WO2022160248A1 - 多频段功率放大电路和射频收发机 - Google Patents

多频段功率放大电路和射频收发机 Download PDF

Info

Publication number
WO2022160248A1
WO2022160248A1 PCT/CN2021/074408 CN2021074408W WO2022160248A1 WO 2022160248 A1 WO2022160248 A1 WO 2022160248A1 CN 2021074408 W CN2021074408 W CN 2021074408W WO 2022160248 A1 WO2022160248 A1 WO 2022160248A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
matching circuit
tube
power amplifier
band power
Prior art date
Application number
PCT/CN2021/074408
Other languages
English (en)
French (fr)
Inventor
索海雷
易亮
孙益军
孙捷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020237028998A priority Critical patent/KR20230135136A/ko
Priority to EP21921853.4A priority patent/EP4277125A4/en
Priority to PCT/CN2021/074408 priority patent/WO2022160248A1/zh
Priority to JP2023546131A priority patent/JP2024504491A/ja
Priority to CN202180054677.1A priority patent/CN116134728A/zh
Publication of WO2022160248A1 publication Critical patent/WO2022160248A1/zh
Priority to US18/361,461 priority patent/US20230370024A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3205Modifications of amplifiers to reduce non-linear distortion in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6611Wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • H01L2223/665Bias feed arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • H01L2223/6655Matching arrangements, e.g. arrangement of inductive and capacitive components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/204A hybrid coupler being used at the output of an amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/297Indexing scheme relating to amplifiers the loading circuit of an amplifying stage comprising a capacitor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/301Indexing scheme relating to amplifiers the loading circuit of an amplifying stage comprising a coil
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present application relates to the field of electronic technology, and in particular, to a multi-band power amplifier circuit and a radio frequency transceiver.
  • the power amplifier circuit When designing a power amplifier circuit, it is usually hoped that it can work in multiple frequency bands to improve the compatibility of the equipment. For example, it is hoped that the power amplifier circuit can work in at least one of the following frequency bands: 758-960MHz, 1805-1880MHz, 2110-2170MHz or 2620 ⁇ 2690MHz.
  • the VBW envelope bandwidth of the multi-band power amplifier circuit.
  • the VBW is usually improved by adding a first-order or multi-order low-pass network to the drain of the power transistor in the multi-band power amplifier circuit.
  • a first-order low-pass network composed of a capacitor C1 and an inductor L1 is added to the drain of an insulated gate enhancement type P-channel metal oxide semiconductor (P-channel metal oxide semiconductor, P-MOS) transistor; or , as shown in Figure 1b, a second-order low-pass network composed of capacitor C1, inductor L1, capacitor C2, and inductor L2 is added to the drain of the P-MOS tube; or, as shown in Figure 1c, in the P-MOS tube
  • the drain of adds a second-order low-pass network composed of capacitor C1, inductor L1, capacitor C2, inductor L2, and resistor R.
  • the simulation diagrams of the multi-band power amplifier circuits shown in Figure 1a, Figure 1b, and Figure 1c are shown in Figure 2a, Figure 2b, and Figure 2c, respectively, where the abscissa represents the frequency, the ordinate represents the amplitude of the impedance, and the local maximum value Dots indicate resonance points. Among them, the value of the abscissa corresponding to the maximum magnitude of the impedance is VBW. It can be seen that the VBW of the multi-band power amplifier circuit shown in Fig. 1a is about 110MHz, and the improvement effect of VBW is not obvious. The VBW of the multi-band power amplifier circuit shown in Fig. 1b and Fig.
  • the VBW can be improved, additional resonance points are introduced around tens of MHz, which affects the linearity correction.
  • the multi-band power amplifier circuit shown in Figure 1c uses the resistor R to reduce the quality factor of the resonance point, but it will introduce additional resonance points. loss.
  • Embodiments of the present application provide a multi-band power amplifier circuit and a radio frequency transceiver, which are used to improve VBW on the premise of ensuring linearity correction and reducing circuit loss.
  • a multi-band power amplifier circuit comprising: a first power tube, a second power tube, a first matching circuit, a second matching circuit, a third matching circuit and a combiner; wherein the first The power tube is coupled to the first input end of the combiner through the first matching circuit; the second power tube is coupled to the second input end of the combiner through the second matching circuit; the first input end of the third matching circuit One end is coupled to the output end of the first power tube, the second end of the third matching circuit is coupled to the output end of the second power tube, wherein the third matching circuit is used for the output end of the first power tube It is directly connected with the output end of the second power tube.
  • the third matching circuit since the third matching circuit directly connects the output end of the first power tube with the output end of the second power tube, the third matching circuit does not involve the LC resonant circuit, thus The introduction of an extra resonance point caused by the LC resonance circuit can be avoided.
  • the third matching circuit since the third matching circuit directly connects the output end of the first power tube with the output end of the second power tube, the third matching circuit also does not involve resistance, thereby avoiding additional losses caused by introducing resistance.
  • the first matching circuit is connected in parallel with the second matching circuit
  • the first matching circuit is connected in parallel with the second matching circuit
  • the second matching circuit is connected in parallel with the third matching circuit
  • the third matching circuit is connected in series with the first matching circuit
  • the first matching circuit is connected in parallel with the second matching circuit.
  • the first matching circuit is connected in parallel with the second matching circuit, which can reduce the equivalent inductance of the first matching circuit and/or the second matching circuit.
  • the value of the inductance L or the capacitance C is inversely proportional to the value of the resonant frequency f, so when the equivalent inductance of the first matching circuit and/or the second matching circuit decreases, the equivalent inductance of the entire multi-band power amplifier circuit decreases, The resonant frequency will increase. Further, since the resonant frequency of the resonance point corresponding to the maximum magnitude of the impedance is VBW, when the resonant frequency of the multi-band power amplifier circuit increases, the VBW of the multi-band power amplifier circuit will increase.
  • the multi-band power amplifier circuit provided by the embodiments of the present application can improve VBW and improve VBW-related characteristics.
  • the multi-band power amplifier circuit provided in the embodiment of the present application can also improve the fundamental wave matching bandwidth to achieve good fundamental wave matching, thereby reducing the multi-band power amplifier circuit and the single-band power amplifier circuit in a specific frequency band. performance gaps such as linearity and efficiency.
  • the third matching circuit is at least one of a microstrip line, an inductor, a bonding line, or an integrated passive device.
  • the third matching circuit in this application can be a DC component such as a microstrip line, an inductor or a bonding line, or a combination thereof, so as to improve the VBW and fundamental wave matching bandwidth, and the specific implementation of the third matching circuit is not described in this application. any restrictions.
  • the third matching circuit is a capacitor.
  • the third matching circuit in the present application may be an AC component such as a capacitor or a combination thereof, so as to improve the fundamental wave matching bandwidth, and the present application does not limit the specific implementation of the third matching circuit.
  • the third matching circuit is located inside the package of the first power transistor and/or the second power transistor, or the third matching circuit is located in the first power transistor Outside the package of the tube and the second power tube, or the third matching circuit is located at the output pads of the die of the first power tube and the die of the second power tube.
  • a multi-band power amplifier including the multi-band power amplifying circuit according to the first aspect and any of the embodiments thereof.
  • the multi-band power amplifier is used to amplify the input multi-band signal.
  • a radio frequency transceiver including an analog baseband and the multi-band power amplifying circuit according to the first aspect and any of the embodiments thereof, where the analog baseband is used to output a multi-band radio frequency signal to the multi-band power amplifying circuit , the multi-band power amplifier circuit is used to amplify the multi-band radio frequency signal.
  • 1a is a schematic structural diagram 1 of a multi-band power amplifier circuit in the prior art
  • FIG. 1b is a second structural schematic diagram of a multi-band power amplifier circuit in the prior art
  • Fig. 1c is a schematic structural diagram three of a multi-band power amplifier circuit in the prior art
  • Fig. 2a is a simulation diagram of the multi-band power amplifier circuit shown in Fig. 1a;
  • Fig. 2b is a simulation diagram of the multi-band power amplifier circuit shown in Fig. 1b;
  • Fig. 2c is a simulation diagram of the multi-band power amplifier circuit shown in Fig. 1c;
  • FIG. 3 is a schematic structural diagram of a multi-antenna radio frequency transceiver according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram 1 of a multi-band power amplifier circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a DHT power amplifier circuit in the prior art
