WO2022156329A1 - 感测芯片及mems传感器 - Google Patents

感测芯片及mems传感器 Download PDF

Info

Publication number
WO2022156329A1
WO2022156329A1 PCT/CN2021/130804 CN2021130804W WO2022156329A1 WO 2022156329 A1 WO2022156329 A1 WO 2022156329A1 CN 2021130804 W CN2021130804 W CN 2021130804W WO 2022156329 A1 WO2022156329 A1 WO 2022156329A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
sensing chip
vibrating membrane
thickening member
back pole
Prior art date
Application number
PCT/CN2021/130804
Other languages
English (en)
French (fr)
Inventor
邱冠勋
周宗燐
Original Assignee
潍坊歌尔微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍坊歌尔微电子有限公司 filed Critical 潍坊歌尔微电子有限公司
Publication of WO2022156329A1 publication Critical patent/WO2022156329A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • the present application relates to the field of sensing detection technology, and in particular, to a sensing chip and a MEMS sensor.
  • the sensing chips used in mainstream microphones, pressure sensors and displacement sensors are mostly detected by the principle of plate capacitors, that is, the back pole and the diaphragm are formed on the basis of the substrate, and there is a gap between the back pole and the diaphragm.
  • a capacitance detection structure is formed between the back plate and the diaphragm (as shown in Figure 1). Taking the sound sensing chip as an example, it senses the change of external sound by vibrating the diaphragm with the external sound pressure toward the back pole (as shown in Figure 2).
  • the surface of the back electrode facing the diaphragm is provided with a plurality of convex parts, and the main function of the convex parts is to prevent the diaphragm and the back electrode from sticking, so as to avoid affecting the sensing sensitivity.
  • the researchers found in simulation tests such as drop tests, air blow tests, etc. that when the sensing chip is impacted by external forces (corresponding to the actual microphone dropping, the user exhaling into the microphone, etc.), the diaphragm will produce a relatively small amount of energy.
  • the diaphragm When a large deformation hits the convex portion of the back pole, the diaphragm has stress concentration at the contact point, which easily leads to the rupture of the diaphragm, thereby impairing the sensing function of the induction chip.
  • the main purpose of this application is to propose a sensing chip, which aims to improve the ability of the diaphragm and the convex part of the back pole to resist impact load and withstand vibration, and reduce the stress concentration caused by the diaphragm due to contact with the convex part. the probability of rupture.
  • the sensing chip proposed in the present application includes: a back pole, on which a convex portion protruding from the surface of the back pole is provided; a vibrating membrane, the vibrating membrane and the back pole are laminated and arranged at intervals, the convex portion is arranged on the surface of the back pole facing the vibrating membrane; when the vibrating membrane is deformed towards the back pole, the thickness of the part where the vibrating membrane is in contact with the convex portion is greater than The thickness of the portion of the diaphragm that is not in contact with the convex portion.
  • thickening members are provided at positions of the vibrating membrane corresponding to the convex portions.
  • the thickening member is disposed on the surface of the diaphragm facing the convex portion; and/or, the thickening member is disposed on the surface of the diaphragm facing away from the convex portion.
  • the material of the thickening member is the same as that of the diaphragm, and the thickening member and the diaphragm are integrally formed.
  • the material of the thickening member is different from the material of the diaphragm.
  • the thickening member and the diaphragm are formed separately, the diaphragm has at least one plane, and the thickening member is fixedly connected to the plane of the diaphragm.
  • a surface of the diaphragm corresponding to the convex portion is bent toward the back pole to form an accommodating groove, and the thickening member is embedded in the accommodating groove.
  • the number of back poles is two, the number of vibrating membranes is one, and the two back poles are respectively located on opposite sides of a vibrating membrane; The number is one, and the two diaphragms are respectively located on opposite sides of a back pole.
  • the vibrating film at least includes a conductive layer and an insulating layer, the conductive layer and the insulating layer are attached and arranged, and the insulating layer faces the back electrode; or, the back electrode at least includes a conductive layer and an insulating layer, and the conductive layer It is attached to the insulating layer, and the insulating layer faces the vibrating membrane.
  • the sensing chip further includes: a substrate, a vibrating film and a back electrode are stacked on the substrate in order from far to near, or the back electrode and the vibrating film are stacked in order from far to near. on the base.
  • the present application also provides a MEMS sensor including the sensing chip as described above.
  • the thickness of the part where the diaphragm is in contact with the convex part is greater than the thickness of the part where the diaphragm is not in contact with the convex part, so that the convex part between the diaphragm and the back pole can be improved.
  • FIG. 1 is a schematic structural diagram of a conventional sensing chip
  • FIG. 2 is a schematic structural diagram of the vibrating membrane of the sensing chip of FIG. 1 vibrating toward the back pole;
  • FIG. 3 is a schematic structural diagram of the first embodiment of the sensing chip of the present application.
  • FIG. 4 is a schematic structural diagram of a second embodiment of a sensing chip of the present application.
  • FIG. 5 is a schematic structural diagram of a third embodiment of a sensing chip of the present application.
  • FIG. 6 is a schematic structural diagram of a fourth embodiment of a sensing chip of the present application.
  • FIG. 7 is a schematic structural diagram of a fifth embodiment of a sensing chip of the present application.
  • the present application proposes a sensing chip 100 .
  • the sensing chip 100 includes: a back electrode 10 , a plurality of convex parts 11 are provided on the back electrode 10 ; a vibrating film 20 , the vibrating film 20 is stacked on the back electrode 10 and
  • the diaphragm 20 is arranged at intervals, when the diaphragm 20 is deformed toward the back electrode 10 , the thickness of the part of the diaphragm 20 in contact with the convex part 11 is greater than the thickness of the part of the diaphragm 20 not in contact with the convex part 11 .
  • the sensing chip 100 of the present application can be applied to a microphone, a pressure sensor, a displacement sensor or a temperature sensor to sense changes in external physical quantities, such as changes in sound, pressure, displacement or temperature, etc.
  • This application does not make specific limitations. Under the influence of factors such as external sound, pressure, displacement or temperature, the diaphragm 20 will deform toward the back pole 10, thereby causing the diaphragm 20 to vibrate, and the amplitude of changes in external sound, pressure, displacement and temperature can affect the vibration. The magnitude of the deformation of the membrane 20.
  • the thickness of the portion of the diaphragm 20 that is in contact with the convex portion 11 of the back electrode 10 is larger than that of the portion of the diaphragm 20 that is not in contact with the convex portion 11 of the back electrode 10 .
  • the thickened part can be formed in various shapes and sizes, which are not limited in this application.
  • the convex portion 11 on the back pole 10 may be cylindrical, and a plurality of convex portions 11 may be arranged on the surface of the back pole 10 facing the diaphragm 20 in a matrix form.
  • the diaphragm 20 is in contact with the convex portion 11 correspondingly.
  • the thickened part of the ion can also be formed into a cylindrical shape, and the thickened part can also be arranged on the diaphragm 20 in a matrix form.
  • the diaphragm 20 since the two sides of the diaphragm 20 belong to the connecting ends, when the diaphragm 20 is deformed toward the back pole 10, the deformation and displacement of the central part of the diaphragm 20 away from the connecting end is the largest, that is to say, the diaphragm 20 has the largest deformation and displacement.
  • the central part of the diaphragm 20 will first contact the back pole 10. With the increase of the external force impact, the part of the diaphragm 20 in contact with the convex part 11 of the back pole 10 extends symmetrically from the central part of the diaphragm 20 to the two sides of the diaphragm 20.
  • the parts of the diaphragm 20 that need to be thickened can be specifically determined according to the degree of deformation and displacement of the diaphragm 20.
  • the number of parts to be thickened on the diaphragm 20 can be less than or equal to the back
  • the thickened part of the diaphragm 20 is determined by the center of the diaphragm 20
  • the locations increase toward both sides of the diaphragm 20 .
  • the thickness of the part of the diaphragm 20 in contact with the convex part 11 is greater than the thickness of the part of the diaphragm 20 that is not in contact with the convex part 11, so that the diaphragm 20 can be improved.
  • the convex portion 11 is provided with a thickening member 21 at the projection position of the diaphragm 20 , that is to say, the diaphragm 20 corresponds to the back pole
  • the position of the convex portion 11 can be provided with a thickening member 21 .
  • the thickening part of the diaphragm 20 is thickened by arranging the thickening member 21 , and the thickening member 21 on the diaphragm 20 corresponds to the convex part 11 on the back pole 10 one-to-one.
  • the diaphragm 20 and the back pole 10 are arranged in parallel, that is, in a static state, the plane on which the diaphragm 20 is located is parallel to the plane on which the back pole 10 is located.
  • the diaphragm 20 faces in a direction perpendicular to its own plane.
  • the back pole 10 vibrates.
  • the thickening member 21 of the diaphragm 20 corresponds to the normal line position of the convex portion 11 of the back pole 10, that is, the thickening member 21 of the diaphragm 20 corresponds to the projection position of the convex portion 11 on the diaphragm 20.
  • the ability of the diaphragm 20 to resist shock loads and withstand vibration can be maximized, thereby reducing the rupture of the diaphragm 20 due to stress concentration when it contacts the convex parts 11 . probability, so as to prolong the service life of the sensing chip and ensure the sensing sensitivity of the sensing chip 100 .
  • the thickening member 21 is disposed on the surface of the diaphragm 20 facing the convex portion 11 ; and/or the thickening member 21 is disposed on the surface of the diaphragm 20 facing away from the convex portion 11 .
  • the above situation includes three specific embodiments: first, the thickening member 21 is only provided on the surface of the diaphragm 20 facing the convex portion 11; Thick member 21 ; the third type, at the same time, a thickening member 21 is provided on the surface of the diaphragm 20 facing the convex portion 11 and the surface of the diaphragm 20 away from the convex portion 11 . It should be noted that the position of the thickening member 21 on the diaphragm 20 can be set according to actual needs, which is not specifically limited in this application.
  • the diaphragm 20 can resist the impact load and The ability to withstand shock is better.
  • the material of the thickening member 21 is the same as that of the diaphragm 20 , and the thickening member 21 and the diaphragm 20 are integrally formed.
  • the thickening member 21 and the diaphragm 20 are made of the same material through an integral molding process. After the diaphragm 20 is fabricated, the thickening member 21 is directly formed on the diaphragm 20, and the thickening member 21 belongs to the vibration diaphragm 20. A part of the diaphragm 20, the integrity and structural stability of the diaphragm 20 are good.
  • the material of the thickening member 21 is different from the material of the diaphragm 20 .
  • the material of the thickening member 21 is different from that of the diaphragm 20 , for example, the diaphragm 20 is made of platinum silicon, and the thickening member 21 is made of silicon nitride.
  • the thickening member 21 and the diaphragm 20 can be fabricated separately, and then the two can be combined and fixed to form a complete structure.
  • the manufacturing difficulty and manufacturing cost can be reduced by replacing the integral molding process of the thickening element 21 and the diaphragm 20 by the combining process of the thickening element 21 and the diaphragm 20 .
  • the thickening member 21 and the diaphragm 20 are formed separately, the diaphragm 20 has at least one plane, and the thickening member 21 is fixedly connected to the plane of the diaphragm 20 .
  • the diaphragm 20 can be fabricated first, and the diaphragm 20 can be a flat film layer, which is the conventional shape of the diaphragm 20, and then the thickening member 21 is fabricated.
  • the shape, size and quantity of the thickening member 21 can be Fabrication is carried out as required, and finally the formed thickening member 21 is fixed on the portion of the diaphragm 20 in contact with the convex portion 11 through a material connection process, so that the thickening member 21 is combined with the diaphragm 20 .
  • changes to the structure of the existing diaphragm 20 can be minimized, which is beneficial to processing on the basis of the existing structure of the diaphragm 20, and can reduce manufacturing difficulty and manufacturing cost.
  • a portion of the diaphragm 20 corresponding to the convex portion 11 is bent toward the back pole 10 to form an accommodating groove, and the thickening member 21 is embedded in the accommodating groove.
  • the thickening members 21 are first fabricated, and the shape, size and quantity of the thickening members 21 can be fabricated as required. The contact positions are arranged, and then the vibrating membrane 20 is fabricated. When the vibrating membrane 20 is fabricated, the vibrating membrane 20 is covered on the plurality of thickening members 21, so that the vibrating membrane 20 is shaped, and at the same time, the vibrating membrane 20 and the plurality of thickening members are formed.
  • the part of the diaphragm 20 corresponding to the thickening member 21 is formed into a folded shape, that is, the surface of the diaphragm 20 facing the thickening member 21 forms a corresponding accommodating groove, and the surface of the diaphragm 20 facing away from the thickening member 21 is reversed.
  • the thickness of the portion of the diaphragm 20 corresponding to the thickening member 21 is greater than the thickness of the portion of the diaphragm 20 where the thickening member 21 is not provided.
  • the above solution is used to manufacture the diaphragm 20 and the thickening member 21 on the diaphragm 20 , that is, the thickening member 21 and the diaphragm 20 are manufactured separately first, and then the two are combined to form a complete structure, which can reduce the difficulty and cost of manufacture. .
  • the number of back poles 10 is two, the number of diaphragms 20 is one, and the two back poles 10 are respectively located on opposite sides of a diaphragm 20;
  • the number is two, the number of back poles 10 is one, and the two diaphragms 20 are respectively located on opposite sides of one back pole 10 .
  • the above situations correspond to the structure form of the single diaphragm 20 of the double diaphragm 10 and the structure form of the single diaphragm 10 of the double diaphragm 20 respectively.
  • the sensing sensitivity of the sensing chip 100 can be effectively improved .
  • the vibrating membrane 20 at least includes a conductive layer 101 and an insulating layer 102 , the conductive layer 101 and the insulating layer 102 are disposed in contact with each other, and the insulating layer 102 faces the back electrode 10 ; or, the back electrode 10 at least It includes a conductive layer 101 and an insulating layer 102 , the conductive layer 101 and the insulating layer 102 are arranged in a bonded manner, and the insulating layer 102 faces the diaphragm 20 .
  • the above cases correspond to the case where the diaphragm 20 is a composite material and the case where the back electrode 10 is a composite material, that is, both the back electrode 10 and the diaphragm 20 may include semiconductor, conductor and insulator materials.
  • the insulating layer 102 between the diaphragm 20 and the back electrode 10 , it is possible to avoid direct current conduction when the diaphragm 20 is in contact with the back electrode 10 , resulting in poor performance or reliability of the sensing chip 100 .
  • the back electrode 10 includes a conductive layer 101 and two insulating layers 102 , and the insulating layers 102 and the conductive layers 101 are alternately stacked and arranged to fit together, that is, a conductive layer 101 It is sandwiched between the two insulating layers 102 .
  • the insulating layer 102 on the side of the back electrode 10 away from the diaphragm 20 can also protect the back electrode 10 from external influences, so as to ensure the sensing sensitivity and stability of the sensing chip 100 .
  • both the back electrode 10 and the diaphragm 20 can be made of a single material of the conductive layer 101 to simplify the structure of the sensing chip 100 and reduce manufacturing difficulty and manufacturing cost.
  • the sensing chip 100 further includes: a substrate 30 , a diaphragm 20 and a back electrode 10 are stacked on the substrate 30 in order from far to near, or, the back electrode 10 and the vibrator The films 20 are stacked on the base 30 in order from far to near.
  • the structure of the sensing chip 100 adopts the simplest form of a single back-pole 10 and a single-diaphragm 20 .
  • the two sides are also fixedly connected to the base 30 through the support member 31 , and the back pole 10 and the diaphragm 20 are located on the same side of the base 30 .
  • the positions of the back pole 10 and the vibrating membrane 20 on the base 30 can be exchanged according to actual needs, as long as the vibrating membrane 20 is ensured to vibrate toward the back pole 10 .
  • the substrate 30 is provided with an induction circuit, and the back electrode 10 and the diaphragm 20 are electrically connected to the induction circuit. When the diaphragm 20 vibrates toward the back electrode 10, the formed induced electrical signal is output through the induction circuit.
  • the back electrode 10 is usually designed with a plurality of through holes 12 as passages for air flow.
  • the present application also discloses a MEMS sensor, which includes the above-mentioned sensing chip 100. Based on the design of the sensing chip 100, the reliability and sensitivity of the MEMS sensor applied thereto are better.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Pressure Sensors (AREA)

Abstract

本申请公开一种感测芯片及MEMS传感器,包括:背极,所述背极上设有凸出于所述背极表面的凸部;振膜,所述振膜与所述背极层叠且间隔设置,所述凸部设置在所述背极朝向所述振膜的表面上;所述振膜朝向所述背极形变时,所述振膜与所述凸部接触的部位的厚度大于所述振膜未与所述凸部接触的部位的厚度。

Description

感测芯片及MEMS传感器
本申请要求于2021年1月19日申请的、申请号为202110073226.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及感应检测技术领域,特别涉及一种感测芯片及MEMS传感器。
背景技术
目前主流的麦克风,压力传感器及位移传感器等采用的感测芯片,多是通过平板电容器的原理进行检测,即在基底的基础上形成背极和振膜,背极与振膜之间有间隙,使背极板和振膜之间形成电容检测结构(如图1所示)。以声音感测芯片为例,其通过振膜随外部的声压朝向背极振动来感测外部的声音变化(如图2所示)。
通常,背极朝向振膜的表面设置有多个凸部,凸部的主要作用是防止振膜与背极沾粘,避免影响感测灵敏度。但是,研究人员在模拟试验(比如跌落试验、吹气试验等)中发现,当感测芯片受外力冲击时(对应现实中的麦克风跌落、用户朝麦克风呼气等情形),振膜会产生较大形变而碰到背极的凸部,此时振膜在接触点有应力集中,容易导致振膜破裂,从而有损感应芯片的感测功能。
技术问题
本申请的主要目的是提出一种感测芯片,旨在提高振膜与背极的凸部接触的部位的抵抗冲击荷载和承受震动作用的能力,降低振膜由于与凸部接触时因应力集中而导致破裂的几率。
技术解决方案
为实现上述目的,本申请提出的感测芯片,包括:背极,所述背极上设有凸出于所述背极表面的凸部;振膜,所述振膜与所述背极层叠且间隔设置,所述凸部设置在所述背极朝向所述振膜的表面上;所述振膜朝向所述背极形变时,所述振膜与所述凸部接触的部位的厚度大于所述振膜未与所述凸部接触的部位的厚度。
在一实施例中,在所述振膜的振动方向上,所述振膜对应于所述凸部的位置均设有增厚件。
在一实施例中,增厚件设于振膜朝向凸部的表面;和/或,增厚件设于振膜背离凸部的表面。
在一实施例中,增厚件的材质与振膜的材质相同,且增厚件和振膜一体成型。
在一实施例中,增厚件的材质与振膜的材质不同。
在一实施例中,增厚件和振膜分体成型,振膜至少具有一个平面,增厚件与振膜的平面固定连接。
在一实施例中,所述振膜对应所述凸部的表面朝所述背极方向弯曲形成容置槽,所述增厚件嵌设于所述容置槽内。
在一实施例中,背极的数量为两个,振膜的数量为一个,两个背极分别位于一个振膜的相背的两侧;或,振膜的数量为两个,背极的数量为一个,两个振膜分别位于一个背极的相背的两侧。
在一实施例中,振膜至少包括一导电层和一绝缘层,导电层和绝缘层贴合设置,且绝缘层朝向背极;或,背极至少包括一导电层和一绝缘层,导电层和绝缘层贴合设置,且绝缘层朝向振膜。
在一实施例中,感测芯片还包括:基底,振膜以及背极按照由远及近的位置依次层叠设于基底上,或,背极以及振膜按照由远及近的位置依次层叠设于基底上。
本申请还提供一种MEMS传感器,其包括如上所述的感测芯片。
有益效果
本申请的技术方案中,通过设置振膜朝向背极形变时,振膜与凸部接触的部位的厚度大于振膜未与凸部接触的部位的厚度,可以提高振膜与背极的凸部接触的部位的抵抗冲击荷载和承受震动作用的能力,从而降低振膜由于与凸部接触时因应力集中而导致破裂的几率,以延长感应芯片的使用寿命,保证感测芯片的感测灵敏度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为现有感测芯片的结构示意图;
图2为图1感测芯片的振膜朝向背极振动时的结构示意图;
图3为本申请感测芯片第一实施例的结构示意图;
图4为本申请感测芯片第二实施例的结构示意图;
图5为本申请感测芯片第三实施例的结构示意图;
图6为本申请感测芯片第四实施例的结构示意图;
图7为本申请感测芯片第五实施例的结构示意图。
附图标号说明:
标号 名称 标号 名称
100 感测芯片 12 通孔
10 背极 20 振膜
101 导电层 21 增厚件
102 绝缘层 30 基底
11 凸部 31 支撑件
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种感测芯片100。
在本申请实施例中,如图3所示,该感测芯片100,包括:背极10,背极10上设有多个凸部11;振膜20,振膜20与背极10层叠且间隔设置,振膜20朝向背极10形变时,振膜20与凸部11接触的部位的厚度大于振膜20未与凸部11接触的部位的厚度。
需要说明的是,本申请的感测芯片100可以应用在麦克风、压力传感器、位移传感器或温度传感器上,用于感测外部物理量的变化,比如声音、压力、位移或温度的变化,等等,本申请不作具体限制。在受外部声音、压力、位移或温度等因素影响下,振膜20会朝向背极10形变,从而使振膜20发生振动,并且,外界声音、压力、位移及温度变化的幅度大小可以影响振膜20形变的幅度大小。
具体地,本申请的技术方案中,振膜20对应与背极10的凸部11接触的部位相较于振膜20不与背极10的凸部11接触的部位的厚度要大,振膜20增厚的部位可以形成各种形状及尺寸,本申请对此并不进行限定。其中,背极10上的凸部11可以为圆柱形,并且多个凸部11可以按照矩阵形式布设在背极10朝向振膜20的表面上,相应地,振膜20对应与凸部11接触的增厚部位也可以形成为圆柱形,并且增厚部位也可以按照矩阵形式布设在振膜20上。
其中,请参阅图3,由于振膜20的两边属于连接端,当振膜20朝向背极10形变时,振膜20远离连接端的中心部位的形变和位移程度最大,即是说,振膜20的中心部位首先会与背极10接触,随着外力冲击的增大,振膜20与背极10的凸部11接触的部位由振膜20的中心部位对称地向振膜20的两边延伸,振膜20与背极10的凸部11接触的部位也就越多。因此,在设置振膜20时,可以根据振膜20的形变和位移程度来具体确定振膜20需要增厚的部位,换言之,振膜20上需要增厚的部位的数量可以少于或等于背极10上凸部11的数量,且至少振膜20对应与背极10的凸部11接触的中心部位需要增厚,然后,根据实际需要,振膜20增厚的部位由振膜20的中心部位向振膜20的两边增加。
本申请的技术方案中,通过设置振膜20朝向背极10形变时,振膜20与凸部11接触的部位的厚度大于振膜20未与凸部11接触的部位的厚度,可以提高振膜20与背极10的凸部11接触的部位的抵抗冲击荷载和承受震动作用的能力,从而降低振膜20由于与凸部11接触时因应力集中而导致破裂的几率,以延长感应芯片的使用寿命,保证感测芯片100的感测灵敏度。
在本申请的一实施例中,请参阅图3,在振膜20的振动方向上,凸部11在振膜20的投影位置均设有增厚件21,也就是说振膜20对应背极凸部11的位置都可设有增厚件21。
本实施例中,振膜20的增厚部位通过设置增厚件21来实现增厚,且振膜20上的增厚件21与背极10上的凸部11一一对应。具体地,振膜20和背极10平行设置,即静止状态下,振膜20所在的平面和背极10所在平面平行,当受外力冲击时,振膜20沿垂直于自身所在平面的方向朝向背极10振动。其中,静止状态下,振膜20的增厚件21对应背极10的凸部11的法线位置,也即振膜20的增厚件21对应凸部11在振膜20的投影位置,当受外力冲击时,振膜20设置增厚件21所在的部位与背极10的凸部11接触。通过增厚件21与凸部11一一对应,可以最大限度地提高振膜20的抵抗冲击荷载和承受震动作用的能力,从而降低振膜20由于与凸部11接触时因应力集中而导致破裂的几率,以延长感应芯片的使用寿命,保证感测芯片100的感测灵敏度。
在一实施例中,请参阅图3至5,增厚件21设于振膜20朝向凸部11的表面;和/或,增厚件21设于振膜20背离凸部11的表面。
上述情形包含三种具体的实施例:第一种,仅在振膜20朝向凸部11的表面设置有增厚件21;第二种,仅在振膜20背离凸部11的表面设置有增厚件21;第三种,同时在振膜20朝向凸部11的表面以及振膜20背离凸部11的表面设置有增厚件21。需要说明的是,增厚件21在振膜20上的位置可以根据实际需要进行设置,本申请不作具体限制。当然,容易理解的是,相较于仅在振膜20的单侧表面设置增厚件21,在振膜20的上下两侧的表面均设置增厚件21时,振膜20抵抗冲击荷载和承受震动作用的能力更优。
在本申请的一实施例中,请参阅图3,增厚件21的材质与振膜20的材质相同,且增厚件21和振膜20一体成型。
本实施例中,增厚件21和振膜20是采用同一材质通过一体成型工艺加工制作的,振膜20制作完成后,增厚件21直接成型在振膜20上,增厚件21属于振膜20的一部分,振膜20的一体性和结构稳定性好。
在本申请的一实施例中,请参阅图6至7,增厚件21的材质与振膜20的材质不同。
本实施例中,增厚件21的材质和振膜20采用的材质不同,比如振膜20采用铂化硅材质,增厚件21采用氮化硅材质。如此,在制作振膜20以及振膜20上的增厚件21时,增厚件21和振膜20可以分开制作,然后再将二者结合固定,从而形成完整的结构。由于一体成型工艺的制作难度和制作成本较高,通过增厚件21和振膜20的结合工艺来替代增厚件21和振膜20的一体成型工艺,能够降低制作难度和制作成本。
在一实施例中,请参阅图6,增厚件21和振膜20分体成型,振膜20至少具有一个平面,增厚件21与振膜20的平面固定连接。
本实施例中,可以先制作振膜20,振膜20可以为平整的膜层,这是振膜20的常规形状,然后再制作增厚件21,增厚件21的形状、尺寸和数量可以根据需要进行制作,最后通过材料连接工艺将制作成型的增厚件21固定在振膜20对应与凸部11接触的部位上,使增厚件21与振膜20结合。如此,可尽量减少现有振膜20结构的改变,有利于在现有振膜20结构的基础上进行加工,能够降低制作难度和制作成本。
在一实施例中,请参阅图7,振膜20对应凸部11的部位朝背极10方向弯曲形成有容置槽,增厚件21嵌设于容置槽内。
本实施例中,先制作增厚件21,增厚件21的形状、尺寸和数量可以根据需要进行制作,将多个制作成型的增厚件21对应振膜20与背极10的凸部11接触的位置进行排列,然后再制作振膜20,在振膜20制作时将振膜20覆盖在多个增厚件21上,使振膜20定型,同时使振膜20与多个增厚件21结合,此时,振膜20对应增厚件21的部位形成折弯状,即振膜20朝向增厚件21的表面对应形成容置槽,且振膜20背离增厚件21的表面反向凸起,如此,使得振膜20对应增厚件21的部位的厚度大于振膜20未设置增厚件21的部位的厚度。采用上述方案来制作振膜20以及振膜20上的增厚件21,即增厚件21和振膜20先分开制作,然后再将二者结合形成完整的结构,能够降低制作难度和制作成本。
在本申请的一实施例中,背极10的数量为两个,振膜20的数量为一个,两个背极10分别位于一个振膜20的相背的两侧;或,振膜20的数量为两个,背极10的数量为一个,两个振膜20分别位于一个背极10的相背的两侧。
上述情形分别对应双背极10单振膜20的结构形式以及双振膜20单背极10的结构形式。其中,通过设置双背极10单振膜20或双振膜20单背极10,相较于单背极10单振膜20的结构形式来说,可以有效提高感测芯片100的感测灵敏度。
在本申请的一实施例中,振膜20至少包括一导电层101和一绝缘层102,导电层101和绝缘层102贴合设置,且绝缘层102朝向背极10;或,背极10至少包括一导电层101和一绝缘层102,导电层101和绝缘层102贴合设置,且绝缘层102朝向振膜20。
上述情形分别对应振膜20为复合材料的情形以及背极10为复合材料的情形,也即,背极10和振膜20均可以包含半导体、导体和绝缘体材质。其中,通过在振膜20和背极10之间设置绝缘层102,可以避免振膜20与背极10接触时直接有电流导通而导致感测芯片100的性能或可靠性变差。进一步地,在一个具体的实施例中,如图3所示,背极10包括一导电层101和两绝缘层102,绝缘层102和导电层101交替层叠并贴合设置,即一导电层101夹设在两绝缘层102之间,如此,背极10背离振膜20一侧的绝缘层102还可以保护背极10不受外部的影响,以保证感测芯片100的感测灵敏度和稳定性。当然,在其他实施例中,背极10和振膜20均可以采用单一的导电层101的材料,以简化感测芯片100的结构,降低制作难度和制作成本。
作为一种实施方式,请参阅图3,感测芯片100还包括:基底30,振膜20以及背极10按照由远及近的位置依次层叠设于基底30上,或,背极10以及振膜20按照由远及近的位置依次层叠设于基底30上。
本实施例中,感测芯片100的结构采用的是最简单的单背极10单振膜20的形式,背极10的两边通过支撑件31与基底30固定连接,同样地,振膜20的两边也通过支撑件31与基底30固定连接,且背极10和振膜20位于基底30的同一侧。而背极10和振膜20在基底30上的位置可以根据实际需要进行对换,只要保证振膜20朝向背极10振动即可。基底30上设置有感应电路,背极10和振膜20均与感应电路电性连接,振膜20朝向背极10振动时,形成的感应电信号通过感应电路输出。另外,背极10上通常会设计有多个通孔12作为气流流通的通道。
此外,本申请还公开一种MEMS传感器,其包括上述的感测芯片100,基于感测芯片100的设计,应用其的MEMS传感器的可靠性和灵敏度更好。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (11)

  1. 一种感测芯片,其中,所述感测芯片包括:
    背极,所述背极上设有凸出于所述背极表面的凸部;
    振膜,所述振膜与所述背极层叠且间隔设置,所述凸部设置在所述背极朝向所述振膜的表面上;所述振膜朝向所述背极形变时,所述振膜与所述凸部接触的部位的厚度大于所述振膜未与所述凸部接触的部位的厚度。
  2. 如权利要求1所述的感测芯片,其中,在所述振膜的振动方向上,所述振膜对应于所述凸部的位置均设有增厚件。
  3. 如权利要求2所述的感测芯片,其中,所述增厚件设于所述振膜朝向所述凸部的表面;和/或,
    所述增厚件设于所述振膜背离所述凸部的表面。
  4. 如权利要求2所述的感测芯片,其中,所述增厚件的材质与所述振膜的材质相同,且所述增厚件和所述振膜一体成型。
  5. 如权利要求2所述的感测芯片,其中,所述增厚件的材质与所述振膜的材质不同。
  6. 如权利要求5所述的感测芯片,其中,所述增厚件和所述振膜分体成型,所述振膜至少具有一个平面,所述增厚件与所述振膜的平面固定连接。
  7. 如权利要求5所述的感测芯片,其中,所述振膜对应所述凸部的表面朝所述背极方向弯曲形成容置槽,所述增厚件嵌设于所述容置槽内。
  8. 如权利要求1所述的感测芯片,其中,所述背极的数量为两个,所述振膜的数量为一个,两个所述背极分别位于一个所述振膜的相背的两侧;或,
    所述振膜的数量为两个,所述背极的数量为一个,两个所述振膜分别位于一个所述背极的相背的两侧。
  9. 如权利要求1所述的感测芯片,其中,所述振膜至少包括一导电层和一绝缘层,所述导电层和所述绝缘层贴合设置,且所述绝缘层朝向所述背极;或,
    所述背极至少包括一导电层和一绝缘层,所述导电层和所述绝缘层贴合设置,且所述绝缘层朝向所述振膜。
  10. 如权利要求1至9中任一项所述的感测芯片,其中,所述感测芯片还包括:
    基底,所述振膜以及所述背极按照由远及近的位置依次层叠设于所述基底上,或,所述背极以及所述振膜按照由远及近的位置依次层叠设于所述基底上。
  11. 一种MEMS传感器,其中,所述MEMS传感器包括权利要求1至10中任一项所述的感测芯片。
PCT/CN2021/130804 2021-01-19 2021-11-16 感测芯片及mems传感器 WO2022156329A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110073226.4A CN112822616A (zh) 2021-01-19 2021-01-19 感测芯片及mems传感器
CN202110073226.4 2021-01-19

Publications (1)

Publication Number Publication Date
WO2022156329A1 true WO2022156329A1 (zh) 2022-07-28

Family

ID=75858557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130804 WO2022156329A1 (zh) 2021-01-19 2021-11-16 感测芯片及mems传感器

Country Status (2)

Country Link
CN (1) CN112822616A (zh)
WO (1) WO2022156329A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822616A (zh) * 2021-01-19 2021-05-18 潍坊歌尔微电子有限公司 感测芯片及mems传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244832A (zh) * 2010-05-12 2011-11-16 歌尔声学股份有限公司 电容式传声器芯片
TW201414665A (zh) * 2012-10-09 2014-04-16 Univ Feng Chia 微機電系統裝置及其製造方法
CN107986225A (zh) * 2016-10-26 2018-05-04 鑫创科技股份有限公司 微机电系统装置以及制作微机电系统的方法
US20200322732A1 (en) * 2019-04-08 2020-10-08 Db Hitek Co., Ltd. Mems microphone and method of manufacturing the same
CN112822616A (zh) * 2021-01-19 2021-05-18 潍坊歌尔微电子有限公司 感测芯片及mems传感器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007021717A2 (en) * 2005-08-09 2007-02-22 Polyplus Battery Company Compliant seal structures for protected active metal anodes
CN101267689A (zh) * 2007-03-14 2008-09-17 佳乐电子股份有限公司 电容式微型麦克风的麦克风芯片
JP2012010148A (ja) * 2010-06-25 2012-01-12 Sanyo Electric Co Ltd 電気音響変換装置
CN107666645B (zh) * 2017-08-14 2020-02-18 苏州敏芯微电子技术股份有限公司 具有双振膜的差分电容式麦克风
CN109511067B (zh) * 2018-12-04 2020-12-25 苏州敏芯微电子技术股份有限公司 电容式麦克风

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244832A (zh) * 2010-05-12 2011-11-16 歌尔声学股份有限公司 电容式传声器芯片
TW201414665A (zh) * 2012-10-09 2014-04-16 Univ Feng Chia 微機電系統裝置及其製造方法
CN107986225A (zh) * 2016-10-26 2018-05-04 鑫创科技股份有限公司 微机电系统装置以及制作微机电系统的方法
US20200322732A1 (en) * 2019-04-08 2020-10-08 Db Hitek Co., Ltd. Mems microphone and method of manufacturing the same
CN112822616A (zh) * 2021-01-19 2021-05-18 潍坊歌尔微电子有限公司 感测芯片及mems传感器

Also Published As

Publication number Publication date
CN112822616A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
US7644622B2 (en) Micro-electro-mechanical pressure sensor
KR100648398B1 (ko) 실리콘 콘덴서 마이크로폰의 패키징 구조 및 그 제조방법
CA2430451C (en) Mechanical deformation amount sensor
CN101644718B (zh) 一种带声学腔的电容式加速度传感器
US20010004180A1 (en) Piezoelectric acoustic components and method of manufacturing the same
JP2008522193A (ja) ピエゾ抵抗性歪み集中器
CN109511067B (zh) 电容式麦克风
WO2019033854A1 (zh) 具有双振膜的差分电容式麦克风
JP4335545B2 (ja) 圧力と加速度との双方を検出するセンサおよびその製造方法
WO2022142507A1 (zh) Mems麦克风及其振膜结构
KR100544283B1 (ko) 표면실장을 위한 평행육면체형 콘덴서 마이크로폰
KR20200110627A (ko) Mems 디바이스 및 그 제조 방법
WO2022156329A1 (zh) 感测芯片及mems传感器
CN216357302U (zh) 微机电结构及其振膜结构、麦克风和终端
CN217445523U (zh) 双振膜mems声音感测芯片
WO2005079112A1 (ja) 容量検知型センサ素子
CN109246565A (zh) 硅麦克风及其制造方法
JPH08160072A (ja) 加速度・圧力検出素子およびその製造方法
JP2009265012A (ja) 半導体センサ
WO2022183827A1 (zh) 传感器和电子设备
EP2717059B1 (en) Acceleration sensor
WO2022007010A1 (zh) 用于 mems 麦克风的振膜及 mems 麦克风
WO2024108866A1 (zh) 密封双膜结构及其装置
CN215935065U (zh) 微机电结构、麦克风和终端
JP2006153804A (ja) 圧力センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920705

Country of ref document: EP

Kind code of ref document: A1