of the first port and the second port of the antenna obtained by simulation by only applying a voltage to the second transmission structure connected to the second port of the antenna shown in FIG. 1 .
  • FIG. 4 is a graph of S-parameters of the first port and the second port of the antenna obtained by simulation by only applying a voltage to the first transmission structure connected to the first port of the antenna shown in FIG. 1 .
  • FIG. 5 is a plane directional diagram of the antenna obtained by simulation by only applying a voltage to the second transmission structure connected to the second port of the antenna shown in FIG. 1 .
  • FIG. 6 is a plane directional diagram of the antenna obtained by simulation by applying a voltage only to the first transmission structure connected to the first port of the antenna shown in FIG. 1 .
  • FIG. 7 is a top view of another antenna according to an embodiment of the disclosure.
  • FIG. 8 is a plane directional diagram of the antenna shown in FIG. 7 obtained by simulation without applying voltage to the membrane bridges in the first transmission structure and the second transmission structure.
  • FIG. 9 is a plane directional diagram of the antenna obtained by simulating the antenna shown in FIG. 7 by applying a voltage only to the second transmission structure connected to the second port.
  • FIG. 10 is a top view of another antenna according to an embodiment of the disclosure.
  • FIG. 11 is a cross-sectional view of another transmission structure according to an embodiment of the disclosure.
  • FIG. 1 is a top view of an antenna according to an embodiment of the disclosure
  • FIG. 2 is a cross-sectional view of a transmission structure according to an embodiment of the disclosure.
  • an embodiment of the present disclosure provides an antenna, which includes a substrate 10 , a first reference electrode 1 , a radiating element 2 and at least one transmission structure.
  • the substrate 10 has a first surface (lower surface) and a second surface (upper surface) arranged oppositely, and its material can be a hard material, such as a glass base, of course, it can also be a flexible material, such as: polyimide or polyamide Ethylene terephthalate, etc. In the embodiment of the present disclosure, the material of the substrate 10 is not limited.
  • the first reference electrode 1 is disposed on the first surface of the substrate 10 .
  • the first reference electrode 1 is a plate-like structure and covers the first surface of the substrate 10 .
  • the first reference electrode 1 in the embodiment of the present disclosure includes, but is not limited to, a ground electrode, that is, the potential to which the first reference electrode 1 is written is the ground potential.
  • the radiating element 2 is disposed on the second surface of the substrate 10, and the feeding directions of the first port 21 and the second port 22 of the radiating element 2 are different, for example: one of the first port 21 and the second port 22 of the radiating element 2
  • the feeding direction of one is the vertical direction, and the other is the horizontal direction.
  • the horizontal direction and the vertical direction in the embodiments of the present disclosure refer to the direction along the x-axis and the direction along the y-axis, respectively.
  • the polarization direction of the first port 21 of the radiation element 2 shown in FIG. 1 is the horizontal direction, that is, the polarization direction is 0°
  • the polarization direction of the second port 22 is the vertical direction is 90°.
  • the transmission structure is disposed on the second surface of the substrate 10, and at least one of the first port 21 and the second port 22 of the radiating element 2 is connected to the transmission structure.
  • the transmission structure in the embodiment of the present disclosure includes a signal electrode 31, a second reference electrode 32, and at least one membrane bridge 33; wherein, the signal electrode 31 and the second reference electrode 32 form a CPW (Coplanar Waveguide; coplanar waveguide) transmission line,
  • the membrane bridge 33 is equivalent to a MEMS (Micro Electromechanical System; Micro Electromechanical System) switch.
  • the second reference electrode 32 includes, but is not limited to, a ground electrode; the signal electrode 31 is configured to feed microwave signals to the radiation element 2, for example: when the first port 21 of the radiation element 2 is connected with a transmission structure, the signal electrode of the transmission structure 31 is connected to the first port 21 of the radiating element 2.
  • the signal electrode 31 of the transmission structure is Connected to the second port 22 of the radiating element 2 .
  • the second reference electrode 32 is located on at least one side of the extension direction of the signal electrode 31 (length), and the membrane bridge 33 is located on the side of the layer where the signal electrode 31 and the second reference electrode 32 are located away from the substrate 10; the signal electrode 31 is located between the membrane bridge 33 and the substrate 10, and the two are insulated by the interlayer dielectric layer 34; the membrane bridge 33 and the orthographic projection of the second reference electrode 32 on the substrate 10 overlap.
  • the membrane bridges 33 are controlled to move toward the substrate 10, so as to realize the transmission characteristics of microwave signals. change to achieve antennas with different polarization directions.
  • the specific description will be given in conjunction with the following implementation manners.
  • the first port 21 and the second port 22 of the radiating element 2 are both connected with a transmission structure as an example.
  • the transmission structure connected to the first port 21 of the radiating element 2 is referred to as the first transmission structure 301
  • the transmission structure connected to the second port 22 is referred to as the second transmission structure 302 .
  • the first transmission structure 301 and the second transmission structure 302 in the antenna each include a signal electrode 31 , a second reference electrode 32 , and a membrane bridge 33 , which are formed at a distance from the signal electrode 31 .
  • the interlayer dielectric layer 34 on the side of the substrate 10 .
  • the signal electrode 31 and the first port 21 of the radiation element 2 for example, the signal electrode 31 and the first port 21 of the radiation element 2 are arranged in the same layer, and the two are integrated.
  • the second reference electrode 32 includes a first sub-electrode 321 and a second sub-electrode 322 located on both sides of the signal electrode 31 in the length direction.
  • the membrane bridge 33 includes a bridge deck 331 and a first connecting portion 332 and a second connecting portion 333 respectively connected at both ends of the bridge deck 331 .
  • the orthographic projections at least partially overlap, for example: the orthographic projection of the first connecting portion 332 on the substrate 10 is located within the orthographic projection of the first sub-electrode 321 on the substrate 10; the orthographic projection of the second connecting portion 333 on the substrate 10 and the second sub-electrode 321 The orthographic projections of the electrodes 322 on the substrate 10 at least partially overlap.
  • an interlayer dielectric layer 34 is provided between the first connection part 332 and the first sub-electrode 321 and between the second connection part 333 and the second sub-electrode 322 .
  • the first connection portion 332 may be in direct contact with the first sub-electrode 321
  • the second connection portion 333 may be in direct contact with the second sub-electrode 322 , in which case the membrane bridge 33 remains with the second reference electrode 32 Since the same potential is used, it is not necessary to apply a DC voltage to the membrane bridge 33 separately, but only to apply a DC voltage to the signal electrode 31 to control the movement of the membrane bridge 33 to the plane where the substrate 10 is located.
  • the first connection portion 332 may be in direct contact with the first sub-electrode 321 and the second connection portion 333 may be in direct contact with the second sub-electrode 322 as an example for description.
  • the second transmission structure 302 is the same as the first transmission structure 301, the only difference is that the signal electrode 31 in the second transmission structure 302 is connected to the second port 22 of the radiating element 2, for example, the signal electrode 31 is connected to the radiating element 2
  • the second ports 22 of the two are arranged on the same layer, and the two are integrated.
  • the signal electrodes 31 of the first transmission structure 301 and the second transmission structure 302 may both be disposed on the same layer as the radiation element 2 and have an integrated structure.
  • the bridge deck 331 of the membrane bridge 33 in the first transmission structure 301 and the second transmission structure 302 is one, and the width is wider, and its width is not less than 0.1mm, for example, the width of the bridge deck 331 of the membrane bridge 33 is 0.1mm.
  • a DC bias voltage is applied between the first sub-electrode 321, the second sub-electrode 322 and the signal electrode 31.
  • the membrane bridge 33 will be affected by electrostatic force.
  • the membrane bridge 33 will be gradually pulled down until it is attached to the interlayer dielectric layer 34 on the signal electrode 31, and the bridge deck 331 of the membrane bridge 33 is connected to the interlayer dielectric layer.
  • the state when 34 is attached is called the down state
  • the initial state of the bridge deck 331 of the membrane bridge 33 is called the up state
  • the electromagnetic wave transmission characteristics corresponding to the down state and the up state are different.
  • the magnitude of the voltage applied to the membrane bridge 33 mentioned below is the magnitude of the voltage that can change the membrane bridge 33 from the up state to the down state.
  • FIG. 3 is a graph of S-parameters of the first port 21 and the second port 22 of the antenna obtained by the simulation of the antenna shown in FIG.
  • FIG. 4 is a graph of S-parameters of the first port 21 and the second port 22 of the antenna obtained by the simulation of the antenna shown in FIG. 1 only applying a voltage to the first transmission structure 301 connected to the first port 21 .
  • FIG. 5 is a plane directional diagram of the antenna shown in FIG. 1 obtained by simulation by applying only a voltage to the second transmission structure 302 connected to the second port 22 .
  • FIG. 6 is a plane directional diagram of the antenna shown in FIG. 1 obtained by simulation by applying a voltage only to the first transmission structure 301 connected to the first port 21 .
  • the first port 21 and the second port 22 are shown in FIGS.
  • the bridge deck 331 of the membrane bridge 33 in the second transmission structure 302 is in the down state, that is, the second transmission structure 302 is in the off state, so the first The second port 22 is in an open circuit state.
  • the maximum gain of the plane is 1.88dB/-11.13dB respectively
  • the corresponding 3dB beam width is 85°/93°
  • the polarization state of the antenna is 0° linear polarization.
  • the S11 parameter is very poor, at 17.7 It is only -0.29dB at GHz, the membrane bridge 33 in the first transmission structure 301 is in the down state of the bridge deck 331, that is, the first transmission structure 301 is in the off state, so the first port 21 of the radiating element 2 is in the open state, S22
  • the frequency bands corresponding to ⁇ -6dB/S22 ⁇ -10dB are 17.35-18.09GHz/17.52-17.93GHz respectively, and the second transmission structure 302 is in the open state, so the second port 22 of the radiating element 2 is in the channel state.
  • the corresponding 3dB beam width is 85°/93°
  • the polarization state of the antenna is 90° linear polarization. Therefore, it is only necessary to control the applied voltage states of the first transmission structure 301 and the second transmission structure 302 to complete the agility of the 0°/90° linear polarization.
  • the size of the substrate 10 is 9.85mm*9.85mm*0.5mm; the size of the radiating element 2 (excluding the first port 21 and the second port 22) is 3.45mm*3.45mm*0.001 mm; the first transmission structure 301 and the second transmission structure 302 are the same, and the line width of the signal electrode 31 is 0.03 mm; the line width of the first sub-electrode 321 and the second sub-electrode 322 is 2 mm, and the line length is 1 mm; The line width of the bridge deck 331 of the bridge 33 is 0.1 mm, and the line length (span) is 0.2 mm.
  • the distance between the first sub-electrode 321 and the signal electrode 31 and the distance between the second sub-electrode 322 and the signal electrode 31 are the same, and both are 0.055 mm.
  • the size of each film layer structure therein also needs to be specifically limited.
  • FIG. 7 is a top view of another antenna according to an embodiment of the present disclosure; as shown in FIG. 7 , the structure of the antenna is substantially the same as that of the antenna shown in FIG. 1 , the only difference being that the first transmission structure 301 and the number and width of the membrane bridges 33 in the second transmission structure 302 . Wherein, there are multiple membrane bridges 33 in the first transmission structure 301 and the second transmission structure 302 , and the width of each membrane bridge 33 is narrow, about 0.02 mm, and the number of membrane bridges 33 can be 10. The rest of the structure is the same as the structure in FIG. 1 above, so it will not be repeated here.
  • a narrower width of the bridge deck 331 of the membrane bridge 33 is selected.
  • the insertion loss of the down state and the up state of the bridge deck 331 of the membrane bridge 33 is small, and the bridge of the membrane bridge 33
  • the pull-down of the surface 331 is mainly caused by the change of the capacitance value between the bridge surface 331 of the membrane bridge 33 and the signal electrode 31, thereby changing the transmission speed of the microwave signal, thereby changing the transmission phase, and realizing the phase shift function.
  • phase shifts of 90° and 180° can be achieved.
  • the -45°/+45° linearly polarized agile antenna based on the first transmission structure 301 and the second transmission structure 302 utilizes the 180° phase shift structure of the membrane bridge 33 .
  • FIG. 8 is a plane pattern diagram of the antenna shown in FIG. 7 without applying voltage to the membrane bridges 33 in the first transmission structure 301 and the second transmission structure 302. As shown in FIG. 8, the first transmission structure 301 is not applied to the antenna.
  • FIG. 9 is a plane pattern of the antenna obtained by the simulation of the antenna shown in FIG.
  • the corresponding 3dB beam width is 93°/81°
  • the polarization state of the antenna is +45° linear polarization.
  • the agile antenna based on left-hand circular polarization/right-hand circular polarization can also be completed with a structure similar to that shown in FIG.
  • the second transmission structure of the radiating element 2 can be realized.
  • the phase difference between the first port 21 and the second port 22 is ⁇ 90°, so that the agility of left circular polarization and right circular polarization can be completed.
  • FIG. 10 is a top view of another antenna according to an embodiment of the disclosure; as shown in FIG. 10 , the antenna is substantially similar in structure to the antenna shown in FIG. 1 and FIG. 7 , the difference is that the first transmission structure 301 and the second transmission structure 302 both include membrane bridges 33a and 33b with two widths of the bridge deck 331, and between the first connection portion 332 of the membrane bridge 33 and the first sub-electrode 321, and the second connection portion 333 and the first sub-electrode 321.
  • An interlayer dielectric layer 34 is disposed between the two sub-electrodes 322 . The rest of the structures are substantially the same, so they are not repeated here.
  • the first transmission structure 301 and the second transmission structure 302 each include a membrane bridge 33a having a bridge deck 331 with a first width and a plurality of membrane bridges 33b having a bridge deck 331 with a second width.
  • a width is greater than the second width, and a plurality of membrane bridges 33a having the bridge deck 331 having the second width are located on the same side of the membrane bridge 33b having the bridge deck 331 having the first width.
  • multiple bridges having the second width are shown.
  • the membrane bridge 33b of the surface 331 is located on the side close to the radiating element 2 and the membrane bridge 33a of the bridge surface 331 having the first width is located.
  • the membrane bridges 33 in the first transmission structure 301 and the second transmission structure 302 include two parts, one is the membrane bridge 33 a with a wider bridge deck 331 , and the other is the membrane bridge 33 with a plurality of bridge decks 331 narrower
  • the membrane bridge 33b obtained in series; in this case, by controlling the DC bias applied to the wider membrane bridge 33a of the bridge deck 331, the first transmission unit and the second transmission unit can be controlled to be “on” and “off” both. It can also control the DC bias applied on the membrane bridges 33b of the plurality of narrow bridge decks 331, and play the role of phase shifting the microwave signal, which can realize 90°/180° phase shifting.
  • each membrane bridge 33 can be individually controlled, and at this time, the DC bias can be applied by controlling The number of membrane bridges 33 with a narrower bridge deck 331 width is reduced, thereby realizing a left-hand circularly polarized/right-handed circularly polarized agile antenna.
  • the bridge with the first width in the second transmission structure 302 The plane 331 is in the down state, that is, the second transmission structure 302 is in the off state, so the second port 22 of the radiating element 2 is in the open state, and the first transmission structure 301 is in the open state, then the first port 21 of the radiating element 2 is in the on state.
  • the polarization state of the antenna is 0° linear polarization.
  • a DC bias voltage is only applied between the membrane bridge 33a and the signal electrode 31 in the first transmission unit connected to the first port 21 of the radiating element 2.
  • the bridge deck in the first transmission structure 301 has the first width. 331 is in a down state, that is, the first transmission structure 301 is in an off state, so the first port 21 of the radiating element 2 is in an open state, and the second transmission structure 302 is in an open state, then the second port 22 of the radiating element 2 is in an on state,
  • the polarization state of the antenna is 90° linear polarization.
  • the first port 21 of the radiating element 2 and the The phase difference of the second port 22 is 180°.
  • the polarization state realized by the antenna is +45° linear polarization.
  • the phase difference between the first port 21 and the second port 22 of the radiating element 2 is 0°, and the polarization state of the antenna For -45° linear polarization.
  • the above are all structures composed of the membrane bridge 33 including the bridge deck 331 and the first connecting portion 332 and the second connecting portion 333 respectively connected to both ends of the bridge deck 331 , and the corresponding second reference electrode 32 includes a first connection portion 332 and a second connection portion 333
  • the sub-electrode 321 and the second sub-electrode 322 are described as an example.
  • FIG. 11 is a schematic diagram of another transmission structure according to an embodiment of the disclosure; as shown in FIG. 11 , the transmission structure includes a signal electrode 31 , a second reference electrode 32 and a membrane bridge 33 , and an interlayer dielectric layer 34 disposed between the membrane bridge 33 and the signal electrode 31 .
  • the extending direction of the second reference electrode 32 is the same as the extending direction of the signal electrode 31, and the two are arranged side by side.
  • the membrane bridge 33 includes a bridge deck 331 and a connecting portion 34 .
  • One end of the connecting portion 34 is connected to the bridge deck 331 , and the other end is disposed on the side of the second reference electrode 32 away from the substrate 10 and is on the substrate 10 with the second reference electrode 32 .
  • the orthographic projections of the overlapped, the signal electrodes 31 are located in the space defined by the bridge deck 331 and the substrate 10 .
  • the bridge deck 331 can be controlled to move toward the side close to the substrate 10, thereby realizing the “on” and “off” of the transmission structure. Two states as well as phase shift function.
  • the number of membrane bridges 33 in the transmission structure may be multiple or one.
  • the size of membrane bridges 33 may be set to the size shown in FIG. 1 ;
  • the size of the membrane bridges 33 may be set to the size shown in FIG. 7 or FIG. 10 , which will not be repeated here.
  • the interlayer dielectric layer 34 may or may not be provided between the second reference electrode 32 and the connecting portion, that is, the second reference electrode 32 and the connecting portion may be in direct contact.
  • the interlayer dielectric layer 34 may not be provided between the second reference electrode 32 and the connection part, and when the transmission structure is applied to the antenna shown in FIG. 10 In the antenna, at this time, an interlayer dielectric layer 34 needs to be arranged between the second reference electrode 32 and the connection part.
  • first reference electrode 1 second reference electrode 32 , radiation patch, and membrane bridge 33 can all be selected from metals such as copper or aluminum.
  • the interlayer dielectric layer 34 may be selected from a dielectric material such as silicon oxide or silicon nitride.
  • the antenna provided by the embodiment of the present disclosure can realize the agile antenna of 0°/90° linear polarization, the agile antenna of -45°/+45° linear polarization, and the agility of left and right circular polarization by using the transmission structure antenna, and a six-fold polarization agile antenna that simultaneously realizes 0°/90°/-45°/+45° linear polarization and left-right circular polarization.
  • the design of polarization agile antennas the number of required antennas can be greatly reduced, the size and weight of the antenna system can be reduced, and the channel capacity can be increased without increasing the occupation of spectrum resources.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供一种天线,属于通信技术领域。本发明的天线,其包括:基底,具有相对设置的第一表面和第二表面;第一参考电极,设置在所述基底的第一表面上;辐射元件,设置在所述基底的第二表面上,且所述辐射元件的第一端口和第二端口馈电方向不同;至少一个传输结构,设置在所述基底的第二表面上,且所述辐射元件的第一端口和第二端口中的至少一者上连接有所述传输结构;其中,所述传输结构包括:信号电极,设置在信号电极延伸方向的至少一侧的第二参考电极,以及至少一个膜桥;所述信号电极被配置为向所述辐射元件馈入微波信号,其位于所述膜桥与所述基底所围成的空间中,且所述信号电极与所述膜桥通过层间介质层绝缘设置;所述膜桥与所述第二参考电极在所述基底上的正投影存在交叠。

Description

天线 技术领域
本发明属于通信技术领域,具体涉及一种天线。
背景技术
极化捷变天线是指极化状态可以不断变化的天线。近年来,随着无线通信的快速发展,信息的传输速率不断提高,对频谱资源的需求量也日益提高。对此,可采用极化分集技术,通过两个正交的极化方式分别传递两种信号,这样就可以节省频带资源。而通过设计极化捷变天线,可以用尽可能少的天线数量(例如只用一副天线)能够实现多种极化方式的切换,大大减小了天线的尺寸和重量,降低了射频系统的成本。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种天线。
解决本发明技术问题所采用的技术方案是一种天线,其包括:
基底,具有相对设置的第一表面和第二表面;
第一参考电极,设置在所述基底的第一表面上;
辐射元件,设置在所述基底的第二表面上,且所述辐射元件的第一端口和第二端口馈电方向不同;至少一个传输结构,设置在所述基底的第二表面上,且所述辐射元件的第一端口和第二端口中的至少一者上连接有所述传输结构;其中,
所述传输结构包括:
信号电极,设置在信号电极延伸方向的至少一侧的第二参考电极,以及至少一个膜桥;所述信号电极被配置为向所述辐射元件馈入微波信号,其位于所述膜桥与所述基底所围成的空间中,且所述信号电极与所述膜桥通过层间介质层绝缘设置;所述膜桥与所述第二参考电极在所述基底上的正投影存在交叠。
其中,所述辐射元件的第一端口和第二端口均连接有所述传输结构。
其中,所述第二参考电极包括第一子电极和第二子电极;所述第一子电极和所述第二子电极分设在所述信号电极延伸方向的两侧;所述传输结构包括桥面、第一连接部和第二连接部;所述第一连接部的一端连接所述桥面,另一端位于所述第一子电极背离所述基底的一侧,且与所述第一子电极在所述基底上的投影至少部分重叠;所述第二连接部的一端连接所述桥面,另一端位于所述第二子电极背离所述基底的一侧,且与所述第二子电极在所述基底上的投影至少部分重叠。
其中,所述第一连接部与所述第一子电极相接触;所述第二连接部与所述第二子电极相接触。
其中,所述第二参考电极仅位于所述信号电极延伸方向的一侧;所述膜桥包括桥面和连接部;所述连接部的一端连接所述桥面,另一端位于所述第一子电极背离所述基底的一侧,且与所述第一子电极在所述基底上的投影至少部分重叠;或者,所述连接部的一端连接所述桥面,另一端位于所述第二子电极背离所述基底的一侧,且与所述第二子电极在所述基底上的正投影存在交叠。
其中,所述连接部与所述第二参考电极相接触。
其中,每个所述传输结构中的膜桥数量为1个。
其中,每个所述传输结构中的膜桥数量为多个,且多个所述膜桥间隔设置。
其中,每个所述传输结构中的膜桥数量为多个,且多个所述膜桥中的一个的桥面宽度为第一宽度,其余各所述膜桥的桥面的宽度均为第二宽度,所述第一宽度大于所述第二宽度;具有第二宽度桥面的各所述膜桥均位于具有第一宽度桥面的膜桥的同一侧。
其中,所述辐射元件中第一端口和第二端口一者的馈电方向为垂直方向,另一者为水平方向。
其中,所述辐射元件、信号电极、第一参考线、第二参考线同层设置。
其中,所述基底的材质包括玻璃、聚酰亚胺、聚对苯二甲酸乙二醇酯中的任意一种。
附图说明
图1为本公开实施例的一种天线的俯视图。
图2为本公开实施例的一种传输结构的截面图。
图3为图1所示的天线仅对第二端口所连接的第二传输结构施加电压仿真所得的天线的第一端口和第二端口的S参数曲线图。
图4为图1所示的天线仅对第一端口所连接的第一传输结构施加电压仿真所得的天线的第一端口和第二端口的S参数曲线图。
图5为图1所示的天线仅对第二端口所连接的第二传输结构施加电压仿真所得的天线的平面方向图。
图6为图1所示的天线仅对第一端口所连接的第一传输结构施加电压仿真所得的天线的平面方向图。
图7为本公开实施例的另一种天线的俯视图。
图8为图7所示的天线未在第一传输结构和第二传输结构中的膜桥施加电压仿真所得的天线的平面方向图。
图9为图7所示的天线在仅对第二端口所连接的第二传输结构施加电压仿真所得的天线的平面方向图。
图10为本公开实施例的另一种天线的俯视图。
图11为本公开实施例的另一种传输结构的截面图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第 二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
第一方面,图1为本公开实施例的一种天线的俯视图;图2为本公开实施例的一种传输结构的截面图。如图1和2所示,本公开实施例提供一种天线,其包括基底10、第一参考电极1、辐射元件2和至少一个传输结构。
其中,基底10具有相对设置的第一表面(下表面)和第二表面(上表面),其材质可以选用硬质材料,例如玻璃基,当然也可以柔性材质,例如:聚酰亚胺或者聚对苯二甲酸乙二醇酯等。在本公开实施例中对基底10的材质并不进行限定。
第一参考电极1设置在基底10的第一表面,例如第一参考电极1为一板状结构,且覆盖基底10的第一表面。本公开实施例中的第一参考电极1包括但不限于接地电极,也即第一参考电极1被写入的电位为地电位。
辐射元件2设置在基底10的第二表面,且辐射元件2的第一端口21和第二端口22的馈电方向不同,例如:辐射元件2的第一端口21和第二端口22中的一者的馈电方向为垂直方向,另一者为水平方向。在此需要说明的是,本公开实施例中的水平方向和垂直方向分别指的是沿x轴方向和沿y轴方向。其中,在本公开实施例中以图1所示的辐射元件2的第一端口21的极化方向为水平方向,也即极化方向为0°,第二端口22的极化方向为垂直方向为90°。
传输结构设置在基底10的第二表面上,且辐射元件2的第一端口21和第二端口22中的至少一者连接传输结构。其中,本公开实施例中的传输结 构包括信号电极31、第二参考电极32和至少一个膜桥33;其中,信号电极31、第二参考电极32形成CPW(Coplanar Waveguide;共面波导)传输线,膜桥33相当于MEMS(Micro Electromechanical System;微机电系统)开关。第二参考电极32包括但不限于接地电极;信号电极31被配置为向辐射元件2馈入微波信号,例如:当辐射元件2的第一端口21连接有传输结构时,该传输结构的信号电极31则与辐射元件2的第一端口21连接,当辐射元件2的第二端口22连接有传输结构时,该辐射元件2的第二端口22连接传输结构时,该传输结构的信号电极31则与辐射元件2的第二端口22连接。第二参考电极32位于信号电极31(长度)延伸方向的至少一侧,膜桥33位于信号电极31和第二参考电极32所在层背离基底10的一侧;信号电极31位于膜桥33和基底10所围成的空间中,且二者之间通过层间介质层34绝缘设置;膜桥33与第二参考电极32在基底10上的正投影存在交叠。在该种情况下,通过设计膜桥33的宽度、数量以及控制施加在信号电极31和膜桥33上的直流偏压,以控制膜桥33朝向基底10方向移动,以实现微波信号的传输特性变化,从而实现不同极化方向的天线。具体结合下述实现方式进行说明。
继续参照图1,在本公开实施例中以辐射元件2的第一端口21和第二端口22均连接有传输结构为例。为了便于描述,将辐射元件2的第一端口21所连接的传输结构称之为第一传输结构301,第二端口22所连接的传输结构称之为第二传输结构302。
在一个示例中,继续参照图1和2,该天线中的第一传输结构301和第二传输结构302均包括信号电极31、第二参考电极32、一个膜桥33,形成在信号电极31背离基底10一侧的层间介质层34。其中,对于第一传输结构301,其中的信号电极31与辐射元件2的第一端口21,例如:该信号电极31与辐射元件2的第一端口21同层设置,且二者为一体结构。第二参考电极32包括分设在信号电极31长度方向两侧的第一子电极321和第二子电极322,例如信号电极31和第一子电极321、第二子电极322的长度方向平行。膜桥33包括桥面331和分别连接在桥面331两端的第一连接部332和 第二连接部333,第一连接部332在基底10上正投影与第一子电极321在基底10上的正投影至少部分重叠,例如:第一连接部332在基底10上的正投影位于第一子电极321在基底10上正投影内;第二连接部333在基底10上的正投影与第二子电极322在基底10上的正投影至少部分重叠。在一些示例中,在第一连接部332和第一子电极321之间,以及第二连接部333和第二子电极322之间均设置有层间介质层34。在一些示例中,第一连接部332可以第一子电极321直接接触,第二连接部333可以与第二子电极322直接接触,在该种情况下膜桥33则与第二参考电极32保持相同的电位,故无需单独给膜桥33施加直流电压,仅需给信号电极31施加直流电压则可以控制膜桥33向基底10所在平面移动。在本公开实施例中,以第一连接部332可以第一子电极321直接接触,第二连接部333可以与第二子电极322直接接触为例进行描述。
同理,第二传输结构302与第一传输结构301相同,区别仅在于第二传输结构302中的信号电极31与辐射元件2的第二端口22连接,例如:该信号电极31与辐射元件2的第二端口22同层设置,且二者为一体结构。进一步的,第一传输结构301和第二传输结构302的信号电极31均可以与辐射元件2设在同一层,且为一体结构。
继续参照图1,第一传输结构301和第二传输结构302中的膜桥33的桥面331均为一个,且宽度较宽,其宽度不小于0.1mm,例如膜桥33的桥面331宽度为0.1mm。在该种情况下,第一子电极321、第二子电极322和信号电极31之间施加直流偏压,当直流偏压大于电桥的驱动电压时,膜桥33在静电力的作用下会沿靠近基底10的方向开始下拉,增加直流偏压的大小,膜桥33会逐渐下拉直至与信号电极31上的层间介质层34贴合,将膜桥33的桥面331与层间介质层34贴合时的状态称之为down态,膜桥33桥面331的初始状态称之为up态,down态和up态对应的电磁波传输特性不同。在此需要说明的是,在下文中提到的给膜桥33施加电压大小均是能够使膜桥33从up态变为down态的电压大小。当膜桥33的桥面331比较宽时,或者电桥的跨度比较大时,up态时第一传输结构301和第二传输结构 302的插损很小,而down态时的插损会很大,因此可分别将电桥的up态和down态作为开关的“开”和“关”两种状态,实现线路的通断。0°/90°线极化捷变天线就是利用了第一传输结构301和第二传输结构302的这一开关特性。图3为图1所示的天线仅对第二端口22所连接的第二传输结构302施加电压仿真所得的天线的第一端口21和第二端口22的S参数曲线图。图4为图1所示的天线仅对第一端口21所连接的第一传输结构301施加电压仿真所得的天线的第一端口21和第二端口22的S参数曲线图。图5为图1所示的天线仅对第二端口22所连接的第二传输结构302施加电压仿真所得的天线的平面方向图。图6为图1所示的天线仅对第一端口21所连接的第一传输结构301施加电压仿真所得的天线的平面方向图。第一端口21第二端口22如图3-6所示,当仅给辐射元件2的第二端口22所连接的第二传输结构302中的第一子电极321、第二子电极322和信号电极31之间施加直流偏压时,S11<-6dB/S11<-10dB对应的频段分别为17.34-18.08GHz/17.51-17.91GHz,第一传输结构301处于开态,则辐射元件2的第一端口21处于通路状态,而S22参数很差,在17.7GHz时仅为-0.27dB,由于给辐射元件2的第二端口22所连接的第二传输结构302中的第一子电极321、第二子电极322和信号电极31之间施加直流偏压,此时第二传输结构302中的膜桥33的桥面331处于down态,即第二传输结构302处于关态,故辐射元件2的第二端口22处于断路状态。此时天线φ=0°和φ=90°时平面的最大增益分别为1.88dB/-11.13dB,对应的3dB波束宽度为85°/93°,天线的极化状态为0°线极化。而当仅给辐射元件2的第一端口21所连接的第一传输结构301中的第一子电极321、第二子电极322和信号电极31施加直流偏压时,S11参数很差,在17.7GHz时仅为-0.29dB,第一传输结构301中的膜桥33处于桥面331处于down态,即第一传输结构301处于关态,故辐射元件2的第一端口21处于断路状态,S22<-6dB/S22<-10dB对应的频段分别为17.35-18.09GHz/17.52-17.93GHz,第二传输结构302处于开态,则辐射元件2的第二端口22处于通路状态。此时天线φ=0°和φ=90°平面的最大增益分别为-10.45dB/1.89dB,对应的3dB波束宽度为85°/93°,天线的极化状 态为90°线极化。所以仅需控制第一传输结构301和第二传输结构302的加电压状态,就可以完成0°/90°线极化的捷变。
在一个具体示例中,图1中的天线,基底10尺寸为9.85mm*9.85mm*0.5mm;辐射元件2(不含第一端口21和第二端口22)尺寸采用3.45mm*3.45mm*0.001mm;第一传输结构301和第二传输结构302相同,其中的信号电极31的线宽为0.03mm;第一子电极321和第二子电极322的线宽为2mm,线长为1mm;膜桥33的桥面331的线宽为0.1mm,线长(跨度)为0.2mm。第一子电极321和信号电极31之间间距和第二子电极322和信号电极31之间的间距相同均为0.055mm。当然,不同尺寸的天线,其中的各个膜层结构的尺寸也需要进行具体限定。
在另一个示例中,图7为本公开实施例的另一种天线的俯视图;如图7所示,该天线的结构与图1中所示的天线大致相同,区别仅在于,第一传输结构301和第二传输结构302中膜桥33数量及宽度。其中,第一传输结构301和第二传输结构302中的膜桥33均为多个,且各膜桥33的宽度较窄,大致在0.02mm左右,膜桥33的数量可以为10条。其余结构与上述图1中的结构相同,故在此不再重复赘述。
继续参照图7,在该种天线中选取较窄的膜桥33的桥面331宽度,此时膜桥33的桥面331的down态和up态的插损均较小,膜桥33的桥面331下拉主要引起的是膜桥33的桥面331和信号电极31之间电容值的变化,从而改变微波信号的传输速度,进而改变传输相位,实现移相功能。通过串联合适数目的膜桥33,可以实现90°和180°的相移。基于第一传输结构301和第二传输结构302的-45°/+45°线极化捷变天线就是利用了膜桥33的180°相移结构。
图8为图7所示的天线未在第一传输结构301和第二传输结构302中的膜桥33施加电压仿真所得的天线的平面方向图;如图8所示,不对第一传输结构301和第二传输结构302中的膜桥33施加电压时,天线φ=-45°和φ=+45°平面的最大增益分别为3.62dB/-49.73dB,对应的3dB波束宽度为108°/76°,天线的极化状态为-45°线极化。图9为图7所示的天线在仅对第 二端口22所连接的第二传输结构302施加电压仿真所得的天线的平面方向图;如图9所示,当仅对第二端口22所连接的第二传输结构302的第一子电极321、第二子电极322和信号电极31加电压时,天线φ=-45°和φ=+45°平面的最大增益分别为-12.40dB/3.16dB,对应的3dB波束宽度为93°/81°,天线的极化状态为+45°线极化。所以仅需控制对第二端口22所连接的第二传输结构302的第一子电极321、第二子电极322和信号电极31加的电压状态,就可以完成-45°/+45°线极化的捷变。
同理,基于左旋圆极化/右旋圆极化捷变天线也可以采用图5类似的结构完成,只需将串联的膜桥33数减半(例如5条)即可。通过仅控制第一端口21所连接第一传输结构301所输入的电压关断或者仅控制第二端口22所连接的第二传输结构302所输入的电压关断,就可以实现辐射元件2的第一端口21和第二端口22的相位相差±90°,如此就可以完成左圆极化、右旋圆极化的捷变。
在另一个示例中,图10为本公开实施例的另一种天线的俯视图;如图10所示,该天线与图1和图7所示的天线结构大致相似,区别在于,第一传输结构301和第二传输结构302均包括两种桥面331宽度的膜桥33a和33b,且在膜桥33的第一连接部332与第一子电极321之间,以及第二连接部333和第二子电极322之间均设置有层间介质层34。其余结构大致相同,故在此不再重复赘述。
具体的,参照图10,第一传输结构301和第二传输结构302均包括一个具有第一宽度的桥面331的膜桥33a和多个具有第二宽度的桥面331的膜桥33b,第一宽度大于第二宽度,且多个具有第二宽度的桥面331的膜桥33a位于具有第一宽度的桥面331的膜桥33b同一侧,图10中以多个具有第二宽度的桥面331的膜桥33b位于具有第一宽度的桥面331的膜桥33a位于靠近辐射元件2的一侧为例。也就是说,第一传输结构301和第二传输结构302中的膜桥33包括两部分,一个是桥面331较宽膜桥33a,另一个是有多个桥面331较窄的膜桥33串联得到的膜桥33b;在该种情况下,通过控制桥面331较宽膜桥33a上所施加的直流偏压,可以控制第一传输单元和第二 传输单元“开”和“关”两个状态的切换;还可以控制多个较窄桥面331的膜桥33b上施加的直流偏压,起到对微波信号的移相作用,可以实现90°/180°移相。另外,由于膜桥33a和33b均与第一子电极321和第二子电极322之间设置层间介质层34,故每个膜桥33可以单独控制,此时则可以通过控制被施加直流偏压的较窄桥面331宽度的膜桥33的数量,从而实现左旋圆极化/右旋圆极化捷变天线。
例如:仅给连接辐射元件2第二端口22所连接的第二传输单元中膜桥33a和信号电极31之间施加直流偏置电压,此时第二传输结构302中的具有第一宽度的桥面331处于down态,即第二传输结构302处于关态,故辐射元件2的第二端口22处于断路状态,第一传输结构301处于开态,则辐射元件2的第一端口21处于通路状态,天线的极化状态为0°线极化。
例如:仅给连接辐射元件2第一端口21所连接的第一传输单元中膜桥33a和信号电极31之间施加直流偏执电压,此时第一传输结构301中的具有第一宽度的桥面331处于down态,即第一传输结构301处于关态,故辐射元件2的第一端口21处于断路状态,第二传输结构302处于开态,则辐射元件2的第二端口22处于通路状态,天线的极化状态为90°线极化。
例如:仅给辐射元件2的第二端口22所连接第二传输单元中的各个具有第二宽度的桥面331的膜桥33b施加直流偏压,就可以实现辐射元件2的第一端口21和第二端口22的相位相差180°此时天线实现的极化状态为+45°线极化。当第一传输结构301和第二传输结构302中的各个膜桥33均不施加直流偏压时,辐射元件2的第一端口21和第二端口22的相位相差0°,天线的极化状态为-45°线极化。
例如:当仅控制第一端口21所连接第一传输结构301的部分具有第二宽度的桥面331的膜桥33所输入的电压关断,或者仅控制第二端口22所连接的第二传输结构302的部分具有第二宽度的桥面331的膜桥33b所输入的电压关断,就可以实现辐射元件2的第一端口21和第二端口22的相位相差±90°,如此就可以完成左圆极化、右旋圆极化的捷变。综上,可以看出的图10所示的天线可以实现0°/90°/-45°/+45°线极化以及左右旋圆极化的六重 极化捷变天线。
需要说明的是,以上均是以膜桥33包括桥面331和分别连接在桥面331两端的第一连接部332和第二连接部333构成的结构,相应的第二参考电极32包括第一子电极321和第二子电极322为例进行描述的。
在一些示例中,传输结构也不局限于上述结构,图11为本公开实施例的另一种传输结构的示意图;如图11所示,传输结构包括信号电极31、第二参考电极32和膜桥33,以及设置在膜桥33和信号电极31之间的层间介质层34。其中,第二参考电极32的延伸方向与信号电极31的延伸方向相同,二者并排设置。膜桥33包括桥面331和一个连接部34,连接部34的一端连接桥面331,另一端设置在第二参考电极32背离基底10的一侧,且与第二参考电极32在基底10上的正投影重叠,信号电极31位于桥面331和基底10所限定的空间内。在该种情况下,可以通过控制施加在膜桥33和信号电极31之间的直流偏压,控制桥面331的向靠近基底10一侧移动,从而实现传输结构的“开”和“关”两种状态以及移相功能。
需要说明的是,传输结构中膜桥33的数量可以为多个也可以为一个,当膜桥33的数量为一个时,可以将膜桥33的尺寸设置为图1中所示的尺寸;当膜桥33数量为多个时,可以将膜桥33的尺寸设置为图7或者图10中所示的尺寸,在此不再赘述。
其中,在第二参考电极32和连接部之间可以设置层间介质层34,也可以不设置层间介质层34,也即第二参考电极32和连接部可以直接接触。例如:该传输结构应用至图1和图7所示的天线中时,第二参考电极32和连接部之间可以不设置层间介质层34,而当该传输结构应用至图10所示的天线中,此时则需要在第二参考电极32和连接部之间设置层间介质层34。
在一些示例中,上述的第一参考电极1、第二参考电极32、辐射贴片、膜桥33均可以选用铜或者铝等金属。
在一些示例中,层间介质层34可以选择氧化硅或者氮化硅等介电材料。
本公开实施例所提供的天线,利用传输结构可以实现0°/90°线极化的捷 变天线,-45°/+45°线极化的捷变天线,左右旋圆极化的捷变天线,以及同时实现0°/90°/-45°/+45°线极化以及左右旋圆极化的六重极化捷变天线。通过极化捷变天线的设计,可以大大减少所需天线的数量,减小天线系统的尺寸和重量,同时可以在不增加占用频谱资源的条件下增加信道容量。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (12)

  1. 一种天线,其包括:
    基底,具有相对设置的第一表面和第二表面;
    第一参考电极,设置在所述基底的第一表面上;
    辐射元件,设置在所述基底的第二表面上,且所述辐射元件的第一端口和第二端口馈电方向不同;至少一个传输结构,设置在所述基底的第二表面上,且所述辐射元件的第一端口和第二端口中的至少一者上连接有所述传输结构;其中,
    所述传输结构包括:
    信号电极,设置在信号电极延伸方向的至少一侧的第二参考电极,以及至少一个膜桥;所述信号电极被配置为向所述辐射元件馈入微波信号,其位于所述膜桥与所述基底所围成的空间中,且所述信号电极与所述膜桥通过层间介质层绝缘设置;所述膜桥与所述第二参考电极在所述基底上的正投影存在交叠。
  2. 根据权利要求1所述的天线,其中,所述辐射元件的第一端口和第二端口均连接有所述传输结构。
  3. 根据权利要求1或2所述的天线,其中,所述第二参考电极包括第一子电极和第二子电极;所述第一子电极和所述第二子电极分设在所述信号电极延伸方向的两侧;所述传输结构包括桥面、第一连接部和第二连接部;所述第一连接部的一端连接所述桥面,另一端位于所述第一子电极背离所述基底的一侧,且与所述第一子电极在所述基底上的投影至少部分重叠;所述第二连接部的一端连接所述桥面,另一端位于所述第二子电极背离所述基底的一侧,且与所述第二子电极在所述基底上的投影至少部分重叠。
  4. 根据权利要求3所述的天线,其中,所述第一连接部与所述第一子电极相接触;所述第二连接部与所述第二子电极相接触。
  5. 根据权利要求1或2所述的天线,其中,所述第二参考电极仅位于所述信号电极延伸方向的一侧;所述膜桥包括桥面和连接部;所述连接部的 一端连接所述桥面,另一端位于所述第一子电极背离所述基底的一侧,且与所述第一子电极在所述基底上的投影至少部分重叠;或者,所述连接部的一端连接所述桥面,另一端位于所述第二子电极背离所述基底的一侧,且与所述第二子电极在所述基底上的正投影存在交叠。
  6. 根据权利要求5所述的天线,其中,所述连接部与所述第二参考电极相接触。
  7. 根据权利要求1-6中任一项所述的天线,其中,每个所述传输结构中的膜桥数量为1个。
  8. 根据权利要求1-6中任一项所述的天线,其中,每个所述传输结构中的膜桥数量为多个,且多个所述膜桥间隔设置。
  9. 根据权利要求1-3、5中任一所述的天线,其中,每个所述传输结构中的膜桥数量为多个,且多个所述膜桥中的一个的桥面宽度为第一宽度,其余各所述膜桥的桥面的宽度均为第二宽度,所述第一宽度大于所述第二宽度;具有第二宽度桥面的各所述膜桥均位于具有第一宽度桥面的膜桥的同一侧。
  10. 根据权利要求1-9中任一项所述的天线,其中,所述辐射元件中第一端口和第二端口一者的馈电方向为垂直方向,另一者为水平方向。
  11. 根据权利要求1-9中任一项所述的天线,其中,所述辐射元件、信号电极、第一参考线、第二参考线同层设置。
  12. 根据权利要求1-9中任一项所述的天线,其中,所述基底的材质包括玻璃、聚酰亚胺、聚对苯二甲酸乙二醇酯中的任意一种。
PCT/CN2021/078020 2021-02-26 2021-02-26 天线 WO2022178800A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/621,126 US11881631B2 (en) 2021-02-26 2021-02-26 Antenna
PCT/CN2021/078020 WO2022178800A1 (zh) 2021-02-26 2021-02-26 天线
CN202180000325.8A CN115250642B (zh) 2021-02-26 2021-02-26 天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/078020 WO2022178800A1 (zh) 2021-02-26 2021-02-26 天线

Publications (1)

Publication Number Publication Date
WO2022178800A1 true WO2022178800A1 (zh) 2022-09-01

Family

ID=83047598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078020 WO2022178800A1 (zh) 2021-02-26 2021-02-26 天线

Country Status (3)

Country Link
US (1) US11881631B2 (zh)
CN (1) CN115250642B (zh)
WO (1) WO2022178800A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1530249A1 (en) * 1999-08-24 2005-05-11 Paratek Microwave, Inc. Voltage tunable coplanar phase shifters
US20050178646A1 (en) * 2004-02-17 2005-08-18 De Los Santos Hector J. High-reliability micro-electro-mechanical system (MEMS) switch apparatus and method
CN201017323Y (zh) * 2006-12-06 2008-02-06 华南理工大学 超高频多极化捷变射频识别读写器天线
CN101246981A (zh) * 2008-03-21 2008-08-20 哈尔滨工业大学 凹槽型共面波导结构的毫米波射频微机电系统双频移相器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100373516C (zh) * 2004-09-15 2008-03-05 中国科学院上海微系统与信息技术研究所 翘曲膜结构的单刀双掷射频和微波微机械开关及制作方法
ATE434274T1 (de) * 2005-01-18 2009-07-15 Murata Manufacturing Co Antennenstruktur und damit ausgestattete drahtlose kommunikationsvorrichtung
CN208315751U (zh) * 2018-04-08 2019-01-01 京东方科技集团股份有限公司 天线结构
CN112397893A (zh) * 2019-08-14 2021-02-23 京东方科技集团股份有限公司 馈电结构、微波射频器件及天线
CN112397854A (zh) * 2019-08-14 2021-02-23 京东方科技集团股份有限公司 移相器及天线
KR102327554B1 (ko) * 2020-02-25 2021-11-16 동우 화인켐 주식회사 안테나 삽입 전극 구조체 및 이를 포함하는 화상 표시 장치
CN112164875B (zh) * 2020-09-27 2023-07-04 京东方科技集团股份有限公司 微带天线、通信设备
CN114497929B (zh) * 2020-10-23 2023-12-15 京东方科技集团股份有限公司 一种移相器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1530249A1 (en) * 1999-08-24 2005-05-11 Paratek Microwave, Inc. Voltage tunable coplanar phase shifters
US20050178646A1 (en) * 2004-02-17 2005-08-18 De Los Santos Hector J. High-reliability micro-electro-mechanical system (MEMS) switch apparatus and method
CN201017323Y (zh) * 2006-12-06 2008-02-06 华南理工大学 超高频多极化捷变射频识别读写器天线
CN101246981A (zh) * 2008-03-21 2008-08-20 哈尔滨工业大学 凹槽型共面波导结构的毫米波射频微机电系统双频移相器

Also Published As

Publication number Publication date
CN115250642B (zh) 2024-03-19
US20230155285A1 (en) 2023-05-18
CN115250642A (zh) 2022-10-28
US11881631B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
JP5120896B2 (ja) ストリップ線路型の右手/左手系複合線路または左手系線路とそれらを用いたアンテナ
CN107453013A (zh) 一种基于液晶材料的移相器
EP3918670B1 (en) Dual-polarized substrate-integrated beam steering antenna
US11462826B2 (en) Signal conditioner, antenna device and manufacturing method
WO2005031919A1 (en) Broadband slot array antenna
CN110235301B (zh) 基于液晶的高频装置和高频开关
CN108767456B (zh) 一种可分块控制的方向图可重构液晶天线及重构方法
CN113708064B (zh) 一种圆极化可重构天线
US20100090780A1 (en) Phase shifter
JP6347423B2 (ja) 移相回路及びアンテナ装置
WO2022178800A1 (zh) 天线
JP2017152793A (ja) 移相器及びこれを備えたアンテナ装置
Goode et al. A four element phased patch antenna array using fluidic phase shifter
CN113594690B (zh) 一种液晶相控阵天线
CN110416668A (zh) 一种液晶移相器
JP6478397B2 (ja) フェーズドアレイアンテナ
WO2022087872A1 (zh) 相控阵天线系统及电子装置
Kayat et al. Reconfigurable truncated rhombus-like microstrip slotted antenna with parasitic elements
CN116547864A (zh) 一种双极化基板集成式360°波束转向天线
CN104993232A (zh) 一种低剖面双频天线
EP3577712B1 (en) Liquid crystal-based high-frequency device and high-frequency switch
US9099763B2 (en) Tunable slow wave coplanar waveguide transmission line having a movable shielding plane
CN102683858B (zh) 天线
KR101151916B1 (ko) 임피던스 및/또는 편파 매칭된 평면 안테나
CN114883764B (zh) 一种宽频带高功率微波移相器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16-01-2024)