  • FIG. 6 is a second schematic structural diagram of a multi-band power amplifier circuit provided by an embodiment of the present application.
  • FIG. 7 is a simulation diagram of a multi-band power amplifier circuit provided by an embodiment of the present application.
  • FIG. 8 is a third schematic structural diagram of a multi-band power amplifier circuit provided by an embodiment of the present application.
  • FIG. 9 is a fourth schematic structural diagram of a multi-band power amplifier circuit provided by an embodiment of the present application.
  • FIG. 10 is a fifth schematic structural diagram of a multi-band power amplifier circuit provided by an embodiment of the present application.
  • first”, second, etc. are only used for descriptive purposes, and should not be understood as indicating or implying relative importance or implying the number of indicated technical features.
  • a feature defined as “first”, “second”, etc. may expressly or implicitly include one or more of that feature.
  • orientation terms such as “upper” and “lower” are defined relative to the orientation in which the components in the drawings are schematically placed. It should be understood that these directional terms are relative concepts, and they are used for relative In the description and clarification of the drawings, it may change correspondingly according to the change of the orientation in which the components are placed in the drawings.
  • connection should be understood in a broad sense.
  • connection may be an electrical connection for signal transmission, a direct electrical connection, or a Indirect electrical connection through an intermediate medium.
  • the switch in the following scheme includes two states: short circuit and open circuit. In some schemes, short circuit is also called closed, switching, switching, conduction, etc., and open circuit is also called open, open circuit, and so on.
  • the figure shows the structure of a multi-antenna radio frequency transceiver, which can be applied to a communication device.
  • the transceiver includes: a phase locked loop (PLL) 10, a local oscillator (local oscillator) oscillator generator, LO) 11, digital base band (DBB) 12, and multiple sets of radio frequency circuits, each set of radio frequency circuits includes transmit analog base band (TX ABB) 14, power amplifier (power amplifier, PA) 16.
  • Antenna 17 and mixer 19, wherein PA 16 can be implemented by the multi-band power amplifier circuit provided by the embodiment of the present application.
  • the output of PLL 10 is connected to the input of LO 11.
  • the output of LO 11 is connected to the first input of mixer 19 for each set of RF circuits.
  • the DBB 12 is connected to the input end of the TX ABB 14, the output end of the TX ABB 14 is connected to the second input end of the mixer 19, and the output end of the mixer 19 is connected to the input of the PA 16 terminal, the output terminal of the PA 16 is connected to the antenna 17.
  • the PLL 10 is used to output a first oscillation signal of a fixed clock frequency for each channel to the LO 11.
  • the LO 11 is used to process (optionally divide the frequency, and optionally output a quadrature phase) the first oscillating signal and output a plurality of transmit oscillating signals of local oscillator frequencies.
  • DBB 12 is used to send digital signals to the transmit chain.
  • the TX ABB 14 is used to filter and amplify the digital signal from the DBB 12.
  • the mixer 19 is used to mix the transmit oscillation signal (and optionally, the signal output by the TX ABB 14 ) and output it to the PA 16 .
  • PA 16 is used to amplify the high frequency signal after mixing.
  • the communication apparatus involved in the embodiment of the present application may be a device including a wireless transceiver function.
  • a communication apparatus may also be referred to as terminal equipment, user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication device, user agent, or user device.
  • UE user equipment
  • the communication device may be a cell phone, smart speaker, smart watch, handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, robot, drone, smart driving vehicle, smart home, in-vehicle device, Medical equipment, smart logistics equipment, wearable equipment, wireless fidelity (Wi-Fi) equipment, terminal equipment in a future fifth-generation (5th generation, 5G) network or a network after 5G, etc., embodiments of this application This is not limited.
  • the multi-band power amplifier circuit provided by the embodiment of the present application includes a first power tube, a second power tube, a first matching circuit, a second matching circuit, a third matching circuit, and a combiner.
  • the first power tube is coupled to the first input end of the combiner through the first matching circuit
  • the second power tube is coupled to the second input end of the combiner through the second matching circuit
  • the first end of the third matching circuit is coupled to the combiner.
  • the output end of the first power tube and the second end of the third matching circuit are coupled to the output end of the second power tube.
  • the third matching circuit is used to directly connect the output end of the first power tube with the output end of the second power tube.
  • the third matching circuit may be at least one of microstrip lines, inductors, bonding wires, or integrated passive devices.
  • the third matching circuit is located inside the package of the first power transistor and/or the second power transistor, or the third matching circuit is located outside the package of the first power transistor and the second power transistor, Alternatively, the third matching circuit is located on the die of the first power transistor and the output pad of the die of the second power transistor.
  • the functions of other devices and/or circuits other than the third matching circuit shown in FIG. 4 may be as follows:
  • the first power tube is always used to amplify the input signal of the multi-band power amplifier circuit.
  • the second power tube is used to amplify the input signal of the multi-band power amplifier circuit together with the first power tube.
  • the first power tube does not reach the saturation state, the second power tube does not work, and only the first power tube works.
  • the first matching circuit is used to reduce the equivalent load of the first power tube, thereby increasing the output current of the first power tube. Further, as the output current of the first power tube increases, the output current of the combiner will also increase, thereby increasing the output power of the multi-band power amplifier circuit.
  • the second matching circuit is used to ensure the normal operation of the second power tube.
  • a combiner is used to combine two input signals into one.
  • the third matching circuit since the third matching circuit directly connects the output end of the first power tube with the output end of the second power tube, the third matching circuit does not involve an LC resonant circuit, It is thus possible to avoid introducing an additional resonance point caused by the LC resonance circuit.
  • the third matching circuit since the third matching circuit directly connects the output end of the first power tube with the output end of the second power tube, the third matching circuit also does not involve resistance, thereby avoiding additional losses caused by introducing resistance.
  • the first matching circuit is connected in parallel with the second matching circuit
  • the first matching circuit is connected in parallel with the second matching circuit
  • the second matching circuit is connected in parallel with the third matching circuit
  • the third matching circuit is connected in series with the first matching circuit
  • the first matching circuit is connected in parallel with the second matching circuit.
  • the first matching circuit is connected in parallel with the second matching circuit, which can reduce the equivalent inductance of the first matching circuit and/or the second matching circuit.
  • the value of the inductance L or the capacitance C is inversely proportional to the value of the resonant frequency f, so when the equivalent inductance of the first matching circuit and/or the second matching circuit decreases, the equivalent inductance of the entire multi-band power amplifier circuit decreases, The resonant frequency will increase. Further, since the value of the resonance frequency of the resonance point corresponding to the maximum magnitude of the impedance is VBW, when the resonance frequency of the multi-band power amplifier circuit increases, the VBW of the multi-band power amplifier circuit will increase.
  • the multi-band power amplifier circuit provided by the embodiments of the present application can improve VBW and improve VBW-related characteristics.
  • the multi-band power amplifier circuit provided in the embodiment of the present application can also improve the fundamental wave matching bandwidth to achieve good fundamental wave matching, thereby reducing the multi-band power amplifier circuit and the single-band power amplifier circuit in a specific frequency band. performance gaps such as linearity and efficiency.
  • FIG. 5 shows a schematic structural diagram of a Doherty (DHT) power amplifier circuit in the prior art.
  • the DHT power amplifier circuit includes an averaging tube, a peak tube, a first DC bias circuit, a second DC bias circuit, The first 1/4 wavelength impedance transformation line, the second 1/4 wavelength impedance transformation line, and the load.
  • the working principle of the DHT power amplifying circuit may refer to the prior art, which will not be repeated here.
  • the mean value tube in Figure 5 may correspond to the first power tube in Figure 4, the peak tube in Figure 5 may correspond to the second power tube in Figure 4, and Figure 5
  • the first DC bias circuit and the first 1/4 wavelength impedance transformation line in FIG. 4 may correspond to the first matching circuit in FIG. 4
  • the second DC bias circuit in FIG. 5 may correspond to the second DC bias circuit in FIG. 4 .
  • matching circuit; or, the mean value tube in FIG. 5 may correspond to the second power tube in FIG. 4
