WO2022160234A1 - 一种双向dc/dc变换器及其控制方法及车辆 - Google Patents

一种双向dc/dc变换器及其控制方法及车辆 Download PDF

Info

Publication number
WO2022160234A1
WO2022160234A1 PCT/CN2021/074344 CN2021074344W WO2022160234A1 WO 2022160234 A1 WO2022160234 A1 WO 2022160234A1 CN 2021074344 W CN2021074344 W CN 2021074344W WO 2022160234 A1 WO2022160234 A1 WO 2022160234A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
switch
circuit
time period
bidirectional
Prior art date
Application number
PCT/CN2021/074344
Other languages
English (en)
French (fr)
Inventor
李彦锋
马瑜
周永生
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP21921840.1A priority Critical patent/EP4266532A1/en
Priority to PCT/CN2021/074344 priority patent/WO2022160234A1/zh
Priority to CN202180089254.3A priority patent/CN116686182A/zh
Publication of WO2022160234A1 publication Critical patent/WO2022160234A1/zh
Priority to US18/361,151 priority patent/US20230369985A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]

Definitions

  • the present application relates to the technical field of power supplies, and in particular, to a bidirectional DC/DC converter, a control method thereof, and a vehicle.
  • a DC/DC converter (Direct-Current/Direct-Current converter) is a voltage converter that processes the input DC power and converts it into a set output DC power.
  • the DC/DC converter includes a phase-shifted full-bridge circuit, a transformer and a synchronous rectifier circuit, wherein the input end of the phase-shifted full-bridge circuit is connected to the first DC power supply, and the The phase-shift full-bridge circuit converts the DC power provided by the DC power supply into AC power and applies it to the primary coil of the transformer.
  • the secondary coil of the transformer induces another AC power.
  • the magnitude of the secondary AC power and the primary AC power is related to the number of turns of the transformer. than relevant.
  • the synchronous rectification circuit rectifies the alternating current induced by the secondary coil of the transformer into direct current and supplies it to the load.
  • the energy of the DC/DC converter can only be transmitted from the side of the phase-shifted full-bridge circuit to the side of the synchronous rectification circuit, but cannot be transmitted from the side of the synchronous rectification circuit to the side of the phase-shifted full-bridge circuit.
  • DC/DC converters cannot achieve bidirectional flow of energy.
  • the present application provides a bidirectional DC/DC converter, a control method thereof, and a vehicle, which can realize bidirectional energy transmission of the DC/DC converter.
  • a first aspect of the embodiments of the present application provides a bidirectional DC/DC converter.
  • the bidirectional DC/DC converter includes a first terminal circuit, a transformer, a second terminal circuit, and a reset circuit.
  • the transformer includes a first winding and a second terminal circuit. winding, wherein the first terminal circuit is coupled with the first winding, and the second terminal circuit and the reset circuit are coupled with the second winding;
  • the first terminal circuit When the bidirectional DC/DC converter is in the first working state, the first terminal circuit is used for transmitting a first alternating current to the second terminal circuit through the first winding and the second winding, and the second terminal circuit is used for converting the first alternating current into a first direct current, and the reset circuit is in an off state;
  • the second terminal circuit is configured to transmit a second alternating current to the first terminal circuit through the first winding and the second winding, and the second terminal circuit is configured to transmit a second alternating current to the first terminal circuit through the first winding and the second winding.
  • a terminal circuit is used to convert the second alternating current into a second direct current; during the second period of time when the bidirectional DC/DC converter is in the second working state, the reset circuit is in a conducting state, and is used to connect the second alternating current to the second direct current.
  • the winding is reset; within the second time period, the second terminal circuit stops transmitting the second alternating current to the first terminal circuit.
  • a reset circuit is added to realize bidirectional energy transmission of the DC/DC converter.
  • the implementation of the embodiments of the present application has strong applicability.
  • the second winding has an intermediate tap, and the intermediate tap is used to divide the second winding into a first sub-winding and a second sub-winding;
  • the above-mentioned second terminal circuit is respectively coupled with the same-named terminal of the first sub-winding, the above-mentioned middle tap and the different-named terminal of the second sub-winding; the above-mentioned reset circuit is coupled between the same-named terminal of the first sub-winding and the reference ground or is coupled between the synonym terminal of the second sub-winding and the reference ground.
  • the embodiment of the present application adds a reset circuit on the basis of the existing DC/DC converter structure, and the reset circuit and the second winding perform resonant reset, so that the energy of the DC/DC converter can be bidirectionally transmitted.
  • the second winding has a middle tap, and the middle tap is used to divide the second winding into a first sub-winding and a second sub-winding;
  • the above-mentioned second terminal circuit is respectively coupled with the same-named terminal of the first sub-winding, the above-mentioned middle tap and the different-named terminal of the second sub-winding; the above-mentioned reset circuit is coupled between the above-mentioned middle-tap and the same-named terminal of the first sub-winding Or it is coupled between the above-mentioned middle tap and the synonymous end of the second sub-winding.
  • an active clamp circuit can be formed between the reset circuit and the first sub-winding or the second sub-winding, and the energy of the first sub-winding and the second sub-winding passes through the active clamping circuit.
  • the clamping circuit is transferred to the first capacitor in the reset circuit, so that the energy bidirectional transmission of the DC/DC converter can be realized.
  • the reset circuit in combination with the first aspect or in combination with any of the above possible implementation manners of the first aspect, in a third possible implementation manner, includes a first capacitor and a first switch connected in series with the first capacitor, the first The switch is used to control the first capacitor to reset the second winding.
  • the working cycle corresponding to the above-mentioned bidirectional DC/DC converter in the above-mentioned second working state includes the above-mentioned first time period and the above-mentioned second time period. period, a third period of time, and a fourth period of time;
  • the first switch is used to control the first sub-winding and the first capacitor to form a first reset loop during the second time period, short-circuit the first capacitor to reset during the first time period, and reset the first capacitor during the third time period. and the above-mentioned first reset loop is disconnected within the above-mentioned fourth time period;
  • the reset circuit further includes a second switch, which is used to control the second sub-winding and the first capacitor to form a second reset loop during the fourth time period, and during the first time period and the second time The second reset loop is disconnected within the period, and the first capacitor is short-circuited and reset within the third period.
  • the reset circuit in the embodiment of the present application can further improve the energy utilization rate on the basis of realizing bidirectional energy transmission.
  • the working cycle corresponding to the above-mentioned bidirectional DC/DC converter in the above-mentioned second working state includes the above-mentioned first time period and the above-mentioned second time period. period, a third period of time, and a fourth period of time;
  • the above-mentioned reset circuit further includes a third switch and a fourth switch;
  • the third switch is coupled to the same-named terminal of the first sub-winding
  • the fourth switch is coupled to the same-named terminal of the second sub-winding
  • the third switch and the fourth switch are connected in parallel with the first switch and the first capacitor concatenate
  • the third switch and the first switch are used to control the first sub-winding and the first capacitor to form a third reset loop within the second time period;
  • the fourth switch and the first switch are used to control the second sub-winding and the first capacitor to form a fourth reset loop within the fourth time period;
  • the first switch is also used for disconnecting the third reset circuit during the first time period, and disconnecting the fourth reset circuit during the third time period.
  • a third switch and a fourth switch are added to select the first sub-winding or the second sub-winding in different time periods to form a closed loop with the reset circuit.
  • the windings are reset by means of active clamping, and the two forward excitation circuits formed can alternately perform energy transmission in the positive and negative half cycles of the alternating current. On the basis of realizing bidirectional energy transmission, further improve energy utilization.
  • a second aspect of the embodiments of the present application provides a control method for a bidirectional DC/DC converter, and the control method is applicable to the bidirectional DC/DC converter in the first aspect or any possible implementation in combination with the first aspect , wherein the first terminal circuit, the second terminal circuit and the reset circuit are all coupled to a processor, and the control method is applicable to the processor, including:
  • the second terminal circuit is controlled to transmit a second alternating current to the first terminal circuit through the second winding and the first winding, and the second terminal circuit is controlled
  • the first terminal circuit converts the second alternating current into a second direct current
  • the second terminal circuit is controlled to stop transmitting the second alternating current to the first terminal circuit, and the reset circuit is controlled to be turned on, so as to control the transmission of the second alternating current to the first terminal circuit.
  • the second winding is reset;
  • the first terminal circuit When the bidirectional DC/DC converter is in the first working state, the first terminal circuit is controlled to transmit a first alternating current to the second terminal circuit through the first winding and the second winding, and the second terminal circuit is controlled to convert the The first alternating current is converted into the first direct current, and the reset circuit is controlled to be turned off.
  • the above-mentioned reset circuit includes a first capacitor and a first switch connected in series with the first capacitor;
  • the above-mentioned controlling the above-mentioned reset circuit to be turned on to reset the above-mentioned second winding is specifically implemented as follows:
  • the first switch is controlled to be closed, so that the first capacitor resets the second winding.
  • the working cycle corresponding to the above-mentioned bidirectional DC/DC converter in the above-mentioned second working state includes the above-mentioned first time period, the above-mentioned second time period, third time period and fourth time period;
  • the reset circuit further includes a second switch, wherein the first switch is coupled to the same-named terminal of the first sub-winding, the second switch is coupled to the different-named terminal of the second sub-winding, and the first switch and the second switch are connected in parallel. connected in series with the above-mentioned first capacitor;
  • the above-mentioned controlling the above-mentioned first switch to be closed to reset the above-mentioned second winding is specifically implemented as follows:
  • the first switch is controlled to be closed, so that the first sub-winding and the first capacitor form a first reset loop, and the first switch is controlled to be closed during the first period of time, so that the first sub-winding and the first capacitor form a first reset loop.
  • a capacitor is short-circuited to reset, and the first switch is controlled to be disconnected during the third time period and the fourth time period;
  • the second switch is controlled to be closed, so that the second sub-winding and the first capacitor form a second reset loop, and the second switch is controlled to be closed during the third period of time, so that the second sub-winding and the first capacitor form a second reset loop.
  • a capacitor is short-circuited to reset, and the second switch is controlled to be disconnected during the first time period and the second time period.
  • the working cycle corresponding to the above-mentioned bidirectional DC/DC converter in the above-mentioned second working state includes the above-mentioned first time period, the above-mentioned second time period, third time period and fourth time period;
  • the reset circuit includes a third switch and a fourth switch, wherein the third switch is coupled to the same-named terminal of the first sub-winding, the fourth switch is coupled to the different-named terminal of the second sub-winding, and the third switch is connected to the fourth switch. After the switch is connected in parallel, it is connected in series with the first switch and the first capacitor;
  • the above-mentioned controlling the above-mentioned first switch to be closed to reset the above-mentioned second winding is specifically implemented as follows:
  • the third switch and the first switch are controlled to be closed, so as to control the first sub-winding and the first capacitor to form a third reset loop; during the first period of time, the first switch is controlled to be turned off. , to disconnect the third reset loop;
  • the fourth switch and the first switch are controlled to be closed, so as to control the second sub-winding and the first capacitor to form a fourth reset loop; during the third period of time, the first switch is controlled to be closed. to disconnect the fourth reset circuit.
  • a third aspect of the embodiments of the present application provides a vehicle power supply system.
  • the vehicle power supply system includes a power battery, a storage battery, a bus capacitor, a motor controller, a contactor, and any possible combination of the first aspect or the first aspect.
  • a bidirectional DC/DC converter in an implementation, wherein,
  • the motor controller and the bus capacitor are coupled in parallel to both ends of the first terminal circuit of the bidirectional DC/DC converter; the motor controller is used to control the rotation of the motor to provide power to the vehicle;
  • the power battery is capacitively coupled to the motor controller and the busbar through the contactor;
  • the storage battery is coupled in parallel to both ends of the second terminal circuit of the bidirectional DC/DC converter, and the storage battery is used to pass the bidirectional DC/DC converter through the bidirectional DC/DC converter when the bidirectional DC/DC converter is in the second working state. Precharge the above bus capacitors;
  • the contactor is used to close when the voltage difference between the two ends of the bus capacitor and the two ends of the power battery is less than a preset threshold, so that the two-way DC/DC converter enters the first working state, and the power battery is used for the above-mentioned power battery.
  • the bidirectional DC/DC converter is in the first working state, power is supplied to the battery or other equipment in the vehicle through the bidirectional DC/DC converter.
  • the precharging circuit is reduced compared with the prior art, and the cost is reduced.
  • a fourth aspect of the embodiments of the present application provides a vehicle, where the vehicle includes the vehicle power supply system described in the third aspect.
  • Fig. 1 is a kind of DC/DC converter that the prior art provides
  • FIG. 2 is an application block diagram of a bidirectional DC/DC converter provided by an embodiment of the present application
  • FIG. 3 is a structural block diagram of a vehicle power supply system provided by an embodiment of the present application.
  • FIG. 4 is a structural block diagram of a bidirectional DC/DC converter provided by an embodiment of the present application.
  • FIG. 5 is a circuit diagram of a bidirectional DC/DC converter provided by an embodiment of the present application.
  • FIG. 6 is a control sequence diagram of a part of the bidirectional DC/DC converter provided by the embodiment of the present application.
  • FIGS. 7A-7B are one-state equivalent circuit diagrams of some bidirectional DC/DC converters provided by the embodiments of the present application.
  • FIG. 8 is a partial circuit diagram of a bidirectional DC/DC converter provided by an embodiment of the present application.
  • FIG. 9 is another control sequence diagram of a part of the bidirectional DC/DC converter provided by the embodiment of the present application.
  • 10A-10B are another equivalent circuit diagram of a part of the bidirectional DC/DC converter provided by the embodiment of the application;
  • FIG. 11 is a partial circuit diagram of another bidirectional DC/DC converter provided by an embodiment of the application.
  • 12A-12B are still another equivalent circuit diagram of a part of the bidirectional DC/DC converter provided by the embodiment of the present application.
  • FIG. 13 is a partial circuit diagram of another bidirectional DC/DC converter provided by an embodiment of the application.
  • FIG. 14 is another control sequence diagram of a part of the bidirectional DC/DC converter provided by the embodiment of the application.
  • 15A-15B are still another equivalent circuit diagram of a part of the bidirectional DC/DC converter provided by the embodiment of the present application.
  • FIG. 2 is an application block diagram of a bidirectional DC/DC converter provided by the embodiments of the present application.
  • one side of the bidirectional DC/DC converter 200 is coupled to the second DC power source 201a and the third load 201b, and the other side of the bidirectional DC/DC converter 200 is coupled to the second load 202a and the third DC power source 202b .
  • the bidirectional DC/DC converter 200 When the bidirectional DC/DC converter 200 is in the first working state, the second DC power source 201a, the bidirectional DC/DC converter 200 and the second load 202a may form a first closed loop; when the bidirectional DC/DC converter 200 is in the first working state In the second working state, the third DC power source 202b, the bidirectional DC/DC converter 200 and the third load 201b may form a second closed loop.
  • the control end of the bidirectional DC/DC converter 200 is coupled to the processor 203 for controlling the state switching of the bidirectional DC/DC converter 200 .
  • Coupled refers to direct or indirect connection.
  • the coupling between A and B can be either a direct connection between A and B, or an indirect connection between A and B through one or more other electrical components, such as a direct connection between A and C, and a direct connection between C and B. , so that A and B are connected through C.
  • the second DC power source 201a and/or the third DC power source 202b may be, for example, a power battery (such as a nickel-cadmium battery, a nickel-metal hydride battery, a lithium ion battery, a lithium polymer battery, etc.) or a storage battery.
  • the battery voltage of the battery is lower than the battery voltage of the above-mentioned power battery.
  • the second DC power supply 201a and/or the third DC power supply 202b can be used to couple the upper-stage circuit such as an AC/DC converter (Alternating Current/Direct-Current converter) or other DC/DC converters (such as a BUCK converter). converter, BOOST converter, BUCK-BOOST converter, etc.) and so on.
