WO2022160112A1 - 燃料电池的冷却液循环系统及其操作方法 - Google Patents

燃料电池的冷却液循环系统及其操作方法 Download PDF

Info

Publication number
WO2022160112A1
WO2022160112A1 PCT/CN2021/073909 CN2021073909W WO2022160112A1 WO 2022160112 A1 WO2022160112 A1 WO 2022160112A1 CN 2021073909 W CN2021073909 W CN 2021073909W WO 2022160112 A1 WO2022160112 A1 WO 2022160112A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
cooling liquid
cold start
flow
flow path
Prior art date
Application number
PCT/CN2021/073909
Other languages
English (en)
French (fr)
Inventor
张旭
王凯
傅立运
常亚飞
Original Assignee
罗伯特·博世有限公司
张旭
王凯
傅立运
常亚飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗伯特·博世有限公司, 张旭, 王凯, 傅立运, 常亚飞 filed Critical 罗伯特·博世有限公司
Priority to PCT/CN2021/073909 priority Critical patent/WO2022160112A1/zh
Priority to CN202190000983.2U priority patent/CN220510066U/zh
Publication of WO2022160112A1 publication Critical patent/WO2022160112A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a cooling liquid circulation system of a fuel cell and an operation method of the cooling liquid circulation system for a fuel cell.
  • PEMFC proton exchange membrane fuel cells
  • fuel cells have difficulty starting under low temperature conditions.
  • maintaining an appropriate amount of water concentration distribution inside the PEMFC is one of the key factors to keep the performance of the PEMFC efficient and stable.
  • the excess liquid water can be discharged in time, and the whole system can be maintained in a reliable and stable operation state.
  • the liquid water inside the battery stack of PEMFC will freeze, which will have adverse effects on the battery stack, such as difficult startup, slow startup or even startup failure, and may cause multiple startups.
  • the internal structure is damaged and broken, resulting in performance degradation and many other problems.
  • low temperature cold start is an inevitable process for the practical application of PEMFC.
  • the application of fuel cells in the field of vehicles will inevitably face difficulties such as starting under low temperature conditions.
  • the object of the present invention is to provide an improved cooling liquid circulation system of a fuel cell and an operation method thereof, thereby improving the cold start performance of the fuel cell.
  • a cooling liquid circulation system for a fuel cell wherein the cooling liquid circulation system includes a cold start circuit, and the cold start circuit at least includes a cooling cavity for accommodating cooling liquid and gas and a flow path connected between the cooling chamber and the replacement vessel, wherein the cooling chamber is configured to enable heat exchange between the cooling fluid in the cooling chamber and the stack of the fuel cell, and wherein the cold start circuit is configured to: Before the cold start of the fuel cell starts, the cooling liquid in the cooling chamber is flowed into the replacement container, and the gas in the replacement container is flowed into the cooling cavity; Let the coolant in the replacement container flow into the cooling chamber.
  • the cooling chamber has a cooling chamber inlet and a cooling chamber outlet
  • the replacement vessel has a vessel inlet, a gas outlet and a cooling liquid outlet
  • the cold start circuit includes: a first flow path from the cooling chamber outlet to the vessel inlet; cooling from the replacement vessel a second flow path from the liquid outlet to the cooling chamber inlet; and a third flow path from the gas outlet of the displacement vessel to the cooling chamber inlet.
  • the cooling liquid circulation system further includes a working circuit and a reservoir
  • the working circuit at least includes a cooling chamber, a radiator and a flow path connected between the cooling chamber and the radiator
  • the reservoir has a reservoir outlet
  • the reservoir outlet is connected to the working circuit via a supply flow path so that the coolant in the reservoir can be fed into the working circuit.
  • a reservoir is provided as the displacement vessel, the reservoir outlet is configured as a coolant outlet of the displacement vessel, and the second flow path includes a first section coinciding with the supply flow path and a second section coinciding with a portion of the working circuit. section.
  • the cold start circuit can allow the cooling liquid in the cooling chamber to flow into the displacement vessel and the gas in the displacement vessel to flow into the cooling chamber.
  • the cold start circuit can cause the gas in the cooling chamber to flow into the displacement vessel and the cooling liquid in the displacement vessel to flow into the cooling chamber.
  • the flow of cooling liquid from the displacement vessel into the cooling cavity can be controlled according to the cell voltages of the cells in the stack after the fuel cell begins a cold start.
  • controlling the flow of cooling fluid from the displacement vessel into the cooling cavity includes controlling the timing and/or duration and/or flow rate of the cooling fluid from the displacement vessel into the cooling cavity.
  • the cold start circuit begins to flow coolant from the displacement vessel into the cooling cavity when the cell voltage exceeds a predetermined number or proportion of the cells above a predetermined voltage.
  • an operating method for a cooling liquid circulation system for a fuel cell comprising: allowing the cooling liquid in the cooling chamber to cool before the fuel cell starts cold start Flow into the displacement container, while the gas in the displacement container flows into the cooling cavity; and after the fuel cell starts cold start, the gas in the cooling cavity flows into the displacement container, and the cooling liquid in the displacement container flows into the cooling cavity at the same time.
  • the cold start circuit can be used to realize the replacement of the cooling liquid and the gas in the cooling chamber in a simple and effective manner, so that the cooling chamber in the cooling chamber can be cooled before the cold start of the fuel cell.
  • the replacement of the liquid with a gas with a significantly smaller heat capacity enables the stack to heat up more rapidly during the cold start of the fuel cell, which in turn facilitates the successful start of the fuel cell.
  • the pressure in the cold start circuit remains substantially constant. This facilitates draining the cooling liquid from the cooling chamber and supplying the cooling liquid back into the cooling chamber in a simple and efficient manner.
  • the gas and coolant are circulated within the cold start circuit so that no undesired waste occurs.
  • FIG. 1 schematically shows a coolant circulation system of a fuel cell according to an exemplary embodiment of the present invention
  • FIG. 2 schematically shows a cooling liquid circulation system of a fuel cell according to another exemplary embodiment of the present invention.
  • FIG. 1 schematically shows a cooling liquid circulation system of a fuel cell according to an exemplary embodiment of the present invention.
  • a PEMFC has a battery stack 1 that typically includes a plurality of battery cells stacked on each other.
  • a battery cell typically includes sequentially stacked bipolar plates, an anode diffusion layer, a membrane electrode assembly (MEA), and a cathode diffusion layer.
  • the membrane electrode assembly includes an anode catalyst layer, a proton exchange membrane, and a cathode catalyst layer. At the bipolar plates, anode and cathode fluids are introduced and the current produced by the cell is collected.
  • the battery stack 1 is only shown schematically in FIG. 1 .
  • a cooling cavity 21 through which the cooling liquid flows may be formed in the battery stack 1 in order to cool the battery stack 1 with the cooling liquid flowing through the cooling cavity 21 during the operation of the battery stack 1 .
  • cooling fluid passages through which the cooling fluid flows may be formed within the bipolar plates. During the operation of the battery stack 1 , the cooling liquid flowing through the cooling liquid passages can remove the heat generated by the electrochemical reactions taking place in the battery cells.
  • the cooling cavity 21 may also be provided in other forms, for example, it may be formed separately from the cell stack 1, as long as the cooling cavity 21 is provided so as to enable the cooling liquid in the cooling cavity 21 to exchange heat with the cell stack 1 of the fuel cell. Can.
  • the PEMFC when the PEMFC is cold-started at a low temperature, such as a temperature below 0°C, especially a temperature below -20°C, more particularly a temperature below -30°C, if the cooling cavity 21 is filled with coolant, there will be a large amount of Heat is transferred from the battery cells to the cooling liquid in the cooling cavity 21 and used to heat the cooling liquid. This will adversely affect the cold start of the PEMFC.
  • a low temperature such as a temperature below 0°C, especially a temperature below -20°C, more particularly a temperature below -30°C
  • the cooling liquid circulation system shown in FIG. 1 includes a cold start circuit 2 at least including a cooling cavity 21 formed in the battery stack 1 , a displacement container 22 for containing the cooling liquid and gas, and a cooling chamber 22 connected to the cooling liquid.
  • the gas includes, for example, air, nitrogen, or inert gas, and the like.
  • the cooling liquid includes, for example, water (especially deionized water), ethylene glycol or mixtures thereof, and the like. It should be understood that the flow of the gas in the cooling chamber 21 into the displacement vessel 22 and the flow of the cooling liquid in the displacement vessel 22 into the cooling chamber 21 may be performed after a suitable time has elapsed after the PEMFC begins to cold start.
  • the cooling liquid in the cooling chamber 21 has been replaced with a gas with a significantly smaller heat capacity.
  • the heat capacity of the battery stack 1 as a whole (with the cooling liquid or gas in the cooling cavity 21 ) is significantly reduced, so that the battery stack 1 can heat up more quickly, which is beneficial to the successful startup of the fuel cell.
  • the gas in the cooling chamber 21 is replaced with a cooling liquid only after the PEMFC starts to cold start, especially after the PEMFC has been successfully cold started, so as to avoid overheating of the battery stack 1 .
  • the following table shows the thermal capacity distribution of an exemplary commercial stack 1 when the cooling cavity 21 is filled with coolant, wherein the net stack 1 represents a pure stack 1 structure that does not include coolant.
  • the heat capacity of the cooling liquid accounts for about 39% of the heat capacity of the entire battery stack 1 .
  • the heat capacity of the gas in the cooling cavity 21 is quite small, even negligible. In this case, the time required for a cold start can even be reduced by 38.7%.
  • the replacement of the cooling liquid and the gas in the cooling chamber 21 can be realized in a particularly simple and effective manner by using the replacement container 22 containing the cooling liquid and the gas.
  • the cold start circuit 2 forms a closed closed circuit, and the pressure in the cold start circuit 2 is basically kept constant. This facilitates draining the cooling liquid from the cooling chamber 21 and supplying the cooling liquid back into the cooling chamber 21 in a simple and efficient manner.
  • the gas and coolant are circulated within the cold start circuit 2 so that no undesired waste occurs.
  • the cooling chamber 21 has a cooling chamber inlet 211 and a cooling chamber outlet 212
  • the replacement container 22 has a container inlet 221 , a gas outlet 222 and a cooling liquid outlet 223 .
  • the gas outlet 222 may be provided at the upper portion, eg, the top, of the displacement vessel 22
  • the cooling liquid outlet 223 may be provided at the lower portion, eg, the bottom, of the displacement vessel 22 .
  • the cold start circuit 2 includes: a first flow path 23 from the cooling chamber outlet 212 to the vessel inlet 221 ; a second flow path 24 from the cooling liquid outlet 223 of the replacement vessel 22 to the cooling chamber inlet 211 ; and a gas outlet from the replacement vessel 22 222 to the third flow path 25 of the cooling cavity inlet 211 . Therefore, the replacement of the cooling liquid and the gas in the cooling chamber 21 can be realized by using the cold start circuit 2 with a simple and stable structure.
  • a first fluid drive device 26 such as a pump, may be provided in the first flow path 23 , the first fluid drive device 26 being configured to drive fluid flow in the cold start circuit 2 .
  • the first fluid drive device 26 is capable of both driving fluid flow when the cooling liquid is discharged from the cooling chamber 21 and driving fluid flow when supplying cooling liquid back to the cooling chamber 21 . This is beneficial to simplify the structure of the cold start circuit 2 .
  • corresponding fluid drive means may be provided in the second flow path 24 and/or the third flow path 25 to drive the fluid flow in the cold start circuit 2 .
  • the cooling liquid circulation system may further include a working circuit 3 and a reservoir 4, the working circuit 3 includes at least a cooling chamber 21, a radiator 31 and a flow path connected between the cooling chamber 21 and the radiator 31, and the reservoir 4 has a storage
  • the reservoir outlet 41 is connected to the working circuit 3 via the supply flow path 42 so that the cooling liquid in the reservoir 4 can be supplied into the working circuit 3 .
  • the reservoir 4 and the replacement container 22 are each provided as separate containers.
  • the reservoir 4 is provided, for example, as an expansion vessel.
  • the working circuit 3 partially coincides with the cold start circuit 2 .
  • the cooling liquid circulates in the working circuit 3, takes away heat when flowing through the cooling cavity 21, and releases heat when flowing through the radiator 31, thereby cooling the battery stack 1 and maintaining the battery stack 1 at Normal operating temperature, eg about 80°C.
  • the cooling liquid circulation system includes a valve device 5 arranged to be able to control the first flow path 23, the second flow path 24, the third flow path 25 and the working circuit 3 to be connected and disconnected, eg according to received electrical signals.
  • the valve arrangement 5 comprises at least a first valve 51 located upstream of the cooling chamber 21 in the working circuit 3 and a second valve 52 located downstream of the cooling chamber 21 in the working circuit 3 .
  • the valve device 5 Before the cold start of the PEMFC, the valve device 5 can make the first flow path 23 and the third flow path 25 in a connected state, and the second flow path 24 and the working circuit 3 in a disconnected state, so that the cooling liquid in the cooling chamber 21 can be
  • the gas in the replacement container 22 flows into the replacement container 22 through the first flow path 23 , and at the same time, the gas in the replacement container 22 can flow into the cooling cavity 21 through the third flow path 25 .
  • the valve device 5 can make the first flow path 23 and the second flow path 24 in a connected state, and the third flow path 25 and the working circuit 3 in a disconnected state, so that the gas in the cooling chamber 21 can pass through
  • the first flow path 23 flows into the replacement container 22 , and at the same time, the cooling liquid in the replacement container 22 can flow into the cooling cavity 21 via the second flow path 24 .
  • the valve device 5 can keep the working circuit 3 in a connected state, and make the first flow path 23 , the second flow path 24 and the third flow path 25 all in a disconnected state.
  • the cooling chamber 21 can be isolated from other sections of the working circuit 3 when required, so that only the cooling chamber 21 needs to be located
  • the replacement of cooling liquid and gas is carried out in the section of the working circuit 3 without affecting other sections of the working circuit 3.
  • operations can be simplified, the energy required for the displacement of cooling liquid and gas (eg, energy required to drive fluid flow) can be reduced, and the size of the displacement vessel 22 can be reduced.
  • the first valve 51 is arranged in the working circuit 3 adjacent to the cooling chamber inlet 211 and/or the second valve 52 is arranged in the working circuit 3 adjacent to the cooling chamber outlet 212 .
  • the amount of cooling liquid and gas to be replaced can be reduced, and even basically only the cooling liquid or gas in the cooling chamber 21 needs to be replaced, thereby further simplifying the operation, reducing the energy consumption required for the replacement of the cooling liquid and gas, and The size of the replacement container 22 is reduced.
  • the first valve 51 is provided, for example, as a four-way valve, at which the second flow path 24 and the third flow path 25 meet the working circuit 3 .
  • the second valve 52 is provided, for example, as a three-way valve, at which the first flow path 23 meets the working circuit 3 .
  • the working circuit 3 further includes, for example, at least one of the following: a second fluid driving device 32 , a filter 33 , a heater 34 , an ion exchanger 35 , and a discharge valve 36 .
  • the second fluid drive means 32 may be arranged to drive the fluid flow in the working circuit 3, for example as a pump.
  • the filter 33 may be arranged to be able to filter the cooling liquid in the working circuit 3 .
  • the heater 34 may be arranged to heat the cooling liquid when the temperature of the stack 1 is, for example, below the normal operating temperature after a successful start-up of the PEMFC.
  • the ion exchanger 35 may be configured to detect the conductivity of the cooling liquid to prevent the conductivity of the cooling liquid from being too high.
  • the drain valve 36 may be arranged to be able to drain the coolant in the working circuit 3, eg for service or maintenance purposes.
  • the battery stack 1 may be provided with a temperature sensor 11 and/or a cell voltage detector 12 .
  • the temperature sensor 11 may be provided to detect the temperature of the battery stack 1 .
  • the cell voltage detector 12 may be configured to detect the voltage of each cell.
  • FIG. 2 schematically shows a cooling liquid circulation system of a fuel cell according to another exemplary embodiment of the present invention.
  • the embodiment shown in FIG. 2 has at least the following differences: the reservoir 4 is provided as the replacement container 22 , the reservoir outlet 41 is provided as the cooling liquid outlet 223 of the replacement container 22 , The second flow path 24 includes a first section 241 overlapping the supply flow path 42 and a second section 242 overlapping a part of the working circuit 3 .
  • the reservoir 4 and the replacement container 22 are the same container.
  • the first valve 51 and the second valve 52 are both set as three-way valves, the third flow path 25 meets the second section 242 at the first valve 51 , and the first flow path 23 is at the The second valve 52 intersects the working circuit 3 .
  • a second fluid drive device 32 is provided in the second section 242 , the second fluid drive device 32 being configured to drive fluid flow in the working circuit 3 and/or the cold start circuit 2 .
  • the first fluid drive device 26 may still be provided in the first flow path 23 .
  • the first fluid drive means 26 can also be arranged in the third flow path 25 .
  • the first fluid driving device 26 provided in the third flow path 25 is, for example, a fan.
  • the cold start circuit 2 causes the cooling liquid in the cooling chamber 21 to flow into the replacement container 22 , and simultaneously causes the cooling liquid in the replacement container 22 to flow into the replacement container 22 .
  • the gas flows into the cooling chamber 21 .
  • the first temperature is set to, for example, 0°C.
  • the power of the PEMFC is sufficient, and the replacement of the coolant and the gas can be performed reliably.
  • the detected ambient temperature can more accurately reflect the cold start requirement of the PEMFC.
  • the replacement of coolant and gas may be performed using electricity generated by the PEMFC or using power provided by another power source, such as another power source.
  • the ambient temperature can also be monitored after the PEMFC is shut down, and when the ambient temperature is lower than the first temperature, the cooling liquid in the cooling chamber 21 can be flowed into the replacement container 22 by using the additional power source, and the replacement container can be The gas in 22 flows into the cooling chamber 21 .
  • the cold start circuit 2 causes the gas in the cooling chamber 21 to flow into the displacement vessel 22 while cooling the gas in the displacement vessel 22.
  • the liquid flows into the cooling chamber 21 .
  • the second temperature is set to, for example, 5°C.
  • the flow of the cooling liquid from the replacement container 22 into the cooling cavity 21 is controlled, for example, the flow of the cooling liquid from the replacement container 22 into the cooling cavity 21 is controlled. time and/or duration and/or flow. As a result, local overheating of the battery stack 1 can be avoided, and safety can be improved.
  • the battery stack 1 usually includes a plurality of battery cells, for example, up to several hundreds of battery cells. During a cold start, the cells are not fully synchronized. One part of the battery cells will start up faster and heat up, and another part of the battery cells will start up slower and maintain a lower temperature. The temperature distribution of the entire battery stack 1 is not uniform, and it is difficult to reflect the startup status of each battery cell only by the temperature of the battery stack 1 . A single battery cell is usually larger in area and thinner in thickness. Temperature detection of each battery cell is often difficult to achieve.
  • the cell voltage of each battery cell can be detected by the cell voltage detector 12 .
  • the start-up status of each battery cell can be more accurately reflected by the cell voltage.
  • the cold start circuit 2 may be arranged to start cooling the coolant when the cell voltage of more than a predetermined number (eg 100) or a predetermined proportion (eg one third) of the battery cells reaches above a predetermined voltage during a cold start Flow from the displacement container 22 into the cooling chamber 21 .
  • a predetermined number eg 100
  • a predetermined proportion eg one third
  • the present invention also relates to an operating method of the cooling liquid circulation system according to the present invention, the operating method comprising: before the PEMFC starts cold start, the cooling liquid in the cooling chamber 21 flows into the replacement container 22, and at the same time, the cooling liquid in the replacement container 22 is caused to flow into the replacement container 22. and after the PEMFC starts cold start, the gas in the cooling chamber 21 flows into the replacement container 22, and the cooling liquid in the replacement container 22 flows into the cooling cavity 21 at the same time.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提出一种燃料电池的冷却液循环系统,其包括冷启动回路(2),冷启动回路(2)至少包括用于使其内的冷却液与燃料电池的电池堆(1)进行热交换冷却腔(21)、用于容纳冷却液和气体的置换容器(22)和连接在冷却腔(21)与置换容器(22)之间的流路,冷启动回路(2)设置成能够:在燃料电池开始冷启动之前,使冷却腔(21)内的冷却液流入置换容器(22),同时使置换容器(22)内的气体流入冷却腔(21);以及在燃料电池开始冷启动之后,使冷却腔(21)内的气体流入置换容器(22),同时使置换容器(22)内的冷却液流入冷却腔(21)。本发明还提出一种用于燃料电池的冷却液循环系统的操作方法。通过本发明,能够改善燃料电池的冷启动性能。

Description

燃料电池的冷却液循环系统及其操作方法 技术领域
本发明涉及一种燃料电池的冷却液循环系统以及一种用于燃料电池的冷却液循环系统的操作方法。
背景技术
面临全球变暖、大气污染以及能源枯竭的严峻挑战,新能源车辆和节能减排成为车辆产业的当务之急,推动着传统的内燃机车辆向更加绿色环保的新能源车辆转型。在新能源车辆中,燃料电池、特别是质子交换膜燃料电池(PEMFC)作为一种很有前景的高效环保电源受到了广泛关注。PEMFC通常以氢气为燃料,以氧气或空气为氧化剂,通过电化学方式将化学能转化为电能,排放物是水,实现了真正意义上的零排放。而且,由于采用固体聚合物膜作为电解质,PEMFC还具有能量转换率高、低温启动、无电解质泄露等优点。
通常,燃料电池在低温条件下存在启动困难。例如,在PEMFC工作时,维持内部适量的水浓度分布是保持PEMFC性能高效、稳定工作的关键因素之一,正常情况下,良好的水管理策略既能保证固体聚合物膜的充分润湿,又能使多余的液态水及时排出,整个系统可维持在可靠、平稳运行状态。但是,在温度低于冰点的环境中,PEMFC的电池堆内部的液态水将会发生冻结,并对电池堆产生恶劣的影响,如启动困难、启动缓慢甚至启动失败,以及多次启动后可能造成内部结构出现损伤和破环,造成性能衰减等诸多问题。然而,低温冷启动是PEMFC的实际应用必然会经历的过程。尤其是,燃料电池在车辆领域的应用不可避免地会面临低温条件下的启动等困难。
近几年来,各方面的技术进步使燃料电池处于产业化的边缘,燃料电池的冷启动问题因而变得更加突出,特别是对应用于车辆和野外基站的燃料电池而言,如何改善燃料电池的低温冷启动性能是一个急需解决的问题。
发明内容
本发明的目的在于提供一种改进的燃料电池的冷却液循环系统及其操作方法,从而改善燃料电池的冷启动性能。
根据本发明的第一方面,提供了一种燃料电池的冷却液循环系统,其中,所述冷却液循环系统包括冷启动回路,所述冷启动回路至少包括冷却腔、用于容纳冷却液和气体的置换容器以及连接在冷却腔与置换容器之间的流路,其中,冷却腔设置成能够使冷却腔内的冷却液与燃料电池的电池堆进行热交换,其中,冷启动回路设置成能够:在燃料电池开始冷启动之前,使冷却腔内的冷却液流入置换容器,同时使置换容器内的气体流入冷却腔;以及在燃料电池开始冷启动之后,使冷却腔内的气体流入置换容器,同时使置换容器内的冷却液流入冷却腔。
可选地,冷却腔具有冷却腔入口和冷却腔出口,置换容器具有容器入口、气体出口和冷却液出口,冷启动回路包括:从冷却腔出口到容器入口的第一流路;从置换容器的冷却液出口到冷却腔入口的第二流路;以及从置换容器的气体出口到冷却腔入口的第三流路。
可选地,冷却液循环系统还包括工作回路和贮存器,所述工作回路至少包括冷却腔、散热器以及连接在冷却腔与散热器之间的流路,贮存器具有贮存器出口,所述贮存器出口经由供给流路连接至工作回路使得贮存器内的冷却液能被供给到工作回路中。
可选地,贮存器设置成所述置换容器,贮存器出口设置成置换容器的冷却液出口,第二流路包括与供给流路重合的第一区段和与工作回路的一部分重合的第二区段。
可选地,在燃料电池关机和/或开机时,如果环境温度低于第一温度,则冷启动回路能够使冷却腔内的冷却液流入置换容器,同时使置换容器内的气体流入冷却腔。可选地,在燃料电池开始冷启动之后,如果电池堆的温度高于第二温度,则冷启动回路能够使冷却腔内的气体流入置换容器,同时使置换容器内的冷却液流入冷却腔。可选地,在燃料电池开始冷启动之后,能够根据电池堆中的电池单元的单元电压,控制冷却液从置换容器流入冷却腔的流动。
可选地,控制冷却液从置换容器流入冷却腔的流动包括控制冷却液从 置换容器流入冷却腔的时间点和/或时长和/或流量。可选地,在燃料电池开始冷启动之后,当超过预定数量或预定比例的电池单元的单元电压达到预定的电压以上时,冷启动回路开始使冷却液从置换容器流入冷却腔中。
根据本发明的第二方面,提供了一种用于根据本发明的燃料电池的冷却液循环系统的操作方法,所述操作方法包括:在燃料电池开始冷启动之前,使冷却腔内的冷却液流入置换容器,同时使置换容器内的气体流入冷却腔;以及在燃料电池开始冷启动之后,使冷却腔内的气体流入置换容器,同时使置换容器内的冷却液流入冷却腔。
本发明的积极效果在于:根据本发明,利用冷启动回路可以以结构简单且有效的方式实现冷却腔内的冷却液与气体的置换,从而在燃料电池开始冷启动之前,将冷却腔内的冷却液置换为热容明显较小的气体,使得在燃料电池冷启动期间电池堆能够更快速地升温,进而有利于燃料电池的成功启动。在冷却腔内的冷却液与气体的置换过程中,冷启动回路内的压力基本保持恒定。这有利于以简单且有效的方式排出冷却腔内的冷却液以及将冷却液供回冷却腔内。另外,气体和冷却液在冷启动回路内实现循环,从而不会产生不期望的浪费。
附图说明
下面,通过参看附图更详细地描述本发明,可以更好地理解本发明的原理、特点和优点。附图包括:
图1示意性地示出了根据本发明的一个示例性实施例的燃料电池的冷却液循环系统;以及
图2示意性地示出了根据本发明的另一个示例性实施例的燃料电池的冷却液循环系统。
具体实施方式
为了使本发明所要解决的技术问题、技术方案以及有益的技术效果更加清楚明白,以下将结合附图以及多个示例性实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,而不是用于限定本发明的保护范围。
应理解,在本文中,表述“第一”、“第二”等仅用于描述目的,而不应理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本文中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
下面将以PEMFC为例详细描述本发明的原理。但是,本领域的技术人员应理解,本申请不仅仅适用于PEMFC,而是适用于任何利用冷却液循环进行冷却的在低温条件下存在启动困难的燃料电池,尤其适用于为车辆提供动力的燃料电池。
图1示意性地示出了根据本发明的一个示例性实施例的燃料电池的冷却液循环系统。
PEMFC具有通常包括彼此堆叠的多个电池单元的电池堆1。电池单元通常包括相继堆叠的双极板、阳极扩散层、膜电极组件(MEA)和阴极扩散层。膜电极组件包括阳极催化剂层、质子交换膜、阴极催化剂层。在双极板处,阳极流体和阴极流体被引入并且电池产生的电流被收集。图1中仅示意性的示出了电池堆1。
用于供冷却液流动通过的冷却腔21可形成在电池堆1内,以便在电池堆1工作期间利用流过冷却腔21的冷却液冷却电池堆1。例如,可在双极板内形成供冷却液流动通过的冷却液通道。在电池堆1工作期间,流过冷却液通道的冷却液可带走在电池单元内发生的电化学反应所产生的热量。应理解,冷却腔21也可设置成其它形式,例如可相对于电池堆1单独地形成,只要冷却腔21设置成能够使冷却腔21内的冷却液与燃料电池的电池堆1进行热交换即可。
然而,当PEMFC在低温、例如低于0℃的温度、尤其低于-20℃的温度、更尤其低于-30℃的温度下冷启动时,如果冷却腔21充满冷却液,则将有大量热量从电池单元传递至冷却腔21内的冷却液,并用于加热冷却液。这将对PEMFC的冷启动产生不利的影响。
如图1所示的冷却液循环系统包括冷启动回路2,所述冷启动回路2至少包括形成在电池堆1内的冷却腔21、用于容纳冷却液和气体的置换容器22以及连接在冷却腔21与置换容器22之间的流路,其中,冷启动回路2 设置成能够:在PEMFC开始冷启动之前,使冷却腔21内的冷却液流入置换容器22,同时使置换容器22内的气体流入冷却腔21;以及在PEMFC开始冷启动之后,使冷却腔21内的气体流入置换容器22,同时使置换容器22内的冷却液流入冷却腔21。所述气体例如包括空气、氮气或惰性气体等。冷却液例如包括水(尤其是去离子水)、乙二醇或其混合物等。应理解,使冷却腔21内的气体流入置换容器22同时使置换容器22内的冷却液流入冷却腔21可在PEMFC开始冷启动后经过适宜的时间之后进行。
由此,在PEMFC开始冷启动之前,冷却腔21内的冷却液已被置换为热容明显较小的气体。电池堆1整体(带有冷却腔21内的冷却液或气体)的热容明显减小,使得电池堆1能更快速地升温,这有利于燃料电池的成功启动。仅在PEMFC开始冷启动之后,尤其是在PEMFC已经成功地冷启动之后,才将冷却腔21内的气体置换为冷却液,从而避免电池堆1的温度过高。
下表示出了在冷却腔21中充满冷却液的情况下,一种示例性的商用电池堆1的热容分布情况,其中,净电池堆1表示不包括冷却液的纯电池堆1结构。
  热容(J/K)
净电池堆1 19600
冷却腔21内的冷却液 12393
带有冷却液的电池堆1 31993
如上表所示,在冷却腔21中充满冷却液的情况下,冷却液的热容占电池堆1整体的热容的约39%。在将冷却腔21内的冷却液置换为气体之后,冷却腔21内的气体的热容相当小,甚至可以忽略不计。在这种情况下,冷启动所需的时间甚至可减少38.7%。
根据本发明,利用容纳冷却液和气体的置换容器22,尤其可以以结构简单且有效的方式实现冷却腔21内的冷却液与气体的置换。在冷却腔21内的冷却液与气体的置换过程中,冷启动回路2形成封闭的闭合回路,冷启动回路2内的压力基本保持恒定。这有利于以简单且有效的方式排出冷却腔21内的冷却液以及将冷却液供回冷却腔21内。另外,气体和冷却液在冷启动回路2内实现循环,从而不会产生不期望的浪费。
在图1所示的实施例中,冷却腔21具有冷却腔入口211和冷却腔出口212,置换容器22具有容器入口221、气体出口222和冷却液出口223。气体出口222可设置在置换容器22的上部、例如顶部处,冷却液出口223可设置在置换容器22的下部、例如底部处。冷启动回路2包括:从冷却腔出口212到容器入口221的第一流路23;从置换容器22的冷却液出口223到冷却腔入口211的第二流路24;以及从置换容器22的气体出口222到冷却腔入口211的第三流路25。由此,可利用结构简单且稳定的冷启动回路2实现冷却腔21内的冷却液与气体的置换。
第一流路23中可设有第一流体驱动装置26、例如泵,所述第一流体驱动装置26设置成能够驱动冷启动回路2中的流体流动。由此,第一流体驱动装置26既能在从冷却腔21排出冷却液时驱动流体流动,又能在将冷却液供回冷却腔21时驱动流体流动。这有利于简化冷启动回路2的结构。
替代地或附加地,可在第二流路24和/或第三流路25中设置相应的流体驱动装置,以驱动冷启动回路2中的流体流动。
冷却液循环系统还可包括工作回路3和贮存器4,所述工作回路3至少包括冷却腔21、散热器31以及连接在冷却腔21与散热器31之间的流路,贮存器4具有贮存器出口41,所述贮存器出口41经由供给流路42连接至工作回路3使得贮存器4内的冷却液能够供给到工作回路3中。在图1所示的实施例中,贮存器4和置换容器22分别设置为单独的容器。贮存器4例如设置为膨胀容器。工作回路3与冷启动回路2部分地重合。在PEMFC正常工作期间,冷却液在工作回路3内循环流动,并且在流过冷却腔21时带走热量,在流过散热器31时释放热量,从而冷却电池堆1,使电池堆1维持在正常工作温度、例如约80℃。
冷却液循环系统包括阀装置5,所述阀装置5设置成能够例如根据接收到的电信号控制第一流路23、第二流路24、第三流路25和工作回路3在连通状态与断开状态之间切换,其中,阀装置5至少包括在工作回路3中位于冷却腔21的上游的第一阀51和在工作回路3中位于冷却腔21的下游的第二阀52。在PEMFC开始冷启动之前,阀装置5可使第一流路23和第三流路25处于连通状态,第二流路24和工作回路3处于断开状态,以使得冷却腔21内的冷却液能够经由第一流路23流入置换容器22,同时使得 置换容器22内的气体能够经由第三流路25流入冷却腔21中。在PEMFC开始冷启动之后,阀装置5可使第一流路23和第二流路24处于连通状态,第三流路25和工作回路3处于断开状态,以使得冷却腔21内的气体能够经由第一流路23流入置换容器22,同时使得置换容器22内的冷却液能够经由第二流路24流入冷却腔21中。在PEMFC正常工作期间,阀装置5可使工作回路3处于连通状态,并使第一流路23、第二流路24和第三流路25都处于断开状态。
通过分别设置在冷却腔21的上游和下游的第一阀51和第二阀52,可在需要时将冷却腔21与工作回路3的其它区段隔开,使得仅需在冷却腔21所处的区段内进行冷却液和气体的置换,而无需影响工作回路3的其它区段。由此,可简化操作,减少冷却液和气体的置换所需消耗的能量(例如驱动流体流动所需的能量),并且可减小置换容器22的尺寸。
可选地,第一阀51在工作回路3中布置成邻近冷却腔入口211和/或第二阀52在工作回路3中布置成邻近冷却腔出口212。由此,可减少需要置换的冷却液和气体的量,甚至基本上仅需置换冷却腔21内的冷却液或气体,从而进一步简化操作,减少冷却液和气体的置换所需消耗的能量,并减小置换容器22的尺寸。
第一阀51例如设置为四通阀,第二流路24和第三流路25在第一阀51处与工作回路3交会。第二阀52例如设置为三通阀,第一流路23在第二阀52处与工作回路3交会。由此,可实现结构简单且高效的阀装置5,并减小冷却液循环系统的尺寸。
工作回路3例如还包括下述中的至少一者:第二流体驱动装置32、过滤器33、加热器34、离子交换器35、排放阀36。第二流体驱动装置32可设置成能够驱动工作回路3中的流体流动,例如设置为泵。过滤器33可设置成能够过滤工作回路3中的冷却液。加热器34可设置成能够在PEMFC成功启动之后,当电池堆1的温度例如低于正常工作温度时,对冷却液进行加热。离子交换器35可设置成能够检测冷却液的电导率,以防止冷却液的电导率过高。排放阀36可设置成能够例如出于维修或维护的目的,排出工作回路3中的冷却液。
可选地,电池堆1可设有温度传感器11和/或电池单元电压检测器12。 温度传感器11可设置成能够检测电池堆1的温度。电池单元电压检测器12可设置成能够检测各电池单元的电压。
图2示意性地示出了根据本发明的另一个示例性实施例的燃料电池的冷却液循环系统。
与图1所示的实施例相比,图2所示的实施例至少具有下述不同:贮存器4设置成所述置换容器22,贮存器出口41设置成置换容器22的冷却液出口223,第二流路24包括与供给流路42重合的第一区段241和与工作回路3的一部分重合的第二区段242。换句话说,贮存器4和置换容器22为同一容器。由此,可简化冷却液循环系统的结构,并减小冷却液循环系统的尺寸。
在图2所示的实施例中,第一阀51和第二阀52均设置为三通阀,第三流路25在第一阀51处与第二区段242交会,第一流路23在第二阀52处与工作回路3交会。
可选地,第二区段242中设有第二流体驱动装置32,所述第二流体驱动装置32设置成能够驱动工作回路3和/或冷启动回路2中的流体流动。
第一流体驱动装置26仍可设置在第一流路23中。替代地,第一流体驱动装置26也可设置在第三流路25中。设置在第三流路25中的第一流体驱动装置26例如为风机。
在一个示例性实施例中,在PEMFC关机和/或开机时,如果环境温度低于第一温度,则冷启动回路2使冷却腔21内的冷却液流入置换容器22,同时使置换容器22内的气体流入冷却腔21。第一温度例如设置为0℃。通常,在PEMFC将要关机时,PEMFC的电力充沛,能够可靠地执行冷却液与气体的置换。在PEMFC开机时,检测到的环境温度能够更准确地反映出PEMFC的冷启动需求。在这种情况下,可利用PEMFC产生的电力或利用另外的动力源、例如另外的电源提供的动力,来执行冷却液与气体的置换。另外,也可在PEMFC关机之后,对环境温度进行监测,并在环境温度低于第一温度时,利用所述另外的动力源使冷却腔21内的冷却液流入置换容器22,同时使置换容器22内的气体流入冷却腔21。
替代地或附加地,在PEMFC开始冷启动之后,如果电池堆1的温度高于第二温度,则冷启动回路2使冷却腔21内的气体流入置换容器22,同时 使置换容器22内的冷却液流入冷却腔21。第二温度例如设置为5℃。
可选地,在PEMFC开始冷启动之后,根据电池堆1中的电池单元的单元电压,控制冷却液从置换容器22流入冷却腔21的流动,例如控制冷却液从置换容器22流入冷却腔21的时间点和/或时长和/或流量。由此,可避免电池堆1的局部过热,提高安全性。
由于电池堆1通常包括多个电池单元,例如多达数百个电池单元。在冷启动过程中,这些电池单元并不是完全同步的。电池单元中的一部分将较快地启动并升温,电池单元中的另一部分启动较慢并维持较低的温度。电池堆1整体的温度分布不均匀,仅通过电池堆1的温度难以反映各电池单元的启动情况。单个电池单元通常面积较大,厚度较薄。通常难以实现对每个电池单元进行温度检测。
例如,利用电池单元电压检测器12可检测各电池单元的单元电压。通过单元电压能够更准确地反映出各电池单元的启动情况。例如,冷启动回路2可设置成在冷启动期间,当超过预定数量(例如100个)或预定比例(例如三分之一)的电池单元的单元电压达到预定的电压以上时,开始使冷却液从置换容器22流入冷却腔21中。由此,可避免电池堆1的局部过热而冷却腔21内仍然没有供入冷却液的情况,从而可提高安全性。
本发明还涉及一种根据本发明的冷却液循环系统的操作方法,所述操作方法包括:在PEMFC开始冷启动之前,使冷却腔21内的冷却液流入置换容器22,同时使置换容器22内的气体流入冷却腔21;以及在PEMFC开始冷启动之后,使冷却腔21内的气体流入置换容器22,同时使置换容器22内的冷却液流入冷却腔21。
尽管这里详细描述了本发明的特定实施方式,但它们仅仅是为了解释的目的而给出的,而不应认为它们对本发明的范围构成限制。在不脱离本发明精神和范围的前提下,各种替换、变更和改造可被构想出来。
附图标记列表
电池堆             1
温度传感器         11
电池单元电压检测器 12
冷启动回路         2
冷却腔             21
冷却腔入口         211
冷却腔出口         212
置换容器           22
容器入口           221
气体出口           222
冷却液出口         223
第一流路           23
第二流路           24
第一区段           241
第二区段           242
第三流路           25
第一流体驱动装置   26
工作回路           3
散热器             31
第二流体驱动装置   32
过滤器             33
加热器             34
离子交换器         35
排放阀             36
贮存器             4
贮存器出口         41
供给流路           42
阀装置             5
第一阀             51
第二阀             52

Claims (10)

  1. 一种燃料电池的冷却液循环系统,其中,所述冷却液循环系统包括冷启动回路(2),所述冷启动回路(2)至少包括冷却腔(21)、用于容纳冷却液和气体的置换容器(22)以及连接在冷却腔(21)与置换容器(22)之间的流路,其中,冷却腔(21)设置成能够使冷却腔(21)内的冷却液与燃料电池的电池堆(1)进行热交换,其中,冷启动回路(2)设置成能够:
    在燃料电池开始冷启动之前,使冷却腔(21)内的冷却液流入置换容器(22),同时使置换容器(22)内的气体流入冷却腔(21);以及
    在燃料电池开始冷启动之后,使冷却腔(21)内的气体流入置换容器(22),同时使置换容器(22)内的冷却液流入冷却腔(21)。
  2. 根据权利要求1所述的冷却液循环系统,其中,冷却腔(21)具有冷却腔入口(211)和冷却腔出口(212),置换容器(22)具有容器入口(221)、气体出口(222)和冷却液出口(223),冷启动回路(2)包括:
    从冷却腔出口(212)到容器入口(221)的第一流路(23);
    从置换容器(22)的冷却液出口(223)到冷却腔入口(211)的第二流路(24);以及
    从置换容器(22)的气体出口(222)到冷却腔入口(211)的第三流路(25)。
  3. 根据权利要求2所述的冷却液循环系统,其中,
    第一流路(23)中设有第一流体驱动装置(26),所述第一流体驱动装置(26)设置成能够驱动冷启动回路(2)中的流体流动;和/或
    冷却腔(21)形成在电池堆(1)内;和/或
    冷却液循环系统还包括工作回路(3)和贮存器(4),所述工作回路(3)至少包括冷却腔(21)、散热器(31)以及连接在冷却腔(21)与散热器(31)之间的流路,贮存器(4)具有贮存器出口(41),所述贮存器出口(41)经由供给流路(42)连接至工作回路(3)使得贮存器(4)内的冷却液能被供给到工作回路(3)中。
  4. 根据权利要求3所述的冷却液循环系统,其中,冷却液循环系统包括阀装置(5),所述阀装置(5)设置成能够控制第一流路(23)、第二流路(24)、第三流路(25)和工作回路(3)在连通状态与断开状态之间切换,其中,阀装置(5)至少包括在工作回路(3)中位于冷却腔(21)的上游的第一阀(51)和在工作回路(3)中位于冷却腔(21)的下游的第二阀(52)。
  5. 根据权利要求4所述的冷却液循环系统,其中,
    第一阀(51)在工作回路(3)中布置成邻近冷却腔入口(211)和/或第二阀(52)在工作回路(3)中布置成邻近冷却腔出口(212);和/或
    第一阀(51)设置为四通阀,第二流路(24)和第三流路(25)在第一阀(51)处与工作回路(3)交会;和/或
    第二阀(52)设置为三通阀,第一流路(23)在第二阀(52)处与工作回路(3)交会。
  6. 根据权利要求4所述的冷却液循环系统,其中,贮存器(4)设置成所述置换容器(22),贮存器出口(41)设置成置换容器(22)的冷却液出口(223),第二流路(24)包括与供给流路(42)重合的第一区段(241)和与工作回路(3)的一部分重合的第二区段(242)。
  7. 根据权利要求6所述的冷却液循环系统,其中,
    第一阀(51)设置为三通阀,第三流路(25)在第一阀(51)处与第二区段(242)交会;和/或
    第二阀(52)设置为三通阀,第一流路(23)在第二阀(52)处与工作回路(3)交会;和/或
    第二区段(242)中设有第二流体驱动装置(32),所述第二流体驱动装置(32)设置成能够驱动工作回路(3)和/或冷启动回路(2)中的流体流动。
  8. 根据权利要求1-7中任一项所述的冷却液循环系统,其中,
    在燃料电池关机和/或开机时,如果环境温度低于第一温度,则冷启动回路(2)能够使冷却腔(21)内的冷却液流入置换容器(22),同时使置换容器(22)内的气体流入冷却腔(21);和/或
    在燃料电池开始冷启动之后,如果电池堆(1)的温度高于第二温度,则冷启动回路(2)能够使冷却腔(21)内的气体流入置换容器(22),同时使置换容器(22)内的冷却液流入冷却腔(21);和/或
    在燃料电池开始冷启动之后,能够根据电池堆(1)中的电池单元的单元电压,控制冷却液从置换容器(22)流入冷却腔(21)的流动。
  9. 根据权利要求8所述的冷却液循环系统,其中,
    第一温度设置为0℃;和/或
    第二温度设置为5℃;和/或
    控制冷却液从置换容器(22)流入冷却腔(21)的流动包括控制冷却液从置换容器(22)流入冷却腔(21)的时间点和/或时长和/或流量;和/或
    在燃料电池开始冷启动之后,当超过预定数量或预定比例的电池单元的单元电压达到预定的电压以上时,冷启动回路(2)开始使冷却液从置换容器(22)流入冷却腔(21)中。
  10. 一种用于根据权利要求1-9中任一项所述的燃料电池的冷却液循环系统的操作方法,所述操作方法包括:
    在燃料电池开始冷启动之前,使冷却腔(21)内的冷却液流入置换容器(22),同时使置换容器(22)内的气体流入冷却腔(21);以及
    在燃料电池开始冷启动之后,使冷却腔(21)内的气体流入置换容器(22),同时使置换容器(22)内的冷却液流入冷却腔(21)。
PCT/CN2021/073909 2021-01-27 2021-01-27 燃料电池的冷却液循环系统及其操作方法 WO2022160112A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/073909 WO2022160112A1 (zh) 2021-01-27 2021-01-27 燃料电池的冷却液循环系统及其操作方法
CN202190000983.2U CN220510066U (zh) 2021-01-27 2021-01-27 燃料电池的冷却液循环系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073909 WO2022160112A1 (zh) 2021-01-27 2021-01-27 燃料电池的冷却液循环系统及其操作方法

Publications (1)

Publication Number Publication Date
WO2022160112A1 true WO2022160112A1 (zh) 2022-08-04

Family

ID=82654023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073909 WO2022160112A1 (zh) 2021-01-27 2021-01-27 燃料电池的冷却液循环系统及其操作方法

Country Status (2)

Country Link
CN (1) CN220510066U (zh)
WO (1) WO2022160112A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1361926A (zh) * 1999-05-19 2002-07-31 西门子公司 液冷式燃料电池组和液冷式燃料电池组的运行方法
JP2003123815A (ja) * 2001-10-12 2003-04-25 Daikin Ind Ltd 燃料電池システム
JP2016122541A (ja) * 2014-12-24 2016-07-07 トヨタ自動車株式会社 燃料電池システムの起動方法
CN110534774A (zh) * 2019-08-15 2019-12-03 河北清清电池有限公司 电池堆低温启动的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1361926A (zh) * 1999-05-19 2002-07-31 西门子公司 液冷式燃料电池组和液冷式燃料电池组的运行方法
JP2003123815A (ja) * 2001-10-12 2003-04-25 Daikin Ind Ltd 燃料電池システム
JP2016122541A (ja) * 2014-12-24 2016-07-07 トヨタ自動車株式会社 燃料電池システムの起動方法
CN110534774A (zh) * 2019-08-15 2019-12-03 河北清清电池有限公司 电池堆低温启动的方法及装置

Also Published As

Publication number Publication date
CN220510066U (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
CN110957503B (zh) 一种燃料电池低温启动的空气加热回流系统及控制方法
CN106558713B (zh) 一种燃料电池低温启动系统及运行方法
CN111403772B (zh) 一种燃料电池冷启动装置及其控制方法
CN100367533C (zh) 燃料电池堆叠的冷却系统
CN113675442B (zh) 一种应用于燃料电池的辅助低温冷启动系统及其控制方法
CN110649283B (zh) 燃料电池系统及其低温启动方法
US6673481B1 (en) Initiating operation of an electric vehicle or other load powered by a fuel cell at sub-freezing temperature
US20050227126A1 (en) Method and apparatus for cold-starting a PEM fuel cell (PEMFC), and PEM fuel cell system
JP5817911B2 (ja) 燃料電池システムおよびその制御方法
US8263279B2 (en) Apparatus for optimized cooling of a drive unit and a fuel cell in a fuel cell vehicle
JP2003151601A (ja) 燃料電池システム及びその停止方法
CN113506893B (zh) 一种燃料电池系统及其低温启动方法
CN113140749A (zh) 一种燃料电池低温快速启动控制方法及系统
KR20180068159A (ko) 연료전지 시스템
CN116344861A (zh) 一种质子交换膜氢燃料电池热电联产系统
CN113809353A (zh) 一种燃料电池控制方法、控制系统、电子设备及存储介质
JP2012094256A (ja) 燃料電池システムおよびその制御方法
JP6307536B2 (ja) 燃料電池システムの低温起動方法
JP2017157273A (ja) 燃料電池システムの発電停止方法
WO2022160112A1 (zh) 燃料电池的冷却液循环系统及其操作方法
JP5249506B2 (ja) 燃料電池システムおよびその起動方法
JP5287368B2 (ja) 燃料電池システム
JP2017037819A (ja) 燃料電池コージェネレーションシステム、その起動方法及びその運転方法
JP2010027217A (ja) 燃料電池システム
CN115275275A (zh) 燃料电池的吹扫系统及其操作方法及燃料电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921732

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202190000983.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921732

Country of ref document: EP

Kind code of ref document: A1