  • the peak tube in FIG. 5 may correspond to the first power tube in FIG. 4
  • the first DC bias tube in FIG. 5
  • the setting circuit and the first 1/4 wavelength impedance transformation line may correspond to the second matching circuit in FIG.
  • the second DC bias circuit in FIG. 5 may correspond to the first matching circuit in FIG. 4 .
  • the embodiment of the present application There is no restriction on this.
  • the second 1/4 wavelength impedance transformation line in FIG. 5 may correspond to the combiner in FIG. 4
  • the load may correspond to the sum of the equivalent impedances of the antenna and the back-end circuit of the antenna on the transmitting chain in FIG. 4 .
  • the third matching circuit in FIG. 4 may be, for example, a section of microstrip line.
  • the functions of the device and/or circuit shown in FIG. 6 may be as follows:
  • the averaging tube is always used to amplify the input signal of the multi-band power amplifier circuit.
  • the peak tube is used to amplify the input signal of the multi-band power amplifier circuit together with the averaging tube.
  • the mean tube does not reach the saturation state, the peak tube does not work, only the mean tube works.
  • the first DC bias circuit is used for providing DC current for the mean value tube, and similarly, the second DC bias circuit is used for providing DC current for the peak tube.
  • the first 1/4 wavelength impedance transformation line is used to reduce the equivalent load of the averaging tube, thereby increasing the output current of the averaging tube.
  • the output current of the combiner will also increase, thereby increasing the output power of the power amplifier.
  • the second 1/4 wavelength impedance transformation line is used to combine the two input signals into one.
  • the working process of the multi-band power amplifier circuit shown in FIG. 6 can be divided into the following three stages:
  • the input signal of the multi-band power amplifier circuit is a small signal, only the mean value tube works, and the peak tube does not work. Specifically, after the input signal of the multi-band power amplifier circuit passes through the averaging tube and the first 1/4 wavelength impedance transformation line, the power of the signal is amplified.
  • the input signal of the multi-band power amplifier circuit is continuously enhanced.
  • the mean value tube reaches the saturation state, the peak value tube is turned on and works together with the mean value tube.
  • the input signal of the multi-band power amplifier circuit passes through the averaging tube and the first 1/4 wavelength impedance transformation line, and the other way passes through the peak tube or through the averaging tube and the microstrip line, and is transformed by the second 1/4 wavelength impedance.
  • the power of the signal is amplified.
  • the output voltage of the mean tube in the saturated state is constant, but because the equivalent load of the mean tube keeps decreasing, the output current of the mean tube keeps increasing, so that the signal power can continue to be amplified.
  • the input signal of the multi-band power amplifier circuit continues to increase, the output voltage of the mean tube in the saturated state is constant, and the output current continues to increase, until the peak tube also reaches the saturation state, the output current of the mean tube and the peak tube both reach The maximum value, at this time, the signal power output by the multi-band power amplifier circuit also reaches the maximum value.
  • the output end of the averaging tube and the output end of the peaking tube are not connected, and the averaging tube and the peaking tube can only be designed with a single DC bias circuit, as shown in Figure 5. shown. That is to say, for the averaging tube, it can be coupled to the first DC bias circuit, but since the first 1/4 wavelength impedance transformation line is very long, the output end of the averaging tube passes through the first 1/4 wavelength impedance transformation The impedance of the output end of the line and peak tube coupled to the second DC bias circuit is very large, and the averaging tube cannot be coupled to the second DC bias circuit, that is, the averaging tube can only implement a single DC bias circuit.
  • the peak tube can be coupled to the second DC bias circuit, but since the first 1/4 wavelength impedance transformation line is very long, the output end of the peak tube passes through the first 1/4 wavelength impedance transformation line and the The impedance of the output end of the averaging tube coupled to the first DC bias circuit is very large, and the peak tube cannot be coupled to the first DC bias circuit, that is, the peak tube can only implement a single DC bias circuit.
  • the microstrip line can directly connect the output end of the averaging tube and the output end of the peaking tube to establish a new DC connection, thereby realizing the dual DC bias circuit design of the averaging tube and the peaking tube.
  • the microstrip line does not involve the LC resonant circuit, the introduction of additional resonance points caused by the LC resonant circuit can be avoided.
  • the microstrip line does not involve resistance, the additional loss caused by the introduction of resistance is avoided.
  • the simulation diagram shown in FIG. 7 it can be seen that, except for the resonance point corresponding to VBW, the multi-band power amplifier circuit provided by the embodiment of the present application does not introduce any additional resonance point, so that the circuit can be guaranteed. linear correction.
  • the first DC bias circuit is connected to the The second DC bias circuit is connected in parallel, or, for the output end of the peak tube, since the second DC bias circuit is connected in parallel with the microstrip line, and the microstrip line is connected in series with the first DC bias circuit, the first DC bias circuit is The DC bias circuit is connected in parallel with the second DC bias circuit.
  • the parallel connection of the first DC bias circuit and the second DC bias circuit can reduce the equivalent inductance of the first DC bias circuit and/or the second DC bias circuit, thereby increasing the resonant frequency of the entire circuit, To achieve the technical effect of improving VBW.
  • the VBW of the multi-band power amplifying circuit provided by the embodiment of the present application is 1060 MHz
  • the VBW of the DHT power amplifying circuit shown in FIG. 5 is 740 MHz. Therefore,
  • the value of the VBW of the multi-band power amplifier circuit provided by the embodiment of the present application is greater than the value of the VBW of the circuit shown in FIG. 5 .
  • the multi-band power amplifier circuit provided by the embodiments of the present application can improve VBW and improve VBW-related characteristics.
  • the multi-band power amplifier circuit provided by the embodiment of the present application can also improve the fundamental wave matching bandwidth.
  • the fundamental matching bandwidth can be measured by impedance error.
  • the impedance error is used to indicate the error between the actual fundamental impedance and the target fundamental impedance, and the impedance error satisfies the following formula (1):
  • Z m represents the actual fundamental impedance
  • Z t represents the target fundamental impedance
  • Z t represents the conjugate of Z t .
  • the fundamental frequency is 1840MHz and 2140MHz
  • the impedance error calculation results of the DHT power amplifier circuit shown in FIG. 5 and the multi-band power amplifier circuit provided by the embodiment of the present application are shown in Table 1 below.
  • the impedance errors of the multi-band power amplifier circuits provided in the embodiments of the present application are all smaller than the impedance errors of the DHT power amplifier circuits shown in FIG. 5 . Therefore, the multi-band power amplifier circuits provided in the embodiments of the present application The amplifier circuit can improve the fundamental wave matching bandwidth.
  • the third matching circuit in FIG. 4 can also be, for example, an inductor.
  • the functions of the devices and/or circuits constituting the multi-band power amplifying circuit shown in FIG. 8 and the working process of the multi-band power amplifying circuit are described with reference to the text corresponding to FIG. 6 , and will not be repeated here.
  • the third matching circuit in FIG. 4 may also be, for example, one or more bonding wires.
  • the functions of the devices and/or circuits constituting the multi-band power amplifier circuit shown in FIG. 9 and the working process of the multi-band power amplifier circuit are described with reference to the text corresponding to FIG.
  • the third matching circuit in FIG. 4 may also be a capacitor.
  • the functions of the devices and/or circuits constituting the multi-band power amplifying circuit shown in FIG. 10 and the working process of the multi-band power amplifying circuit are described with reference to the text corresponding to FIG. 6 , and will not be repeated here. It should be noted that, since the capacitor is an AC component, the multi-frequency power amplifier circuit can only improve the fundamental wave matching bandwidth, but cannot improve the VBW defined in the low frequency band.
  • the third matching circuit in the embodiment of the present application may be a DC component such as a microstrip line, an inductor or a bonding wire, or a combination thereof, so as to improve the matching bandwidth between the VBW and the fundamental wave; or, in the embodiment of the present application,
  • the third matching circuit can be an AC component such as a capacitor or a combination thereof to improve the fundamental wave matching bandwidth.
  • the third matching circuit in the embodiment of the present application may also include other devices for connecting the output end of the first power tube with the output end of the second power tube, and the specific implementation of the third matching circuit is not described in this application any restrictions.
  • the units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