  • the second DC power source 201a and/or the third DC power source 202b may be a direct power source or an indirect power source transmitted through a circuit.
  • the second load 202a and/or the third load 201b may be, for example, a capacitor, a resistor or a battery, and the capacitance of the capacitor may reach several hundred microfarads or several thousand microfarads.
  • the processor 203 may be a central processing unit (CPU), other general-purpose processors, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field-programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • FPGA field-programmable gate array
  • the bidirectional DC/DC converter provided by the embodiments of the present application may be applied in a vehicle power supply system.
  • the second load and the third DC power source are the same electronic device, such as a battery
  • the second DC power source is a power battery
  • the third load is a capacitor.
  • FIG. 3 is a structural block diagram of a vehicle power supply system provided by an embodiment of the present application. As shown in FIG.
  • the vehicle power supply system 30 includes a bidirectional DC/DC converter 300 , a power battery 301 , a battery 302 , a bus capacitor 303 , a motor controller 304 and a contactor 305 , wherein the motor controller 304 and the bus capacitor 303 are coupled in parallel
  • the motor controller 304 is used to control the rotation of the motor to provide power to the vehicle.
  • the capacitance value of the bus capacitor 303 is relatively large, which can reach hundreds of microfarads or several thousand microfarads, so as to reduce the interference of the spike pulses at both ends of the motor controller 304 .
  • the power battery 301 is coupled to the motor controller 304 and the bus capacitor 303 through the contactor 305 , and the battery 302 is coupled in parallel to both ends of the second terminal circuit of the bidirectional DC/DC converter 300 .
  • the battery voltage of the power battery 301 can reach the level of 100 volts. If the bus capacitor 303 is not pre-charged, the contactor 305 is controlled to close, and the battery voltage of the power battery 301 is directly loaded to the empty bus capacitor 303. Because the voltage at both ends of the capacitor cannot be abruptly changed, but the current at both ends of the capacitor can be changed abruptly, the bus capacitor 303 is equivalent to an instantaneous short circuit at this time. In order to ensure the safety of the vehicle power supply system 30 , in the prior art, a pre-charging circuit is usually connected in parallel at both ends of the contactor 305 .
  • the pre-charging circuit includes a pre-charging resistor and a pre-charging contactor, and the pre-charging resistor is used to limit the flow through the bus bar.
  • the current of capacitor 303 The power battery 301 precharges the bus capacitor 303 through the precharge circuit. When the difference between the voltage across the bus capacitor 303 and the voltage across the power battery 301 is within a preset threshold range, the control contactor 305 is closed to charge the battery 302 to charge.
  • the bus capacitor 303 can be precharged through the bidirectional DC/DC converter 300, without the need for a precharge circuit, which can reduce costs.
  • the battery 302 may precharge the bus capacitor 303 through the bidirectional DC/DC converter 300 .
  • a processor is coupled to the control end of the bidirectional DC/DC converter 300, and the processor may be a part of the vehicle power supply system, or may be independent of the vehicle power supply system, and the present application does not limit the setting of the processor.
  • the processor is used to control the state of the bidirectional DC/DC converter 300 .
  • the processor when the processor detects that the vehicle is started, the processor controls the bidirectional DC/DC converter 300 to enter the second working state. At this time, the contactor 305 is in the off state, and the battery 302 transmits the voltage to the bus capacitor 303 through the bidirectional DC/DC converter 300. Precharge.
  • the processor controls the bidirectional DC/DC converter 300 to enter the first working state, and controls the contactor 305 to close , at this time, the power battery 301 supplies power to the battery 302 or other devices in the vehicle, such as a driving recorder, through the bidirectional DC/DC converter 300 .
  • the above-mentioned preset time period is preset according to the capacitance value of the bus capacitor 303. After the bus capacitor 303 is precharged in the preset time period, the voltage between the two ends of the power battery 301 is the same as the voltage at the two ends of the power battery 301. The difference is less than the preset threshold.
  • the processor can also monitor the voltage across the bus capacitor 303 and the voltage across the power battery 301 in real time, and the difference between the voltage across the bus capacitor 303 and the voltage across the power battery 301 is less than
  • the processor controls the bidirectional DC/DC converter 300 to enter the first working state, and controls the contactor 305 to close.
  • the power battery 301 transmits the power to the battery 302 or other equipment in the vehicle through the bidirectional DC/DC converter 300.
  • FIG. 4 is a structural block diagram of a bidirectional DC/DC converter provided by an embodiment of the present application.
  • the bidirectional DC/DC converter 40 includes a first terminal circuit 401, a transformer 402, a second terminal circuit 403 and a reset circuit 404.
  • the transformer 402 includes a first winding T1 and a second winding T2, wherein the first The winding T1 and the second winding R2 are coupled through a magnetic core.
  • the first terminal circuit 401 is coupled to the first winding T1, and the second terminal circuit 403 and the reset circuit 404 are coupled to the second winding T2.
  • the bidirectional DC/DC converter 40 includes at least two operating states, eg, a first operating state and a second operating state.
  • the first terminal circuit 401 transmits the first alternating current to the second terminal circuit 403 through the first winding T1 and the second winding T2, and the second terminal circuit 403 transfers the first alternating current to the second terminal circuit 403.
  • the alternating current is converted into the first direct current, and the reset circuit 404 is in an off state at this time.
  • one side of the first terminal circuit 401 is coupled to the second DC power source, and the other side is coupled to the first winding T1, and the first terminal circuit 401 converts the DC power provided by the second DC power source into the third AC power,
  • the third alternating current is loaded on both ends of the first winding T1, so that the second winding T2 induces the first alternating current.
  • the second winding T2 transmits the first alternating current to the second terminal circuit 403 .
  • the magnitude relationship between the first alternating current and the third alternating current is related to the turns ratio of the first winding T1 and the second winding T2.
  • One side of the second terminal circuit 403 is coupled to the second winding T2 and the other side is coupled to the second load.
  • the second terminal circuit 403 converts the first alternating current into the first direct current and provides the first direct current to the second load.
  • the first working state of the bidirectional DC/DC converter 40 is that the first terminal circuit 401 side transmits energy to the second terminal circuit 403 side.
  • the second terminal circuit 403 transmits the second alternating current to the first terminal circuit 401 through the second winding T2 and the first winding T1, and the first terminal The circuit 401 converts the second alternating current into a second direct current.
  • one side of the second terminal circuit 403 is coupled to the second winding T2, and the other side is also coupled to the third DC power supply, and the second terminal circuit 403 converts the second DC power provided by the third DC power supply into the third DC power supply.
  • the fourth alternating current is loaded on both ends of the second winding T2, so that the first winding T1 induces the second alternating current.
  • the first winding T1 transmits the second alternating current to the first terminal circuit 401 .
  • the magnitude relationship between the fourth alternating current and the second alternating current is related to the turns ratio of the second winding T2 and the first winding T1.
  • One side of the first terminal circuit 401 is also coupled to a third load, and the other side is coupled to the first winding T1.
  • the first terminal circuit 401 converts the second alternating current into a second direct current and provides the second direct current to the third load. In other words, during the first time period of the second working state of the bidirectional DC/DC converter 40, the second terminal circuit 403 transmits energy to the first terminal circuit 401 side.
  • the second terminal circuit 403 stops transmitting the second alternating current to the first terminal circuit 401, and the reset circuit 404 is turned on at this time, so that the second terminal circuit 403 is turned on.
  • Winding T2 is reset. It can be understood that the reset of the second winding T2 means releasing the leakage inductance energy on the second winding T2.
  • the second working state of the bidirectional DC/DC converter 40 is a periodic working state, that is, the bidirectional DC/DC converter 40 periodically switches between the first time period and the second time period.
  • the second winding T2 accumulates leakage inductance energy in the first period of time, and releases the leakage inductance energy through the reset circuit 404 in the second period of time, so that the second winding T2 can operate under the second working state of the bidirectional DC/DC converter 40
  • the energy is transferred to the first termination circuit 401 during the first time period of one cycle.
  • the first terminal circuit 401 can be, for example, a phase-shift full-bridge circuit in the prior art, and the phase-shift full-bridge circuit can be composed of a metal-oxide-semiconductor field-effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET), a triode, Insulated Gate Bipolar Transistor (IGBT) and its anti-parallel diode are formed. It can be understood that the phase-shifted full-bridge circuit can reset the first winding T1 without using an additional reset circuit.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the second terminal circuit 403 may be, for example, a forward circuit in the prior art, and the forward circuit cannot reset the second winding T2. Therefore, an additional reset circuit 404 is added in this embodiment of the present application to reset the second winding T2. , so that the energy of the bidirectional DC/DC converter 40 can transmit energy from the side of the second terminal circuit 403 to the side of the first terminal circuit 401 . That is, the embodiment of the present application realizes the bidirectional energy transmission of the DC/DC converter by adding a reset circuit, and has strong applicability.
  • FIG. 5 is a circuit diagram of a bidirectional DC/DC converter provided by an embodiment of the present application.
  • the bidirectional DC/DC converter includes a first terminal circuit 501, a transformer 502, a second terminal circuit 503 and a reset circuit 504a.
  • the transformer 502 includes a first winding T3 and a second winding, wherein the second winding has The middle tap is used to divide the second winding into a first sub-winding T41 and a second sub-winding T42.
  • the coupling point between the different-named end of the first sub-winding T41 and the same-named end of the second sub-winding T42 is taken as an example.
  • the first sub-winding T41 and the second sub-winding T42 The same-named end and the different-named end of the first sub-winding T41 can be reversed at the same time, and the coupling point of the same-named end of the first sub-winding T41 and the different-named end of the second sub-winding T42 is the middle tap.
  • FIG. 5 takes as an example that the first terminal circuit 501 is a phase-shifted full-bridge circuit in the prior art.
  • the first terminal circuit 501 includes four switch tubes, such as a fifth switch Q 51 , a sixth switch Q 52 , a seventh switch Q 53 and an eighth switch Q 54 .
  • the switch tube in the first terminal circuit 501 may also be a triode, an IGBT and its anti-parallel diode, etc., and the present application does not limit the expression form of the switch tube.
  • the drain of the fifth switch Q 51 and the drain of the sixth switch Q 52 are coupled to the first bus bar
  • the source of the seventh switch Q 53 and the source of the eighth switch Q 54 are coupled to the second bus bar
  • a second DC power source such as a power battery
  • a third load such as a bus capacitor, etc. can be coupled between the first bus bar and the second bus bar.
  • a motor controller may also be coupled between the first busbar and the second busbar, and a contactor or the like may be connected in series on the first busbar or the second busbar.
  • the source of the fifth switch Q 51 and the drain of the seventh switch Q 53 are coupled to the opposite terminal of the first winding T3, the source of the sixth switch Q 52 and the drain of the eighth switch Q 54 are coupled to the first winding
  • the first terminal circuit 501 can convert direct current into alternating current for transmission to the first winding T3, and can also rectify the alternating current of the first winding T3 into direct current.
  • the specific control method can refer to the prior art, which is not repeated here.
  • the second terminal circuit 503 is respectively coupled to the same-name terminal, the center tap of the first sub-winding T41 and the different-name terminal of the second sub-winding T42.
  • FIG. 5 takes the second terminal circuit 503 as a forward circuit as an example.
  • the second terminal circuit 503 includes a ninth switch Q 55 , a tenth switch Q 56 , an eleventh switch S1 , a first inductor L2 and a second capacitor C2 .
  • the eleventh switch S1 may be a semiconductor switch such as a MOSFET, a triode, an IGBT and its anti-parallel diode, or an electromagnetic switch such as a contactor, a relay, and the like.
  • the same-named end of the first sub-winding T41 is coupled to the drain of the ninth switch Q55 , and the middle tap is coupled to one end of the first inductor L2 and one end of the eleventh switch S1, the first inductor L2 and the eleventh switch S1 are connected in parallel, the tenth A switch S1 is used to close when the second terminal circuit 503 side of the bidirectional DC/DC converter transmits energy to the first terminal circuit 501 side, so as to short-circuit the first inductor L2 and reduce the energy loss caused by the first inductor L2.
  • the other end of the first inductor L2 and the other end of the eleventh switch S1 are coupled to one end of the second capacitor C2, and the other end of the second capacitor C2 is coupled to the source of the ninth switch Q55 and the source of the tenth switch Q56 ,
  • the drain of the tenth switch Q56 is coupled to the synonym terminal of the second sub-winding T42, and the source of the tenth switch Q56 is coupled to the reference ground.
  • the reset circuit 504a may be coupled between the same name terminal of the first sub-winding T41 and the reference ground or between the different name terminal of the second sub-winding T42 and the reference ground.
  • the reference ground can be understood as having a potential terminal for providing the AC ground. For example, it may be 1.8V, 1.25V, or 0V, etc. The application does not limit the voltage value of the reference ground.
  • FIG. 5 takes an example in which the reset circuit 504a is coupled between the end of the same name of the first sub-winding T41 and the reference ground.
  • the reset circuit 504a includes a first capacitor C3 and a first switch Q57 in series with the first capacitor C3.
  • the source of the first switch Q 57 is coupled to the same-named terminal of the first sub-winding T41
  • the drain of the first switch Q 57 is coupled to one end of the first capacitor C3
  • the other end of the first capacitor C3 is coupled to the reference ground
  • the first A switch Q57 controls the first capacitor C3 to reset the second winding such as the first sub-winding T41.
  • the source of the first switch Q 57 is coupled to the opposite end of the second sub-winding T42.
  • the name terminal, the drain of the first switch Q57 is coupled to one end of the first capacitor C3, and the other end of the first capacitor C3 is coupled to the reference ground.
  • each of the switches described above are coupled to the processor.
  • the gates of each switch may be different pins coupled to the same processor, or may be different pins coupled to different processors, and the processors can communicate with each other to jointly control the communication of the switches. to control the first terminal circuit 501, the second terminal circuit 503 and the reset circuit 504a.
  • the processor controls the second terminal circuit 503 to transmit the second alternating current to the first terminal circuit 501 through the first winding T3 and the second winding.
  • FIG. 6 is a control timing diagram of a part of the DC/DC converter provided by the embodiment of the present application.
  • the processor controls the ninth switch Q 55 to be closed, the tenth switch Q 56 to be opened, and the first switch Q 57 to be closed.
  • each switch is an N-channel enhancement mode MOS transistor as an example. The gate of each switch is closed (ie ON) when it receives a high-level signal, and is disconnected when it receives a low-level signal. (ie OFF).
  • the processor may further control the eleventh switch S1 to close to short-circuit the first inductance L2 to avoid energy loss caused by the first inductance L2 when transmitting energy from the second terminal circuit 503 side to the first terminal circuit 501 side. .
  • FIG. 7A is a state equivalent circuit diagram of a part of the bidirectional DC/DC converter provided by the embodiment of the present application. It should be noted that in this application, the switch closure is regarded as a wire to obtain the equivalent circuit diagram of each state of a part of the bidirectional DC/DC converter. As shown in FIG.
  • the second capacitor C2 and/or the third DC power supply connected in parallel with the second capacitor C2, such as the battery, the first sub-winding T41 and the ninth switch Q55 form a closed loop, That is, the second capacitor C2 in the second terminal circuit 503 transmits the second alternating current to the first terminal circuit 501 through the first sub-winding T41.
  • the processor also controls the first terminal circuit 501 to implement a rectification function, and converts the second alternating current into a second direct current to provide the third load such as a bus capacitor.
  • the processor controls the second terminal circuit 503 to stop transmitting the second alternating current to the first terminal circuit 501, and controls the reset circuit 504a to be turned on.
  • the processor controls the ninth switch Q 55 to be turned off, thereby controlling the second terminal circuit 503 to stop switching to the first terminal circuit 501 transmits the second alternating current.
  • the processor also controls the first switch Q 57 to be closed. Since the ninth switch Q 55 is in an off state, the first capacitor C3 is not short-circuited.
  • FIG. 7B is another state equivalent circuit diagram of a part of the bidirectional DC/DC converter provided by the embodiment of the present application.
  • the first sub-winding T41, the first capacitor C3 and the second capacitor C2 form a closed loop (ie, the first reset loop)
  • the reset circuit 504a is turned on, and the first The capacitor C3 performs resonant reset with the first sub-winding T41.
  • the winding can be understood as an inductance, because the current of the inductance cannot be abruptly changed, that is, the current flowing through the first sub-winding T41 in the time period from 0 to t1 passes through the first switch Q 57 , the first capacitor C3 and the first sub-winding T41 in the time period from t1 to t2 .
