WO2022158050A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2022158050A1
WO2022158050A1 PCT/JP2021/036296 JP2021036296W WO2022158050A1 WO 2022158050 A1 WO2022158050 A1 WO 2022158050A1 JP 2021036296 W JP2021036296 W JP 2021036296W WO 2022158050 A1 WO2022158050 A1 WO 2022158050A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
module
module case
forming body
space
Prior art date
Application number
PCT/JP2021/036296
Other languages
English (en)
French (fr)
Inventor
拓光 須澤
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2022158050A1 publication Critical patent/WO2022158050A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power converter.
  • the inverter is equipped with a power conversion module for switching between direct current and alternating current, but this module generates heat due to current, so it is necessary to provide water channels for cooling.
  • the module When cooling water flows, the module is stressed in the direction in which it floats due to water pressure, so a holding structure is required to prevent the module from floating.
  • Patent Document 1 As a background art of the present invention, in Patent Document 1 below, a pressing member provided in the device presses a heat radiating portion in a direction in which the power semiconductor unit is pressed against the flange portion of the case via an intermediate portion. A power conversion device acting on an inclined surface of a is described. By doing so, a technique is disclosed in which the distance between the heat radiating portion of the case and the power semiconductor unit is suppressed, the structure of the power conversion device is simplified, the cost is reduced, and the strength is increased.
  • Patent Document 1 a structure is provided in which the upper surface of the module above the sealing material and the inner surface of the flow path forming body are abutted against each other, so that the abutting structure prevents deformation of the flow path forming body.
  • a portion of the flow channel forming body in which the since the module was inserted into the channel forming body from the side that seals the water channel, a leaf spring was required to seal and hold down the module, increasing the number of parts.
  • An insulating sheet was required to ensure insulation from the bus bar extending from the bus bar, and there was a problem that the number of parts increased further.
  • an object of the present invention is to provide a power conversion device that achieves both low cost and miniaturization.
  • a power conversion device of the present invention includes a flow path forming body that forms a flow path space for flowing a coolant, a module case that is inserted into the flow path space and is in contact with the coolant that has flowed into the flow path space, wherein the flow path forming body includes, in the flow path space, an abutment surface on which the module case is provided in the flow path space in the insertion direction, and the contact surface in the insertion direction. an opening formed on the back side of the contact surface and having an outer circumference smaller than the contact surface, wherein the module case includes a flange portion that contacts the contact surface; and a fitting portion in which a sealing member for fitting to the peripheral surface is arranged.
  • FIG. 4 is an explanatory diagram of a module according to one embodiment of the present invention
  • FIG. 2 is a configuration diagram of a flow path forming body and a module case according to one embodiment of the present invention
  • Conventional module assembly drawing. 1 is a module assembly diagram according to one embodiment of the present invention
  • FIG. 4 is a diagram for explaining insulation distances of a module according to one embodiment of the present invention
  • the figure explaining the flange part of the module based on one Embodiment of this invention.
  • the figure explaining the pressing member which concerns on one Embodiment of this invention.
  • the figure explaining the outer diameter of the radiation fin part which concerns on one Embodiment of this invention.
  • FIG. 1 is an overall exploded perspective view of a power converter.
  • a module 2 for power conversion is inserted into a flow path forming body integrally molded in a housing 5, and cooling water flowing through a coolant flow path provided in the flow path forming body
  • the channel space is sealed by sealing the channel space with the sealing material and the rubber-made water channel cover 3 which are assembled in the case.
  • a busbar section 4 is connected to the module 2 .
  • the busbar section 4 exchanges power between the module 2 and components inside the power converter 1 such as the board 6 , and is fixed to the housing 5 by the board 6 .
  • the cover 7 is attached to the housing 5 to seal the inside of the power converter 1 and keep it airtight.
  • the water channel pipe 8 is attached to the housing 5, and the cooling water drawn from the outside through the water channel pipe 8 flows through the coolant flow path inside the power converter 1, so that the power converter 1 1 is cooled.
  • FIG. 2 is an explanatory diagram of a module according to one embodiment of the present invention.
  • FIG. 2(a) is a perspective view of the module
  • FIG. 2(b) is a side view of the module.
  • the module 2 is composed of a connection terminal 19, a fitting portion 21 (sealing portion 21), a module flange portion 15 (hereinafter referred to as the flange portion 15), and a cooling portion 26 in order from the top of FIG.
