WO2022156458A1 - 一种以禾虫增殖为主的虫稻共生综合种养方法 - Google Patents

一种以禾虫增殖为主的虫稻共生综合种养方法 Download PDF

Info

Publication number
WO2022156458A1
WO2022156458A1 PCT/CN2021/139689 CN2021139689W WO2022156458A1 WO 2022156458 A1 WO2022156458 A1 WO 2022156458A1 CN 2021139689 W CN2021139689 W CN 2021139689W WO 2022156458 A1 WO2022156458 A1 WO 2022156458A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice
water
water inlet
pipe
proliferation
Prior art date
Application number
PCT/CN2021/139689
Other languages
English (en)
French (fr)
Inventor
陈兴汉
杨尉
梁启用
司圆圆
范斌
许瑞雯
谭晓明
Original Assignee
阳江职业技术学院
广东阳海农业发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳江职业技术学院, 广东阳海农业发展有限公司 filed Critical 阳江职业技术学院
Priority to JP2023515040A priority Critical patent/JP2023546555A/ja
Priority to US17/639,422 priority patent/US20230345920A1/en
Publication of WO2022156458A1 publication Critical patent/WO2022156458A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/20Cereals
    • A01G22/22Rice
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates

Definitions

  • the invention belongs to the technical field of agricultural breeding, and in particular relates to a comprehensive planting and breeding method for insect-rice symbiosis mainly based on the proliferation of grass insects.
  • the grass worm scientific name of the nematode, likes to inhabit the paddy fields or shoal silt and sandy soil in the area where the salt and fresh water meet. It is omnivorous and feeds on unicellular algae and animal and plant carcasses. Element. Worms are delicious, rich in unsaturated fatty acids, hydroxylic acid, iodic acid, fibrinolytic acid, collagenase, macroelements such as calcium and phosphorus, and various trace elements such as iron, zinc, and selenium. It is a popular food and dietary health care product in the southeastern coastal areas of my country, Hong Kong, Macao and Southeast Asian countries. It is called "Cordyceps sinensis" in water.
  • Integrated rice farming is a production method that organically integrates planting and aquaculture in the same ecological environment.
  • This model can make full use of the limited water ecological environment and space of paddy fields, maximize the use of resources, reduce waste and pollution, and improve the output rate; it is beneficial to increase economic output value and income of farmers and farmers, and realize agricultural green, safe production and sustainable development. It is of great significance to ensure the quality of agricultural products and improve the level of food safety, and has been widely recognized by the country and all sectors of society.
  • rice cultivation is most closely linked to aquaculture.
  • the integrated rice-fishing cultivation mode mostly combines the cultivation of rice with the cultivation of fish, shrimp, crabs, turtles and other aquatic animals.
  • this type of production often requires artificial feeding of a large amount of feed and careful breeding management.
  • the material and human resources are relatively high, which cannot effectively improve the utilization rate of paddy fields and comprehensive production benefits, and it is difficult to promote large-scale promotion.
  • the purpose of the present invention is to solve the problem that the output of the traditional grass insect breeding mode is unstable, the breeding efficiency is low, and the existing rice and fish integrated planting and breeding mode requires fine breeding management and higher material and human input, and the utilization rate and production efficiency of paddy fields are low. Difficult to popularize and other drawbacks, a new integrated planting and breeding model of grass insect-rice symbiosis was proposed.
  • the insect-rice symbiotic integrated planting and breeding method which is mainly based on the proliferation of grass insects, makes full use of the natural symbiotic relationship between grass insects and rice.
  • the grass insect seedlings are stocked in the paddy fields, and then rice is planted for the integrated planting and breeding of insect and rice.
  • the wild growth environment of the grass insects is simulated to the greatest extent during the grass insect breeding, and the most suitable habitat is provided for the growth of the grass insects.
  • the rotten rice roots, stems and leaves can provide nutrients for the worms, and the rice roots and hollow stems can transport oxygen to the worms; the worms feed on the microorganisms and organic debris in the soil, which can reduce the occurrence of rice diseases, and the worms can drill.
  • the hole can dredge the soil, and its manure is a high-quality organic fertilizer.
  • the survival rate of graminearum breeding is increased, the yield of rice is increased, the quality of rice is improved, and the economic benefit of paddy farming is significantly increased.
  • a comprehensive planting and breeding method for symbiotic rice symbiosis mainly based on the proliferation of grass insects comprises the following steps:
  • Step S1 paddy field selection
  • the external source water of the paddy field is sufficient, with good water quality, convenient irrigation and drainage, and no agricultural, domestic and industrial sewage pollution;
  • Step S2 field layout
  • Step S3 soil preparation and fertilization
  • the paddy field should be applied with enough base fertilizer, and the amount of fertilizer should be controlled at 1000-2000 kg/mu according to the soil fertility.
  • Step S4 stocking of worm seedlings
  • Step S5 management of the proliferation of grass insects
  • the feed After the feed is crushed and fermented, it is fully mixed with 10 times the mass of dry rice straw powder and fed evenly; it is fed once a week, and the amount of each feeding is 3% of the body weight of the worm, and the feeding is reduced in cloudy days and low air pressure. It is not suitable to feed when the water temperature is higher than 35°C or lower than 15°C;
  • Step S6 rice planting
  • Step S7 field management
  • the fertilization is mainly based on base fertilizer, supplemented by top-dressing, organic fertilizer is the main, chemical fertilizer is supplemented, and top-dressing is small and multiple times. It is advisable to use good quality cold commercial organic fertilizer, and it is strictly forbidden to use chemical fertilizers such as urea that are harmful to grass and insects;
  • the prevention and control of pests and weeds should be based on prevention, comprehensive control, and reduce the amount of pesticide application; strictly control the safe use concentration of pesticides, spray the pesticides on the leaves of the rice, not into the water, and apply the pesticides in different areas. Add water to the paddy field to 15-20cm before spraying, and change the water in time after spraying;
  • Step S8 water level control
  • Step S9 rice harvesting
  • Step S10 Harvest and capture of grass insects.
  • the above step S2 includes: digging an annular trench 3 along the inner side of the ridge around the paddy field, 0.5 to 1 meter away from the ridge, the ditch is 0.8 to 1 meter wide and 0.3 to 0.5 meters deep; 50-60 cm, bottom width 60-70 cm, top width 50-60 cm; an inlet channel 5 is built on the ridge on one side of the paddy field, and the water inlet pipe is connected to the paddy field, and the drain pipe 9 is built on the annular ditch on the other side of the paddy field
  • a water inlet control assembly 7 and a drainage control assembly 10 are respectively provided on the water inlet pipe 6 and the drain pipe 9, and a plurality of grille nets 11 are arranged at the water outlet of the water inlet pipe 6 and the water outlet of the drainage pipe 9.
  • an intercepting net 8 is installed at the water inlet of the water inlet pipe 6, the side section of the intercepting net 8 is a "W"-shaped structure, and the intercepting net 8 includes a solid section 803 extending along the inner wall of the water inlet pipe 6, so The distal end of the solid section 803 is provided with a large grid evacuation area 802 and a small grid dense area 801 connected in sequence, and the small grid dense area 801 is distributed at the bending vertex of the intercepting net 8.
  • the solid section The proximal end of the 803 is provided with an eversion portion 804, the eversion portion 804 fits with the side wall of the water inlet 5 and is fixedly connected by a screw.
  • the water inlet control assembly 7 includes an upper ring 701 and a lower ring 702 installed in the inner cavity of the water inlet pipe 6, the upper ring 701 is fixedly installed in the inner cavity of the water inlet pipe 6, and the upper ring
  • the inner ring of 701 is provided with equidistant connecting plates 703, the lower ring 702 can slide along the inner cavity of the water inlet pipe 6, and the proximal end surface of the lower ring 702 is provided with sealing plates 704 distributed across the connecting plates 703 , when the lower ring 702 is moved up to the bottom of the upper ring 701, the sealing plate 704 and the connecting plate 703 are spaced apart to form a solid baffle, which prevents the water in the water inlet channel 5 from passing through the water inlet pipe 6;
  • the side wall of the lower ring 702 is provided with a push rod 705, and the free end of the push rod 705 protrudes from the guide hole 713 on the pipe wall of the water inlet pipe 6 to the outside of the water inlet pipe 6, and the guide hole 713 is provided at the Between the upper ring 701 and the lower ring 702, a movable rod 706 is movably connected to the free end of the push rod 705, and an adjusting nut 709 is threadedly connected to the end of the movable rod 706.
  • An upper clamping plate 707 and a lower clamping plate 708 are respectively provided, and the ends of the upper clamping plate 707 and the lower clamping plate 708 are provided with installation grooves recessed toward the wall of the water inlet pipe 6 .
  • guide grooves 710 are respectively provided on both sides of the guide hole 713 , and a plurality of guide rods 711 are provided between the two guide grooves 710 , wherein the guide rods 711 located at both ends of the guide groove 710 are fixedly connected with the guide groove 710 , A shielding cloth 712 is disposed below the guide rod 711 , and the shielding cloth 712 is close to the outer end of the guide hole 713 after being unfolded.
  • the inner diameter of the lower ring 702 is smaller than the inner diameter of the upper ring 701 .
  • the drain control assembly 10 includes a pipe cap 1001 , the pipe cap 1001 is sleeved at the drain port of the drain pipe 9 , and the pipe cap 1001 is provided with a drain hole communicating with the inner cavity of the drain pipe 9 ,
  • the outer wall of the pipe cap 1001 is provided with a shielding plate 1002, the shielding plate 1002 is connected with the outer wall of the pipe cap 1001 through a fixed lock cap 1003, and the shielding plate 1002 can rotate around the fixed locking cap 1003, and the outer wall of the shielding plate 1002
  • the bottom is provided with a bump 1004
  • the bottom of the outer wall of the cap 1001 is provided with a fixing plate 1005 coaxial with the bump 1004
  • the bump 1004 and the fixing plate 1005 are connected by a fixing rod 1006 .
  • the lower end of the fixing rod 1006 is screwed with an adjustment lock cap 1008 , the upper end of the fixing rod 1006 is bent along the upper end surface of the bump 1004 to form a horizontal segment, and the lower end surface of the horizontal segment is provided with an arc-shaped blocking block 1007 , the arc-shaped blocking block 1007 can be embedded in the groove on the convex block 1004, so that the shielding plate 1002 can shield the drainage hole.
  • a first fixing block 1009 is provided on the outer wall of the shielding plate 1002
  • a second fixing block 1010 is provided on the outer wall of the pipe cap 1001 , and the first fixing block 1009 and the second fixing block 1010 pass through.
  • Compression spring 1011 is connected.
  • the harvesting of the grass insects includes: after the grass insects are sexually mature, drying the paddy field for 1 to 2 days, and feeding 20 to 30 cm of water in a dark night, until a large number of sexually mature grass insects are available.
  • the worms float, open the drain pipe 9, and arrange a soft gauze net at the drain to catch the worms.
  • the captured worms are placed in a container with holes. After the worms are drilled out of the holes, the separation from the sundries is realized, and then washed 2 to 3 times with clean water at 14°C to 18°C, and temporarily stored at 13°C to 15°C. live.
  • the beneficial effects of the present invention are as follows: the present invention adopts the mode of symbiotic integrated cultivation of graminearum-rice, by first multiplying graminearum in the paddy field, and then carrying out rice planting, maximizing the simulation of graminearum under field conditions.
  • the growth environment should give full play to the mutually beneficial symbiotic relationship between the worms and the rice.
  • the rotten rice roots, stems and leaves can provide food for the worms, and the worms provide fertilizers and other favorable conditions for the growth of the rice. It can not only improve the survival rate and growth rate of grass insect farming, but also increase the utilization rate of paddy fields, the output of grass insect farming and the comprehensive economic benefits of paddy farming.
  • Figure 1 shows the layout of the paddy field
  • Figure 2 is a diagram of the setting of the water inlet pipe
  • Fig. 3 is an enlarged view of the interception net in Fig. 2;
  • Fig. 4 is the enlarged view of A place in Fig. 2;
  • Fig. 5 is the structure diagram of the upper ring
  • Fig. 6 is the structure diagram of the lower ring
  • Fig. 7 is the connection diagram of the shielding part and the guide rod
  • Fig. 8 is the top view of Fig. 7;
  • Figure 9 is a structural diagram of a drain pipe
  • Figure 10 is a side view of the cap
  • Fig. 11 is the structure diagram after the shielding plate is rotated
  • the invention specifically provides a comprehensive planting and breeding method for symbiotic rice symbiosis mainly based on the proliferation of grass insects, and the planting and breeding method comprises the following steps:
  • Step S1 Paddy field selection
  • the external source water of the paddy fields is sufficient and of good quality, with convenient irrigation and drainage, and no agricultural, domestic and industrial sewage pollution.
  • the size of the area is subject to the convenience of management.
  • the area of a single field is preferably 4-6 mu, which is rectangular, the paddy field is flat, and the height difference does not exceed 10 cm. , No leakage, pH 6.5 to 8.5 is appropriate.
  • Step S2 Field Layout
  • the ditch is 0.8-1 meter wide and 0.3-0.5 meters deep; the larger area (generally more than 3 mu) is dug in the field with the character "X". Or "well” shaped field ditch 4.
  • Field ditch 4 is 0.3 to 0.5 meters wide and 0.3 to 0.5 meters deep. The total area of the ditch accounts for no more than 8% of the paddy field area, and the ditches are connected. Elevate and widen the ridge 2 and tamp and reinforce it.
  • the height of the ridge 2 is 50-60 cm, the width of the bottom is 60-70 cm, and the width of the top is 50-60 cm; an inlet channel 5 is built on the ridge on one side of the paddy field 1, and the water inlet pipe 6 is connected.
  • the drainage pipe 9 is built at the bottom of the annular ditch 3 on the other side of the rice field 1, and the water inlet control assembly 7 and the drainage control assembly 10 are respectively provided on the water inlet pipe 6 and the drainage pipe 9, and the water outlet and A plurality of grid nets 11 (specifically shown in FIG. 1 ) are arranged at the drainage outlet of the drainage pipe 9 , and the mesh diameters of the grid nets 11 are sequentially reduced.
  • Step S3 soil preparation and fertilization
  • Step S4 stocking of worm seedlings
  • the worm seedlings are put in 7 to 15 days before transplanting.
  • the seedlings are sown in dry fields, and the slurry is evenly sown in the paddy fields, and the stocking density is 250-300 tails/square meter.
  • Step S5 Grainworm proliferation management
  • the feed After the feed is crushed and fermented, it is fully mixed with 10 times of dry rice straw powder and fed evenly; once a week, the feeding amount is 3% of the weight of the worm, and the feeding amount is reduced in cloudy days and low air pressure. , it is not suitable to feed when the water temperature is higher than 35 °C or lower than 15 °C. Strengthen inspections, check whether there are loopholes and water leaks in the ridges, and remove the predatory creatures such as wild fish, crabs, and eels.
  • Step S6 Rice Planting
  • Step S7 Field Management
  • Fertilization is mainly based on basal fertilizer, supplemented by top-dressing fertilizer; organic fertilizer is mainly used, supplemented by chemical fertilizer. A small amount of top dressing should be used for several times. It is advisable to use good quality cold commercial organic fertilizers. It is strictly forbidden to use urea and other chemical fertilizers that are harmful to grass insects.
  • the prevention and control of rice field pests and weeds should be based on prevention, comprehensive control and reduction of pesticide application. High-efficiency, low-toxicity, and low-residue biological pesticides are the first choice for rice disease control, and organophosphorus and pyrethroid pesticides that are highly sensitive to grass insects are prohibited.
  • Step S8 Water level control
  • the water level of rice transplanting is 2 to 3 cm; water is injected immediately after transplanting to keep it green, and the water level is controlled at 4 to 6 cm. After the seedlings turn green, let the water level of the paddy field naturally dry to 3 cm to promote tillering; when the total number of tillers reaches 80% of the expected number of panicles When the water is cut off, the fields are naturally cut off.
  • the sun-dried fields depend on the growth of the seedlings and the color of the leaves with slight cracks on the field surface.
  • Step S10 Harvest and capture of worms
  • the paddy fields are dried for 1-2 days, and the water is 20-30 cm in the dark night.
  • the drain pipe 9 is opened, and a soft The gauze net catches the worms.
  • the captured worms are placed in a container with holes. After the worms are drilled out of the holes, the separation from the sundries is realized, and then washed with clean water at 14°C to 18°C for 2 to 3 times, and temporarily at 13°C to 15°C. live.
  • step S3 organic fertilizers such as manure and cake fertilizer with long fertilizer efficiency should be used as the base fertilizer.
  • step S4 the larvae with more than 50 to 60 rigid nodes are selected for the seedlings of wormwood, and the seedlings have no damage, no disease, and good vigor.
  • step S5 roughage such as bean cake meal, corn meal, wheat bran, and grain bran can be selected as the feed.
  • the rice variety is Guang 8 You 165 or Guang 8 You 169 or Guang 8 You 2168 or Guang 8 You Jinzhan or Ng Fung You 615 or Meixiangzhan No. 2.
  • step S8 the paddy field where insects and rice coexist should be lightly sun-dried, so as to prevent the worms from dehydration and death when the field is sun-dried.
  • step S9 most of the straws are returned to the field after being crushed.
  • the water flow speed should be well controlled in the capturing process, and the flow speed should adopt a slow-fast-slow rhythm, so as to facilitate the harvesting of grass insects.
  • an intercepting net 8 is installed at the water inlet of the water inlet pipe 6 , and the side section of the intercepting net 8 is a “W”-shaped structure.
  • an eversion portion 804 is disposed at the proximal end of the solid section 803, and the eversion portion 804 is fitted with the side wall of the water inlet channel 5 and is fixedly connected by a screw.
  • the flow direction of the water is along the horizontal direction of the water inlet pipe 6.
  • the curved tops are designed as small grid dense areas 801, and the large grid evacuation areas 802 are designed between the curved tops.
  • the water flow first touches the inner curved top in the middle of the intercepting net 8, but because the inner curved top is designed as a small grid dense area 801, large particles The debris and enemy creatures move along the "W"-shaped net facing both sides of the inwardly curved top, and pass through the large grid evacuation area 802, but because the grid of the large grid evacuation area 802 generally only allows slightly larger sand grains Or stones pass through, and the hostile creatures cannot pass through the grid.
  • the hostile creatures gather along the large grid evacuation area 802, but the top of the outer curve is the small grid dense area 801, plus The impact of the water flow on the axis, the water flow forms a vortex shape in the intercepting net 8, and most of the water flow passes through the large grid evacuation area 802, thereby ensuring the normal flow rate of the water flow, and at the same time, the harmful organisms are intercepted in the water inlet channel 5, so as to increase the rate of worms. reproduction rate.
  • the water inlet control assembly 7 includes an upper ring 701 and a lower ring 702 installed in the inner cavity of the water inlet pipe 6.
  • the inner diameter of the lower ring 702 is smaller than the inner diameter of the upper ring 701, so
  • the upper ring 701 is fixedly installed in the inner cavity of the water inlet pipe 6, the inner ring of the upper ring 701 is provided with connecting plates 703 at equal intervals, and the lower ring 702 can slide along the inner cavity of the water inlet pipe 6, so
  • the proximal end surface of the lower ring 702 is provided with a sealing plate 704 which is distributed across the connecting plate 703.
  • the side wall of the lower ring 702 is provided with a push rod 705, and the free end of the push rod 705 protrudes from the guide hole 713 on the pipe wall of the water inlet pipe 6 to the outside of the water inlet pipe 6, and the guide hole 713 is provided at the Between the upper ring 701 and the lower ring 702, a movable rod 706 is movably connected to the free end of the push rod 705, and an adjusting nut 709 is threadedly connected to the end of the movable rod 706.
  • An upper clamping plate 707 and a lower clamping plate 708 are respectively provided, and the ends of the upper clamping plate 707 and the lower clamping plate 708 are provided with installation grooves recessed toward the wall of the water inlet pipe 6 .
  • Guide grooves 710 are respectively provided on both sides of the guide hole 713 , and a plurality of guide rods 711 are set between the two guide grooves 710 , wherein the guide rods 711 located at both ends of the guide groove 710 are fixedly connected with the guide groove 710 .
  • a shielding cloth 712 is arranged below the guide rod 711 . After the shielding cloth 712 is unfolded, it is closely attached to the outer end of the guide hole 713 to prevent the water in the water inlet pipe 6 from overflowing outside the pipe wall.
  • the adjusting nut 709 When it is necessary to supply water to the field, rotate the adjusting nut 709 to move the movable rod 706 out of the installation groove of the upper clamping plate 707 , push the push rod 705 , and the push rod 705 moves down to the lower end of the guide hole 713 .
  • the shielding cloth 712 changes from being bent to being flat, sticks closely to the outer wall of the water inlet pipe 6, completely blocks the guide hole 713, and prevents the water in the water inlet pipe 6 from overflowing outside the pipe wall.
  • the movable rod 706 is rotated, the movable rod 706 is clamped in the installation groove on the lower clamping plate 708, and the adjusting nut 709 is rotated to fix it.
  • the whole structure has reasonable design, simple operation and strong practicability.
  • the drain control assembly 10 includes a pipe cap 1001 , the pipe cap 1001 is sleeved at the drain port of the drain pipe 9 , and the pipe cap 1001 is provided with an inner cavity of the drain pipe 9 .
  • the outer wall of the pipe cap 1001 is provided with a shielding plate 1002, the shielding plate 1002 is connected with the outer wall of the pipe cap 1001 through a fixed lock cap 1003, and the shielding plate 1002 can rotate around the fixed lock cap 1003, the bottom of the outer wall of the shielding plate 1002 is provided with a bump 1004, the bottom of the outer wall of the tube cap 1001 is provided with a fixed plate 1005 coaxial with the bump 1004, the bump 1004 and The fixing plates 1005 are connected by fixing rods 1006 .
  • the lower end of the fixing rod 1006 is screwed with an adjusting lock cap 1008, the upper end of which is bent along the upper end face of the convex block 1004 to form a horizontal section, and the lower end face of the horizontal section is provided with an arc-shaped blocking block 1007.
  • the block 1007 can be embedded in the groove on the protruding block 1004, so that the shielding plate 1002 can shield the drainage hole.
  • a first fixing block 1009 is provided on the outer wall of the shielding plate 1002, and a second fixing block 1010 is arranged on the outer wall of the pipe cap 1001.
  • the first fixing block 1009 and the second fixing block 1010 They are connected by compression springs 1011.
  • the compression spring 1011 When the shutter 1002 is in a closed state, the compression spring 1011 is in a stretched state, and there is a traction force between the first fixing block 1009 and the second fixing block 1010 .
  • the compression spring 1011 restores the deformation, thereby weakening the shutter 1002
  • the resistance of the rotation makes the shielding plate 1002 rotate better, and at the same time, the existence of the compression spring 1011 after the rotation can effectively prevent the shielding plate 1002 from automatically closing.
  • Table 1 is the basic parameter comparison table of embodiment 1 ⁇ 3 graminearum cultivation and traditional graminearum cultivation
  • Example 1 94.79 3.36 0.92 14.29
  • Example 2 92.85 2.94 0.89 12.94
  • Example 3 96.21 2.05 0.83 17.45 Comparative Example 1 84.53 5.32 1 0

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Catching Or Destruction (AREA)
  • Cultivation Of Plants (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明公开一种以禾虫增殖为主的虫稻共生综合种养方法,该种养方法包括:步骤S1:稻田选择;步骤S2:田间布局;步骤S3:整地施肥;步骤S4:禾虫苗种放养;步骤S5:禾虫增殖管理;步骤S6:水稻种植;步骤S7:田间管理;步骤S8:水位控制;步骤S9:水稻收割;步骤S10:禾虫采捕。本发明采用禾虫-水稻共生综合养殖的模式,通过先在稻田增殖禾虫,然后进行水稻种植,最大程度模拟禾虫在野外条件下的生长环境,充分发挥禾虫与水稻之间互惠互利的共生关系,腐烂的稻根和茎叶可为禾虫提供食物,而禾虫为水稻的生长提供肥料等有利条件。不仅能够提高禾虫养殖的成活率和生长速率,还可以增加稻田利用率、禾虫养殖的产量和稻田耕作的综合经济效益。

Description

一种以禾虫增殖为主的虫稻共生综合种养方法
本申请要求于2021年01月22日提交中国专利局、申请号为202110089550.5、发明名称为“一种以禾虫增殖为主的虫稻共生综合种养方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于农业养殖技术领域,具体涉及一种以禾虫增殖为主的虫稻共生综合种养方法。
背景技术
禾虫,学名疣吻沙蚕,喜栖息于咸淡水交汇区的稻田或浅滩淤泥沙质土中,杂食性,以单细胞藻类和动植尸体腐屑等为食,能有效利用泥中的营养成分。禾虫味道鲜美,富含不饱和脂肪酸、羟氨酸、碘酸、纤溶酸、胶原酶以及钙、磷等常量元素和铁、锌、硒等多种微量元素,营养丰富、药食俱佳,是我国东南沿海、港澳地区以及东南亚各国深受欢迎的美食和食疗保健佳品,被称为水中“冬虫夏草”,开发利用价值巨大,市场前景广阔。目前,禾虫养殖业主要依靠自然纳苗进行人工围滩护殖,该过程极易受营养缺乏、咸潮侵袭、水质恶化等不可控因素影响;加之环境污染等突出问题,天然禾虫种苗数量近年来也逐渐减少。这些原因导致禾虫产量不稳定,年均亩产仅10~50斤,养殖效益低。因此,创新禾虫增养殖模式十分必要。
稻田综合种养是在同一生态环境中把种植业同养殖业有机融合的生产方式。该模式可充分利用稻田有限的水生态环境和空间,最大限度地利用资源、减少浪费和污染,提高产出率;有利于增加经济产值和种养户收入,实现农业绿色安全生产和可持续发展,对保障农产品质量和提升食品安全水平有着重要的意义,得到了国家和社会各界的广泛认可。当前,水稻种植同水产养殖的联系最为紧密。稻渔综合种养模式多将水稻的种植和鱼、虾、蟹、鳖等水产动物的养殖结合起来。然而,这类生产形式往往需要人工投喂大量饲料并进行精细的养殖管理,物力、人力投入相对较高,不能有效地提高稻田利用率和综合生产效益,难以进行大规模推广。
发明内容
本发的目的是针对传统禾虫养殖模式产量不稳定、养殖效益低,以及现有稻渔综合种养模式需要精细养殖管理和较高的物力、人力投入,稻田利用率和生产效益偏低,难以推广等弊端,提出一种新的禾虫-水稻共生综合种养模式。
以禾虫增殖为主的虫稻共生综合种养方法充分利用禾虫与水稻天然的共生关系,先在稻田放养禾虫苗种,然后种植水稻进行虫稻综合种养。在禾虫养殖时最大程度地模拟禾虫野外生长环境,为禾虫生长提供最适宜的栖息地。腐烂的稻根和茎叶可为禾虫提供营养,水稻根系和中空的茎可为禾虫输送氧气;禾虫以泥土中的微生物和有机碎屑为食,可减少水稻病害发生,禾虫钻洞可疏通土壤、其粪便是优质的有机肥料。最终提高禾虫养殖成活率,增加水稻产量、改善稻米品质,显著增加稻田耕作的经济效益。
本发明采用的技术方案:
一种以禾虫增殖为主的虫稻共生综合种养方法,该种养方法包括以下步骤:
步骤S1:稻田选择;
稻田的外源水水量充足、水质良好,排灌方便,无农业、生活和工业污水污染;
步骤S2:田间布局;
步骤S3:整地施肥;
稻田要施足基肥,施肥量根据土地肥力控制在1000~2000千克/亩,均匀撒入田间后灌水整地;
步骤S4:禾虫苗种放养;
每年2~4月或7~8月,稻田平整并施底肥后,于插秧前7天~15天投放禾虫苗;
步骤S5:禾虫增殖管理;
饲料粉碎发酵后与10倍质量的干稻杆粉充分混合,均匀投喂;每周投喂1次,每次投喂量量为禾虫体重的3%,阴天和气压低天气减少投饵量,水温高于35℃或低于15℃时不宜投喂;
步骤S6:水稻种植;
选择耐肥力强、抗倒伏、抗病力强,生育期适中,品质优的水稻品种,机械耙田2次以上,做到田泥浮、烂,田面充分平整,田面高低差不超3cm;采用机械插秧或抛秧,每亩植10万基本苗;
步骤S7:田间管理;
施肥以基肥为主,以追肥为辅,以有机肥为主,以化肥为辅,追肥少量多次,宜选用质量好的冷性商品有机肥,严禁使用尿素等对禾虫有害的化肥;稻田病虫草害防治应以预防为主,综合防治,减少农药施用量;严格把握农药安全使用浓度,将药喷在水稻叶面上,不喷入水中,宜分区施药。施药前稻田加水至15~20cm,喷药后及时换水;
步骤S8:水位控制;
步骤S9:水稻收割;
步骤S10:禾虫采捕。
优选的,上述步骤S2包括:沿稻田四周田埂内侧,距田埂0.5~1米挖环形沟3,沟宽0.8~1米,深0.3~0.5米;加高、加宽田埂并夯实加固,田埂高50~60厘米,底宽60~70厘米,顶宽50~60厘米;在稻田一侧的田埂上建进水渠5,连接进水管至稻田内,排水管9建在稻田另一侧的环形沟3底部,进水管6和排水管9上分别设置进水控制组件7和排水控制组件10,并在进水管6的出水口和排水管9的排水口处设置有多个格栅网11。
优选的,所述进水管6的进水口安装有拦截网8,所述拦截网8的侧剖面为“W”型结构,所述拦截网8包括沿进水管6内壁延伸的实心段803,所述实心段803的远端设置有顺序间隔连接的大网格疏散区802和小网格密集区801,所述小网格密集区801分布于拦截网8的弯折顶点处,所述实心段803的近端设置有外翻部804,所述外翻部804与进水渠5侧壁贴合,并通过螺杆固定连接。
优选的,所述进水控制组件7包括安装于进水管6内腔的上圆环701和下圆环702,所述上圆环701固定安装于进水管6内腔中,所述上圆环701的内环设置有等间距的连接板703,所述下圆环702可沿着进水管6内腔滑动,所述下圆环702近端面设置有与连接板703交叉分布的密封板704,所述下圆环702上移至上圆环701下方时,密封板704与连接板703 间隔分布形成实心挡板,阻挡进水渠5内的水通过进水管6;
所述下圆环702的侧壁上设置有推杆705,所述推杆705的自由端从进水管6管壁上的导向孔713伸出至进水管6外侧,所述导向孔713设置于上圆环701与下圆环702之间,所述推杆705的自由端活动连接有活动杆706,所述活动杆706端部螺纹连接有调节螺母709,所述导向孔713的上端和下端分别设置有上卡接板707和下卡接板708,所述上卡接板707和下卡接板708的端部均设置有向进水管6壁凹陷的安装槽。
优选的,所述导向孔713的两侧分别设置有导槽710,两个导槽710之间设置有多根导杆711,其中位于导槽710两端的导杆711与导槽710固定连接,所述导杆711的下方设置有遮挡布712,所述遮挡布712展开后,紧贴导向孔713的外端。
优选的,所述下圆环702的内径小于上圆环701内径。
优选的,所述排水控制组件10包括管帽1001,所述管帽1001套设于排水管9的排水口处,所述管帽1001上设置有与排水管9的内腔连通的排水孔,所述管帽1001的外壁上设置有遮挡板1002,所述遮挡板1002通过固定锁帽1003与管帽1001外壁连接,且遮挡板1002可绕固定锁帽1003旋转,所述遮挡板1002的外壁底部设置有凸块1004,所述管帽1001外壁底部设置有与凸块1004同轴线的固定板1005,所述凸块1004和固定板1005之间通过固定杆1006连接。
优选的,所述固定杆1006的下端螺纹连接有调节锁帽1008,所述固定杆1006的上端沿凸块1004上端面弯折形成水平段,所述水平段下端面设置有弧形卡块1007,所述弧形卡块1007可内嵌于凸块1004上的凹槽内,从而实现遮挡板1002遮挡排水孔。
优选的,所述遮挡板1002的外壁上设置有第一固定块1009,所述管帽1001外壁上设置有第二固定块1010,所述第一固定块1009与第二固定块1010之间通过压缩弹簧1011连接。
优选的,在上述步骤S10中,所述禾虫采捕包括:禾虫性成熟后,稻田干晒1~2天,在光线黑暗的夜晚进水20~30厘米,待有大量性成熟的禾虫群浮后,打开排水管9,在排水口处布置柔软的纱布网捕捉禾虫。捕获的禾虫置于有孔洞的容器内,待禾虫从孔洞钻出,实现与杂物的分离, 然后用14℃~18℃净水清洗2~3次,于13℃~15℃下暂存。
与现有技术相比,本发明的有益效果是:本发明采用禾虫-水稻共生综合养殖的模式,通过先在稻田增殖禾虫,然后进行水稻种植,最大程度模拟禾虫在野外条件下的生长环境,充分发挥禾虫与水稻之间互惠互利的共生关系,腐烂的稻根和茎叶可为禾虫提供食物,而禾虫为水稻的生长提供肥料等有利条件。不仅能够提高禾虫养殖的成活率和生长速率,还可以增加稻田利用率、禾虫养殖的产量和稻田耕作的综合经济效益。
附图说明
图1为稻田布局图;
图2为进水管设置图;
图3为图2中拦截网的放大图;
图4为图2中A处的放大图;
图5为上圆环的结构图;
图6为下圆环的结构图;
图7为遮挡部与导杆的连接图;
图8为图7的俯视图;
图9排水管的结构图;
图10为管帽的侧视图;
图11为遮挡板旋转后的结构图;
其中,1-稻田;2-田埂;3-环形沟;4-田间沟;5-进水渠;6-进水管;7-进水控制组件;701-上圆环;702-下圆环;703-连接板;704-密封板;705-推杆;706-活动杆;707-上卡接板;708-下卡接板;709-调节螺母;710-导槽;711-导杆;712-遮挡布;713-导向孔;8-拦截网;801-小网格密集区;802-大网格疏散区;803-实心段;804-外翻部;9-排水管;10-排水控制组件;1001-管帽;1002-遮挡板;1003-固定锁帽;1004-凸块;1005-固定板;1006-固定杆;1007-弧形卡块;1008-调节锁帽;1009-第一固定块;1010-第二固定块;1011-压缩弹簧;11-格栅网。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例,而不是全部的实施例。
本发明具体提供了一种以禾虫增殖为主的虫稻共生综合种养方法,该种养方法包括以下步骤:
步骤S1:稻田选择
稻田的外源水水量充足、水质良好,排灌方便,无农业、生活和工业污水污染。面积大小以方便管理为准,单田面积以4~6亩为宜,呈长方形,稻田平整,高差不超过10厘米,以壤土最好、粘土次之、砂土最劣,保水保肥力强,无渗漏,pH值6.5~8.5为宜。
步骤S2:田间布局
沿稻田1四周田埂2内侧,距田埂20.5~1米挖环形沟3,沟宽0.8~1米,深0.3~0.5米;面积稍大的(一般3亩以上)在田中加挖“十”字或“井”字形的田间沟4。田间沟4宽0.3~0.5米,深0.3~0.5米,沟面积之和占稻田面积不超过8%,并做到沟沟相通。加高、加宽田埂2并夯实加固,田埂2高50~60厘米,底宽60~70厘米,顶宽50~60厘米;在稻田1一侧的田埂上建进水渠5,连接进水管6至稻田内,排水管9建在稻田1另一侧的环形沟3底部,进水管6和排水管9上分别设置进水控制组件7和排水控制组件10,并在进水管6的出水口和排水管9的排水口处设置有多个格栅网11(具体如图1所示),格栅网11的网孔直径依次缩小。
步骤S3:整地施肥
稻田1要施足基肥,施肥量根据土地肥力控制在1000~2000千克/亩,均匀撒入田间后灌水整地。
步骤S4:禾虫苗种放养
每年2~4月或7~8月,稻田1平整并施底肥后,于插秧前7天~15天投放禾虫苗。采用干田播苗,带泥浆均匀播撒于稻田中,放养密度为250~300尾/平方米。
步骤S5:禾虫增殖管理
饲料粉碎发酵后与10倍的干稻杆粉充分混合,均匀投喂;每周投喂1次,每次投喂量量为禾虫体重的3%,阴天和气压低天气减少投饵量,水温高于35℃或低于15℃时不宜投喂。加强巡查,检查田埂有无漏洞、漏水,清除野杂鱼、蟹、黄鳝等禾虫的敌害生物。
步骤S6:水稻种植
选择耐肥力强、抗倒伏、抗病力强,生育期适中,品质优的水稻品种。机械耙田2次以上,做到田泥浮、烂,田面充分平整,田面高低差不超3cm。插秧可以采取机械插秧或抛秧,插秧时做到浅、匀、稳、直。每亩植10万基本苗左右,可适当提高田埂内侧、沟旁的栽插密度,充分发挥边际优势。
步骤S7:田间管理
按标准的水稻种植规程管理。施肥以基肥为主,以追肥为辅;以有机肥为主,以化肥为辅。追肥少量多次,宜选用质量好的冷性商品有机肥,严禁使用尿素等对禾虫有害的化肥。稻田病虫草害防治应以预防为主,综合防治,减少农药施用量。水稻病害防治首选高效、低毒、低残留的生物农药,禁用禾虫高度敏感的有机磷、菊酯类农药。为确保禾虫安全,要严格把握农药安全使用浓度,将药喷在水稻叶面上,不喷入水中,宜分区施药。施药前稻田加水至15~20cm,喷药后及时换水。
步骤S8:水位控制
水稻插秧水位为2~3厘米;插秧后立即注水保返青,水位控制在4~6厘米,秧苗返青后让稻田水位自然落干至3厘米促分蘖;当总茎蘖数达到预期穗数80%时自然断水晒田。晒田视禾苗长势、叶色以田面有轻微裂痕为度。晒田结束后至孕穗期灌水5厘米,抽穗扬花期保持水层10~15厘米,灌浆中后期干干湿湿;水稻收割前7天将田中积水排干,田面保持湿润即可。
步骤S9:水稻收割
人工收割或机械收割,但注意收割机转弯角度不可太大,以免影响田面平整及田下禾虫。收割完成后及时注水,保持水位5~10厘米。
步骤S10:禾虫采捕
禾虫性成熟后,稻田干晒1~2天,在光线黑暗的夜晚进水20~30厘米,待有大量性成熟的禾虫群浮后,打开排水管9,在排水口处布置柔软的纱布网捕捉禾虫。捕获的禾虫置于有孔洞的容器内,待禾虫从孔洞钻出,实现与杂物的分离,然后用14℃~18℃净水清洗2~3次,于13℃~15℃下暂存。
在上述步骤S3中,基肥宜用肥效长的粪肥、饼肥等有机肥料。
在上述步骤S4中,禾虫苗选用50~60刚节以上的幼体,苗种无损伤无病害、活力好。
在上述步骤S5中,饲料可选择豆饼粉、玉米粉、麦麸、谷糠等粗饲料。
在上述步骤S6中,水稻品种为广8优165或广8优169或广8优2168或广8优金占或五丰优615或美香占2号。
在上述步骤S8中,虫稻共生的稻田宜轻晒,防止禾虫在晒田时脱水死亡。
在上述步骤S9中,秸秆粉碎后大部分还田。
在上述步骤S10中,捕过程控制应好水流速度,流速宜采用慢-快-慢的节奏,以利于禾虫采收。
本发明中,如图2和图3所示,所述进水管6的进水口安装有拦截网8,所述拦截网8的侧剖面为“W”型结构,所述拦截网8包括沿进水管6内壁延伸的实心段803,所述实心段803的远端设置有顺序间隔连接的大网格疏散区802和小网格密集区801,所述小网格密集区801分布于拦截网8的弯折顶点处,所述实心段803的近端设置有外翻部804,所述外翻部804与进水渠5侧壁贴合,并通过螺杆固定连接。
进水渠5内的暂存水进入进水管6内后,水的流动方向为沿着进水管6的水平方向,将拦截网8设计成截面为“W”型结构,并将“W”型结构的弯曲顶部设计成小网格密集区801,将弯曲顶部之间设计成大网格疏散区802。如此以来,当进水渠5内的暂存水进入进水管6内后,水流最先接触到拦截网8中间的内弯顶部,但由于内弯顶部设计成了小网格密集区801,大颗粒的杂物以及敌害生物顺着“W”型网面向内弯顶部的两侧移动,经过大网格疏散区802,但由于大网格疏散区802的网格一般仅允许稍大的沙粒或石子通过,而敌害生物是无法经过该网格的,因此,敌害生物顺着大网格疏散区802向外弯顶部聚拢,但由于外弯顶部为小网格密集区801,加上轴线上水流的冲击,水流在拦截网8内形成涡流形状,大部分水流通过大网格疏散区802,从而保证水流的正常流速,同时,将敌害生物拦截在进水渠5内,以提高禾虫的繁殖速度。
如图4~8所示,所述进水控制组件7包括安装于进水管6内腔的上圆环701和下圆环702,所述下圆环702的内径小于上圆环701内径,所述上圆环701固定安装于进水管6内腔中,所述上圆环701的内环设置有等间距的连接板703,所述下圆环702可沿着进水管6内腔滑动,所述下圆环702近端面设置有与连接板703交叉分布的密封板704,所述下圆环702上移至上圆环701下方时,密封板704与连接板703间隔分布形成实心挡板,阻挡进水渠5内的水通过进水管6。
所述下圆环702的侧壁上设置有推杆705,所述推杆705的自由端从进水管6管壁上的导向孔713伸出至进水管6外侧,所述导向孔713设置于上圆环701与下圆环702之间,所述推杆705的自由端活动连接有活动杆706,所述活动杆706端部螺纹连接有调节螺母709,所述导向孔713的上端和下端分别设置有上卡接板707和下卡接板708,所述上卡接板707和下卡接板708的端部均设置有向进水管6壁凹陷的安装槽。
所述导向孔713的两侧分别设置有导槽710,两个导槽710之间设置有多根导杆711,其中,位于导槽710两端的导杆711与导槽710固定连接,所述导杆711的下方设置有遮挡布712,所述遮挡布712展开后,紧贴导向孔713的外端,防止进水管6内的水溢出管壁外。
当需要给田间供水时,旋转调节螺母709,将活动杆706移出上卡接板707的安装槽,推动推杆705,推杆705下移至导向孔713下端。该过程中,遮挡布712从弯曲变为平展,紧贴进水管6外壁,完全遮挡导向孔713,防止进水管6内的水溢出管壁外。然后,转动活动杆706,将活动杆706卡在下卡接板708上的安装槽内,旋转调节螺母709进行固定。整个结构设计合理,操作简单,具有很强的实用性。
如图9-11所示,所述排水控制组件10包括管帽1001,所述管帽1001套设于排水管9的排水口处,所述管帽1001上设置有与排水管9的内腔连通的排水孔,且排水孔的内径小于排水管9内径,所述管帽1001的外壁上设置有遮挡板1002,所述遮挡板1002通过固定锁帽1003与管帽1001外壁连接,且遮挡板1002可绕固定锁帽1003旋转,所述遮挡板1002的外壁底部设置有凸块1004,所述管帽1001外壁底部设置有与凸块1004同轴线的固定板1005,所述凸块1004和固定板1005之间通过固定杆1006 连接。
其中,所述固定杆1006的下端螺纹连接有调节锁帽1008,其上端沿凸块1004上端面弯折形成水平段,所述水平段下端面设置有弧形卡块1007,所述弧形卡块1007可内嵌于凸块1004上的凹槽内,从而实现遮挡板1002遮挡排水孔。
为了方便遮挡板1002使用,在遮挡板1002的外壁上设置有第一固定块1009,所述管帽1001外壁上设置有第二固定块1010,所述第一固定块1009与第二固定块1010之间通过压缩弹簧1011连接。当遮挡板1002处于闭合状态时,压缩弹簧1011处于被拉伸状态,第一固定块1009与第二固定块1010之间存在牵引力。需要打开遮挡板1002时,由于第二固定块1010与第一固定块1009之间的压缩弹簧1011存在的牵引力,在转动遮挡板1002的过程中,压缩弹簧1011恢复形变,从而减弱了遮挡板1002转动的阻力,使得遮挡板1002更好转动,同时转动后由于压缩弹簧1011的存在,可有效防止遮挡板1002自动闭合。
下面结合实施例清楚、完整地描述下本发明的技术方案。
实施例1
选择水源充足、水质良好、无污染的长方形稻田,面积5.5亩,稻田平整,壤土质,pH值7.5。做好田间工程,施足基肥,施肥量1500千克/亩。灌水整地后,采用干田播苗,于插秧前15天投放50刚节以上的幼体禾虫苗,放养密度为250尾/平方米。每周投喂1次发酵饲料,每次投喂量为禾虫体重的3%。加强巡查,清除野杂鱼、蟹、黄鳝等禾虫的敌害生物。选择种植广8优165水稻品种,每亩植8万基本苗,按标准的水稻种植规程管理。水稻收割前7天将田中积水排干,田面保持湿润。机械收割水稻,收割后及时注水,保持水位10厘米。禾虫性成熟后,稻田干晒2天,在光线黑暗的夜晚进水30厘米,待有大量性成熟的禾虫群浮后,打开排水闸口,在闸口处布置柔软的纱布网捕捉禾虫。捕获的禾虫置于有孔洞的容器内,待禾虫从孔洞钻出,实现与杂物的分离,然后用18℃净水清洗2次,于15℃下暂存。
实施例2
选择水源充足、水质良好、无污染的长方形稻田,面积4.8亩,稻田 平整,壤土质,pH值7.0。做好田间工程,施足基肥,施肥量1200千克/亩。灌水整地后,采用干田播苗,于插秧前15天投放60刚节以上的禾虫苗,放养密度为280尾/平方米。每周投喂1次发酵饲料,每次投喂量为禾虫体重的3%。加强巡查,清除野杂鱼、蟹、黄鳝等禾虫的敌害生物。选择种植广8优169水稻品种,每亩植8万基本苗,按标准的水稻种植规程管理。水稻收割前7天将田中积水排干,田面保持湿润。机械收割水稻,收割后及时注水,保持水位8厘米。禾虫性成熟后,稻田干晒2天,在光线黑暗的夜晚进水25厘米,待有大量性成熟的禾虫群浮后,打开排水闸口,在闸口处布置柔软的纱布网捕捉禾虫。捕获的禾虫置于有孔洞的容器内,待禾虫从孔洞钻出,实现与杂物的分离,然后用18℃净水清洗2次,于15℃下暂存。
实施例3
选择水源充足、水质良好、无污染的长方形稻田,面积5.2亩,稻田平整,壤土质,pH值7.2。做好田间工程,施足基肥,施肥量1300千克/亩。灌水整地后,采用干田播苗,于插秧前10天投放60刚节以上的禾虫苗,放养密度为300尾/平方米。每周投喂1次发酵饲料,每次投喂量为禾虫体重的3%。加强巡查,清除野杂鱼、蟹、黄鳝等禾虫的敌害生物。选择种植广8优金占水稻品种,每亩植10万基本苗左右,按标准的水稻种植规程管理。水稻收割前7天将田中积水排干,田面保持湿润。机械收割水稻,收割后及时注水,保持水位10厘米。禾虫性成熟后,稻田干晒2天,在光线黑暗的夜晚进水30厘米,待有大量性成熟的禾虫群浮后,打开排水闸口,在闸口处布置柔软的纱布网捕捉禾虫。捕获的禾虫置于有孔洞的容器内,待禾虫从孔洞钻出,实现与杂物的分离,然后用18℃净水清洗2次,于15℃下暂存。
通过以上三组实施例可以得到三种稻田以禾虫增殖为主的虫稻综合种养技术,将这三种稻田以禾虫增殖为主的虫稻综合种养技术分别进行种养测试,再用经过普通的稻田禾虫养殖方法进行对比,结果得出三组实施例中的禾虫成活率和产量均有不同的提升,其中实施例3中的禾虫成活率最高,价值最高。
表1为实施例1~3禾虫养殖与传统禾虫养殖的基础参数对照表
  成活率(%) 发病率(%) 饵料成本对比(%) 生长速率提高(%)
实施例1 94.79 3.36 0.92 14.29
实施例2 92.85 2.94 0.89 12.94
实施例3 96.21 2.05 0.83 17.45
对比例1 84.53 5.32 1 0
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种以禾虫增殖为主的虫稻共生综合种养方法,其特征在于,该种养方法包括以下步骤:
    步骤S1:稻田选择;
    稻田的外源水水量充足、水质良好,排灌方便,无农业、生活和工业污水污染;
    步骤S2:田间布局;
    步骤S3:整地施肥;
    稻田施足基肥,施肥量根据土地肥力控制在1000~2000千克/亩,均匀撒入田间后灌水整地;
    步骤S4:禾虫苗种放养;
    每年2~4月或7~8月,稻田平整并施底肥后,于插秧前7天~15天投放禾虫苗;
    步骤S5:禾虫增殖管理;
    饲料粉碎发酵后与10倍质量的干稻杆粉充分混合,均匀投喂;每周投喂1次,每次投喂量为禾虫体重的3%,阴天和气压低天气减少投饵量,水温高于35℃或低于15℃时不宜投喂;
    步骤S6:水稻种植;
    选择耐肥力强、抗倒伏、抗病力强,生育期适中,品质优的水稻品种,机械耙田2次以上,做到田泥浮、烂,田面充分平整,田面高低差不超3cm;采用机械插秧或抛秧,每亩植10万基本苗;
    步骤S7:田间管理;
    施肥以基肥为主,以追肥为辅,以有机肥为主,以化肥为辅,追肥少量多次,宜选用质量好的冷性商品有机肥,严禁使用对禾虫有害的化肥;所述对禾虫有害的化肥包括尿素;稻田病虫草害防治以预防为主,综合防治,减少农药施用量;严格把握农药安全使用浓度,将药喷在水稻叶面上,不喷入水中,宜分区施药;施药前稻田加水至15~20cm,喷药后及时换水;
    步骤S8:水位控制;
    步骤S9:水稻收割;
    步骤S10:禾虫采捕。
  2. 根据权利要求1所述的一种以禾虫增殖为主的虫稻共生综合种养方法,其特征在于,所述步骤S2包括:沿稻田四周田埂内侧,距田埂0.5~1米挖环形沟(3),沟宽0.8~1米,深0.3~0.5米;加高、加宽田埂并夯实加固,田埂高50~60厘米,底宽60~70厘米,顶宽50~60厘米;在稻田一侧的田埂上建进水渠(5),连接进水管(6)至稻田内,排水管(9)建在稻田另一侧的环形沟(3)底部,所述进水管(6)上设置进水控制组件(7),所述排水管(9)上设置排水控制组件(10),并在进水管(6)的出水口和排水管(9)的排水口处设置有多个格栅网(11)。
  3. 根据权利要求2所述的一种以禾虫增殖为主的虫稻共生综合种养方法,其特征在于,所述进水管(6)的进水口安装有拦截网(8),所述拦截网(8)的侧剖面为“W”型结构,所述拦截网(8)包括沿进水管(6)内壁延伸的实心段(803),所述实心段(803)的远端设置有顺序间隔连接的大网格疏散区(802)和小网格密集区(801),所述小网格密集区(801)分布于拦截网(8)的弯折顶点处,所述实心段(803)的近端设置有外翻部(804),所述外翻部(804)与进水渠(5)侧壁贴合,并通过螺杆固定连接。
  4. 根据权利要求2所述的一种以禾虫增殖为主的虫稻共生综合种养方法,其特征在于,所述进水控制组件(7)包括安装于进水管(6)内腔的上圆环(701)和下圆环(702),所述上圆环(701)固定安装于进水管(6)内腔中,所述上圆环(701)的内环设置有等间距的连接板(703),所述下圆环(702)可沿着进水管(6)内腔滑动,所述下圆环(702)近端面设置有与所述上圆环(701)的连接板(703)交叉分布的密封板(704),所述下圆环(702)上移至上圆环(701)下方时,密封板(704)与连接板(703)间隔分布形成实心挡板,阻挡进水渠(5)内的水通过进水管(6);
    所述下圆环(702)的侧壁上设置有推杆(705),所述推杆(705)的自由端从进水管(6)管壁上的导向孔(713)伸出至进水管(6)外侧,所述导向孔(713)设置于上圆环(701)与下圆环(702)之间,所述推杆(705)的自由端活动连接有活动杆(706),所述活动杆(706)端部螺纹连接有调节螺母(709),所述导向孔(713)的上端设置有上卡接板(707), 所述导向孔(713)的下端设置有下卡接板(708),所述上卡接板(707)和下卡接板(708)的端部均设置有向进水管(6)壁凹陷的安装槽。
  5. 根据权利要求4所述的一种以禾虫增殖为主的虫稻共生综合种养方法,其特征在于,所述导向孔(713)的两侧分别设置有导槽(710),两个导槽(710)之间设置有多根导杆(711),其中位于导槽(710)两端的导杆(711)与导槽(710)固定连接,所述导杆(711)的下方设置有遮挡布(712),所述遮挡布(712)展开后,紧贴导向孔(713)的外端。
  6. 根据权利要求4所述的一种以禾虫增殖为主的虫稻共生综合种养方法,其特征在于,所述下圆环(702)的内径小于上圆环(701)内径。
  7. 根据权利要求2所述的一种以禾虫增殖为主的虫稻共生综合种养方法,其特征在于,所述排水控制组件(10)包括管帽(1001),所述管帽(1001)套设于排水管(9)的排水口处,所述管帽(1001)上设置有与排水管(9)的内腔连通的排水孔,所述管帽(1001)的外壁上设置有遮挡板(1002),所述遮挡板(1002)通过固定锁帽(1003)与管帽(1001)外壁连接,且遮挡板(1002)可绕固定锁帽(1003)旋转,所述遮挡板(1002)的外壁底部设置有凸块(1004),所述管帽(1001)外壁底部设置有与凸块(1004)同轴线的固定板(1005),所述凸块(1004)和固定板(1005)之间通过固定杆(1006)连接。
  8. 根据权利要求7所述的一种以禾虫增殖为主的虫稻共生综合种养方法,其特征在于,所述固定杆(1006)的下端螺纹连接有调节锁帽(1008),所述固定杆(1006)的上端沿凸块(1004)上端面弯折形成水平段,所述水平段下端面设置有弧形卡块(1007),所述弧形卡块(1007)可内嵌于凸块(1004)上的凹槽内,从而实现遮挡板(1002)遮挡排水孔。
  9. 根据权利要求7所述的一种以禾虫增殖为主的虫稻共生综合种养方法,其特征在于,所述遮挡板(1002)的外壁上设置有第一固定块(1009),所述管帽(1001)外壁上设置有第二固定块(1010),所述第一固定块(1009)与第二固定块(1010)之间通过压缩弹簧(1011)连接。
  10. 根据权利要求2所述的一种以禾虫增殖为主的虫稻共生综合种养方法,其特征在于,在所述步骤S10中,禾虫采捕包括:禾虫性成熟后,稻田干晒1~2天,在光线黑暗的夜晚进水20~30厘米,待有大量性成熟 的禾虫群浮后,打开排水管(9)在排水口处布置柔软的纱布网捕捉禾虫;捕获的禾虫置于有孔洞的容器内,待禾虫从孔洞钻出,实现与杂物的分离,然后用14℃~18℃净水清洗2~3次,于13℃~15℃下暂存。
  11. 一种以禾虫增殖为主的虫稻共生综合种养系统,包括在稻田一侧的田埂上建进水渠(5),连接进水管(6)至稻田内,排水管(9)建在稻田另一侧的环形沟(3)底部,进水管(6)上设置进水控制组件(7),所述排水管(9)上设置排水控制组件(10),并在进水管(6)的出水口和排水管(9)的排水口处设置有多个格栅网(11)。
  12. 根据权利要求11所述的一种以禾虫增殖为主的虫稻共生综合种养系统,其特征在于,所述进水管(6)的进水口安装有拦截网(8),所述拦截网(8)的侧剖面为“W”型结构,所述拦截网(8)包括沿进水管(6)内壁延伸的实心段(803),所述实心段(803)的远端设置有顺序间隔连接的大网格疏散区(802)和小网格密集区(801),所述小网格密集区(801)分布于拦截网(8)的弯折顶点处,所述实心段(803)的近端设置有外翻部(804),所述外翻部(804)与进水渠(5)侧壁贴合,并通过螺杆固定连接。
  13. 根据权利要求11所述的一种以禾虫增殖为主的虫稻共生综合种养系统,其特征在于,所述进水控制组件(7)包括安装于进水管(6)内腔的上圆环(701)和下圆环(702),所述上圆环(701)固定安装于进水管(6)内腔中,所述上圆环(701)的内环设置有等间距的连接板(703),所述下圆环(702)可沿着进水管(6)内腔滑动,所述下圆环(702)近端面设置有与所述上圆环(701)的连接板(703)交叉分布的密封板(704),所述下圆环(702)上移至上圆环(701)下方时,密封板(704)与连接板(703)间隔分布形成实心挡板,阻挡进水渠(5)内的水通过进水管(6);
    所述下圆环(702)的侧壁上设置有推杆(705),所述推杆(705)的自由端从进水管(6)管壁上的导向孔(713)伸出至进水管(6)外侧,所述导向孔(713)设置于上圆环(701)与下圆环(702)之间,所述推杆(705)的自由端活动连接有活动杆(706),所述活动杆(706)端部螺纹连接有调节螺母(709),所述导向孔(713)的上端设置有上卡接板(707),所述导向孔(713)的下端设置有下卡接板(708),所述上卡接板(707) 和下卡接板(708)的端部均设置有向进水管(6)壁凹陷的安装槽。
  14. 根据权利要求13所述的一种以禾虫增殖为主的虫稻共生综合种养系统,其特征在于,所述导向孔(713)的两侧分别设置有导槽(710),两个导槽(710)之间设置有多根导杆(711),其中位于导槽(710)两端的导杆(711)与导槽(710)固定连接,所述导杆(711)的下方设置有遮挡布(712),所述遮挡布(712)展开后,紧贴导向孔(713)的外端。
  15. 根据权利要求13所述的一种以禾虫增殖为主的虫稻共生综合种养方法,其特征在于,所述下圆环(702)的内径小于上圆环(701)内径。
  16. 根据权利要求11所述的一种以禾虫增殖为主的虫稻共生综合种养系统,其特征在于,所述排水控制组件(10)包括管帽(1001),所述管帽(1001)套设于排水管(9)的排水口处,所述管帽(1001)上设置有与排水管(9)的内腔连通的排水孔,所述管帽(1001)的外壁上设置有遮挡板(1002),所述遮挡板(1002)通过固定锁帽(1003)与管帽(1001)外壁连接,且遮挡板(1002)可绕固定锁帽(1003)旋转,所述遮挡板(1002)的外壁底部设置有凸块(1004),所述管帽(1001)外壁底部设置有与凸块(1004)同轴线的固定板(1005),所述凸块(1004)和固定板(1005)之间通过固定杆(1006)连接。
  17. 根据权利要求16所述的一种以禾虫增殖为主的虫稻共生综合种养系统,其特征在于,所述固定杆(1006)的下端螺纹连接有调节锁帽(1008),所述固定杆(1006)的上端沿凸块(1004)上端面弯折形成水平段,所述水平段下端面设置有弧形卡块(1007),所述弧形卡块(1007)可内嵌于凸块(1004)上的凹槽内,从而实现遮挡板(1002)遮挡排水孔。
  18. 根据权利要求16所述的一种以禾虫增殖为主的虫稻共生综合种养系统,其特征在于,所述遮挡板(1002)的外壁上设置有第一固定块(1009),所述管帽(1001)外壁上设置有第二固定块(1010),所述第一固定块(1009)与第二固定块(1010)之间通过压缩弹簧(1011)连接。
PCT/CN2021/139689 2021-01-22 2021-12-20 一种以禾虫增殖为主的虫稻共生综合种养方法 WO2022156458A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023515040A JP2023546555A (ja) 2021-01-22 2021-12-20 イトメの増殖を主とする虫稲の共生総合栽培・飼養方法
US17/639,422 US20230345920A1 (en) 2021-01-22 2021-12-20 Insect-rice symbiotic comprehensive planting and breeding method mainly based on tylorrhynchus proliferation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110089550.5A CN112913605B (zh) 2021-01-22 2021-01-22 一种以禾虫增殖为主的虫稻共生综合种养方法
CN202110089550.5 2021-01-22

Publications (1)

Publication Number Publication Date
WO2022156458A1 true WO2022156458A1 (zh) 2022-07-28

Family

ID=76164910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139689 WO2022156458A1 (zh) 2021-01-22 2021-12-20 一种以禾虫增殖为主的虫稻共生综合种养方法

Country Status (4)

Country Link
US (1) US20230345920A1 (zh)
JP (1) JP2023546555A (zh)
CN (1) CN112913605B (zh)
WO (1) WO2022156458A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112913605B (zh) * 2021-01-22 2022-04-19 阳江职业技术学院 一种以禾虫增殖为主的虫稻共生综合种养方法
CN117598125B (zh) * 2024-01-22 2024-04-12 黑龙江省农业科学院水稻研究所 一种向实验稻田喷洒稻瘟病原液的病毒接种装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289889A (ja) * 1998-04-15 1999-10-26 Padei Kenkyusho:Kk 水田の水位調整ユニットおよび水田の水位調整システム
CN209710969U (zh) * 2019-02-02 2019-12-03 龙南天宇生态农业有限公司 一种水稻种植生态系统
CN110786277A (zh) * 2019-12-13 2020-02-14 福建省洋泽海洋生物科技有限公司 疣吻沙蚕的人工育苗与大田养殖方法
CN210491976U (zh) * 2019-08-30 2020-05-12 永新县水产站 一种田间稻鱼共生养殖结构
CN212375825U (zh) * 2020-06-22 2021-01-19 安徽玉龙农业发展有限公司 一种虾稻共生灌溉水渠控制装置
CN112913605A (zh) * 2021-01-22 2021-06-08 阳江职业技术学院 一种以禾虫增殖为主的虫稻共生综合种养方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7291262B2 (en) * 2000-05-25 2007-11-06 Hokukon Co., Ltd. Road surface waste water treatment device and tubular water treatment unit
GB0117257D0 (en) * 2001-07-14 2001-09-05 Seabait Ltd Aquaculture of marine worms
WO2005074685A1 (en) * 2004-02-06 2005-08-18 Bayer Cropscience Gmbh Plant protection compositions and use thereof
CN101810257A (zh) * 2009-02-23 2010-08-25 张懋 迷你太空农场——用昆虫循环全部生物废料的食品再生系统
US8608404B2 (en) * 2010-07-29 2013-12-17 Douglas Steven Safreno Smart sustainable agricultural/aquacultural system and methods
CN104855781A (zh) * 2014-02-21 2015-08-26 刘随记 一种冬虫夏草稻谷的制作方法
CN104782582B (zh) * 2015-04-28 2018-07-17 中国烟草总公司郑州烟草研究院 一种平行式蚜虫饲养和转移装置及转移、收集蚜虫的方法
CN105994052B (zh) * 2016-05-30 2018-11-06 珠海市斗门区河口渔业研究所 一种禾虫的人工繁育和集约化养殖方法
CN106359208B (zh) * 2016-08-31 2019-07-12 珠海市斗门区河口渔业研究所 一种禾虫半人工育苗滩涂养殖方法
CN106665504B (zh) * 2017-01-20 2020-07-28 宁德市鼎诚水产有限公司 一种可口革囊星虫的高产养殖方法
CN108094275A (zh) * 2017-12-14 2018-06-01 珠海市斗门区河口渔业研究所 一种池塘养殖禾虫的集中收集方法
CN207854828U (zh) * 2017-12-22 2018-09-14 武汉灵丰巨龙农业发展有限公司 一种鱼塘进水用过滤管
CN208815483U (zh) * 2018-07-06 2019-05-03 随大友 一种便于回收拦截物的水渠拦污格栅
CN109121830B (zh) * 2018-08-16 2020-08-11 刘灼聪 一种园林防涝花盆
CN209493351U (zh) * 2018-11-24 2019-10-15 华禹环保(南京)有限公司 圆形密封扰流挡板
CN110800681A (zh) * 2019-12-04 2020-02-18 阳江职业技术学院 一种池塘疣吻沙蚕、草鱼、鹅三维生态综合养殖系统
CN111771842A (zh) * 2020-06-30 2020-10-16 舒城县文禾种植专业合作社 一种用于有机稻病虫害防治的喷药装置
CN111699935A (zh) * 2020-07-13 2020-09-25 上海毓赛健康科技有限公司 一种全生态水稻种养系统和方法
US11377370B2 (en) * 2020-07-13 2022-07-05 Teresita Amponin Canuto Water turbine that captures ionic surfactants of the water from polluted rivers and seas using mantle periodotite carbon mineralization based activated carbon for purification
CN112125403A (zh) * 2020-08-13 2020-12-25 珠海市斗门区河口渔业研究所 一种养殖水体的生物净化池和净化方法
CN112013139A (zh) * 2020-08-31 2020-12-01 马鞍山圣德力智能科技有限公司 一种压力释放阀
CN112088717A (zh) * 2020-10-14 2020-12-18 青海大学 一种冬虫夏草野外培育的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289889A (ja) * 1998-04-15 1999-10-26 Padei Kenkyusho:Kk 水田の水位調整ユニットおよび水田の水位調整システム
CN209710969U (zh) * 2019-02-02 2019-12-03 龙南天宇生态农业有限公司 一种水稻种植生态系统
CN210491976U (zh) * 2019-08-30 2020-05-12 永新县水产站 一种田间稻鱼共生养殖结构
CN110786277A (zh) * 2019-12-13 2020-02-14 福建省洋泽海洋生物科技有限公司 疣吻沙蚕的人工育苗与大田养殖方法
CN212375825U (zh) * 2020-06-22 2021-01-19 安徽玉龙农业发展有限公司 一种虾稻共生灌溉水渠控制装置
CN112913605A (zh) * 2021-01-22 2021-06-08 阳江职业技术学院 一种以禾虫增殖为主的虫稻共生综合种养方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, XINGHAN: "Culture Mode for Tylorrhynchus Heterochaetus and Key Technical Points (Part 1)", SCIENTIFIC FISH FARMING, no. 9, 30 September 2014 (2014-09-30), pages 40 - 41, XP009538691, ISSN: 1004-843X, DOI: 10.14184/j.cnki.issn1004-843x.2014.09.075 *
HUANG YUXIAO: "Ecologically efficient planting and breeding model and benefit analysis of Chihe + verrucosus sand silkworm beach in Qinzhou", MODERN AGRICULTURAL SCIENCE AND TECHNOLOGY, no. 11, 7 June 2020 (2020-06-07), pages 219 - 220, XP055952018 *

Also Published As

Publication number Publication date
JP2023546555A (ja) 2023-11-06
CN112913605B (zh) 2022-04-19
US20230345920A1 (en) 2023-11-02
CN112913605A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
CN108718965B (zh) 一种稻虾共作的稻虾生态种养方法
CN103270918B (zh) 稻虾共作生态养殖系统及养殖方法
AU2021101217A4 (en) Construction of a rice-turtle-fish symbiosis system and green planting-feeding method
CN106718451A (zh) 一种水稻与小龙虾共作的养殖方法
WO2022156458A1 (zh) 一种以禾虫增殖为主的虫稻共生综合种养方法
CN103348889A (zh) 一种稻田生态种养方法
CN106613595B (zh) 工厂化“稻-畜-菜”周年循环机械化生产方法
CN113647349B (zh) 一种基于无沟化稻田改造的稻虾综合种养方法
CN109496994B (zh) 一种可口革囊星虫池塘精养系统及养殖方法
CN107027702B (zh) 适用于稻田养殖的黑斑蛙种苗选育方法
CN111919687A (zh) 一种稻稻蟹综合种养方法
CN111386992A (zh) 一种稻虾蟹综合种养方法及装置
CN1081890C (zh) 池塘养殖和种植轮作方法
CN112493188A (zh) 一种稻虾轮作生态养殖方法
CN104160844A (zh) 一种鳅田种茭的方法
CN107466622A (zh) 一种莲田养鱼的养殖方法
CN216701347U (zh) 小龙虾养殖系统
CN114403069A (zh) 一种无沟化稻田养殖小龙虾的方法
CN110810305A (zh) 一种稻虾共养的方法
CN111903569A (zh) 一种稻渔生境适时耦合生产模式
CN111699935A (zh) 一种全生态水稻种养系统和方法
CN111248032A (zh) 一种新型的稻鱼鹅养殖方法
CN109997637A (zh) 一种稻虾共作生态养殖方法
CN214853675U (zh) 一种基于定向防逃网的小龙虾分区养殖式田间结构
CN111642436B (zh) 一种山区稻田小龙虾养殖方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920832

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023515040

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920832

Country of ref document: EP

Kind code of ref document: A1