  • the two capacitors C2 form a first reset loop, so that the leakage inductance energy on the first sub-winding T41 is transferred to the first capacitor C3, so that the second terminal circuit 503 can continue to the first terminal circuit during the first period of the next cycle.
  • 501 transmits energy.
  • the processor may control all switches in the first terminal circuit 501 to be turned off.
  • the processor controls the first terminal circuit 501 to transmit the first alternating current to the second terminal circuit 503 through the first winding T3 and the second winding.
  • the processor may control the first terminal circuit 501 to realize the conversion of DC to AC according to the control method of the phase-shifted full bridge in the prior art.
  • the processor controls the second terminal circuit 503 to convert the first alternating current induced by the second winding into the first direct current.
  • the specific implementation is to control both the ninth switch Q 55 and the tenth switch Q 56 to be closed, and the eleventh switch S1 to be closed. break.
  • the processor also controls the reset circuit 504a to be turned off, that is, controls the first switch Q 57 to be turned off, so as to prevent the reset circuit 504a from affecting the first working state of the bidirectional DC/DC converter.
  • the embodiment of the present application adds a reset circuit on the basis of the existing DC/DC converter structure, and the reset circuit performs resonant reset with the second winding, so that the energy of the DC/DC converter can be bidirectionally transmitted.
  • the reset circuit further includes a second switch.
  • FIG. 8 is a partial circuit diagram of a bidirectional DC/DC converter provided by an embodiment of the present application. As shown in FIG. 8 , 504a in FIG. 5 is replaced with the reset circuit 504b shown in FIG. 8 .
  • the reset circuit 504b includes a second switch Q 58 in addition to the first capacitor C3 and the first switch Q 57 . . It should be noted that, for the specific connection relationship between the first terminal circuit, the first sub-winding, the second sub-winding, and the second terminal circuit in this embodiment of the present application, reference may be made to the description in FIG. 5 , which is not repeated here.
  • the specific connection relationship of the reset circuit 504b in the bidirectional DC/DC converter is as follows: the source of the second switch Q 58 is coupled to the opposite terminal of the second sub-winding T42 and the drain of the tenth switch Q 56 , and the second switch Q The drain of 58 is coupled to the drain of the first switch Q 57 and one end of the first capacitor C3. In other words, the first switch Q 57 and the second switch Q 58 are coupled in parallel with the first capacitor C3. The other end of the first capacitor C3 is coupled to the reference ground.
  • the first switch Q57 short-circuits the first capacitor C3 to reset during the first time period, and closes it during the second time period to control the first capacitor C3 and the first sub-winding T41 to form a first reset loop, and during the third time period
  • the first reset loop is disconnected during the time period and the fourth time period.
  • the second switch Q58 short-circuits and resets the first capacitor C3 during the third time period, and closes it during the fourth time period to control the first capacitor C3 and the second sub-winding T42 to form a second reset loop.
  • the second reset loop is disconnected for two time periods.
  • the second working state of the bidirectional DC/DC converter in the embodiment of the present application is a periodic working state, and the corresponding period may include a first time period, a second time period, a third time period, and a fourth time period.
  • the control timing diagram of each switch can refer to FIG. 9. The difference between the timing shown in FIG. 9 and the timing shown in FIG. 6 is that the control of the second switch Q 58 is added and the third time period (ie t2) is added. to t3 time period) and the fourth time period (ie t3 to t4 time period) to control each switch.
  • the processor controls the ninth switch Q 55 to close and the tenth switch Q 56 to close according to the embodiment described above in conjunction with FIG. 6 .
  • the processor also controls the second switch Q 58 to be turned off, and the equivalent circuit diagram as described in FIG. 7A is obtained.
  • the second terminal circuit 503 is laterally The first terminal circuit 501 transmits energy, and the first capacitor C3 is short-circuited and reset.
  • the processor controls the ninth switch Q 55 to turn off and the tenth switch Q 56 to turn off according to the embodiment described above in conjunction with FIG. 6 .
  • the processor also controls the second switch Q 58 to be turned off, and the equivalent circuit diagram as described in FIG. 7B is obtained.
  • the first sub-winding T41 is connected to the A capacitor C3 forms a first reset loop, the first capacitor C3 and the first sub-winding T41 perform resonant reset, and the leakage inductance energy on the first sub-winding T41 can be transferred to the first capacitor C3.
  • the processor controls the second terminal circuit 503 to transmit the second alternating current to the first terminal circuit 501 through the second winding and the first winding T3.
  • the processor controls the ninth switch Q 55 to be turned off, the tenth switch Q 56 to be turned on, the first switch Q 57 to be turned off, and the second switch Q 58 to be turned on .
  • the tenth switch Q 56 is closed and the second switch Q 58 is closed, the first capacitor C3 can be short-circuited and reset.
  • the processor may further control the eleventh switch S1 to close to short-circuit the first inductance L2 to avoid energy loss caused by the first inductance L2 when transmitting energy from the second terminal circuit 503 side to the first terminal circuit 501 side. .
  • FIG. 10A is another state equivalent circuit diagram of a part of the bidirectional DC/DC converter provided by the embodiment of the present application.
  • the second capacitor C2 and/or the third DC power supply connected in parallel with the second capacitor C2, such as the battery, the second sub-winding T42 and the tenth switch Q56 form a closed loop, That is, the second capacitor C2 in the second terminal circuit 503 transmits the second alternating current to the first terminal circuit 501 through the second sub-winding T42.
  • the processor also controls the first terminal circuit 501 to implement a rectification function, and converts the second alternating current into a second direct current to provide the third load such as a bus capacitor.
  • the processor controls the second terminal circuit 503 to stop transmitting the second alternating current to the first terminal circuit 501, and controls the reset circuit 504b to be turned on.
  • the processor controls the tenth switch Q 56 to be turned off, thereby controlling the second terminal circuit to stop transmitting the second alternating current to the first terminal circuit 501 .
  • the processor also controls the second switch Q58 to be closed. Since the tenth switch Q56 is turned off, the first capacitor C3 is not short-circuited.
  • FIG. 10B is another state equivalent circuit diagram of a part of the bidirectional DC/DC converter provided by the embodiment of the present application.
  • the second sub-winding T42, the first capacitor C3 and the second capacitor C2 form a closed loop (ie, the second reset loop), that is, the reset circuit 504b is turned on, and the first capacitor is turned on.
  • C3 and the second sub-winding T42 are reset. That is, the first capacitor C3 and the second sub-winding T42 perform resonant reset, and the leakage inductance energy on the second sub-winding T42 can be transferred to the first capacitor C3.
  • the processor may control all switches in the first terminal circuit 501 to be turned off.
  • each switch by the processor may refer to the embodiment described above in conjunction with FIG. 5 , which will not be repeated here.
  • the reset circuit in the embodiment of the present application uses two switches to reset different sub-windings in different time periods. Since the second winding senses alternating current, the alternating current has positive and negative, and in the period of the positive and negative half cycles of the alternating current , either of the two sub-windings is in working condition. Compared with the embodiment with only one winding, the embodiment of the present application can perform energy transmission in both the positive and negative half cycles of the alternating current, while the embodiment with only one winding can only perform energy transmission in the positive half cycle or the negative half cycle of the alternating current, which wastes half of the energy. energy. In other words, by implementing the embodiments of the present application, the energy utilization rate can be further improved on the basis of realizing bidirectional energy transmission.
  • FIG. 11 is a partial circuit diagram of another bidirectional DC/DC converter provided by an embodiment of the present application.
  • the bidirectional DC/DC converter may include the reset circuit 504c shown in FIG. 11 .
  • the bidirectional DC/DC converter further includes a first terminal circuit, a transformer, and a second terminal circuit.
  • the transformer includes a first winding and a second winding, wherein the second winding has a center tap, and the center tap is used to convert the The second winding is divided into a first sub-winding and a second sub-winding.
  • the reset circuit 504c may be coupled between the center tap and the same name terminal of the first sub-winding T41 or between the center tap and the different name terminal of the second sub-winding T42.
  • FIG. 11 takes as an example that the reset circuit 504c is coupled between the middle tap and the end of the same name of the first sub-winding T41.
  • the reset circuit 504c in this embodiment of the present application includes the same components as the reset circuit described in FIG. 5 , and also includes a first capacitor C3 and a first switch Q 57 connected in series with the first capacitor C3 . The difference is that the first capacitor C3 The coupling point at the other end is different. As shown in FIG.
  • the source of the first switch Q57 is coupled to the same-named end of the first sub-winding T41, the drain of the first switch Q57 is coupled to one end of the first capacitor C3, and the other end of the first capacitor C3 is coupled to center tap instead of ground reference. It can be understood that, if the reset circuit 504c is coupled between the center tap and the opposite end of the second sub-winding T42 (not shown in the figure), the source of the first switch Q 57 is coupled to the opposite end of the second sub-winding T42. The name terminal, the drain of the first switch Q57 is coupled to one end of the first capacitor C3, and the other end of the first capacitor C3 is coupled to the center tap.
  • FIG. 12A is another state equivalent circuit diagram of a part of the bidirectional DC/DC converter provided by the embodiment of the present application.
  • the second capacitor C2 and/or the third DC power supply connected in parallel with the second capacitor C2, such as the battery, the first sub-winding T41 and the ninth switch Q55 form a closed loop, That is, the second capacitor C2 in the second terminal circuit transmits the second alternating current to the first terminal circuit 501 through the first sub-winding T41.
  • the processor also controls the first terminal circuit to implement a rectification function, and converts the second alternating current into a second direct current to provide the third load such as a bus capacitor.
  • the ninth switch Q 55 and the first switch Q 57 are both closed, the first capacitor C3 is not short-circuited.
  • FIG. 12B is another state equivalent circuit diagram of a part of the bidirectional DC/DC converter provided by the embodiment of the present application.
  • the first sub-winding T41 and the first capacitor C3 form a closed loop (ie, the third reset loop)
  • the reset circuit 504c is turned on, and the first sub-winding T41 is turned on. reset. Since the other end of the first capacitor C3 is not coupled to the reference ground, that is, the energy transferred from the first sub-winding T41 to the first capacitor C3 is not completely released, so that the voltage of the first capacitor C3 can be stabilized at a constant value, forming a voltage clamp bit.
  • the processor may control all switches in the first terminal circuit to be turned off.
  • an active clamp circuit can be formed between the reset circuit and the first sub-winding or the second sub-winding, and the energy of the first sub-winding and the second sub-winding passes through the active clamping circuit.
  • the clamping circuit is transferred to the first capacitor in the reset circuit, so that the energy bidirectional transmission of the DC/DC converter can be realized.
  • the reset circuit further includes a third switch and a fourth switch.
  • FIG. 13 is a partial circuit diagram of another bidirectional DC/DC converter provided by an embodiment of the present application.
  • the reset circuit 504a in FIG. 5 is replaced with the reset circuit 504d shown in FIG. 13 .
  • the reset circuit 504d includes the third switch Q in addition to the first capacitor C3 and the first switch Q 57 . 59 and the fourth switch Q60 .
  • FIG. 5 for the specific connection relationship between the first terminal circuit, the first sub-winding, the second sub-winding, and the second terminal circuit in the embodiment of the present application, reference may be made to the description in FIG. 5 , which is not repeated here.
  • the specific connection relationship of the reset circuit 504d in the bidirectional DC/DC converter is as follows: the source of the third switch Q 59 is coupled to the same name terminal of the first sub-winding T41 and the drain of the ninth switch Q 55 , and the fourth switch Q 60
  • the source of the second sub-winding T42 is coupled to the opposite end of the second sub-winding T42 and the drain of the tenth switch Q 56 ; the drain of the third switch Q 59 and the drain of the fourth switch Q 60 are both coupled to the drain of the first switch Q 57
  • the source and the drain of the first switch Q57 are coupled to one end of the first capacitor C3.
  • the third switch Q 59 is connected in parallel with the fourth switch Q 60 and then connected in series with the first switch Q 57 and the first capacitor C3.
  • the other end of the first capacitor C3 is coupled to the center tap.
  • both the third switch Q 59 and the first switch Q 57 are closed in the second time period to control the first sub-winding T41 and the first capacitor C3 to form a closed loop (ie, a third reset loop), the first The switch Q 57 is turned off during the first period to open the third reset loop; the fourth switch Q 60 and the first switch Q 57 are both closed during the fourth period to control the second sub-winding T42 and the first capacitor C3 forms a closed loop (ie, the fourth reset loop), and the first switch Q 57 is turned off during the third time period to open the fourth reset loop.
  • the second working state of the bidirectional DC/DC converter in the embodiment of the present application is a periodic working state, and the corresponding period may include a first time period, a second time period, a third time period, and a fourth time period.
  • FIG. 14 is another control timing diagram of a part of the bidirectional DC/DC converter provided by the embodiment of the present application.
  • the processor controls the ninth switch Q 55 to be closed, the tenth switch Q 56 to be opened, the third switch Q 59 to be closed, and the fourth switch to be closed.
  • Q 60 is turned off and the first switch Q 57 is turned off.
  • the processor may further control the eleventh switch S1 to close to short-circuit the first inductance L2 to avoid energy loss caused by the first inductance L2 when transmitting energy from the second terminal circuit 503 side to the first terminal circuit 501 side.
  • the partial equivalent circuit diagram of the bidirectional DC/DC converter can refer to FIG. 12A, and how the second terminal circuit transmits energy to the first terminal circuit can also refer to the embodiment described above in conjunction with FIG. 12A, which will not be repeated here.
  • the processor controls the ninth switch Q 55 to be turned off, the tenth switch Q 56 to be turned off, the third switch Q 59 to be closed, the fourth switch Q 60 to be turned off, and The first switch Q57 is closed.
  • the partial equivalent circuit diagram of the bidirectional DC/DC converter can refer to FIG. 12B , and how to realize the reset of the first sub-winding T41 can also refer to the embodiment described above in conjunction with FIG. 12B , which will not be repeated here.
  • the processor controls the second terminal circuit to transmit the first terminal circuit to the first terminal circuit through the second winding and the first winding. Two alternating current.
  • the processor controls the ninth switch Q 55 to be turned off, the tenth switch Q 56 to be turned on, the third switch Q 59 to be turned off, and the fourth switch Q 60 to be turned on. on and the first switch Q 57 is off.
  • the processor may further control the eleventh switch S1 to close to short-circuit the first inductance L2 to avoid energy loss caused by the first inductance L2 when transmitting energy from the second terminal circuit 503 side to the first terminal circuit 501 side. .
  • FIG. 15A is another state equivalent circuit diagram of a part of the bidirectional DC/DC converter provided by the embodiment of the present application.
  • the second capacitor C2 and/or the third DC power supply connected in parallel with the second capacitor C2, such as the battery, the second sub-winding T42 and the tenth switch Q56 form a closed loop, That is, the second capacitor C2 in the second terminal circuit transmits the second alternating current to the first terminal circuit through the second sub-winding T42.
  • the processor also controls the first terminal circuit 501 to implement a rectification function, and converts the second alternating current into a second direct current to provide the third load such as a bus capacitor.
  • the processor controls the second terminal circuit to stop transmitting the second alternating current to the first terminal circuit, and controls the reset circuit 504d is turned on.
  • the processor controls the tenth switch Q 56 to be turned off, thereby controlling the second terminal circuit to stop transmitting the second alternating current to the first terminal circuit.
  • the processor also controls the first switch Q57 to be turned on.
  • FIG. 15B is another state equivalent circuit diagram of a part of the bidirectional DC/DC converter provided by the embodiment of the present application.
  • the second sub-winding T42 and the first capacitor C3 form a fourth reset loop to reset the second sub-winding T42 .
  • the processor may control all switches in the first terminal circuit to be turned off.
  • a third switch and a fourth switch are added to select the first sub-winding or the second sub-winding in different time periods to form a closed loop with the reset circuit.
  • the windings are reset by means of active clamping, and the two forward excitation circuits formed can alternately perform energy transmission in the positive and negative half cycles of the alternating current. On the basis of realizing bidirectional energy transmission, further improve energy utilization.
  • an embodiment of the present application also provides a vehicle, which includes the vehicle power supply system described above, or it can be understood that the vehicle includes any of the bidirectional DC/DC converters described above.
  • vehicle includes a processor that may be provided independently of the vehicle power supply system or independently of the bidirectional DC/DC converter.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present application.

Abstract

本申请提供了一种双向DC/DC变换器及其控制方法、车辆供电系统及车辆。该双向DC/DC变换器包括第一终端电路、变压器、第二终端电路以及复位电路,该变压器包括第一绕组和第二绕组,其中第一终端电路与第一绕组耦合,第二终端电路以及复位电路与第二绕组耦合。在双向DC/DC变换器处于第二工作状态的第一时间段内,第二终端电路通过第二绕组和第一绕组向第一终端电路传输第二交流电;在双向DC/DC变换器处于第二工作状态的第二时间段内,复位电路处于导通状态,对第二绕组进行复位,此时第二终端电路停止向第一终端电路传输第二交流电。实施本申请,可以实现DC/DC变换器的能量双向传输。

Description

一种双向DC/DC变换器及其控制方法及车辆 技术领域
本申请涉及电源技术领域,尤其涉及一种双向DC/DC变换器及其控制方法及车辆。
背景技术
DC/DC变换器(Direct-Current/Direct-Current converter)是一种将输入直流电进行处理,转变为设定输出直流电的电压转换器。以图1示出的DC/DC变换器为例,该DC/DC变换器包括移相全桥电路、变压器和同步整流电路,其中移相全桥电路的输入端连接第一直流电源,该移相全桥电路将直流电源提供的直流电转换为交流电,并施加在变压器的原边线圈上,变压器的副边线圈感应到另一交流电,副边交流电与原边交流电的大小与变压器的匝数比有关。同步整流电路将变压器的副边线圈感应到的交流电整流为直流电,并向负载提供。该DC/DC变换器的能量只能从移相全桥电路侧向同步整流电路侧传输,但却无法从同步整流电路侧传输至移相全桥电路侧,换句话说,现有技术中的DC/DC变换器无法实现能量双向流动。
发明内容
本申请提供了一种双向DC/DC变换器及其控制方法及车辆,可以实现DC/DC变换器的能量双向传输。
本申请实施例第一方面提供了一种双向DC/DC变换器,该双向DC/DC变换器包括第一终端电路、变压器、第二终端电路以及复位电路,该变压器包括第一绕组和第二绕组,其中,上述第一终端电路与上述第一绕组耦合,上述第二终端电路以及上述复位电路与上述第二绕组耦合;
在上述双向DC/DC变换器处于第一工作状态时,上述第一终端电路用于通过上述第一绕组和上述第二绕组向上述第二终端电路传输第一交流电,上述第二终端电路用于将该第一交流电转换为第一直流电,上述复位电路处于关断状态;
在上述双向DC/DC变换器处于第二工作状态的第一时间段内,上述第二终端电路用于通过上述第一绕组和上述第二绕组向上述第一终端电路传输第二交流电,上述第一终端电路用于将该第二交流电转换为第二直流电;在上述双向DC/DC变换器处于第二工作状态的第二时间段内,上述复位电路处于导通状态,用于对上述第二绕组进行复位;在该第二时间段内上述第二终端电路停止向上述第一终端电路传输上述第二交流电。
本申请实施例通过增加复位电路来实现DC/DC变换器的能量双向传输。实施本申请实施例,适用性强。
结合第一方面,在第一种可能的实现方式中,上述第二绕组具有中间抽头,该中间抽头用于将上述第二绕组分为第一子绕组和第二子绕组;
上述第二终端电路以及上述复位电路与上述第二绕组耦合具体实现为:
上述第二终端电路分别与该第一子绕组的同名端、上述中间抽头以及该第二子绕组的异名端耦合;上述复位电路耦合在该第一子绕组的同名端与参考地之间或者耦合在该第二子绕组的异名端与参考地之间。
本申请实施例在现有DC/DC变换器结构的基础上增加复位电路,该复位电路与第二绕 组进行谐振复位,使得DC/DC变换器的能量可以双向传输。
结合第一方面,在第二种可能的实现方式中,上述第二绕组具有中间抽头,该中间抽头用于将上述第二绕组分为第一子绕组和第二子绕组;
上述第二终端电路以及上述复位电路与上述第二绕组耦合具体实现为:
上述第二终端电路分别与该第一子绕组的同名端、上述中间抽头以及该第二子绕组的异名端耦合;上述复位电路耦合在上述中间抽头与该第一子绕组的同名端之间或者耦合在上述中间抽头与该第二子绕组的异名端之间。
本申请实施例通过改变复位电路的耦合点,使得复位电路与第一子绕组或第二子绕组之间可以形成有源箝位电路,第一子绕组和第二子绕组的能量通过该有源箝位电路转移至复位电路中的第一电容上,从而可以实现DC/DC变换器的能量双向传输。
结合第一方面或结合第一方面上述任一种可能的实现方式,在第三种可能的实现方式中,上述复位电路包括第一电容以及与该第一电容串联的第一开关,该第一开关用于控制该第一电容对上述第二绕组进行复位。
结合第一方面第三种可能的实现方式,在第四种可能的实现方式中,上述双向DC/DC变换器处于上述第二工作状态对应的工作周期包括上述第一时间段、上述第二时间段、第三时间段以及第四时间段;
上述第一开关用于在上述第二时间段控制上述第一子绕组与上述第一电容形成第一复位回路,在上述第一时间段内将上述第一电容短路复位,在上述第三时间段和上述第四时间段内断开上述第一复位回路;
上述复位电路还包括第二开关,该第二开关用于在第四时间段内控制上述第二子绕组与上述第一电容形成第二复位回路,在上述第一时间段内和上述第二时间段内断开该第二复位回路,在上述第三时间段内将上述第一电容短路复位。
本申请实施例中的复位电路通过使用两个开关在不同的时间段对不同的子绕组进行复位,可以在实现能量双向传输的基础上,进一步地提高能量利用率。
结合第一方面第三种可能的实现方式,在第五种可能的实现方式中,上述双向DC/DC变换器处于上述第二工作状态对应的工作周期包括上述第一时间段、上述第二时间段、第三时间段以及第四时间段;
上述复位电路还包括第三开关和第四开关;
该第三开关耦合上述第一子绕组的同名端,该第四开关耦合上述第二子绕组的异名端;该第三开关与该第四开关并联之后与上述第一开关以及上述第一电容串联;
上述第三开关与上述第一开关用于在上述第二时间段内控制上述第一子绕组与上述第一电容形成第三复位回路;
上述第四开关与上述第一开关用于在上述第四时间段内控制上述第二子绕组与上述第一电容形成第四复位回路;
上述第一开关还用于在上述第一时间段断开上述第三复位回路,在上述第三时间段断开上述第四复位回路。
本申请实施例通过增加第三开关和第四开关在不同的时间段选择第一子绕组或第二子绕组与复位电路形成闭合回路。换句话说,本申请实施例是通过有源箝位的方式对绕组进 行复位,形成的两个正激电路可以在交流电的正负半周交替进行能量传输,在实现能量双向传输的基础上,进一步地提高能量利用率。
本申请实施例第二方面提供了一种双向DC/DC变换器的控制方法,该控制方法适用于上述第一方面或结合第一方面任意一种可能的实现方式中的双向DC/DC变换器,其中上述第一终端电路、上述第二终端电路以及上述复位电路均耦合至处理器,该控制方法适用于该处理器,包括:
在上述双向DC/DC变换器处于第二工作状态的第一时间段内,控制上述第二终端电路通过上述第二绕组和上述第一绕组向上述第一终端电路传输第二交流电,并控制上述第一终端电路将该第二交流电转换为第二直流电;
在上述双向DC/DC变换器处于第二工作状态的第二时间段内,控制上述第二终端电路停止向上述第一终端电路传输上述第二交流电,并控制上述复位电路导通,以对上述第二绕组进行复位;
在上述双向DC/DC变换器处于第一工作状态时,控制上述第一终端电路通过上述第一绕组和上述第二绕组向上述第二终端电路传输第一交流电,控制上述第二终端电路将上述第一交流电转换为第一直流电,且控制上述复位电路关断。
结合第二方面,在第一种可能的实现方式中,上述复位电路包括第一电容以及与该第一电容串联的第一开关;
上述控制上述复位电路导通,以对上述第二绕组进行复位具体实现为:
控制上述第一开关闭合,以使上述第一电容对上述第二绕组进行复位。
结合第二方面第一种可能的实现方式,在第二种可能的实现方式中,上述双向DC/DC变换器处于上述第二工作状态对应的工作周期内包括上述第一时间段、上述第二时间段、第三时间段以及第四时间段;
上述复位电路还包括第二开关,其中上述第一开关耦合上述第一子绕组的同名端,上述第二开关耦合上述第二子绕组的异名端,上述第一开关与上述第二开关并联之后与上述第一电容串联;
上述控制上述第一开关闭合,以对上述第二绕组进行复位具体实现为:
在上述第二时间段内控制上述第一开关闭合,以使上述第一子绕组与上述第一电容形成第一复位回路,在上述第一时间段内控制上述第一开关闭合,以将上述第一电容短路复位,并在上述第三时间段与上述第四时间段内控制上述第一开关断开;
在上述第四时间段内控制上述第二开关闭合,以使上述第二子绕组与上述第一电容形成第二复位回路,在上述第三时间段内控制上述第二开关闭合,以将上述第一电容短路复位,并在上述第一时间段与上述第二时间段内控制上述第二开关断开。
结合第二方面第一种可能的实现方式,在第三种可能的实现方式中,上述双向DC/DC变换器处于上述第二工作状态对应的工作周期内包括上述第一时间段、上述第二时间段、第三时间段以及第四时间段;
上述复位电路包括第三开关和第四开关,其中上述第三开关耦合上述第一子绕组的同名端,上述第四开关耦合上述第二子绕组的异名端,上述第三开关与上述第四开关并联之后与上述第一开关以及上述第一电容串联;
上述控制上述第一开关闭合,以对上述第二绕组进行复位具体实现为:
在上述第二时间段内控制上述第三开关与上述第一开关闭合,以控制上述第一子绕组与上述第一电容形成第三复位回路;在上述第一时间段控制上述第一开关关断,以断开该第三复位回路;
在上述第一时间段内控制上述第四开关与上述第一开关闭合,以控制上述第二子绕组与上述第一电容形成第四复位回路;在上述第三时间段内控制上述第一开关关断,以断开该第四复位回路。
本申请实施例第三方面提供了一种车辆供电系统,该车辆供电系统包括动力电池、蓄电池、母线电容、电机控制器、接触器以及如上述第一方面或结合第一方面任意一种可能的实现方式中的双向DC/DC变换器,其中,
该电机控制器以及该母线电容并联耦合至上述双向DC/DC变换器的第一终端电路的两端;该电机控制器用于控制电机的转动以向车辆提供动力;
上述动力电池通过上述接触器与上述电机控制器以及上述母线电容耦合;
上述蓄电池并联耦合至上述双向DC/DC变换器的第二终端电路的两端,上述蓄电池用于在上述双向DC/DC变换器处于第二工作状态的情况下,通过上述双向DC/DC变换器向上述母线电容预充电;
上述接触器用于在上述母线电容的两端与上述动力电池的两端的电压差小于预设阈值时闭合,以使上述双向DC/DC变换器进入上述第一工作状态,上述动力电池用于在上述双向DC/DC变换器处于第一工作状态的情况下,通过上述双向DC/DC变换器向上述蓄电池或上述车辆中的其他设备供电。
本申请实施例通过采用结合第一方面或结合第一方面任意一种可能实现方式的双向DC/DC变换器向母线电容预充电,相对于现有技术减少了预充电电路,降低了成本。
本申请实施例第四方面提供了一种车辆,该车辆包括第三方面所描述的车辆供电系统。
应理解的是,本申请上述多个方面的实现和有益效果可互相参考。
附图说明
图1为现有技术提供的一种DC/DC变换器;
图2为本申请实施例提供的一种双向DC/DC变换器的应用框图;
图3为本申请实施例提供的一种车辆供电系统的结构框图;
图4为本申请实施例提供的一种双向DC/DC变换器的结构框图;
图5为本申请实施例提供的一种双向DC/DC变换器的电路图;
图6为本申请实施例提供的部分双向DC/DC变换器的一控制时序图;
图7A-图7B为本申请实施例提供的部分双向DC/DC变换器的一状态等效电路图;
图8为本申请实施例提供的一种双向DC/DC变换器的部分电路图;
图9为本申请实施例提供的部分双向DC/DC变换器的又一控制时序图;
图10A-图10B为本申请实施例提供的部分双向DC/DC变换器的又一等效电路图;
图11为本申请实施例提供的又一种双向DC/DC变换器的部分电路图;
图12A-图12B为本申请实施例提供的部分双向DC/DC变换器的又一等效电路图;
图13为本申请实施例提供的又一种双向DC/DC变换器的部分电路图;
图14为本申请实施例提供的部分双向DC/DC变换器的又一控制时序图;
图15A-图15B为本申请实施例提供的部分双向DC/DC变换器的又一等效电路图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于能量双向传输的场景,参见图2,图2为本申请实施例提供的一种双向DC/DC变换器的应用框图。如图2所示,双向DC/DC变换器200的一侧耦合第二直流电源201a以及第三负载201b,双向DC/DC变换器200的另一侧耦合第二负载202a以及第三直流电源202b。当双向DC/DC变换器200处于第一工作状态时,第二直流电源201a、双向DC/DC变换器200以及第二负载202a可以形成第一闭合回路;当双向DC/DC变换器200处于第二工作状态时,第三直流电源202b、双向DC/DC变换器200以及第三负载201b可以形成第二闭合回路。双向DC/DC变换器200的控制端耦合处理器203,用于控制双向DC/DC变换器200的状态切换。
需要指出的是,本申请中所描述的“耦合”指的是直接或间接连接。例如,A与B耦合,既可以是A与B直接连接,也可以是A与B之间通过一个或多个其它电学元器件间接连接,例如可以是A与C直接连接,C与B直接连接,从而使得A与B之间通过C实现了连接。
第二直流电源201a和/或第三直流电源202b例如可以是动力电池(如镍镉电池、镍氢电池、锂离子电池、锂聚合物电池等)或蓄电池等。示例性的,该蓄电池的电池电压低于上述动力电池的电池电压。可选的,第二直流电源201a和/或第三直流电源202b可以用于耦合上一级电路如AC/DC变换器(Alternating Current/Direct-Currentconverter)或其他DC/DC变换器(如BUCK变换器、BOOST变换器、BUCK-BOOST变换器等)等。换句话说,第二直流电源201a和/或第三直流电源202b可以是直接电源,也可以是经过电路传输的间接电源。
第二负载202a和/或第三负载201b例如可以是电容、电阻或蓄电池等,该电容的容值可以达到几百微法或者几千微法。
处理器203可以是中央处理单元(central processing unit,CPU)、其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
在一些可行的实施方式中,本申请实施例提供的双向DC/DC变换器可以应用在车辆供电系统中。在本申请实施例中,上述第二负载和上述第三直流电源是同一个电子设备例如蓄电池,上述第二直流电源是动力电池,第三负载是电容。具体实现参见图3,图3为本申请实施例提供的一种车辆供电系统的结构框图。如图3所示,车辆供电系统30包括双向DC/DC变换器300、动力电池301、蓄电池302、母线电容303、电机控制器304和接触器305,其中电机控制器304以及母线电容303并联耦合至双向DC/DC变换器300的第一终 端电路的两端,该电机控制器304用于控制电机转动以向车辆提供动力。母线电容303的容值较大,可以达到几百微法或者几千微法,用于削减电机控制器304两端的尖峰脉冲干扰。
动力电池301通过接触器305与电机控制器304以及母线电容303耦合,蓄电池302并联耦合至双向DC/DC变换器300的第二终端电路的两端。
需要说明的是,动力电池301的电池电压可以达到百伏级别,若没有先对母线电容303进行预充电就控制接触器305闭合,动力电池301的电池电压直接加载到空的母线电容303的两端,由于电容两端的电压不可突变,但电容两端的电流可以突变,母线电容303此时相当于瞬间短路。为了保证车辆供电系统30的安全,现有技术通常是在接触器305的两端并联预充电电路,该预充电电路包括预充电阻和预充接触器,该预充电阻用于限制流过母线电容303的电流。动力电池301通过预充电电路对母线电容303进行预充电,当母线电容303两端电压与动力电池301两端电压的差值在预设阈值范围内时,控制接触器305闭合,以对蓄电池302进行充电。
不同于现有技术的是,本申请实施例可以通过双向DC/DC变换器300向母线电容303预充电,不用预充电电路,可以降低成本。具体实现中,在双向DC/DC变换器300处于第二工作状态的情况下,蓄电池302可以通过双向DC/DC变换器300向母线电容303预充电。示例性的,双向DC/DC变换器300的控制端耦合有处理器,该处理器可以是车辆供电系统的一部分,也可以独立于车辆供电系统,本申请不对处理器的设置进行限制。该处理器用于控制双向DC/DC变换器300的状态。例如,该处理器在检测到车辆启动时,控制双向DC/DC变换器300进入第二工作状态,此时接触器305处于关断状态,蓄电池302通过双向DC/DC变换器300向母线电容303进行预充电。
在一些可行的实施方式中,在双向DC/DC变换器300进入第二工作状态的预设时间段之后,处理器控制双向DC/DC变换器300进入第一工作状态,并控制接触器305闭合,此时动力电池301通过双向DC/DC变换器300向蓄电池302或车辆中的其他设备如行车记录仪等供电。可以理解的是,上述预设时间段是根据母线电容303的容值大小预先设置的,母线电容303在经过该预设时间段的预充电,两端电压与动力电池301两端电压之间的差值小于预设阈值。
可选的,在一些可行的实施方式中,处理器也可以实时监测母线电容303两端的电压以及动力电池301两端的电压,在母线电容303两端电压与动力电池301两端电压的差值小于预设阈值时,处理器控制双向DC/DC变换器300进入第一工作状态,并控制接触器305闭合,此时动力电池301通过双向DC/DC变换器300向蓄电池302或车辆中的其他设备如行车记录仪等供电。
上述为对本申请实施例的双向DC/DC变换器的应用进行示例,而非穷举,应当理解为本申请双向DC/DC变换器可以应用于任何需要能量双向传输的场景。
下面结合附图对双向DC/DC变换器的具体结构进行介绍。
参见图4,图4为本申请实施例提供的一种双向DC/DC变换器的结构框图。如图4所示,双向DC/DC变换器40包括第一终端电路401、变压器402、第二终端电路403以及复 位电路404,变压器402包括第一绕组T1和第二绕组T2,其中,第一绕组T1和第二绕组R2通过一个磁芯耦合。第一终端电路401与第一绕组T1耦合,第二终端电路403以及复位电路404与第二绕组T2耦合。
双向DC/DC变换器40包括至少两个工作状态,例如第一工作状态和第二工作状态。
在双向DC/DC变换器40处于第一工作状态时,第一终端电路401通过第一绕组T1和第二绕组T2向第二终端电路403传输第一交流电,第二终端电路403将该第一交流电转换为第一直流电,此时复位电路404处于关断状态。在一些可行的实施方式中,第一终端电路401的一侧耦合第二直流电源,另一侧耦合第一绕组T1,第一终端电路401将第二直流电源提供的直流电转换为第三交流电,该第三交流电加载在第一绕组T1的两端,使第二绕组T2感应得到第一交流电。第二绕组T2将该第一交流电传输至第二终端电路403。该第一交流电与第三交流电的大小关系与第一绕组T1和第二绕组T2的匝数比有关。第二终端电路403的一侧耦合第二绕组T2,另一侧耦合第二负载,第二终端电路403将第一交流电转换为第一直流电,并向第二负载提供该第一直流电。换句话说,双向DC/DC变换器40的第一工作状态是第一终端电路401侧向第二终端电路403侧传输能量。
在双向DC/DC变换器40处于第二工作状态时的第一时间段内,第二终端电路403通过第二绕组T2和第一绕组T1向第一终端电路401传输第二交流电,第一终端电路401将该第二交流电转换为第二直流电。在一些可行的实施方式中,第二终端电路403的一侧耦合第二绕组T2,另一侧还耦合第三直流电源,第二终端电路403将第三直流电源提供的第二直流电转换成第四交流电,该第四交流电加载在第二绕组T2的两端,使第一绕组T1感应得到第二交流电。第一绕组T1将该第二交流电传输至第一终端电路401。该第四交流电与第二交流电的大小关系与第二绕组T2和第一绕组T1的匝数比有关。第一终端电路401的一侧还耦合第三负载,另一侧耦合第一绕组T1,第一终端电路401将该第二交流电转换为第二直流电,并向第三负载提供该第二直流电。换句话说,双向DC/DC变换器40的第二工作状态的第一时间段内,第二终端电路403侧向第一终端电路401侧传输能量。
在双向DC/DC变换器40处于第二工作状态时的第二时间段内,第二终端电路403停止向第一终端电路401传输第二交流电,此时复位电路404导通,以对第二绕组T2进行复位。可以理解的是,第二绕组T2进行复位代表着将第二绕组T2上的漏感能量释放。双向DC/DC变换器40的第二工作状态是周期工作状态,即双向DC/DC变换器40在第一时间段与第二时间段之间周期切换。第二绕组T2在第一时间段内积累漏感能量,在第二时间段内通过复位电路404释放漏感能量,使得第二绕组T2可以在双向DC/DC变换器40第二工作状态的下一周期的第一时间段内向第一终端电路401传输能量。
第一终端电路401例如可以是现有技术中的移相全桥电路,该移相全桥电路可以由金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)、三极管、绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)及其反并联二极管等形成。可以理解的是,移相全桥电路可以对第一绕组T1进行复位,并不用额外的复位电路。
第二终端电路403例如可以是现有技术中的正激电路,该正激电路不可以对第二绕组T2进行复位,因而本申请实施例增加额外的复位电路404来对第二绕组T2进行复位,使得双向DC/DC变换器40的能量可以从第二终端电路403侧向第一终端电路401侧传输能 量。即本申请实施例通过增加复位电路来实现DC/DC变换器的能量双向传输,适用性强。
下面将结合具体的电路图来对双向DC/DC变换器的具体连接关系进行详细介绍。
在一些可行的实施方式中,参见图5,图5为本申请实施例提供的一种双向DC/DC变换器的电路图。如图5所示,双向DC/DC变换器包括第一终端电路501、变压器502、第二终端电路503以及复位电路504a,变压器502包括第一绕组T3和第二绕组,其中,第二绕组具有中间抽头,该中间抽头用于将第二绕组分为第一子绕组T41和第二子绕组T42。图5中以第一子绕组T41的异名端和第二子绕组T42的同名端的耦合点处是中间抽头为例,在一些可行的实施例中,第一子绕组T41和第二子绕组T42的同名端和异名端可以同时对调,则第一子绕组T41的同名端和第二子绕组T42的异名端的耦合点处是中间抽头。
图5以第一终端电路501是现有技术中的移相全桥电路为例。第一终端电路501包括四个开关管,例如第五开关Q 51、第六开关Q 52、第七开关Q 53和第八开关Q 54。可以理解的是,第一终端电路501中的开关管还可以是三极管、IGBT及其反并联二极管等,本申请不对开关管的表现形式进行限制。具体实现中,第五开关Q 51的漏极和第六开关Q 52的漏极耦合至第一母线,第七开关Q 53的源极和第八开关Q 54的源极耦合至第二母线,在该第一母线与该第二母线之间可以耦合第二直流电源如动力电池、第三负载如母线电容等。可选的,在该第一母线与第二母线之间还可以耦合有电机控制器,在该第一母线或该第二母线上可以串联有接触器等。第五开关Q 51的源极和第七开关Q 53的漏极耦合至第一绕组T3的异名端,第六开关Q 52的源极和第八开关Q 54的漏极耦合至第一绕组T3的同名端。可以理解的是,第一绕组T3的同名端和异名端可以相互对调的(图中未示出)。第一终端电路501可以将直流电转换为交流电向第一绕组T3传输,也可以将第一绕组T3的交流电整流为直流电,具体控制方式可以参考现有技术,此处不作赘述。
第二终端电路503分别与第一子绕组T41的同名端、中间抽头以及第二子绕组T42的异名端耦合。具体实现中,图5以第二终端电路503是正激电路为例。第二终端电路503包括第九开关Q 55、第十开关Q 56、第十一开关S1、第一电感L2和第二电容C2。需要说明的是,第十一开关S1可以是半导体开关例如MOSFET、三极管、IGBT及其反并联二极管,也可以是电磁开关例如接触器、继电器等。第一子绕组T41的同名端耦合第九开关Q 55的漏极,中间抽头耦合第一电感L2的一端和第十一开关S1的一端,第一电感L2和第十一开关S1并联,第十一开关S1用于在双向DC/DC变换器的第二终端电路503侧向第一终端电路501侧传输能量时闭合,以将第一电感L2短路,减少第一电感L2造成的能量损耗。第一电感L2的另一端和第十一开关S1的另一端耦合第二电容C2的一端,第二电容C2的另一端耦合第九开关Q 55的源极和第十开关Q 56的源极,第十开关Q 56的漏极耦合第二子绕组T42的异名端,第十开关Q 56的源极耦合参考地。
复位电路504a可以耦合在第一子绕组T41的同名端与参考地之间或者耦合在第二子绕组T42的异名端与参考地之间。参考地可以理解为具有一个用于提供交流地的电位端。例如可以是1.8V、1.25V或0V等,本申请不对参考地的电压值进行限制。
在一些可行的实施方式中,图5中以复位电路504a耦合在第一子绕组T41的同名端与参考地之间为例进行示例性说明。复位电路504a包括第一电容C3和与第一电容C3串联 的第一开关Q 57。具体实现中,第一开关Q 57的源极耦合第一子绕组T41的同名端,第一开关Q 57的漏极耦合第一电容C3的一端,第一电容C3的另一端耦合参考地,第一开关Q 57控制第一电容C3对第二绕组例如第一子绕组T41进行复位。可以理解的是,若复位电路504a耦合在第二子绕组T42的异名端与参考地之间(图中未示出),则第一开关Q 57的源极耦合第二子绕组T42的异名端,第一开关Q 57的漏极耦合第一电容C3的一端,第一电容C3的另一端耦合参考地。
上述各个开关的栅极均耦合至处理器。可选的,各个开关的栅极可以是耦合至同一个处理器的不同引脚,也可以是耦合至不同处理器的不同引脚,各个处理器之间可以相互通信,共同控制各个开关的通断来控制第一终端电路501、第二终端电路503和复位电路504a。
下面结合图6至图7B对本申请实施例中双向DC/DC变换器的工作原理进行介绍。
在双向DC/DC变换器处于第二工作状态的第一时间段内,处理器控制第二终端电路503通过第一绕组T3和第二绕组向第一终端电路501传输第二交流电。
具体实现中,参见图6,图6为本申请实施例提供的部分DC/DC变换器的一控制时序图。如图6所示,在第一时间段内(即0至t1时间段内),处理器控制第九开关Q 55闭合、第十开关Q 56断开以及第一开关Q 57闭合。需要说明的是,本申请实施例以各个开关是N沟道增强型MOS管为例,各个开关的栅极接收到高电平信号则闭合(即ON),接收到低电平信号则断开(即OFF)。第九开关Q 55和第一开关Q 57均闭合时,可以将第一电容C3进行短路复位。可选的,处理器还可以进一步控制第十一开关S1闭合,以将第一电感L2短路,避免第一电感L2在第二终端电路503侧向第一终端电路501侧传输能量时造成能量损耗。
此时参见图7A,图7A为本申请实施例提供的部分双向DC/DC变换器的一状态等效电路图。需要说明的是,本申请中将开关闭合看作导线得到部分双向DC/DC变换器的各状态等效电路图。如图7A所示,在0至t1时间段内,第二电容C2和/或与第二电容C2并联的第三直流电源如蓄电池、第一子绕组T41以及第九开关Q 55形成闭合回路,即第二终端电路503中的第二电容C2通过第一子绕组T41向第一终端电路501传输第二交流电。处理器还控制第一终端电路501实现整流功能,将该第二交流电转换为第二直流电向第三负载如母线电容提供。
在双向DC/DC变换器处于第二工作状态的第二时间段内,处理器控制第二终端电路503停止向第一终端电路501传输第二交流电,并控制复位电路504a导通。
具体实现中,如图6所示,在第二时间段内(即t1至t2时间段内),处理器控制第九开关Q 55关断,从而控制第二终端电路503停止向第一终端电路501传输第二交流电。处理器还控制第一开关Q 57闭合,由于第九开关Q 55处于关断状态,所以第一电容C3没有短路。
此时参见图7B,图7B为本申请实施例提供的部分双向DC/DC变换器的又一状态等效电路图。如图7B所示,在t1至t2时间段内,第一子绕组T41、第一电容C3以及第二电容C2形成闭合回路(即第一复位回路),此时复位电路504a导通,第一电容C3与第一子绕组T41进行谐振复位。绕组可以理解为电感,由于电感的电流不可以突变,即0至t1时间段内流经第一子绕组T41的电流在t1至t2时间段内经过第一开关Q 57、第一电容C3以及第二电容C2形成第一复位回路,从而将第一子绕组T41上的漏感能量转移至第一电容C3中,使得第二终端电路503在下一周期的第一时间段可以继续向第一终端电路501传输 能量。若没有释放掉第一子绕组T41上的漏感能量,则第一子绕组T41会达到饱和以致于无法传输能量。可选的,在t1至t2时间段内,处理器可以控制第一终端电路501中的开关全部断开。
在双向DC/DC变换器处于第一工作状态时,处理器控制第一终端电路501通过第一绕组T3和第二绕组向第二终端电路503传输第一交流电。示例性的,处理器可以根据现有技术中移相全桥的控制方法来控制第一终端电路501实现直流转交流。处理器控制第二终端电路503将第二绕组感应到的第一交流电转换为第一直流电,具体实现是控制第九开关Q 55和第十开关Q 56均闭合,以及控制第十一开关S1关断。处理器还控制复位电路504a关断,即控制第一开关Q 57关断,以避免复位电路504a影响双向DC/DC变换器的第一工作状态。
本申请实施例在现有DC/DC变换器结构的基础上增加复位电路,该复位电路与第二绕组进行谐振复位,使得DC/DC变换器的能量可以双向传输。
进一步的,在一些可行的实施方式中,复位电路还包括第二开关。参见图8,图8为本申请实施例提供的一种双向DC/DC变换器的部分电路图。如图8所示,将图5中的504a替换为图8中示出的复位电路504b,该复位电路504b除了包括第一电容C3、第一开关Q 57之外,还包括第二开关Q 58。需要说明的是,本申请实施例中第一终端电路、第一子绕组、第二子绕组和第二终端电路的具体连接关系可以参考图5中的描述,此处不作赘述。
复位电路504b在双向DC/DC变换器中的具体连接关系如下:第二开关Q 58的源极与第二子绕组T42的异名端以及第十开关Q 56的漏极耦合,第二开关Q 58的漏极与第一开关Q 57漏极以及第一电容C3的一端耦合。换句话说,第一开关Q 57和第二开关Q 58并联后与第一电容C3耦合。第一电容C3的另一端耦合至参考地。
具体实现中,第一开关Q 57在第一时间段将第一电容C3短路复位、在第二时间段内闭合以控制第一电容C3与第一子绕组T41形成第一复位回路、在第三时间段和第四时间段内断开该第一复位回路。第二开关Q 58在第三时间段将第一电容C3短路复位、在第四时间段内闭合以控制第一电容C3与第二子绕组T42形成第二复位回路、在第一时间段和第二时间段断开该第二复位回路。
下面结合图9和图10B对本申请实施例中双向DC/DC变换器的工作原理进行介绍。
本申请实施例中双向DC/DC变换器的第二工作状态是周期工作状态,对应的周期可以包括第一时间段、第二时间段、第三时间段和第四时间段。各个开关的控制时序图可以参见图9,图9中示出的时序与前文图6中示出的时序的区别在于增加了对第二开关Q 58的控制以及增加了第三时间段(即t2至t3时间段)、第四时间段(即t3至t4时间段)对各个开关的控制。换句话说,在双向DC/DC变换器处于第二工作状态的第一时间段内,处理器除了按照前文结合图6所描述的实施例控制第九开关Q 55闭合、第十开关Q 56关断、第一开关Q 57闭合以及第十一开关S1闭合之外,处理器还控制第二开关Q 58关断,得到如图7A所描述的等效电路图,此时第二终端电路503侧向第一终端电路501侧传输能量,第一电容C3被短路复位。同理的,在双向DC/DC变换器处于第二工作状态的第二时间段,处理器除了按照前文结合图6所描述的实施例控制第九开关Q 55关断、第十开关Q 56关断、第一开关Q 57闭合以及第十一开关S1闭合之外,处理器还控制第二开关Q 58关断,得到如图7B所描述的等效电路图,此时第一子绕组T41与第一电容C3形成第一复位回路,第一电容C3与第 一子绕组T41进行谐振复位,第一子绕组T41上的漏感能量可以转移到第一电容C3上。
在双向DC/DC变换器处于第二工作状态的第三时间段内,处理器控制第二终端电路503通过第二绕组和第一绕组T3向第一终端电路501传输第二交流电。具体实现中,如图9所示,在t2至t3时间段内,处理器控制第九开关Q 55关断、第十开关Q 56闭合、第一开关Q 57关断以及第二开关Q 58闭合。第十开关Q 56闭合和第二开关Q 58均闭合时,可以将第一电容C3短路复位。可选的,处理器还可以进一步控制第十一开关S1闭合,以将第一电感L2短路,避免第一电感L2在第二终端电路503侧向第一终端电路501侧传输能量时造成能量损耗。
此时参见图10A,图10A为本申请实施例提供的部分双向DC/DC变换器的又一状态等效电路图。如图10A所示,在t2至t3时间段内,第二电容C2和/或与第二电容C2并联的第三直流电源如蓄电池、第二子绕组T42以及第十开关Q 56形成闭合回路,即第二终端电路503中的第二电容C2通过第二子绕组T42向第一终端电路501传输第二交流电。处理器还控制第一终端电路501实现整流功能,将该第二交流电转换为第二直流电向第三负载如母线电容提供。
在双向DC/DC变换器处于第二工作状态的第四时间段内,处理器控制第二终端电路503停止向第一终端电路501传输第二交流电,并控制复位电路504b导通。
具体实现中,如图9所示,在t3至t4时间段内,处理器控制第十开关Q 56关断,从而控制第二终端电路停止向第一终端电路501传输第二交流电。处理器还控制第二开关Q 58闭合,由于第十开关Q 56关断,所以第一电容C3没有短路。
此时参见图10B,图10B为本申请实施例提供的部分双向DC/DC变换器的又一状态等效电路图。如图10B所示,在t3至t4时间段内,第二子绕组T42、第一电容C3以及第二电容C2形成闭合回路(即第二复位回路),即复位电路504b导通,第一电容C3与第二子绕组T42进行复位。即第一电容C3与第二子绕组T42进行谐振复位,第二子绕组T42上的漏感能量可以转移到第一电容C3上。可选的,在t3至t4时间段内,处理器可以控制第一终端电路501中的开关全部断开。
在双向DC/DC变换器处于第一工作状态时,处理器对各个开关的控制可以参考前文结合图5所描述的实施例,此处不作赘述。
本申请实施例中的复位电路通过使用两个开关在不同的时间段对不同的子绕组进行复位,由于第二绕组感应到的是交流电,交流电具有正负,在交流电的正负半周的周期中,两个子绕组中的任一个处于工作状态。相对于只有一个绕组的实施方式,本申请实施例可以在交流电的正负半周都进行能量传输,而只有一个绕组的实施方式只能在交流电的正半周或负半周进行能量传输,浪费了一半的能量。换句话说,实施本申请实施例,可以在实现能量双向传输的基础上,进一步地提高能量利用率。
参见图11,图11为本申请实施例提供的又一种双向DC/DC变换器的部分电路图。双向DC/DC变换器可以包括图11中示出的复位电路504c。需要说明的是,双向DC/DC变换器还包括第一终端电路、变压器、第二终端电路,变压器包括第一绕组和第二绕组,其中,第二绕组具有中间抽头,该中间抽头用于将第二绕组分为第一子绕组和第二子绕组。 具体实现方式可以参考前文结合图5所描述的实施例,此处不作赘述。
复位电路504c可以耦合在中间抽头与第一子绕组T41的同名端之间或者耦合在中间抽头与第二子绕组T42的异名端之间。
在一些可行的实施方式中,图11以复位电路504c耦合在中间抽头与第一子绕组T41的同名端之间为例进行示例性说明。本申请实施例中的复位电路504c与图5所描述的复位电路包括的元器件一样,也是包括第一电容C3和与第一电容C3串联的第一开关Q 57,区别在于第一电容C3的另一端耦合点不同。如图11所示,第一开关Q 57的源极耦合第一子绕组T41的同名端,第一开关Q 57的漏极耦合第一电容C3的一端,第一电容C3的另一端耦合的是中间抽头而不是参考地。可以理解的是,若复位电路504c耦合在中间抽头与第二子绕组T42的异名端之间(图中未示出),则第一开关Q 57的源极耦合第二子绕组T42的异名端,第一开关Q 57的漏极耦合第一电容C3的一端,第一电容C3的另一端耦合中间抽头。
本申请实施例中,在第一时间段与第二时间段对各个开关的控制可以参考前文结合图6所描述的实施例,此处不再赘述。虽然控制方式相同,但由于第一电容C3的耦合点发生了变换,得到的等效电路有所不同。
参见图12A,图12A为本申请实施例提供的部分双向DC/DC变换器的又一状态等效电路图。如图12A所示,在0至t1时间段内,第二电容C2和/或与第二电容C2并联的第三直流电源如蓄电池、第一子绕组T41以及第九开关Q 55形成闭合回路,即第二终端电路中的第二电容C2通过第一子绕组T41向第一终端电路501传输第二交流电。处理器还控制第一终端电路实现整流功能,将该第二交流电转换为第二直流电向第三负载如母线电容提供。此时即使第九开关Q 55和第一开关Q 57均闭合时,第一电容C3也没有短路。
参见图12B,图12B为本申请实施例提供的部分双向DC/DC变换器的又一状态等效电路图。如图12B所示,在t1至t2时间段内,第一子绕组T41和第一电容C3形成闭合回路(即第三复位回路),此时复位电路504c导通,对第一子绕组T41进行复位。由于第一电容C3的另一端没有耦合至参考地,即第一子绕组T41转移至第一电容C3上的能量没有完全释放,使得第一电容C3的电压可以稳定在一个恒定值,形成电压箝位。
可选的,在t1至t2时间段内,处理器可以控制第一终端电路中的开关全部断开。
双向DC/DC变换器处于第一工作状态的控制方式可以参考前文结合图5所描述的实施例,此处不作赘述。
本申请实施例通过改变复位电路的耦合点,使得复位电路与第一子绕组或第二子绕组之间可以形成有源箝位电路,第一子绕组和第二子绕组的能量通过该有源箝位电路转移至复位电路中的第一电容上,从而可以实现DC/DC变换器的能量双向传输。
进一步的,在一些可行的实施方式中,复位电路还包括第三开关和第四开关。参见图13,图13为本申请实施例提供的又一种双向DC/DC变换器的部分电路图。如图13所示,将图5中的复位电路504a替换为图13中示出的复位电路504d,复位电路504d除了包括第一电容C3、第一开关Q 57之外,还包括第三开关Q 59和第四开关Q 60。同理的,本申请实施例中第一终端电路、第一子绕组、第二子绕组和第二终端电路的具体连接关系可以参考图5中的描述,此处不作赘述。
复位电路504d在双向DC/DC变换器中的具体连接关系如下:第三开关Q 59的源极与第 一子绕组T41的同名端以及第九开关Q 55的漏极耦合,第四开关Q 60的源极与第二子绕组T42的异名端以及第十开关Q 56的漏极耦合;第三开关Q 59的漏极和第四开关Q 60的漏极均耦合至第一开关Q 57的源极,第一开关Q 57漏极耦合第一电容C3的一端。换句话说,第三开关Q 59与第四开关Q 60并联之后与第一开关Q 57以及第一电容C3串联。第一电容C3的另一端耦合中间抽头。
具体实现中,第三开关Q 59和第一开关Q 57在第二时间段均闭合,以控制所述第一子绕组T41与第一电容C3形成闭合回路(即第三复位回路),第一开关Q 57在第一时间段关断,以断开该第三复位回路;第四开关Q 60和第一开关Q 57在第四时间段均闭合,以控制第二子绕组T42与第一电容C3形成闭合回路(即第四复位回路),第一开关Q 57在第三时间段关断,以断开该第四复位回路。
下面结合图14和图15B对本申请实施例中双向DC/DC变换器的工作原理进行介绍。
本申请实施例中双向DC/DC变换器的第二工作状态是周期工作状态,对应的周期可以包括第一时间段、第二时间段、第三时间段和第四时间段。各个开关的控制时序图可以参见图14,图14为本申请实施例提供的部分双向DC/DC变换器的又一控制时序图。
如图14所示,在第一时间段内(即0至t1时间段内),处理器控制第九开关Q 55闭合、第十开关Q 56断开、第三开关Q 59闭合、第四开关Q 60关断以及第一开关Q 57关断。可选的,处理器还可以进一步控制第十一开关S1闭合,以将第一电感L2短路,避免第一电感L2在第二终端电路503侧向第一终端电路501侧传输能量时造成能量损耗。此时,双向DC/DC变换器的部分等效电路图可以参考图12A,第二终端电路如何实现向第一终端电路传输能量也可以参考前文结合图12A所描述的实施例,此处不作赘述。
在第二时间段内(即t1至t2时间段内),处理器控制第九开关Q 55关断、第十开关Q 56断开、第三开关Q 59闭合、第四开关Q 60关断以及第一开关Q 57闭合。此时,双向DC/DC变换器的部分等效电路图可以参考图12B,第一子绕组T41如何实现复位也可以参考前文结合图12B所描述的实施例,此处不作赘述。
在双向DC/DC变换器处于第二工作状态的第三时间段内(即t2至t3时间段内),处理器控制第二终端电路通过第二绕组和第一绕组向第一终端电路传输第二交流电。具体实现中,如图14所示,在t2至t3时间段内,处理器控制第九开关Q 55关断、第十开关Q 56闭合、第三开关Q 59关断、第四开关Q 60导通以及第一开关Q 57关断。可选的,处理器还可以进一步控制第十一开关S1闭合,以将第一电感L2短路,避免第一电感L2在第二终端电路503侧向第一终端电路501侧传输能量时造成能量损耗。
此时,参见图15A,图15A为本申请实施例提供的部分双向DC/DC变换器的又一状态等效电路图。如图15A所示,在t2至t3时间段内,第二电容C2和/或与第二电容C2并联的第三直流电源如蓄电池、第二子绕组T42以及第十开关Q 56形成闭合回路,即第二终端电路中的第二电容C2通过第二子绕组T42向第一终端电路传输第二交流电。
处理器还控制第一终端电路501实现整流功能,将该第二交流电转换为第二直流电向第三负载如母线电容提供。
在双向DC/DC变换器处于第二工作状态的第四时间段内(即t3至t4时间段内),处理器控制第二终端电路停止向第一终端电路传输第二交流电,并控制复位电路504d导通。具 体实现中,如图14所示,在t3至t4时间段内,处理器控制第十开关Q 56关断,从而控制第二终端电路停止向第一终端电路传输第二交流电。处理器还控制第一开关Q 57导通。
此时参见图15B,图15B为本申请实施例提供的部分双向DC/DC变换器的又一状态等效电路图。如图15B所示,在t3至t4时间段内,第二子绕组T42以及第一电容C3形成第四复位回路,对第二子绕组T42进行复位。可选的,在t3至t4时间段内,处理器可以控制第一终端电路中的开关全部断开。
本申请实施例通过增加第三开关和第四开关在不同的时间段选择第一子绕组或第二子绕组与复位电路形成闭合回路。换句话说,本申请实施例是通过有源箝位的方式对绕组进行复位,形成的两个正激电路可以在交流电的正负半周交替进行能量传输,在实现能量双向传输的基础上,进一步地提高能量利用率。
此外,本申请实施例还提供了一种车辆,该车辆包括前文所描述的车辆供电系统,或者也可以理解为该车辆包括前文所描述的任一双向DC/DC变换器。该车辆包括处理器,该处理器可以独立与车辆供电系统或者独立于双向DC/DC变换器而设置。
需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (12)

  1. 一种双向DC/DC变换器,其特征在于,所述双向DC/DC变换器包括第一终端电路、变压器、第二终端电路以及复位电路,所述变压器包括第一绕组和第二绕组,其中,
    所述第一终端电路与所述第一绕组耦合,所述第二终端电路以及所述复位电路与所述第二绕组耦合;
    在所述双向DC/DC变换器处于第一工作状态时,所述第一终端电路用于通过所述第一绕组和所述第二绕组向所述第二终端电路传输第一交流电,所述第二终端电路用于将所述第一交流电转换为第一直流电,所述复位电路处于关断状态;
    在所述双向DC/DC变换器处于第二工作状态的第一时间段内,所述第二终端电路用于通过所述第二绕组和所述第一绕组向所述第一终端电路传输第二交流电,所述第一终端电路用于将所述第二交流电转换为第二直流电;在所述双向DC/DC变换器处于第二工作状态的第二时间段内,所述复位电路处于导通状态,用于对所述第二绕组进行复位;在所述第二时间段内所述第二终端电路停止向所述第一终端电路传输所述第二交流电。
  2. 如权利要求1所述的双向DC/DC变换器,其特征在于,所述第二绕组具有中间抽头,所述中间抽头用于将所述第二绕组分为第一子绕组和第二子绕组;
    所述第二终端电路以及所述复位电路与所述第二绕组耦合包括:
    所述第二终端电路分别与所述第一子绕组的同名端、所述中间抽头以及所述第二子绕组的异名端耦合;所述复位电路耦合在所述第一子绕组的同名端与参考地之间或者耦合在所述第二子绕组的异名端与参考地之间。
  3. 如权利要求1所述的双向DC/DC变换器,其特征在于,所述第二绕组具有中间抽头,所述中间抽头用于将所述第二绕组分为第一子绕组和第二子绕组;
    所述第二终端电路以及所述复位电路与所述第二绕组耦合包括:
    所述第二终端电路分别与所述第一子绕组的同名端、所述中间抽头以及所述第二子绕组的异名端耦合;所述复位电路耦合在所述中间抽头与所述第一子绕组的同名端之间或者耦合在所述中间抽头与所述第二子绕组的异名端之间。
  4. 如权利要求1-3任一项所述的双向DC/DC变换器,其特征在于,所述复位电路包括第一电容以及与所述第一电容串联的第一开关,所述第一开关用于控制所述第一电容对所述第二绕组进行复位。
  5. 如权利要求4所述的双向DC/DC变换器,其特征在于,所述双向DC/DC变换器处于所述第二工作状态对应的工作周期包括所述第一时间段、所述第二时间段、第三时间段以及第四时间段;
    所述第一开关用于在所述第二时间段内控制所述第一子绕组与所述第一电容形成第一复位回路,在所述第一时间段内将所述第一电容短路复位,在所述第三时间段内和所述第 四时间段内断开所述第一复位回路;
    所述复位电路还包括第二开关,所述第二开关用于在所述第四时间段内控制所述第二子绕组与所述第一电容形成第二复位回路,在所述第一时间段内和所述第二时间段内断开所述第二复位回路,在所述第三时间段内将所述第一电容短路复位。
  6. 如权利要求4所述的双向DC/DC变换器,其特征在于,所述双向DC/DC变换器处于第二工作状态对应的工作周期包括所述第一时间段、所述第二时间段、第三时间段以及第四时间段;
    所述复位电路还包括第三开关和第四开关;
    所述第三开关耦合所述第一子绕组的同名端,所述第四开关耦合所述第二子绕组的异名端;所述第三开关与所述第四开关并联之后与所述第一开关以及所述第一电容串联;
    所述第三开关和所述第一开关用于在所述第二时间段内控制所述第一子绕组与所述第一电容形成第三复位回路;
    所述第四开关和所述第一开关用于在所述第四时间段内控制所述第二子绕组与所述第一电容形成第四复位回路;
    所述第一开关还用于在所述第一时间段断开所述第三复位回路,在所述第三时间段断开所述第四复位回路。
  7. 一种双向DC/DC变换器的控制方法,其特征在于,所述控制方法适用于权利要求1-6任一项所述的双向DC/DC变换,所述第一终端电路、所述第二终端电路以及所述复位电路均耦合至处理器,所述控制方法适用于所述处理器,包括:
    在所述双向DC/DC变换器处于第二工作状态的第一时间段内,控制所述第二终端电路通过所述第二绕组和所述第一绕组向所述第一终端电路传输第二交流电,并控制所述第一终端电路将所述第二交流电转换为第二直流电;
    在所述双向DC/DC变换器处于第二工作状态的第二时间段内,控制所述第二终端电路停止向所述第一终端电路传输所述第二交流电,并控制所述复位电路导通,以对所述第二绕组进行复位;
    在所述双向DC/DC变换器处于第一工作状态时,控制所述第一终端电路通过所述第一绕组和所述第二绕组向所述第二终端电路传输第一交流电,控制所述第二终端电路将所述第一交流电转换为第一直流电,且控制所述复位电路关断。
  8. 如权利要求7所述的控制方法,其特征在于,所述复位电路包括第一电容以及与所述第一电容串联的第一开关;
    所述控制所述复位电路导通,以对所述第二绕组进行复位包括:
    控制所述第一开关闭合,以使所述第一电容对所述第二绕组进行复位。
  9. 如权利要求8所述的控制方法,其特征在于,所述双向DC/DC变换器处于所述第二工作状态对应的工作周期内包括所述第一时间段、所述第二时间段、第三时间段以及第 四时间段;
    所述复位电路还包括第二开关,其中所述第一开关耦合所述第一子绕组的同名端,所述第二开关耦合所述第二子绕组的异名端,所述第一开关与所述第二开关并联之后与所述第一电容串联;
    所述控制所述第一开关闭合,以使所述第一电容对所述第二绕组进行复位包括:
    在所述第二时间段内控制所述第一开关闭合,以使所述第一子绕组与所述第一电容形成第一复位回路,在所述第一时间段内控制所述第一开关闭合,以将所述第一电容短路复位,并在所述第三时间段与所述第四时间段内控制所述第一开关断开;
    在所述第四时间段内控制所述第二开关闭合,以使所述第二子绕组与所述第一电容形成第二复位回路,在所述第三时间段内控制所述第二开关闭合,以将所述第一电容短路复位,并在所述第一时间段与所述第二时间段内控制所述第二开关断开。
  10. 如权利要求8所述的控制方法,其特征在于,所述双向DC/DC变换器处于所述第二工作状态对应的工作周期内包括所述第一时间段、所述第二时间段、第三时间段以及第四时间段;
    所述复位电路包括第三开关和第四开关,其中所述第三开关耦合所述第一子绕组的同名端,所述第四开关耦合所述第二子绕组的异名端,所述第三开关与所述第四开关并联之后与所述第一开关以及所述第一电容串联;
    所述控制所述第一开关闭合,以使所述第一电容对所述第二绕组进行复位包括:
    在所述第二时间段内控制所述第三开关与所述第一开关闭合,以控制所述第一子绕组与所述第一电容形成第三复位回路;在所述第一时间段控制所述第一开关关断,以断开所述第三复位回路;
    在所述第一时间段内控制所述第四开关与所述第一开关闭合,以控制所述第二子绕组与所述第一电容形成第四复位回路;在所述第三时间段内控制所述第一开关关断,以断开所述第四复位回路。
  11. 一种车辆供电系统,其特征在于,所述车辆供电系统包括动力电池、蓄电池、母线电容、电机控制器、接触器,以及如权利要求1-6任一项所述的双向DC/DC变换器,其中,
    所述电机控制器以及所述母线电容并联耦合至所述双向DC/DC变换器的第一终端电路的两端;所述电机控制器用于控制电机的转动以向车辆提供动力;
    所述动力电池通过所述接触器与所述电机控制器以及所述母线电容耦合;
    所述蓄电池并联耦合至所述双向DC/DC变换器的第二终端电路的两端,所述蓄电池用于在所述双向DC/DC变换器处于第二工作状态的情况下,通过所述双向DC/DC变换器向所述母线电容预充电;
    所述接触器用于在所述母线电容的两端与所述动力电池的两端的电压差小于预设阈值时闭合,以使所述双向DC/DC变换器进入所述第一工作状态,所述动力电池用于在所述双向DC/DC变换器处于第一工作状态的情况下,通过所述双向DC/DC变换器向所述蓄电池或所述车辆中的其他设备供电。
  12. 一种车辆,其特征在于,所述车辆包括如权利要求11所述的车辆供电系统。
PCT/CN2021/074344 2021-01-29 2021-01-29 一种双向dc/dc变换器及其控制方法及车辆 WO2022160234A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21921840.1A EP4266532A1 (en) 2021-01-29 2021-01-29 Bidirectional dc/dc converter and control method therefor, and vehicle
PCT/CN2021/074344 WO2022160234A1 (zh) 2021-01-29 2021-01-29 一种双向dc/dc变换器及其控制方法及车辆
CN202180089254.3A CN116686182A (zh) 2021-01-29 2021-01-29 一种双向dc/dc变换器及其控制方法及车辆
US18/361,151 US20230369985A1 (en) 2021-01-29 2023-07-28 Bidirectional dc/dc converter, control method thereof, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074344 WO2022160234A1 (zh) 2021-01-29 2021-01-29 一种双向dc/dc变换器及其控制方法及车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/361,151 Continuation US20230369985A1 (en) 2021-01-29 2023-07-28 Bidirectional dc/dc converter, control method thereof, and vehicle

Publications (1)

Publication Number Publication Date
WO2022160234A1 true WO2022160234A1 (zh) 2022-08-04

Family

ID=82652875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074344 WO2022160234A1 (zh) 2021-01-29 2021-01-29 一种双向dc/dc变换器及其控制方法及车辆

Country Status (4)

Country Link
US (1) US20230369985A1 (zh)
EP (1) EP4266532A1 (zh)
CN (1) CN116686182A (zh)
WO (1) WO2022160234A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116995714A (zh) * 2023-09-28 2023-11-03 中宏科创新能源科技(浙江)有限公司 储能变流器及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040070997A1 (en) * 2002-10-14 2004-04-15 Guo-Kiang Hung Circuitry for resetting magnetic field of transformer
US20090196075A1 (en) * 2008-02-05 2009-08-06 Douglas Paul Arduini Fly-forward converter power supply
CN110445227A (zh) * 2019-06-28 2019-11-12 天津大学 电动汽车车载单相充电系统中高、低频纹波电流抑制方法
CN111251893A (zh) * 2020-03-09 2020-06-09 科博达技术股份有限公司 新能源汽车的高压母线电容的预充电装置
CN111682774A (zh) * 2020-05-26 2020-09-18 苏州汇川联合动力系统有限公司 单级隔离型双向直流变换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040070997A1 (en) * 2002-10-14 2004-04-15 Guo-Kiang Hung Circuitry for resetting magnetic field of transformer
US20090196075A1 (en) * 2008-02-05 2009-08-06 Douglas Paul Arduini Fly-forward converter power supply
CN110445227A (zh) * 2019-06-28 2019-11-12 天津大学 电动汽车车载单相充电系统中高、低频纹波电流抑制方法
CN111251893A (zh) * 2020-03-09 2020-06-09 科博达技术股份有限公司 新能源汽车的高压母线电容的预充电装置
CN111682774A (zh) * 2020-05-26 2020-09-18 苏州汇川联合动力系统有限公司 单级隔离型双向直流变换器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116995714A (zh) * 2023-09-28 2023-11-03 中宏科创新能源科技(浙江)有限公司 储能变流器及其控制方法
CN116995714B (zh) * 2023-09-28 2023-12-19 中宏科创新能源科技(浙江)有限公司 储能变流器及其控制方法

Also Published As

Publication number Publication date
EP4266532A1 (en) 2023-10-25
US20230369985A1 (en) 2023-11-16
CN116686182A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
CN113261191B (zh) 双向多端口功率转换系统及方法
KR100683922B1 (ko) 자기적으로 연결된 자발적인 전지 등화 회로 및 전지 등화방법
CN102055355B (zh) 功率转换装置
CN109874385B (zh) 电力转换系统
CN109874376B (zh) 直流电压转换器和用于操控直流电压转换器的方法
US20150295504A1 (en) Electric power conversion apparatus and method of controlling the same
US10615612B2 (en) Battery apparatus and cell balancing circuits
US9450497B2 (en) Current resonance DC-DC converter
CN109639149A (zh) 一种acf变换器、电压变换方法及电子设备
WO2022160234A1 (zh) 一种双向dc/dc变换器及其控制方法及车辆
US11496042B2 (en) Method and device for matching the voltage of the smoothing capacitor of a DC/DC converter before a high-voltage battery is connected
US5717579A (en) Power supply unit, more specifically battery charger for electric vehicles and the like
WO2020062248A1 (zh) 一种车辆的充电系统及车辆
CN110098730A (zh) 一种三电平Boost变换器、控制方法及光伏系统
CN107769389A (zh) 一种隔离对称式串联反激电路的电池储能系统
WO2023230920A1 (zh) 一种dc/dc变换电路、dc/dc变换器以及供电设备
CN210898931U (zh) Dc/dc电路软启动控制电路及车载设备
JP7241629B2 (ja) 双方向dc/dcコンバータ
CN109643950A (zh) 具有双象限转换器的改进的电源及操作技术
JP3407137B2 (ja) Dc−dcコンバータ及び電圧イコライザ
CN114244125B (zh) 直流变换器及电子设备
RU148287U1 (ru) Квазирезонансный мостовой преобразователь
EP4120504A1 (en) Bidirectional energy transmission apparatus, on-board charger, and electric vehicle
RU129722U1 (ru) Узел автоматического управления режимами преобразования в двунаправленных обратноходовых преобразователях постоянного напряжения
CN110048494B (zh) 一种电池单体电压主动均衡系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921840

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180089254.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021921840

Country of ref document: EP

Effective date: 20230718

NENP Non-entry into the national phase

Ref country code: DE