本申请实施例提供一种多频段功率放大电路和射频收发机,用于在保证线性校正和减小电路损耗的前提下提高VBW。该多频段功率放大电路包括第一功率管、第二功率管、第一匹配电路、第二匹配电路、第三匹配电路以及合路器;其中,第一功率管通过第一匹配电路耦合至合路器的第一输入端;第二功率管通过第二匹配电路耦合至合路器的第二输入端;第三匹配电路的第一端耦合至第一功率管的输出端,第三匹配电路的第二端耦合至第二功率管的输出端,其中,第三匹配电路用于将第一功率管的输出端与第二功率管的输出端直通。

Description

多频段功率放大电路和射频收发机 技术领域
本申请涉及电子技术领域,尤其涉及多频段功率放大电路和射频收发机。
背景技术
在设计功率放大电路时,通常希望其能够工作在多个频段以提高设备的兼容性,例如,希望功率放大电路能够工作以下频段中的至少一个:758~960MHz、1805~1880MHz、2110~2170MHz或2620~2690MHz。
为了减小多频段功率放大电路在多频段工作模式下的线性恶化和效率降低,需要提高多频段功率放大电路的包络带宽(video bandwidth,VBW)。在现有技术中,通常通过在多频段功率放大电路中的功率管的漏极增加一阶或者多阶低通网络来提高VBW。如图1a所示,在绝缘栅增强型P沟道金属氧化物半导体(P-channel metal oxide semiconductor,P-MOS)管的漏极增加由电容C1和电感L1组成的一阶低通网络;或者,如图1b所示,在P-MOS管的漏极增加由电容C1、电感L1、电容C2、和电感L2组成的二阶低通网络;或者,如图1c所示,在P-MOS管的漏极增加由电容C1、电感L1、电容C2、电感L2和电阻R组成的二阶低通网络。
图1a、图1b和图1c所示的多频段功率放大电路的仿真图分别如图2a、图2b和图2c所示,其中,横坐标表示频率,纵坐标表示阻抗的幅度,局部极大值点表示谐振点。其中,阻抗的幅度最大值所对应的横坐标的取值为VBW。由此可知,图1a所示的多频段功率放大电路的VBW约为110MHz,VBW的提高效果不明显,图1b和图1c所示的多频段功率放大电路的VBW分别约为550MHz和510MHz,它们虽然能够提高VBW,但均在几十MHz附近引入额外的谐振点,从而影响线性校正,此外,图1c所示的多频段功率放大电路采用电阻R来降低谐振点品质因数,但会引入额外的损耗。
发明内容
本申请实施例提供一种多频段功率放大电路和射频收发机,用于在保证线性校正和减小电路损耗的前提下提高VBW。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种多频段功率放大电路,包括:第一功率管、第二功率管、第一匹配电路、第二匹配电路、第三匹配电路以及合路器;其中,该第一功率管通过该第一匹配电路耦合至该合路器的第一输入端;该第二功率管通过该第二匹配电路耦合至该合路器的第二输入端;该第三匹配电路的第一端耦合至该第一功率管的输出端,该第三匹配电路的第二端耦合至该第二功率管的输出端,其中,第三匹配电路用于将该第一功率管的输出端与该第二功率管的输出端直通。
本申请实施例提供的多频段功率放大电路,一方面,由于第三匹配电路将第一功率管的输出端与第二功率管的输出端直通,因此第三匹配电路不涉及LC谐振电路,从而能够避免引入由LC谐振电路导致的额外的谐振点。另外,由于第三匹配电路将第一功率管的输出端与第二功率管的输出端直通,因此第三匹配电路也不涉及电阻,从而能够避免引入电阻带来的额外损耗。另一方面,对于第一功率管的输出端,由于第 一匹配电路与第三匹配电路并联,而第三匹配电路与第二匹配电路串联,因此,第一匹配电路与第二匹配电路并联,或者,对于第二功率管的输出端,由于第二匹配电路与第三匹配电路并联,而第三匹配电路与第一匹配电路串联,因此,第一匹配电路与第二匹配电路并联。进一步地,第一匹配电路与第二匹配电路并联,能够降低第一匹配电路和/或第二匹配电路的等效电感。进一步地,由公式
Figure PCTCN2021074408-appb-000001
可知,电感L或电容C与谐振频率f的取值呈反比例关系,因此当第一匹配电路和/或第二匹配电路的等效电感降低时,整个多频段功率放大电路的等效电感降低,谐振频率将增加。进一步地,由于阻抗的幅度的最大值所对应的谐振点的谐振频率的取值为VBW,因此,当多频段功率放大电路的谐振频率增加时,多频段功率放大电路的VBW将提高。
综上,本申请实施例提供的多频段功率放大电路能够提高VBW并改善VBW相关特性。此外,本申请实施例提供的多频段功率放大电路还可以提高基波匹配带宽,以实现良好的基波匹配,从而在某个特定频段上,减小多频段功率放大电路与单频段功率放大电路的线性和效率等性能的差距。
结合上述第一方面,在一种可能的实现方式中,该第三匹配电路为微带线、电感、邦定线或者集成无源器件中的至少之一。本申请中的第三匹配电路可以为例如微带线、电感或者邦定线等的直流元器件或其组合,以改善VBW和基波匹配带宽,本申请对第三匹配电路的具体实现方式不作任何限定。
结合上述第一方面,在一种可能的实现方式中,该第三匹配电路为电容。本申请中的第三匹配电路可以为例如电容的交流元器件或其组合,以改善基波匹配带宽,本申请对第三匹配电路的具体实现方式不作任何限定。
结合上述第一方面,在一种可能的实现方式中,该第三匹配电路位于该第一功率管和/或该第二功率管封装的内部,或者,该第三匹配电路位于该第一功率管和该第二功率管封装的外部,或者,该第三匹配电路位于该第一功率管的管芯和该第二功率管的管芯的输出焊盘。
第二方面,提供了一种多频段功率放大器,包括如第一方面及其任一实施方式的多频段功率放大电路。多频段功率放大器用于放大输入的多频段信号。
第三方面,提供了一种射频收发机,包括模拟基带和如第一方面及其任一实施方式的多频段功率放大电路,该模拟基带用于向该多频段功率放大电路输出多频段射频信号,该多频段功率放大电路用于放大该多频段射频信号。
第二方面、第三方面的技术效果参照第一方面及其任一实施方式的技术效果,在此不再赘述。
附图说明
图1a为现有技术中多频段功率放大电路的结构示意图一;
图1b为现有技术中多频段功率放大电路的结构示意图二;
图1c为现有技术中多频段功率放大电路的结构示意图三;
图2a为图1a所示的多频段功率放大电路的仿真图;
图2b为图1b所示的多频段功率放大电路的仿真图;
图2c为图1c所示的多频段功率放大电路的仿真图;
图3为本申请实施例提供的一种多天线的射频收发机的结构示意图;
图4为本申请实施例提供的多频段功率放大电路的结构示意图一;
图5为现有技术中DHT功率放大电路的结构示意图;
图6为本申请实施例提供的多频段功率放大电路的结构示意图二;
图7为本申请实施例提供的多频段功率放大电路的仿真图;
图8为本申请实施例提供的多频段功率放大电路的结构示意图三;
图9为本申请实施例提供的多频段功率放大电路的结构示意图四;
图10为本申请实施例提供的多频段功率放大电路的结构示意图五。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。
此外,本申请中,“上”、“下”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是实现信号传输的电性连接的方式,可以是直接的电性连接,也可以通过中间媒介间接的电性连接。以下方案中开关包括两个状态:短路和开路,在一些方案中短路也称作闭合、投切、投合、导通等,开路也称作断开、断路等等。
如图3所示,该图示出了一种多天线的射频收发机的结构,可以应用于通信装置中,该收发机包括:锁相环(phase locked loop,PLL)10、本振(local oscillator generator,LO)11、数字基带(digital base band,DBB)12以及多组射频电路,每组射频电路包括发射模拟基带(transmit analog base band,TX ABB)14、功率放大器(power amplifier,PA)16、天线17和混频器19,其中,PA 16可以由本申请实施例提供的多频段功率放大电路实现。
首先对上述各器件的连接关系进行说明:
PLL 10的输出端连接LO 11的输入端。对于每组射频电路,LO 11的输出端连接混频器19的第一输入端。
在每组射频电路的发射链路上,DBB 12连接TX ABB 14的输入端,TX ABB 14的输出端连接混频器19的第二输入端,混频器19的输出端连接PA 16的输入端,PA 16的输出端连接至天线17。
下面对上述各器件的功能进行描述:
PLL 10用于向LO 11输出每个信道固定的时钟频率的第一振荡信号。
LO 11用于对第一振荡信号进行处理(可选的分频,以及,可选的输出正交相位)并输出多个本振频率的发射振荡信号。
DBB 12用于向发射链路发送数字信号。
TX ABB 14用于对来自DBB 12的数字信号进行滤波及放大处理。
混频器19用于对发射振荡信号(可选的,以及TX ABB 14输出的信号)进行混频,并输出给PA 16。
PA 16用于放大混频之后的高频信号。
可选的,本申请实施例涉及的通信装置可以为包含无线收发功能的设备。通信装置也可以称为终端设备、用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信装置、用户代理或用户装置。例如,通信装置可以是手机、智能音箱、智能手表、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、机器人、无人机、智能驾驶车辆、智能家居、车载设备、医疗设备、智慧物流设备、可穿戴设备、无线保真(wireless fidelity,Wi-Fi)设备,未来第五代(5th genetation,5G)网络或5G之后的网络中的终端设备等,本申请实施例对此不作限定。
如图4所示,本申请实施例提供的多频段功率放大电路包括第一功率管、第二功率管、第一匹配电路、第二匹配电路、第三匹配电路以及合路器。
第一功率管通过第一匹配电路耦合至合路器的第一输入端,第二功率管通过第二匹配电路耦合至合路器的第二输入端,第三匹配电路的第一端耦合至第一功率管的输出端,第三匹配电路的第二端耦合至第二功率管的输出端。其中,第三匹配电路用于将第一功率管的输出端与第二功率管的输出端直通。
可选的,本申请实施例中,第三匹配电路可以为微带线、电感、邦定线(bonding wires)、或者集成无源器件中的至少之一。
可选的,本申请实施例中,第三匹配电路位于第一功率管和/或第二功率管封装的内部,或者,第三匹配电路位于第一功率管和第二功率管封装的外部,或者,第三匹配电路位于第一功率管的管芯和第二功率管的管芯的输出焊盘。
此外,本申请实施例中,图4所示的第三匹配电路之外的其他器件和/或电路的功能可以如下:
第一功率管始终用于放大多频段功率放大电路的输入信号,当第一功率管达到饱和状态时,第二功率管用于与第一功率管一同放大多频段功率放大电路的输入信号。当第一功率管未达到饱和状态时,第二功率管不工作,只有第一功率管工作。
可选地,第一功率管和第二功率管同时工作时,第一匹配电路用于减小第一功率管的等效负载,从而增加第一功率管的输出电流。进一步地,第一功率管的输出电流增加,合路器的输出电流也将增加,进而使多频段功率放大电路的输出功率变大。
第二匹配电路用于保证第二功率管的正常工作。
合路器用于将输入的两路信号合为一路。
基于本申请实施例提供的多频段功率放大电路,一方面,由于第三匹配电路将第一功率管的输出端与第二功率管的输出端直通,因此第三匹配电路不涉及LC谐振电路,从而能够避免引入由LC谐振电路导致的额外的谐振点。另外,由于第三匹配电路将第一功率管的输出端与第二功率管的输出端直通,因此第三匹配电路也不涉及电阻,从而能够避免引入电阻带来的额外损耗。另一方面,对于第一功率管的输出端,由于第一匹配电路与第三匹配电路并联,而第三匹配电路与第二匹配电路串联,因此,第一匹配电路与第二匹配电路并联,或者,对于第二功率管的输出端,由于第二匹配电路与第三匹配电路并联,而第三匹配电路与第一匹配电路串联,因此,第一匹配电路与第二匹配电路并联。进一步地,第一匹配电路与第二匹配电路并联,能够降低第一匹配电路和/或第二匹配电路的等效电感。进一步地,由公式
Figure PCTCN2021074408-appb-000002
可知,电感L 或电容C与谐振频率f的取值呈反比例关系,因此当第一匹配电路和/或第二匹配电路的等效电感降低时,整个多频段功率放大电路的等效电感降低,谐振频率将增加。进一步地,由于阻抗的幅度的最大值所对应的谐振点的谐振频率的取值为VBW,因此,当多频段功率放大电路的谐振频率增加时,多频段功率放大电路的VBW将提高。
综上,本申请实施例提供的多频段功率放大电路能够提高VBW并改善VBW相关特性。此外,本申请实施例提供的多频段功率放大电路还可以提高基波匹配带宽,以实现良好的基波匹配,从而在某个特定频段上,减小多频段功率放大电路与单频段功率放大电路的线性和效率等性能的差距。
图5示出了现有技术中多赫蒂(Doherty,DHT)功率放大电路的结构示意图,DHT功率放大电路包括均值管、峰值管、第一直流偏置电路、第二直流偏置电路、第一1/4波长阻抗变换线、第二1/4波长阻抗变换线以及负载。其中,DHT功率放大电路的工作原理可参考现有技术,在此不再赘述。
结合图4所示的多频段功率放大电路,图5中的均值管可以对应于图4中的第一功率管,图5中的峰值管可以对应于图4中的第二功率管,图5中的第一直流偏置电路和第一1/4波长阻抗变换线可以对应于图4中的第一匹配电路,图5中的第二直流偏置电路可以对应于图4中的第二匹配电路;或者,图5中的均值管可以对应于图4中的第二功率管,图5中的峰值管可以对应于图4中的第一功率管,图5中的第一直流偏置电路和第一1/4波长阻抗变换线可以对应于图4中的第二匹配电路,图5中的第二直流偏置电路可以对应于图4中的第一匹配电路,本申请实施例对此不作任何限定。此外,图5中的第二1/4波长阻抗变换线可以对应于图4中的合路器,负载可以对应于图4中天线以及发射链路上天线后端电路的等效阻抗总和。
