WO2022154022A1 - リフレクトアレー、リフレクトアレーの設計方法、および、リフレクトアレーシステム - Google Patents
リフレクトアレー、リフレクトアレーの設計方法、および、リフレクトアレーシステム Download PDFInfo
- Publication number
- WO2022154022A1 WO2022154022A1 PCT/JP2022/000791 JP2022000791W WO2022154022A1 WO 2022154022 A1 WO2022154022 A1 WO 2022154022A1 JP 2022000791 W JP2022000791 W JP 2022000791W WO 2022154022 A1 WO2022154022 A1 WO 2022154022A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reflect array
- reflector
- reflectors
- reflect
- array according
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims description 9
- 238000003491 array Methods 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 239000004566 building material Substances 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
- H01Q15/145—Reflecting surfaces; Equivalent structures comprising a plurality of reflecting particles, e.g. radar chaff
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/246—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/44—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
- H01Q3/46—Active lenses or reflecting arrays
Definitions
- the present invention relates to a reflect array, a method for designing a reflect array, and a reflect array system.
- Non-Patent Document 1 Antennas whose aperture dimensions cannot be ignored are designed on the assumption that they will be used in the far-field region (far-field region), and are usually designed under these far-field conditions.
- the far-field condition that separates the far-field region and the near-field region is a distance defined by 2 ⁇ D ⁇ D / ⁇ , where D is the dimension of the reflector and ⁇ is the wavelength of the reflected electromagnetic wave.
- the far-field region indicates a region separated from the antenna by 2 ⁇ D ⁇ D / ⁇ or more.
- the gain of the reflector is determined by the area of the reflector, the beam width of the reflection directivity, and the loss.
- the reflection directional beam width needs to be designed according to the size of the area. Further, the required gain of the reflector must be selected according to the distance between the base station and the reflector and the distance between the reflector and the terminal.
- the gain and reflection directivity required for the reflector must be determined by the distance between the base station, the reflector, and the terminal, and the size of the target area.
- the beam width is decided.
- the reflector has four parameters of the angle of the incident wave, the angle of the reflected wave, the beam width, and the required gain, and the conventional design method requires an enormous number of types of reflectors.
- the reflect array reflector first determines the beam width according to the size of the area, secondly determines the required gain from the distance and determines the area, and thirdly determines the desired beam width in the determined area. Design the reflector so that. Depending on the size of the area and the distance between the transmitter / receiver and the reflector, various reflector design parameters are required, which increases the cost. With a conventional reflector, the beam width is determined once the area is determined, so it is difficult to satisfy both the required gain and the required beam width.
- an object of the present invention to solve the problem that the communication area is narrowed due to the sharp directivity at the time of high gain, and to make the reflection angle wide.
- Another object of the present invention is to achieve both high gain of reflected wave and wide beam by multi-beaming.
- an object of the present invention is to provide a wide-angle directivity by area design in a near-field region calculated from a reflector opening dimension. In addition to this, it is an object to solve the problem that various reflector design parameters are required depending on the area size and the transmission / reception / reflector distance, resulting in high cost.
- the reflect array transmits radio waves from a base station used for communication to a receiving area, and distance information between the base station and the reflect tray.
- a gain setting step that determines the required gain, including distance information between the reflect array and the reception area, a width setting step that covers the reception area, determines the required beam width, and a plurality of reflection directions different from each other.
- a plurality of the reflectors which are performed after the preparation step for preparing the reflectors and the setting step and the preparation steps, so that the beam formed by the plurality of reflectors satisfies the required beam width as a whole. It is a method of designing a reflect array, which comprises having an arrangement step of arranging. According to the second aspect of the present invention, in the preparation step, a plurality of reflectors having different reflection directions have the same cell, and the reflectors having different reflection directions have different intervals. The method for designing a reflect array according to claim 1, further comprising having the same cells arranged in.
- the method for designing a reflect array according to claim 3 of the present invention is any one of claims 1 or 2, wherein three or more reflectors having different reflection directions by substantially constant angles are arranged in the arrangement step.
- This is the method for designing the reflect array described in C.
- the method for designing a reflect array according to claim 4 of the present invention is characterized in that the width setting step includes a division setting step of dividing a reception area into a plurality of division areas and associating the reception area with a reflector. Item 2.
- the reflect array according to claim 5 of the present invention transmits radio waves from a base station used for communication to a receiving area, has a plurality of reflectors, and the reflectors are arranged at predetermined intervals. The same cell is provided, and at least two of the plurality of reflectors have the same cell arranged at different intervals from each other, have different reflection angles, and constitute a reception area with different reflection angles. It is a reflect array characterized by doing.
- the reflect array according to claim 6 of the present invention is the reflect array according to claim 4, wherein the receiving region is composed of three or more reflectors having different reflection angles by substantially constant angles.
- the reflect array according to claim 7 of the present invention is a reflect array designed by the design method according to any one of claims 1 to 4. 7.
- the reflect array according to claim 8 of the present invention is characterized in that the reflection direction of the radio wave reflected on the reflector has two points different from each other by 30 ° or more depending on the position of the reflector. It is a reflect array of.
- the reflect array according to claim 9 of the present invention is the reflect array according to claim 7, wherein a plurality of the reflectors are arranged discretely.
- the reflect array according to claim 10 of the present invention is the reflect array according to any one of claims 7 to 9, wherein the reflector is a metasurface.
- the reflect array according to claim 11 of the present invention is the reflect array according to any one of claims 7 to 10, wherein the reflector is installed on a substantially one flat surface.
- the reflect array according to claim 12 of the present invention is the reflect array according to any one of claims 7 to 11, wherein the reflector includes a metal reflector.
- the reflect array according to claim 13 of the present invention is the reflect array according to any one of claims 7 to 11, wherein the reflector is a transmissive type for attaching glass.
- the reflect array according to claim 14 of the present invention is described in any one of claims 5 to 12, wherein the reflector is a wall material fake type such as a building material affixed or a signboard fake type. It is a reflect array of.
- the reflect array according to claim 15 of the present invention is the reflect array according to any one of claims 5 to 12, wherein the reflector is a cover-mounted type.
- the reflect array system according to claim 16 of the present invention is a reflect array system having a plurality of reflect arrays according to any one of claims 5 to 12, and the average number of reflectors used for each reflect array. Is M, and the number of types of reflectors possessed by all N reflect arrays is (M ⁇ N / 5) or less as a whole, which is a reflect array system.
- Types of reflectors by preparing multiple reflectors with narrow beams that satisfy the required gain, have slightly different reflection phases, and have slightly different reflection directions, and by arranging multiple reflectors so that the required beam width is secured. Can be reduced.
- the width setting step divides the reception area into a plurality of division areas and associates the reception area with the reflector, so that the division setting step can be independently designed for each division area, further facilitating the overall design. Since the reflection directions of the radio waves reflected on the reflector have two points that differ from each other by 30 ° or more depending on the position of the reflector, the radio waves are reflected at a wide angle of 30 ° or more in the near field, so that the gain is reduced. Wide-angle directivity can be realized without any need.
- a plurality of reflectors are arranged discretely, wide-angle directivity can be realized by a plurality of reflectors instead of a large reflector. Since the reflector is a metasurface, the incident direction or the reflection direction of the radio wave can be adjusted in a desired direction. By installing the reflector on a substantially one plane, the entire reflect array can be arranged on a substantially one plane. By using a metal reflector with a lower cost, the cost can be reduced including manufacturing. Since the reflector is a transmissive type for attaching glass, a wide-angle directional reflect array can be realized by using an indoor glass window or the like.
- a wide-angle directional reflect array can be realized in a city or the like. Since the reflector is mounted inside the cover, a wide-angle directional reflect array can be realized in various places such as the inside of the cover. Assuming that the average number of reflectors used for each reflect array is M, the total number of types of reflectors possessed by all N reflector arrays is (M ⁇ N / 5) or less, which is usually M *. Where it is necessary to design an N reflector, the cost can be reduced because the reflector is designed with less than one-fifth. Further, since the reflectors designed in advance are used in combination, the design cost can be remarkably reduced.
- the design method of the reflect array in one Example of this invention is shown.
- the design method of the reflect array in one Example of this invention is shown.
- the design method of the reflect array in one Example of this invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array in one embodiment of the present invention is shown.
- a configuration example of the reflect array system in one embodiment of the present invention is shown.
- the wide-angle beam of the reflector 100 will be described.
- a wide-angle beam using a multi-beam realizes wide-angle beam formation while maintaining the required gain.
- the horizontal direction may be described, but in reality, the case of two directions such as the horizontal direction and the vertical direction, or one direction such as the vertical direction is included.
- the reflection direction may be described below, in reality, the incident direction, or both the reflection direction and the incident direction can be implemented.
- the reflect array 10 described in the present specification and the claims includes a reflector 100 having a plurality of reflectors 100 and a reflector 100 having one reflector 100.
- a plurality of narrow beam reflectors 100 that satisfy the required gain and have different reflection directions are prepared, and a plurality of the reflector plates 100 are arranged so as to secure the required beam width. This has the advantage that the number of types of the reflector 100 can be reduced.
- FIG. 1 shows a method of designing a reflect array 10 in an embodiment of the present invention.
- the reflect array 10 transmits radio waves such as 28 GHz from the base station 2 used for communication to the reception area 3, and includes a gain setting step S10, a width setting step S20, a preparation step S30, and an arrangement step S40.
- the gain setting step S10 the required gain is determined from the information including the distance information between the base station 2 and the reflect tray and the distance information between the reflect array 10 and the reception area 3.
- the width setting step S20 the required beam width that covers the reception area 3 is determined.
- the gain setting step S10 and the width setting step S20 are in this order, but as shown in FIG. 2, the width setting step S20 and the gain setting step S10 may be in this order, or the two steps are performed at the same time. You may.
- a plurality of reflectors 100 having different reflection directions are prepared.
- "preparing a plurality of reflectors 100 having different reflection directions” means preparing the data and preparing the data of the reflectors 100.
- the arrangement step S40 is performed after the gain setting step S10, the width setting step S20, and the preparation step S30 so that the beam formed by the plurality of reflectors 100 satisfies the required beam width as a whole. Place 100.
- the reflection directions are different from each other means that they are different in a certain direction.
- the reflection direction may be different in the horizontal direction, but the reflection direction may be the same in the vertical direction.
- the reception area 3 refers to a range in which radio waves are delivered, including a radio wave concentration area in which the radio waves reflected by the reflect array 10 are most concentrated, and refers to an area in which the presence of a target communication terminal or the like is assumed in communication.
- the radio wave concentration area is an area where the amount of radio waves per unit area is the densest, for example, 1 square meter, and excludes points such as accidental concentration of radio waves unintentionally using a communication terminal or the like at the place.
- the base station 2 includes a base station 2 that transmits radio waves for communication. "Covering the reception area 3" means that most of the reception area 3 is covered so that there is no problem in communication in practical use, and it is not always necessary to cover all of the reception area 3.
- the reflector 100 is unitized and arranged to realize a wide beam. This facilitates the design. That is, the design can be easily performed by preparing a plurality of units of the narrow beam reflector 100 having different reflection directions, which are the required gains, and deciding and arranging the number of units so as to have the required beam width.
- the width setting step S20 may include a division setting step S23 that divides the reception area 3 into a plurality of division areas and associates the reception area 3 with the reflector 100.
- the width setting step S22 and the division setting step S23 are included.
- FIG. 4 shows a configuration example of the reflect array 10 according to an embodiment of the present invention.
- the reflect array 10 transmits radio waves from the base station 2 used for communication to the reception area 3.
- the beam to be transmitted has a gain required for communication and a beam width covering the reception area 3.
- the reflect array 10 in this embodiment has a plurality of reflectors (10011 to 10019) having different reflection directions.
- the fact that the reflection directions are different from each other means that the directions of at least two reflectors 100 are different in any of the directions.
- the positions of the reflectors 100 are different, it may be possible to cover the reception area 3 more efficiently if they have the same reflection direction. In such a case, the reflections of the two reflectors 100 arranged at different positions are reflected.
- the directions may match.
- the beams formed by reflecting the radio waves from the base station 2 by the plurality of reflectors (10011 to 10019) having different reflection directions are arranged so as to satisfy the required beam width as a whole.
- the reflect array 10 can be designed by any of the above-mentioned design methods, or can have another configuration as described later.
- FIG. 6 shows a configuration example of the reflect array 10 according to an embodiment of the present invention.
- the reflect array 10 has four reflectors (1001 to 1004).
- Each reflector has a plurality of identical cells 110 arranged at predetermined intervals, and in this embodiment, each has five cells 110.
- the same cell means a cell having the same shape and properties.
- this reflector may be referred to as a supercell.
- the supercell length is determined by the following formula using the diffraction grating theory.
- D is the length of the supercell
- m is the order
- ⁇ is the wavelength of the reflected electromagnetic wave
- ⁇ i is the incident angle
- ⁇ r is the reflection angle.
- the incident angle is 60 ° and the beam width in the horizontal plane by one reflector 100 is 4 ° and the communication area is desired to be within ⁇ 5 °
- the incident angle is An example in which four reflector patterns, all of which are the same and have reflection angles of 57 °, 59 °, 61 °, and 63 °, are designed, and each of them is designed as an opening dimension capable of obtaining a desired RCS value (gain). That is, wide-angle reflection directivity can be realized by determining each beam width and the number of beams of the reflector 100 so as to satisfy the desired beam width, and combining these into a unit.
- the desired angle is 0 ° in the vertical plane
- the range of ⁇ 10 ° is the communication area, -3 °.
- An example is given in which four reflector pattern units are designed so that the directions of -1, 1 °, 1 °, and 3 ° are the maximum directions, and each of them is designed as an opening dimension capable of obtaining a desired RCS value (gain).
- the reflect array 10 transmits radio waves from the base station 2 used for communication to the receiving area 3, and has a plurality of reflectors (1001 to 1004).
- the reflector 100 has the same cells 110 arranged at predetermined intervals. At least two of the plurality of reflectors (1001 to 1004) have the same cells 110 arranged at different intervals from each other and have different reflection angles. Then, the reception area 3 is formed by different reflection angles. In this embodiment, the reception area 3 is configured by two different reflection angles in the horizontal direction and two in the vertical direction.
- FIG. 8 shows the configuration of the reflect array 10 according to an embodiment of the present invention.
- the reception area 3 is composed of three or more reflectors 100 having different reflection angles by substantially constant angles.
- the above-mentioned design method of the reflect array 10 will be described.
- the plurality of reflectors 100 having different reflection directions have the same cell 110.
- the plurality of reflectors 100 having different reflection directions have the same cells 110 arranged at different intervals for each of the reflectors 100 having different reflection directions.
- the reflector 100 in the design method of the reflect array 10, three or more reflectors 100 having different reflection directions by substantially constant angles are arranged in the arrangement step S40.
- the reflector 100 is unitized and arranged to realize a wide beam. This facilitates the design. That is, the design can be easily performed by preparing a plurality of units of the narrow beam reflector 100 having different reflection directions, which are the required gains, and arranging the number of units so as to obtain the required beam width.
- it can be used not only by the multi-beam but also by the use in the vicinity region.
- the aperture size of the reflect array 10 is set so that the receiving point such as the position to be made into an area or the transmitting point such as the base station 2 is in the near field region. That is, the reflector 100 is designed as an opening dimension in which the distance from the reflector 100 is 2 ⁇ D ⁇ D / ⁇ ⁇ transmission / reception point position.
- the reflect array 10 radiates from a surface instead of radiating from a point like an open surface antenna such as a parabolic antenna.
- a wide beam can be obtained by using a large reflector 100. It is installed at the position where the reflector 100 is placed so that there is a difference in the incident angle. Since the incident from the lower side is reflected upward, the incident from the upper side is reflected downward, and the vertical incident is reflected vertically, it becomes a wide-angle beam when combined. In the near region, since a path difference occurs between the central portion and the end portion of the reflector 100, the phases are not aligned and an area is formed in the wide-angle direction. Therefore, in this configuration, the near boundary region of the reflector 100 is used as the area. This makes it possible to provide a wide-angle reflection area.
- FIG. 11 and 12 show a configuration example of the reflect array 10 according to an embodiment of the present invention.
- the reflection directions of the radio waves reflected on the reflector 100 have two points that differ from each other by 30 ° or more depending on the position of the reflector 100.
- the reception area 3 (reception area) is formed in the wider angle direction.
- FIG. 8 shows an example in which the reflection directions ⁇ of the two reflectors 100 are different by 30 ° or more in the reflect array 10 having the plurality of reflectors 100.
- FIG. 9 shows a configuration in which the reflection directions differ by 30 ° or more at two points at both ends of one reflector 100.
- the size of the reflector 100 can be selected so as to have a required beam width at a distance to be used according to the place of use, but instead, a plurality of reflectors 100 can be arranged discretely.
- discrete means that the reflectors 100 are arranged apart from each other.
- FIG. 13 shows a configuration example of the reflect array 10 in which a plurality of reflectors 100 are arranged discretely.
- the plurality of reflectors 100 are arranged in a grid pattern with a gap.
- wide-angle directivity can be realized by a plurality of reflectors (10011 to 10015) instead of the large reflector 100. It is necessary to arrange the reflectors 100 discretely or to use a large reflector 100, but if space can be secured, the design becomes remarkably easy.
- the reflector 100 can be one or more metasurfaces.
- FIG. 14 shows a configuration example of the reflect array 10 having a plurality of metasurface reflectors (10021 to 10029). The metasurface allows the direction of incidence or reflection of radio waves to be adjusted in the desired direction.
- the reflector 100 is installed on a substantially one plane, as shown in FIG.
- the entire reflect array 10 can be arranged on a substantially one plane.
- the incident direction or the reflection direction of the radio waves can be adjusted in a desired direction by the reflectors 100 arranged on the same plane.
- the reflector 100 may include a metal reflector 120.
- the reflector 100 may be not only the reflect array 10 but also the metal reflector 120.
- the cost can be reduced including the manufacturing.
- FIG. 15 shows a configuration example of the reflect array 10 having the metal reflector 120 and the metasurface reflector 100.
- a single metal reflector 120 may be placed in the near field region.
- FIG. 16 shows a configuration example of the reflect array 10 according to an embodiment of the present invention.
- the reflector 100 is a transmissive type for attaching glass.
- a wide-angle directional reflect array 10 can be realized by using a glass window 32 or the like in the room. Of course, other than glass, it can also be attached to something that transmits radio waves.
- the reflector 100 is a wall material fake type such as a building material pasting type, or a signboard fake type.
- FIG. 17 shows a configuration example of a reflect array 10 having a wall material fake type reflector 100 installed on the wall surface of the building 31 and a signboard fake type reflector 100 installed on the back surface of the signboard.
- the wall material fake type reflector 100 can be configured not only on the outdoor wall surface but also on the indoor wall surface. Since it is easy to secure a large area on the outer wall surface or the indoor wall surface of the building 31, it is easy to install a plurality of reflectors 100 or a reflect array 10 that reflects radio waves in the vicinity. Further, although the signboard fake type reflector 100 can be formed on the surface, since it is easy to secure a large area for the signboard, it is easy to install a plurality of reflectors 100 or a reflect array 10 that reflects radio waves in the near field. With this configuration, a wide-angle directional reflect array 10 can be realized in the city or indoors.
- FIG. 18 shows a configuration example of the reflect array 10 according to an embodiment of the present invention.
- the reflector 100 is a cover-mounted type. Since the cover is often composed of a plurality of planes or uses a surface having a constant curvature, it is easy to design the reflect array 10, and at the same time, a surface that is rarely used is used. be able to.
- FIG. 19 shows a configuration example of the reflect array 10 according to an embodiment of the present invention.
- the reflect array 10 is made of a flexible material. .. With this configuration, a wide-angle directional reflect array 10 can be realized in various places such as the inside of the cover 33.
- FIG. 20 shows a configuration example of the reflect array system 1 according to an embodiment of the present invention.
- the reflect array system 1 has a plurality of the above-mentioned reflect arrays 10. Specifically, it has five reflect arrays.
- Each reflect array (101-105) has nine reflectors (1021-10029) as shown in FIG. 5 above.
- a total of 45 reflectors 100 are configured by combining 9 or less types of reflectors 100.
- the average number of reflectors 100 used for each reflect array 10 is M
- the total number of types of reflectors 100 possessed by all N reflector arrays 10 is M * N / 5 or less.
- the cost can be reduced.
- the reflector 100 designed in advance is used in combination, the design cost can be remarkably reduced.
- the directivity it is possible to standardize the reflector design and reduce the total number of designs.
- the present invention is not limited to the above examples, and includes various examples without departing from the spirit of the present invention.
- Reflect array system 10 101 to 105 Reflect array 100,1001 to 1004,10011 to 10019,10021 to 10029 Reflector 110 Cell 120 Metal reflector 2 Base station 3 Reception area 31 Building 32 Window 33 Cover
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
Description
これを解決する手段として、基地局と端末との間に反射板を配置することが考えられる(非特許文献1)。
開口寸法を無視できないアンテナは、遠方界領域(遠方領域)での利用を前提とし、通常はこの遠方界条件で設計が行われている。なお、一般に遠方界領域と近傍界領域(近傍領域)を分ける遠方界条件は、反射板の寸法をD、反射される電磁波の波長をλとして、2×D×D/λで定義される距離であり、遠方界領域は、アンテナから2×D×D/λ以上離れた領域を示す。
反射板の利得は、反射板の面積と反射指向性のビーム幅、損失で決まる。反射指向性のビーム幅は、エリアの広さに合わせて設計する必要がある。また、反射板の必要利得は、基地局と反射板の距離および反射板と端末の距離により選ぶ必要がある。
このように、反射板において必要とされる利得と反射指向性は、基地局と反射板と端末の距離、および、対象とするエリアの広さで決める必要があるが、一般的な反射板は面積が決まるとビーム幅が決まってしまう。
また、反射板には、入射波の角度、反射波の角度、ビーム幅、必要利得の4つのパラメータがあり、従来の設計方法では莫大な種類の反射板が必要になる。
設計時には、 リフレクトアレー反射板は、第一にエリアの広さに合わせてビーム幅を決め、第二に距離から必要利得を決め面積を決め、第三に決めた面積で所望のビーム幅となるように反射板を設計する。エリアの広さや送受信・反射板の距離により様々な反射板の設計パラメータが必要になりコスト高となる。
従来の反射板は、面積が決まるとビーム幅が決まってしまうので、必要な利得と必要なビーム幅の双方を満たすことは難しい。この問題を解決するためには、リフレクトアレーの技術を用い、反射板表面の反射位相をコントロールしビーム幅を設計することが考えられる。
そこで、本発明は、高利得時の鋭利な指向性により通信領域が狭くなるという問題を解決し、反射角を広角とすることを課題とする。
また、本発明は、マルチビーム化による反射波の高利得化と広ビーム化の両立を課題とする。
さらに、本発明は、反射板開口寸法から算出される近傍界領域でのエリア設計による、広角な指向性の提供を課題とする。
これに加えて、エリアの広さや送受信・反射板の距離により様々な反射板の設計パラメータが必要になりコスト高となるという問題を解決することを課題とする。
本発明の請求項1に係るリフレクトアレーの設計方法は、リフレクトアレーは、通信に用いられる基地局からの電波を、受信領域に送信するものであり、前記基地局と前記リフレクトレーとの距離情報、および、前記リフレクトアレーと前記受信領域との距離情報を含む、必要な利得を定める利得設定ステップ、前記受信領域をカバーする、必要なビーム幅を定める幅設定ステップ、反射方向が互いに異なる複数の反射板を用意する準備ステップ、および、前記設定ステップおよび前記準備ステップの後に行われ、複数の前記反射板により形成されるビームが、全体として必要なビーム幅を満たすように、複数の前記反射板を配置する配置ステップ、を有することを特徴とする、リフレクトアレーの設計方法である。
本発明の請求項2に係るリフレクトアレーの設計方法は、前記準備ステップにおいて、反射方向が互いに異なる複数の前記反射板は同一のセルを有し、反射方向が互いに異なる前記反射板ごとに異なる間隔で配置された同一のセルを有することを特徴とする、請求項1に記載のリフレクトアレーの設計方法である。
本発明の請求項3に係るリフレクトアレーの設計方法は、前記配置ステップにおいて、反射方向が略一定角度ずつ異なる3以上の前記反射板を配置することを特徴とする、請求項1または2のいずれかに記載のリフレクトアレーの設計方法である。
本発明の請求項4に係るリフレクトアレーの設計方法は、前記幅設定ステップは、受信領域を複数の区分領域に分割し、反射板と対応づける、区分設定ステップを有することを特徴とする、請求項1または2のいずれかに記載のリフレクトアレーの設計方法である。
本発明の請求項5に係るリフレクトアレーは、通信に用いられる基地局からの電波を、受信領域に送信するものであり、複数の反射板を有し、前記反射板は所定の間隔で配置された同一のセルを有し、複数の前記反射板のうち少なくとも2つは互いに異なる間隔で配置された同一のセルを有し、かつ、異なる反射角を有し、異なる反射角により受信領域を構成することを特徴とする、リフレクトアレーである。
本発明の請求項6に係るリフレクトアレーは、略一定角度ずつ異なる反射角を有する3以上の前記反射板により受信領域を構成することを特徴とする、請求項4に記載のリフレクトアレーである。
本発明の請求項7に係るリフレクトアレーは、請求項1ないし4のいずれかの設計方法により設計されたリフレクトアレーである。
本発明の請求項8に係るリフレクトアレーは、反射板上において反射される電波の反射方向が、反射板の位置により互いに30°以上異なる2点を有することを特徴とする、請求項7に記載のリフレクトアレーである。
本発明の請求項9に係るリフレクトアレーは、前記反射板は、複数枚が離散的に配置されていることを特徴とする、請求項7または8のいずれかに記載のリフレクトアレーである。
本発明の請求項10に係るリフレクトアレーは、前記反射板はメタサーフェスであることを特徴とする、請求項7ないし9のいずれかに記載のリフレクトアレーである。
本発明の請求項11に係るリフレクトアレーは、前記反射板は略一平面上に設置されることを特徴とする、請求項7ないし10のいずれかに記載のリフレクトアレーである。
本発明の請求項12に係るリフレクトアレーは、前記反射板は金属反射板を含むことを特徴とする、請求項7ないし11のいずれかに記載のリフレクトアレーである。
本発明の請求項13に係るリフレクトアレーは、前記反射板は、ガラス貼り付け用の透過型であることを特徴とする、請求項7ないし11のいずれかに記載のリフレクトアレーである。
本発明の請求項14に係るリフレクトアレーは、前記反射板は、建材貼り付け等の壁材フェイク型、または、看板フェイク型であることを特徴とする、請求項5ないし12のいずれかに記載のリフレクトアレーである。
本発明の請求項15に係るリフレクトアレーは、前記反射板は、カバー内取り付け型であることを特徴とする、請求項5ないし12のいずれかに記載のリフレクトアレーである。
本発明の請求項16に係るリフレクトアレーシステムは、請求項5ないし12のいずれかに記載のリフレクトアレーを複数枚有したリフレクトアレーシステムであって、各リフレクトアレーに用いられる平均の反射板の数をMとして、全てのN枚のリフレクトアレーが有する反射板の種類は全体で(M×N/5)種類以下であることを特徴とする、リフレクトアレーシステムである。
幅設定ステップが、受信領域を複数の区分領域に分割し、反射板と対応づける、区分設定ステップを有することにより区分領域ごとに独立して設計でき、全体の設計がさらに容易となる。
反射板上において反射される電波の反射方向が、反射板の位置により互いに30°以上異なる2点を有することにより、近傍界で電波が30°以上の広角に反射されるため、利得を低下することなく、広角指向性を実現できる。
反射板が、複数枚が離散的に配置されていることにより、大きな反射板の代わりに複数枚の反射板により広角指向性を実現できる。
反射板がメタサーフェスであることにより所望の方向に電波の入射方向または反射方向を調整することができる。
反射板が略一平面上に設置されることにより、リフレクトアレー全体として略一平面上に配置することができる。
よりコストの低い金属反射板を用いることにより、製造も含めてコストを低減できる。
反射板が、ガラス貼り付け用の透過型であることにより、室内のガラス窓などを利用して広角指向性のリフレクトアレーを実現できる。
反射板が、建材貼り付け等の壁材フェイク型、または、看板フェイク型であることにより、街中などにおいて広角指向性のリフレクトアレーを実現できる。
反射板が、カバー内取り付け型であることにより、カバーの内側など様々な場所において広角指向性のリフレクトアレーを実現できる。
各リフレクトアレーに用いられる平均の反射板の数をMとして、全てのN枚のリフレクトアレーの有する反射板の種類が全体で(M×N/5)種類以下であることにより、通常、M*Nの反射板の設計が必要であるところ、5分の1以下の反射板で設計するため、コストを削減できる。さらに、予め設計した反射板を組み合わせて用いることになるため、設計コストも著しく削減できる。
いくつかの実施例においては、マルチビームを用いた広角ビームにより、必要な利得を保ったまま広角ビーム形成を実現している。なお、以下では、便宜上、水平方向のみの説明を行う場合もあるが、実際には水平方向および垂直方向などの2方向、あるいは、垂直方向など1方向の場合を含む。また、以下では、反射方向のみ説明することがあるが、実際には入射方向、あるいは、反射方向あるいは入射方向の双方についても実施できる。また、本明細書および請求項に記載のリフレクトアレー10は、反射板100が複数枚の反射板100を有するもの以外に、1枚の反射板100を有するものも含む。
リフレクトアレー10およびその設計方法では、必要利得を満たし、反射方向が互いに異なる狭ビームの反射板100を複数用意し、必要なビーム幅が確保されるように、複数枚配置している。これにより、反射板100の種類を削減できるメリットがある。
リフレクトアレー10は、通信に用いられる基地局2からの28GHzなどの電波を、受信領域3に送信するものであり、利得設定ステップS10、幅設定ステップS20、準備ステップS30、配置ステップS40を含む。
利得設定ステップS10では、基地局2とリフレクトレーとの距離情報、および、リフレクトアレー10と受信領域3との距離情報を含む情報から、必要な利得を定める。
幅設定ステップS20では、受信領域3をカバーする、必要なビーム幅を定める。
本実施例では、利得設定ステップS10、幅設定ステップS20の順であるが、図2に示されるように、幅設定ステップS20、利得設定ステップS10の順でもよく、あるいは、2つのステップは同時に行ってもよい。
配置ステップS40は、利得設定ステップS10、幅設定ステップS20および準備ステップS30の後に行われ、複数の反射板100により形成されるビームが、全体として必要なビーム幅を満たすように、複数の反射板100を配置する。
また、受信領域3とは、リフレクトアレー10が反射した電波が最も集中する電波集中領域を含む、電波を届ける範囲を言い、通信において、対象とする通信端末などの存在を想定する領域を言う。電波集中領域は、例えば1平方メートルなど単位領域当たりの電波の量が最も密となる領域であり、当該場所での通信端末などの使用を意図せず偶発的に集中する点などは除く。
「受信領域3をカバーする」とは、実用上、通信に問題がないよう、受信領域3の大半をカバーすることを示し、必ずしもすべてをカバーしていなくてもよい。
エリアの広さや送受信・反射板100の距離により様々な反射板100の設計パラメータが必要になりコスト高となる課題に対し、反射板100をユニット化し、配列することで広ビーム化を実現することにより、設計が容易となる。つまり、必要利得となる反射方向が異なる狭ビームの反射板100のユニットを複数用意し、必要なビーム幅となるよう枚数を決め配列することにより、容易に設計が可能となる。
本設計方法により区分領域ごとに独立して設計でき、全体の設計がさらに容易となる。
リフレクトアレー10は、通信に用いられる基地局2からの電波を、受信領域3に送信する。
送信するビームは、通信に必要な利得、および、受信領域3をカバーするビーム幅を有する。
そして、反射方向が互いに異なる複数の反射板(10011~10019)により、基地局2からの電波を反射して形成されるビームが、全体として必要なビーム幅を満たすよう配置されている。
リフレクトアレー10は上述のいずれかの設計方法により設計することもでき、また、後述のように別の構成とすることもできる。
リフレクトアレー10は、4つの反射板(1001~1004)を有する。それぞれの反射板は所定の間隔で配置された複数の同一のセル110を有しており、本実施例ではそれぞれ5枚のセル110を有している。
ここで、同一のセルとは、形状、性質が同じセルを言う。以下では、この反射板をスーパーセルと称することがある。
水平面内を広角とする反射板100に関して、所望角度が60°、1つの反射板100による水平面内ビーム幅が4°の場合に±5°の範囲を通信エリアとしたい場合においては、入射角はすべて同一、反射角が57°、59°、61°、63°のような4つの反射板パターンを設計し、それぞれを所望のRCS値(利得)とできる開口寸法として設計する例が挙げられる。すなわち、所望のビーム幅を満たすように反射板100の各ビーム幅とビーム数を決定し、これらを組み合わせユニット化することで広角反射指向性が実現できる。
垂直面内指向性を広角とする場合においては、所望角度が垂直面内0°、垂直面内ビーム幅が4°の場合に±10°の範囲を通信エリアとしたい場合においては、-3°、-1°、1°、3°の方向が最大方向となるよう4つの反射板パターンユニットを設計し、それぞれを所望のRCS値(利得)とできる開口寸法として設計する例が挙げられる。
反射板100は所定の間隔で配置された同一のセル110を有する。
複数の反射板(1001~1004)のうち少なくとも2つは互いに異なる間隔で配置された同一のセル110を有し、かつ、異なる反射角を有する。
そして、異なる反射角により受信領域3を構成する。
本実施例では、水平方向に2つ、垂直方向に2つの、互いに異なる反射角により受信領域3を構成している。
本実施例では、略一定角度ずつ異なる反射角を有する3以上の反射板100により受信領域3を構成する。
本実施例では、準備ステップS30において、反射方向が互いに異なる複数の反射板100は同一のセル110を有する。そして、反射方向が互いに異なる複数の反射板100は、反射方向が互いに異なる反射板100ごとに異なる間隔で配置された同一のセル110を有する。
エリアの広さや送受信・反射板100の距離により様々な反射板100の設計パラメータが必要になりコスト高となる課題に対し、反射板100をユニット化し、配列することで広ビーム化を実現することにより、設計が容易となる。つまり、必要利得となる反射方向が異なる狭ビームの反射板100のユニットを複数用意し、必要なビーム幅となるよう枚数を決め配列することにより、容易に設計が可能となる。
リフレクトアレー10の設計コストを削減するためには、マルチビームによるのみならず、近傍領域での使用によることもできる。
リフレクトアレー10の開口寸法を、エリア化したい位置などの受信点、または、基地局2などの送信点が近傍界領域となるよう設置する。つまり、反射板100からの距離が2×D×D/λ≧送信・受信点位置、となる開口寸法として反射板100を設計する。ここで、リフレクトアレー10は、パラボラアンテナなどのような開口面アンテナのように、点からの放射ではなく面からの放射を行うものである。
反射板100を置く位置に、入射角度の差が出るように設置する。下側からの入射は上向きに反射し、上側からの入射は下向きに反射し、垂直入射は垂直に反射するため、合成すると広角ビームとなる。
近傍領域では、反射板100の中央部と端部で経路差が生じるため、位相がそろわず、広角方向へエリアが形成されるため、本構成により、反射板100の近傍界領域をエリアとして用いることにより、広角な反射エリアを提供することができる。
本実施例において、反射板100上において反射される電波の反射方向が、反射板100の位置により互いに30°以上異なる2点を有することとすることができる。より広い角度に反射することにより、より広角方向へ受信領域3(受信エリア)が形成される。図8は複数の反射板100を有するリフレクトアレー10において、2つの反射板100の反射方向Δθが30°以上異なる例を示す。また、図9は、1枚の反射板100の両端の2点において、反射方向が30°以上異なる構成を示す。
本構成により、近傍界で電波が30°以上の広角に反射されるため、利得を低下することなく、広角指向性を実現できる。
図13は複数の反射板100が離散的に配置されているリフレクトアレー10の構成例を示す。本実施例において、複数の反射板100は、隙間を空けて、格子状に配置されている。
本構成により、大きな反射板100の代わりに複数枚の反射板(10011~10015)により広角指向性を実現できる。
反射板100を離散的に配置、または、大型の反射板100を用いる必要はあるが、スペースを確保できれば、設計も著しく容易となる。
図14は、複数枚のメタサーフェス反射板(10021~10029)を有するリフレクトアレー10の構成例を示す。
メタサーフェスにより所望の方向に電波の入射方向または反射方向を調整することができる。
リフレクトアレー10全体として略一平面上に配置することができる。特に、複数のメタサーフェスの反射板100を用いた場合には、同一平面上に配置した反射板100により、所望の方向に電波の入射方向または反射方向を調整することができる。
反射板100はリフレクトアレー10だけでなく、金属反射板120でも構わない。よりコストの低い金属反射板120を用いることにより、製造も含めてコストを低減できる。
図15は、金属反射板120およびメタサーフェス反射板100を有するリフレクトアレー10の構成例を示す。
代わりに、近傍界領域に一枚の金属反射板120を配置してもよい。
本実施例において、反射板100は、ガラス貼り付け用の透過型である。
本構成により、室内のガラス窓32などを利用して広角指向性のリフレクトアレー10を実現できる。もちろん、ガラス以外でも、電波を透過するものに対して貼り付けることもできる。
図17は、建造物31の壁面に設置された壁材フェイク型の反射板100、および、看板の裏面に設置された看板フェイク型の反射板100を有するリフレクトアレー10の構成例を示す。
本構成により、街中や屋内などにおいて広角指向性のリフレクトアレー10を実現できる。
本実施例において、反射板100は、カバー内取り付け型である。
カバーは、複数の平面より構成されること、あるいは、一定の曲率を有する面を利用することが多いため、リフレクトアレー10の設計が容易であると同時に、ふだん利用することの少ない面を利用することができる。
本実施例において、リフレクトアレー10は柔軟性を有する素材で構成されている。。
本構成により、カバー33の内側など様々な場所において広角指向性のリフレクトアレー10を実現できる。
図20は、本発明の一実施例におけるリフレクトアレーシステム1の構成例を示す。
本実施例において、リフレクトアレーシステム1は、上述のリフレクトアレー10を複数枚有する。具体的には、リフレクトアレー5枚を有する。
それぞれのリフレクトアレー(101~105)は前述の図5に示されるように9枚の反射板(10021~10029)を有する。
そして、計45枚の反射板100は、9種類以下の反射板100を組み合わせて構成されている。
通常、M*Nの反射板100の設計が必要であるところ、5分の1以下の反射板100で設計するため、コストを削減できる。さらに、予め設計した反射板100を組み合わせて用いることになるため、設計コストも著しく削減できる。
また、指向性を広角とすることで反射板設計を共通化して総設計数を削減することが可能となる。
例えば、基地局2からの電波を、上述のリフレクトアレー10で反射した後、さらに別の反射板100を経由して受信領域3に電波を届けるなど、複数回の反射を利用する構成も可能である。
10,101~105 リフレクトアレー
100,1001~1004,10011~10019,10021~10029 反射板
110 セル
120 金属反射板
2 基地局
3 受信領域
31 建造物
32 窓
33 カバー
Claims (16)
- リフレクトアレーの設計方法であって、
リフレクトアレーは、通信に用いられる基地局からの電波を、受信領域に送信するものであり、
前記基地局と前記リフレクトレーとの距離情報、および、前記リフレクトアレーと前記受信領域との距離情報を含む、必要な利得を定める利得設定ステップ、
前記受信領域をカバーする、必要なビーム幅を定める幅設定ステップ、
反射方向が互いに異なる複数の反射板を用意する準備ステップ、および、
前記設定ステップおよび前記準備ステップの後に行われ、複数の前記反射板により形成されるビームが、全体として必要なビーム幅を満たすように、複数の前記反射板を配置する配置ステップ、を有することを特徴とする、リフレクトアレーの設計方法。 - 前記準備ステップにおいて、
反射方向が互いに異なる複数の前記反射板は同一のセルを有し、
反射方向が互いに異なる前記反射板ごとに異なる間隔で配置された同一のセルを有する
ことを特徴とする、請求項1に記載のリフレクトアレーの設計方法。 - 前記配置ステップにおいて、
反射方向が略一定角度ずつ異なる3以上の前記反射板を配置する
ことを特徴とする、請求項1または2のいずれかに記載のリフレクトアレーの設計方法。 - 前記幅設定ステップは、受信領域を複数の区分領域に分割し、反射板と対応づける、区分設定ステップを有することを特徴とする、請求項1または2のいずれかに記載のリフレクトアレーの設計方法。
- 通信に用いられる基地局からの電波を、受信領域に送信するリフレクトアレーであって、
複数の反射板を有し、
前記反射板は所定の間隔で配置された同一のセルを有し、
複数の前記反射板のうち少なくとも2つは互いに異なる間隔で配置された同一のセルを有し、かつ、異なる反射角を有し、
異なる反射角により受信領域を構成することを特徴とする、リフレクトアレー。 - 略一定角度ずつ異なる反射角を有する3以上の前記反射板により受信領域を構成することを特徴とする、請求項4に記載のリフレクトアレー。
- 請求項1ないし4のいずれかの設計方法により設計されたリフレクトアレー。
- 反射板上において反射される電波の反射方向が、反射板の位置により互いに30°以上異なる2点を有することを特徴とする、請求項7に記載のリフレクトアレー。
- 前記反射板は、複数枚が離散的に配置されていることを特徴とする、請求項7または8のいずれかに記載のリフレクトアレー。
- 前記反射板はメタサーフェスであることを特徴とする、請求項7ないし9のいずれかに記載のリフレクトアレー
- 前記反射板は略一平面上に設置されることを特徴とする、請求項7ないし10のいずれかに記載のリフレクトアレー
- 前記反射板は金属反射板を含むことを特徴とする、請求項7ないし11のいずれかに記載のリフレクトアレー。
- 前記反射板は、ガラス貼り付け用の透過型であることを特徴とする、請求項7ないし11のいずれかに記載のリフレクトアレー。
- 前記反射板は、建材貼り付け等の壁材フェイク型、または、看板フェイク型であることを特徴とする、請求項5ないし12のいずれかに記載のリフレクトアレー。
- 前記反射板は、カバー内取り付け型であることを特徴とする、請求項5ないし12のいずれかに記載のリフレクトアレー。
- 請求項5ないし12のいずれかに記載のリフレクトアレーを複数枚有したリフレクトアレーシステムであって、各リフレクトアレーに用いられる平均の反射板の数をMとして、全てのN枚のリフレクトアレーが有する反射板の種類は全体で(M×N/5)種類以下であることを特徴とする、リフレクトアレーシステム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280009747.6A CN116762237A (zh) | 2021-01-12 | 2022-01-12 | 反射阵列、反射阵列的设计方法以及反射阵列系统 |
KR1020237023511A KR20230130006A (ko) | 2021-01-12 | 2022-01-12 | 리플렉트어레이, 리플렉트어레이의 설계 방법 및 리플렉트어레이시스템 |
US18/271,688 US20240322443A1 (en) | 2021-01-12 | 2022-01-12 | Reflect array, design method for reflect array, and reflect array system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021002802A JP7566643B2 (ja) | 2021-01-12 | 2021-01-12 | リフレクトアレー、リフレクトアレーの設計方法、および、リフレクトアレーシステム |
JP2021-002802 | 2021-01-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022154022A1 true WO2022154022A1 (ja) | 2022-07-21 |
Family
ID=82448452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/000791 WO2022154022A1 (ja) | 2021-01-12 | 2022-01-12 | リフレクトアレー、リフレクトアレーの設計方法、および、リフレクトアレーシステム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240322443A1 (ja) |
JP (1) | JP7566643B2 (ja) |
KR (1) | KR20230130006A (ja) |
CN (1) | CN116762237A (ja) |
WO (1) | WO2022154022A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024162166A1 (ja) * | 2023-01-31 | 2024-08-08 | 京セラ株式会社 | 電波反射板 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024135455A1 (ja) * | 2022-12-21 | 2024-06-27 | Agc株式会社 | 反射パネル、及び電磁波反射装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002333459A (ja) * | 2001-05-08 | 2002-11-22 | Rikogaku Shinkokai | 空間フェージング模擬装置 |
JP2008270875A (ja) * | 2007-04-16 | 2008-11-06 | Ntt Docomo Inc | 受信レベル推定システム |
WO2009069780A1 (ja) * | 2007-11-30 | 2009-06-04 | Ntt Docomo, Inc. | 無線通信システム |
JP2009225082A (ja) * | 2008-03-17 | 2009-10-01 | Nec Corp | 設計システム |
JP2010518700A (ja) * | 2007-01-31 | 2010-05-27 | シンボル テクノロジーズ インコーポレイテッド | 最適なrf送信機の配置のための方法と装置 |
WO2011068224A1 (ja) * | 2009-12-04 | 2011-06-09 | 株式会社エヌ・ティ・ティ・ドコモ | 伝搬経路推定方法、プログラム及び装置 |
WO2013136835A1 (ja) * | 2012-03-16 | 2013-09-19 | 株式会社 エヌ・ティ・ティ・ドコモ | デュアルアンテナ装置 |
US20190230523A1 (en) * | 2017-08-18 | 2019-07-25 | Integrated Device Technology, Inc. | Long range beamforming and steering in wireless communication links |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5536836B2 (ja) | 2012-07-31 | 2014-07-02 | 株式会社Nttドコモ | 設計方法及びリフレクトアレー |
-
2021
- 2021-01-12 JP JP2021002802A patent/JP7566643B2/ja active Active
-
2022
- 2022-01-12 KR KR1020237023511A patent/KR20230130006A/ko unknown
- 2022-01-12 US US18/271,688 patent/US20240322443A1/en active Pending
- 2022-01-12 WO PCT/JP2022/000791 patent/WO2022154022A1/ja active Application Filing
- 2022-01-12 CN CN202280009747.6A patent/CN116762237A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002333459A (ja) * | 2001-05-08 | 2002-11-22 | Rikogaku Shinkokai | 空間フェージング模擬装置 |
JP2010518700A (ja) * | 2007-01-31 | 2010-05-27 | シンボル テクノロジーズ インコーポレイテッド | 最適なrf送信機の配置のための方法と装置 |
JP2008270875A (ja) * | 2007-04-16 | 2008-11-06 | Ntt Docomo Inc | 受信レベル推定システム |
WO2009069780A1 (ja) * | 2007-11-30 | 2009-06-04 | Ntt Docomo, Inc. | 無線通信システム |
JP2009225082A (ja) * | 2008-03-17 | 2009-10-01 | Nec Corp | 設計システム |
WO2011068224A1 (ja) * | 2009-12-04 | 2011-06-09 | 株式会社エヌ・ティ・ティ・ドコモ | 伝搬経路推定方法、プログラム及び装置 |
WO2013136835A1 (ja) * | 2012-03-16 | 2013-09-19 | 株式会社 エヌ・ティ・ティ・ドコモ | デュアルアンテナ装置 |
US20190230523A1 (en) * | 2017-08-18 | 2019-07-25 | Integrated Device Technology, Inc. | Long range beamforming and steering in wireless communication links |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024162166A1 (ja) * | 2023-01-31 | 2024-08-08 | 京セラ株式会社 | 電波反射板 |
Also Published As
Publication number | Publication date |
---|---|
KR20230130006A (ko) | 2023-09-11 |
CN116762237A (zh) | 2023-09-15 |
US20240322443A1 (en) | 2024-09-26 |
JP7566643B2 (ja) | 2024-10-15 |
JP2022108025A (ja) | 2022-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0960452B1 (en) | Microstrip antenna and array antenna | |
JP6766180B2 (ja) | アンテナアレイ内の相互結合を低減するための装置および方法 | |
WO2022154022A1 (ja) | リフレクトアレー、リフレクトアレーの設計方法、および、リフレクトアレーシステム | |
JP5371633B2 (ja) | リフレクトアレイ | |
US20100001918A1 (en) | Passive repeater antenna | |
CN101548434A (zh) | 用于移动通信的双波段双极化基站天线 | |
US9793973B2 (en) | Non-feeding reradiating repeater and method for manufacturing of the same | |
US20220278740A1 (en) | Meta-structure wireless infrastructure for beamforming systems | |
KR20070084463A (ko) | 이중 분극된 방사 소자들 및 성형 반사기를 갖는 기지국패널 안테나 | |
EP3863117A1 (en) | Reflectarray antenna for enhanced wireless communication coverage area | |
Rengarajan | Reflectarrays of rectangular microstrip patches for dual-polarization dual-beam radar interferometers | |
US20040217908A1 (en) | Adjustable reflector system for fixed dipole antenna | |
US20110241956A1 (en) | Cassegrain antenna for high gain | |
US11688950B2 (en) | Multisegment array-fed ring-focus reflector antenna for wide-angle scanning | |
Brandão et al. | FSS-based dual-band cassegrain parabolic antenna for RadarCom applications | |
AU2014332522B2 (en) | Low profile high efficiency multi-band reflector antennas | |
WO2015159871A1 (ja) | アンテナ及びセクタアンテナ | |
JP5572490B2 (ja) | 平面状反射板 | |
CN115313063B (zh) | 一种反射式面天线 | |
WO2004004070A1 (ja) | アンテナ装置およびその指向性利得調整方法 | |
KR101161266B1 (ko) | 다중 대역 안테나 장치 | |
EP4187719A1 (en) | Passive reflectarray panel for enhanced wireless communication in near field coverage area and methods of designing the same | |
EP3975334A1 (en) | Antenna apparatus | |
EP3637546B1 (en) | Satellite antenna using a planar reflector and a movable feedarm and method to obtain a suitable planar reflector | |
Thomas et al. | Design of a Metal-Only Reflectarray for Ku-band DTH Applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22739427 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18271688 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280009747.6 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22739427 Country of ref document: EP Kind code of ref document: A1 |