  • connection terminal 19 By inserting the connection terminal 19 into a connector or the like, the module 2 and the components mounted on the power converter 1 (such as the busbar section 4) are electrically connected. When power is supplied from the bus bar portion 4 ( FIG. 1 ) to the module 2 via the connection terminal 19 , heat is generated in the module 2 .
  • a sealing portion 21 is formed below the connection terminals 19 .
  • the sealing portion 21 is provided with a groove into which an O-ring, which is a sealing member, is fitted.
  • a flange portion 15 is formed at the lower portion of the sealing portion 21 to prevent the module 2 accommodated in the housing 5 from floating due to cooling water.
  • the cooling part 26 is a part that dissipates the heat generated in the module 2 to the cooling water flowing in the housing, and the module 2 is cooled by the cooling water flowing in contact with the cooling part 26 . Cooling fins are provided in the cooling unit 26 in order to improve the heat radiation effect.
  • FIG. 3 is a configuration diagram of a flow path forming body and a module case according to one embodiment of the present invention.
  • FIG. 3 shows the configuration of a flow path forming body 9 that is integrated with the housing 5 and a module case 20 that includes semiconductor elements and requires cooling.
  • a module case 20 is inserted into the channel space inside the channel forming body 9 along the module insertion direction 14 from the side of the connection terminal 19 connected to the semiconductor element.
  • the module case 20 is fixed in position when the flange portion 15 and the contact surface 12 provided on the flow path forming body 9 are brought into contact with each other.
  • the module insertion direction 14 is the upward direction in FIG. 3, but is the downward direction in FIG. 1 and 3 are upside down.
  • the position of the module case 20 in the channel space is determined by the flange portion 15 and the contact surface 12 of the channel forming body 9 .
  • the contact surface 12 is provided in the channel space in the direction in which the module case 20 is inserted into the channel space.
  • the coolant (cooling water) flowing into the channel space (coolant channel 13) between the channel forming body 9 and the module case 20 is prevented from flowing into the channel space by the sealing member 17 (sealing material 17). to prevent it from flowing out to the busbar portion 4 ( FIG. 1 ) outside the flow path forming body 9 .
  • the sealing material 17 is, for example, an O-ring.
  • a module insertion hole 22 is formed in the flow path forming body 9 on the side opposite to the side on which an opening 30 (described later) is provided in the flow path space. 14, the module 2 is inserted into the channel forming body 9.
  • connection terminal 19 extending upward from the module case 20 is connected to the opening 30 formed in the flow path forming body 9 by the time the flange portion 15 of the module case 20 contacts the contact surface 12 of the flow path forming body 9 . protruding outside.
  • the opening 30 is formed on the back side (upper side) of the contact surface 12 in the module insertion direction 14 and has an outer circumference smaller than the contact surface 12 .
  • the module case 20 has a heat radiation fin section 29 provided with cooling fins projecting in a direction perpendicular to the module insertion direction 14 in the cooling section 26 (FIG. 2). This improves the heat radiation effect of the module case 20 (module 2).
  • FIG. 4 is a conventional module assembly diagram.
  • FIG. 4(a) is a diagram showing how a module is assembled into a flow path forming body by a conventional method
  • FIG. 4(b) is a diagram showing how the assembly is completed by the method of FIG. 4(a)
  • FIG. 4(c) is a diagram viewed from the direction R in FIG. 4(b).
  • the module 2A is housed from the upper part (sealed side) of FIG. 4 with respect to the flow path forming body 9A. Therefore, it is necessary to provide a presser from the upper surface of FIG. 4 as a separate part.
  • the module 2A housed in the flow path forming body 9A is held down by a plate spring 10 and fixed with bolts. Furthermore, between the leaf spring 10 and the bus bar portion 4 (FIG. 1) to which the module 2A is connected and the connection terminal 19, it is necessary to provide an insulating sheet 11 for ensuring insulation. Another problem is that the upper part of the flow path forming body 9A is layered due to the large number of parts.
  • FIG. 5 is a module assembly diagram according to one embodiment of the present invention.
  • FIG. 5(a) is a diagram showing how the module is assembled into the flow path forming body by the method of the present invention
  • FIG. 5(b) is a diagram showing how the assembly is completed by the method of FIG. c) is the figure seen from the T direction of FIG.5(b).
  • the module 2 is inserted into the flow path forming body 9 from the side opposite to the upper side (sealing side) in FIG.
  • the module case 20 is provided with the flange portion 15, the movement of the flow path forming body 9 to the contact surface 12 prevents the module case 20 from moving upward. is not necessary, and the number of parts can be reduced.
  • FIG. 6 is a diagram explaining the insulation distance of the module according to one embodiment of the present invention.
  • fixing bolts are not required by not using the leaf spring 10 (FIG. 4) for pressing.
  • the conventionally used insulating sheet 11 (Fig. 4) is no longer necessary, and the component You can further reduce your score. As a result, the number of components can be reduced without degrading the cooling performance of the module case 20 (module 2), which contributes to miniaturization and cost reduction of the device.
  • Both the flange portion 15 and the sealing portion 21 can be used as sealing points for the cooling water in the channel space.
  • the portion 30) can be used as it is to bring the flange portion 15 and the contact surface 12 into contact with each other. Therefore, the number of components for sealing is reduced, and sealing leakage, which is a concern, does not occur.
  • FIG. 7 is a diagram illustrating the flange portion of the module according to one embodiment of the present invention.
  • the sealing portion 21 has a groove for fitting an O-ring formed along the outer periphery of the module 2. By installing the O-ring in this groove, the sealing portion 21 can be installed in the flow path forming body. Prevents sealing leaks.
  • the flange portion 15 is provided with a plurality of protruding portions 28 that protrude toward the contact surface of the flow path forming body and are abutted against. This is because when the entire surface of the flange portion 15 abuts against the contact surface of the flow path forming body, the entire surface of the flange must be processed, and the entire surface of the flange must have rigidity in order to receive the water pressure from the cooling water on the entire surface of the flange. There is a problem of becoming However, by adopting a structure in which a part of the surface of the flange portion 15 protrudes and abuts against the contact surface as in the present invention, the processing surface of the flange portion 15 can be reduced and the process time can be reduced. In addition, since a part of the flange portion 15 is used for the abutment structure, the shape of the flange portion 15 not used for abutment can be optimized and the thick portion can be reduced.
  • FIG. 8 is a diagram illustrating a pressing member according to one embodiment of the present invention.
  • the module case 20 is fixed by sandwiching a pressing member 23 between it and the water channel cover 3 .
  • no additional holding jig is required during assembly, and the number of man-hours required for holding can be reduced.
  • the power conversion device 1 is mounted on a vehicle, it is always in a state of being subjected to vibrations, but by applying this configuration, resonance can be suppressed, and the reliability of the power conversion device can be improved. I can.
  • FIG. 9 is a diagram for explaining the outer diameter of the radiating fin portion according to one embodiment of the present invention.
  • the cooling fins of the heat radiating fin portion 29 are formed within a fin length range that can be inserted into the flow path space of the flow path forming body 9 . Further, the heat radiation fin portion outer diameter 25 is formed longer than the sealing portion outer diameter 21 (the inner diameter of the opening portion 30). Therefore, the longer the cooling fins are formed, the more the heat radiation performance is improved.
  • the power conversion device 1 includes a flow path forming body 9 that forms a flow path space for flowing a coolant, a module case 20 that is inserted into the flow path space and is in contact with the coolant that has flowed into the flow path space, It has
  • the flow path forming body 9 has a contact surface 12 provided in the flow path space in the direction in which the module case 20 is inserted into the flow path space, and a contact surface 12 formed on the back side of the abutment surface 12 in the insertion direction. , and an opening 30 having an outer circumference smaller than that of the abutment surface 12 .
  • the module case 20 has a flange portion 15 that abuts against the abutment surface 12 and a fitting portion 21 in which a seal member 17 for fitting into the inner peripheral surface of the opening 30 is arranged.
  • the module case 20 accommodates the semiconductor element, and the terminal 19 connected to the semiconductor element protrudes from the opening 30 to the outside of the flow path forming body 9 . By doing so, it is possible to make an electrical connection with the parts in the device.
  • the flange portion 15 has a plurality of projecting portions 28 projecting toward the contact surface 12 . By doing so, the production process of the flange portion 15 can be reduced.
  • the flow path forming body 9 has a module insertion hole 22 provided for inserting the module case 20 .
  • the module insertion hole 22 is provided on the opposite side of the opening 30 in the channel space, and the channel space is sealed by the channel cover 3 attached to the module insertion hole 22 . By doing so, the number of parts for pressing the module 2 can be reduced.
  • a separate pressing member 23 is installed between the module case 20 and the water channel cover 3 to fix the module case 20 in the channel space. By doing so, the reliability of the device 1 can be improved.
  • the module case 20 has a heat radiation fin portion 29 formed with fins projecting in a direction perpendicular to the insertion direction.
  • the radiation fin portion 29 is formed such that the outer diameter 25 of the radiation fin portion is larger than the outer diameter 24 of the fitting portion.
  • the present invention is not limited to the above embodiments, and various modifications and other configurations can be combined without departing from the scope of the invention. Moreover, the present invention is not limited to those having all the configurations described in the above embodiments, and includes those having some of the configurations omitted.

Abstract

電力変換装置は、冷媒を流すための流路空間を形成する流路形成体と、前記流路空間内に挿入され、前記流路空間内に流入した前記冷媒に接するモジュールケースと、を備えた電力変換装置であって、前記流路形成体は、前記流路空間において、前記モジュールケースが前記流路空間に挿入方向に対して設けられる当接面と、前記挿入方向において前記当接面よりも奥側に形成され、かつ前記当接面よりも小さい外周を有する開口部と、を有し、前記モジュールケースは、前記当接面と当接するフランジ部と、前記開口部の内周面に嵌合するためのシール部材が配置される嵌合部と、が形成される。

Description

電力変換装置
 本発明は、電力変換装置に関する。
 インバータは、直流と交流を切り替えるための電力変換モジュールを備えているが、このモジュールは電流により発熱するため、水路を設けて冷却する必要がある。冷却水を流入すると、水圧によりモジュールは浮き上がる方向に応力が加わるため、モジュールが浮き上がらないようにする押さえ構造が必要になる。
 本願発明の背景技術として、下記の特許文献1には、装置が備える押付け用部材が、中間部を介して、パワー半導体ユニットを圧接する方向に放熱部を押付けるようにして、ケースのフランジ部の傾斜面に作用させている電力変換装置が記載されている。このようにすることで、ケースの放熱部とパワー半導体ユニットとの離間を抑制し、電力変換装置の構造を簡素にして安価にしつつ、強度も上げている技術が開示されている。
特許第5879292号公報
 特許文献1の構成では、封止材の上部にあるモジュール上面と流路形成体の内面とを互いに突き当てている構造を設けていることで、流路形成体の変形を防ぐために突き当てている流路形成体の一部を厚肉にしなければならなかった。また、流路形成体に対して、水路を封止する側からモジュールを挿入していたため、モジュールを封止して押さえるための板バネが必要になることで部品点数が増え、板バネとモジュールから伸びるバスバとの絶縁確保のための絶縁シートが必要になり、さらに部品点数が増える課題があった。
 以上を鑑みて、本発明は、低コスト化と小型化とを両立させた電力変換装置を提供することが課題である。
 本発明の電力変換装置は、冷媒を流すための流路空間を形成する流路形成体と、前記流路空間内に挿入され、前記流路空間内に流入した前記冷媒に接するモジュールケースと、を備えた電力変換装置であって、前記流路形成体は、前記流路空間において、前記モジュールケースが前記流路空間に挿入方向に対して設けられる当接面と、前記挿入方向において前記当接面よりも奥側に形成され、かつ前記当接面よりも小さい外周を有する開口部と、を有し、前記モジュールケースは、前記当接面と当接するフランジ部と、前記開口部の内周面に嵌合するためのシール部材が配置される嵌合部と、が形成される。
 本発明によれば、低コスト化と小型化とを両立させた電力変換装置を提供できる。
電力変換装置の全体分解斜視図。 本発明の一実施形態に係る、モジュールの説明図。 本発明の一実施形態に係る、流路形成体とモジュールケースの構成図。 従来のモジュール組立図。 本発明の一実施形態に係る、モジュール組立図。 本発明の一実施形態に係る、モジュールの絶縁距離を説明する図。 本発明の一実施形態に係る、モジュールのフランジ部を説明する図。 本発明の一実施形態に係る、押さえ部材を説明する図。 本発明の一実施形態に係る、放熱フィン部の外径を説明する図。
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
(一実施形態および電力変換装置構成)
 図1は、電力変換装置の全体分解斜視図である。
 電力変換装置1は、筐体5に一体成型された流路形成体に、電力変換用のモジュール2が挿入され、流路形成体に設けられている冷媒流路を流れる冷却水は、モジュール2に組付けられている封止材とゴム製の水路カバー3で流路空間を密閉することにより、封止される。
 モジュール2にはバスバ部4が接続される。バスバ部4は、モジュール2と、基板6などの電力変換装置1の内部の部品と、の電力の交換を行っており、基板6により筐体5に固定されている。カバー7は、筐体5に組付けられることで、電力変換装置1の内部を密閉し、気密性を保っている。
 水路パイプ8は、筐体5に組付けられ、水路パイプ8を介して外部から引き込まれる冷却水が、電力変換装置1の内部の冷媒流路を経由して全体に流れることで、電力変換装置1が冷却される。
 図2は、本発明の一実施形態に係る、モジュールの説明図である。図2(a)は、モジュールの斜視図、図2(b)は、モジュールの側面図である。
 モジュール2は、図2の上から順に、接続端子19、嵌合部21(封止部21)、モジュールフランジ部15(以下、フランジ部15)、冷却部26、で構成されている。
 接続端子19は、コネクタ等に挿入されることで、モジュール2と電力変換装置1に搭載される部品(バスバ部4など)とが電気的に接続される。バスバ部4(図1)から接続端子19を介してモジュール2に電力が供給されることで、モジュール2に発熱が生じる。
 モジュール2において、接続端子19の下部には封止部21が形成されている。この封止部21には、シール部材であるOリングを嵌合させる溝が設けられている。封止部21の下部には、フランジ部15が形成されており、これにより、筐体5に収納されたモジュール2が冷却水によって浮き上がることを防止する。
 冷却部26は、モジュール2で発生した熱を筐体内に流れる冷却水に放熱する部分であり、冷却水が冷却部26に接触して流れることによりモジュール2は冷却される。なお、冷却部26には、放熱効果を向上させるために冷却フィンが設けられる。
 図3は、本発明の一実施形態に係る、流路形成体とモジュールケースの構成図である。
 図3には、筐体5と一体である流路形成体9と、半導体素子を備え冷却が必要なモジュールケース20と、の構成が示されている。モジュール挿入方向14に従って、流路形成体9の内部の流路空間に対して、半導体素子と接続される接続端子19側から、モジュールケース20が挿入されている。モジュールケース20は、フランジ部15と流路形成体9に設けられた当接面12とが当接すると、その配置が固定される。なお、モジュール挿入方向14は、図3では上向きの方向であるが、図1では下向きの方向となる。すなわち、図1と図3では図の上下が逆転している。
 流路空間でのモジュールケース20の位置は、フランジ部15と流路形成体9の当接面12とにより位置決めされる。当接面12は、流路空間において、モジュールケース20が流路空間に挿入される方向に対して設けられている。
 また、シール部材17(封止材17)により、流路形成体9とモジュールケース20との間の流路空間(冷媒流路13)に流入している冷媒(冷却水)が、流路空間に封止され、流路形成体9の外部のバスバ部4(図1)への流出を防いでいる。封止材17は例えばOリングである。
 冷媒流路13に冷却水を流入させた場合、モジュールケース20が受ける水圧の方向は図3の上向き方向であるが、フランジ部15と当接面12とが当接することで、モジュール2の浮き上がりを防止している。
 流路形成体9には、流路空間において、開口部30(後述)が設けられる側とは反対側にモジュール挿入孔22が形成されており、このモジュール挿入孔22を介して、モジュール挿入方向14に従ってモジュール2を流路形成体9に挿入している。
 モジュールケース20から上部に伸びる接続端子19は、モジュールケース20のフランジ部15が流路形成体9の当接面12に当接するまでに、流路形成体9に形成されている開口部30から外部へ突き出している。開口部30は、モジュール挿入方向14において当接面12よりも奥側(上部側)に形成され、かつ当接面12よりも小さい外周を有している。
 モジュールケース20は、冷却部26(図2)において、モジュール挿入方向14に対して直角方向に突出する冷却フィンが設けられている放熱フィン部29を有している。これにより、モジュールケース20(モジュール2)の放熱効果を向上させている。
 図4は、従来のモジュール組立図である。図4(a)は従来方法によって流路形成体へモジュールを組み込む様子を表す図、図4(b)は図4(a)の方法によって組み込みが完了した様子を表す図、図4(c)は図4(b)のR方向から見た図、である。
 従来技術の場合では、流路形成体9Aに対して図4の上部(封止側)からモジュール2Aを収納するようになっており、モジュール2Aの固定のために、流路形成体9Aに対して、図4の上面から別部品で押さえを設ける必要がある。
 図4(a)に示すように、流路形成体9Aに収納するモジュール2Aを、板バネ10で押さえつけボルトで固定している。さらに、板バネ10とモジュール2Aが接続するバスバ部4(図1)や接続端子19との間には、絶縁確保のための絶縁シート11を設ける必要があり、図4(c)に示すように、部品点数が多くなって流路形成体9Aの上部が層状になっている課題がある。
 図5は、本発明の一実施形態に係る、モジュール組立図である。図5(a)は本発明の方法によって流路形成体へモジュールを組み込む様子を表す図、図5(b)は図5(a)の方法によって組み込みが完了した様子を表す図、図5(c)は図5(b)のT方向から見た図、である。
 本発明では、従来技術による組立方法とは異なり、図5の上部側(封止側)とは反対側からモジュール2を流路形成体9に挿入している。また、モジュールケース20にフランジ部15を設けているため、流路形成体9の当接面12との当接によって上面への移動ができなくなることで、モジュールケ-ス20を押さえるための部品を設ける必要がなく、部品点数を削減できている。
 図6は、本発明の一実施形態に係る、モジュールの絶縁距離を説明する図である。
 図5で説明した構成において、押さえつけるための板バネ10(図4)を使用しないことで、固定用のボルトが不要になる。同時に、モジュールケース20が流路空間内において生じる浮力を抑制するために流路形成体9の上面を肉厚にさせる必要がない。またさらに、接続端子19(バスバ)と周辺部品(流路形成体)との絶縁距離18は十分に確保出来ているため、従来使用されていた絶縁シート11(図4)も不要になり、部品点数をさらに削減できる。これにより、モジュールケース20(モジュール2)の冷却性能を低下させることなく部品点数を削減できることで、装置の小型化および低コスト化に貢献できる。
 流路空間内での冷却水は、フランジ部15と封止部21のどちらも封止箇所として利用できている。従来技術では、封止漏れ対策のために封止用の斜面等を設ける必要があったが、本発明ではそのような形状を設けずに流路形成体9に設けられている貫通穴(開口部30)をそのまま利用して、フランジ部15と当接面12と当接させることができる。そのため、封止用の部品点数が削減されるとともに懸念される封止漏れは生じない。
 図7は、本発明の一実施形態に係る、モジュールのフランジ部を説明する図である。
 封止部21は、Oリングを嵌合させるための溝がモジュール2の外周に沿って形成されており、ここにOリングを設置することで、流路形成体にモジュール2を設置したときの封止漏れを防止している。
 フランジ部15には、流路形成体の当接面に向かって突出し、突き当てるための複数の突出部28が設けられている。これは、フランジ部15の全面を流路形成体の当接面に突き当てる場合だと、フランジ全面を加工する必要があり、冷却水からの水圧をフランジ全面で受けるためフランジ全面に剛性が必要になる課題が生じる。しかし、本発明のようにフランジ部15の面の一部を突出させて当接面に突き当てる構造にすることで、フランジ部15の加工面を削減し、工程時間の低減ができる。また、フランジ部15の一部を突き当て構造に使用するため、突き当てに使用しないフランジ部15の形状を最適化し、肉厚部分の削減ができる。
 なお、フランジ部15上の突出部28の位置については、図7に示すように、必ずしもモジュール2の両端2箇所の4箇所に設ける必要は無く、フランジ面全面に所定の間隔をとって突出部28を設ける構造としてもよい。また、その突出部28の形状はフランジ上に設置できる形状であれば、形状を限定しなくてもよい。
 図8は、本発明の一実施形態に係る、押さえ部材を説明する図である。
 モジュールケース20は、水路カバー3との間に押さえ部材23を挟むことで固定される。これにより、組立時の押さえ治具はこれ以外に不要であり、押さえに必要な工数も低減できる。また、電力変換装置1は車両に搭載されるため、常に振動が加わる状態にあるが、この構成を適用することで、共振を抑制することができ、電力変換装置の信頼性を向上させることが出来る。
 図9は、本発明の一実施形態に係る、放熱フィン部の外径を説明する図である。
 放熱フィン部29の冷却フィンは、流路形成体9の流路空間の中に挿入される際に挿入できるフィン長の範囲で形成されている。また、この放熱フィン部外径25は、封止部外径21(開口部30の内径)よりも長く形成されている。そのため、冷却フィンが長く形成される分、放熱性能が向上している。
 以上説明した本発明の一実施形態によれば、以下の作用効果を奏する。
(1)電力変換装置1は、冷媒を流すための流路空間を形成する流路形成体9と、流路空間内に挿入され、流路空間内に流入した冷媒に接するモジュールケース20と、を備えている。流路形成体9は、流路空間において、モジュールケース20が流路空間に挿入される方向に対して設けられる当接面12と、その挿入方向において当接面12よりも奥側に形成され、かつ当接面12よりも小さい外周を有する開口部30と、を有している。モジュールケース20は、当接面12と当接するフランジ部15と、開口部30の内周面に嵌合するためのシール部材17が配置される嵌合部21と、が形成される。このようにしたことで、低コスト化と小型化とを両立させた電力変換装置1を提供できる。
(2)電力変換装置1において、モジュールケース20は半導体素子を収納し、半導体素子と接続される端子19は、開口部30から流路形成体9の外部へ突出する。このようにしたことで、装置内の部品と電気的接続ができる。
(3)電力変換装置1において、フランジ部15は、当接面12に向かって突出する複数の突出部28を有する。このようにしたことで、フランジ部15の生産工程を低減できる。
(4)電力変換装置1において、流路形成体9は、モジュールケース20を挿入するために設けられたモジュール挿入孔22を有する。モジュール挿入孔22は、流路空間において、開口部30が設けられる側とは反対側に設けられており、流路空間は、モジュール挿入孔22に対して取り付けられる水路カバー3によって密閉される。このようにしたことで、モジュール2を押さえつけるための部品点数を削減できる。
(5)電力変換装置1において、モジュールケース20と水路カバー3との間には、流路空間内でモジュールケース20を固定するための別体の押さえ部材23が設置されている。このようにしたことで、装置1の信頼性を向上させることができる。
(6)電力変換装置1において、モジュールケース20は、挿入方向に対して直角方向に突出するフィンが形成される放熱フィン部29を有する。放熱フィン部29は、放熱フィン部の外径25が、嵌合部の外径24よりも大きくなるように、形成されている。このようにしたことで、モジュール2の冷却効果を向上させることができる。
 なお、本発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲内で様々な変形や他の構成を組み合わせることができる。また本発明は、上記の実施形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。
1…電力変換装置
2、2A…モジュール
3…水路カバー
4…バスバ部
5…筐体
6…基板
7…カバー
8…水路パイプ
9、9A…流路形成体
10…板バネ
11…絶縁シート
12…当接面
13…冷媒流路
14…モジュール挿入方向
15…モジュールフランジ部
17…シール部材(封止材)
18…接続端子と周辺部品との絶縁距離
19…接続端子
20…モジュールケース
21…嵌合部(封止部)
22…モジュール挿入孔
23…押さえ部材
24…嵌合部外径(封止部外径)
25…放熱フィン部外径
26…冷却部
28…突出部
29…放熱フィン部
30…開口部

Claims (6)

  1.  冷媒を流すための流路空間を形成する流路形成体と、
     前記流路空間内に挿入され、前記流路空間内に流入した前記冷媒に接するモジュールケースと、を備えた電力変換装置であって、
     前記流路形成体は、前記流路空間において、前記モジュールケースが前記流路空間に挿入される挿入方向に対して設けられる当接面と、前記挿入方向において前記当接面よりも奥側に形成され、かつ前記当接面よりも小さい外周を有する開口部と、を有し、
     前記モジュールケースは、前記当接面と当接するフランジ部と、前記開口部の内周面に嵌合するためのシール部材が配置される嵌合部と、が形成される
     電力変換装置。
  2.  請求項1に記載の電力変換装置であって、
     前記モジュールケースは半導体素子を収納し、
     前記半導体素子と接続される端子は、前記開口部から前記流路形成体の外部へ突出する
     電力変換装置。
  3.  請求項1に記載の電力変換装置であって、
     前記フランジ部は、前記当接面に向かって突出する複数の突出部を有する
     電力変換装置。
  4.  請求項1に記載の電力変換装置であって、
     前記流路形成体は、前記モジュールケースを挿入するために設けられたモジュール挿入孔を有し、
     前記モジュール挿入孔は、前記流路空間において、前記開口部が設けられる側とは反対側に設けられており、
     前記流路空間は、前記モジュール挿入孔に対して取り付けられる水路カバーによって密閉される
     電力変換装置。
  5.  請求項4に記載の電力変換装置であって、
     前記モジュールケースと前記水路カバーとの間には、前記流路空間内で前記モジュールケースを固定するための別体の押さえ部材が設置されている
     電力変換装置。
  6.  請求項1に記載の電力変換装置であって、
     前記モジュールケースは、前記挿入方向に対して直角方向に突出するフィンが形成される放熱フィン部を有し、
     前記放熱フィン部は、前記放熱フィン部の外径が、前記嵌合部の外径よりも大きくなるように、形成されている
     電力変換装置。
PCT/JP2021/036296 2021-01-22 2021-09-30 電力変換装置 WO2022158050A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021008458 2021-01-22
JP2021-008458 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022158050A1 true WO2022158050A1 (ja) 2022-07-28

Family

ID=82548661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036296 WO2022158050A1 (ja) 2021-01-22 2021-09-30 電力変換装置

Country Status (1)

Country Link
WO (1) WO2022158050A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110143A (ja) * 2008-10-31 2010-05-13 Hitachi Automotive Systems Ltd 電力変換装置および電動車両
JP2015061454A (ja) * 2013-09-20 2015-03-30 日立オートモティブシステムズ株式会社 パワー半導体モジュール及びそれを用いた電力変換装置
WO2015159621A1 (ja) * 2014-04-17 2015-10-22 日立オートモティブシステムズ株式会社 電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110143A (ja) * 2008-10-31 2010-05-13 Hitachi Automotive Systems Ltd 電力変換装置および電動車両
JP2015061454A (ja) * 2013-09-20 2015-03-30 日立オートモティブシステムズ株式会社 パワー半導体モジュール及びそれを用いた電力変換装置
WO2015159621A1 (ja) * 2014-04-17 2015-10-22 日立オートモティブシステムズ株式会社 電力変換装置

Similar Documents

Publication Publication Date Title
JP4124137B2 (ja) 電子ユニット筐体
JP4924750B2 (ja) 電力変換装置
US10512199B2 (en) Power conversion apparatus provided with semiconductor module and electronic component pressurized by pressurizing member
JP2014003136A (ja) 電力変換装置
JP7005118B2 (ja) コネクタ
JP5472134B2 (ja) 太陽電池モジュール用端子ボックス
US10880989B2 (en) Electrical junction box
JP2010087002A (ja) 発熱部品冷却構造
JP7280234B2 (ja) コネクタ
JP2021022493A (ja) コネクタ
WO2022158050A1 (ja) 電力変換装置
KR20180112983A (ko) 전기소자 쿨링모듈
JP2009038296A (ja) カバー開閉検知装置
US9307681B2 (en) Power converter including semiconductor module and cooler
WO2011158392A1 (ja) 太陽電池モジュール用端子ボックス
JP4075535B2 (ja) 電子部品の筐体構造
US20230361379A1 (en) Battery module having cooling structure using insulating oil, and battery pack and vehicle comprising same
CN111836512B (zh) 冷却器
JP6398889B2 (ja) 電力変換装置
KR20230020313A (ko) 방열 성능이 개선된 전자 소자 유닛 및 모듈, 그리고 이에 적용되는 탄성클램프
CN112352296A (zh) 电子装置
JP3960273B2 (ja) 半導体装置
CN210181441U (zh) 整车控制器及车辆
CN114068450A (zh) 印刷电路板部件用冷却部件及印刷电路系统
JP4453029B2 (ja) 電気接続箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP