WO2022156527A1 - 光学玻璃、玻璃预制件、光学元件和光学仪器 - Google Patents
光学玻璃、玻璃预制件、光学元件和光学仪器 Download PDFInfo
- Publication number
- WO2022156527A1 WO2022156527A1 PCT/CN2022/070078 CN2022070078W WO2022156527A1 WO 2022156527 A1 WO2022156527 A1 WO 2022156527A1 CN 2022070078 W CN2022070078 W CN 2022070078W WO 2022156527 A1 WO2022156527 A1 WO 2022156527A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- glass
- optical glass
- optical
- components
- Prior art date
Links
- 239000005304 optical glass Substances 0.000 title claims abstract description 120
- 239000011521 glass Substances 0.000 title claims description 136
- 230000003287 optical effect Effects 0.000 title claims description 45
- 150000001450 anions Chemical class 0.000 claims abstract description 14
- 150000001768 cations Chemical class 0.000 claims abstract description 10
- 230000007704 transition Effects 0.000 claims description 19
- 239000002253 acid Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000013461 design Methods 0.000 abstract description 8
- 238000004031 devitrification Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 230000007423 decrease Effects 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 238000002834 transmittance Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000003384 imaging method Methods 0.000 description 9
- 125000002091 cationic group Chemical group 0.000 description 8
- 238000005299 abrasion Methods 0.000 description 7
- 125000000129 anionic group Chemical group 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 6
- 238000000227 grinding Methods 0.000 description 6
- 230000005499 meniscus Effects 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000008395 clarifying agent Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000005816 glass manufacturing process Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- -1 oxide Chemical compound 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/23—Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
- C03C3/247—Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
Definitions
- the invention relates to an optical glass, in particular to an optical glass with a refractive index of 1.57-1.66 and an Abbe number of 56-65, as well as glass preforms, optical elements and optical instruments made of the same.
- optical lenses have been widely used in automotive imaging, surveillance security and other fields.
- the lens absorbs near-infrared light in black and white mode at night, while the near-infrared band light and visible light are focused at different focal lengths when passing through the lens. , resulting in the deterioration of imaging quality, becoming a difficult problem in optical design in the fields of vehicle imaging, monitoring and security, and even telescopes and gun sights.
- the refractive index of glass decreases with the increase of wavelength.
- the available wavelength range of near-infrared auxiliary illumination at night for a camera system using a visible light image sensor is about 800-1000 nm.
- the refractive index of the glass decreases less than normal glass with the increase of wavelength, that is, the glass forms a certain abnormal dispersion in the near-infrared band, which can greatly reduce the difficulty of optical design to achieve day and night confocal, and effectively improve the nighttime imaging quality.
- the abnormal dispersion of the near-infrared band is characterized by the ⁇ P C,s and ⁇ P C,t values.
- the refractive index of the optical glass is 1.57-1.66 and the Abbe number is 56-65.
- the refractive index and Abbe number are moderate, and are widely used in various imaging systems.
- the ⁇ P C,s and ⁇ P C,t values of the optical glass whose refractive index and Abbe number are within this range are relatively large, which cannot meet the development needs of new imaging optical devices.
- optical systems that need to achieve day and night confocal usually need to work in harsh environments, and optical materials need to have good weather resistance to ensure the reliability of the optical system. Therefore, the development of an optical glass with low ⁇ P C,s and ⁇ P C,t values and excellent weather resistance plays an important role in the development of the field of optoelectronic information.
- the technical problem to be solved by the present invention is to provide an optical glass with lower ⁇ P C,s value and ⁇ P C,t value and excellent weather resistance.
- Optical glass its components are expressed in mole percent, and the cations contain: P 5+ : 26-45%; Al 3+ : 5-25%; R 2+ : 28-60%;
- the anion contains F - and O 2- , wherein: F - +O 2- is 98% or more, (P 5+ +Al 3+ )/F - is 0.9 to 4.0, and the R 2+ is Ba 2+ , Sr Total content of 2+ , Ca 2+ and Mg 2+ .
- the anion contains F - and O 2- , wherein: F - +O 2- is 98% or more, the R 2+ is the total content of Ba 2+ , Sr 2+ , Ca 2+ and Mg 2+ , Rn + is One or more of Li + , Na + , K + .
- the cations contain P 5+ , Al 3+ and R 2+ , the anions contain F - and O 2- , the refractive index n d of the optical glass is 1.57-1.66, the Abbe number ⁇ d is 56 to 65, the ⁇ P C,s value is 0 or less, and the ⁇ P C,t value is ⁇ 0.01 or less.
- Y 3+ /(La 3+ +Gd 3+ +Y 3+ ) is 0.3 to 1.0 , preferably Y 3+ /(La 3+ +Gd 3+ +Y 3+ ) is 0.5 to 1.0, more preferably Y 3+ /(La 3+ +Gd 3+ +Y 3+ ) is 0.6 to 1.0, still more preferably Y 3+ /(La 3+ +Gd 3+ +Y 3+ ) is 0.65 to 1.0.
- optical glass according to any one of (1) to (5), the components of which are expressed in mole percentages, wherein: P 5+ : 30-40%, preferably P 5+ : 33-38%; Or La 3+ +Gd 3+ +Y 3+ : 0.1 to 15%, preferably La 3+ +Gd 3+ +Y 3+ : 0.5 to 12%, more preferably La 3+ +Gd 3+ +Y 3+ : 1-10%; and/or Nb 5+ +W 6+ +Ti 4+ : 0.5-10%, preferably Nb 5+ +W 6+ +Ti 4+ : 1-8%; and/or R 2+ : 35-55%, preferably R 2+ : 38-50%; and/or Al 3+ : 8-20%, preferably Al 3+ : 10-18%; and/or Rn + : 0-5%, preferably Rn + : 0-2%, more preferably not containing Rn + ; and/or Yb 3+ : 0-5%, preferably Yb
- optical glass according to any one of (1) to (5), the components of which are expressed in mole percent, wherein: F ⁇ : 15 to 45%, preferably F ⁇ : 18 to 38%, more preferably F ⁇ : 21-35%; and/or O 2- : 55-85%, preferably O 2- : 62-82%, more preferably O 2- : 65-79%.
- optical glass according to any one of (1) to (5), wherein the optical glass has a refractive index nd of 1.57 to 1.66, preferably a refractive index nd of 1.58 to 1.64, and more preferably a refractive index nd of 1.64
- Abbe's number ⁇ d is 56-65, preferably Abbe's number ⁇ d is 58-63, and more preferably Abbe's number ⁇ d is 59-62.
- optical element is made of the optical glass described in any one of (1) to (21) or the glass preform described in (22).
- the optical glass obtained by the present invention has lower ⁇ P C,s value and ⁇ P C, t value while having desired refractive index and Abbe number, and is weather resistant. Excellent sex.
- optical glass of this invention is not limited to the following embodiment, It can change suitably within the range of the objective of this invention, and can implement.
- this does not limit the gist of the invention.
- the optical glass of the present invention may be simply referred to as glass.
- each component (component) constituting the optical glass of the present invention will be described below.
- the content of the cationic component is expressed as the mole percent (mol%) of the cation in the total cationic component
- the content of the anionic component is expressed as the mole percent (mol%) of the anion in the total anionic component.
- the ratio between the contents of the cationic components is the ratio of the molar percentage content between the contents of each cationic component
- the ratio between the contents of the anionic components is the ratio of the molar percentage content between the contents of each anionic component
- the ratio between the content of anionic and cationic components is the ratio of the mole percent content of cationic components to all cationic components to the mole percent content of anionic components to all anionic components.
- the ion valence of each component described below is a representative value used for convenience, and is not different from other ion valences.
- the ionic valence of each component in the optical glass may have a possibility other than the representative value.
- P usually exists in glass in the state of ion valence of +5, so "P 5+ " is used as a representative value in this patent, but there is a possibility of existing in other ion valence state, which is also in this patent. within the scope of patent protection.
- P 5+ is a glass network former component, which can improve the stability of the glass and reduce the ⁇ P C,t value and ⁇ P C,s value of the glass.
- the content of P 5+ in the present invention is 26% or more, preferably 30% or more, and more preferably 33% or more.
- the content of P 5+ in the present invention is 45% or less, preferably 40% or less, and more preferably 38% or less.
- Al 3+ is the skeleton component of the glass of the present invention, which can effectively improve the mechanical properties and weather resistance of the glass, while reducing the thermal expansion coefficient of the glass.
- its content is less than 5%, a stable glass skeleton cannot be formed and the above effects can be obtained.
- the content of Al 3+ is higher than 25%, the transition temperature and liquidus temperature of the glass increase, making it difficult to melt the glass, and at the same time, the forming temperature increases, which leads to aggravated volatilization of the glass, making the glass streaks worse, and overheating. High transition temperatures can make compression molding difficult. Therefore, the content of Al 3+ in the present invention is 5 to 25%, preferably 8 to 20%, and more preferably 10 to 18%.
- La 3+ has the function of increasing the refractive index of glass and improving acid resistance.
- the content of La 3+ in the present invention is 10% or less, preferably 5% or less, and more preferably 3% or less.
- Gd 3+ can improve the chemical stability of glass and increase the refractive index. If its content exceeds 10%, the transition temperature of the glass will rise, and its stability will also decrease. Therefore, in the present invention, the content of Gd 3+ is 10% or less, preferably 5% or less, and more preferably 3% or less. In some embodiments, may contain 0%, greater than 0%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5% , 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10% of Gd 3+ .
- Y 3+ has the functions of high refractive index and low dispersion, improving the abrasion degree of the glass and appropriately reducing the ⁇ P C,t and ⁇ P C,s values of the glass.
- the content of Y 3+ is 10% or less, preferably 0.5 to 8%, and more preferably 1 to 7%.
- the total content of La 3+ , Gd 3+ and Y 3+ is controlled to be less than 20% La 3+ +Gd 3+ +Y 3+ , which can prevent the optical constant of the glass from exceeding design requirements Therefore, it is preferable that La 3+ +Gd 3+ +Y 3+ be 20% or less.
- La 3+ +Gd 3+ +Y 3+ it is easier to obtain desired optical constants, and also The chemical stability of the glass can be improved, so it is more preferable that La 3+ +Gd 3+ +Y 3+ be 0.1 to 15%, it is more preferable that La 3+ +Gd 3+ +Y 3+ be 0.5 to 12%, and it is still more preferable La 3+ +Gd 3+ +Y 3+ is 1 to 10%.
- La 3+ +Gd 3+ +Y 3+ may be 0%, greater than 0%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, 11.5%, 12% , 12.5%, 13%, 13.5%, 14%, 14.5%, 15%, 15.5%, 16%. 16.5%, 17%, 17.5%, 18%, 18.5%, 19%, 19.5%, 20%.
- Y 3+ /(La 3+ +Gd 3+ +Y 3+ ) is preferably 0.3 to 1.0, more preferably Y 3+ /(La 3+ +Gd 3+ +Y 3+ ) is 0.5 to 1.0, and further Y 3+ /(La 3+ +Gd 3+ +Y 3+ ) is preferably 0.6 to 1.0, and more preferably Y 3+ /
- (La 3+ +Gd 3+ +Y 3+ ) is 0.65 to 1.0.
- the value of Y 3+ /(La 3+ +Gd 3+ +Y 3+ ) may be 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85 , 0.9, 0.95, 1.0.
- Yb 3+ can increase the refractive index of glass, and when its content is too high, the thermal stability and devitrification resistance of the glass decrease. Therefore, in the present invention, the content of Yb 3+ is 10% or less, preferably 5% or less, more preferably 2% or less, and further preferably not containing Yb 3+ . In some embodiments, may contain 0%, greater than 0%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5% , 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10% of Yb 3+ .
- W 6+ can improve the refractive index and dispersion of the glass, reduce the transition temperature, ⁇ P C,t value and ⁇ P C,s value of the glass. Exceeding the design requirements, the wear degree becomes worse. Therefore, the content of W 6+ is 10% or less, preferably 6% or less, and more preferably 5% or less. In some embodiments, may contain 0%, greater than 0%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5% , 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10% of W 6+ .
- Nb 5+ can improve the refractive index and dispersion of the glass, reduce the ⁇ P C,t value and ⁇ P C,s value of the glass, and improve the thermal and chemical stability of the glass. Devitrification decreases, and the degree of coloration deteriorates. Therefore, the content of Nb 5+ is 10% or less, preferably 6% or less, and more preferably 4% or less. In some embodiments, may contain 0%, greater than 0%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5% , 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10% of Nb 5+ .
- Ti 4+ can improve the chemical stability of the glass and reduce the ⁇ P C,t value and ⁇ P C,s value of the glass, but if its content is too large, the crystallization tendency of the glass increases, the degree of coloring becomes poor, and the Meltability is reduced. Therefore, in the present invention, the content of Ti 4+ is 10% or less, preferably 5% or less, and more preferably 2% or less. In some embodiments, it is further preferred not to contain Ti 4+ .
- the glass refractive index and Abbe number can be prevented by making the total content of Nb 5+ , W 6+ and Ti 4+ Nb 5+ +W 6+ +Ti 4+ below 15% Exceeding the design requirements, the loss of devitrification resistance and the degree of coloration are prevented from being deteriorated. Therefore, Nb 5+ +W 6+ +Ti 4+ is preferably 15% or less. Further, by making Nb 5+ +W 6+ +Ti 4+ more than 0.5%, it is advantageous to reduce the ⁇ P C,t value and the ⁇ P C,s value of the glass.
- Nb 5+ +W 6+ +Ti 4+ is more preferably 0.5 to 10%, and even more preferably Nb 5+ +W 6+ +Ti 4+ is 1 to 8%.
- Nb 5+ +W 6+ +Ti 4+ may be 0%, greater than 0%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, 11.5%, 12% , 12.5%, 13%, 13.5%, 14%, 14.5%, 15%.
- the ratio between La 3+ +Gd 3+ +Y 3+ (Nb 5+ +W 6+ +Ti 4+ )/(La 3+ +Gd 3+ +Y 3+ ) is between 0.1 and 10.0, which can be It is easier to reduce the ⁇ P C,t and ⁇ P C,s values of the glass and optimize the chemical stability of the glass while keeping the optical constant of the glass within the desired range.
- (Nb 5+ +W 6+ +Ti 4+ )/(La 3+ +Gd 3+ +Y 3+ ) is preferably 0.1 to 10.0, more preferably (Nb 5+ +W 6+ +Ti 4+ ) /(La 3+ +Gd 3+ +Y 3+ ) is 0.2 to 6.0, more preferably (Nb 5+ +W 6+ +Ti 4+ )/(La 3+ +Gd 3+ +Y 3+ ) is 0.5 ⁇ 4.0, and more preferably (Nb 5+ +W 6+ +Ti 4+ )/(La 3+ +Gd 3+ +Y 3+ ) is 0.7 to 2.0.
- the value of (Nb 5+ +W 6+ +Ti 4+ )/(La 3+ +Gd 3+ +Y 3+ ) may be 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 , 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.3, 2.5, 2.7 , 3.0, 3.3, 3.5, 3.7, 4.0, 4.3, 4.5, 4.7, 5.0, 5.3, 5.5, 5.7, 6.0, 6.3, 6.5, 6.7, 7.0, 7.3, 7.5, 7.7, 8.0, 8.3, 8.5, 8.7, 9.0 , 9.3, 9.5, 9.7, 10.0.
- the thermal stability of the glass is improved by containing 28-60% of the alkaline earth metal component R 2+ (wherein R 2+ is the total content of Ba 2+ , Sr 2+ , Ca 2+ and Mg 2+ ) , adjust the optical constant of glass, preferably contain 35-55% of R 2+ , more preferably contain 38-50% of R 2+ .
- R 2+ is the total content of Ba 2+ , Sr 2+ , Ca 2+ and Mg 2+
- Ba 2+ has the function of improving the refractive index, thermal stability and weather resistance of glass, and in the present invention, the above-mentioned effects are obtained by containing 28% or more of Ba 2+ .
- the content of Ba 2+ in the present invention is 28 to 45%, preferably 30 to 40%, and more preferably 33 to 38%.
- the content of Sr 2+ in the present invention is 0 to 10%, preferably 1 to 8%, and more preferably 2 to 7%.
- the content of Sr 2+ in the present invention is 0 to 10%, preferably 1 to 8%, and more preferably 2 to 7%.
- the relative content of Sr 2+ and Y 3+ , Sr 2+ /Y 3+ can be controlled within the range of 0.3 to 10.0, which can reduce the transition temperature and density of the glass, so Sr 2+ /Y 3+ is preferred.
- Y 3+ is 0.3 to 10.0, more preferably Sr 2+ /Y 3+ is 0.5 to 5.0.
- Sr 2+ /Y 3+ is more preferably 0.8 to 3.0, and Sr 2+ is even more preferred.
- /Y 3+ is 1.0 to 2.0.
- the value of Sr 2+ /Y 3+ may be 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 , 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.3, 3.5, 3.7, 4.0, 4.3, 4.5, 4.7, 5.0, 5.3, 5.5, 5.7, 6.0, 6.3, 6.5 , 6.7, 7.0, 7.3, 7.5, 7.7, 8.0, 8.3, 8.5, 8.7, 9.0, 9.3, 9.5, 9.7, 10.0.
- Mg 2+ can improve the abrasion degree and devitrification resistance of the glass, if its content exceeds 10%, the stability of the glass decreases. Therefore, the content of Mg 2+ in the present invention is 0 to 10%, preferably 1 to 7%, and more preferably 2 to 6%. In some embodiments, may contain 0%, greater than 0%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5% , 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10% of Mg 2+ .
- Mg 2+ /Ba 2+ is preferably 0.01 to 0.3, more preferably Mg 2+ /Ba 2+ is 0.02 to 0.25, still more preferably Mg 2+ /Ba 2+ is 0.03 to 0.2, and still more preferably Mg 2+ / Ba 2+ is 0.05 to 0.15.
- the value of Mg 2+ /Ba 2+ may be 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17 , 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3.
- Ca 2+ has the functions of improving the chemical stability of glass and improving the grinding performance of glass. It can replace Ba 2+ within a certain content to reduce the density of glass. If its content is too large, the devitrification resistance of glass will deteriorate. Therefore, the content of Ca 2+ in the present invention is 0 to 10%, preferably 0 to 6%, and more preferably 0 to 5%. In some embodiments, may contain 0%, greater than 0%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5% , 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10% of Ca 2+ .
- Rn + is one or more of Li + , Na + , K +
- the content of Rn + is 10% or less, preferably 5% or less, and more preferably 2% or less. In some embodiments, it is further preferred not to contain Rn + .
- the present invention finds that, in some embodiments, by controlling (Rn + +Ca 2+ )/Mg 2+ to be below 2.0, the density, PC ,t value and ⁇ PC ,s value of the glass can be reduced. , to optimize the abrasion degree of glass. Therefore, (Rn + +Ca 2+ )/Mg 2+ is preferably 2.0 or less, more preferably (Rn + +Ca 2+ )/Mg 2+ is 1.0 or less, and still more preferably (Rn + +Ca 2+ )/Mg 2 + is 0.8 or less, and more preferably (Rn + +Ca 2+ )/Mg 2+ is 0.5 or less.
- the value of (Rn + +Ca 2+ )/Mg 2+ may be 0, greater than 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 , 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0.
- Zn 2+ can reduce the transition temperature of the glass and improve the thermal stability of the glass.
- its content exceeds 10%, the dispersion of the glass increases, it is difficult to obtain the desired optical constant, and the devitrification resistance of the glass decreases, so the content of Zn 2+ is limited. It is 10% or less, preferably 5% or less, and more preferably 2% or less. In some embodiments, it is further preferred not to contain Zn 2+ .
- the present invention finds through a large number of experimental studies that, in some embodiments, by combining the total content of Ca 2+ and Zn 2+ Ca 2+ +Zn 2+ with the total content of Nb 5+ , W 6+ , Ti 4+ Nb 5
- the ratio between + +W 6+ +Ti 4+ (Ca 2+ +Zn 2+ )/(Nb 5+ +W 6+ +Ti 4+ ) is controlled below 2.0, which can make the glass get lower ⁇ P C,t value and ⁇ P C,s value, optimize the anti-devitrification performance of glass.
- (Ca 2+ +Zn 2+ )/(Nb 5+ +W 6+ +Ti 4+ ) is preferably 2.0 or less, and more preferably (Ca 2+ +Zn 2+ )/(Nb 5+ +W 6+ +Ti 4+ ) is 1.0 or less. Furthermore, by setting (Ca 2+ +Zn 2+ )/(Nb 5+ +W 6+ +Ti 4+ ) to 0.8 or less, the bubble degree of the glass can be further optimized and the thermal expansion coefficient of the glass can be reduced.
- (Ca 2+ +Zn 2+ )/(Nb 5+ +W 6+ +Ti 4+ ) be 0.8 or less
- (Ca 2+ +Zn 2+ )/(Nb 5+ +W 6 + +Ti 4+ ) is 0.5 or less
- the value of (Ca 2+ +Zn 2+ )/(Nb 5+ +W 6+ +Ti 4+ ) may be 0, greater than 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0.
- Si 4+ can improve the devitrification resistance of the glass, reduce the abrasion degree of the glass and improve the processability.
- the content of Si 4+ in the optical glass of the present invention is 5% or less, preferably 2% or less, more preferably 1% or less, and further preferably not containing Si 4+ .
- B 3+ can improve the devitrification resistance of glass, but in fluorine-containing optical glass, the melting of the glass will cause strong volatilization, resulting in unstable optical constants and streaks of the glass, so the content of B 3+ is limited to 10% Below, it is preferable that it is 5% or less, and it is more preferable that it is 2% or less, and it is still more preferable not to contain B 3+ .
- Ta 5+ can increase the refractive index of glass, but when the content of Ta 5+ is large, the glass tends to devitrify. Therefore, the content of Ta 5+ is 10% or less, preferably 5% or less, and more preferably 2% or less, because it does not significantly contribute to lowering the ⁇ P C,t and ⁇ P C,s values of the glass and is expensive , it is more preferable not to contain Ta 5+ . In some embodiments, may contain 0%, greater than 0%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5% , 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10% Ta 5+ .
- the glass of the present invention may contain one or more components of Sb 3+ , Sn 4+ and Ce 4+ as a clarifying agent to improve the defoaming effect of the glass.
- Sb 3+ exceeds 1%, the glass tends to reduce the clarification performance, and at the same time, due to its strong oxidation effect, the deterioration of the forming mold is promoted, so the content of Sb 3+ in the present invention is 1% or less, preferably 0.5% or less , more preferably 0.1% or less.
- Sn 4+ can also be used as a clarifying agent, but when its content exceeds 1%, the glass will be colored, or when the glass is heated, softened and re-shaped by molding, Sn 4+ will become the starting point for the formation of crystal nuclei, resulting in loss of Therefore, the content of Sn 4+ in the present invention is 1% or less, preferably 0.5% or less, more preferably 0.1% or less, and further preferably no Sn 4+ is contained.
- the function and content of Ce 4+ are the same as those of Sn 4+ , and its content is 1% or less, preferably 0.5% or less, more preferably 0.1% or less, and further preferably not containing Ce 4+ . In some embodiments, 0%, greater than 0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1% Sb 3+ and/ or Sn 4+ and/or Ce 4+ .
- the glass can obtain excellent stability and at the same time reduce the PC , t value and ⁇ PC of the glass , s value, preferably F - +O 2- is 98.5% or more, more preferably F - +O 2- is 99% or more, still more preferably F - +O 2- is 99.5% or more.
- F ⁇ +O 2- may be 98%, 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, 100%.
- F - has a significant effect on reducing the temperature coefficient of refractive index and transition temperature of glass, and is an important component to increase the Abbe number and reduce the value of PC , t and ⁇ PC , s . If its content is less than 15%, the above The effect is not obvious, and the content of F - is preferably 18% or more, and more preferably the content of F - is 21% or more. On the other hand, if the content of F - is too high, the refractive index of the glass will be reduced, the stability of the glass will be weakened, and the thermal expansion coefficient of the glass will be increased.
- the volatilization of fluorine will not only easily pollute the environment, but also easily make the glass
- the content of F - in the present invention is limited to 45% or less, preferably 38% or less, and more preferably 35% or less.
- O 2- is contained in the optical glass of the present invention, in particular, by containing O 2- in an amount of 55% or more, the stability and weather resistance of the glass can be improved, and the increase in the abrasion degree of the glass and the deterioration of the streak degree can be suppressed.
- the content of O 2- is 55 to 85%, preferably 62 to 82%, and more preferably 65 to 79%.
- the defoaming effect of glass can be improved by containing 2% or less of Cl - as a clarifying agent, preferably the content of Cl - is 0-1%, more preferably 0-0.5%.
- the content of Cl - is 0-1%, more preferably 0-0.5%.
- the relative content F - /O 2- of F - and O 2- is controlled in the range of 0.18-0.6, which can improve the stability and thermal stability of the glass and optimize the light transmission of the glass. Rate. Therefore, F - /O 2- is preferably 0.18 to 0.6, more preferably F - /O 2- is 0.2 to 0.5, still more preferably F - /O 2- is 0.25 to 0.45, and still more preferably F - /O 2- is 0.28 ⁇ 0.4.
- the value of F ⁇ /O 2 ⁇ may be 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6.
- F ⁇ /Ba 2+ in the range of 0.35 to 1.2, a lower transition temperature can be obtained while reducing the PC ,t and ⁇ PC ,s values of the glass . Therefore, F ⁇ /Ba 2+ is preferably 0.35 to 1.2, more preferably F ⁇ /Ba 2+ is 0.5 to 1.1, still more preferably F ⁇ /Ba 2+ is 0.6 to 1.0, and still more preferably F ⁇ /Ba 2+ is 0.65 ⁇ 0.9.
- the value of F ⁇ /Ba 2+ may be 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.63, 0.65, 0.67, 0.7, 0.73, 0.75, 0.77, 0.8, 0.83, 0.85, 0.87, 0.9, 0.93, 0.95, 0.97, 1.0, 1.03, 1.05, 1.07, 1.1, 1.13, 1.15, 1.17, 1.2.
- (P 5+ +Al 3+ )/F - in the range of 0.9 to 4.0, which can improve the devitrification resistance and weather resistance of the glass and suppress the volatilization of fluorine, more preferably (P 5+ +Al 3+ )/F ⁇ is 1.0 to 3.5, more preferably (P 5+ +Al 3+ )/F ⁇ is 1.2 to 3.0, still more preferably (P 5+ +Al 3+ )/F - is 1.5 to 2.5.
- the value of (P 5+ +Al 3+ )/F ⁇ may be 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2.0, 2.05, 2.1, 2.15, 2.2, 2.25, 2.3, 2.35, 2.4, 2.45, 2.5, 2.55, 2.6, 2.65, 2.7, 2.75, 2.8, 2.85, 2.9, 2.95, 3.0, 3.05, 3.1, 3.15, 3.2, 3.25, 3.3, 3.35, 3.4, 3.45, 3.5, 3.55, 3.6, 3.65, 3.7, 3.75, 3.8, 3.85, 3.9, 3.95, 4.0.
- the total content or the respective content of Ta 5+ , Ge 4+ , Bi 3+ , Te 4+ in the optical glass of the present invention is preferably 5% or less, more preferably 3% or less, and further preferably 1% Hereinafter, it is more preferable not to contain.
- the total content or individual content of Br - and I - in the optical glass of the present invention is preferably 2% or less, more preferably 1% or less, still more preferably 0.5% or less, and still more preferably not contained.
- the glass will be colored and absorb at specific wavelengths in the visible light region, thereby weakening the Because of the property of the present invention, which has the effect of improving the transmittance of visible light, it is preferable that the above-mentioned components are not substantially contained in the optical glass, which is particularly required for the transmittance of wavelengths in the visible light region.
- Pb, Th, Cd, Tl, Os, Be, and Se components tend to be used in a controlled manner as harmful chemical substances in recent years, not only in the glass manufacturing process, but also in the processing process and the disposal after productization.
- Environmental protection measures are required. Therefore, in the case of attaching importance to the influence on the environment, it is preferable not to actually contain them except for unavoidable mixing. Thereby, the optical glass becomes practically free of substances that pollute the environment. Therefore, the optical glass of the present invention can be manufactured, processed, and discarded without taking special measures for environmental measures.
- Does not contain and "0%” described herein means that the component is not intentionally added as a raw material to the optical glass of the present invention; however, as raw materials and/or equipment for producing optical glass, there may be some unintentional additions Impurities or components may be contained in a small or trace amount in the final optical glass, and this situation is also within the protection scope of the patent of the present invention.
- the refractive index (n d ) and Abbe number ( ⁇ d ) of optical glass are tested according to the methods specified in GB/T 7962.1-2010.
- the lower limit of the refractive index (n d ) of the optical glass of the present invention is 1.57, preferably the lower limit is 1.58, and more preferably the lower limit is 1.60; in some embodiments, the refractive index (n d ) of the optical glass of the present invention
- the upper limit of is 1.66, preferably the upper limit is 1.64, and more preferably the upper limit is 1.63.
- the refractive index (n d ) of the optical glass of the present invention may be 1.57, 1.575, 1.58, 1.585, 1.59, 1.595, 1.60, 1.605, 1.61, 1.615, 1.62, 1.625, 1.63, 1.635, 1.64, 1.645 , 1.65, 1.655, 1.66.
- the lower limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is 56, preferably the lower limit is 58, more preferably the lower limit is 59; in some embodiments, the Abbe number ( ⁇ d ) of the optical glass of the present invention
- the upper limit of d ) is 65, preferably the upper limit is 63, and more preferably the upper limit is 62.
- the Abbe number ( ⁇ d ) of the optical glass of the present invention may be 56, 56.5, 57, 57.5, 58, 58.5, 59, 59.5, 60, 60.5, 61, 61.5, 62, 62.5, 63, 63.5, 64, 64.5, 65.
- the water resistance stability (D W ) of the optical glass of the present invention is three or more types, preferably two or more types.
- the acid resistance stability (D A ) (powder method) of optical glass is tested according to the method specified in "GB/T 17129".
- the acid resistance stability (DA ) of the optical glass of the present invention is three or more types, preferably two or more types.
- the weather resistance (CR) of the optical glass was tested as follows.
- the glass samples were placed in a test box with a relative humidity of 90% saturated water vapor, and alternately cycled every 1 hour at 40-50°C for 15 cycles.
- the weather resistance category is divided according to the amount of turbidity change before and after the sample is placed.
- Table 1 is a weather resistance classification table.
- the weather resistance (CR) of the optical glass of this invention is 2 types or more, Preferably it is 1 type.
- the transition temperature (T g ) of the optical glass is tested according to the method specified in "GB/T7962.16-2010".
- the transition temperature (T g ) of the optical glass of the present invention is 620°C or lower, preferably 610°C or lower, and more preferably 600°C or lower.
- the density ( ⁇ ) of optical glass is tested according to the method specified in "GB/T7962.20-2010".
- the density ( ⁇ ) of the optical glass of the present invention is 4.60 g/cm 3 or less, preferably 4.50 g/cm 3 or less, and more preferably 4.40 g/cm 3 or less.
- the short-wave transmission spectral characteristics of the optical glass of the present invention are represented by the degree of coloration ( ⁇ 80 / ⁇ 5 ).
- ⁇ 80 refers to the corresponding wavelength when the glass transmittance reaches 80%
- ⁇ 5 refers to the corresponding wavelength when the glass transmittance reaches 5%.
- the measurement of ⁇ 80 is to measure the spectral transmittance in the wavelength range from 280nm to 700nm using glass with a thickness of 10 ⁇ 0.1mm having two opposite planes parallel to each other and optically polished and exhibiting 80% transmittance .
- the spectral transmittance or transmittance means that when light with an intensity I in is incident perpendicularly to the above-mentioned surface of the glass, when the light with an intensity I out is transmitted through the glass and emitted from another plane, it is expressed by I out /I in The amount and also includes the transmittance of the surface reflection loss on the above-mentioned surface of the glass.
- ⁇ 80 of the optical glass of the present invention is 380 nm or less, preferably ⁇ 80 is 375 nm or less, and more preferably ⁇ 80 is 370 nm or less.
- ⁇ 5 of the optical glass of the present invention is 330 nm or less, preferably ⁇ 5 is 325 nm or less, and more preferably ⁇ 5 is 320 nm or less.
- the ⁇ P C ,s and ⁇ P C ,t values of optical glass shall be measured according to the method specified in "GB/T 7962.1-2010 " .
- the ⁇ P C,s value of the optical glass of the present invention is 0 or less, preferably -0.01 or less, more preferably -0.015 or less, and further preferably -0.02 or less.
- the ⁇ P C,t value of the optical glass of the present invention is -0.01 or less, preferably -0.02 or less, more preferably -0.03 or less, still more preferably -0.04 or less, and furthermore -0.05 or less.
- the manufacturing method of the optical glass of the present invention is as follows: the glass of the present invention is produced by using conventional raw materials and conventional processes, using carbonate, nitrate, sulfate, hydroxide, oxide, fluoride, phosphate, metaphosphate, etc. as Raw materials, after batching according to the conventional method, put the prepared charge into the melting furnace (such as platinum crucible with lid, platinum alloy crucible, etc.) Homogeneous molten glass with no air bubbles and no undissolved substances is cast in a mold and annealed.
- the melting furnace such as platinum crucible with lid, platinum alloy crucible, etc.
- Homogeneous molten glass with no air bubbles and no undissolved substances is cast in a mold and annealed.
- a glass preform can be produced from the optical glass produced by means of grinding, or by means of press forming such as reheat press forming and precision press forming. That is, a glass preform can be produced by subjecting optical glass to mechanical processing such as grinding and polishing, or by producing a preform for press-molding from optical glass, reheating the preform, and then grinding the preform. Glass preforms are produced by machining, or by precision stamping of preforms produced by grinding.
- the means for preparing the glass preform is not limited to the above-mentioned means.
- the optical glass of the present invention is useful for various optical elements and optical designs. Among them, it is particularly preferable to form a preform from the optical glass of the present invention, and to perform reheat press molding, precision press molding, etc. using the preform. , making optical components such as lenses and prisms.
- Both the glass preform and the optical element of the present invention are formed from the optical glass of the present invention described above.
- the glass preform of the present invention has the excellent characteristics of optical glass;
- the optical element of the present invention has the excellent characteristics of optical glass, and can provide various optical elements such as lenses and prisms with high optical value.
- lenses include various lenses such as concave meniscus lenses, convex meniscus lenses, biconvex lenses, biconcave lenses, plano-convex lenses, and plano-concave lenses whose lens surfaces are spherical or aspherical.
- optical element formed by the optical glass of the present invention can be used to manufacture optical instruments such as photographic equipment, imaging equipment, display equipment and monitoring equipment.
- the optical glass which has the composition shown in Table 2 - Table 4 was obtained by the manufacturing method of the said optical glass.
- the properties of each glass were measured by the test method according to the present invention, and the measurement results are shown in Tables 2 to 4.
- Concave meniscus lenses and convex meniscus lenses are produced by using the glasses obtained in Tables 2 to 4 of the optical glass examples, for example, by means of grinding, or by means of compression molding such as reheat press molding and precision press molding. , biconvex lens, biconcave lens, plano-convex lens, plano-concave lens and other lenses, prisms and other prefabricated parts.
- the preforms obtained in the above glass preform examples are annealed, and the refractive index is fine-tuned while reducing the internal stress of the glass, so that the optical properties such as the refractive index reach desired values.
- each preform is ground and polished to produce various lenses and prisms such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a plano-convex lens, and a plano-concave lens.
- An antireflection film may also be coated on the surface of the obtained optical element.
- optical elements produced by the above-mentioned optical element embodiments are optically designed and formed by using one or more optical elements to form optical components or optical assemblies, which can be used for example in imaging equipment, sensors, microscopes, medical technology, digital projection, communication, optical communication Technology/information transmission, optics/lighting in the automotive field, lithography, excimer lasers, wafers, computer chips and integrated circuits and electronic devices including such circuits and chips.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Glass Compositions (AREA)
Abstract
本发明提供一种光学玻璃,所述光学玻璃的组分以摩尔百分比表示,阳离子含有:P 5+:26~45%;Al 3+:5~25%;R 2+:28~60%;阴离子含有F -和O 2-,其中:F -+O 2-为98%以上,(P 5++Al 3+)/F -为0.9~4.0,所述R 2+为Ba 2+、Sr 2+、Ca 2+和Mg 2+的合计含量。通过合理的组分设计,本发明获得的光学玻璃在具有期望的折射率和阿贝数的同时,具有较低的ΔP C,s值和ΔP C,t值,耐候性优异。
Description
本发明涉及一种光学玻璃,尤其是涉及一种折射率为1.57~1.66,阿贝数为56~65的光学玻璃,以及由其制成的玻璃预制件、光学元件和光学仪器。
近年来,光学镜头大量应用在车载成像、监控安防等领域,在夜间成像时,镜头在夜间黑白模式下吸收近红外光,而近红外波段光线与可见光在通过镜头时在不同的焦距上成焦,造成成像画质的劣化,成为车载成像、监控安防乃至望远镜、枪瞄镜等领域光学设计的难题。
玻璃的折射率随着波长的增大而减小,通常来讲使用可见光图像传感器的摄像系统在夜晚的近红外辅助照明可用波长范围大约在800~1000nm左右,研究发现,在这个波长范围内,如果玻璃的折射率随着波长的增大而减小的幅度小于正常玻璃,即玻璃在近红外波段形成一定的异常分散,可以大幅度降低光学设计实现日夜共焦的难度,有效改善夜间成像质量,所述近红外波段的异常分散用ΔP
C,s与ΔP
C,t值来表征。
折射率为1.57~1.66,阿贝数为56~65的光学玻璃的折射率与阿贝数适中,广泛应用于各类成像系统中。现有技术中折射率和阿贝数在该范围内的光学玻璃的ΔP
C,s与ΔP
C,t值较大,不能满足新型成像光学设备的发展需要,如申请号为200780019054.0的专利公开的一种折射率为1.55~1.65,阿贝数为55~65的光学玻璃。
另一方面,需要实现日夜共焦的光学系统通常需要工作在恶劣环境中,需要光学材料具备较好的耐候性以保证光学系统的可靠性。因此,开发出一种具有较低ΔP
C,s与ΔP
C,t值且耐候性优异的光学玻璃,对光电信息领域的发展具有重要的作用。
发明内容
本发明所要解决的技术问题是提供一种具有较低ΔP
C,s值和ΔP
C,t值,并且具有优异耐候性的光学玻璃。
本发明解决技术问题所采用的技术方案是:
(1)光学玻璃,其组分以摩尔百分比表示,阳离子含有:P
5+:26~45%;Al
3+:5~25%;R
2+:28~60%;
阴离子含有F
-和O
2-,其中:F
-+O
2-为98%以上,(P
5++Al
3+)/F
-为0.9~4.0,所述R
2+为Ba
2+、Sr
2+、Ca
2+和Mg
2+的合计含量。
(2)根据(1)所述的光学玻璃,其组分以摩尔百分比表示,阳离子还含有:La
3++Gd
3++Y
3+:0~20%;和/或Nb
5++W
6++Ti
4+:0~15%;和/或Rn
+:0~10%;和/或Yb
3+:0~10%;和/或Zn
2+:0~10%;和/或B
3+:0~10%;和/或Si
4+:0~5%;和/或Ta
5+:0~10%;和/或Sb
3+:0~1%;和/或Sn
4+:0~1%;和/或Ce
4+:0~1%,所述Rn
+为Li
+、Na
+、K
+中的一种或多种。
(3)光学玻璃,其组分以摩尔百分比表示,阳离子含有:P
5+:26~45%;La
3++Gd
3++Y
3+:0~20%;Al
3+:5~25%;R
2+:28~60%;Nb
5++W
6++Ti
4+:0~15%;Rn
+:0~10%;Yb
3+:0~10%;Zn
2+:0~10%;B
3+:0~10%;Si
4+:0~5%;Ta
5+:0~10%;Sb
3+:0~1%;Sn
4+:0~1%;Ce
4+:0~1%;
阴离子含有F
-和O
2-,其中:F
-+O
2-为98%以上,所述R
2+为Ba
2+、Sr
2+、Ca
2+和Mg
2+的合计含量,Rn
+为Li
+、Na
+、K
+中的一种或多种。
(4)光学玻璃,其组分中阳离子含有P
5+、Al
3+和R
2+,阴离子含有F
-和O
2-,所述光学玻璃的折射率n
d为1.57~1.66,阿贝数ν
d为56~65,ΔP
C,s值为0以下,ΔP
C,t值为-0.01以下。
(5)根据(4)所述的光学玻璃,其组分以摩尔百分比表示,阳离子含有:P
5+:26~45%;La
3++Gd
3++Y
3+:0~20%;Al
3+:5~25%;R
2+:28~60%;Nb
5++W
6++Ti
4+:0~15%;Rn
+:0~10%;Yb
3+:0~10%;Zn
2+:0~10%;B
3+:0~10%;Si
4+:0~5%;Ta
5+:0~10%;Sb
3+:0~1%;Sn
4+:0~1%;Ce
4+:0~1%,所述R
2+为Ba
2+、Sr
2+、Ca
2+和Mg
2+的合计含量,Rn
+为Li
+、Na
+、K
+中的一种或多种。
(6)根据(1)~(5)任一所述的光学玻璃,其组分以摩尔百分比表示,其中:(P
5++Al
3+)/F
-为0.9~4.0,优选(P
5++Al
3+)/F
-为1.0~3.5,更优选(P
5++Al
3+)/F
-为1.2~3.0,进一步优选(P
5++Al
3+)/F
-为1.5~2.5。
(7)根据(1)~(5)任一所述的光学玻璃,其组分以摩尔百分比表示,其中:(Nb
5++W
6++Ti
4+)/(La
3++Gd
3++Y
3+)为0.1~10.0,优选(Nb
5++W
6++Ti
4+)/(La
3++Gd
3++Y
3+)为0.2~6.0,更优选(Nb
5++W
6++Ti
4+)/(La
3++Gd
3++Y
3+)为0.5~4.0,进一步优选(Nb
5++W
6++Ti
4+)/(La
3++Gd
3++Y
3+)为0.7~2.0。
(8)根据(1)~(5)任一所述的光学玻璃,其组分以摩尔百分比表示,其中:Y
3+/(La
3++Gd
3++Y
3+)为0.3~1.0,优选Y
3+/(La
3++Gd
3++Y
3+)为0.5~1.0,更优选Y
3+/(La
3++Gd
3++Y
3+)为0.6~1.0,进一步优选Y
3+/(La
3++Gd
3++Y
3+)为0.65~1.0。
(9)根据(1)~(5)任一所述的光学玻璃,其组分以摩尔百分比表示,其中:Mg
2+/Ba
2+为0.01~0.3,优选Mg
2+/Ba
2+为0.02~0.25,更优选Mg
2+/Ba
2+为0.03~0.2,进一步优选Mg
2+/Ba
2+为0.05~0.15。
(10)根据(1)~(5)任一所述的光学玻璃,其组分以摩尔百分比表示,其中:Sr
2+/Y
3+为0.3~10.0,优选Sr
2+/Y
3+为0.5~5.0,更优选Sr
2+/Y
3+为0.8~3.0,进一步优选Sr
2+/Y
3+为1.0~2.0。
(11)根据(1)~(5)任一所述的光学玻璃,其组分以摩尔百分比表示,其中:(Ca
2++Zn
2+)/(Nb
5++W
6++Ti
4+)为2.0以下,优选(Ca
2++Zn
2+)/(Nb
5++W
6++Ti
4+)为1.0以下,更优选(Ca
2++Zn
2+)/(Nb
5++W
6++Ti
4+)为0.8以下,进一步优选(Ca
2++Zn
2+)/(Nb
5++W
6++Ti
4+)为0.5以下。
(12)根据(1)~(5)任一所述的光学玻璃,其组分以摩尔百分比表示,其中:(Rn
++Ca
2+)/Mg
2+为2.0以下,优选(Rn
++Ca
2+)/Mg
2+为1.0以下,更优选(Rn
++Ca
2+)/Mg
2+为0.8以下,进一步优选(Rn
++Ca
2+)/Mg
2+为0.5以下。
(13)根据(1)~(5)任一所述的光学玻璃,其组分以摩尔百分比表示,其中:F
-/O
2-为0.18~0.6,优选F
-/O
2-为0.2~0.5,更优选F
-/O
2-为 0.25~0.45,进一步优选F
-/O
2-为0.28~0.4。
(14)根据(1)~(5)任一所述的光学玻璃,其组分以摩尔百分比表示,其中:F
-/Ba
2+为0.35~1.2,优选F
-/Ba
2+为0.5~1.1,更优选F
-/Ba
2+为0.6~1.0,进一步优选F
-/Ba
2+为0.65~0.9。
(15)根据(1)~(5)任一所述的光学玻璃,其组分以摩尔百分比表示,其中:P
5+:30~40%,优选P
5+:33~38%;和/或La
3++Gd
3++Y
3+:0.1~15%,优选La
3++Gd
3++Y
3+:0.5~12%,更优选La
3++Gd
3++Y
3+:1~10%;和/或Nb
5++W
6++Ti
4+:0.5~10%,优选Nb
5++W
6++Ti
4+:1~8%;和/或R
2+:35~55%,优选R
2+:38~50%;和/或Al
3+:8~20%,优选Al
3+:10~18%;和/或Rn
+:0~5%,优选Rn
+:0~2%,更优选不含有Rn
+;和/或Yb
3+:0~5%,优选Yb
3+:0~2%,更优选不含有Yb
3+;和/或Zn
2+:0~5%,优选Zn
2+:0~2%,更优选不含有Zn
2+;和/或B
3+:0~5%,优选B
3+:0~2%,更优选不含有B
3+;和/或Si
4+:0~2%,优选Si
4+:0~1%,更优选不含有Si
4+;和/或Ta
5+:0~5%,优选Ta
5+:0~2%,更优选不含有Ta
5+;和/或Sb
3+:0~0.5%,优选Sb
3+:0~0.1%;和/或Sn
4+:0~0.5%,优选Sn
4+:0~0.1%,更优选不含有Sn
4+;和/或Ce
4+:0~0.5%,优选Ce
4+:0~0.1%,更优选不含有Ce
4+。
(16)根据(1)~(5)任一所述的光学玻璃,其组分以摩尔百分比表示,其中:Ba
2+:28~45%,优选Ba
2+:30~40%,更优选Ba
2+:33~38%;和/或Sr
2+:0~10%,优选Sr
2+:1~8%,更优选Sr
2+:2~7%;和/或Mg
2+:0~10%,优选Mg
2+:1~7%,更优选Mg
2+:2~6%;和/或Ca
2+:0~10%,优选Ca
2+:0~6%,更优选Ca
2+:0~5%;和/或La
3+:0~10%,优选La
3+:0~5%,更优选La
3+:0~3%;和/或Gd
3+:0~10%,优选Gd
3+:0~5%,更优选Gd
3+:0~3%;和/或Y
3+:0~10%,优选Y
3+:0.5~8%,更优选Y
3+:1~7%;和/或Nb
5+:0~10%,优选Nb
5+:0~6%,更优选Nb
5+:0~4%;和/或W
6+:0~10%,优选W
6+:0~6%,更优选W
6+:0~5%;和/或Ti
4+:0~10%,优选Ti
4+:0~5%,更优选Ti
4+:0~2%,进一步优选不含有Ti
4+。
(17)根据(1)~(5)任一所述的光学玻璃,其组分以摩尔百分比 表示,其中:F
-:15~45%,优选F
-:18~38%,更优选F
-:21~35%;和/或O
2-:55~85%,优选O
2-:62~82%,更优选O
2-:65~79%。
(18)根据(1)~(5)任一所述的光学玻璃,其组分以摩尔百分比表示,阴离子还含有:Cl
-:0~2%;和/或Br
-:0~2%;和/或I
-:0~2%,优选阴离子还含有:Cl
-:0~1%;和/或Br
-:0~1%;和/或I
-:0~1%,更优选阴离子还含有:Cl
-:0~0.5%;和/或Br
-:0~0.5%;和/或I
-:0~0.5%。
(19)根据(1)~(5)任一所述的光学玻璃,所述的光学玻璃的折射率n
d为1.57~1.66,优选折射率n
d为1.58~1.64,更优选折射率n
d为1.60~1.63;阿贝数ν
d为56~65,优选阿贝数ν
d为58~63,更优选阿贝数ν
d为59~62。
(20)根据(1)~(5)任一所述的光学玻璃,所述的光学玻璃的ΔP
C,s值为0以下,优选ΔP
C,s值为-0.01以下,更优选ΔP
C,s值为-0.015以下,进一步优选ΔP
C,s值为-0.02以下;和/或ΔP
C,t值为-0.01以下,优选ΔP
C,t值为-0.02以下,更优选ΔP
C,t值为-0.03以下,进一步优选ΔP
C,t值为-0.04以下,更进一步优选ΔP
C,t值为-0.05以下。
(21)根据(1)~(5)任一所述的光学玻璃,所述的光学玻璃的耐水作用稳定性D
W为3类以上,优选耐水作用稳定性D
W为2类以上;和/或耐酸作用稳定性D
A为3类以上,优选耐酸作用稳定性D
A为2类以上;和/或耐候性CR为2类以上,优选耐候性CR为1类;和/或转变温度T
g为620℃以下,优选转变温度T
g为610℃以下,更优选转变温度T
g为600℃以下;和/或密度ρ为4.60g/cm
3以下,优选密度ρ为4.50g/cm
3以下,更优选密度ρ为4.40g/cm
3以下;和/或λ
80为380nm以下,优选λ
80为375nm以下,更优选λ
80为370nm以下;和/或λ
5为330nm以下,优选λ
5为325nm以下,更优选λ
5为320nm以下。
(22)玻璃预制件,采用(1)~(21)任一所述的光学玻璃制成。
(23)光学元件,采用(1)~(21)任一所述的光学玻璃或(22)所述的玻璃预制件制成。
(24)光学仪器,含有(1)~(21)任一所述的光学玻璃;和/或含有(23)所述的光学元件。
本发明的有益效果是:通过合理的组分设计,本发明获得的光学玻璃在具有期望的折射率和阿贝数的同时,具有较低的ΔP
C,s值和ΔP
C,t值,耐候性优异。
下面,对本发明的光学玻璃的实施方式进行详细说明,但本发明不限于下述的实施方式,在本发明目的的范围内可进行适当的变更来加以实施。此外,关于重复说明部分,虽然有适当的省略说明的情况,但不会因此而限制发明的主旨,在以下内容中,本发明光学玻璃有时候简称为玻璃。
[光学玻璃]
下面对本发明组成光学玻璃的各组分(成分)范围进行说明。在本说明书中,如果没有特殊说明,阳离子组分的含量以该阳离子占全部阳离子组分的摩尔百分比(mol%)表示,阴离子组分的含量以该阴离子占全部阴离子组分的摩尔百分比(mol%)表示;阳离子组分含量之间的比值是各阳离子组分含量之间的摩尔百分比含量的比值;阴离子组分含量之间的比值是各阴离子组分含量之间的摩尔百分比含量的比值;阴阳离子组分含量之间的比值,是阳离子组分占所有阳离子组分的摩尔百分比含量与阴离子组分占所有阴离子组分的摩尔百分比含量的比值。
除非在具体情况下另外指出,本文所列出的数值范围包括上限和下限值,“以上”和“以下”包括端点值,以及包括在该范围内的所有整数和分数,而不限于所限定范围时所列的具体值。本文所称“和/或”是包含性的,例如“A和/或B”,是指只有A,或者只有B,或者同时有A和B。
需要说明的是,以下描述的各组分的离子价是为了方便而使用的代表值,与其他的离子价没有区别。光学玻璃中各组分的离子价存在代表值以外的可能性。例如,P通常以离子价为+5价的状态存在于玻璃中,因此在本专利中以“P
5+”作为代表值,但是存在以其他的离子价状态存在的可能 性,这也在本专利的保护范围之内。
<关于阳离子组分>
P
5+是玻璃网络形成体组分,可以提高玻璃的稳定性,降低玻璃的△P
C,t值和△P
C,s值,当其含量低于26%时,上述效果不明显,且玻璃的稳定性降低,析晶倾向增加。因此,本发明中P
5+的含量为26%以上,优选含量为30%以上,更优选含量为33%以上。另一方面,若P
5+的含量超过45%,玻璃的耐候性下降,且较难获得本发明期望的光学常数。因此,本发明中P
5+的含量为45%以下,优选含量为40%以下,更优选含量为38%以下。在一些实施方式中,可含有26%、26.5%、27%、27.5%、28%、28.5%、29%、29.5%、30%、30.5%、31%、31.5%、32%、32.5%、33%、33.5%、34%、34.5%、35%、35.5%、36%、36.5%、37%、37.5%、38%、38.5%、39%、39.5%、40%、40.5%、41%、41.5%、42%、42.5%、43%、43.5%、44%、44.5%、45%的P
5+。
Al
3+是本发明玻璃的骨架组分,可有效提高玻璃的机械性能和耐候性,同时降低玻璃的热膨胀系数,当其含量低于5%时,无法形成稳定的玻璃骨架并获得上述的效果。当Al
3+的含量高于25%时,玻璃的转变温度和液相温度升高,玻璃熔制变得困难,同时成型温度增加,从而导致玻璃的挥发加剧,使得玻璃条纹变坏,且过高的转变温度会使模压成型困难。因此,本发明中Al
3+的含量为5~25%,优选为8~20%,更优选为10~18%。在一些实施方式中,可含有5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%、20.5%、21%、21.5%、22%、22.5%、23%、23.5%、24%、24.5%、25%的Al
3+。
La
3+具有提高玻璃的折射率,改善耐酸性的作用,当La
3+的含量过多时,玻璃的热稳定性和耐失透性下降,制造过程中玻璃容易失透。因此,本发明中La
3+的含量为10%以下,优选为5%以下,更优选为3%以下。在一些实施方式中,可含有0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、 10%的La
3+。
Gd
3+可以改善玻璃的化学稳定性,提高折射率,若其含量超过10%,则玻璃的转变温度上升,而且其稳定性也会降低。因此,本发明中Gd
3+的含量为10%以下,优选为5%以下,更优选为3%以下。在一些实施方式中,可含有0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Gd
3+。
Y
3+具有高折射率低色散、改善玻璃的磨耗度和适当降低玻璃的△P
C,t值和△P
C,s值的作用,当其含量超过10%时,玻璃的失透倾向增加。因此,本发明中Y
3+的含量为10%以下,优选为0.5~8%,更优选为1~7%。在一些实施方式中,可含有0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Y
3+。
在本发明的一些实施方式中,将La
3+、Gd
3+、Y
3+的合计含量La
3++Gd
3++Y
3+控制在20%以下,可以防止玻璃的光学常数超出设计要求,因此优选La
3++Gd
3++Y
3+为20%以下。进一步的,通过使La
3+、Gd
3+、Y
3+的合计含量La
3++Gd
3++Y
3+在0.1~15%范围内,在较易获得期望的光学常数的同时,还可提高玻璃的化学稳定性,因此更优选La
3++Gd
3++Y
3+为0.1~15%,进一步优选La
3++Gd
3++Y
3+为0.5~12%,更进一步优选La
3++Gd
3++Y
3+为1~10%。在一些实施方式中,La
3++Gd
3++Y
3+可为0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%、15.5%、16%。16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%。
在本发明的一些实施方式中,通过控制Y
3+/(La
3++Gd
3++Y
3+)在0.3~1.0范围内,可以优化玻璃的耐候性,提高玻璃的光透过率。因此,优选Y
3+/(La
3++Gd
3++Y
3+)为0.3~1.0,更优选Y
3+/(La
3++Gd
3++Y
3+)为0.5~1.0,进一步优选Y
3+/(La
3++Gd
3++Y
3+)为0.6~1.0,更进一步优选Y
3+/
(La
3++Gd
3++Y
3+)为0.65~1.0。在一些实施方式中,Y
3+/(La
3++Gd
3++Y
3+)的值可为0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0。
Yb
3+可以提高玻璃的折射率,当其含量过高时,玻璃的热稳定性和耐失透性下降。因此,本发明中Yb
3+的含量为10%以下,优选为5%以下,更优选为2%以下,进一步优选不含有Yb
3+。在一些实施方式中,可含有0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Yb
3+。
W
6+可以提高玻璃的折射率和色散,降低玻璃的转变温度、△P
C,t值和△P
C,s值,若其含量超过10%,玻璃的着色度变差,同时折射率易超出设计要求,磨耗度变差。因此,W
6+的含量为10%以下,优选为6%以下,更优选为5%以下。在一些实施方式中,可含有0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的W
6+。
Nb
5+可以提高玻璃的折射率和色散,降低玻璃的△P
C,t值和△P
C,s值,改善玻璃的热稳定性和化学稳定性,若其含量超过10%,玻璃的耐失透性降低,着色度变差。因此,Nb
5+的含量为10%以下,优选为6%以下,更优选为4%以下。在一些实施方式中,可含有0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Nb
5+。
Ti
4+可改善玻璃的化学稳定性,降低玻璃的△P
C,t值和△P
C,s值,但若其含量过多,玻璃的析晶倾向增加,着色度变差,同时玻璃的熔融性降低。因此,本发明中Ti
4+的含量为10%以下,优选为5%以下,更优选为2%以下。在一些实施方式中,进一步优选不含有Ti
4+。在一些实施方式中,可含有0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Ti
4+。
在本发明的一些实施方式中,通过使Nb
5+、W
6+和Ti
4+的合计含量 Nb
5++W
6++Ti
4+在15%以下,可防止玻璃折射率和阿贝数超过设计要求,防止耐失透性下降,以及着色度变差,因此优选Nb
5++W
6++Ti
4+为15%以下。进一步的,通过使Nb
5++W
6++Ti
4+在0.5%以上,有利于降低玻璃的△P
C,t值和△P
C,s值。因此,更优选Nb
5++W
6++Ti
4+为0.5~10%,进一步优选Nb
5++W
6++Ti
4+为1~8%。在一些实施方式中,Nb
5++W
6++Ti
4+可为0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%。
发明人大量实验研究发现,在本发明的一些实施方式中,通过使Nb
5+、W
6+和Ti
4+的合计含量Nb
5++W
6++Ti
4+与La
3+、Gd
3+和Y
3+的合计含量
La
3++Gd
3++Y
3+之间的比例(Nb
5++W
6++Ti
4+)/(La
3++Gd
3++Y
3+)在0.1~10.0之间,可以较易使玻璃的光学常数在期望的范围内的同时,降低玻璃的△P
C,t值和△P
C,s值,并优化玻璃的化学稳定性。因此,优选(Nb
5++W
6++Ti
4+)/(La
3++Gd
3++Y
3+)为0.1~10.0,更优选(Nb
5++W
6++Ti
4+)/(La
3++Gd
3++Y
3+)为0.2~6.0,进一步优选(Nb
5++W
6++Ti
4+)/(La
3++Gd
3++Y
3+)为0.5~4.0,更进一步优选(Nb
5++W
6++Ti
4+)/(La
3++Gd
3++Y
3+)为0.7~2.0。在一些实施方式中,(Nb
5++W
6++Ti
4+)/(La
3++Gd
3++Y
3+)的值可为0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.3、2.5、2.7、3.0、3.3、3.5、3.7、4.0、4.3、4.5、4.7、5.0、5.3、5.5、5.7、6.0、6.3、6.5、6.7、7.0、7.3、7.5、7.7、8.0、8.3、8.5、8.7、9.0、9.3、9.5、9.7、10.0。
本发明中通过含有28~60%的碱土金属组分R
2+(其中R
2+为Ba
2+、Sr
2+、Ca
2+和Mg
2+的合计含量),以提高玻璃的热稳定性,调节玻璃的光学常数,优选含有35~55%的R
2+,更优选含有38~50%的R
2+。在一些实施方式中,可含有28%、28.5%、29%、29.5%、30%、30.5%、31%、31.5%、32%、32.5%、33%、33.5%、34%、34.5%、35%、35.5%、36%、36.5%、37%、37.5%、38%、 38.5%、39%、39.5%、40%、40.5%、41%、41.5%、42%、42.5%、43%、43.5%、44%、44.5%、45%、45.5%、46%、46.5%、47%、47.5%、48%、48.5%、49%、49.5%、50%、50.5%、51%、51.5%、52%、52.5%、53%、53.5%、54%、54.5%、55%、55.5%、56%、56.5%、57%、57.5%、58%、58.5%、59%、59.5%、60%的R
2+。
Ba
2+具有提高玻璃的折射率、热稳定性和耐候性的作用,本发明中通过含有28%以上的Ba
2+以获得上述效果。另一方面,若Ba
2+的含量超过45%,玻璃的转变温度和密度增加,磨耗度变差。因此,本发明中Ba
2+的含量为28~45%,优选为30~40%,更优选为33~38%。在一些实施方式中,可含有28%、28.5%、29%、29.5%、30%、30.5%、31%、31.5%、32%、32.5%、33%、33.5%、34%、34.5%、35%、35.5%、36%、36.5%、37%、37.5%、38%、38.5%、39%、39.5%、40%、40.5%、41%、41.5%、42%、42.5%、43%、43.5%、44%、44.5%、45%的Ba
2+。
Sr
2+可以降低玻璃的热膨胀系数,并可有效调整玻璃的折射率和密度,但若其含量过高,玻璃的耐失透性和化学稳定性降低。因此,本发明中Sr
2+的含量为0~10%,优选为1~8%,更优选为2~7%。在一些实施方式中,可含有0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Sr
2+。
在本发明的一些实施方式中,将Sr
2+与Y
3+的相对含量Sr
2+/Y
3+控制在0.3~10.0范围内,可以降低玻璃的转变温度和密度,因此优选Sr
2+/Y
3+为0.3~10.0,更优选Sr
2+/Y
3+为0.5~5.0。进一步的,使Sr
2+/Y
3+在0.8~3.0范围内,还可进一步提高玻璃的抗析晶性能,因此进一步优选Sr
2+/Y
3+为0.8~3.0,更进一步优选Sr
2+/Y
3+为1.0~2.0。在一些实施方式中,Sr
2+/Y
3+的值可为0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.3、3.5、3.7、4.0、4.3、4.5、4.7、5.0、5.3、5.5、5.7、6.0、6.3、6.5、6.7、7.0、7.3、7.5、7.7、8.0、8.3、8.5、8.7、9.0、9.3、9.5、9.7、 10.0。
Mg
2+可以改善玻璃的磨耗度和耐失透性,若其含量超过10%,玻璃的稳定性降低。因此,本发明中Mg
2+的含量为0~10%,优选为1~7%,更优选为2~6%。在一些实施方式中,可含有0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Mg
2+。
在本发明的一些实施方式中,通过使Mg
2+与Ba
2+的含量之间的比例Mg
2+/Ba
2+在0.01~0.3范围内,可以在优化玻璃磨耗度的同时,提高玻璃的化学稳定性。因此,优选Mg
2+/Ba
2+为0.01~0.3,更优选Mg
2+/Ba
2+为0.02~0.25,进一步优选Mg
2+/Ba
2+为0.03~0.2,更进一步优选Mg
2+/Ba
2+为0.05~0.15。在一些实施方式中,Mg
2+/Ba
2+的值可为0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.2、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.3。
Ca
2+具有提高玻璃化学稳定性,改善玻璃研磨性能的作用,一定含量内代替Ba
2+,可以降低玻璃密度,若其含量过多,玻璃的耐失透性恶化。因此,本发明中Ca
2+的含量为0~10%,优选为0~6%,更优选为0~5%。在一些实施方式中,可含有0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Ca
2+。
Rn
+(Rn
+为Li
+、Na
+、K
+中的一种或多种)可以降低玻璃的转变温度和折射率,提高玻璃的模压性能,若其含量过多,玻璃的稳定性和耐候性降低。因此,本发明中Rn
+的含量为10%以下,优选为5%以下,更优选为2%以下。在一些实施方式中,进一步优选不含有Rn
+。在一些实施方式中,可含有0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Rn
+。
本发明通过大量实验研究发现,在一些实施方式中,通过控制 (Rn
++Ca
2+)/Mg
2+在2.0以下,可以降低玻璃的密度、P
C,t值和△P
C,s值,优化玻璃的磨耗度。因此,优选(Rn
++Ca
2+)/Mg
2+为2.0以下,更优选(Rn
++Ca
2+)/Mg
2+为1.0以下,进一步优选(Rn
++Ca
2+)/Mg
2+为0.8以下,更进一步优选(Rn
++Ca
2+)/Mg
2+为0.5以下。在一些实施方式中,(Rn
++Ca
2+)/Mg
2+的值可为0、大于0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0。
Zn
2+可以降低玻璃的转变温度,提高玻璃热稳定性,当其含量超过10%时,玻璃的色散增加,难以获得期望的光学常数,且玻璃耐失透性降低,因此Zn
2+含量限定为10%以下,优选为5%以下,更优选为2%以下。在一些实施方式中,进一步优选不含有Zn
2+。在一些实施方式中,可含有0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Zn
2+。
本发明通过大量实验研究发现,在一些实施方式中,通过将Ca
2+和Zn
2+的合计含量Ca
2++Zn
2+与Nb
5+、W
6+、Ti
4+的合计含量Nb
5++W
6++Ti
4+之间的比例(Ca
2++Zn
2+)/(Nb
5++W
6++Ti
4+)控制在2.0以下,可以使玻璃在获得较低△P
C,t值和△P
C,s值的同时,优化玻璃的抗析晶性能。因此,优选(Ca
2++Zn
2+)/(Nb
5++W
6++Ti
4+)为2.0以下,更优选(Ca
2++Zn
2+)/(Nb
5++W
6++Ti
4+)为1.0以下。进一步的,通过使(Ca
2++Zn
2+)/(Nb
5++W
6++Ti
4+)为0.8以下,还可进一步优化玻璃的气泡度,降低玻璃的热膨胀系数。因此进一步优选(Ca
2++Zn
2+)/(Nb
5++W
6++Ti
4+)为0.8以下,更进一步优选(Ca
2++Zn
2+)/(Nb
5++W
6++Ti
4+)为0.5以下。在一些实施方式中,(Ca
2++Zn
2+)/(Nb
5++W
6++Ti
4+)的值可为0、大于0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0。
Si
4+可以提高玻璃的耐失透性,降低玻璃的磨耗度并提高加工性,当其含量超过5%时,玻璃的熔化性能下降。因此,本发明光学玻璃中Si
4+的含量为5%以下,优选为2%优选,更优选为1%以下,进一步优选不含有Si
4+。在一些实施方式中,可含有0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、 3%、3.5%、4%、4.5%、5%的Si
4+。
B
3+可以提高玻璃的耐失透性,但在含氟的光学玻璃中,玻璃熔化会出现较强烈的挥发,造成玻璃的光学常数不稳定和条纹,因此B
3+的含量限定为10%以下,优选为5%以下,更优选为2%以下,进一步优选不含有B
3+。在一些实施方式中,可含有0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的B
3+。
Ta
5+可以提高玻璃的折射率,但其含量多时,玻璃容易失透。因此,Ta
5+的含量为10%以下,优选为5%以下,更优选为2%以下,因其对降低玻璃的△P
C,t值和△P
C,s值无显著贡献且价格昂贵,进一步优选不含有Ta
5+。在一些实施方式中,可含有0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Ta
5+。
本发明玻璃中可以含有Sb
3+、Sn
4+、Ce
4+中的一种或多种组分作为澄清剂,以提高玻璃的除泡效果。当Sb
3+的含量超过1%时,玻璃有澄清性能降低的倾向,同时由于其强氧化作用促进了成型模具的劣化,因此本发明Sb
3+的含量为1%以下,优选为0.5%以下,更优选为0.1%以下。Sn
4+也可以作为澄清剂,但当其含量超过1%时,玻璃会着色,或者当加热、软化玻璃并进行模压成形等再次成形时,Sn
4+会成为晶核生成的起点,产生失透的倾向,因此本发明的Sn
4+的含量为1%以下,优选为0.5%以下,更优选为0.1%以下,进一步优选不含有Sn
4+。Ce
4+的作用及含量与Sn
4+相同,其含量为1%以下,优选为0.5%以下,更优选为0.1%以下,进一步优选不含有Ce
4+。在一些实施方式中,可含有0%、大于0%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%的Sb
3+和/或Sn
4+和/或Ce
4+。
<关于阴离子组分>
本发明玻璃中通过使F
-和O
2-的合计含量F
-+O
2-在98%以上,可使玻璃 在获得优异的稳定性的同时,降低玻璃的P
C,t值与△P
C,s值,优选F
-+O
2-为98.5%以上,更优选F
-+O
2-为99%以上,进一步优选F
-+O
2-为99.5%以上。在一些实施方式中,F
-+O
2-可为98%、98.1%、98.2%、98.3%、98.4%、98.5%、98.6%、98.7%、98.8%、98.9%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%、100%。
F
-对于降低玻璃的折射率温度系数和转变温度有明显效果,是提高阿贝数和降低P
C,t值与△P
C,s值的重要组分,若其含量低于15%,上述效果不明显,优选F
-的含量为18%以上,更优选F
-的含量为21%以上。另一方面,若F
-的含量过高,会降低玻璃的折射率,削弱玻璃的稳定性,增加玻璃的热膨胀系数,尤其是熔化过程中,氟的挥发不仅易污染环境,而且易使玻璃的内部组成不均匀,因此,本发明中F
-的含量限定为45%以下,优选为38%以下,更优选为35%以下。在一些实施方式中,可含有15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%的F
-。
本发明光学玻璃中含有O
2-,尤其是,通过含有55%以上的O
2-,能够提高玻璃的稳定性和耐候性,抑制玻璃的磨耗度上升和条纹度变差。另一方面,通过将O
2-的含量控制在85%以下,可以防止玻璃的高温粘度和熔融温度升高。因此,O
2-的含量为55~85%,优选为62~82%,更优选为65~79%。在一些实施方式中,可含有55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%的O
2-。
本发明中可通过含有2%以下的Cl
-作为澄清剂,以提高玻璃的除泡效果,优选Cl
-的含量为0~1%,更优选为0~0.5%。在一些实施方式中,可含有0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%的Cl
-。
在本发明的一些实施方式中,将F
-与O
2-的相对含量F
-/O
2-控制在0.18~0.6范围内,可以提高玻璃的稳定性和热稳定性,优化玻璃的光透过率。因此,优选F
-/O
2-为0.18~0.6,更优选F
-/O
2-为0.2~0.5,进一步优选F
-/O
2-为0.25~0.45,更进一步优选F
-/O
2-为0.28~0.4。在一些实施方式中,F
-/O
2-的值可为0.18、0.19、0.2、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.3、0.31、0.32、0.33、0.34、0.35、0.36、0.37、0.38、0.39、0.4、0.41、0.42、0.43、0.44、0.45、0.46、0.47、0.48、0.49、0.5、0.51、0.52、0.53、0.54、0.55、0.56、0.57、0.58、0.59、0.6。
在本发明的一些实施方式中,通过使F
-/Ba
2+在0.35~1.2范围内,可以在降低玻璃的P
C,t值和△P
C,s值的同时,获得较低的转变温度。因此,优选F
-/Ba
2+为0.35~1.2,更优选F
-/Ba
2+为0.5~1.1,进一步优选F
-/Ba
2+为0.6~1.0,更进一步优选F
-/Ba
2+为0.65~0.9。在一些实施方式中,F
-/Ba
2+的值可为0.35、0.36、0.37、0.38、0.39、0.4、0.41、0.42、0.43、0.44、0.45、0.46、0.47、0.48、0.49、0.5、0.51、0.52、0.53、0.54、0.55、0.56、0.57、0.58、0.59、0.6、0.61、0.63、0.65、0.67、0.7、0.73、0.75、0.77、0.8、0.83、0.85、0.87、0.9、0.93、0.95、0.97、1.0、1.03、1.05、1.07、1.1、1.13、1.15、1.17、1.2。
在本发明的一些实施方式中,优选使(P
5++Al
3+)/F
-在0.9~4.0范围内,可以提高玻璃的耐失透性和耐候性,并抑制氟的挥发,更优选(P
5++Al
3+)/F
-为1.0~3.5,进一步优选(P
5++Al
3+)/F
-为1.2~3.0,更进一步优选(P
5++Al
3+)/F
-为1.5~2.5。在一些实施方式中,(P
5++Al
3+)/F
-的值可为0.9、0.95、1.0、1.05、1.1、1.15、1.2、1.25、1.3、1.35、1.4、1.45、1.5、1.55、1.6、1.65、1.7、1.75、1.8、1.85、1.9、1.95、2.0、2.05、2.1、2.15、2.2、2.25、2.3、2.35、2.4、2.45、2.5、2.55、2.6、2.65、2.7、2.75、2.8、2.85、2.9、2.95、3.0、3.05、3.1、3.15、3.2、3.25、3.3、3.35、3.4、3.45、3.5、3.55、3.6、3.65、3.7、3.75、3.8、3.85、3.9、3.95、4.0。
<关于其他的组分>
在不损害本发明光学玻璃特性的范围内,根据需要可以在本发明的光学玻璃中含有如Zr
4+、Ge
4+、Bi
3+、Te
4+、Br
-、I
-等其他组分。在一些实施方式中,本发明光学玻璃中Ta
5+、Ge
4+、Bi
3+、Te
4+的合计含量或分别含量优选为5%以下,更优选为3%以下,进一步优选为1%以下,更进一步优选为不含有。在一些实施方式中,本发明光学玻璃中Br
-、I
-的合计含量或分别含量优选为2%以下,更优选为1%以下,进一步优选为0.5%以下,更进一步优选为不含有。
<关于不应含有的组分>
V、Cr、Mn、Fe、Co、Ni、Cu、Ag以及Mo等组分,即使单独或复合地少量含有的情况下,玻璃也会被着色,在可见光区域的特定的波长产生吸收,从而减弱本发明的提高可见光透过率效果的性质,因此,特别是对于可见光区域波长的透过率有要求的光学玻璃,优选实际上不含有上述组分。
As、Pb、Th、Cd、Tl、Os、Be以及Se组分,近年来作为有害的化学物质而有控制使用的倾向,不仅在玻璃的制造工序,直至加工工序以及产品化后的处置上对环境保护的措施是必需的。因此,在重视对环境的影响的情况下,除了不可避免地混入以外,优选实际上不含有它们。由此,光学玻璃变得实际上不包含污染环境的物质。因此,即使不采取特殊的环境对策上的措施,本发明的光学玻璃也能够进行制造、加工以及废弃。
本文所记载的“不含有”“0%”是指没有故意将该组分作为原料添加到本发明光学玻璃中;但作为生产光学玻璃的原材料和/或设备,会存在某些不是故意添加的杂质或组分,会在最终的光学玻璃中少量或痕量含有,此种情形也在本发明专利的保护范围内。
下面,对本发明的光学玻璃的性能进行说明。
<折射率与阿贝数>
光学玻璃的折射率(n
d)与阿贝数(ν
d)按照《GB/T 7962.1—2010》规定的方法测试。
在一些实施方式中,本发明光学玻璃的折射率(n
d)的下限为1.57,优选下限为1.58,更优选下限为1.60;在一些实施方式中,本发明光学玻璃的折射率(n
d)的上限为1.66,优选上限为1.64,更优选上限为1.63。
在一些实施方式中,本发明光学玻璃的折射率(n
d)可为1.57、1.575、1.58、1.585、1.59、1.595、1.60、1.605、1.61、1.615、1.62、1.625、1.63、1.635、1.64、1.645、1.65、1.655、1.66。
在一些实施方式中,本发明光学玻璃的阿贝数(ν
d)的下限为56,优选下限为58,更优选下限为59;在一些实施方式中,本发明光学玻璃的阿贝数(ν
d)的上限为65,优选上限为63,更优选上限为62。
在一些实施方式中,本发明光学玻璃的阿贝数(ν
d)可为56、56.5、57、57.5、58、58.5、59、59.5、60、60.5、61、61.5、62、62.5、63、63.5、64、64.5、65。
<耐水作用稳定性>
光学玻璃的耐水作用稳定性(D
W)(粉末法)按照《GB/T 17129》规定的方法测试。
在一些实施方式中,本发明光学玻璃的耐水作用稳定性(D
W)为3类以上,优选为2类以上。
<耐酸作用稳定性>
光学玻璃的耐酸作用稳定性(D
A)(粉末法)按照《GB/T 17129》规定的方法测试。
在一些实施方式中,本发明光学玻璃的耐酸作用稳定性(D
A)为3类以上,优选为2类以上。
<耐候性>
光学玻璃的耐候性(CR)按以下方法进行测试。
将玻璃试样放置在相对湿度为90%的饱和水蒸气环境的测试箱内,在40~50℃每隔1小时交替循环,循环15个周期。根据试样放置前后的浊度变化量来划分耐候性类别,表1为耐候性分类表。
表1.耐候性分类表
在一些实施方式中,本发明光学玻璃的耐候性(CR)为2类以上,优选为1类。
<转变温度>
光学玻璃的转变温度(T
g)按照《GB/T7962.16-2010》规定的方法进行测试。
在一些实施方式中,本发明光学玻璃的转变温度(T
g)为620℃以下,优选为610℃以下,更优选为600℃以下。
<密度>
光学玻璃的密度(ρ)按《GB/T7962.20-2010》规定的方法进行测试。
在一些实施方式中,本发明光学玻璃的密度(ρ)为4.60g/cm
3以下,优选为4.50g/cm
3以下,更优选为4.40g/cm
3以下。
<着色度>
本发明光学玻璃的短波透射光谱特性用着色度(λ
80/λ
5)表示。λ
80是指玻璃透射比达到80%时对应的波长,λ
5是指玻璃透射比达到5%时对应的波长。其中,λ
80的测定是使用具有彼此平行且光学抛光的两个相对平面的厚度为10±0.1mm的玻璃,测定从280nm到700nm的波长域内的分光透射率并表现出透射率80%的波长。所谓分光透射率或透射率是指,在向玻璃的上述表面垂直地入射强度I
in的光,透过玻璃并从另一个平面射出强度I
out的光的情况下,通过I
out/I
in表示的量,并且也包含了玻璃的上述表面上的表面反射损失的透射率。玻璃的折射率越高,表面反射损失越大。因此,在高折射率玻璃中,λ
80的值小意味着玻璃自身的着色极少。
在一些实施方式中,本发明光学玻璃的λ
80为380nm以下,优选λ
80为375nm以下,更优选λ
80为370nm以下。
在一些实施方式中,本发明光学玻璃的λ
5为330nm以下,优选λ
5为325nm以下,更优选λ
5为320nm以下。
<ΔP
C,s与ΔP
C,t值>
光学玻璃的ΔP
C,s与ΔP
C,t值按照《GB/T 7962.1—2010》规定的方法测试玻璃的N
F、N
C、N
s、N
t值,按以下公式进行计算:
P
C,s=(n
C-n
s)/(n
F-n
C)
ΔP
C,s=P
C,s-0.4017-0.002365ν
d
P
C,t=(n
C-n
t)/(n
F-n
C)
ΔP
C,t=P
C,t-0.5462-0.004713ν
d
在一些实施方式中,本发明光学玻璃的ΔP
C,s值为0以下,优选为-0.01以下,更优选为-0.015以下,进一步优选为-0.02以下。
在一些实施方式中,本发明光学玻璃的ΔP
C,t值为-0.01以下,优选为-0.02以下,更优选为-0.03以下,进一步优选为-0.04以下,更进一步为-0.05以下。
[制造方法]
本发明光学玻璃的制造方法如下:本发明的玻璃采用常规原料和常规工艺生产,使用碳酸盐、硝酸盐、硫酸盐、氢氧化物、氧化物、氟化物、磷酸盐、偏磷酸盐等为原料,按常规方法配料后,将配好的炉料投入到850~1200℃的熔炼炉(如带盖的铂金坩埚、铂合金坩埚等)中熔制,并且经澄清、搅拌和均化后,得到没有气泡及不含未溶解物质的均质熔融玻璃,将此熔融玻璃在模具内铸型并退火而成。本领域技术人员能够根据实际需要,适当地选择原料、工艺方法和工艺参数。
[玻璃预制件和光学元件]
可以使用例如研磨加工的手段、或再热压成型、精密冲压成型等模压成型的手段,由所制成的光学玻璃来制作玻璃预制件。即,可以通过对光学玻璃进行磨削和研磨等机械加工来制作玻璃预制件,或通过对由光学玻璃制作模压成型用的预成型坯,对该预成型坯进行再热压成型后再进行研 磨加工来制作玻璃预制件,或通过对进行研磨加工而制成的预成型坯进行精密冲压成型来制作玻璃预制件。
需要说明的是,制备玻璃预制件的手段不限于上述手段。如上所述,本发明的光学玻璃对于各种光学元件和光学设计是有用的,其中特别优选由本发明的光学玻璃形成预成型坯,使用该预成型坯来进行再热压成型、精密冲压成型等,制作透镜、棱镜等光学元件。
本发明的玻璃预制件与光学元件均由上述本发明的光学玻璃形成。本发明的玻璃预制件具有光学玻璃所具有的优异特性;本发明的光学元件具有光学玻璃所具有的优异特性,能够提供光学价值高的各种透镜、棱镜等光学元件。
作为透镜的例子,可举出透镜面为球面或非球面的凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜。
[光学仪器]
本发明光学玻璃所形成的光学元件可制作如照相设备、摄像设备、显示设备和监控设备等光学仪器。
[实施例]
<光学玻璃实施例>
为了进一步清楚地阐释和说明本发明的技术方案,提供以下的非限制性实施例。
本实施例采用上述光学玻璃的制造方法得到具有表2~表4所示的组成的光学玻璃。另外,通过本发明所述的测试方法测定各玻璃的特性,并将测定结果表示在表2~表4中。
表2.
表3.
表4.
<玻璃预制件实施例>
将光学玻璃实施例表2~表4中所得到的玻璃使用例如研磨加工的手段、或再热压成型、精密冲压成型等模压成型的手段,来制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜等的预制件。
<光学元件实施例>
将上述玻璃预制件实施例所得到的这些预制件退火,在降低玻璃内部应力的同时对折射率进行微调,使得折射率等光学特性达到所需值。
接着,对各预制件进行磨削、研磨,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜。所得到的光学元件的表面上还可涂布防反射膜。
<光学仪器实施例>
将上述光学元件实施例制得的光学元件通过光学设计,通过使用一个或多个光学元件形成光学部件或光学组件,可用于例如成像设备、传感器、显微镜、医药技术、数字投影、通信、光学通信技术/信息传输、汽车领域中的光学/照明、光刻技术、准分子激光器、晶片、计算机芯片以及包括这样的电路及芯片的集成电路和电子器件。
Claims (22)
- 光学玻璃,其特征在于,其组分以摩尔百分比表示,阳离子含有:P 5+:26~45%;Al 3+:5~25%;R 2+:28~60%;阴离子含有F -和O 2-,其中:F -+O 2-为98%以上,(P 5++Al 3+)/F -为0.9~4.0,所述R 2+为Ba 2+、Sr 2+、Ca 2+和Mg 2+的合计含量。
- 根据权利要求1所述的光学玻璃,其特征在于,其组分以摩尔百分比表示,阳离子还含有:La 3++Gd 3++Y 3+:0~20%;和/或Nb 5++W 6++Ti 4+:0~15%;和/或Rn +:0~10%;和/或Yb 3+:0~10%;和/或Zn 2+:0~10%;和/或B 3+:0~10%;和/或Si 4+:0~5%;和/或Ta 5+:0~10%;和/或Sb 3+:0~1%;和/或Sn 4+:0~1%;和/或Ce 4+:0~1%,所述Rn +为Li +、Na +、K +中的一种或多种。
- 光学玻璃,其特征在于,其组分以摩尔百分比表示,阳离子含有:P 5+:26~45%;La 3++Gd 3++Y 3+:0~20%;Al 3+:5~25%;R 2+:28~60%;Nb 5++W 6++Ti 4+:0~15%;Rn +:0~10%;Yb 3+:0~10%;Zn 2+:0~10%;B 3+:0~10%;Si 4+:0~5%;Ta 5+:0~10%;Sb 3+:0~1%;Sn 4+:0~1%;Ce 4+:0~1%;阴离子含有F -和O 2-,其中:F -+O 2-为98%以上,所述R 2+为Ba 2+、Sr 2+、Ca 2+和Mg 2+的合计含量,Rn +为Li +、Na +、K +中的一种或多种。
- 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以摩尔百分比表示,其中:(P 5++Al 3+)/F -为0.9~4.0,优选(P 5++Al 3+)/F -为1.0~3.5,更优选(P 5++Al 3+)/F -为1.2~3.0,进一步优选(P 5++Al 3+)/F -为1.5~2.5。
- 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以摩尔百分比表示,其中:(Nb 5++W 6++Ti 4+)/(La 3++Gd 3++Y 3+)为0.1~10.0,优选(Nb 5++W 6++Ti 4+)/(La 3++Gd 3++Y 3+)为0.2~6.0,更优选(Nb 5++W 6++Ti 4+)/(La 3++Gd 3++Y 3+)为0.5~4.0,进一步优选(Nb 5++W 6++Ti 4+)/(La 3++Gd 3++Y 3+)为0.7~2.0。
- 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于, 其组分以摩尔百分比表示,其中:Y 3+/(La 3++Gd 3++Y 3+)为0.3~1.0,优选Y 3+/(La 3++Gd 3++Y 3+)为0.5~1.0,更优选Y 3+/(La 3++Gd 3++Y 3+)为0.6~1.0,进一步优选Y 3+/(La 3++Gd 3++Y 3+)为0.65~1.0。
- 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以摩尔百分比表示,其中:Mg 2+/Ba 2+为0.01~0.3,优选Mg 2+/Ba 2+为0.02~0.25,更优选Mg 2+/Ba 2+为0.03~0.2,进一步优选Mg 2+/Ba 2+为0.05~0.15。
- 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以摩尔百分比表示,其中:Sr 2+/Y 3+为0.3~10.0,优选Sr 2+/Y 3+为0.5~5.0,更优选Sr 2+/Y 3+为0.8~3.0,进一步优选Sr 2+/Y 3+为1.0~2.0。
- 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以摩尔百分比表示,其中:(Ca 2++Zn 2+)/(Nb 5++W 6++Ti 4+)为2.0以下,优选(Ca 2++Zn 2+)/(Nb 5++W 6++Ti 4+)为1.0以下,更优选(Ca 2++Zn 2+)/(Nb 5++W 6++Ti 4+)为0.8以下,进一步优选(Ca 2++Zn 2+)/(Nb 5++W 6++Ti 4+)为0.5以下。
- 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以摩尔百分比表示,其中:(Rn ++Ca 2+)/Mg 2+为2.0以下,优选(Rn ++Ca 2+)/Mg 2+为1.0以下,更优选(Rn ++Ca 2+)/Mg 2+为0.8以下,进一步优选(Rn ++Ca 2+)/Mg 2+为0.5以下。
- 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以摩尔百分比表示,其中:F -/O 2-为0.18~0.6,优选F -/O 2-为0.2~0.5,更优选F -/O 2-为0.25~0.45,进一步优选F -/O 2-为0.28~0.4。
- 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以摩尔百分比表示,其中:F -/Ba 2+为0.35~1.2,优选F -/Ba 2+为0.5~1.1,更优选F -/Ba 2+为0.6~1.0,进一步优选F -/Ba 2+为0.65~0.9。
- 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以摩尔百分比表示,其中:P 5+:30~40%,优选P 5+:33~38%;和/ 或La 3++Gd 3++Y 3+:0.1~15%,优选La 3++Gd 3++Y 3+:0.5~12%,更优选La 3++Gd 3++Y 3+:1~10%;和/或Nb 5++W 6++Ti 4+:0.5~10%,优选Nb 5++W 6++Ti 4+:1~8%;和/或R 2+:35~55%,优选R 2+:38~50%;和/或Al 3+:8~20%,优选Al 3+:10~18%;和/或Rn +:0~5%,优选Rn +:0~2%,更优选不含有Rn +;和/或Yb 3+:0~5%,优选Yb 3+:0~2%,更优选不含有Yb 3+;和/或Zn 2+:0~5%,优选Zn 2+:0~2%,更优选不含有Zn 2+;和/或B 3+:0~5%,优选B 3+:0~2%,更优选不含有B 3+;和/或Si 4+:0~2%,优选Si 4+:0~1%,更优选不含有Si 4+;和/或Ta 5+:0~5%,优选Ta 5+:0~2%,更优选不含有Ta 5+;和/或Sb 3+:0~0.5%,优选Sb 3+:0~0.1%;和/或Sn 4+:0~0.5%,优选Sn 4+:0~0.1%,更优选不含有Sn 4+;和/或Ce 4+:0~0.5%,优选Ce 4+:0~0.1%,更优选不含有Ce 4+。
- 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以摩尔百分比表示,其中:Ba 2+:28~45%,优选Ba 2+:30~40%,更优选Ba 2+:33~38%;和/或Sr 2+:0~10%,优选Sr 2+:1~8%,更优选Sr 2+:2~7%;和/或Mg 2+:0~10%,优选Mg 2+:1~7%,更优选Mg 2+:2~6%;和/或Ca 2+:0~10%,优选Ca 2+:0~6%,更优选Ca 2+:0~5%;和/或La 3+:0~10%,优选La 3+:0~5%,更优选La 3+:0~3%;和/或Gd 3+:0~10%,优选Gd 3+:0~5%,更优选Gd 3+:0~3%;和/或Y 3+:0~10%,优选Y 3+:0.5~8%,更优选Y 3+:1~7%;和/或Nb 5+:0~10%,优选Nb 5+:0~6%,更优选Nb 5+:0~4%;和/或W 6+:0~10%,优选W 6+:0~6%,更优选W 6+:0~5%;和/或Ti 4+:0~10%,优选Ti 4+:0~5%,更优选Ti 4+:0~2%,进一步优选不含有Ti 4+。
- 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以摩尔百分比表示,其中:F -:15~45%,优选F -:18~38%,更优选F -:21~35%;和/或O 2-:55~85%,优选O 2-:62~82%,更优选O 2-:65~79%。
- 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以摩尔百分比表示,阴离子还含有:Cl -:0~2%;和/或Br -:0~2%;和/或I -:0~2%,优选阴离子还含有:Cl -:0~1%;和/或Br -:0~1%;和 /或I -:0~1%,更优选阴离子还含有:Cl -:0~0.5%;和/或Br -:0~0.5%;和/或I -:0~0.5%。
- 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,所述光学玻璃的折射率n d为1.57~1.66,优选折射率n d为1.58~1.64,更优选折射率n d为1.60~1.63;阿贝数ν d为56~65,优选阿贝数ν d为58~63,更优选阿贝数ν d为59~62。
- 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,所述光学玻璃的ΔP C,s值为0以下,优选ΔP C,s值为-0.01以下,更优选ΔP C,s值为-0.015以下,进一步优选ΔP C,s值为-0.02以下;和/或ΔP C,t值为-0.01以下,优选ΔP C,t值为-0.02以下,更优选ΔP C,t值为-0.03以下,进一步优选ΔP C,t值为-0.04以下,更进一步优选ΔP C,t值为-0.05以下。
- 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,所述光学玻璃的耐水作用稳定性D W为3类以上,优选耐水作用稳定性D W为2类以上;和/或耐酸作用稳定性D A为3类以上,优选耐酸作用稳定性D A为2类以上;和/或耐候性CR为2类以上,优选耐候性CR为1类;和/或转变温度T g为620℃以下,优选转变温度T g为610℃以下,更优选转变温度T g为600℃以下;和/或密度ρ为4.60g/cm 3以下,优选密度ρ为4.50g/cm 3以下,更优选密度ρ为4.40g/cm 3以下;和/或λ 80为380nm以下,优选λ 80为375nm以下,更优选λ 80为370nm以下;和/或λ 5为330nm以下,优选λ 5为325nm以下,更优选λ 5为320nm以下。
- 玻璃预制件,其特征在于,采用权利要求1~19任一权利要求所述的光学玻璃制成。
- 光学元件,其特征在于,采用权利要求1~19任一权利要求所述的光学玻璃或权利要求20所述的玻璃预制件制成。
- 光学仪器,其特征在于,含有权利要求1~19任一权利要求所述的光学玻璃;和/或含有权利要求21所述的光学元件。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023541629A JP2024503010A (ja) | 2021-01-21 | 2022-01-04 | 光学ガラス、ガラスプリフォーム、光学素子と光学機器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110083421.5 | 2021-01-21 | ||
CN202110083421.5A CN112811815B (zh) | 2021-01-21 | 2021-01-21 | 光学玻璃、玻璃预制件、光学元件和光学仪器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022156527A1 true WO2022156527A1 (zh) | 2022-07-28 |
Family
ID=75858570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/070078 WO2022156527A1 (zh) | 2021-01-21 | 2022-01-04 | 光学玻璃、玻璃预制件、光学元件和光学仪器 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2024503010A (zh) |
CN (1) | CN112811815B (zh) |
TW (1) | TWI805187B (zh) |
WO (1) | WO2022156527A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112707640B (zh) * | 2021-01-21 | 2022-02-11 | 成都光明光电股份有限公司 | 氟磷酸盐光学玻璃、光学元件及光学仪器 |
CN112811815B (zh) * | 2021-01-21 | 2022-04-12 | 成都光明光电股份有限公司 | 光学玻璃、玻璃预制件、光学元件和光学仪器 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1597583A (zh) * | 2003-09-16 | 2005-03-23 | 株式会社小原 | 光弹性常数小的光学玻璃 |
CN101970368A (zh) * | 2008-02-08 | 2011-02-09 | 日本山村硝子株式会社 | 光学玻璃 |
JP2012126608A (ja) * | 2010-12-15 | 2012-07-05 | Ohara Inc | 光学ガラス、光学素子およびプリフォーム |
JP2012126603A (ja) * | 2010-12-15 | 2012-07-05 | Ohara Inc | 光学ガラス、光学素子およびプリフォーム |
TW201335100A (zh) * | 2011-12-28 | 2013-09-01 | Ohara Kk | 光學玻璃、光學元件及預成形體 |
CN105016619A (zh) * | 2014-04-22 | 2015-11-04 | 成都光明光电股份有限公司 | 氟磷酸盐光学玻璃 |
CN108689599A (zh) * | 2017-03-31 | 2018-10-23 | Hoya株式会社 | 光学玻璃和光学元件 |
CN110156323A (zh) * | 2019-05-31 | 2019-08-23 | 成都光明光电股份有限公司 | 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器 |
CN110156325A (zh) * | 2019-05-31 | 2019-08-23 | 成都光明光电股份有限公司 | 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器 |
JP2019214506A (ja) * | 2018-06-12 | 2019-12-19 | 株式会社オハラ | 光学ガラス、光学素子及びプリフォーム |
JP2020079188A (ja) * | 2018-11-14 | 2020-05-28 | 株式会社オハラ | 光学ガラス、光学素子及びプリフォーム |
CN112010554A (zh) * | 2019-05-31 | 2020-12-01 | 成都光明光电股份有限公司 | 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器 |
WO2021024366A1 (ja) * | 2019-08-06 | 2021-02-11 | 株式会社ニコン | 光学ガラス、光学素子、光学系、交換レンズ及び光学装置 |
CN112707640A (zh) * | 2021-01-21 | 2021-04-27 | 成都光明光电股份有限公司 | 氟磷酸盐光学玻璃、光学元件及光学仪器 |
CN112811815A (zh) * | 2021-01-21 | 2021-05-18 | 成都光明光电股份有限公司 | 光学玻璃、玻璃预制件、光学元件和光学仪器 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3634676A1 (de) * | 1985-10-19 | 1987-04-23 | Leitz Ernst Gmbh | Optische fluorphosphatglaeser mit positiver anomaler teildispersion und verbesserten physiko-chemischen eigenschaften sowie verfahren zu ihrer herstellung |
CN105645765B (zh) * | 2016-03-07 | 2019-01-22 | 成都光明光电股份有限公司 | 光学玻璃及光学元件 |
JP6606568B2 (ja) * | 2017-03-31 | 2019-11-13 | Hoya株式会社 | 光学ガラスおよび光学素子 |
CN116177875A (zh) * | 2018-06-14 | 2023-05-30 | 成都光明光电股份有限公司 | 光学玻璃、光学预制件及光学元件 |
-
2021
- 2021-01-21 CN CN202110083421.5A patent/CN112811815B/zh active Active
-
2022
- 2022-01-04 JP JP2023541629A patent/JP2024503010A/ja active Pending
- 2022-01-04 WO PCT/CN2022/070078 patent/WO2022156527A1/zh active Application Filing
- 2022-01-13 TW TW111101534A patent/TWI805187B/zh active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1597583A (zh) * | 2003-09-16 | 2005-03-23 | 株式会社小原 | 光弹性常数小的光学玻璃 |
CN101970368A (zh) * | 2008-02-08 | 2011-02-09 | 日本山村硝子株式会社 | 光学玻璃 |
JP2012126608A (ja) * | 2010-12-15 | 2012-07-05 | Ohara Inc | 光学ガラス、光学素子およびプリフォーム |
JP2012126603A (ja) * | 2010-12-15 | 2012-07-05 | Ohara Inc | 光学ガラス、光学素子およびプリフォーム |
TW201335100A (zh) * | 2011-12-28 | 2013-09-01 | Ohara Kk | 光學玻璃、光學元件及預成形體 |
CN105016619A (zh) * | 2014-04-22 | 2015-11-04 | 成都光明光电股份有限公司 | 氟磷酸盐光学玻璃 |
CN108689599A (zh) * | 2017-03-31 | 2018-10-23 | Hoya株式会社 | 光学玻璃和光学元件 |
JP2019214506A (ja) * | 2018-06-12 | 2019-12-19 | 株式会社オハラ | 光学ガラス、光学素子及びプリフォーム |
JP2020079188A (ja) * | 2018-11-14 | 2020-05-28 | 株式会社オハラ | 光学ガラス、光学素子及びプリフォーム |
CN110156323A (zh) * | 2019-05-31 | 2019-08-23 | 成都光明光电股份有限公司 | 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器 |
CN110156325A (zh) * | 2019-05-31 | 2019-08-23 | 成都光明光电股份有限公司 | 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器 |
CN112010554A (zh) * | 2019-05-31 | 2020-12-01 | 成都光明光电股份有限公司 | 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器 |
WO2021024366A1 (ja) * | 2019-08-06 | 2021-02-11 | 株式会社ニコン | 光学ガラス、光学素子、光学系、交換レンズ及び光学装置 |
CN112707640A (zh) * | 2021-01-21 | 2021-04-27 | 成都光明光电股份有限公司 | 氟磷酸盐光学玻璃、光学元件及光学仪器 |
CN112811815A (zh) * | 2021-01-21 | 2021-05-18 | 成都光明光电股份有限公司 | 光学玻璃、玻璃预制件、光学元件和光学仪器 |
Also Published As
Publication number | Publication date |
---|---|
TWI805187B (zh) | 2023-06-11 |
JP2024503010A (ja) | 2024-01-24 |
CN112811815B (zh) | 2022-04-12 |
CN112811815A (zh) | 2021-05-18 |
TW202231595A (zh) | 2022-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109721241B (zh) | 光学玻璃、玻璃预制件、光学元件及光学仪器 | |
TWI756114B (zh) | 光學玻璃 | |
TWI779744B (zh) | 光學玻璃、玻璃預製件及光學元件 | |
CN109650717B (zh) | 光学玻璃 | |
TWI798501B (zh) | 光學玻璃、玻璃預製件、光學元件和光學儀器 | |
CN109721240B (zh) | 光学玻璃、玻璃预制件、光学元件及光学仪器 | |
CN113024107A (zh) | 高折射高色散光学玻璃及光学元件 | |
TWI805187B (zh) | 光學玻璃、玻璃預製件、光學元件和光學儀器 | |
CN113024110B (zh) | 玻璃组合物 | |
CN110963701A (zh) | 光学玻璃、玻璃预制件、光学元件和光学仪器 | |
CN112142322B (zh) | 光学玻璃、玻璃预制件、光学元件和光学仪器 | |
WO2017152656A1 (zh) | 光学玻璃及光学元件 | |
TWI783603B (zh) | 光學玻璃、玻璃預製件、光學元件及光學儀器 | |
CN110228946B (zh) | 光学玻璃 | |
WO2024041276A1 (zh) | 光学玻璃、玻璃预制件、光学元件及光学仪器 | |
CN112159098A (zh) | 光学玻璃、光学元件和光学仪器 | |
WO2023040558A1 (zh) | 光学玻璃、玻璃预制件、光学元件和光学仪器 | |
CN112707640B (zh) | 氟磷酸盐光学玻璃、光学元件及光学仪器 | |
CN115385570A (zh) | 高折射率光学玻璃 | |
CN115286238A (zh) | 光学玻璃 | |
WO2022052642A1 (zh) | 光学玻璃、光学预制件、光学元件及光学仪器 | |
CN111453989A (zh) | 镧系光学玻璃及其玻璃预制件、元件和仪器 | |
CN114804622B (zh) | 近红外特殊色散玻璃 | |
WO2024041294A1 (zh) | 光学玻璃、玻璃预制件、光学元件及光学仪器 | |
WO2024041273A1 (zh) | 光学玻璃、光学元件和光学仪器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22742006 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023541629 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22742006 Country of ref document: EP Kind code of ref document: A1 |