此外,在一种可能的实现方式中,如图6所示,图4中的第三匹配电路例如可以为一段微带线。
具体地,图6所示的器件和/或电路的功能可以如下:
均值管始终用于放大多频段功率放大电路的输入信号,当均值管达到饱和状态时,峰值管用于与均值管一同放大多频段功率放大电路的输入信号。当均值管未达到饱和状态时,峰值管不工作,只有均值管工作。
第一直流偏置电路用于为均值管提供直流电流,同样地,第二直流偏置电路用于为峰值管提供直流电流。
可选地,均值管和峰值管同时工作时,第一1/4波长阻抗变换线用于减小均值管的等效负载,从而增加均值管的输出电流。进一步地,均值管的输出电流增加,合路器的输出电流也将增加,进而使功率放大器的输出功率变大。
第二1/4波长阻抗变换线用于将输入的两路信号合为一路。
可选的,图6所示的多频段功率放大电路的工作过程可以分为如下三个阶段:
第一阶段,多频段功率放大电路的输入信号为小信号,只有均值管工作,峰值管不工作。具体地,多频段功率放大电路的输入信号通过均值管和第一1/4波长阻抗变换线后,信号的功率被放大。
第二阶段,多频段功率放大电路的输入信号不断增强,当均值管达到饱和状态时,峰值管开启,与均值管一同工作。具体地,多频段功率放大电路的输入信号一路通过均值管和第一1/4波长阻抗变换线,另一路通过峰值管或者通过均值管和微带线,并由第二1/4 波长阻抗变换线合为一路之后,信号的功率被放大。此时,处于饱和状态的均值管的输出电压恒定,但由于均值管的等效负载不断减小,均值管的输出电流不断增加,从而能够继续放大信号功率。
第三阶段,多频段功率放大电路的输入信号持续增强,处于饱和状态的均值管的输出电压恒定,输出电流不断增加,直到峰值管也达到饱和状态时,均值管和峰值管的输出电流均达到最大值,此时,多频段功率放大电路输出的信号功率也达到最大值。
可选的,由于传统的匹配电路受限于器件封装的尺寸,因此均值管的输出端和峰值管的输出端未连接,均值管和峰值管只能采用单直流偏置电路设计,如图5所示。也就是说,对于均值管,其可以耦合至第一直流偏置电路,但由于第一1/4波长阻抗变换线很长,因此,均值管的输出端通过第一1/4波长阻抗变换线和峰值管的输出端耦合至第二直流偏置电路的阻抗很大,均值管无法耦合至第二直流偏置电路,即均值管只能实现单直流偏置电路。同样地,对于峰值管,其可以耦合至第二直流偏置电路,但由于第一1/4波长阻抗变换线很长,因此,峰值管的输出端通过第一1/4波长阻抗变换线和均值管的输出端耦合至第一直流偏置电路的阻抗很大,峰值管无法耦合至第一直流偏置电路,即峰值管只能实现单直流偏置电路。
而在本申请实施例中,微带线可以将均值管的输出端和峰值管的输出端之间直通,以建立新的直流连接,从而实现均值管和峰值管的双直流偏置电路设计。下面结合图7和表1来阐述本申请实施例所实现的技术效果。
一方面,由于微带线不涉及LC谐振电路,因此能够避免引入由LC谐振电路导致的额外的谐振点。另外,由于微带线也不涉及电阻,因此避免引入电阻带来的额外损耗。示例性的,在图7所示的仿真图中,可以看出,除与VBW对应的谐振点之外,本申请实施例提供的多频段功率放大电路没有额外引入任何谐振点,从而能够保证电路的线性校正。
另一方面,对于均值管的输出端,由于第一直流偏置电路与该微带线并联,而该微带线与第二直流偏置电路串联,因此,第一直流偏置电路与第二直流偏置电路并联,或者,对于峰值管的输出端,由于第二直流偏置电路与该微带线并联,而该微带线与第一直流偏置电路串联,因此,第一直流偏置电路与第二直流偏置电路并联。进一步地,第一直流偏置电路与第二直流偏置电路并联,能够降低第一直流偏置电路和/或第二直流偏置电路的等效电感,从而增加整个电路的谐振频率,达到提高VBW的技术效果。示例性地,在图7所示的仿真图中,可以看出,本申请实施例提供的多频段功率放大电路的VBW为1060MHz,图5所示的DHT功率放大电路的VBW为740MHz,因此,本申请实施例提供的多频段功率放大电路的VBW的取值大于图5所示电路的VBW的取值。
综上两个方面,本申请实施例提供的多频段功率放大电路能够提高VBW并改善VBW相关特性。此外,本申请实施例提供的多频段功率放大电路还可以提高基波匹配带宽。可选的,基波匹配带宽可以用阻抗误差来衡量。阻抗误差用于指示实际基波阻抗与目标基波阻抗之间的误差,阻抗误差满足如下公式(1):
Figure PCTCN2021074408-appb-000003
其中,Z m表示实际基波阻抗,Z t表示目标基波阻抗,
Figure PCTCN2021074408-appb-000004
表示Z t的共轭。阻抗误差的值越小,基波匹配带宽越宽,从而基波匹配的程度越好,进而在某个特定频段上, 多频段功率放大电路与单频段功率放大电路的线性和效率等的性能差距越小。示例性地,在基波频率为1840MHz和2140MHz时,图5所示的DHT功率放大电路和本申请实施例提供的多频段功率放大电路的阻抗误差计算结果如下表1所示,由此可知,在两个不同的基波频率上,本申请实施例提供的多频段功率放大电路的阻抗误差均小于图5所示的DHT功率放大电路的阻抗误差,因此,本申请实施例提供的多频段功率放大电路可以提高基波匹配带宽。
表1
Figure PCTCN2021074408-appb-000005
需要说明的是,在平衡式合路、非隔离合路等其他具有功率合成的电路中,可以采用本申请实施例的技术方案,以达到改善VBW和基波匹配带宽的目的。
在另一种可能的实现方式中,如图8所示,图4中的第三匹配电路例如还可以为电感。图8所示的组成多频段功率放大电路的器件和/或电路的功能以及多频段功率放大电路的工作过程参照图6对应的文字描述,在此不再赘述。
在又一种可能的实现方式中,如图9所示,图4中的第三匹配电路例如还可以为一根或多根邦定线。图9所示的组成多频段功率放大电路的器件和/或电路的功能以及多频段功率放大电路的工作过程参照图6对应的文字描述,在此不再赘述。
在一种可能的实现方式中,如图10所示,图4中的第三匹配电路例如还可以为电容。图10所示的组成多频段功率放大电路的器件和/或电路的功能以及多频段功率放大电路的工作过程参照图6对应的文字描述,在此不再赘述。需要说明的是,由于电容是交流元器件,因此,该多频率功率放大电路仅能提高基波匹配带宽,不能改善低频段上定义的VBW。
综上,本申请实施例中的第三匹配电路可以为例如微带线、电感或者邦定线等的直流元器件或其组合,以改善VBW和基波匹配带宽;或者,本申请实施例中的第三匹配电路可以为例如电容的交流元器件或其组合,以改善基波匹配带宽。当然,本申请实施例中的第三匹配电路还可以包括其他用于将第一功率管的输出端与第二功率管的输出端直通的器件,本申请对第三匹配电路的具体实现方式不作任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (5)

  1. 一种多频段功率放大电路,其特征在于,包括第一功率管、第二功率管、第一匹配电路、第二匹配电路、第三匹配电路以及合路器;其中,所述第一功率管通过所述第一匹配电路耦合至所述合路器的第一输入端;所述第二功率管通过所述第二匹配电路耦合至所述合路器的第二输入端;所述第三匹配电路的第一端耦合至所述第一功率管的输出端,所述第三匹配电路的第二端耦合至所述第二功率管的输出端,其中,所述第三匹配电路用于将所述第一功率管的输出端与所述第二功率管的输出端直通。
  2. 根据权利要求1所述的电路,其特征在于,所述第三匹配电路为微带线、电感、邦定线、或者集成无源器件中的至少之一。
  3. 根据权利要求1所述的电路,其特征在于,所述第三匹配电路为电容。
  4. 根据权利要求1-3任一项所述的电路,其特征在于,所述第三匹配电路位于所述第一功率管和/或所述第二功率管封装的内部,或者,所述第三匹配电路位于所述第一功率管和所述第二功率管封装的外部,或者,所述第三匹配电路位于所述第一功率管的管芯和所述第二功率管的管芯的输出焊盘。
  5. 一种射频收发机,其特征在于,包括模拟基带以及如权利要求1-4任一项所述的多频段功率放大电路,所述模拟基带用于向所述多频段功率放大电路输出多频段射频信号,所述多频段功率放大电路用于放大所述多频段射频信号。
PCT/CN2021/074408 2021-01-29 2021-01-29 多频段功率放大电路和射频收发机 WO2022160248A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237028998A KR20230135136A (ko) 2021-01-29 2021-01-29 다중 대역 전력 증폭기 회로 및 무선 주파수 트랜시버
EP21921853.4A EP4277125A4 (en) 2021-01-29 2021-01-29 MULTI-BAND POWER AMPLIFICATION CIRCUIT AND HIGH FREQUENCY TRANSMITTER RECEIVER
PCT/CN2021/074408 WO2022160248A1 (zh) 2021-01-29 2021-01-29 多频段功率放大电路和射频收发机
JP2023546131A JP2024504491A (ja) 2021-01-29 2021-01-29 マルチバンド電力増幅回路および無線周波数トランシーバ
CN202180054677.1A CN116134728A (zh) 2021-01-29 2021-01-29 多频段功率放大电路和射频收发机
US18/361,461 US20230370024A1 (en) 2021-01-29 2023-07-28 Multiband power amplifier circuit and radio frequency transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074408 WO2022160248A1 (zh) 2021-01-29 2021-01-29 多频段功率放大电路和射频收发机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/361,461 Continuation US20230370024A1 (en) 2021-01-29 2023-07-28 Multiband power amplifier circuit and radio frequency transceiver

Publications (1)

Publication Number Publication Date
WO2022160248A1 true WO2022160248A1 (zh) 2022-08-04

Family

ID=82652886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074408 WO2022160248A1 (zh) 2021-01-29 2021-01-29 多频段功率放大电路和射频收发机

Country Status (6)

Country Link
US (1) US20230370024A1 (zh)
EP (1) EP4277125A4 (zh)
JP (1) JP2024504491A (zh)
KR (1) KR20230135136A (zh)
CN (1) CN116134728A (zh)
WO (1) WO2022160248A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020067211A1 (en) * 2000-10-23 2002-06-06 Matsushita Electric Industrial Co., Ltd. Power amplifier
US20090102553A1 (en) * 2007-09-03 2009-04-23 Youngoo Yang Doherty amplifier
US20110025412A1 (en) * 2008-04-24 2011-02-03 Koji Matsunaga Amplifier
CN102137518A (zh) * 2010-01-25 2011-07-27 上海华为技术有限公司 Doherty功放和多频段信号参数调整装置
CN105048970A (zh) * 2014-04-15 2015-11-11 恩智浦有限公司 超宽带多赫蒂放大器
CN111010093A (zh) * 2019-12-23 2020-04-14 苏州华太电子技术有限公司 一种集成Doherty放大器及其合路器
CN111213319A (zh) * 2017-10-19 2020-05-29 瑞典爱立信有限公司 多赫蒂功率放大器、控制方法和设备
WO2020107390A1 (zh) * 2018-11-30 2020-06-04 华为技术有限公司 功率放大器电路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143089A (ja) * 2003-10-15 2005-06-02 Sharp Corp バランス型増幅回路および高周波通信装置
CN108599727B (zh) * 2018-05-09 2020-11-06 上海大学 高效宽带Doherty功率放大器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020067211A1 (en) * 2000-10-23 2002-06-06 Matsushita Electric Industrial Co., Ltd. Power amplifier
US20090102553A1 (en) * 2007-09-03 2009-04-23 Youngoo Yang Doherty amplifier
US20110025412A1 (en) * 2008-04-24 2011-02-03 Koji Matsunaga Amplifier
CN102137518A (zh) * 2010-01-25 2011-07-27 上海华为技术有限公司 Doherty功放和多频段信号参数调整装置
CN105048970A (zh) * 2014-04-15 2015-11-11 恩智浦有限公司 超宽带多赫蒂放大器
CN111213319A (zh) * 2017-10-19 2020-05-29 瑞典爱立信有限公司 多赫蒂功率放大器、控制方法和设备
WO2020107390A1 (zh) * 2018-11-30 2020-06-04 华为技术有限公司 功率放大器电路
CN111010093A (zh) * 2019-12-23 2020-04-14 苏州华太电子技术有限公司 一种集成Doherty放大器及其合路器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4277125A4 *

Also Published As

Publication number Publication date
CN116134728A (zh) 2023-05-16
JP2024504491A (ja) 2024-01-31
EP4277125A4 (en) 2024-03-20
KR20230135136A (ko) 2023-09-22
US20230370024A1 (en) 2023-11-16
EP4277125A1 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
US20170070199A1 (en) Radio frequency circuitr having an integrated harmonic filter and a radio frequency circuit having transistors of different threshold voltages
US20170077877A1 (en) Radio frequency circuitr having an integrated harmonic filter and a radio frequency circuit having transistors of different threshold voltages
US6847258B2 (en) Power amplifier, power amplifying method and radio communication apparatus
US9461695B2 (en) Semiconductor device including spiral-shape inductor and horseshoe-shape inductor
US7030714B2 (en) Method and apparatus to match output impedance of combined outphasing power amplifiers
US20150194942A1 (en) Linear row array integrated power combiner for rf power amplifiers
TWI637590B (zh) 功率放大模組
US11750167B2 (en) Apparatus for radio-frequency matching networks and associated methods
JP2021525482A (ja) ミリ波5g通信用再構成可能バンド幅を用いたワイドバンド低雑音増幅器(lna)
JP2014127959A (ja) 半導体装置およびフィルタ回路の調整方法
CN111934629B (zh) 一种宽带高线性度功率放大器
US11664767B2 (en) Doherty power amplifiers with coupled line combiners
US10700655B2 (en) Gain-dependent impedance matching and linearity
WO2020133514A1 (zh) 一种多频段射频前端器件,多频段接收机及多频段发射机
WO2022160248A1 (zh) 多频段功率放大电路和射频收发机
CN217957041U (zh) 平衡放大器
US20220345103A1 (en) Single antenna inductor to match all bands in a front-end module
JP4119227B2 (ja) 電力増幅装置、及び無線通信装置
CN218124668U (zh) 射频前端模组
US20240146250A1 (en) Doherty power amplifiers with controllable capacitor for tuning harmonic termination and inverter
WO2023070474A1 (zh) 一种多频段功率放大电路、射频收发机和基站
WO2023226784A1 (zh) 一种射频放大电路、射频收发机及通信设备
WO2023216071A1 (zh) 一种功率放大电路以及射频系统
US20220321061A1 (en) Power amplifier arrangement comprising ruthroff transformer
CN118100835A (zh) 一种双频放大电路、射频收发系统及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921853

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546131

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021921853

Country of ref document: EP

Effective date: 20230809

ENP Entry into the national phase

Ref document number: 20237028998

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237028998

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE