WO2022158024A1 - ワーク装着システム - Google Patents

ワーク装着システム Download PDF

Info

Publication number
WO2022158024A1
WO2022158024A1 PCT/JP2021/031671 JP2021031671W WO2022158024A1 WO 2022158024 A1 WO2022158024 A1 WO 2022158024A1 JP 2021031671 W JP2021031671 W JP 2021031671W WO 2022158024 A1 WO2022158024 A1 WO 2022158024A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
posture
workpiece
robot
camera
Prior art date
Application number
PCT/JP2021/031671
Other languages
English (en)
French (fr)
Inventor
秀樹 長末
昌昭 中川
秀明 田中
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Publication of WO2022158024A1 publication Critical patent/WO2022158024A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q7/00Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
    • B23Q7/04Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting by means of grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices

Definitions

  • a robot having a hand unit, and a control unit that controls the robot to cause the hand unit to grip a workpiece placed at a predetermined position and set the workpiece on the workpiece mounting unit in the machine tool. related to a workpiece mounting system.
  • Patent Document 1 Japanese Patent Laying-Open No. 2017-132002
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2015-024475
  • the robot In this type of workpiece mounting system, the robot usually has a hand for gripping the workpiece.
  • the hand portion When the work is gripped by the hand portion, if the work deviates from the normal posture (when gripping failure occurs), there arises a problem that the robot cannot successfully mount the work on the work mounting portion.
  • the present invention has been made in view of the above circumstances, and is designed to set a workpiece in a workpiece mounting section of a machine tool in a predetermined setting posture even if the workpiece is not properly gripped by the hand section of the robot. It is an object of the present invention to provide a workpiece mounting system capable of
  • a robot having a hand unit; and a control device that controls the robot to cause the hand unit to grip a work placed at a predetermined position and set the work on a work mounting unit in a machine tool.
  • a workpiece mounting system comprising a camera provided in the hand of the robot and capable of imaging a workpiece gripped by the hand; a reference image storage unit that stores in advance an image of the work captured by the camera while the work is held in a normal posture by the hand of the robot as a reference image;
  • the control device causes the camera to capture an image of the work while the hand of the robot is gripping the work, and the image of the work captured by the camera and the reference image.
  • the robot is configured to control the operation of the robot so that the set posture of the work on the work mounting unit becomes a predetermined set posture;
  • the control device determines whether or not there is a deviation between the captured image and the reference image when comparing the captured image and the reference image. calculating a positional deviation and a three-dimensional tilt deviation between the posture of the workpiece gripped by the hand portion of the robot and the normal posture, and based on the calculated positional deviation and three-dimensional tilt deviation, The motion of the robot is corrected so that the set posture of the work on the work mounting portion becomes the predetermined set posture, and the motion of the robot is corrected when it is determined that there is no deviation between the two images. configured to prevent
  • the camera provided in the hand captures an image of the workpiece gripped by the hand.
  • the reference image storage unit an image of a workpiece gripped in a normal posture by the hand of the robot is captured by a camera and stored in advance as a reference image.
  • the normal posture is a posture in which the work can be set on the work mounting portion in a predetermined set posture without correcting the motion of the robot.
  • the control device based on the comparison between the reference image stored in the storage unit and the imaged image of the work imaged by the camera, the set posture of the work on the work mounting unit is adjusted to a predetermined set posture. Control the motion of the robot so that
  • the posture of the robot can be controlled (corrected).
  • the workpiece can be mounted on the workpiece mounting portion of the machine tool in a predetermined set posture.
  • the camera is provided in the hand portion of the robot, even if the posture of the robot fluctuates, the work can be imaged by the camera without being affected by it.
  • the control device determines whether or not there is a deviation between the two images. Based on the information, the deviation between the orientation of the workpiece gripped by the hand portion of the robot and the normal orientation is calculated.
  • the deviation of the posture of the work includes, for example, the inclination of the axis of the work and the deviation of the center position of the front end of the work. Then, based on the calculated deviation of the posture of the work, the control device corrects the motion of the robot so that the posture of setting the work on the work mounting portion becomes the predetermined set posture.
  • the controller compares the captured image of the workpiece with the reference image and determines that there is no deviation between the two images, it means that the workpiece is gripped by the hand in a normal posture. As such, the motion correction of the robot is not performed.
  • a robot having a hand unit; and a control device that controls the robot to cause the hand unit to grip a work placed at a predetermined position and set the work on a work mounting unit in a machine tool.
  • a workpiece mounting system comprising a camera that is provided in the machine tool and capable of capturing an image of the workpiece held by the hand portion while the robot is in a predetermined posture in the machine tool; a reference image storage unit for storing in advance, as a reference image, an image of the work taken by the camera while the robot is in the predetermined posture and the work is gripped in a normal posture by the hand unit; ,
  • the control device causes the robot to assume the predetermined posture while the hand portion of the robot is gripping the work, and the camera displays an image of the work in the predetermined posture.
  • the workpiece is set in a predetermined setting orientation on the workpiece mounting unit. configured to control motion of the robot;
  • the control device determines whether or not there is a deviation between the captured image and the reference image when comparing the captured image and the reference image. calculating a positional deviation and a three-dimensional tilt deviation between the posture of the workpiece gripped by the hand portion of the robot and the normal posture, and based on the calculated positional deviation and the three-dimensional tilt deviation correcting the motion of the robot so that the set posture of the work on the work mounting portion becomes the predetermined set posture; configured not to do so.
  • a camera for capturing an image of the work is provided on the machine tool, not on the robot's hand.
  • the control device executes work setting processing
  • the robot takes a predetermined posture in the machine tool under the control of the control device
  • an image of the work gripped by the hand portion of the robot is transferred to the machine tool.
  • An image is captured by the provided camera.
  • an image captured by the camera of the workpiece gripped in the normal state by the hand section while the robot is in the predetermined posture is stored in advance. .
  • the setting posture of the work on the work mounting portion is set to a predetermined setting posture based on the comparison between the image captured by the camera when executing the work setting process and the reference image stored in the reference image storage unit. Control the motion of the robot so that
  • the work can be mounted on the work mounting section of the machine tool in a predetermined set posture by controlling (correcting) the posture of the robot. can do.
  • the machine tool is equipped with a camera, for example, when a plurality of robots work together to load and unload workpieces from a single machine tool, each robot must be equipped with a camera. There is no Therefore, it is possible to reduce the number of cameras as much as possible and reduce the cost of the work mounting system as a whole.
  • the control device can calculate the position of the workpiece gripped by the hand of the robot based on the information about the deviation.
  • the robot returns the workpiece gripped by the hand portion to the predetermined position, and then grips the workpiece again by the hand portion. It is preferably configured to allow
  • the robot even if the control device determines that there is a deviation between the image captured by the camera and the reference image stored in the storage unit, the deviation from the normal posture of the workpiece is detected.
  • the degree is greater than or equal to the predetermined value
  • the robot returns the workpiece gripped by the hand portion to a predetermined position under the control of the control device, and then grips the workpiece again by the hand portion. Therefore, when the gripping posture of the work by the hand reaches a level that cannot be improved by correcting the posture of the robot, the robot can re-grip the work by the hand without attempting the work mounting operation. Cycle time can be shortened by eliminating useless operations.
  • the work is a shaft-shaped member
  • the cameras are provided in plurality
  • the plurality of cameras includes a first camera and a second camera
  • the first camera and the second camera are provided.
  • a camera positioned symmetrically with respect to a straight line passing through the axis of the workpiece and extending in a predetermined direction when viewed from the axial direction of the workpiece gripped by the hand portion of the robot in a normal posture; and a second camera are arranged so that their optical axes are inclined at a predetermined angle with respect to the predetermined direction
  • the reference image storage unit stores the first camera captured by the first camera as the reference image.
  • a reference image and a second reference image captured by the second camera are stored.
  • the robot operates so that the set posture of the work on the work mounting unit becomes a predetermined set posture.
  • the images of the work are captured by the first camera and the second camera arranged at different angles with respect to the work. Since the motion control of the robot is performed by comparing with the reference images (the first and second reference images), compared to the case where the motion control of the robot is performed based on the image captured by one camera, can improve its control accuracy. That is, when there is only one camera, even if there is a positional deviation (offset) or tilt deviation of the work in the direction of contact and separation of the camera, this deviation is difficult to be reflected in the image captured by the camera.
  • offset positional deviation
  • tilt deviation the work in the direction of contact and separation of the camera
  • the predetermined angle is preferably 45°.
  • the first camera and the second camera can be arranged with good space efficiency.
  • the work is a shaft-shaped member
  • the work mounting portion includes an insertion space portion extending in a horizontal direction into which the work is inserted
  • the machine tool includes the insertion space portion into which the work is inserted.
  • a holding member configured to be rotatable around an axis orthogonal to both the work insertion direction and the vertical direction with respect to the space and holding the camera; and a second position where the optical axis of the camera intersects the vertical direction at a predetermined angle;
  • a first position reference image in which the camera captures a workpiece gripped in a normal posture by the hand while the member is at the first position; and the hand while the holding member is at the second position.
  • the robot is caused to take the predetermined posture in a state where the holding member is positioned at the first position by the drive unit in the predetermined posture, and the photographed image of the work and the Comparison with the first position reference image stored in the reference image storage unit, and the workpiece imaged by the camera while the holding member is positioned at the second position by the driving unit in the predetermined posture. and the second position reference image stored in the reference image storage unit, the robot is operated so that the set posture of the work on the work mounting unit is a predetermined set posture. preferably configured to control.
  • the holding member holding the camera is moved to the first position and the second position by the drive section. driven.
  • the first position is a position where the optical axis of the camera is vertical
  • the second position is a position where the optical axis of the camera intersects the vertical direction at a predetermined angle.
  • the camera captures an image of the workpiece gripped by the hand portion when the holding member is at the first position and at the second position.
  • each image captured by the camera while the holding member is at the first position and the second position is converted into a reference image (a first position reference image and a second position reference image) at each position stored in the storage unit. ), and based on this comparison, the work setting posture on the work mounting portion is controlled to a predetermined setting posture.
  • one camera provided in the machine tool captures images of the workpiece gripped by the hand from two directions, ie, the vertical direction and the direction intersecting the vertical direction. Based on the image, it is possible to obtain the deviation of the gripping posture of the workpiece by the hand unit. Therefore, compared with the case where a plurality of cameras are provided, it is possible to accurately calculate the displacement of the gripping posture of the workpiece by the hand portion while reducing the camera failure risk and component cost.
  • the machine tool is provided with a tool spindle on which a processing tool is attachable and detachable, the camera is configured to be attachable and detachable to the tool spindle in place of the machining tool, and the tool spindle is also used as the holding member. is preferred.
  • the hand section can adopt a configuration that grips the work by a plurality of gripping members, by the attractive force of air, or by the magnetic force of a magnet.
  • the configuration of the present invention is particularly useful because the posture of gripping the work by the hand section tends to vary due to shape errors of the work and foreign matter being caught.
  • the workpiece is a shaft-shaped member
  • the machine tool has an insertion space into which the workpiece can be inserted, and has a chuck device capable of chucking the workpiece inserted into the insertion space.
  • the part is preferably an insertion space part of the chuck device.
  • the configuration of the present invention is particularly useful for such configurations.
  • the control device executes work setting processing
  • an image of the work taken by the camera provided on the hand unit of the robot or an image of the work by the camera provided on the machine tool is taken.
  • the positional deviation between the posture of the work gripped by the hand and the normal posture and the tertiary The deviation of the original tilt is calculated, and based on the calculated positional deviation and the deviation of the three-dimensional tilt, the motion control of the robot is performed so that the set posture of the work on the work mounting portion becomes a predetermined set posture.
  • FIG. 1 is a plan view showing a production system including a workpiece mounting system according to an embodiment
  • FIG. 1 is a perspective view showing a production system including a workpiece mounting system according to an embodiment
  • FIG. 1 is a perspective view showing an automatic guided vehicle equipped with a robot that constitutes a part of the workpiece mounting system
  • FIG. It is the top view which looked at the bucket mounted on the upper surface of the automatic guided vehicle from the upper side.
  • 5 is a cross-sectional view taken along line VV of FIG. 4
  • FIG. It is the front view which looked at the hand part of the robot from the front side.
  • It is the side view which looked at the hand part of the robot from the side.
  • FIG. 3 is a schematic configuration diagram showing a machining operation mechanism section of the machine tool;
  • FIG. 3 is a schematic configuration diagram showing a machining operation mechanism section of the machine tool
  • FIG. 4 is a perspective view showing a chuck attached to a work spindle of a machine tool; It is a block diagram which shows the control structure of a production system.
  • FIG. 4 is a perspective view showing a state in which the robot is in a workpiece insertion start posture or a workpiece extraction completion posture;
  • FIG. 10 is a perspective view showing a state in which the robot is in a workpiece insertion completion posture or a workpiece extraction start posture;
  • It is a flow chart which shows the contents of automatic operation control in a production system. 4 is a flowchart showing the details of work posture deviation calculation processing executed by the AGV control device as part of automatic operation control.
  • FIG. 4 is a schematic diagram showing an example of a first reference image and a second reference image stored in a reference image storage unit;
  • FIG. It is a schematic diagram which shows an example of the 1st captured image memorize
  • FIG. 4 is a comparison diagram of a first captured image, a second captured image, and respective reference images;
  • FIG. 10 is a diagram showing changes in the tilt angle of the axis of the work in the first captured image and the second captured image when the tilt direction (A1 direction to A8 direction) of the work in real space is changed.
  • FIG. 8 is a view corresponding to FIG.
  • FIG. 8 showing Embodiment 2
  • 4 is a schematic diagram showing an example of a first position reference image and a second position reference image stored in a reference image storage unit
  • FIG. It is a schematic diagram which shows an example of the 1st position picked-up image memorize
  • FIG. 13 is a view corresponding to FIG. 13 showing Embodiment 2
  • FIG. 4 is a comparison diagram of a first position captured image and a first position reference image
  • FIG. 4 is a comparison diagram of a second position captured image and a second position reference image
  • FIG. 1 and 2 show a production system 1 equipped with a workpiece mounting system 100 of this embodiment.
  • This production system 1 controls a machine tool 10, an automatic guided vehicle 35, a robot 25 mounted on this automatic guided vehicle 35, two cameras 31a and 31b attached to the robot 25, the robot 25 and the automatic guided vehicle 35. It is composed of a control device 40, a control device 60 that controls the machine tool 10, and the like.
  • the control device 60 of the machine tool 10 is referred to as the machine tool control device 60
  • the control device 40 of the automatic guided vehicle 35 is referred to as the AGV control device 40.
  • the machine tool control device 60 and the AGV control device 40 communicate with each other and cause the machine tool 10 and the robot 25 to work together to unmannedly execute a series of production processes including attachment/detachment and machining of the workpiece W.
  • the automatic guided vehicle 35 has the robot 25 mounted on its mounting surface 36, and an AGV operation panel 37 (see FIG. 1) that can be carried by an operator. is attached.
  • the AGV operation panel 37 includes an input/output unit for inputting/outputting data, an operation unit for manually operating the automatic guided vehicle 35 and the robot 25, a display capable of screen display, and the like.
  • the automatic guided vehicle 35 is equipped with a position sensor (for example, a distance measurement sensor using a laser beam) capable of recognizing its own position in the factory, and under the control of the AGV control device 40, moves through the factory. It is configured to travel without a track and, in this example, passes through working positions preset with respect to the machine tool 10 .
  • the AGV control device 40 is housed inside the housing of the automatic guided vehicle 35 .
  • the robot 25 is an articulated robot having three arms, a first arm 26, a second arm 27 and a third arm 28. At the tip of the third arm 28 is a , a hand portion 29, and a first camera 31a and a second camera 31b via a support bar 30. As shown in FIG. 3, the robot 25 is an articulated robot having three arms, a first arm 26, a second arm 27 and a third arm 28. At the tip of the third arm 28 is a , a hand portion 29, and a first camera 31a and a second camera 31b via a support bar 30. As shown in FIG.
  • the hand portion 29 has a body 291 and a pair of gripping members 292 facing each other.
  • the hand portion 29 is configured to grip the workpiece W with a pair of gripping members 292 interposed therebetween.
  • the work W is a cylindrical shaft member in this example.
  • a bucket 38 for storing a work W is mounted on the mounting surface 36 of the automatic guided vehicle 35 on the vehicle rear side of the robot 25 .
  • the robot 25 takes out the pre-machined work W stored in the bucket 38 and puts it into the machine tool 10, while the machine tool 10 picks up the post-machined work W. It is removed from the machine tool 10 and stored in its original position within the bucket 38 .
  • the bucket 38 has a flat rectangular box shape.
  • a plurality of works W are stored in the bucket 38 at intervals in the lateral direction of the vehicle.
  • a plurality of pairs of support plates 39 that support both ends of each work W are protruded from the bottom surface inside the bucket 38 .
  • a V-shaped engagement groove 39a for supporting the peripheral surface of the workpiece W is formed in the upper end of each support plate 39.
  • Each work W is stably accommodated without moving within the bucket 38 by engaging the engagement grooves 39 a of the support plate 39 at both ends thereof.
  • a support bar 30 that supports the first camera 31a and the second camera 31b is attached to the side surface of the body 291 of the hand portion 29.
  • the support bar 30 extends in a direction perpendicular to the axis J of the workpiece W held by the pair of holding members 292 in a normal posture. In the following description, unless otherwise specified, the support bar 30 is assumed to extend in the Y-axis direction (the state shown in FIG. 6).
  • the first camera 31a and the second camera 31b capture the axis J of the workpiece W when viewed from the axial direction of the workpiece W gripped by the pair of gripping members 292 in a regular posture (viewed from the direction perpendicular to the paper surface of FIG. 6). are arranged symmetrically with respect to a straight line L0 passing through and extending in the vertical direction.
  • the optical axes L1 and L2 of the first camera 31a and the second camera 31b are inclined at 45° (an example of a predetermined angle) with respect to the vertical direction and intersect at the center position of the work W (the position of the axis J). are arranged as
  • the first camera 31a and the second camera 31b are composed of, for example, a CCD camera or a CMOS camera, and include a plurality of photoelectric conversion elements arranged two-dimensionally in multiple rows and multiple columns. After the voltage signal output from the element is digitized, it is converted into a grayscale level value and output as two-dimensional grayscale image data having the same arrangement as that of the photoelectric conversion elements.
  • the image data output from each camera 31a, 31b is stored in the captured image storage unit 50 of the AGV control device 40, which will be described later.
  • the machine tool 10 is a composite type NC (numerical control) machine tool having a turning function using a fixed tool and a milling function using a rotary tool.
  • the machine tool 10 includes, as shown in FIG. 1), and an NC operation panel 16 for the operator to make various settings and commands to the machine tool 10.
  • FIG. 1 the machine tool 10 includes, as shown in FIG. 1), and an NC operation panel 16 for the operator to make various settings and commands to the machine tool 10.
  • the machining operation mechanism section 20 includes a chuck 11 to which a work W is mounted, a work spindle 12 to which the chuck 11 is attached at the tip, and a work spindle 12 rotatable about its axis.
  • a work headstock (not shown) to be supported, a tool spindle 13 for holding a rotary tool Tr (an example of a machining tool), a tool headstock 21 for rotatably supporting the tool spindle 13, and a fixture for turning. and a lower tool post 14 to which the tool Tf is attached.
  • the machining operation mechanism unit 20 feeds and drives the work spindle 12, the tool spindle 13, and the lower tool post 14 along one or more predetermined axes among the X-axis, Y-axis, and Z-axis. It further has a feeding device (not shown).
  • the work main shaft 12 is configured to be rotatable around an axis parallel to the Z-axis while holding the work W on the chuck 11 .
  • the chuck 11 has a hollow cylindrical main body 11a, three gripping claws 11b radially arranged on the end surface of the main body 11a about its axis, and each gripping claw 11b moving forward and backward in the radial direction. and a pawl drive (not shown) that can be driven.
  • the claw driving section receives commands from the machine tool control device 60 and drives each gripping claw 11b between the open position and the closed position along the radial direction of the main body 11a.
  • an insertion space K into which the workpiece W can be inserted is formed inside the tip surfaces of the three gripping claws 11b.
  • the gripping claws 11b After inserting the workpiece W into the insertion space K along the axial direction (Z-axis direction) of the main body 11a, the gripping claws 11b are driven toward the closed position side (inward in the radial direction) by the claw driving section. are crimped from three directions by three gripping claws 11b and fixed immovably.
  • a three-jaw chuck having three gripping claws 11b was described as an example of the chuck 11, but the present invention is not limited to this, and the number of gripping claws 11b may be two. It may be four or more.
  • the tool spindle 13 is configured to be rotatable around an axis parallel to the X-axis while holding the rotary tool Tr.
  • the tool headstock 21 that supports the tool spindle 13 has a substantially rectangular parallelepiped shape elongated in the vertical direction, and is configured to be movable in the X-axis, Y-axis and Z-axis directions by a feeder.
  • the tool headstock 21 is configured to be swingable about an axis parallel to the Y-axis by a tilt motor (an example of a drive unit) (not shown).
  • a tilt motor an example of a drive unit
  • the rotary tool Tr is detachably attached to the lower end portion of the tool spindle 13 via the tool holder 17 .
  • the tool spindle 13 has a tapered fitting hole 13a that fits into the tapered shank 17a of the tool holder 17, and a drawbar mechanism (not shown) that draws the tool holder 17 attached to the fitting hole 13a so that the tool holder 17 cannot fall off. is doing.
  • the tool holder 17 mounted in the fitting hole 13a can be replaced with another tool holder housed in a tool magazine (not shown) by an ATC (Automatic Tool Changer) device mounted on the machine tool 10. .
  • ATC Automatic Tool Changer
  • the lower tool post 14 has a turret 141 that can turn around an axis that extends parallel to the Z axis, and is configured to be movable in the Z axis direction and the X axis direction by a feed device.
  • a plurality of fixed tools Tf are radially attached to the turret 141 together with tool holders.
  • the fixed tool Tf can be indexed by rotating the turret 141 about its axis.
  • the machining operation mechanism section 20 configured as described above is driven by a servo mechanism that receives commands from a numerical control section 62 of a machine tool control device 60, which will be described later.
  • the servo mechanism includes, for example, a servo amplifier, a servo motor driven by the servo amplifier, and an encoder that feeds back the rotation angle of the servo motor (all not shown).
  • the machining operation mechanism unit 20 processes the work W into a predetermined shape by relatively moving the rotary tool Tr, the fixed tool Tf, and the work W in the orthogonal three-axis directions of the X-axis, Y-axis, and Z-axis.
  • An access opening 10a (see FIG. 2) is formed on the front side of the machine tool 10 for accessing the machining area of the workpiece W by the machining operation mechanism section 20. As shown in FIG. The access opening 10a can be opened and closed by an open/close cover 15 that slides in the Z-axis direction. An NC operation panel 16 is provided on the right side of the access opening 10 a in the machine tool 10 .
  • the NC operation panel 16 is configured to accept various operations by the operator and to display necessary information on the display. Specifically, the operator can input an NC program via the NC operation panel 16, and can select between a manual operation mode and an automatic operation mode. The NC operation panel 16 transmits an operation signal to the machine tool control device 60 according to the operator's operation.
  • the machine tool control device 60 is roughly composed of a PLC (Programmable logic controller) 61 that controls the overall operation of the machine tool 10, and an operation of the machining operation mechanism section 20 in response to commands from the PLC 61. and a wireless communication unit 63 for communicating with the AGV control device 40 .
  • PLC Programmable logic controller
  • the machine tool control device 60 controls the operation of the machine tool 10 based on the operation signal from the NC operation panel 16.
  • the machine tool control device 60 Through cooperation (communication) with the AGV control device 40, a series of operations such as the opening and closing operation of the opening and closing cover 15, the chucking and unchucking operations of the workpiece W by the chuck 11, and the machining operation of the workpiece W based on the NC program are performed without the intervention of an operator. are executed sequentially.
  • the AGV control device 40 includes an operation program storage unit 41, a movement position storage unit 42, an operation posture storage unit 43, a map information storage unit 44, a map information generation unit 45, a position recognition unit 46, a manual operation It is composed of a control unit 47, an automatic operation control unit 48, a reference image storage unit 49, a captured image storage unit 50, a work posture deviation calculation unit 51, a data storage unit 52, an input/output interface 53, and the like.
  • the AGV control device 40 is connected to the robot 25, the first camera 31a, the second camera 31b, the automatic guided vehicle 35 and the AGV operation panel 37 via the input/output interface 53. Also, the AGV control device 40 is configured to be able to wirelessly communicate with the machine tool control device 60 via the input/output interface 53 .
  • the AGV control device 40 is composed of a computer including a CPU, RAM, ROM, etc., and includes a map information generation unit 45, a position recognition unit 46, the manual operation control unit 47, the automatic operation control unit 48, and a workpiece posture deviation calculation unit.
  • the functions of 51 and input/output interface 53 are realized by a computer program, and execute processing described later.
  • the motion program storage unit 41, the movement position storage unit 42, the motion posture storage unit 43, the map information storage unit 44, the reference image storage unit 49, the captured image storage unit 50, and the data storage unit 52 are appropriately stored in ROM, RAM, or the like. It consists of a storage medium.
  • the manual operation control unit 47 is a functional unit that operates the unmanned guided vehicle 35, the robot 25, and the cameras 31a and 31b according to operation signals input from the AGV operation panel 37 by the operator. That is, the operator can manually operate the automatic guided vehicle 35, the robot 25, and the cameras 31a and 31b using the AGV operation panel 37 under the control of the manual operation control section 47.
  • FIG. 1 is a functional unit that operates the unmanned guided vehicle 35, the robot 25, and the cameras 31a and 31b according to operation signals input from the AGV operation panel 37 by the operator. That is, the operator can manually operate the automatic guided vehicle 35, the robot 25, and the cameras 31a and 31b using the AGV operation panel 37 under the control of the manual operation control section 47.
  • the operation program storage unit 41 operates the automatic guided vehicle 35 when generating an automatic driving program for automatically driving the automatic guided vehicle 35 and the robot 25 during production, and map information in the factory, which will be described later.
  • This is a functional unit that stores a map generation program for The automatic driving program and the map generating program are input from, for example, an input/output unit provided on the AGV operation panel 37 and stored in the operation program storage unit 41 .
  • the automatic operation program includes command codes relating to the movement position as a target position to which the automatic guided vehicle 35 moves, the movement speed, and the orientation of the automatic guided vehicle 35. and a command code for operating the cameras 31a and 31b.
  • the map generation program includes command codes for causing the automatic guided vehicle 35 to travel all over the factory without a track so that the map information generation unit 45 can generate map information.
  • the map information storage unit 44 is a functional unit that stores map information including arrangement information of machines, devices, equipment, etc. (devices, etc.) arranged in the factory where the automatic guided vehicle 35 travels. It is generated by the map information generator 45 .
  • the map information generation unit 45 drives the automatic guided vehicle 35 according to the map generation program stored in the operation program storage unit 41 under the control of the automatic operation control unit 48 of the AGV control device 40, which will be described later in detail.
  • the robot acquires spatial information in the factory from the distance data detected by the position sensor, and recognizes the planar shape of the devices installed in the factory.
  • the map information generation unit 45 based on the planar shape of a device or the like registered in advance, determines the position, planar shape, etc. (layout information) of a specific device arranged in the factory, in this example, the machine tool 10 ).
  • the map information generation unit 45 stores the obtained spatial information and the arrangement information of the devices and the like in the map information storage unit 44 as map information of the factory.
  • the position recognition unit 46 has a function of recognizing the position of the automatic guided vehicle 35 in the factory based on the distance data detected by the position sensor and the factory map information stored in the map information storage unit 44. Based on the position of the automatic guided vehicle 35 recognized by the position recognition section 46 , the operation of the automatic guided vehicle 35 is controlled by the automatic operation control section 48 .
  • the movement position storage unit 42 is a movement position as a specific target position to which the automatic guided vehicle 35 moves, and is a functional unit that stores a specific movement position corresponding to the command code in the operation program.
  • This movement position includes the working position set for the machine tool 10 described above.
  • the manual operation control unit 47 the automatic guided vehicle 35 is manually operated by the AGV operation panel 37 to move the automatic guided vehicle 35 to each target position. It is set by the operation of storing the position data recognized by the recognition unit 46 in the movement position storage unit 42 . This operation is called a so-called teaching operation.
  • the motion posture storage unit 43 stores data relating to motion postures (motion postures) of the robot 25 that sequentially change as the robot 25 moves in a predetermined order, corresponding to command codes in the motion program. is a functional unit that stores the The data relating to the motion posture is obtained by manually operating the robot 25 by teaching operation using the AGV operation panel 37 under the control of the manual operation control unit 47 to take each target posture. It is the rotation angle data of each joint (motor) of the robot 25 in each posture at the time, and this rotation angle data is stored in the motion posture storage unit 43 as data relating to the motion posture.
  • the motion postures of the robot 25 stored in the motion posture storage unit 43 are roughly classified into three: an imaging posture (predetermined posture), a standby posture, and a working posture.
  • the imaging posture is a posture for imaging the work W gripped by the hand portion 29 of the robot 25 with the respective cameras 31a and 31b.
  • FIG. 3 shows an example of a state in which the robot 25 is in the imaging posture.
  • the hand portion 29 is positioned outside the bucket 38 in a plan view.
  • the work W) stored in the bucket 38 is prevented from being reflected.
  • the hand unit 29 is positioned on the right side of the mounting surface 36 of the bucket 38 of the automatic guided vehicle 35 when the robot 25 is in the imaging posture.
  • the work W is gripped by the hand unit 29 so that the axis J extends horizontally in the lateral direction of the automatic guided vehicle 35 when the robot 25 is in the imaging posture.
  • the standby posture is a posture in which the robot 25 waits at a predetermined neutral position.
  • FIG. 2 shows an example of a state in which the robot 25 is in a standby posture.
  • the working posture is a posture for causing the robot 25 to perform various tasks while the automatic guided vehicle 35 is stopped at the working position of the machine tool 10 .
  • a work take-out posture for gripping and taking out the pre-processed work W stored in the bucket 38 by the hand portion 29, and
  • the work W is inserted into the machine tool 10 in a state where it is gripped in a state where the work W is held coaxially with the work main shaft 12 (see FIG. 11), and the work W is directed toward the insertion space K of the chuck 11.
  • a plurality of workpiece insertion motion postures (not shown) to be inserted, a workpiece insertion completion posture (see FIG. 12) in which the insertion of the workpiece W into the insertion space K is completed, and the same posture as the workpiece insertion completion posture.
  • a drawing start posture see FIG.
  • a withdrawal operation posture (not shown)
  • a withdrawal completion posture (see FIG. 11) that is the same posture as the workpiece insertion start posture and holds the pulled-out processed workpiece W at a position separated from the chuck 11, and a withdrawal completion posture.
  • a work storage posture (not shown) is set in which the work W gripped by the hand portion 29 is stored in the bucket 38 of the automatic guided vehicle 35 .
  • the automatic driving control unit 48 is a functional unit that operates the automatic guided vehicle 35, the robot 25, and the cameras 31a and 31b according to the automatic driving program stored in the operation program storage unit 41. At that time, the data stored in the movement position storage section 42 and the motion posture storage section 43 are used as necessary. Specific control processing of the automatic guided vehicle 35, the robot 25, and the cameras 31a and 31b by the automatic driving control unit 48 will be described later.
  • the reference image storage unit 49 causes the hand unit 29 to operate normally in a state in which the automatic guided vehicle 35 is stopped at the work position set with respect to the machine tool 10 and the robot 25 is made to take the imaging posture.
  • This is a functional unit that stores images of the work W gripped in the state of , captured by the first camera 31a and the second camera 31b as a first reference image S1 and a second reference image S2 (see FIG. 15A), respectively.
  • the robot 25 takes out the unprocessed work W stored in the bucket 38 by the hand unit 29 according to the automatic operation program.
  • It is a functional unit that stores a first captured image G1 and a second captured image G2 (see FIG. 15B) obtained by capturing the work W with the first camera 31a and the second camera 31b after moving to the imaging posture.
  • the first captured image G1 and the second captured image G2 stored in the captured image storage unit 50 are updated to new captured images each time the imaging process of the workpiece W is performed by the cameras 31a and 31b.
  • the work posture deviation calculation unit 51 compares the first captured image G1 and the second captured image G2 stored in the captured image storage unit 50 with the corresponding first reference image S1 and second reference image S2. , information on deviations between the captured images G1 and G2 and the respective reference images S1 and S2 (for example, not only the deviation of the outline of the workpiece W, but also the deviation of the brightness value (shading), etc.). Then, the work posture deviation calculation unit 51 is based on the information about the deviation between the acquired captured images G1 and G2 and the respective reference images S1 and S2 and the angle calculation data described later stored in the data storage unit 52. First, the deviation between the posture of the workpiece W gripped by the hand portion 29 of the robot 25 and its normal posture is calculated.
  • the automatic operation control unit 48 controls the robot 25 so that the set posture of the work W on the chuck 11 becomes a predetermined set posture based on the posture deviation of the work W calculated by the work posture deviation calculation unit 51.
  • the correction amount of the workpiece W insertion start posture, the workpiece insertion completion posture, and each workpiece insertion operation posture (for example, the correction amount of the rotation angle around the orthogonal three axes at each joint of the robot 25) is calculated.
  • the predetermined setting posture is a posture in which the axis J of the work W is coaxial with the rotation axis of the work spindle 12 .
  • FIG. 13 is a flowchart showing an example of automatic operation control of the automatic guided vehicle 35 and the robot 25 executed by the AGV control device 40. As shown in FIG.
  • the automatic operation control unit 48 stops the automatic guided vehicle 35 at the work position set with respect to the machine tool 10 according to the automatic operation program stored in the operation program storage unit 41. After that, the robot 25 is made to take the standby posture (see FIG. 2) (step SA1).
  • Step SA2 based on the signal from the wireless communication unit 63 of the machine tool control device 60 received via the input/output interface 53, the machining cycle based on the NC program has ended on the machine tool 10 side.
  • Step SA3 the robot 25 is caused to execute the dispensing operation of the workpiece W.
  • the automatic operation control unit 48 instructs the robot 25 to take the above-described workpiece extraction start posture.
  • the robot 25 is caused to draw the workpiece W from the chuck 11 , and then the robot 25 is made to take the workpiece storage posture, thereby transferring the workpiece W to the bucket 38 . store inside.
  • the automatic operation control unit 48 causes the robot 25 to take the above-described work retrieving posture, and closes the pair of gripping members 292 of the hand unit 29.
  • the unprocessed work W stored in the bucket 38 is gripped and taken out (step SA4).
  • the automatic operation control unit 48 causes the robot 25 to take the imaging posture (see FIG. 3) (step SA5).
  • the automatic operation control unit 48 executes imaging processing using the first camera 31a and the second camera 31b while the robot 25 is in the imaging posture (step SA6).
  • a first captured image G1 and a second captured image G2 which are images captured by the respective cameras 31a and 31b, are transmitted to the AGV control device 40 and stored in the captured image storage unit 50 (see FIG. 10).
  • the first captured image G1 and the second captured image G2 stored in the captured image storage unit 50 are respectively calculated as the first reference stored in the reference image storage unit 49. Compare with image S1 and second reference image S2. Then, it is determined whether or not there is a deviation between at least one of the first captured image G1 and the second captured image G2 and the corresponding reference images S1 and S2 (step SA7).
  • both the first captured image G1 and the second captured image G2 match the corresponding reference images S1 and S2, that is, there is no deviation between the captured image and the reference image. If so (NO in step SA7), the automatic operation control unit 48 instructs the robot 25 to change the above-described work takeout posture, work insertion start posture (see FIG. 11), each work insertion motion posture (not shown), and The workpiece W is set on the chuck 11 (step SA13) by sequentially taking the workpiece insertion completion posture (see FIG. 12). By communicating, the opening/closing cover 15 is closed and the machine tool 10 starts the machining cycle of the workpiece W (step SA12), and then returns.
  • the work posture deviation calculation unit 51 determines that at least one of the first captured image G1 and the second captured image G2 has a deviation from the reference images S1 and S2 (YES in step SA7). case), information on this deviation is acquired, and based on the acquired information on deviation, the deviation (deviation in real space) between the posture of the work W gripped by the hand unit 29 of the robot 25 and the normal posture is calculated (step SA8).
  • the automatic operation control unit 48 determines the work insertion time of the robot 25 necessary to set the work W on the chuck 11 in a predetermined set posture.
  • the amount of correction for each posture (the work insertion start posture, each work insertion movement posture, and the work insertion completion posture) is calculated (step SA9), and using the calculated correction quantity, the robot 25 is moved to the chuck 11 of the machine tool 10. (step SA10).
  • the robot 25 is set in the workpiece insertion start posture (see FIG. 11), each workpiece insertion motion posture (not shown), Then, the workpiece W gripped by the hand portion 29 is inserted into the insertion space K of the chuck 11 by sequentially taking the workpiece insertion completion posture (see FIG. 12).
  • the robot 25 In the process of inserting the workpiece W, the robot 25 is not caused to assume the workpiece insertion start posture, each workpiece insertion motion posture, and the workpiece insertion completion posture stored in the motion posture storage unit 43 as they are. The posture is corrected based on the calculated correction amount.
  • the automatic operation control unit 48 transmits an insertion completion signal to the machine tool control device 60 .
  • the claw drive section (not shown) of the chuck 11 drives the three gripping claws 11b to the closing side.
  • the workpiece W is fixed to the chuck 11 so that it cannot be inserted or removed.
  • the automatic operation control unit 48 After the workpiece W is fixed to the chuck 11, the automatic operation control unit 48 returns the robot 25 to the standby posture (step SA11) and outputs a completion signal to the machine tool control device 60. Upon receiving this completion signal, the machine tool control device 60 drives the opening/closing cover 15 of the machine tool 10 to the closed position, and then causes the machine tool 10 to start the machining cycle of the workpiece W based on the NC program (step SA12). After the machining cycle of the workpiece W in the machine tool 10 is started, the process returns.
  • FIG. 14 is a flowchart showing the details of the posture deviation calculation processing (step SA8) of the work W executed by the work posture deviation calculation unit 51.
  • FIG. 14 is a flowchart showing the details of the posture deviation calculation processing (step SA8) of the work W executed by the work posture deviation calculation unit 51.
  • the work posture deviation calculation unit 51 stores a first captured image G1 (image of the work W captured by the first camera 31a) and a second captured image G2 (image of the work W captured by the second camera 31b) stored in the captured image storage unit 50. image) is binarized with a predetermined threshold value, and the binarized image is scanned in the raster direction to extract the contour lines of the workpiece W (step SA81).
  • the work posture deviation calculator 51 selects two contours extending linearly in the longitudinal direction of the work W among the contours of the work W extracted from the first captured image G1 and the second captured image G2. A set of points (images) located between the specified two contour lines and having the same distance from each contour line is linearly approximated to calculate the axis J of the workpiece W (step SA82).
  • the work posture deviation calculation unit 51 executes binarization processing and contour extraction processing on the first reference image S1 and the second reference image S2 (see FIG. 15B) stored in the reference image storage unit 49. After that, the axis J of the workpiece W is calculated in each of the reference images S1 and S2 (step SA83). As for the first reference image S1 and the second reference image S2, the outline and the axis J of the workpiece W may be calculated in advance and stored.
  • the work posture deviation calculator 51 calculates a first crossing angle ⁇ 1 (see FIG. 15C), which is an angle between the axis J of the work W in the first captured image G1 and the axis J of the work W in the first reference image S1, Then, a second crossing angle ⁇ 2, which is the angle formed by the axis J of the workpiece W in the second captured image G2, is calculated (step SA84).
  • the work posture deviation calculator 51 calculates the tilt direction and tilt angle (three-dimensional tilt shift) of the work W in the real space (step SA85). ).
  • the angle calculation data stored in the data storage unit 52 is used to calculate the tilt direction and the tilt angle.
  • This angle calculation data is obtained by tilting the workpiece W at a predetermined angle in directions A1 to A8 in FIG. It is data in which the values of the first crossing angle ⁇ 1 and the second crossing angle ⁇ 2 are tabulated.
  • the predetermined angle is set, for example, between 0° and 5° at equal intervals (0.2° intervals in this example).
  • the first crossing angle ⁇ 1 and the second crossing angle ⁇ 2 described in the angle calculation data may be actually measured by conducting tests in advance, or may be theoretical values that are geometrically calculated using a computer. good too.
  • FIG. 16 is a diagram showing an example of changes in the first crossing angle ⁇ 1 and the second crossing angle ⁇ 2 when the workpiece W is tilted from the normal posture in the real space in the directions A1 to A8 in FIG. 6 by predetermined angles. is.
  • both the first crossing angle ⁇ 1 and the second crossing angle ⁇ 2 are ⁇ °.
  • both the first intersection angle ⁇ 1 and the second intersection angle ⁇ 2 are ⁇ °, and in other cases, the first intersection angle ⁇ 1 and the second intersection angle ⁇ 2 are different angles.
  • the tilt direction and tilt angle of the workpiece W in real space can be uniquely determined based on the angle calculation data.
  • the workpiece posture deviation calculator 51 calculates the inclination direction and the inclination angle of the workpiece W corresponding to the first crossing angle ⁇ 1 and the second crossing angle ⁇ 2 calculated in step SA84, using the angle calculation data. (step SA86).
  • step SA86 by performing linear interpolation, the inclination direction of the workpiece W with respect to the first intersection angle ⁇ 1 and the second intersection angle ⁇ 2 not listed in the angle calculation data table (the direction located between A1 and A8) and the tilt angle can be calculated.
  • the work posture deviation calculation unit 51 calculates the intersection of the leading end edge of the work W and the axis J in the first captured image G1 and the The offset amount ⁇ 1 (see FIG. 15C) from the axis J of the work W, and the intersection of the leading edge of the work W and the axis J in the second captured image G2 and the axis J of the work W in the second reference image S2.
  • An offset amount ⁇ 2 is calculated (step SA86).
  • the work posture deviation calculator 51 calculates the offset amounts of the tip position of the work W in the real space in the X-axis direction and the Y-axis direction (offset excluding the influence of the inclination of the work W). amount) is calculated (step SA87). Also in calculating this offset amount, for example, table data calculated in advance may be used. Then, the work posture deviation calculator 51 calculates the tilt direction and tilt angle of the work W in the real space (three-dimensional tilt shift), the X-axis direction at the tip position of the work W (tip center position) and the After calculating the offset amount (positional deviation) in the Y-axis direction, the process returns to the main flow of FIG.
  • the control by the automatic operation control section 48 of the AGV control device 40 is started.
  • the unmanned guided vehicle 35 stops at the working position of the machine tool 10, and after the robot 25 takes out the workpiece W after machining from the machine tool 10 and stores it in the bucket 38, the one workpiece W before machining is placed in the bucket 38. It is taken out from the inside and mounted (set) on the chuck 11 of the machine tool 10 .
  • the posture of gripping the workpiece W by the gripping member 292 is not normal due to variations in the shape of the workpiece W before processing, foreign matter caught between the gripping member 292 of the hand unit 29 and the workpiece W, displacement due to its own weight, and the like. You may deviate from your posture.
  • the robot 25 attempts to insert the work W into the insertion space K of the chuck 11 while the gripping posture of the work W is deviated from the normal posture, the work W interferes with the gripping claws 11b of the chuck 11 and cannot be inserted. Or, even if the work W can be inserted into the insertion space K, the work W may be tilted and set.
  • the AGV control device 40 performs the work setting process in which the robot 25 sets the work W on the chuck 11 while the hand portion 29 of the robot 25 grips the work W. Images of the workpiece W are captured by the first camera 31a and the second camera 31b (step SA5). Based on a comparison with the first reference image S1 and the second reference image S2, which are captured images of the work W in the normal gripping posture stored in advance in the image storage unit 49, the set posture of the work W on the chuck 11 is determined. It is configured to control the motion of the robot 25 so that it assumes a predetermined set posture (steps SA8 to S10).
  • the AGV control device 40 controls the operation of the robot 25 to set the workpiece W on the chuck 11 in a predetermined posture.
  • the set posture can be controlled.
  • the AGV control device 40 causes the workpiece posture deviation calculation unit 51 to generate the first captured image G1 and the second captured image G2, and the first reference image S1 and the second reference image S2 that are the respective reference images. (step SA7), and if it is determined that there is a deviation (YES in step SA7), information on this deviation is calculated (steps SA84 and SA86), and calculated Based on the information about the misalignment between the images, information about the misalignment between the posture of the work W gripped by the hand unit 29 and the normal posture.
  • the offset amount (positional deviation) of the posture from the normal posture is calculated (step SA87), and the tilt direction and tilt angle (three-dimensional tilt shift) of the axis J of the workpiece W are calculated (step SA85).
  • the automatic operation control unit 48 of the AGV control device 40 controls the robot so that the set posture of the work W on the chuck 11 becomes a predetermined set posture based on the calculated positional deviation and three-dimensional tilt deviation of the work W. 25 motion correction (steps SA9 and SA10).
  • the positional deviation and the three-dimensional inclination of the workpiece W with respect to the normal posture can be determined.
  • the deviation can be easily calculated.
  • by correcting the operation of the robot 25 based on the calculated positional deviation and three-dimensional inclination deviation of the workpiece W it is possible to prevent the workpiece W from being mounted on the chuck 11 in an incorrect posture. can be done.
  • first camera 31a and the second camera 31b capture a straight line passing through the axis J of the workpiece W and extending in the vertical direction when viewed from the axial direction of the workpiece W gripped by the hand portion 29 of the robot 25 in a normal posture.
  • the first camera 31a and the second camera 31b are arranged axisymmetrically with respect to L0, and are arranged so that the optical axes L1 and L2 of the first camera 31a and the second camera 31b are inclined at a predetermined angle ⁇ a with respect to the vertical direction (Fig. 6).
  • the captured images of the two cameras 31a and 31b arranged symmetrically with respect to the straight line L0 are used. Therefore, the calculation accuracy of the posture deviation of the work W can be improved as compared with the case of using one captured image captured by one camera.
  • the predetermined angle ⁇ a is 45°.
  • the first camera 31a and the second camera 31b can be arranged compactly with good space efficiency.
  • FIG. 17 shows the second embodiment. This embodiment differs from the first embodiment in the arrangement of cameras for capturing images of the work W gripped by the hand unit 29 and in the details of the posture deviation calculation processing of the work W based on the captured images.
  • symbol is attached
  • one camera 19a provided on the machine tool 10 captures images of the work W gripped by the hand portion 29 from two different positions. .
  • the camera 19a is built into the imaging device 19 attached to the tool holder 17.
  • the tool holder 17 to which the imaging device 19 is attached can be accommodated in a tool magazine (not shown) like the other tool holders 17 to which the rotating tools Tr are attached. It is mounted in the fitting hole 13 a of the tool spindle 13 .
  • the tool spindle 13 can hold a camera 19a of an imaging device 19 via a tool holder 17. As shown in FIG. In this example, the tool spindle 13 functions as a holding member that holds the camera 19a.
  • the imaging device 19 has a cylindrical shape in appearance, and is configured such that the imaging lens of the camera 19a is exposed from the center of the lower end surface.
  • the camera 19 a is arranged so that its optical axis coincides with the axis of the imaging device 19 .
  • the tool headstock 21 is rotated by a tilt motor that receives a command from the numerical control unit 62 (see FIG. 10) of the machine tool control device 60 to move the tool headstock 21 around an axis parallel to the Y-axis direction (the direction of inserting the workpiece into the chuck 11 and the vertical direction). (around an axis perpendicular to both of the )).
  • the numerical control unit 62 controls the swinging of the tool headstock 21 by the tilt motor and the linear movement of the tool headstock 21 in the X-, Y-, and Z-axis directions by the feeder, thereby allowing the tool headstock 21 to
  • the held tool spindle 13 is configured to be switchable between a first imaging position and a second imaging position, which will be described later.
  • the robot 25 takes a predetermined imaging posture while the tool spindle 13 is at the first imaging position and the second imaging position.
  • the workpiece W is held at a predetermined position in the machine tool 10 by the hand unit 29 by the robot 25 taking the imaging posture.
  • the workpiece W is held coaxially with the workpiece spindle 12 at a position spaced apart from the workpiece spindle 12 while the robot 25 is in the imaging posture.
  • the imaging posture of the robot 25 may be the same posture as the work insertion start posture described above.
  • the camera 19a is gripped by the hand portion 29 of the robot 25 in a normal posture so that its optical axis extends vertically, as indicated by the solid line in FIG. It is arranged so as to pass through the center position of the tip of the workpiece W.
  • the camera 19a When the tool spindle 13 is at the second imaging position, the camera 19a is positioned so that its optical axis is inclined at a predetermined angle ⁇ b with respect to the vertical direction and the hand of the robot 25 is positioned as indicated by the two-dot chain line in FIG. It is arranged so as to pass through the center position of the tip end of the workpiece W gripped in a normal posture by the portion 29 .
  • the predetermined angle ⁇ b is, for example, preferably 30° to 60°, more preferably 45°.
  • a first position reference image Sp1 ( 18A), and a second position reference image Sp2 captured by the camera 19a of the work W gripped by the hand unit 29 of the robot 25 in a regular posture while the tool headstock 21 is at the second imaging position. It is
  • FIG. 19 is a flow chart showing an example of automatic operation control of the automatic guided vehicle 35 and the robot 25 executed by the AGV control device 40 of the second embodiment.
  • steps SB1 to SB4 and steps SB9 to SB13 are the same processing as steps SA1 to SA4 and steps SA9 to SA13 of the first embodiment, detailed description is omitted. Steps SB5 to SB8, which are different processes, will be described.
  • the robot 25 is made to take the imaging posture (step SB5).
  • this imaging posture unlike the first embodiment, the hand portion 29 enters the machining plane of the machine tool 10, and the workpiece W gripped by the hand portion 29 is held coaxially with the chuck 11 (work spindle 12).
  • the operation control unit 48 issues an imaging command to the machine tool control device 60 .
  • the numerical control unit 62 drives the tilt motor to position the tool spindle 13 at the first imaging position, and causes the camera 19a to perform imaging processing of the workpiece W (step SB6).
  • the captured image of the workpiece W captured by the camera 19a is transmitted to the AGV control device 40 via the wireless communication unit 63 and stored in the captured image storage unit 50 as the first position captured image Gp1.
  • the machine tool control device 60 drives the tilt motor by the numerical control unit 62 to move the tool spindle 13 to the second imaging position, and the camera 19a detects the workpiece.
  • the imaging process of W is executed (step SB6).
  • FIG. 18B shows an example of the first position captured image Gp1 and the second position captured image Gp2 stored in the captured image storage unit 50. As shown in FIG.
  • the first position captured image Gp1 and the second position captured image Gp2 stored in the captured image storage unit 50 are respectively stored in the reference image storage unit 49 as the first position captured image Gp1 and the second position captured image Gp2. It is compared with the one position reference image Sp1 and the second position reference image Sp2. Then, it is determined whether or not there is a deviation between the corresponding reference images S1 and S2 in at least one of the first position captured image Gp1 and the second position captured image Gp2 (step SB7).
  • the workpiece posture deviation calculator 51 determines that the deviation does not exist (NO in step SB7), the workpiece W is chucked 11 without correcting the motion of the robot 25 as in the first embodiment. (Step SB13), the robot 25 is returned to the standby posture (Step SB11), the machine tool 10 starts the machining cycle of the workpiece W (Step SB12), and then returns.
  • the work posture deviation calculation unit 51 determines that at least one of the first position captured image Gp1 and the second position captured image Gp2 has a deviation from the corresponding reference image (YES in step SB7). ), the information on this deviation is acquired, and based on the acquired information on the deviation, the positional deviation in the real space between the posture of the workpiece W gripped by the hand unit 29 of the robot 25 and the normal posture And the three-dimensional tilt deviation is calculated (step SB8).
  • the work posture deviation calculation unit 51 performs binarization processing and contour line extraction processing on the first position captured image Gp1 and the first position reference image Sp1, respectively, and extracts the contour of the work W. Based on the line, determine its axis J. Then, as shown in FIG. 20, the work posture deviation calculator 51 calculates the intersection angle ⁇ c between the axis J of the work W in the first position captured image Gp1 and the axis J of the work W in the first position reference image Sp1, and , the distance ⁇ a between the tip center position of the workpiece W in the first position image Gp1 and the axis J of the workpiece W in the first position reference image Sp1 is calculated.
  • the work posture deviation calculator 51 calculates the amount of deviation (positional deviation) of the tip center position of the work W in the real space in the X-axis direction and the Y-axis direction. Further, the work posture deviation calculator 51 calculates the horizontal inclination angle of the axis J of the work W in the real space based on the crossing angle ⁇ c, and calculates the horizontal inclination angle of the axis J of the work W in the real space based on the ratio ⁇ . The vertical tilt angle of J (three-dimensional tilt deviation) is calculated.
  • the automatic operation control unit 48 controls the tilt direction and tilt angle (three-dimensional tilt shift) of the axis line J of the work W in the real space calculated by the work posture shift calculation unit 51 in step SB8, and the X Based on the amount of deviation (positional deviation) in the axial direction and the Y-axis direction, the workpiece W is inserted so that the axis J of the workpiece W is coaxially inserted into the insertion space K of the chuck 11 (to have a predetermined set posture). Correction amounts for the insertion start posture, each workpiece insertion motion posture, and the workpiece insertion completion posture are calculated. Based on the calculated correction amount, the automatic operation control unit 48 corrects each posture of the robot 25 when the workpiece W is set on the chuck 11 .
  • each posture related to the work inserting operation of the robot 25 can be corrected as in the first embodiment.
  • the workpiece W can be mounted on the chuck 11 of the machine tool 10 in a predetermined set posture.
  • the number of cameras 19a can be reduced as much as possible. That is, for example, when robots 25 mounted on a plurality of unmanned guided vehicles 35 work together to perform work W loading/unloading work to/from one machine tool 10, one camera 19a is operated by a plurality of robots 25. can be used in common. Therefore, compared with the case where each robot 25 is provided with the cameras 31a and 31b as in the first embodiment, the number of cameras can be reduced and the cost can be reduced.
  • the workpiece W gripped by the hand portion 29 is detected by one camera 19a provided in the machine tool 10 from two directions, ie, the vertical direction and the direction intersecting the vertical direction. Based on the two images (the first position captured image Gp1 and the second position captured image Gp2) that have been captured and captured, the deviation of the gripping posture of the workpiece W by the hand unit 29 can be obtained with high accuracy. Therefore, compared with the case of providing a plurality of cameras, it is possible to reduce the risk of camera failure and the cost of parts.
  • the tool spindle 13 is used as a holding member that holds the camera 19a.
  • the tilt motor and the feed device for driving the tool headstock 21 can be used as the driving portion of the holding member. Therefore, it is possible to standardize the parts and reduce the cost.
  • the automatic operation control unit 48 once returns the workpiece W gripped by the hand unit 29 to its original position in the bucket 38 and causes the hand unit 29 to grip the workpiece W again.
  • the deviation of the gripping posture of the work W by the hand portion 29 reaches a level that cannot be improved by correcting the motion of the robot 25.
  • the gripping posture of the work W by the hand portion 29 can be improved by gripping the work W again by the hand portion 29 .
  • the robot 25 is provided with two cameras 31a and 31b, but this is not the only option.
  • the number of cameras may be one, or three or more.
  • the AGV control device 40 is mounted on the automatic guided vehicle 35, but is not limited to this, and may be composed of a host computer or the like fixed at a predetermined position in the factory, for example. may In this case, the automatic guided vehicle 35 and the robot 25 are remotely controlled by the AGV control device 40 .
  • the hand portion 29 is configured to hold the work W between the two gripping members 292, but the present invention is not limited to this.
  • a hollow workpiece W may be gripped by expanding a plurality of gripping members 292 provided in the hand portion 29 from the radially inner side of the workpiece W to the outer side.
  • the hand portion 29 may be configured to attract and hold the workpiece W by the attraction force of air or the magnetic force of a magnet.
  • the work mounting portion is composed of the chuck 11 that opens and closes the plurality of gripping claws 11b, but is not limited to this.
  • the work mounting portion may have any structure, such as a collet chuck that fixes the hollow work W from the inside.
  • the work mounting portion may be a work pallet for setting the work in a machining center or the like. Further, it goes without saying that the workpiece W is not limited to a shaft-like member.
  • the machine tool 10 is a compound turning center, but the machine tool 10 is not limited to this, and may be a machining center or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Gripping On Spindles (AREA)
  • Feeding Of Workpieces (AREA)

Abstract

ワーク装着システムは、ワーク(W)を撮像可能なカメラ(31a,31b)と、ロボットのハンド部(29)にワーク(W)が正規の姿勢で把持された状態でカメラ(31a,31b)により撮像したワーク(W)の画像を基準画像として予め記憶しておく基準画像記憶部と、制御装置とを備えている。制御装置は、ロボットのハンド部(29)にワーク(W)を把持させた状態でカメラ(31a,31b)にワーク(W)の画像を撮像させ、カメラ(31a,31b)によるワーク(W)の撮像画像と基準画像記憶部に記憶された基準画像との間にずれが存在する場合には、このずれに関する情報を基に、ロボットのハンド部(29)に把持されたワーク(W)の姿勢と前記正規の姿勢との位置ずれ及び三次元の傾きのずれを算出して、算出した該位置ずれ及び該三次元の傾きのずれを基に、ワーク(W)のセット姿勢が所定のセット姿勢になるようロボットの動作補正を行う。

Description

ワーク装着システム
 ハンド部を有するロボットと、ロボットを制御することで、所定位置に載置されたワークをハンド部に把持させて工作機械内のワーク装着部にセットさせるワークセット処理を実行する制御部とを備えたワーク装着システムに関する。
 従来、上述したワーク装着システムの一例として、特開2017-132002号公報(下記特許文献1)に開示されたワーク装着システムが知られている。このワーク装着システムでは、ロボットを搭載した無人搬送車が、工作機械に対して予め設定された作業位置に移動し、当該作業位置において、ロボットが工作機械に対してワークの着脱作業等を実行するようになっている。尚、ワーク装着システムの他の例として、特開2015-024475号公報(下記、特許文献2)に示すように、ロボットを無人搬送車に搭載せずに所定位置に固定するようにしたシステムも存在する。
 この種のワーク装着システムにおいて、ロボットは通常、ワークを把持するためのハンド部を有している。ハンド部にてワークを把持した際に、ワークが正規の姿勢からずれていた場合(把持不良が発生した場合)、ロボットがワーク装着部にワークを上手く装着することができないという問題が生じる。
 この問題に対処するべく、特許文献2に示すワーク装着システムでは、ハンド部によるワークの把持不良が発生した場合には、ロボット管理コンピュータによる制御の下、ロボットがその動作を停止して所定の待機姿勢に戻るようになっている。ここで、ロボットのハンド部にてワークの把持不良が発生したか否かは、該ハンド部に取付けられたセンサの出力に基づいてロボットコントローラにより判断される(特許文献2の段落[0038]参照)。
特開2017-132002号公報 特開2015-024475号公報
 特許文献2のワーク装着システムでは、ロボットコントローラによりワークの把持不良が検出される度に、ロボットが所定の待機姿勢に戻って停止するようになっている。このため、ロボットの稼働率が低下し、工作機械による部品の生産効率(単位時間当たりのワークの加工数)が低下するという問題がある。
 この問題を回避するためには、ロボットによるワークの把持不良の発生頻度を極力低下させることが好ましい。そのためには、例えば、ハンド部によるワークの把持力を出来るだけ高めてハンド部に把持されたワークが簡単に動かないようにすることが考えられる。
 しかし、ワークの形状にバラツキがあったり、ハンド部とワークとの間に異物噛み込み等が存在したりすると、ハンド部によるワークの把持力をいくら高めてもワークの把持不良を完全に無くすことはできない。
 そして、このような把持不良が生じたままロボットによるワーク装着動作を続行すると、ワーク装着部に対するワークのセット姿勢が所定のセット姿勢からずれてしまい、結果として、ワークの脱落や加工不良を招くという問題がある。
 本発明は、以上の実情に鑑みてなされたものであって、ロボットのハンド部にてワークの把持不良が発生したとしても、該ワークを工作機械のワーク装着部に所定のセット姿勢でセットすることができるワーク装着システムを提供することを、その目的とする。
 本発明の一局面では、
 ハンド部を有するロボットと、前記ロボットを制御することで、所定位置に載置されたワークを該ハンド部に把持させて工作機械内のワーク装着部にセットさせるワークセット処理を実行する制御装置と、を備えたワーク装着システムであって、
 前記ロボットのハンド部に設けられ、該ハンド部に把持されたワークを撮像可能なカメラと、
 前記ロボットのハンド部により前記ワークが正規の姿勢で把持された状態で前記カメラにより撮像した当該ワークの画像を基準画像として予め記憶しておく基準画像記憶部とをさらに備え、
 前記制御装置は、前記ワークセット処理の実行に際して、前記ロボットのハンド部に前記ワークを把持させた状態で前記カメラに当該ワークの画像を撮像させ、該カメラによる当該ワークの撮像画像と前記基準画像記憶部に記憶された前記基準画像との比較を基に、前記ワーク装着部へのワークのセット姿勢が所定のセット姿勢になるように前記ロボットの動作を制御するように構成され、
 前記制御装置は、前記撮像画像と前記基準画像との前記比較に際して、両画像間にずれが存在するか否かを判定し、ずれが存在すると判定した場合には、このずれに関する情報を基に、前記ロボットのハンド部に把持されたワークの姿勢と前記正規の姿勢との位置ずれ及び三次元の傾きのずれを算出して、算出した該位置ずれ及び三次元の傾きのずれを基に、前記ワーク装着部へのワークのセット姿勢が前記所定のセット姿勢になるよう前記ロボットの動作補正を行う一方、前記両画像間にずれが存在しないと判定した場合には前記ロボットの動作補正を行わないように構成されている。
 このワーク装着システムによれば、制御装置によるワークセット処理の実行に際して、ハンド部に設けられたカメラによって、該ハンド部に把持されたワークの画像が撮像される。一方、基準画像記憶部には、ロボットのハンド部に正規の姿勢で把持されたワークをカメラにより撮像した画像が基準画像として予め記憶されている。ここで、正規の姿勢とは、ロボットの動作補正を行わなくてもワークをワーク装着部に所定のセット姿勢でセット可能な姿勢である。
 そして、前記制御装置では、前記記憶部に記憶された基準画像と、前記カメラにより撮像した前記ワークの撮像画像との比較を基に、ワーク装着部へのワークのセット姿勢が所定のセット姿勢になるようにロボットの動作を制御する。
 これによれば、ワークの形状不良やハンド部とワークとの間の異物噛み込み等に起因してハンド部によるワークの把持姿勢が正規の姿勢からずれたとしても、ロボットの姿勢を制御(補正)することで、工作機械のワーク装着部にワークを所定のセット姿勢で装着することができる。しかも、カメラがロボットのハンド部に設けられているので、ロボットの姿勢ばらついたとしてもその影響を受けずに、カメラによるワークの撮像処理を実行することができる。
 より具体的には、制御装置では、ワークの撮像画像と基準画像との比較に際して、両画像間にずれが存在するか否かを判定し、ずれが存在すると判定した場合には、このずれに関する情報を基に、前記ロボットのハンド部に把持されたワークの姿勢と前記正規の姿勢とのずれを算出する。このワークの姿勢のずれとしては、例えばワークの軸線の傾きやワーク先端の中心位置のずれ等が挙げられる。そして、制御装置では、算出したワークの姿勢のずれを基に、前記ワーク装着部へのワークのセット姿勢が前記所定のセット姿勢になるよう前記ロボットの動作補正を行う。一方、制御装置では、ワークの撮像画像と基準画像との比較を行った結果、両画像間にずれが存在しないと判定した場合には、ワークがハンド部に正規の姿勢で把持されているものとしてロボットの動作補正は行わない。
 これによれば、ハンド部に把持されたワークの撮像画像と基準画像とのずれに関する情報を基に、ワークの姿勢が正規の姿勢に対してどの程度ずれているかを容易に算出することができる。そして、算出したワークの姿勢のずれを基に、ロボットの動作補正を行うことで、ワーク装着部に対してワークが誤った姿勢で装着されるのを防止することができる。
 本発明の他の局面では、
 ハンド部を有するロボットと、前記ロボットを制御することで、所定位置に載置されたワークを該ハンド部に把持させて工作機械内のワーク装着部にセットさせるワークセット処理を実行する制御装置と、を備えたワーク装着システムであって、
 前記工作機械に設けられ、該工作機械内において前記ロボットが所定姿勢を取った状態で前記ハンド部に把持された前記ワークを撮像可能なカメラと、
 前記ロボットが前記所定姿勢を取り且つ前記ハンド部により前記ワークが正規の姿勢で把持された状態で前記カメラにより撮像した当該ワークの画像を基準画像として予め記憶しておく基準画像記憶部とを備え、
 前記制御装置は、前記ワークセット処理の実行に際して、前記ロボットのハンド部に前記ワークを把持させた状態で前記ロボットに前記所定姿勢を取らせて、該所定姿勢において前記カメラに当該ワークの画像を撮像させ、該カメラによる当該ワークの撮像画像と前記基準画像記憶部に記憶された前記基準画像との比較を基に、前記ワーク装着部へのワークのセット姿勢が所定のセット姿勢になるように前記ロボットの動作を制御するように構成され、
 前記制御装置は、前記撮像画像と前記基準画像との前記比較に際して、両画像間にずれが存在するか否かを判定し、ずれが存在すると判定した場合には、このずれに関する情報を基に、前記ロボットのハンド部に把持されたワークの姿勢と前記正規の姿勢との位置ずれ及び三次元の傾きのずれを算出して、算出した該位置ずれ及び該三次元の傾きのずれを基に、前記ワーク装着部へのワークのセット姿勢が前記所定のセット姿勢になるよう前記ロボットの動作補正を行う一方、前記両画像間にずれが存在しないと判定した場合には前記ロボットの動作補正を行わないように構成されている。
 このワーク装着システムによれば、ワークの画像を撮像するためのカメラがロボットのハンド部ではなく工作機械に設けられている。そして、制御装置によるワークセット処理の実行に際しては、該制御装置による制御の下、ロボットが工作機械内において所定姿勢を取ると、該ロボットのハンド部に把持されたワークの画像が前記工作機械に設けられたカメラにより撮像される。ここで、ワーク装着システムの基準画像記憶部には、ロボットに前記所定姿勢を取らせた状態でハンド部に正規の状態で把持されたワークを前記カメラにより撮像した撮像画像が予め記憶されている。制御装置では、前記ワークセット処理の実行に際して前記カメラにより撮像した画像と、基準画像記憶部に記憶された基準画像との比較を基に、ワーク装着部へのワークのセット姿勢が所定のセット姿勢になるようにロボットの動作を制御する。
 これによれば、ハンド部によるワークの把持姿勢が正規の姿勢からずれていたとしても、ロボットの姿勢を制御(補正)することで、工作機械のワーク装着部にワークを所定のセット姿勢で装着することができる。また、工作機械にカメラが設けられているので、例えば、複数のロボットが協働して一つの工作機械に対してワークの投入・払出し作業を行う場合に、各ロボットのそれぞれにカメラを設ける必要がない。よって、ワーク装着システム全体として、カメラの数を極力減らしてコストを低減することができる。
 ところで、例えばハンド部とワークとの間に異物が噛み込む等してハンド部によるワークの把持姿勢が正規の姿勢から大きくずれている場合には、ロボットの動作補正を行ってもワーク装着部にワークを正しく装着することができないという問題がある。
 この問題を回避するべく、前記制御装置は、前記両画像間にずれが存在すると判定した場合であっても、このずれに関する情報を基に算出される前記ロボットのハンド部に把持されたワークの姿勢と前記正規の姿勢とのずれの度合が所定以上であるときには、前記ロボットに、前記ハンド部にて把持したワークを前記所定位置に戻させた後、該ハンド部による当該ワークの把持をやり直させるように構成されているこが好ましい。
 この構成によれば、前記カメラにより撮像した画像と、記憶部に記憶された基準画像との間にずれが存在すると制御装置が判定した場合であっても、ワークの正規の姿勢からのずれの度合が所定以上であるときには、前記制御装置による制御の下、ロボットがハンド部に把持したワークを所定位置に戻した後にハンド部によるワークの把持をやり直すこととなる。したがって、ハンド部によるワークの把持姿勢がロボットの姿勢補正により改善できないレベルに達している場合には、ロボットがワークの装着動作を試みるまでもなくハンド部によりワークを把持し直すことで、ロボットの無駄な動作を無くしてサイクルタイムを短縮することができる。
 前記一局面に係るワーク装着システムにおいて、ワークは軸状部材であり、前記カメラは、複数設けられ、複数の前記カメラは、第一カメラと第二カメラとを含み、該第一カメラ及び第二カメラが、前記ロボットのハンド部に正規の姿勢で把持されたワークの軸線方向から見て、該ワークの軸線を通り且つ所定方向に延びる直線に対して線対称に位置するとともに、該第一カメラ及び第二カメラのそれぞれの光軸が前記所定方向に対して所定角度で傾斜するように配置されており、前記基準画像記憶部には、前記基準画像として、前記第一カメラにより撮像した第一基準画像と、前記第二カメラにより撮像した第二基準画像とが記憶され、前記制御装置は、前記ワークセット処理の実行に際して、前記ロボットのハンド部に前記ワークを把持させた状態で前記第一カメラ及び第二カメラに当該ワークの画像を撮像させ、前記第一カメラよる当該ワークの撮像画像と前記基準画像記憶部に記憶された前記第一基準画像との比較、及び、前記第二カメラよる当該ワークの撮像画像と前記基準画像記憶部に記憶された前記第二基準画像との比較を基に、前記ワーク装着部へのワークのセット姿勢が所定のセット姿勢になるように前記ロボットの動作を制御するように構成されていることが好ましい。
 この構成によれば、ワークの軸線方向から見て、ワークに対して異なる角度で配置された第一カメラ及び第二カメラによってワークの画像を撮像し、制御装置において、各カメラによる撮像画像をそれぞれの基準画像(第一基準画像及び第二基準画像)と比較してロボットの動作制御を行うようにしたので、一つのカメラによる撮像画像を基にロボットの動作制御を行うようにした場合に比べてその制御精度を向上させることができる。すなわち、カメラが一つしかない場合には、該カメラの離接方向にワークの位置ずれ(オフセット)や傾きのずれが生じたとしても、カメラによる撮像画像中にこのずれが反映され難いが、二つのカメラをワークに対して異なる角度で配置することで、二つのカメラの少なくとも一方によってワークの位置ずれ及び傾きのずれを確実に捉えることができる。延いては、撮像画像に基づくロボットの動作制御を精度良く行うことができる。
 前記所定角度は45°であることが好ましい。
 これにより、第一カメラ及び第二カメラをスペース効率良く配置することができる。
 前記他の局面に係るワーク装着システムにおいて、前記ワークは軸状部材であり、前記ワーク装着部は、水平方向に延びて前記ワークが挿入される挿入空間部からなり、前記工作機械は、前記挿入空間部に対するワーク挿入方向及び鉛直方向の双方に直交する軸線回りに回動可能に構成されて前記カメラを保持する保持部材と、前記保持部材を、前記カメラの光軸が鉛直方向を向く第一位置と、該カメラの光軸が鉛直方向に対して所定角度で交差する第二位置との間で駆動する駆動部とを有し、前記基準画像記憶部には、前記基準画像として、前記保持部材が前記第一位置にある状態で前記ハンド部に正規の姿勢で把持されたワークを前記カメラにより撮像した第一位置基準画像と、前記保持部材が前記第二位置にある状態で前記ハンド部に正規の姿勢で把持されたワークを前記カメラにより撮像した第二位置基準画像とが記憶されており、前記制御装置は、前記ワークセット処理の実行に際して、前記ロボットのハンド部に前記ワークを把持させた状態で前記ロボットに前記所定姿勢を取らせて、該所定姿勢において前記駆動部により前記保持部材を前記第一位置に位置させた状態で前記カメラに撮像させた当該ワークの撮像画像と前記基準画像記憶部に記憶された前記第一位置基準画像との比較、及び、前記所定姿勢において前記駆動部により前記保持部材を前記第二位置に位置させた状態で前記カメラに撮像させた当該ワークの撮像画像と前記基準画像記憶部に記憶された前記第二位置基準画像との比較を基に、前記ワーク装着部へのワークのセット姿勢が所定のセット姿勢になるように前記ロボットの動作を制御するように構成されていることが好ましい。
 この構成によれば、制御装置によるワークセット処理の実行に際して、制御装置による制御の下、ロボットが所定姿勢を取ると、カメラを保持する保持部材が駆動部によって第一位置と第二位置とに駆動される。第一位置は、カメラの光軸が鉛直になるような位置とされ、第二位置は、カメラの光軸が鉛直方向に対して所定角度で交差するような位置とされている。制御装置による制御装置の下、前記カメラは、保持部材が第一位置にある状態と第二位置にある状態とのそれぞれにおいてハンド部に把持されたワークの画像を撮像する。制御装置では、保持部材が第一位置及び第二位置にある状態で前記カメラにより撮像した各画像を、記憶部に記憶された各位置における基準画像(第一位置基準画像及び第二位置基準画像)と比較し、この比較を基に、ワーク装着部へのワークのセット姿勢を所定のセット姿勢になるように制御する。
 したがって、このワーク装着システムによれば、工作機械に設けられた一つのカメラによってハンド部に把持されたワークを鉛直方向と鉛直方向に交差する方向との二方向から撮像して、撮像した二つの画像を基にハンド部によるワークの把持姿勢のずれを求めることができる。よって、複数のカメラを設ける場合に比べて、カメラの故障リスクや部品コストを低減しつつ、ハンド部によるワークの把持姿勢のずれを精度良く算出することができる。
 前記工作機械は、加工工具を着脱可能な工具主軸が設けられ、前記カメラは、前記加工工具に代えて前記工具主軸に着脱可能に構成され、前記工具主軸が前記保持部材として兼用されていることが好ましい。
 これによれば、工作機械に設けられた既存の工具主軸を前記カメラの保持部材として兼用することで部品点数を減らしてコストを低減することができる。
 前記ハンド部は、複数の把持部材によって、又は、エアーによる吸引力によって、又は、磁石の磁力によって前記ワークを把持する構成を採用することができる。
 このようなハンド部を有するロボットを使用した場合、ワークの形状誤差や異物噛込みに起因してハンド部によるワークの把持姿勢がばらつき易いので、本発明の構成が特に有用である。
 前記ワークは軸状部材であり、前記工作機械は、前記ワークを挿入可能な挿入空間部を有するとともに該挿入空間部に挿入されたワークをチャック可能なチャック装置を有しており、前記ワーク装着部は前記チャック装置の挿入空間部であることが好ましい。
 すなわち、チャック装置の挿入空間部へのワークの挿入に際しては、例えばワークをパレット等の上面にセットする場合に比べて、ワークの位置ずれ及び三次元の傾きのずれに起因する動作不良(干渉等)が発生し易い。したがって、かかる構成に対して本発明の構成が特に有用である。
 以上のように、本発明に係るワーク装着システムによれば、制御装置によるワークセット処理の実行に際して、ロボットのハンド部に設けられたカメラによるワークの撮像画像又は工作機械に設けられカメラによるワークの撮像画像と、ハンド部に正規の姿勢で把持させたワークを前記カメラにより予め撮像した基準画像との比較を基に、ハンド部に把持されたワークの姿勢と正規の姿勢との位置ずれ及び三次元の傾きのずれを算出して、算出した該位置ずれ及び該三次元の傾きのずれを基に、ワーク装着部へのワークのセット姿勢が所定のセット姿勢になるようにロボットの動作制御を行うようにしたことで、ロボットのハンド部にてワークの把持不良が生じたとしても、ワーク装着部にワークを所定のセット姿勢で確実に装着することができる。
実施形態に係るワーク装着システムを含む生産システムを示す平面図である。 実施形態に係るワーク装着システムを含む生産システムを示す斜視図である。 ワーク装着システムの一部を構成するロボットを搭載した無人搬送車を示す斜視図である。 無人搬送車の上面に載置されたバケットを上側から見た平面図である。 図4のV-V線断面図である。 ロボットのハンド部を正面側から見た正面図である。 ロボットのハンド部を側方から見た側面図である。 工作機械の加工動作機構部を示す概略構成図である。 工作機械のワーク主軸に取付けられたチャックを示す斜視図である。 生産システムの制御構成を示すブロック図である。 ロボットがワーク挿入開始姿勢又はワーク引抜き完了姿勢にある状態を示す斜視図である。 ロボットがワーク挿入完了姿勢又はワーク引抜き開始姿勢にある状態を示す斜視図である。 生産システムにおける自動運転制御の内容を示すフローチャートである。 自動運転制御の一部としてAGV制御装置により実行されるワークの姿勢ずれ算出処理の詳細を示すフローチャートである。 基準画像記憶部に記憶された第一基準画像及び第二基準画像の一例を示す概略図である。 撮像画像記憶部に記憶された第一撮像画像及び第二撮像画像の一例を示す概略図である。 第一撮像画像及び第二撮像画像とそれぞれの基準画像との比較図である。 実空間におけるワークの傾斜方向(A1方向~A8方向)を変化させたときの、第一撮像画像及び第二撮像画像におけるワークの軸線の傾斜角度の変化を示す図である。 実施形態2を示す図8相当図である。 基準画像記憶部に記憶された第一位置基準画像及び第二位置基準画像の一例を示す概略図である。 撮像画像記憶部に記憶された第一位置撮像画像及び第二位置撮像画像の一例を示す概略図である。 実施形態2を示す図13相当図である。 第一位置撮像画像と第一位置基準画像との比較図である。 第二位置撮像画像と第二位置基準画像との比較図である。
 以下、本発明の具体的な実施形態について、図面を参照しながら説明する。
 (実施形態)
 図1及び図2は、本実施形態のワーク装着システム100を備えた生産システム1を示している。この生産システム1は、工作機械10、無人搬送車35、この無人搬送車35に搭載されるロボット25、ロボット25に取付けられた二つのカメラ31a,31b、ロボット25及び無人搬送車35を制御する制御装置40、並びに、工作機械10を制御する制御装置60などから構成される。以下の説明では、工作機械10の制御装置60を工作機械制御装置60と称し、無人搬送車35の制御装置40をAGV制御装置40と称する。この工作機械制御装置60及びAGV制御装置40は、互いに通信しながら工作機械10とロボット25とを協働させてワークWの着脱及び加工等を含む一連の生産工程を無人で実行する。
 図1~図3に示すように、前記無人搬送車35には、その上面である載置面36に前記ロボット25が搭載され、また、オペレータが携帯可能なAGV操作盤37(図1参照)が付設されている。尚、このAGV操作盤37は、データの入出力を行う入出力部、当該無人搬送車35及びロボット25を手動操作する操作部、並びに画面表示可能なディスプレイなどを備えている。
 また、無人搬送車35は、工場内における自身の位置を認識可能な位置センサ(例えば、レーザ光を用いた距離計測センサ)を備えており、AGV制御装置40による制御の下で、工場内を無軌道で走行するように構成され、本例では、前記工作機械10に対して予め設定された作業位置に経由する。本例では、AGV制御装置40は、無人搬送車35の筐体内に収容されている。
 図3に示すように、前記ロボット25は、第一アーム26、第二アーム27及び第三アーム28の3つのアームを備えた多関節型のロボットであり、第三アーム28の先端部には、ハンド部29が装着され、また、支持バー30を介して第一カメラ31a及び第二カメラ31bが装着されている。
 図3に示すように、ハンド部29は、ボディ291と、互い対向する一対の把持部材292とを有している。ハンド部29は、一対の把持部材292によりワークWを挟んで把持するように構成されている。ワークWは、本例では円柱状の軸状部材とされている。
 無人搬送車35の載置面36におけるロボット25よりも車両後側には、ワークWを収納するバケット38が載置されている。ロボット25は、無人搬送車35が工作機械10の作業位置に停車した状態で、バケット38内に収納された加工前のワークWを取出して工作機械10に投入する一方、加工後のワークWを工作機械10から取出してバケット38内の元の位置に収納する。
 図4及び図5に示すように、バケット38は偏平な矩形箱状をなしている。バケット38内には、複数のワークWが車両左右方向に間隔を空けて収納されている。バケット38内の底面には、各ワークWの両端部を支持する一対一組の支持板39が、複数組、突設されている。各支持板39の上端部には、ワークWの周面を支持するV字状の係合溝39aが形成されている。各ワークWは、両端部が支持板39の係合溝39aに係合することでバケット38内で動くことなく安定に収納されている。
 [カメラの詳細構成]
 図6及び図7に示すように、ハンド部29におけるボディ291の側面には、第一カメラ31a及び第二カメラ31bを支持する支持バー30が取付けられている。支持バー30は、一対の把持部材292に正規の姿勢で把持されたワークWの軸線Jと直交する方向に延設されている。以下では、特に断らない限り、支持バー30がY軸方向に延びる状態(図6の状態)にあるものとして説明を行う。
 第一カメラ31a及び第二カメラ31bは、一対の把持部材292に正規の姿勢で把持されたワークWの軸線方向から見て(図6の紙面垂直方向から見て)、該ワークWの軸線Jを通り且つ鉛直方向に延びる直線L0に対して線対称に配置されている。第一カメラ31a及び第二カメラ31bは、それぞれの光軸L1,L2が鉛直方向に対して45°(所定角度の一例)で傾斜するとともにワークWの中心位置(軸線Jの位置)で交差するように配置されている。
 第一カメラ31a及び第二カメラ31bは、例えばCCDカメラやCMOSカメラにより構成されていて、多行多列の2次元に配置された複数の光電変換素子を備え、受光強度に応じて各光電変換素子から出力される電圧信号をデジタル化した後、これを濃淡レベル値に変換して、前記光電変換素子の配列と同配列の二次元濃淡画像データとして出力する。各カメラ31a,31bから出力された画像データは、後述するAGV制御装置40の撮像画像記憶部50に格納される。
 [工作機械の構成]
 前記工作機械10は、固定工具を用いた旋削機能と、回転工具を用いたミーリング機能とを有する複合型のNC(数値制御)工作機械である。
 具体的には、工作機械10は、図2示すように、加工エリア内にてワークWを加工する加工動作機構部20と、加工動作機構部20の動作を制御する前記工作機械制御装置60(図1参照)と、オペレータが工作機械10に対して種々の設定及び指令を行うためのNC操作盤16とを備えている。
 図8に示すように、加工動作機構部20は、ワークWが装着されるチャック11と、先端部に該チャック11が取り付けられたワーク主軸12と、ワーク主軸12をその軸線回りに回転可能に支持するワーク主軸台(図示省略)と、回転工具Tr(加工工具の一例)が保持される工具主軸13と、工具主軸13を回転可能に支持する工具主軸台21と、旋削加工のための固定工具Tfが取付けられる下刃物台14とを有している。また、加工動作機構部20は、ワーク主軸12、工具主軸13及び下刃物台14のそれぞれを、X軸、Y軸及びZ軸のうち予め定めた一つ又は複数の軸に沿って送り駆動する送り装置(図示省略)をさらに有している。
 前記ワーク主軸12は、チャック11にワークWを保持させた状態でZ軸に平行な軸線回りに回転可能に構成されている。
 チャック11は、図9に示すように、中空円筒状の本体11aと、本体11aの端面にその軸線を中心として放射状に配置された三つの把持爪11bと、各把持爪11bを径方向に進退可能に駆動する爪駆動部(図示省略)とを有している。爪駆動部は、工作機械制御装置60からの指令を受けて、各把持爪11bを、本体11aの径方向に沿って開位置と閉位置との間で駆動する。各把持爪11bが開位置にある状態では、三つの把持爪11bの先端面の内側に、ワークWを挿入可能な挿入空間部Kが形成されている。この挿入空間K部に、ワークWを本体11aの軸線方向(Z軸方向)に沿って挿入した後、爪駆動部によって各把持爪11bを閉位置側(径方向内側)に駆動すると、ワークWが三つの把持爪11bにより三方向から圧着されて移動不能に固定される。尚、本例では、チャック11の一例として三つの把持爪11bを有する三つ爪チャックを挙げて説明したが、これに限ったものでなく、把持爪11bは二つであってもよいし、四つ以上であってもよい。
 工具主軸13は、回転工具Trを保持した状態でX軸に平行な軸線回りに回転可能に構成されている。工具主軸13を支持する工具主軸台21は、外観視が上下方向に長い略直方体状をなしていて、送り装置によりX軸方向、Y軸方向及びZ軸方向に移動可能に構成されている。また、工具主軸台21は、図示しないチルトモータ(駆動部の一例)によってY軸に平行な軸線回りに揺動可能に構成されている。尚、以下の説明では特に断らない限り、工具主軸台21が鉛直状態にあるものとして説明を行う。
 前記回転工具Trは、工具ホルダ17を介して工具主軸13の下端部に着脱可能に装着される。工具主軸13は、工具ホルダ17のテーパシャンク17aに嵌合するテーパ状の嵌合穴13aと、嵌合穴13aに装着された工具ホルダ17を脱落不能に引き込むドローバー機構(図示省略)とを有している。嵌合穴13aに装着される工具ホルダ17は、工作機械10に搭載されたATC(Automatic tool changer)装置によって、不図示の工具マガジン内に収容された他の工具ホルダと交換可能になっている。
 下刃物台14は、Z軸と平行に延びる軸線回りに旋回可能なタレット141を有していて、送り装置によってZ軸方向及びX軸方向に移動可能に構成されている。タレット141には、複数の固定工具Tfが工具ホルダと共に放射状に取り付けられている。タレット141を軸線回りに回転させることで固定工具Tfの割り出しを行えるようになっている。
 以上のように構成された加工動作機構部20は、後述する工作機械制御装置60の数値制御部62からの指令を受けたサーボ機構によって駆動される。サーボ機構は、例えば、サーボアンプと、サーボアンプにより駆動されるサーボモータと、サーボモータの回転角度をフィードバックするエンコーダと(いずれも図示せず)から構成される。そして、加工動作機構部20は、X軸,Y軸及びZ軸の直交三軸方向において、回転工具Tr、固定工具Tf、及びワークWを相対移動させることでワークWを所定形状に加工する。
 前記工作機械10の正面側には、前記加工動作機構部20によるワークWの加工エリアにアクセスするためのアクセス開口10a(図2参照)が形成されている。アクセス開口10aは、Z軸方向にスライドする開閉カバー15によって開閉可能になっている。工作機械10におけるアクセス開口10aの右側には、NC操作盤16が設けられている。
 NC操作盤16は、オペレータによる各種操作を受付けるとともに必要な情報をディスプレイ上に表示可能に構成されている。具体的には、オペレータは、NC操作盤16を介してNCプログラムの入力操作を行ったり、手動運転モードと自動運転モードとの選択操作を行ったりすることができる。NC操作盤16は、オペレータの操作に応じた操作信号を工作機械制御装置60に送信する。
 [工作機械制御装置の構成]
 図10に示すように、工作機械制御装置60は、大まかには、工作機械10の全体動作を制御するPLC(Programmable logic controller)61と、PLC61からの指令を受けて加工動作機構部20の動作を制御する数値制御部62と、AGV制御装置40との間で通信を行う無線通信部63とで構成されている。
 工作機械制御装置60は、手動運転モードが選択されている状態では、NC操作盤16からの操作信号に基づいて工作機械10の動作制御を行う一方、自動運転モードが選択されている状態では、AGV制御装置40との連携(通信)によってオペレータを介さずに、開閉カバー15の開閉動作、チャック11によるワークWのチャック動作及びアンチャック動作、並びにNCプログラムに基づくワークWの加工動作など、一連の工程動作を順次実行する。
 [AGV制御装置の構成]
 図10に示すように、AGV制御装置40は、動作プログラム記憶部41、移動位置記憶部42、動作姿勢記憶部43、マップ情報記憶部44、マップ情報生成部45、位置認識部46、手動運転制御部47、自動運転制御部48、基準画像記憶部49、撮像画像記憶部50、ワーク姿勢ずれ算出部51、データ記憶部52、及び入出力インターフェース53等から構成される。そして、AGV制御装置40は、この入出力インターフェース53を介して、ロボット25、第一カメラ31a、第二カメラ31b、無人搬送車35及びAGV操作盤37に接続されている。また、AGV制御装置40は、入出力インターフェース53を介して工作機械制御装置60と無線通信可能に構成されている。
 尚、AGV制御装置40は、CPU、RAM、ROMなどを含むコンピュータから構成され、マップ情報生成部45、位置認識部46、前記手動運転制御部47、自動運転制御部48、ワーク姿勢ずれ算出部51及び入出力インターフェース53は、コンピュータプログラムによってその機能が実現され、後述する処理を実行する。また、動作プログラム記憶部41、移動位置記憶部42、動作姿勢記憶部43、マップ情報記憶部44、基準画像記憶部49、撮像画像記憶部50及びデータ記憶部52は、ROM及びRAMなどの適宜記憶媒体から構成される。
 前記手動運転制御部47は、オペレータにより前記AGV操作盤37から入力される操作信号に従って、前記無人搬送車35、ロボット25、カメラ31a,31bを動作させる機能部である。即ち、オペレータは、この手動運転制御部47による制御の下で、AGV操作盤37を用いた、前記無人搬送車35、ロボット25及びカメラ31a,31bの手動操作を実行することができる。
 前記動作プログラム記憶部41は、生産時に前記無人搬送車35及び前記ロボット25を自動運転するための自動運転用プログラム、並びに後述する工場内のマップ情報を生成する際に前記無人搬送車35を動作させるためのマップ生成用プログラムを記憶する機能部である。自動運転用プログラム及びマップ生成用プログラムは、例えば、前記AGV操作盤37に設けられた入出力部から入力され、当該動作プログラム記憶部41に格納される。
 尚、この自動運転用プログラムには、無人搬送車35が移動する目標位置としての移動位置、移動速度及び無人搬送車35の向きに関する指令コードが含まれ、また、ロボット25が順次動作する当該動作に関する指令コード、及び前記カメラ31a,31bの操作に関する指令コードが含まれる。また、マップ生成用プログラムは、前記マップ情報生成部45においてマップ情報を生成できるように、無人搬送車35を無軌道で工場内を隈なく走行させるための指令コードが含まれる。
 前記マップ情報記憶部44は、無人搬送車35が走行する工場内に配置される機械、装置、機器など(装置等)の配置情報を含むマップ情報を記憶する機能部であり、このマップ情報は前記マップ情報生成部45によって生成される。
 前記マップ情報生成部45は、詳しくは後述する前記AGV制御装置40の自動運転制御部48による制御の下で、前記動作プログラム記憶部41に格納されたマップ生成用プログラムに従って無人搬送車35を走行させた際に、前記位置センサによって検出される距離データから工場内の空間情報を取得するとともに、工場内に配設される装置等の平面形状を認識する。そして、マップ情報生成部45は、予め登録された装置等の平面形状を基に、工場内に配設された具体的な装置、本例では、工作機械10の位置、平面形状等(配置情報)を認識する。マップ情報生成部45は、得られた空間情報及び装置等の配置情報を工場内のマップ情報として前記マップ情報記憶部44に格納する。
 前記位置認識部46は、前記位置センサによって検出される距離データ、及び前記マップ情報記憶部44に格納された工場内のマップ情報を基に、工場内における無人搬送車35の位置を認識する機能部であり、この位置認識部46によって認識される無人搬送車35の位置に基づいて、当該無人搬送車35の動作が前記自動運転制御部48によって制御される。
 前記移動位置記憶部42は、前記無人搬送車35が移動する具体的な目標位置としての移動位置であって、前記動作プログラム中の指令コードに対応した具体的な移動位置を記憶する機能部であり、この移動位置には、上述した工作機械10に対して設定される作業位置が含まれる。尚、この移動位置は、例えば、前記手動運転制御部47による制御の下、前記AGV操作盤37により前記無人搬送車35を手動運転して、目標とする各位置に移動させた後、前記位置認識部46によって認識される位置データを前記移動位置記憶部42に格納する操作によって設定される。この操作は所謂ティーチング操作と呼ばれる。
 前記動作姿勢記憶部43は、前記ロボット25が所定の順序で動作することによって順次変化するロボット25の姿勢(動作姿勢)であって、前記動作プログラム中の指令コードに対応した動作姿勢に係るデータを記憶する機能部である。この動作姿勢に係るデータは、前記手動運転制御部47による制御の下で、前記AGV操作盤37を用いたティーチング操作により、当該ロボット25を手動運転して、目標とする各姿勢を取らせたときの、当該各姿勢におけるロボット25の各関節(モータ)の回転角度データであり、この回転角度データが動作姿勢に係るデータとして前記動作姿勢記憶部43に格納される。
 動作姿勢記憶部43に記憶されるロボット25の動作姿勢は、撮像姿勢(所定姿勢)と待機姿勢と作業姿勢との三つに大別される。
 前記撮像姿勢は、ロボット25のハンド部29により把持されたワークWを各カメラ31a,31bにより撮像するための姿勢である。図3は、ロボット25が撮像姿勢にある状態の一例を示している。この撮像姿勢では、ハンド部29が平面視でバケット38よりも外側に位置しており、これにより、両カメラ31a,31bによる撮像画像中に、ハンド部29が把持したワークW以外のワークW(バケット38内に収納されたワークW)が映り込まないようになっている。本例では、ハンド部29は、前記ロボット25が撮像姿勢にある状態で、無人搬送車35におけるバケット38の載置面36よりも右側に位置している。ワークWは、ロボット25が撮像姿勢にある状態においてその軸線Jが無人搬送車35の左右方向に水平に延びるようにハンド部29に把持される。
 前記待機姿勢は、ロボット25を所定の中立位置で待機させた姿勢である。図2には、ロボット25が待機姿勢にある状態の一例を示している。
 前記作業姿勢は、無人搬送車35が工作機械10の作業位置に停車した状態で、ロボット25に各種作業を行わせるための姿勢である。
 本例では、この作業姿勢として、バケット38内に収容された加工前のワークWをハンド部29に把持させて取り出すためのワーク取出し姿勢(図示省略)と、加工前のワークWをハンド部29に把持させた状態で工作機械10内に進入させ、該ワークWをワーク主軸12と同軸に保持するワーク挿入開始姿勢(図11参照)と、ワークWをチャック11の挿入空間部Kに向けて挿入して行く複数のワーク挿入動作姿勢(図示省略)と、挿入空間部KへのワークWの挿入が完了したワーク挿入完了姿勢(図12参照)と、ワーク挿入完了姿勢と同じ姿勢であって、加工後のワークWの引抜きを開始するための引抜き開始姿勢(図12参照)と、加工後のワークWをワーク主軸12と同軸に維持しながらチャック11の挿入空間部Kから引抜いて行く複数の引抜き動作姿勢(図示省略)と、ワーク挿入開始姿勢と同じ姿勢であって、引抜いた加工後のワークWをチャック11から離間した位置で保持する引抜き完了姿勢(図11参照)と、引抜き完了姿勢でハンド部29により把持されているワークWを無人搬送車35のバケット38に収納するワーク収納姿勢(図示省略)とが設定されている。
 前記自動運転制御部48は、前記動作プログラム記憶部41に格納された自動運転用プログラムに従って、無人搬送車35、ロボット25及びカメラ31a,31bを動作させる機能部である。その際、前記移動位置記憶部42及び動作姿勢記憶部43に格納されたデータが必要に応じて使用される。自動運転制御部48による無人搬送車35、ロボット25及びカメラ31a,31bの具体的な制御処理については後述する。
 前記基準画像記憶部49は、ティーチング操作時に、無人搬送車35を工作機械10に対して設定された作業位置に停車させ且つロボット25に前記撮像姿勢を取らせた状態で、ハンド部29に正規の状態で把持されたワークWを第一カメラ31a及び第二カメラ31bによって撮像した画像をそれぞれ、第一基準画像S1及び第二基準画像S2(図15A参照)として記憶する機能部である。
 撮像画像記憶部50は、前記自動運転制御部48による制御の下で、前記ロボット25が前記自動運転用プログラムにしたがって、ハンド部29によってバケット38内に収納された加工前のワークWを取出した後、前記撮像姿勢に移行して前記第一カメラ31a及び第二カメラ31bによってワークWを撮像した第一撮像画像G1及び第二撮像画像G2(図15B参照)を記憶する機能部である。撮像画像記憶部50に記憶される第一撮像画像G1及び第二撮像画像G2は、各カメラ31a,31bによるワークWの撮像処理が実行される度に新たな撮像画像に更新される。
 前記ワーク姿勢ずれ算出部51は、撮像画像記憶部50に記憶された第一撮像画像G1及び第二撮像画像G2を、それぞれに対応する第一基準画像S1及び第二基準画像S2と比較して、各撮像画像G1,G2とそれぞれの基準画像S1,S2とのずれに関する情報(例えば、ワークWの輪郭のずれに限らず、例えば輝度値(濃淡)のずれ等)を取得する。そして、ワーク姿勢ずれ算出部51は、取得した各撮像画像G1,G2とそれぞれの基準画像S1,S2とのずれに関する情報と、データ記憶部52に記憶された後述の角度算出用データとを基に、ロボット25のハンド部29に把持されたワークWの姿勢とその正規の姿勢とのずれを算出する。
 そして、自動運転制御部48は、ワーク姿勢ずれ算出部51が算出したワークWの姿勢のずれを基に、チャック11へのワークWのセット姿勢が所定のセット姿勢になるように、ロボット25によるワークWの挿入開始姿勢、ワーク挿入完了姿勢、及び各ワーク挿入動作姿勢の補正量(例えばロボット25の各関節における直交三軸回りの回転角の補正量)を算出する。ここで、所定のセット姿勢とは、ワークWの軸線Jがワーク主軸12の回転軸線に対して同軸になるような姿勢である。
 [自動運転制御の説明]
 図13は、AGV制御装置40により実行される無人搬送車35及びロボット25の自動運転制御の一例を示すフローチャートである。
 この自動運転制御では、先ず、自動運転制御部48が、動作プログラム記憶部41に記憶された自動運転用プログラムに従って、無人搬送車35を工作機械10に対して設定された作業位置に停車させた後、ロボット25に前記待機姿勢(図2参照)を取らせる(ステップSA1)。
 そして、自動運転制御部48では、入出力インターフェース53を介して受信した工作機械制御装置60の無線通信部63からの信号を基に、工作機械10側にてNCプログラムに基づく加工サイクルが終了したか否かを判定し(ステップSA2)、終了していないと判定した場合(ステップSA2でNOの場合)にはリターンする一方、加工サイクルが終了していると判定した場合(ステップSA2でYESの場合)には、ロボット25にワークWの払い出し動作を実行させる(ステップSA3)。具体的には、自動運転制御部48は、工作機械制御装置60と通信することにより、工作機械10の開閉カバー15が開放状態にあることを確認した後、ロボット25に上述したワーク引抜き開始姿勢、各ワーク引抜き動作姿勢、及びワーク引抜き完了姿勢を順次取らせることで、ロボット25にチャック11からワークWを引抜かせて、その後、ロボット25にワーク収納姿勢を取らせることでワークWをバケット38内に収納する。
 そうしてロボット25によるワークWの払い出し動作が完了した後は、自動運転制御部48が、ロボット25に上述したワーク取出し姿勢を取らせて、ハンド部29の一対の把持部材292を閉じることでバケット38内に収納された加工前のワークWを把持して取出す(ステップSA4)。そして、ハンド部29により加工前のワークWを取出した後、自動運転制御部48がロボット25に前記撮像姿勢(図3参照)を取らせる(ステップSA5)。次いで、自動運転制御部48は、ロボット25に撮像姿勢を取らせた状態で第一カメラ31a及び第二カメラ31bによる撮像処理を実行する(ステップSA6)。これにより、ハンド部29に把持されたワークWの画像が、第一カメラ31a及び第二カメラ31bに撮像される。各カメラ31a,31bによる撮像画像である第一撮像画像G1及び第二撮像画像G2は、AGV制御装置40に送信されて撮像画像記憶部50(図10参照)に記憶される。
 そして、AGV制御装置40のワーク姿勢ずれ算出部51では、撮像画像記憶部50に記憶された第一撮像画像G1及び第二撮像画像G2をそれぞれ、基準画像記憶部49に記憶された第一基準画像S1及び第二基準画像S2と比較する。そして、第一撮像画像G1と第二撮像画像G2との少なくとも一方の画像において対応する基準画像S1,S2との間でずれが存在するか否かを判定する(ステップSA7)。
 そして、ワーク姿勢ずれ算出部51において、第一撮像画像G1及び第二撮像画像G2の双方が対応する基準画像S1,S2に一致している、つまり撮像画像と基準画像とのずれが存在しないと判定した場合(ステップSA7でNOの場合)には、自動運転制御部48が、ロボット25に上述したワーク取出し姿勢、ワーク挿入開始姿勢(図11参照)、各ワーク挿入動作姿勢(図示省略)及びワーク挿入完了姿勢(図12参照)を順次取らせることで、チャック11にワークWをセットし(ステップSA13)、その後、ロボット25を待機姿勢に戻して(ステップSA11)、工作機械制御装置60と通信することで、開閉カバー15を閉じて工作機械10にワークWの加工サイクルを開始させ(ステップSA12)、しかる後にリターンする。
 一方、ワーク姿勢ずれ算出部51において、第一撮像画像G1と第二撮像画像G2との少なくとも一方の画像について基準画像S1,S2との間でずれが存在すると判定した場合(ステップSA7でYESの場合)には、このずれに関する情報を取得して、取得したずれに関する情報を基に、ロボット25のハンド部29に把持されたワークWの姿勢と正規の姿勢とのずれ(実空間におけるずれ)を算出する(ステップSA8)。
 自動運転制御部48は、ワーク姿勢ずれ算出部51が算出したワークWの姿勢のずれを基に、ワークWをチャック11に所定のセット姿勢でセットするために必要なロボット25のワーク挿入時の各姿勢(前記ワーク挿入開始姿勢、各ワーク挿入動作姿勢、及びワーク挿入完了姿勢)の補正量を算出し(ステップSA9)、算出した補正量を用いて、ロボット25に工作機械10のチャック11へのワーク装着動作を実行させる(ステップSA10)。具体的には、先ず、自動運転制御部48が工作機械制御装置60との通信を行うことにより開閉カバー15が開放状態にあることを確認した後(開放状態にない場合には工作機械制御装置60に開閉カバー15の開放指令を行って工作機械制御装置60よりカバー開完了信号を受信した後)、ロボット25にワーク挿入開始姿勢(図11参照)、各ワーク挿入動作姿勢(図示省略)、及びワーク挿入完了姿勢(図12参照)を順次取らせてハンド部29に把持されたワークWをチャック11の挿入空間部Kに挿入する。このワークWの挿入過程においては、ロボット25に、動作姿勢記憶部43に記憶されたワーク挿入開始姿勢、各ワーク挿入動作姿勢、及びワーク挿入完了姿勢をそのまま取らせるのではなく、前記ステップSA9で算出した補正量に基づいて補正した姿勢を取らせる。
 そうして、チャック11に対するワークWの挿入(セット)が完了した後、自動運転制御部48が工作機械制御装置60に対して挿入完了信号を送信する。工作機械制御装置60は、挿入完了信号を受信すると、チャック11の爪駆動部(図示省略)によって三つの把持爪11bを閉側に駆動させる。これにより、ワークWがチャック11に挿抜不能に固定される。
 チャック11にワークWが固定された後は、自動運転制御部48がロボット25を待機姿勢に戻すとともに(ステップSA11)、工作機械制御装置60に対して完了信号を出力する。工作機械制御装置60では、この完了信号を受信すると、工作機械10の開閉カバー15を閉位置に駆動した後、工作機械10にNCプログラムに基づくワークWの加工サイクルを開始させ(ステップSA12)。そして、工作機械10におけるワークWの加工サイクルが開始した後はリターンする。
 図14は、前記ワーク姿勢ずれ算出部51により実行されるワークWの姿勢ずれ算出処理(ステップSA8)の詳細を示すフローチャートである。
 ワーク姿勢ずれ算出部51は、撮像画像記憶部50に記憶された第一撮像画像G1(第一カメラ31aによるワークWの撮像画像)及び第二撮像画像G2(第二カメラ31bによるワークWの撮像画像)を所定の閾値で二値化し、二値化した画像をラスター方向に走査してワークWの輪郭線をそれぞれ抽出する(ステップSA81)。
 次いで、ワーク姿勢ずれ算出部51は、第一撮像画像G1及び第二撮像画像G2にてそれぞれ抽出したワークWの輪郭線のうち、ワークWの長手方向に直線状に延びる二本の輪郭線を特定し、特定した二本の輪郭線の間に位置し且つ各輪郭線からの距離が等しい点(画像)の集合を直線近似してワークWの軸線Jとして算出する(ステップSA82)。
 同様に、ワーク姿勢ずれ算出部51は、基準画像記憶部49に記憶された第一基準画像S1及び第二基準画像S2(図15B参照)に対して二値化処理及び輪郭抽出処理を実行した後、各基準画像S1,S2においてワークWの軸線Jを算出する(ステップSA83)。尚、第一基準画像S1及び第二基準画像S2については、ワークWの輪郭線と軸線Jとを予め算出して記憶しておいてもよい。
 そして、ワーク姿勢ずれ算出部51は、第一撮像画像G1におけるワークWの軸線Jと第一基準画像S1におけるワークWの軸線Jとのなす角度である第一交差角θ1(図15C参照)、及び、第二撮像画像G2におけるワークWの軸線Jとのなす角度である第二交差角θ2を算出する(ステップSA84)。
 ワーク姿勢ずれ算出部51は、算出した第一交差角θ1及び第二交差角θ2を基に、実空間におけるワークWの傾斜方向及び傾斜角(三次元の傾きのずれ)を算出する(ステップSA85)。この傾斜方向及び傾斜角の算出に際しては、データ記憶部52に記憶された角度算出用データを使用する。この角度算出用データは、ワークWを正規の姿勢(ワークWの軸線JがZ軸方向を向く姿勢)から、ハンド部29を支点に図6のA1方向~A8方向に所定角度で傾斜させたときの第一交差角θ1及び第二交差角θ2の値をテーブル化したデータである。前記所定角度は、例えば0°~5°の間で等間隔に(本例では0.2°刻みに)設定される。角度算出用データに記述された第一交差角θ1及び第二交差角θ2は、予めテストを行うことにより実測してもよいし、コンピュータを用いて幾何学的に算出される理論値であってもよい。
 図16は、実空間においてワークWを正規の姿勢から図6のA1方向~A8方向にそれぞれ所定角度で傾斜させたときの第一交差角θ1及び第二交差角θ2の変化の一例を示す図である。ワークWの傾斜方向がA1方向である場合には、第一交差角θ1と第二交差角θ2は共にα°であり、ワークWの傾斜方向がA1方向と反対側のA5方向である場合には、第一交差角θ1と第二交差角θ2とは共に-α°であり、その他の場合には、第一交差角θ1と第二交差角θ2とは異なる角度になる。いずれにせよ、画像平面における第一交差角θ1及び第二交差角θ2が分かれば、前記角度算出用データを基に、実空間におけるワークWの傾斜方向及び傾斜角度を一意に求めることができる。
 このことを利用して、ワーク姿勢ずれ算出部51は、ステップSA84で算出した第一交差角θ1及び第二交差角θ2に対応するワークWの傾斜方向及び傾斜角度を、前記角度算出用データを基に算出する(ステップSA86)。この算出に際しては、線形補間を行うことで、角度算出用データのテーブルに載っていない第一交差角θ1及び第二交差角θ2に対するワークWの傾斜方向(A1~A8の間に位置する方向)及び傾斜角度を算出することができる。
 ワーク姿勢ずれ算出部51は、実空間におけるワークWの傾斜方向及び傾斜角度を算出した後は、第一撮像画像G1におけるワークWの先端縁と軸線Jとの交点と、第一基準画像S1におけるワークWの軸線Jとのオフセット量δ1(図15C参照)、及び、第二撮像画像G2におけるワークWの先端縁と軸線Jとの交点と、第二基準画像S2におけるワークWの軸線Jとのオフセット量δ2を算出する(ステップSA86)。
 その後、ワーク姿勢ずれ算出部51は、算出したオフセット量δ1,δ2を基に、実空間におけるワークWの先端位置のX軸方向及びY軸方向のオフセット量(ワークWの傾斜の影響を除くオフセット量)を算出する(ステップSA87)。このオフセット量の算出においても、例えば予め算出したテーブルデータを使用すればよい。そうして、ワーク姿勢ずれ算出部51は、実空間におけるワークWの傾斜方向及びその傾斜角度(三次元の傾きのずれ)、並びに、ワークWの先端位置(先端中心位置)におけるX軸方向及びY軸方向のオフセット量(位置ずれ)を算出した後、図13のメインフローに戻る。
 以上のように構成されたワーク装着システム100を備えた生産システム1では、オペレータによりNC操作盤16を介して自動運転モードが設定されると、AGV制御装置40の自動運転制御部48による制御の下、無人搬送車35が工作機械10の作業位置に停車し、ロボット25が加工後のワークWを工作機械10から払い出してバケット38内に収納した後、加工前の一のワークWをバケット38内から取出して工作機械10のチャック11に装着(セット)する。
 このとき、加工前のワークWの形状ばらつきやハンド部29の把持部材292とワークWとの間の異物噛み込みや自重による変位等に起因して把持部材292によるワークWの把持姿勢が正規の姿勢からずれる場合がある。ワークWの把持姿勢が正規の姿勢からずれた状態でロボット25がチャック11の挿入空間部KにワークWを挿入しようとすると、ワークWがチャック11の把持爪11bと干渉して挿入不能になったり、仮にワークWを挿入空間部Kに挿入できてもワークWが傾いてセットされたりする虞がある。
 これに対して本実施形態では、AGV制御装置40は、ロボット25によってワークWをチャック11にセットさせるワークセット処理を実行する際に、ロボット25のハンド部29にワークWを把持させた状態で第一カメラ31a及び第二カメラ31bに当該ワークWの画像を撮像させ(ステップSA5)、各カメラ31a,31bによるワークWの撮像画像である第一撮像画像G1及び第二撮像画像G2と、基準画像記憶部49に予め記憶された正規の把持姿勢にあるワークWの撮像画像である第一基準画像S1及び第二基準画像S2との比較を基に、チャック11へのワークWのセット姿勢が所定のセット姿勢になるようにロボット25の動作を制御するように構成されている(ステップSA8~S10)。
 これにより、ハンド部29により把持したワークWの把持姿勢が正規の姿勢からずれていたとしても、AGV制御装置40によってロボット25の動作を制御して、チャック11へのワークWのセット姿勢を所定のセット姿勢に制御することができる。
 具体的には、AGV制御装置40は、ワーク姿勢ずれ算出部51によって、第一撮像画像G1及び第二撮像画像G2と、それぞれの基準画像である第一基準画像S1及び第二基準画像S2との間にずれが存在するか否かを判定し(ステップSA7)、存在すると判定し場合(ステップSA7でYESの場合)には、このずれに関する情報を算出して(ステップSA84及びSA86)、算出した画像間のずれに関する情報を基に、ハンド部29に把持されたワークWの姿勢と正規の姿勢とのずれに関する情報、具体的には、ロボット25のハンド部29に把持されたワークWの姿勢の正規の姿勢からのオフセット量(位置ずれ)を算出するとともに(ステップSA87)、ワークWの軸線Jの傾斜方向及び傾斜角度(三次元の傾きのずれ)を算出する(ステップSA85)。そして、AGV制御装置40の自動運転制御部48は、算出したワークWの位置ずれ及び三次元の傾きのずれを基に、チャック11へのワークWのセット姿勢が所定のセット姿勢になるようロボット25の動作補正を行うように構成されている(ステップSA9及びSA10)。
 これによれば、ハンド部29に把持されたワークWの撮像画像G1,G2と基準画像S1,S2とのずれに関する情報を基に、ワークWの正規の姿勢に対する位置ずれ及び三次元の傾きのずれを容易に算出することができる。そして、算出したワークWの位置ずれ及び三次元の傾きのずれを基に、ロボット25の動作補正を行うことで、チャック11に対してワークWが誤った姿勢で装着されるのを防止することができる。
 また、第一カメラ31a及び第二カメラ31bは、ロボット25のハンド部29に正規の姿勢で把持されたワークWの軸線方向から見て、該ワークWの軸線Jを通り且つ鉛直方向に延びる直線L0に対して線対称に配置されるとともに、該第一カメラ31a及び第二カメラ31bのそれぞれの光軸L1,L2が鉛直方向に対して所定角度θaで傾斜するように配置されている(図6参照)。
 これによれば、ワーク姿勢ずれ算出部51によってワークWの姿勢のずれを算出する際に、直線L0に対して線対称に配置された二つのカメラ31a,31bの撮像画像を使用するようにしたので、一つのカメラによって撮像した一つの撮像画像を使用する場合に比べて、前記ワークWの姿勢ずれの算出精度を向上させることができる。
 本実施形態においては、前記所定角度θaは45°とされている。
 これにより、第一カメラ31a及び第二カメラ31bをスペース効率良くコンパクトに配置することができる。
 (実施形態2)
 図17は実施形態2を示している。この実施形態では、ハンド部29に把持されたワークWを撮像するためのカメラの配置構成、及び、撮像した画像に基づくワークWの姿勢ずれ算出処理の内容が実施形態1とは異なっている。尚、実施形態1と同じ構成要素には同じ符号を付してその詳細な説明を省略する。
 すなわち、本実施形態では、図17に示すように、工作機械10に設けられた一つのカメラ19aによって、ハンド部29に把持されたワークWの画像を二つの異なる位置から撮像するようにしている。
 カメラ19aは、工具ホルダ17に取付けられた撮像装置19に内蔵されている。撮像装置19を取付けた該工具ホルダ17は、回転工具Trを装着した他の工具ホルダ17と同様に不図示の工具マガジンに収容可能であり、必要に応じてATC装置により工具マガジンから取出されて工具主軸13の嵌合穴13aに装着される。そして、工具主軸13は、工具ホルダ17を介して撮像装置19のカメラ19aを保持可能になっている。本例では、この工具主軸13がカメラ19aを保持する保持部材として機能する。
 撮像装置19は、外観視が円筒状をなしていて、その下端面の中心部からカメラ19aの撮像レンズが露出するように構成されている。カメラ19aは、その光軸が撮像装置19の軸線と一致するように配置されている。
 工具主軸台21は、工作機械制御装置60の数値制御部62(図10参照)からの指令を受けたチルトモータによってY軸方向に平行な軸線回りに(チャック11へのワーク挿入方向及び鉛直方向の双方に直交する軸線回りに)揺動可能に構成されている。
 数値制御部62は、チルトモータによる工具主軸台21の揺動と、送り装置による工具主軸台21のX軸、Y軸及びZ軸方向の直線移動とを制御することで、工具主軸台21に保持された工具主軸13を後述する第一撮像位置と第二撮像位置とに切替え可能に構成されている。
 ロボット25は、工具主軸13が第一撮像位置及び第二撮像位置にある状態で予め定めた撮像姿勢を取る。ロボット25が撮像姿勢を取ることで、ワークWがハンド部29により工作機械10内の所定位置に保持される。具体的には、ワークWは、ロボット25が撮像姿勢を取った状態で、ワーク主軸12から離間した位置に該ワーク主軸12と同軸に保持される。尚、ロボット25の撮像姿勢は、上述したワーク挿入開始姿勢と同じ姿勢であってもよい。
 工具主軸13が第一撮像位置にある状態では、図17の実線で示すように、カメラ19aは、その光軸が鉛直方向に延びるように且つロボット25のハンド部29に正規の姿勢で把持されたワークWの先端中心位置を通るように配置される。
 工具主軸13が第二撮像位置にある状態では、図17の二点鎖線で示すように、カメラ19aは、その光軸が鉛直方向に対して所定角度θbで傾斜するように且つロボット25のハンド部29に正規の姿勢で把持されたワークWの先端中心位置を通るように配置される。前記所定角度θbは、例えば30°~60°であることが好ましく、45°であることがより好ましい。
 基準画像記憶部49には、工具主軸13が第一撮像位置にある状態で、ロボット25のハンド部29に正規の姿勢で把持されたワークWをカメラ19aにより撮像した第一位置基準画像Sp1(図18A参照)と、工具主軸台21が第二撮像位置にある状態でロボット25のハンド部29に正規の姿勢で把持されたワークWをカメラ19aにより撮像した第二位置基準画像Sp2とが記憶されている。
 図19は、実施形態2のAGV制御装置40により実行される無人搬送車35及びロボット25の自動運転制御の一例を示すフローチャートである。
 ステップSB1~SB4及びステップSB9~13の処理は、実施形態1のステップSA1~SA4、ステップSA9~SA13と同様の処理であるため詳細な説明を省略し、以下では、主に、実施形態1とは異なる処理であるステップSB5~SB8について説明する。
 すなわち、本実施形態では、自動運転制御部48がロボット25にバケット38内から加工前の一のワークWを取り出させた後、ロボット25に撮像姿勢を取らせる(ステップSB5)。この撮像姿勢では、実施形態1とは異なりハンド部29が工作機械10の加工エイラに進入して、ハンド部29に把持されたワークWはチャック11(ワーク主軸12)と同軸に保持される
 自動運転制御部48は、ロボット25に撮像姿勢を取らせた後、工作機械制御装置60に対して撮像指令を行う。工作機械制御装置60では、撮像指令を受信すると、数値制御部62によりチルトモータを駆動して工具主軸13を第一撮像位置に位置させるとともに、カメラ19aにワークWの撮像処理を実行させる(ステップSB6)。カメラ19aによるワークWの撮像画像は、無線通信部63を介してAGV制御装置40に送信されるとともに撮像画像記憶部50に第一位置撮像画像Gp1として記憶される。第一撮像位置におけるカメラ19aの撮像処理が終了した後、工作機械制御装置60は、数値制御部62によりチルトモータを駆動して工具主軸13を第二撮像位置に移動させて、カメラ19aによりワークWの撮像処理を実行させる(ステップSB6)。カメラ19aによるワークWの撮像画像は、無線通信部63を介してAGV制御装置40に送信されるとともに撮像画像記憶部50に第二位置撮像画像Gp2として記憶される。図18Bには、撮像画像記憶部50に記憶された第一位置撮像画像Gp1及び第二位置撮像画像Gp2の一例を示している。
 そして、AGV制御装置40のワーク姿勢ずれ算出部51では、撮像画像記憶部50に記憶された第一位置撮像画像Gp1及び第二位置撮像画像Gp2をそれぞれ、基準画像記憶部49に記憶された第一位置基準画像Sp1及び第二位置基準画像Sp2と比較する。そして、第一位置撮像画像Gp1と第二位置撮像画像Gp2との少なくとも一方の画像において対応する基準画像S1,S2との間でずれが存在するか否かを判定する(ステップSB7)。
 そして、ワーク姿勢ずれ算出部51において、当該ずれが存在しないと判定した場合(ステップSB7でNOの場合)には、実施形態1と同様にロボット25の動作補正を行わずにワークWをチャック11に装着した後(ステップSB13)、ロボット25を待機姿勢に戻して(ステップSB11)、工作機械10にワークWの加工サイクルを開始させ(ステップSB12)、しかる後にリターンする。
 一方、ワーク姿勢ずれ算出部51において、第一位置撮像画像Gp1と第二位置撮像画像Gp2との少なくとも一方の画像について対応する基準画像との間でずれが存在すると判定した場合(ステップSB7でYESの場合)には、このずれに関する情報を取得して、取得したずれに関する情報を基に、ロボット25のハンド部29に把持されたワークWの姿勢と正規の姿勢との実空間での位置ずれ及び三次元の傾きのずれを算出する(ステップSB8)。
 具体的には、ワーク姿勢ずれ算出部51は、第一位置撮像画像Gp1及び第一位置基準画像Sp1に対してそれぞれ二値化処理及び輪郭線抽出処理を実行するとともに、抽出したワークWの輪郭線を基にその軸線Jを求める。そして、ワーク姿勢ずれ算出部51は、図20に示すように、第一位置撮像画像Gp1におけるワークWの軸線Jと、第一位置基準画像Sp1におけるワークWの軸線Jとの交差角θc、及び、第一位置撮像画像Gp1におけるワークWの先端中央位置と、第一位置基準画像Sp1におけるワークWの軸線Jとの距離δaを算出する。
 さらにワーク姿勢ずれ算出部51は、第二位置撮像画像Gp2及び第二位置基準画像Sp2に対してそれぞれ二値化処理及び輪郭線抽出処理を実行するとともに、抽出したワークWの輪郭線を基にその軸線Jを求める。そして、ワーク姿勢ずれ算出部51は、図21に示すように、第二位置撮像画像Gp2におけるワークWの先端面の輪郭線の間隔drと、第二位置基準画像Sp2におけるワークWの先端面の輪郭線の間隔dsとの比率σ(=dr/ds)を算出する。さらに、ワーク姿勢ずれ算出部51は、第二位置撮像画像Gp2におけるワークWの先端面の中心位置と、第二位置基準画像Sp2におけるワークWの先端面の中心位置との距離δbを算出する。
 そして、ワーク姿勢ずれ算出部51は、算出した距離δa及び距離δbを基に実空間におけるワークWの先端中心位置のX軸方向及びY軸方向のずれ量(位置ずれ)を求める。また、ワーク姿勢ずれ算出部51は、前記交差角θcを基に、実空間においてワークWの軸線Jの水平方向の傾斜角を算出し、前記比率σを基に、実空間におけるワークWの軸線Jの上下方向の傾斜角(三次元の傾きのずれ)を算出する。
 自動運転制御部48は、ワーク姿勢ずれ算出部51がステップSB8で算出した実空間におけるワークWの軸線Jの傾斜方向及び傾斜角(三次元の傾きのずれ)、並びに、ワーク先端中心位置のX軸方向及びY軸方向のずれ量(位置ずれ)を基に、ワークWの軸線Jがチャック11の挿入空間部Kと同軸に挿入されるように(所定のセット姿勢になるように)、ワーク挿入開始姿勢、各ワーク挿入動作姿勢及びワーク挿入完了姿勢の補正量を算出する。そして、自動運転制御部48は、算出した補正量を基に、チャック11へのワークWのセット処理に際して、ロボット25の各姿勢を補正する。
 したがって、本実施形態のワーク装着システム100では、前記実施形態1と同様に、ハンド部29によるワークWの把持姿勢が正規の姿勢からずれたとしても、ロボット25のワーク挿入動作に関連する各姿勢を補正することで、工作機械10のチャック11にワークWを所定のセット姿勢で装着することができる。
 また、工作機械10にカメラ19aを設けるようにしたので、カメラ19aの数を極力低減することができる。すなわち、例えば、複数の無人搬送車35に搭載したロボット25が協働して一つの工作機械10に対してワークWの投入・払出し作業を行う場合に、一つのカメラ19aを複数のロボット25で共通に使用することができる。よって、実施形態1のように各ロボット25のそれぞれにカメラ31a,31bを設ける場合に比べてカメラの数を減らしてコストを低減することができる。
 また、本実施形態のワーク装着システム100によれば、工作機械10に設けられた一つのカメラ19aによってハンド部29に把持されたワークWを鉛直方向と鉛直方向に交差する方向との二方向から撮像し、撮像した二つの画像(第一位置撮像画像Gp1と第二位置撮像画像Gp2)を基にハンド部29によるワークWの把持姿勢のずれを精度良く求めることができる。よって、複数のカメラを設ける場合に比べて、カメラの故障リスクや部品コストを低減することができる。
 また、本実施形態では、カメラ19aを保持する保持部材として工具主軸13を利用するようにしている。これによれば、工具主軸台21を駆動するチルトモータや送り装置を前記保持部材の駆動部として利用することができる。よって、部品の共通化を図ってコストを低減することができる。
 (他の実施形態)
 前記各実施形態では、撮像画像と基準画像との間にずれが存在する判定した場合(実施形態1のステップSA7でYESの場合、及び実施形態2のステップSB7でYESの場合)には、ワークWをチャック11に装着する際に必ずロボット25の動作補正を行うようにしているが、これに限ったものではない。例えば、ワーク姿勢ずれ算出部51によって画像間のずれが生じていると判定した場合であっても、該画像間のずれに関する情報を基に算出した実空間におけるワークWの姿勢のずれの度合が所定以上である場合には、自動運転制御部48によってハンド部29が把持したワークWを一旦、バケット38内の元の位置に戻して該ハンド部29によるワークWの把持動作をやり直させるようにしてもよい。
 これによれば、例えばハンド部29とワークWとの間に異物が噛み込む等して、ハンド部29によるワークWの把持姿勢のずれがロボット25の動作補正により改善できないレベルに達している場合には、ハンド部29によりワークWを把持し直すことで、ハンド部29によるワークWの把持姿勢を改善することがきる。
 また、前記実施形態1では、ロボット25に二つのカメラ31a,31bを設けるようにしているが、これに限ったものではない。カメラの数は、一つであってもよいし、三つ以上であってもよい。
 前記各実施形態では、AGV制御装置40は、無人搬送車35に搭載されているが、これに限ったものではなく、例えば工場内の所定位置に固定された上位の管理コンピュータ等により構成されていてもよい。この場合、無人搬送車35及びロボット25は、AGV制御装置40により遠隔制御される。
 前記各実施形態では、ハンド部29は、二つの把持部材292によりワークWを挟持するように構成されているが、これに限ったものではない。例えば、中空状のワークWに対しては、ハンド部29に設けた複数の把持部材292をワークWの径方向内側から外側に拡張させることでワークWを把持するようにしてもよい。また、ハンド部29は、エアーの吸引力によって又は磁石の磁力によってワークWを吸着して把持するように構成されていてもよい。
 前記各実施形態では、ワーク装着部は、複数の把持爪11bを開閉させるチャック11により構成されているが、これに限ったものではない。ワーク装着部は、例えば中空状のワークWを内側から固定するコレットチャックなど、如何なる構成であってもよい。また、ワーク装着部は、マシニングセンタ等にワークをセットするためのワークパレットであってもよい。また、ワークWは軸状部材に限定されないことは言うまでもない。
 前記各実施形態では、工作機械10が複合型のターニングセンタとされているが、これに限ったものではなく、工作機械10はマシニングセンタ等であってもよい。
 尚、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と
均等の範囲内での実施形態からの変更が含まれる。
10   工作機械
11   チャック(ワーク装着部)
13   工具主軸
19a  カメラ
21   工具主軸台(保持部材)
25   ロボット
29   ハンド部
31a  第一カメラ
31b  第二カメラ
35   無人搬送車
40   制御装置
49   基準画像記憶部
60   制御装置
100  ワーク装着システム
292  把持部材
G1   第一撮像画像(撮像画像)
G2   第二撮像画像(撮像画像)
Gp1  第一位置撮像画像(撮像画像)
Gp2  第二位置撮像画像(撮像画像)
J    軸線
K    挿入空間部
L1   光軸
L2   光軸
S1   第一基準画像(基準画像)
S2   第二基準画像(基準画像)
Sp1  第一位置基準画像(基準画像)
Sp2  第二位置基準画像(基準画像)
Tf   固定工具
Tr   回転工具(加工工具)
W    ワーク
θa   所定角度
θb   所定角度

Claims (9)

  1.  ハンド部を有するロボットと、前記ロボットを制御することで、所定位置に載置されたワークを該ハンド部に把持させて工作機械内のワーク装着部にセットさせるワークセット処理を実行する制御装置と、を備えたワーク装着システムであって、
     前記ロボットのハンド部に設けられ、該ハンド部に把持された前記ワークを撮像可能なカメラと、
     前記ロボットのハンド部により前記ワークが正規の姿勢で把持された状態で前記カメラにより撮像した当該ワークの画像を基準画像として予め記憶しておく基準画像記憶部とをさらに備え、
     前記制御装置は、前記ワークセット処理の実行に際して、前記ロボットのハンド部に前記ワークを把持させた状態で前記カメラに当該ワークの画像を撮像させ、該カメラによる当該ワークの撮像画像と前記基準画像記憶部に記憶された前記基準画像との比較を基に、前記ワーク装着部への前記ワークのセット姿勢が所定のセット姿勢になるように前記ロボットの動作を制御するように構成され、
     前記制御装置は、前記撮像画像と前記基準画像との前記比較に際して、両画像間にずれが存在するか否かを判定し、ずれが存在すると判定した場合には、このずれに関する情報を基に、前記ロボットのハンド部に把持されたワークの姿勢と前記正規の姿勢との位置ずれ及び三次元の傾きのずれを算出して、算出した該位置ずれ及び三次元の傾きのずれを基に、前記ワーク装着部へのワークのセット姿勢が前記所定のセット姿勢になるよう前記ロボットの動作補正を行う一方、前記両画像間にずれが存在しないと判定した場合には前記ロボットの動作補正を行わないように構成されていることを特徴とするワーク装着システム。
  2.  ハンド部を有するロボットと、前記ロボットを制御することで、所定位置に載置されたワークを該ハンド部に把持させて工作機械内のワーク装着部にセットさせるワークセット処理を実行する制御装置と、を備えたワーク装着システムであって、
     前記工作機械に設けられ、該工作機械内において前記ロボットが所定姿勢を取った状態で前記ハンド部に把持された前記ワークを撮像可能なカメラと、
     前記ロボットが前記所定姿勢を取り且つ前記ハンド部により前記ワークが正規の姿勢で把持された状態で前記カメラにより撮像した当該ワークの画像を基準画像として予め記憶しておく基準画像記憶部とを備え、
     前記制御装置は、前記ワークセット処理の実行に際して、前記ロボットのハンド部に前記ワークを把持させた状態で前記ロボットに前記所定姿勢を取らせて、該所定姿勢において前記カメラに当該ワークの画像を撮像させ、該カメラによる当該ワークの撮像画像と前記基準画像記憶部に記憶された前記基準画像との比較を基に、前記ワーク装着部への前記ワークのセット姿勢が所定のセット姿勢になるように前記ロボットの動作を制御するように構成され、
     前記制御装置は、前記撮像画像と前記基準画像との前記比較に際して、両画像間にずれが存在するか否かを判定し、ずれが存在すると判定した場合には、このずれに関する情報を基に、前記ロボットのハンド部に把持されたワークの姿勢と前記正規の姿勢との位置ずれ及び三次元の傾きのずれを算出して、算出した該位置ずれ及び該三次元の傾きのずれを基に、前記ワーク装着部へのワークのセット姿勢が前記所定のセット姿勢になるよう前記ロボットの動作補正を行う一方、前記両画像間にずれが存在しないと判定した場合には前記ロボットの動作補正を行わないように構成されていることを特徴とするワーク装着システム。
  3.  前記制御装置は、前記両画像間にずれが存在すると判定した場合であっても、該ずれに関する情報を基に算出される前記ロボットのハンド部に把持されたワークの姿勢と前記正規の姿勢とのずれの度合が所定以上であるときには、前記ロボットに、前記ハンド部にて把持したワークを前記所定位置に戻させた後、該ハンド部による当該ワークの把持をやり直させるように構成されていることを特徴とする請求項1又は2記載のワーク装着システム。
  4.  前記ワークは軸状部材であり
     前記カメラは、複数設けられ
     複数の前記カメラは、第一カメラと第二カメラとを含み、該第一カメラ及び第二カメラが、前記ロボットのハンド部に正規の姿勢で把持されたワークの軸線方向から見て、該ワークの軸線を通り且つ所定方向に延びる直線に対して線対称に位置するとともに、該第一カメラ及び第二カメラのそれぞれの光軸が前記所定方向に対して所定角度で傾斜するように配置されており、
     前記基準画像記憶部には、前記基準画像として、前記第一カメラにより撮像した第一基準画像と、前記第二カメラにより撮像した第二基準画像とが記憶され、
     前記制御装置は、前記ワークセット処理の実行に際して、前記ロボットのハンド部に前記ワークを把持させた状態で前記第一カメラ及び第二カメラに当該ワークの画像を撮像させ、前記第一カメラよる当該ワークの撮像画像と前記基準画像記憶部に記憶された前記第一基準画像との比較、及び、前記第二カメラよる当該ワークの撮像画像と前記基準画像記憶部に記憶された前記第二基準画像との比較を基に、前記ワーク装着部へのワークのセット姿勢が前記所定のセット姿勢になるように前記ロボットの動作を制御するように構成されていることを特徴とする請求項1記載のワーク装着システム。
  5.  前記所定角度は45°であることを特徴とする請求項4記載のワーク装着システム。
  6.  前記ワークは軸状部材であり、
     前記ワーク装着部は、水平方向に延びて前記ワークが挿入される挿入空間部からなり、
     前記工作機械は、前記挿入空間部に対するワーク挿入方向及び鉛直方向の双方に直交する軸線回りに回動可能に構成されて前記カメラを保持する保持部材と、前記保持部材を、前記カメラの光軸が鉛直方向を向く第一位置と、該カメラの光軸が鉛直方向に対して所定角度で交差する第二位置との間で駆動する駆動部とを有し、
     前記基準画像記憶部には、前記基準画像として、前記保持部材が前記第一位置にある状態で前記ハンド部に正規の姿勢で把持されたワークを前記カメラにより撮像した第一位置基準画像と、前記保持部材が前記第二位置にある状態で前記ハンド部に正規の姿勢で把持されたワークを前記カメラにより撮像した第二位置基準画像とが記憶されており、
     前記制御装置は、前記ワークセット処理の実行に際して、前記ロボットのハンド部に前記ワークを把持させた状態で前記ロボットに前記所定姿勢を取らせて、該所定姿勢において前記駆動部により前記保持部材を前記第一位置に位置させた状態で前記カメラに撮像させた当該ワークの撮像画像と前記基準画像記憶部に記憶された前記第一位置基準画像との比較、及び、前記所定姿勢において前記駆動部により前記保持部材を前記第二位置に位置させた状態で前記カメラに撮像させた当該ワークの撮像画像と前記基準画像記憶部に記憶された前記第二位置基準画像との比較を基に、前記ワーク装着部へのワークのセット姿勢が前記所定のセット姿勢になるように前記ロボットの動作を制御するように構成されていることを特徴とする請求項2記載のワーク装着システム。
  7.  前記工作機械は、加工工具を着脱可能な工具主軸が設けられ、
     前記カメラは、前記加工工具に代えて前記工具主軸に着脱可能に構成され、
     前記工具主軸が前記保持部材として兼用されていることを特徴とする請求項6記載のワーク装着システム。
  8.  前記ハンド部は、複数の把持部材によって、又は、エアーによる吸引力によって、又は、磁石の磁力によって前記ワークを把持するように構成されていることを特徴とする請求項1乃至7のいずれか一項に記載のワーク装着システム。
  9.  前記ワークは軸状部材であり、
     前記工作機械は、前記ワークを挿入可能な挿入空間部を有するとともに該挿入空間部に挿入されたワークをチャック可能なチャック装置を有しており、
     前記ワーク装着部は前記チャック装置の挿入空間部であることを特徴とする請求項1~5のいずれか一項に記載のワーク装着システム。
     
PCT/JP2021/031671 2021-01-19 2021-08-30 ワーク装着システム WO2022158024A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021006321A JP6913833B1 (ja) 2021-01-19 2021-01-19 ワーク装着システム
JP2021-006321 2021-01-19

Publications (1)

Publication Number Publication Date
WO2022158024A1 true WO2022158024A1 (ja) 2022-07-28

Family

ID=77057457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031671 WO2022158024A1 (ja) 2021-01-19 2021-08-30 ワーク装着システム

Country Status (2)

Country Link
JP (1) JP6913833B1 (ja)
WO (1) WO2022158024A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116175256A (zh) * 2023-04-04 2023-05-30 杭州纳志机器人科技有限公司 一种推车式机器人上下料自动定位方法
WO2024101265A1 (ja) * 2022-11-07 2024-05-16 Dmg森精機株式会社 ロボット搭載移動装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084665A1 (ja) * 2022-10-20 2024-04-25 ファナック株式会社 ロボットの制御装置、制御方法及びシステム
WO2024095709A1 (ja) * 2022-11-04 2024-05-10 村田機械株式会社 搬送制御システム及び判定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254275A (ja) * 2001-02-27 2002-09-10 Soshin Electric Co Ltd 数値製御工作機械による加工品の検査方法、および検査治具
JP4174342B2 (ja) * 2003-02-19 2008-10-29 ファナック株式会社 ワーク搬送装置
JP2010214546A (ja) * 2009-03-17 2010-09-30 Fuji Electric Holdings Co Ltd 組立装置および組立方法
JP2013078825A (ja) * 2011-10-04 2013-05-02 Yaskawa Electric Corp ロボット装置、ロボットシステムおよび被加工物の製造方法
JP2014087882A (ja) * 2012-10-30 2014-05-15 Toshiba Mach Co Ltd 工具長測定方法および工作機械
JP2015226954A (ja) * 2014-06-02 2015-12-17 セイコーエプソン株式会社 ロボット、ロボットの制御方法、及びロボットの制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014188617A (ja) * 2013-03-27 2014-10-06 Seiko Epson Corp ロボット制御システム、ロボット、ロボット制御方法及びプログラム
JP2017035754A (ja) * 2015-08-10 2017-02-16 ファナック株式会社 視覚センサおよび複数のロボットを備えるロボットシステム
JP2017050376A (ja) * 2015-09-01 2017-03-09 富士電機株式会社 電子部品実装装置及び電子部品実装方法
JP6700726B2 (ja) * 2015-11-06 2020-05-27 キヤノン株式会社 ロボット制御装置、ロボット制御方法、ロボット制御システムおよびコンピュータプログラム
JP6412185B2 (ja) * 2017-03-02 2018-10-24 ファナック株式会社 工作機械システム
JP6923346B2 (ja) * 2017-04-20 2021-08-18 株式会社Screenホールディングス 基板搬送装置、それを備える基板処理装置および基板搬送装置のティーチング方法
JP2020113568A (ja) * 2019-01-08 2020-07-27 富士電機株式会社 部品実装装置
JP6898374B2 (ja) * 2019-03-25 2021-07-07 ファナック株式会社 ロボット装置の動作を調整する動作調整装置およびロボット装置の動作を調整する動作調整方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254275A (ja) * 2001-02-27 2002-09-10 Soshin Electric Co Ltd 数値製御工作機械による加工品の検査方法、および検査治具
JP4174342B2 (ja) * 2003-02-19 2008-10-29 ファナック株式会社 ワーク搬送装置
JP2010214546A (ja) * 2009-03-17 2010-09-30 Fuji Electric Holdings Co Ltd 組立装置および組立方法
JP2013078825A (ja) * 2011-10-04 2013-05-02 Yaskawa Electric Corp ロボット装置、ロボットシステムおよび被加工物の製造方法
JP2014087882A (ja) * 2012-10-30 2014-05-15 Toshiba Mach Co Ltd 工具長測定方法および工作機械
JP2015226954A (ja) * 2014-06-02 2015-12-17 セイコーエプソン株式会社 ロボット、ロボットの制御方法、及びロボットの制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101265A1 (ja) * 2022-11-07 2024-05-16 Dmg森精機株式会社 ロボット搭載移動装置
CN116175256A (zh) * 2023-04-04 2023-05-30 杭州纳志机器人科技有限公司 一种推车式机器人上下料自动定位方法
CN116175256B (zh) * 2023-04-04 2024-04-30 杭州纳志机器人科技有限公司 一种推车式机器人上下料自动定位方法

Also Published As

Publication number Publication date
JP6913833B1 (ja) 2021-08-04
JP2022110731A (ja) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2022158024A1 (ja) ワーク装着システム
JP6785931B1 (ja) 生産システム
US10507558B2 (en) Machine tool system
US20220331970A1 (en) Robot-mounted moving device, system, and machine tool
CN111182178B (zh) 摄像装置以及机床
EP1621296A1 (en) Transfer robot system comprising a manipulator and a temporary container depository moving synchronously with the manipulator
EP3542973B1 (en) Work robot and work position correction method
WO2020012871A1 (ja) 工作機械
Cutkosky et al. The design of a flexible machining cell for small batch production
WO2022091767A1 (ja) 画像処理方法、画像処理装置、ロボット搭載型搬送装置、及びシステム
WO2023032400A1 (ja) 自動搬送装置、及びシステム
JP6832408B1 (ja) 生産システム
JP7482364B2 (ja) ロボット搭載移動装置及びシステム
WO2022264597A1 (ja) ロボットシステム
US20230415353A1 (en) Robot-mounted mobile device and positioning control method for system
JP3357083B2 (ja) 自動加工装置
JPH09323240A (ja) 工作機械の工具捕捉装置
JP7015949B1 (ja) 貼着位置測定装置及びこれを備えた工作機械
JP2020138315A (ja) 生産システム
JPH05237743A (ja) 数値制御工作機械における自動段取装置
JP6851535B1 (ja) ティーチング操作を用いた設定方法
WO2022180921A1 (ja) 加工システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921129

Country of ref document: EP

Kind code of ref document: A1