WO2022153381A1 - 転送装置、転送方法、転送システム、及びプログラム - Google Patents

転送装置、転送方法、転送システム、及びプログラム Download PDF

Info

Publication number
WO2022153381A1
WO2022153381A1 PCT/JP2021/000788 JP2021000788W WO2022153381A1 WO 2022153381 A1 WO2022153381 A1 WO 2022153381A1 JP 2021000788 W JP2021000788 W JP 2021000788W WO 2022153381 A1 WO2022153381 A1 WO 2022153381A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
communication path
network
communication
port
Prior art date
Application number
PCT/JP2021/000788
Other languages
English (en)
French (fr)
Inventor
佳祐 山形
慎一 吉原
秀雄 川田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/000788 priority Critical patent/WO2022153381A1/ja
Priority to JP2022574898A priority patent/JP7506334B2/ja
Priority to US18/271,438 priority patent/US20240064097A1/en
Publication of WO2022153381A1 publication Critical patent/WO2022153381A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/56Routing software
    • H04L45/566Routing instructions carried by the data packet, e.g. active networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing

Definitions

  • This disclosure relates to a transfer device, a transfer method, a transfer system, and a program.
  • the communication system 9 includes a customer network (NW) 91, a network device Y92, and a network device X97.
  • the network device X97 is a device managed by a communication carrier
  • the network device Y92 is a device managed by a customer.
  • the network device Y92 and the network device X97 are connected by two routes. In the first route, there are an ONU (Optical Network Unit) 931 connected to the network device Y92, an OSU (Optical Subscriber Unit) 941, a network device 951, and a network device 961 connected to the network device X97.
  • ONU Optical Network Unit
  • OSU Optical Subscriber Unit
  • ONU932 In the second path, there are ONU932, OSU942, network device 952 connected to the network device Y92, and network device 962 connected to the network device X97.
  • a UNI User-Network Interface
  • the network device X97 connects to the OSU98 in addition to the network devices 961 and 962, and connects to another network via ONU99 and UNI connected to the OSU98.
  • Patent Documents 1 and 2 describe techniques related to communication path switching.
  • the customer network 91 will continue to transmit data to the first route unless the destination information of the network device Y92 is updated. Therefore, when the communication carrier takes the initiative in switching the route, it is necessary to dispatch a worker to the network device Y92 and switch the route in the network device Y92 at the same timing as the route switching in the network device X97. Further, when the network device X97 is connected to a plurality of customer networks, it is necessary to dispatch workers to a plurality of bases, which causes problems such as communication interruption due to a work error and communication failure due to a loop.
  • the network device Y92 is the customer side device, it is not possible to freely modify the network device Y92 remotely from the communication carrier side. Therefore, if the old destination information remaining in the network device Y92 is deleted, for example, by controlling the aging timer, the second route cannot be used until the timer expires, so that communication interruption occurs for a long time. There was a possibility.
  • An object of the present disclosure is to provide a transfer device, a transfer method, a transfer system, and a program capable of quickly switching communication routes without dispatching a worker.
  • the transfer device is connected to a network device that functions as a gateway for connecting to the first network by a first communication path and a second communication path.
  • a transfer device for transferring packets between the network and the second network wherein the network device is a first communication port for connecting to the first communication path and the second communication path.
  • the network device holds correspondence information indicating the correspondence relationship between each of the second communication ports for connecting to the packet destination and the address information regarding the destination of the packet, and the network device corresponds to the first communication port in the correspondence information. It includes a control unit that transmits an update control signal for updating the attached address information to the network device.
  • the transfer method includes the first network and the second network connected by the first communication path and the second communication path to the network device functioning as a gateway for connecting to the first network.
  • the network device is associated with the first communication port in the correspondence information by holding correspondence information indicating the correspondence between each of the second communication ports for the purpose and the address information regarding the destination of the packet. It has a step of transmitting an update control signal for updating the address information to the network device.
  • the transfer system includes a network device that functions as a gateway for connecting to the first network, and the first communication path that is connected to the network device by a first communication path and a second communication path.
  • a transfer system including a transfer device for transferring packets between a network and a second network, and a monitoring control device for controlling the operation of the transfer device, wherein the network device is the first.
  • Correspondence information indicating the correspondence between each of the first communication port for connecting to the communication path of the above and the second communication port for connecting to the second communication path and the address information regarding the destination of the packet.
  • the transfer device or the monitoring control device holds an update control signal for the network device to update the address information associated with the first communication port in the corresponding information, the network. It is equipped with a control unit that transmits to the device.
  • the transfer system causes the computer to function as the transfer device.
  • the communication system 1 (1a, 1b) includes a customer network (NW) 31 as a first network, a network device Y32, a network device X10a, and a monitoring control device 20.
  • the network device X10a and the monitoring control device 20 are devices managed by the communication carrier, and the network device Y32 is a device managed by the customer.
  • the network device Y32 functions as a gateway for connecting to the customer network 31.
  • the network device X10a controls the switching of the communication path based on the control signal from the monitoring control device 20.
  • the network device X10a functions as a transfer device for transferring packets between the customer network (first network) and another network (second network) described later.
  • the customer network 31 is a network managed by a person other than the telecommunications carrier, and is, for example, a corporate intranet, a network formed by another telecommunications carrier, a home network, or the like.
  • the communication system 1 (1a, 1b) according to the present embodiment, the communication system 1a in which the monitoring control device 20 is directly connected to the network device X10a and the monitoring control device 20 are networked via the DCN (Data Communication Network) 40. It is roughly classified into a communication system 1b connected to the device X10a.
  • the DCN 40 is any network capable of communicating data, for example, the Internet, an intranet, a dedicated communication line, or a combination thereof.
  • the communication systems 1a and 1b are collectively referred to as "communication system 1".
  • the network device Y32 and the network device X10a are connected by two communication paths A (route A) 39a and communication path B (route B) 39b.
  • the communication path A39a there are an ONU-A33a, an OSU34a, a network device 35a connected to the network device Y32, and a network device 36a connected to the network device X10a.
  • the communication path B39b includes an ONU-B33b, an OSU34b, a network device 35b connected to the network device Y32, and a network device 36b connected to the network device X10a.
  • Devices other than the devices shown in FIGS. 1A and 1B may exist in the two communication paths A39a and B39b.
  • another network such as the Internet may intervene between the network device 35a and the network device 36a, and between the network device 35b and the network device 36b.
  • the two communication paths A39a and B39b are configured by an optical fiber line, and the ONU-A33a and ONU-B33b function as an optical fiber line termination device.
  • the line that realizes the two communication paths A39a and B39b is not limited to the optical fiber line as long as communication is possible.
  • the two communication paths A39a and B39b may be realized by a communication line such as metal or wireless.
  • An UNI is formed between the ONU-A33a and ONU-B33b and the network device Y32.
  • the network device X10a connects to the OSU37 in addition to the network devices 36a and 36b, and connects to another network as a second network via the ONU38 and UNI connected to the OSU37.
  • a communication line for the network device X10a to access another network (a communication line of the network device X10a or less including a communication line between the network device X10a and the OSU37) is referred to as an "access line".
  • an "access line” a communication line of the network device X10a or less including a communication line between the network device X10a and the OSU37.
  • the network device Y32 includes a port for connecting to the ONU-A33a and a port for connecting to the ONU-B33b.
  • the network device Y32 holds an FDB (Forwarding DataBase) indicating the correspondence between these ports and the MAC address of the packet destination.
  • the FDB includes each of a first communication port for the network device Y32 to connect to the first communication path and a second communication port for connecting to the second communication path, and address information regarding the destination of the packet. It functions as correspondence information indicating the correspondence of.
  • the network device Y32 refers to the FDB and transmits the packet from the port associated with the MAC address of the destination of the packet.
  • the network device Y32 When the network device Y32 receives a packet from a communication device of another network, the network device Y32 updates the FDB based on the MAC address of the source described in the packet and the port of the network device Y32 that received the packet. Has a function. Further, the network device Y32 has a function of detecting when the link of the connected ONU-A33a or ONU-B33b is down or the port is blocked and updating the FDB. That is, the network device Y32 has a function of associating the MAC address associated with the port connected to the ONU-A33a or ONU-B33b, which cannot communicate in the FDB, with the other port.
  • the control for updating the FDB of the network device Y32 without directly modifying it. Is performed by the network device X10a or the monitoring control device 20. That is, in the network device X10a or the monitoring control device 20, the network device Y32 sends an update control signal to the network device Y32 for updating the address information associated with the first communication port in the corresponding information (FDB). Send.
  • the network device X10a includes a MAC address that is considered to be managed in association with the port connected to the ONU-A33a in the FDB of the network device Y32 with respect to the network device Y32.
  • the packet is transmitted on the communication path B39b.
  • the network device Y32 updates the FDB so that its MAC address is associated with the port connected to the ONU-B33b existing in the communication path B39b. After that, the network device Y32 transmits a packet destined for the MAC address via the port connected to the ONU-B32b. Therefore, according to the present embodiment, it is possible to quickly switch the communication route without dispatching a worker.
  • FIG. 2 is a diagram showing a hardware configuration example of the network device X10 according to the embodiment of the present disclosure.
  • the network device X10 is one or a plurality of information processing devices capable of communicating with each other.
  • the network device X10 is not limited to these, and may be any electronic device such as a general-purpose computer, a dedicated computer, a workstation, a PC (Personal Computer), and an electronic notepad.
  • the network device X10 includes a control unit 101, a storage unit 102, a communication unit 103, an input unit 104, an output unit 105, and a bus 106.
  • the control unit 101 includes one or more processors.
  • the "processor” is, but is not limited to, a general purpose processor or a dedicated processor specialized for a particular process.
  • the processor may be, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), or the like.
  • the control unit 101 is communicably connected to each component constituting the network device X10 via the bus 106, and controls the operation of the entire network device X10.
  • the storage unit 102 includes an arbitrary storage module including an HDD, SSD, EEPROM, ROM, and RAM.
  • the storage unit 102 may function as, for example, a main storage device, an auxiliary storage device, or a cache memory.
  • the storage unit 102 stores arbitrary information used for the operation of the network device X10.
  • the storage unit 102 may store various information received by the system program, the application program, and the communication unit 103.
  • the storage unit 102 is not limited to the one built in the network device X10, and may be an external database or an external storage module connected by a digital input / output port such as USB.
  • HDD is an abbreviation for Hard Disk Drive.
  • SSD is an abbreviation for Solid State Drive.
  • EEPROM is an abbreviation for Electrically Erasable Programmable Read-Only Memory.
  • ROM is an abbreviation for Read-Only Memory.
  • RAM is an abbreviation for Random Access Memory.
  • USB is an abbreviation for
  • the communication unit 103 includes an arbitrary communication module capable of communicating with another device by any communication technique.
  • the communication unit 103 may further include a communication control module for controlling communication with another device, and a storage module for storing communication data such as identification information required for communication with the other device.
  • the input unit 104 includes one or more input interfaces that accept a user's input operation and acquire input information based on the user's operation.
  • the input unit 104 is, for example, a physical key, a capacitance key, a pointing device, a touch screen provided integrally with the display of the output unit 105, a microphone that accepts voice input, and the like, but is not limited thereto.
  • the output unit 105 includes one or more output interfaces that output information to the user and notify the user.
  • the output unit 105 is, but is not limited to, a display or the like that outputs information as an image.
  • At least one of the above-mentioned input unit 104 and output unit 105 may be integrally configured with the network device X10, or may be provided as a separate body.
  • the function of the network device X10 is realized by executing the program according to the present embodiment on the processor included in the control unit 101. That is, the function of the network device X10 is realized by software.
  • the program causes the computer to execute the processing of the steps included in the operation of the network device X10, so that the computer realizes the function corresponding to the processing of the steps. That is, the program is a program for making the computer function as the network device X10 according to the present embodiment.
  • the program instruction may be a program code, a code segment, or the like for executing a necessary task.
  • the program may be recorded on a computer-readable recording medium. Using such a recording medium, it is possible to install the program on the computer.
  • the recording medium on which the program is recorded may be a non-transient (non-temporary) recording medium. Even if the non-transient recording medium is a CD (CompactDisk) -ROM (Read-Only Memory), a DVD (DigitalVersatileDisc) -ROM, a BD (Blu-ray (registered trademark) Disc) -ROM, etc. good.
  • the program may be distributed by storing the program in the storage of the server and transferring the program from the server to another computer via the network.
  • the program may be provided as a program product.
  • the computer temporarily stores the program recorded on the portable recording medium or the program transferred from the server in the main storage device. Then, the computer reads the program stored in the main storage device by the processor, and executes the processing according to the read program by the processor.
  • the computer may read the program directly from the portable recording medium and perform processing according to the program.
  • the computer may sequentially execute processing according to the received program each time the program is transferred from the server to the computer. Such processing may be executed by a so-called ASP type service that realizes the function only by the execution instruction and the result acquisition without transferring the program from the server to the computer.
  • "ASP" is an abbreviation for Application Service Provider.
  • the program includes information used for processing by a computer and equivalent to the program. For example, data that is not a direct command to a computer but has the property of defining the processing of a computer corresponds to "a program-like data".
  • a part or all the functions of the network device X10 may be realized by a dedicated circuit included in the control unit 101. That is, some or all the functions of the network device X10 may be realized by hardware. Further, the network device X10 may be realized by a single information processing device or may be realized by the cooperation of a plurality of information processing devices.
  • the monitoring control device 20 and the network device Y32 also have the same hardware configuration as the network device X10.
  • the functions of the monitoring control device 20 and the network device Y32 are realized by software, but some or all of the functions may be realized by hardware. Further, the monitoring control device 20 and the network device Y32 may be realized by a single information processing device, or may be realized by the cooperation of a plurality of information processing devices.
  • FIG. 3 is a diagram showing a functional configuration example of the network device X10a according to the first embodiment of the present disclosure.
  • the network device X10a includes an access port 11, two relay ports 12 (12a, 12b), a transfer unit 13, a control port 14, a route switching unit 15, an SA (Source Address) camouflage unit 16, a blocking unit 17, and an opening unit 18. And a management unit 19.
  • Each of these functional elements is realized by the control unit 101 controlling each component of the network device X10 exemplified in FIG.
  • the access port 11 connects to an access line of the network device X10a or less to send and receive packets.
  • the relay port 12a as the third communication port connects to the communication path A39a to send and receive packets.
  • the relay port 12b as the fourth communication port connects to the communication path B39b to send and receive packets.
  • the transfer unit 13 performs packet transfer processing between the access port 11, the relay ports 12 (12a, 12b), and the SA camouflage unit 16.
  • the control port 14 is connected to the monitoring control device 20 and transmits / receives control signals.
  • the route switching unit 15 sends the SA camouflage processing signal to the SA camouflage unit 16 and the blockage processing signal of the relay port 12 in response to receiving the route switching signal from the monitoring control device 20.
  • the opening processing signal of the relay port 12 is transmitted to the closing unit 17 to the opening unit 18.
  • the route switching signal is a signal instructing the switching of the communication path.
  • the SA camouflage unit 16 generates a packet in which the source address (SA: SourceAddress), which is the MAC address of the source, is rewritten in response to receiving the route switching signal from the route switching unit 15, and causes the transfer unit 13 to generate a packet. Performs SA camouflage processing to be transferred.
  • SA SourceAddress
  • the packet disguised as the source address is used by the network device Y32 to update the FDB and associate the MAC address associated with the port of the communication path A39a with the port of the communication path B39b.
  • the blocking unit 17 blocks the relay port 12a or the relay port 12b in response to receiving the blocking processing signal of the relay port 12 from the route switching unit 15.
  • the opening unit 18 opens the relay port 12a or the relay port 12b in response to receiving the opening processing signal of the relay port 12 from the route switching unit 15.
  • the management unit 19 manages whether the states of the relay ports 12a and 12b are blocked or open.
  • FIGS. 4A and 4B are diagrams illustrating communication path switching in the first embodiment.
  • FIGS. 4A and 4B do not show the connection relationship between the network device X10a and the monitoring control device 20.
  • FIG. 4A shows the state before the communication path is switched.
  • data is transmitted / received using the communication path A39a between the communication device of the customer network 31 and the communication device in another network to which the network device X10a is connected via the ONU 38. Since the communication path B39b is not used here, the network device X10a blocks the relay port 12b (51).
  • the network device X10a When the monitoring control device 20 transmits a route switching signal to the network device X10a, the network device X10a performs a communication path switching process for switching the communication path used for transmitting and receiving data from the communication path A39a to the communication path B39b.
  • the network device X10a closes the relay port 12a on the communication path A39a side (52 in FIG. 4B) and opens the relay port 12b on the communication path B39b side.
  • the network device X10a transmits a packet disguised as the source address (SA) from the relay port 12b to the network device Y32 via the communication path B39b. That is, the network device X10a transmits a packet from the relay port 12b that includes the MAC address in the source address, which is considered to be managed in association with the port connected to the ONU-A33a in the FDB of the network device Y32.
  • the MAC address considered to be associated with the port connected to the ONU-A33a can be obtained from, for example, the source address included in the packet received via the access port 11. ..
  • the network device X10a also has an FDB indicating the correspondence between the access port 11 and the MAC address of the communication device of another network on the access port side, and such a source is referred to by referring to this FDB. You may get the address.
  • FIG. 5A is a diagram showing an example of FDB included in the network device X10a.
  • the "access port 1" is information that identifies the access port 11 of the network device X10a.
  • "access port 1" has four MAC addresses "AA-AA-AA-AA-AA”, “BB-BB-BB-BB-BB”, and "CC-CC-CC”.
  • -CC-CC-CC "and" DD-DD-DD-DD-DD "are associated with each other. Since these MAC addresses were recorded during data transmission via the communication path A39a, it is considered that they are also recorded in the FDB of the network device Y32 in association with the port connected to the ONU-A33a. Be done.
  • the network device X10a sends a packet disguised as a source address for each of the MAC addresses (for example, "AA-AA-AA-AA-AA-AA") associated with these "access ports 1". Transmission is performed from the relay port 12b to the network device Y32 via the communication path B39b.
  • FIG. 5B is a diagram showing the structure of an Ethernet (Ethernet II) frame.
  • the Ethernet frame is composed of a preamble, DA (Destination Address), SA (Source Address), type, data, and FCS (Frame Check Sequence).
  • DA Denssion Address
  • SA Source Address
  • FCS Full Check Sequence
  • the network device X10a transmits a packet in which the SA in the frame is set to the MAC address associated with the “access port 1” from the relay port 12b. Since the packet disguised as the source address is used to update the FDB of the network device Y32, the payload portion may be dummy data (for example, "0") (padding).
  • the network device Y32 When the network device Y32 receives a packet with a spoofed source address via the communication path B39b, the network device Y32 updates the FDB so as to associate the source address with the port connected to the ONU-B33b. Therefore, as shown in FIG. 4B, after the update of the FDB, the communication path B39b is used between the communication device of the customer network 31 and the communication device in the other network existing on the access port 11 side of the network device X10a. Data transmission / reception is started. As described above, in the present embodiment, since only the source address is spoofed, the format of the packet itself does not change, and the devices other than the network device X10a switch the communication path without the need to change the settings or replace the devices. be able to.
  • FIG. 6 is a flowchart showing an operation procedure of the communication system 1 according to the first embodiment of the present disclosure.
  • the operation of the communication system 1 described with reference to FIG. 6 corresponds to the transfer method according to the present embodiment.
  • step S1 the control unit 101 of the network device X10a receives the route switching signal from the monitoring control device 20 through the control port 14.
  • the network device X10a receives the route switching signal from the directly connected monitoring control device 20, and in the configuration of FIG. 1B, the network device X10a receives the route switching signal via the DCN 40.
  • step S2 the control unit 101 of the network device X10a controls the route switching unit 15 so as to block the relay port 12a on the communication path A39a side by the blocking unit 17.
  • step S3 the control unit 101 of the network device X10a controls the route switching unit 15 to open the relay port 12b of the communication path B39b by the opening unit 18.
  • step S4 the control unit 101 of the network device X10a performs the SA impersonation process of the packet by the SA impersonation unit 16. That is, the control unit 101 controls the SA camouflage unit 16 to generate a packet having each MAC address associated with the access port 11 as the source address in the FDB of the network device X10a.
  • step S5 the control unit 101 of the network device X13a transmits each packet that has undergone SA camouflage processing from the opened relay port 12b to the network device Y32 via the communication path B39b by the transfer unit 13.
  • step S6 the network device Y32 receives the SA-impersonated packet and relearns the FDB. That is, the network device Y32 updates the FDB by associating the source address (MAC address) of the SA-impersonated packet with the port connected to the ONU-B33b. As a result, the packet destined for the MAC address will be transmitted from the port connected to the ONU-B33b.
  • MAC address source address
  • step S7 data communication on the communication path B39b is started between the network device X13a and the network device Y32. Then, the processing of the flowchart is finished.
  • the packet processed by the network device X10a for SA camouflage is sent to the network device Y32 via the switching destination communication path (communication path B39b).
  • An example of sending has been described.
  • the control for updating the FDB of the network device Y32 is not limited to this.
  • the network device X10a or the monitoring control device 20 transmits a signal for linking down or blocking the port of the ONU-A33a to the ONU-A33a to cause the ONU-A33a to link down or block the port.
  • the network device Y32 detects this and updates the FDB so as not to use the port connected to the ONU-A33a. This enables communication via the communication path B39b.
  • the same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • (Communications system) 7A and 7B are diagrams showing a configuration example of the communication system 2 (2a, 2b) as the transfer system according to the second embodiment.
  • the monitoring control device 20 and the network device X10b are connected to the DCN 40, similarly to the communication system 1b shown in FIG. 1B.
  • the communication system 2 (2a, 2b) also connects the ONU-A33a to the DCN40.
  • the ONU-B33b is also connected to the DCN40.
  • Other components included in the communication system 2 (2a, 2b) are the same as those of the communication system 1.
  • the communication path is changed from the communication path A39a to the communication path.
  • the process of switching to B39b will be described.
  • FIG. 8 is a diagram showing a functional configuration example of the network device X10b according to the second embodiment of the present disclosure. Similar to the network device X10a of FIG. 3, the network device X10b includes an access port 11, two relay ports 12 (12a, 12b), a transfer unit 13, a control port 14, a route switching unit 15, a blocking unit 17, and an opening unit 18. , And a management unit 19. However, the network device X10b is different from the network device X10a in that the SA (Source Address) camouflage unit 16 is not provided and the link down unit 22 is provided. Each of these functional elements is realized by the control unit 101 controlling each component of the network device X10 exemplified in FIG.
  • SA Source Address
  • the route switching unit 15 transmits a link-down signal that forcibly links down the ONU-A33a in response to receiving a route switching signal from the monitoring control device 20 when switching the communication path.
  • the command signal is transmitted to the link down unit 22.
  • the route switching unit 15 transmits the blocking processing signal of the relay port 12 to the blocking unit 17 and the opening processing signal of the relay port 12 to the opening unit 18 in the same manner as the network device X10a.
  • the link-down unit 22 receives the transmission command signal of the link-down signal, the link-down unit 22 transmits a link-down signal for forcibly downing the link of the ONU-A33a connected to the network device Y32 to the ONU-A33a as a destination. ..
  • the link-down unit 22 may transmit a block signal for blocking the port for the ONU-A33a to connect to the network device Y32 to the ONU-A33a as a destination.
  • a link down signal for bringing down the link of the ONU-A33a is transmitted will be described.
  • the link down signal is transmitted from the monitoring control device 20, the link down signal is not transmitted from the link down unit 22.
  • Other components of the network device X10b are the same as those of the network device X10a.
  • FIG. 9A and 9B are diagrams for explaining communication path switching in the communication system 2a.
  • FIG. 9A shows a state before switching the communication path
  • FIG. 9B shows a state after switching the communication path.
  • the network device X10b blocks the relay port 12b on the communication path B39b side in advance (51).
  • the network device X10b blocks the relay port 12a on the communication path A39a side (52 in FIG. 9B).
  • the monitoring control device 20 or the network device X10b transmits a link down signal for bringing down the link of the ONU-A33a connected to the network device Y32.
  • the blockage of the relay port 12a and the transmission of the link-down signal may be before or after.
  • the network device X10b may transmit the link-down signal via the communication path A39a or transmit the link-down signal via the DCN40. May be good.
  • the network device X10b transmits a link-down signal before the relay port 12a is blocked, or when the monitoring control device 20 transmits a link-down signal, the link-down signal is transmitted via the DCN 40.
  • the ONU-A33a brings down the link with the network device Y32 (53 in FIG. 9B).
  • the network device Y32 detects a link down with the ONU-A33a
  • the FDB is flushed so that the port connected to the ONU-A33a is not used, and the port connected to the ONU-B33b is used when communicating. become.
  • the network device X10b opens the relay port 12b on the communication path B39b side. This enables bidirectional communication using the communication path B39b (FIG. 9B).
  • FIG. 10 is a flowchart showing an operation procedure of the communication system 2a according to the present embodiment.
  • FIG. 10 shows an operation example when the network device X10b transmits a link-down signal in the communication system 2a.
  • the operation of the communication system 2a described with reference to FIG. 10 corresponds to the transfer method according to the present embodiment.
  • step S11 the control unit 101 of the network device X10b receives the route switching signal from the monitoring control device 20 via the DCN 40 through the control port 14.
  • step S12 the control unit 101 of the network device X10b controls the route switching unit 15 so that the blocking unit 17 blocks the relay port 12a on the communication path A39a side.
  • step S13 the control unit 101 of the network device X10b transmits a link-down signal to the ONU-A33a by the link-down unit 22.
  • the order of step S12 and step S13 may be changed.
  • the network device X10b transmits the link-down signal via either the communication path A39a or the DCN40.
  • the network device X10b transmits the link-down signal via DCN40.
  • step S14 the ONU-A33a receives the link down signal and downs the link with the network device Y32.
  • step S15 the network device Y32 detects that the link with the ONU-A33a is down and flushes the FDB. As a result, the FDB is updated so as not to use the port connected to the ONU-A33a, and communication via the port for connecting to the communication path B39b becomes possible.
  • step S16 the control unit 101 of the network device X10b controls the route switching unit 15 so that the opening unit 18 opens the relay port 12b of the communication path B39b.
  • the process of step S16 is performed in parallel with the process of step S14 and step S15.
  • step S17 data communication on the communication path B39b is started between the network device X13b and the network device Y32. Then, the processing of the flowchart is finished.
  • FIG. 11 is a flowchart showing an operation procedure of the communication system 2a according to the present embodiment.
  • FIG. 11 shows an operation example when the monitoring control device 20 transmits a link-down signal in the communication system 2a.
  • the operation of the communication system 2a described with reference to FIG. 11 corresponds to the transfer method according to the present embodiment.
  • step S21 the monitoring control device 20 transmits a link-down signal to the ONU-A33a via the DCN40. Further, the monitoring control device 20 transmits a route switching signal to the network device X10b via the DCN 40.
  • step S22 the ONU-A33a receives the link down signal and downs the link with the network device Y32.
  • step S23 the control unit 101 of the network device Y32 detects that the link with the ONU-A33a is down and flushes the FDB. As a result, the FDB is updated so as not to use the port connected to the ONU-A33a, and communication via the port for connecting to the communication path B39b becomes possible.
  • step S24 the control unit 101 of the network device X10b controls the control port 14 to receive the route switching signal from the monitoring control device 20 via the DCN 40.
  • step S25 the control unit 101 of the network device X10b controls the route switching unit 15 so that the blocking unit 17 blocks the relay port 12a on the communication path A39a side.
  • step S26 the control unit 101 of the network device X10b controls the route switching unit 15 so that the opening unit 18 opens the relay port 12b of the communication path B39b.
  • the processes of steps S24 to S26 are performed in parallel with the processes of steps S22 and S23.
  • step S27 data communication on the communication path B39b is started between the network device X13b and the network device Y32. Then, the processing of the flowchart is finished.
  • FIG. 12A and 12B are diagrams for explaining communication path switching in the communication system 2b.
  • FIG. 12A shows a state before switching the communication path
  • FIG. 12B shows a state after switching the communication path.
  • the network device X10b blocks the relay port 12b on the communication path B39b side in advance (51).
  • the ONU-B32b blocks the port for connecting to the network device Y32 in advance (54).
  • the network device X10b blocks the relay port 12a on the communication path A39a side (52 in FIG. 12B).
  • the monitoring control device 20 or the network device X10b transmits a link down signal for bringing down the link of the ONU-A33a connected to the network device Y32.
  • a link down signal for bringing down the link of the ONU-A33a connected to the network device Y32.
  • the relay port 12a is blocked and the link down signal is transmitted regardless of whether it is before or after.
  • the ONU-A33a brings down the link with the network device Y32 (53 in FIG. 12B).
  • the network device Y32 detects a link down with the ONU-A33a, the FDB is flushed so that the port connected to the ONU-A33a is not used, and the port connected to the ONU-B33b is used when communicating. become.
  • the network device X10b opens the relay port 12b on the communication path B39b side. Further, the monitoring control device 20 or the network device X10b transmits a signal for opening the port for the ONU-B32b to connect to the network device Y32 to the ONU-B32b via the DCN40. In response to receiving this signal, the ONU-B32b opens a port for connecting to the network device Y32. This enables bidirectional communication using the communication path B39b (FIG. 12B).
  • FIG. 13 is a flowchart showing an operation procedure of the communication system 2b according to the present embodiment.
  • FIG. 13 shows an operation example when the network device X10b transmits a link-down signal in the communication system 2b.
  • the operation of the communication system 2b described with reference to FIG. 13 corresponds to the transfer method according to the present embodiment.
  • Steps S31 to S36 of FIG. 13 are the same as the processes of steps S11 to S16 of FIG.
  • step S37 the monitoring control device 20 or the network device X10b transmits a signal for opening the port for the ONU-B32b to connect to the network device Y32 to the ONU-B32b via the DCN40.
  • the ONU-B32b opens a port for connecting to the network device Y32.
  • steps S36 and 37 are performed in parallel with the processes of steps S34 and S35.
  • step S38 data communication on the communication path B39b is started between the network device X13b and the network device Y32. Then, the processing of the flowchart is finished.
  • FIG. 14 is a flowchart showing an operation procedure of the communication system 2b according to the present embodiment.
  • FIG. 14 shows an operation example when the monitoring control device 20 transmits a link-down signal in the communication system 2b.
  • the operation of the communication system 2b described with reference to FIG. 14 corresponds to the transfer method according to the present embodiment.
  • Steps S41 to S46 of FIG. 14 are the same as the processes of steps S21 to S26 of FIG.
  • step S47 the monitoring control device 20 or the network device X10b transmits a signal for opening the port for the ONU-B32b to connect to the network device Y32 to the ONU-B32b via the DCN40.
  • the ONU-B32b opens a port for connecting to the network device Y32.
  • step S48 data communication on the communication path B39b is started between the network device X13b and the network device Y32. Then, the processing of the flowchart is finished.
  • the communication system 3 as the transfer system according to the present embodiment includes customer networks (NW) 31-1 to 31-3, network devices Y-1 to Y-3 (32-1 to 32-3), network devices X10a, and the like. And a monitoring control device 20.
  • the network devices Y-1 to Y-3 (32-1 to 32-3) are provided corresponding to the customer network (NW) 31-1 to 31-3.
  • NW customer network
  • a plurality of customer networks 31 and network devices Y32 exist a case where three of them exist will be described, but the customer network 31 and network devices Y32 also exist in any number. good.
  • the network devices Y-1 to Y-3 are connected to the network device X10b by two communication paths A and B, respectively.
  • the network devices 35a and 36a constituting the communication path A and the network devices 35b and 36b constituting the communication path B are all network devices Y-1 to Y-3 (32-1 to 32-1 to). It is common in relation to 32-3). That is, in the communication path A, ONU-A-1 to ONU-A-3 (33a-1 to 33a-3) connected to the network devices Y-1 to Y-3 (32-1 to 32-3), There are OSUs 34a-1 to 34a-3, a network device 35a, and a network device 36a connected to the network device X10a.
  • the communication path B includes ONU-B-1 to ONU-B-3 (33b-1 to 33b-3) and OSU34b- connected to network devices Y-1 to Y-3 (32-1 to 32-3).
  • the network devices Y-1 to Y-3 (32-1 to 32-3) may be abbreviated as Y- * (32- *).
  • ONU-A-1 to ONU-A-3 (33a-1 to 33a-3) are ONU-A- * (33a- *), ONU-B-1 to ONU-B-3 (33b-1).
  • ⁇ 33b-3) may be abbreviated as ONU-B- * (33b- *).
  • the monitoring control device 20 is communicably connected to the ONU-A- * (33a- *) and the ONU-B- * (33b- *) via the DCN40.
  • the network device X10a or the monitoring control device 20 transmits a signal for linking down the ONU-A- * (33a- *) or blocking the port to each of the ONU-A- * (33a- *). Then, an example of causing the ONU-A- * (33a- *) to perform link down or port blockage will be described. Similar to the second embodiment, when the ONU-A- * (33a- *) performs a link down or the like, the network device Y32 detects that fact and is connected to the ONU-A- * (33a- *). Update the FDB so that it does not use the port. This enables communication via the communication path B.
  • FIG. 15A shows the state before the communication path is switched
  • FIG. 15B shows the state after the communication path is switched.
  • the network device X10b blocks the relay port 12b on the communication path B side in advance (51).
  • the ONU-B- * (33b- *) blocks the port for connecting to the network device Y- * (32- *) in advance (54-1 to 54-3).
  • the network device X10b blocks the relay port 12a on the communication path A side (52 in FIG. 15B).
  • the monitoring control device 20 or the network device X10b transmits a link down signal for bringing down each link of the ONU-A- * (33a- *) connected to the Y- * (32- *). ..
  • the relay port 12a is blocked and the link down signal is transmitted regardless of the front and back.
  • the ONU-A- * (33a- *) brings down the link with the network device Y- * (32- *) (53-1 to 53-3 in FIG. 15B).
  • the network device Y- * (32- *) detects a link down with the ONU-A- * (33a- *), it flashes the FDB and opens a port to connect to the ONU-A- * (33a- *). Do not use it, and use the port connected to ONU-B- * (33a- *) when communicating.
  • the network device X10b opens the relay port 12b on the communication path B side. This enables bidirectional communication using the communication path B (FIG. 15B).
  • FIG. 16 is a flowchart showing an operation procedure of the communication system 3 according to the present embodiment.
  • FIG. 16 shows an operation example when the network device X10b transmits a link-down signal in the communication system 3.
  • the operation of the communication system 3 described with reference to FIG. 16 corresponds to the transfer method according to the present embodiment.
  • step S51 the control unit 101 of the network device X10b controls the control port 14 to receive the route switching signal from the monitoring control device 20 via the DCN 40.
  • step S52 the control unit 101 of the network device X10b controls the route switching unit 15 so that the blocking unit 17 blocks the relay port 12a on the communication path A side.
  • step S53 the control unit 101 of the network device X10b transmits a link-down signal to each of the ONU-A- * (33a- *) by the link-down unit 22.
  • the order of step S12 and step S13 may be changed.
  • each of the ONU-A- * (33a- *) receives the link-down signal and downs the link with the network device Y- * (32- *).
  • step S55 the network device Y- * (32- *) detects that the link with the ONU-A- * (33a- *) is down, and flushes the FDB. As a result, the FDB is updated so as not to use the port connected to the ONU-A- * (33a- *), and communication via the port for connecting to the communication path B becomes possible.
  • step S56 the control unit 101 of the network device X10b controls the route switching unit 15 so that the opening unit 18 opens the relay port 12b of the communication path B.
  • step S57 the monitoring control device 20 or the network device X10b sends a signal for opening the port for the ONU-B- * (33b- *) to connect to the network device Y- * (32- *) to the DCN40. It is transmitted to each of ONU-B- * (33b- *) via. In response to the reception of this signal, the ONU-B- * (33b- *) opens a port for connecting to the network device Y- * (32- *).
  • steps S56 and 57 are performed in parallel with the processes of steps S54 and S55.
  • step S58 data communication of the communication path B is started between the network device X13b and the network device Y- * (32- *). Then, the processing of the flowchart is finished.
  • FIG. 17 is a flowchart showing an operation procedure of the communication system 3 according to the present embodiment.
  • FIG. 17 shows an operation example when the monitoring control device 20 transmits a link-down signal in the communication system 3.
  • the operation of the communication system 3 described with reference to FIG. 17 corresponds to the transfer method according to the present embodiment.
  • step S61 the monitoring control device 20 transmits a link-down signal to each of the ONU-A- * (33a- *) via the DCN40. Further, the monitoring control device 20 transmits a route switching signal to the network device X10b via the DCN 40.
  • each of the ONU-A- * (33a- *) receives the link-down signal and downs the link with the network device Y- * (32- *).
  • step S63 the network device Y- * (32- *) detects that the link with the ONU-A- * (33a- *) is down and flushes the FDB. As a result, the FDB is updated so as not to use the port connected to the ONU-A- * (33a- *), and communication via the port for connecting to the communication path B becomes possible.
  • step S64 the control unit 101 of the network device X10b controls the control port 14 to receive the route switching signal from the monitoring control device 20 via the DCN 40.
  • step S65 the control unit 101 of the network device X10b controls the route switching unit 15 so that the blocking unit 17 blocks the relay port 12a on the communication path A side.
  • step S66 the control unit 101 of the network device X10b controls the route switching unit 15 so that the opening unit 18 opens the relay port 12b of the communication path B.
  • step S67 the monitoring control device 20 or the network device X10b sends a signal for opening the port for the ONU-B- * (33b- *) to connect to the network device Y- * (32- *) to the DCN40. It is transmitted to each of ONU-B- * (33b- *) via. In response to the reception of this signal, the ONU-B- * (33b- *) opens a port for connecting to the network device Y- * (32- *).
  • steps S64 to S67 are performed in parallel with the processes of steps S62 and S63.
  • step S68 data communication on the communication path B39b is started between each of the network device X13b and the network device Y- * (32- *). Then, the processing of the flowchart is finished.
  • the control for updating the FDB of the network device Y- * (32- *) is not limited to this.
  • the network device Y is transmitted by transmitting a packet disguised as the source address to each of the network devices Y- * (32- *) via the communication path B.
  • -* (32- *) FDB may be updated.
  • a computer can be preferably used to function as each part of the network device 10 (10a, 10b) and the monitoring control device 20 described above.
  • a program describing processing contents that realize the functions of each part of the network device 10 (10a, 10b) is stored in the storage unit of the computer, and this program is stored by the CPU (Central Processing Unit) of the computer. It can be realized by reading and executing. That is, such a program can cause the computer to function as the network device 10 (10a, 10b) described above.
  • CPU Central Processing Unit
  • this program may be recorded on a computer-readable medium. It can be installed on a computer using a computer-readable medium.
  • the computer-readable medium on which the program is recorded may be a non-transient recording medium.
  • the non-transient recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM or a DVD-ROM. This program can also be provided via a network.
  • the present disclosure is not limited to the above-described embodiment.
  • the plurality of blocks shown in the block diagram may be integrated, or one block may be divided.
  • the plurality of steps described in the flowchart may be executed in parallel or in a different order depending on the processing power of the device that executes each step, or as necessary, instead of executing the steps in chronological order according to the description. ..
  • Other changes are possible without departing from the spirit of this disclosure.
  • Network device X 1
  • Access port 12 Relay port 13
  • Transfer unit 14 Control port 15
  • Route switching unit 16 SA camouflage unit 17
  • Blocking unit 18 Opening unit 19
  • Management unit 20 Monitoring control device 22
  • Link down unit 31 Customer network 32

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

第1のネットワーク(31)に接続するためのゲートウェイとして機能するネットワーク装置(32)と第1の通信経路及び第2の通信経路で接続された、第1のネットワーク(31)と第2のネットワークとの間でパケットを転送する転送装置(10)は制御部を(16,22)備える。ネットワーク装置(32)は、第1の通信経路に接続するための第1の通信ポート、及び第2の通信経路に接続するための第2の通信ポートの各々と、パケットの宛先に関するアドレス情報との対応関係を示す対応情報を保持する。制御部(16,22)は、ネットワーク装置(32)が、対応情報において、第1の通信ポートと対応付けられているアドレス情報を更新するための更新制御信号を、ネットワーク装置(32)へ送信する。

Description

転送装置、転送方法、転送システム、及びプログラム
 本開示は、転送装置、転送方法、転送システム、及びプログラムに関する。
 図18A~図18Cは、従来の構成による通信経路切替を説明する図である。従来の構成に係る通信システム9は、お客様ネットワーク(NW)91、ネットワーク装置Y92、及びネットワーク装置X97を備える。ネットワーク装置X97は通信キャリアが管理する装置であり、ネットワーク装置Y92はお客様が管理する装置である。ネットワーク装置Y92及びネットワーク装置X97は、2つの経路で接続される。第1の経路には、ネットワーク装置Y92に接続するONU(Optical Network Unit)931、OSU(Optical Subscriber Unit)941、ネットワーク装置951、及びネットワーク装置X97に接続するネットワーク装置961が存在する。第2の経路には、ネットワーク装置Y92に接続するONU932、OSU942、ネットワーク装置952、及びネットワーク装置X97に接続するネットワーク装置962が存在する。ONU931及びONU932とネットワーク装置Y92との間にはUNI(User-Network Interface)が形成されている。ネットワーク装置X97は、ネットワーク装置961,962に加えてOSU98に接続し、OSU98に接続されたONU99及びUNIを経て他のネットワークに接続する。
 このような構成において、ネットワーク装置Y92及びネットワーク装置X97の間の通信経路を、第1の経路から第2の経路へ切り替えることを考える。通信経路の切替前は、図18Aに示すように、第1の経路を双方向にデータ901が流れている。通信経路の切替の際は、図18Bに示すように、ネットワーク装置X97は、第1の経路側の通信ポートを閉塞して(909)、第2の経路側の通信ポートを開放する。これは、第1の経路及び第2の経路の両方を通信可能とすると、第1の経路及び第2の経路によって形成されるループによって通信障害が発生する可能性があるためである。通信経路の切替後は、図18Cに示すように、第2の経路を双方向にデータ902が流れる。
 特許文献1及び2には、通信経路切替に関する技術が記載されている。
特開2020-88769号公報 特開2017-59863号公報
 しかし、お客様ネットワーク91は、ネットワーク装置Y92の宛先情報が更新されないと第1の経路にデータを送信し続けてしまう。そのため、通信キャリアが主導して経路切替を行う場合、ネットワーク装置Y92に作業者を派遣して、ネットワーク装置X97における経路切替とタイミングを合わせてネットワーク装置Y92における経路も切り替えるといった作業が必要だった。また、ネットワーク装置X97が複数のお客様ネットワークと接続されている場合は、複数拠点に作業者の派遣が必要であり、作業ミスによる通信断、及びループによる通信障害の発生等の課題があった。
 お客様側に作業者を派遣しない場合、ネットワーク装置Y92はお客様側装置のため、通信キャリア側から遠隔でネットワーク装置Y92に対して自由に手を加えることはできない。そのため、ネットワーク装置Y92に残存している古い宛先情報の削除を、例えばエージングタイマーの制御により行うとすると、タイマーが満了するまでは第2の経路を利用できないため、長時間の通信断発生が生じる可能性があった。
 本開示の目的は、作業員を派遣しなくても通信経路の切替を迅速に行うことが可能な転送装置、転送方法、転送システム、及びプログラムを提供することである。
 上記課題を解決するため、本開示に係る転送装置は、第1のネットワークに接続するためのゲートウェイとして機能するネットワーク装置と第1の通信経路及び第2の通信経路で接続された、前記第1のネットワークと第2のネットワークとの間でパケットを転送する転送装置であって、前記ネットワーク装置は、前記第1の通信経路に接続するための第1の通信ポート、及び前記第2の通信経路に接続するための第2の通信ポートの各々と、パケットの宛先に関するアドレス情報との対応関係を示す対応情報を保持し、前記ネットワーク装置が、前記対応情報において、前記第1の通信ポートと対応付けられている前記アドレス情報を更新するための更新制御信号を、前記ネットワーク装置へ送信する、制御部を備える。
 また、本開示に係る転送方法は、第1のネットワークに接続するためのゲートウェイとして機能するネットワーク装置と第1の通信経路及び第2の通信経路で接続された、前記第1のネットワークと第2のネットワークとの間でパケットを転送する転送装置の転送方法であって、前記ネットワーク装置は、前記第1の通信経路に接続するための第1の通信ポート、及び前記第2の通信経路に接続するための第2の通信ポートの各々と、パケットの宛先に関するアドレス情報との対応関係を示す対応情報を保持し、前記ネットワーク装置が、前記対応情報において、前記第1の通信ポートと対応付けられている前記アドレス情報を更新するための更新制御信号を、前記ネットワーク装置へ送信する工程を有する。
 また、本開示に係る転送システムは、第1のネットワークに接続するためのゲートウェイとして機能するネットワーク装置と、前記ネットワーク装置と第1の通信経路及び第2の通信経路で接続された、前記第1のネットワークと第2のネットワークとの間でパケットを転送する転送装置と、前記転送装置の動作を制御するための監視制御装置と、を備える転送システムであって、前記ネットワーク装置は、前記第1の通信経路に接続するための第1の通信ポート、及び前記第2の通信経路に接続するための第2の通信ポートの各々と、パケットの宛先に関するアドレス情報との対応関係を示す対応情報を保持し、前記転送装置又は前記監視制御装置は、前記ネットワーク装置が、前記対応情報において、前記第1の通信ポートと対応付けられている前記アドレス情報を更新するための更新制御信号を、前記ネットワーク装置へ送信する、制御部を備える。
 また、本開示に係る転送システムは、コンピュータを上記転送装置として機能させる。
 本開示の一実施形態によれば、作業員を派遣しなくても通信経路の切替を迅速に行うことが可能である。
本開示の一実施形態に係る通信システムの構成例を示す図である。 本開示の一実施形態に係る通信システムの構成例を示す図である。 本開示の一実施形態に係るネットワーク装置のハードウェア構成例を示す図である。 本開示の一実施形態に係るネットワーク装置の機能構成例を示す図である。 本開示の一実施形態における通信経路切替を説明する図である。 本開示の一実施形態における通信経路切替を説明する図である。 FDBの一例を示す図である。 イーサネットフレームの構造を示す図である。 本開示の一実施形態に係る通信システムの動作手順を示すフローチャートである。 本開示の一実施形態に係る通信システムの構成例を示す図である。 本開示の一実施形態に係る通信システムの構成例を示す図である。 本開示の一実施形態に係るネットワーク装置の機能構成例を示す図である。 本開示の一実施形態における通信経路切替を説明する図である。 本開示の一実施形態における通信経路切替を説明する図である。 本開示の一実施形態に係る通信システムの動作手順を示すフローチャートである。 本開示の一実施形態に係る通信システムの動作手順を示すフローチャートである。 本開示の一実施形態における通信経路切替を説明する図である。 本開示の一実施形態における通信経路切替を説明する図である。 本開示の一実施形態に係る通信システムの動作手順を示すフローチャートである。 本開示の一実施形態に係る通信システムの動作手順を示すフローチャートである。 本開示の一実施形態における通信経路切替を説明する図である。 本開示の一実施形態における通信経路切替を説明する図である。 本開示の一実施形態に係る通信システムの動作手順を示すフローチャートである。 本開示の一実施形態に係る通信システムの動作手順を示すフローチャートである。 従来の構成による通信経路切替を説明する図である。 従来の構成による通信経路切替を説明する図である。 従来の構成による通信経路切替を説明する図である。
 以下、本開示の一実施形態について、図面を参照して説明する。各図面中、同一又は相当する部分には、同一符号を付している。本実施形態の説明において、同一又は相当する部分については、説明を適宜省略又は簡略化する。
 <第1実施形態>
 (通信システム)
 図1A及び図1Bは、第1実施形態に係る転送システムとしての通信システム1(1a,1b)の構成例を示す図である。通信システム1(1a,1b)は、第1のネットワークとしてのお客様ネットワーク(NW)31、ネットワーク装置Y32、ネットワーク装置X10a、及び監視制御装置20を備える。ネットワーク装置X10a及び監視制御装置20は通信キャリアが管理する装置であり、ネットワーク装置Y32はお客様が管理する装置である。ネットワーク装置Y32は、お客様ネットワーク31に接続するためのゲートウェイとして機能する。ネットワーク装置X10aは、監視制御装置20からの制御信号に基づき、通信経路の切替に関する制御を行う。また、ネットワーク装置X10aは、お客様ネットワーク(第1のネットワーク)と後述する他のネットワーク(第2のネットワーク)との間でパケットを転送する転送装置として機能する。お客様ネットワーク31は、通信事業者以外の者が管理するネットワークであり、例えば、企業のイントラネット、他の通信事業者が形成するネットワーク、及び家庭内のネットワーク等である。本実施形態に係る通信システム1(1a,1b)は、監視制御装置20がネットワーク装置X10aに直接接続されている通信システム1aと、監視制御装置20がDCN(Data Communication Network)40を介してネットワーク装置X10aに接続されている通信システム1bとに大別される。DCN40は、データを通信可能な任意のネットワークであり、例えば、インターネット、イントラネット、専用の通信回線、又はこれらの組み合わせである。以下、通信システム1a及び1bをまとめて「通信システム1」と称する。
 通信システム1において、ネットワーク装置Y32及びネットワーク装置X10aは、2つの通信経路A(ルートA)39a及び通信経路B(ルートB)39bで接続される。通信経路A39aには、ネットワーク装置Y32に接続するONU-A33a、OSU34a、ネットワーク装置35a、及びネットワーク装置X10aに接続するネットワーク装置36aが存在する。通信経路B39bには、ネットワーク装置Y32に接続するONU-B33b、OSU34b、ネットワーク装置35b、及びネットワーク装置X10aに接続するネットワーク装置36bが存在する。2つの通信経路A39a,B39bには、図1A及び図1Bに示した機器以外の機器が存在してもよい。例えば、ネットワーク装置35aとネットワーク装置36aの間、及び、ネットワーク装置35bとネットワーク装置36bの間にインターネット等の他のネットワークが介在してもよい。
 本実施形態では、2つの通信経路A39a,B39bは光ファイバ回線により構成され、ONU-A33a及びONU-B33bは光ファイバ回線の終端装置として機能する。もっとも、2つの通信経路A39a,B39bを実現する回線は通信可能であれば光ファイバ回線に限られない。例えば、2つの通信経路A39a,B39bは、メタル又は無線等の通信回線により実現してもよい。ONU-A33a及びONU-B33bとネットワーク装置Y32との間にはUNIが形成されている。ネットワーク装置X10aは、ネットワーク装置36a,36bに加えてOSU37に接続し、OSU37に接続されたONU38及びUNIを経て第2のネットワークとしての他のネットワークに接続する。ネットワーク装置X10aが他のネットワークにアクセスするための通信回線(ネットワーク装置X10aとOSU37との間の通信回線を含む、ネットワーク装置X10a以下の通信回線)は「アクセス回線」と称される。以下、お客様ネットワーク31の通信装置と、ネットワーク装置10aがONU38を介して接続する他のネットワーク内の通信装置とがデータを送受信する状況において、その通信経路を通信経路A39aから通信経路B39bへ切り替える処理を説明する。
 ネットワーク装置Y32は、ONU-A33aに接続するためのポートとONU-B33bに接続するためのポートとを備える。ネットワーク装置Y32は、これらのポートとパケットの宛先のMACアドレスとの対応関係を示すFDB(Forwarding DataBase)を保持している。FDBは、ネットワーク装置Y32が第1の通信経路に接続するための第1の通信ポート、及び第2の通信経路に接続するための第2の通信ポートの各々と、パケットの宛先に関するアドレス情報との対応関係を示す対応情報として機能する。パケットを送信する際、ネットワーク装置Y32はFDBを参照し、そのパケットの宛先のMACアドレスに対応付けられたポートからパケットを送信する。ネットワーク装置Y32は、他のネットワークの通信装置からパケットを受信した場合、そのパケットに記載されている送信元のMACアドレスと、そのパケットを受信したネットワーク装置Y32のポートとに基づき、FDBを更新する機能を有する。また、ネットワーク装置Y32は、接続されているONU-A33a又はONU-B33bのリンクがダウンされていたり、あるいはポートが閉塞されていたりすると、そのことを検知してFDBを更新する機能を有する。すなわち、ネットワーク装置Y32は、FDBにおいて通信不能なONU-A33a又はONU-B33bに接続するポートに対応付けられたMACアドレスを他のポートに対応付ける機能を有する。
 本実施形態では、これらの機能に着目して、ネットワーク装置X10aが通信経路A39a側を通信断状態にする際に、ネットワーク装置Y32に対して直接手を加えずにそのFDBを更新するための制御をネットワーク装置X10a又は監視制御装置20が行う。すなわち、ネットワーク装置X10a又は監視制御装置20は、ネットワーク装置Y32が、対応情報(FDB)において、第1の通信ポートと対応付けられているアドレス情報を更新するための更新制御信号をネットワーク装置Y32へ送信する。具体的には、本実施形態では、ネットワーク装置X10aが、ネットワーク装置Y32に対し、ネットワーク装置Y32のFDBにおいて、ONU-A33aに接続するポートと対応付けて管理されていると考えられるMACアドレスを含むパケットを通信経路B39bで送信する。これに応じて、ネットワーク装置Y32は、そのMACアドレスを通信経路B39bに存在するONU-B33bに接続するポートと対応付けるようにFDBを更新する。これ以降、ネットワーク装置Y32は、そのMACアドレスを宛先とするパケットを、ONU-B32bに接続するポートを介して送信する。したがって、本実施形態によれば、作業員を派遣しなくても通信経路の切替を迅速に行うことが可能である。
 (ネットワーク装置X)
 図2は、本開示の一実施形態に係るネットワーク装置X10のハードウェア構成例を示す図である。ネットワーク装置X10は、1つ又は互いに通信可能な複数の情報処理装置である。ネットワーク装置X10は、これらに限定されず、汎用コンピュータ、専用コンピュータ、ワークステーション、PC(Personal Computer)、電子ノートパッド等の任意の電子機器であってもよい。図2に示すように、ネットワーク装置X10は、制御部101、記憶部102、通信部103、入力部104、出力部105、及びバス106を備える。
 制御部101は、1つ以上のプロセッサを含む。一実施形態において「プロセッサ」は、汎用のプロセッサ、又は特定の処理に特化した専用のプロセッサであるが、これらに限定されない。プロセッサは、例えば、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、又はASIC(Application Specific Integrated Circuit)などであってもよい。制御部101は、ネットワーク装置X10を構成する各構成部とバス106を介して通信可能に接続され、ネットワーク装置X10全体の動作を制御する。
 記憶部102は、HDD、SSD、EEPROM、ROM、及びRAMを含む任意の記憶モジュールを含む。記憶部102は、例えば、主記憶装置、補助記憶装置、又はキャッシュメモリとして機能してもよい。記憶部102は、ネットワーク装置X10の動作に用いられる任意の情報を記憶する。例えば、記憶部102は、システムプログラム、アプリケーションプログラム、及び通信部103によって受信された各種情報等を記憶してもよい。記憶部102は、ネットワーク装置X10に内蔵されているものに限定されず、USB等のデジタル入出力ポート等によって接続されている外付けのデータベース又は外付け型の記憶モジュールであってもよい。HDDはHard Disk Driveの略称である。SSDはSolid State Driveの略称である。EEPROMはElectrically Erasable Programmable Read-Only Memoryの略称である。ROMはRead-Only Memoryの略称である。RAMはRandom Access Memoryの略称である。USBはUniversal Serial Busの略称である。
 通信部103は、任意の通信技術によって他の装置と通信接続可能な、任意の通信モジュールを含む。通信部103は、さらに、他の装置との通信を制御するための通信制御モジュール、及び他の装置との通信に必要となる識別情報等の通信用データを記憶する記憶モジュールを含んでもよい。
 入力部104は、ユーザの入力操作を受け付けて、ユーザの操作に基づく入力情報を取得する1つ以上の入力インタフェースを含む。入力部104は、例えば、物理キー、静電容量キー、ポインティングディバイス、出力部105のディスプレイと一体的に設けられたタッチスクリーン、又は音声入力を受け付けるマイク等であるが、これらに限定されない。
 出力部105は、ユーザに対して情報を出力し、ユーザに通知する1つ以上の出力インタフェースを含む。例えば、出力部105は、情報を画像で出力するディスプレイ等であるが、これらに限定されない。なお、上述の入力部104及び出力部105の少なくとも一方は、ネットワーク装置X10と一体に構成されてもよいし、別体として設けられてもよい。
 ネットワーク装置X10の機能は、本実施形態に係るプログラムを、制御部101に含まれるプロセッサで実行することにより実現される。すなわち、ネットワーク装置X10の機能は、ソフトウェアにより実現される。プログラムは、ネットワーク装置X10の動作に含まれるステップの処理をコンピュータに実行させることで、そのステップの処理に対応する機能をコンピュータに実現させる。すなわち、プログラムは、コンピュータを本実施形態に係るネットワーク装置X10として機能させるためのプログラムである。プログラム命令は、必要なタスクを実行するためのプログラムコード、コードセグメントなどであってもよい。
 プログラムは、コンピュータが読み取り可能な記録媒体に記録されていてもよい。このような記録媒体を用いれば、プログラムをコンピュータにインストールすることが可能である。ここで、プログラムが記録された記録媒体は、非一過性の(非一時的な)記録媒体であってもよい。非一過性の記録媒体は、CD(Compact Disk)-ROM(Read-Only Memory)、DVD(Digital Versatile Disc)-ROM、BD(Blu-ray(登録商標) Disc)-ROMなどであってもよい。また、プログラムをサーバのストレージに格納しておき、ネットワークを介して、サーバから他のコンピュータにプログラムを転送することにより、プログラムは流通されてもよい。プログラムはプログラムプロダクトとして提供されてもよい。
 コンピュータは、例えば、可搬型記録媒体に記録されたプログラム又はサーバから転送されたプログラムを、一旦、主記憶装置に格納する。そして、コンピュータは、主記憶装置に格納されたプログラムをプロセッサで読み取り、読み取ったプログラムに従った処理をプロセッサで実行する。コンピュータは、可搬型記録媒体から直接プログラムを読み取り、プログラムに従った処理を実行してもよい。コンピュータは、コンピュータにサーバからプログラムが転送される度に、逐次、受け取ったプログラムに従った処理を実行してもよい。このような処理は、サーバからコンピュータへのプログラムの転送を行わず、実行指示及び結果取得のみによって機能を実現する、いわゆるASP型のサービスによって実行されてもよい。「ASP」は、Application Service Providerの略称である。プログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるものが含まれる。例えば、コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータは、「プログラムに準ずるもの」に該当する。
 ネットワーク装置X10の一部又は全ての機能が、制御部101に含まれる専用回路により実現されてもよい。すなわち、ネットワーク装置X10の一部又は全ての機能が、ハードウェアにより実現されてもよい。また、ネットワーク装置X10は単一の情報処理装置により実現されてもよいし、複数の情報処理装置の協働により実現されてもよい。
 監視制御装置20及びネットワーク装置Y32もネットワーク装置X10と同様のハードウェア構成を備える。監視制御装置20及びネットワーク装置Y32の機能はソフトウェアにより実現されるが、その一部又は全ての機能が、ハードウェアにより実現されてもよい。また、監視制御装置20及びネットワーク装置Y32は単一の情報処理装置により実現されてもよいし、複数の情報処理装置の協働により実現されてもよい。
 図3は、本開示の第1実施形態に係るネットワーク装置X10aの機能構成例を示す図である。ネットワーク装置X10aは、アクセスポート11、2つの中継ポート12(12a,12b)、転送部13、制御ポート14、経路切替部15、SA(Source Address)偽装部16、閉塞部17、開放部18、及び管理部19を備える。これらの各機能要素は、図2に例示されるネットワーク装置X10の各構成要素を制御部101が制御することにより実現される。アクセスポート11は、ネットワーク装置X10a以下のアクセス回線と接続し、パケットの送受信を行う。第3の通信ポートとしての中継ポート12aは通信経路A39aに接続し、パケットの送受信を行う。第4の通信ポートとしての中継ポート12bは通信経路B39bに接続し、パケットの送受信を行う。転送部13は、アクセスポート11、中継ポート12(12a,12b)、及びSA偽装部16の間でパケットの転送処理を行う。制御ポート14は、監視制御装置20と接続しており、制御信号の送受信を行う。経路切替部15は、通信経路の切替の際に、監視制御装置20から経路切替信号を受信したことに応じて、SAの偽装処理信号をSA偽装部16へ、中継ポート12の閉塞処理信号を閉塞部17へ、中継ポート12の開放処理信号を開放部18へ送信する。経路切替信号は、通信経路の切替を指示する信号である。SA偽装部16は、経路切替部15から経路切替信号を受信したことに応じて、送信元のMACアドレスである送信元アドレス(SA:Source Address)を書き換えたパケットを生成して転送部13に転送させるSA偽装処理を行う。前述のように送信元アドレスを偽装したパケットは、ネットワーク装置Y32がFDBを更新して通信経路A39aのポートに対応付けられたMACアドレスを通信経路B39bのポートに対応付けるために用いられる。閉塞部17は、経路切替部15から中継ポート12の閉塞処理信号を受信したことに応じて、中継ポート12a又は中継ポート12bを閉塞する。開放部18は、経路切替部15から中継ポート12の開放処理信号を受信したことに応じて、中継ポート12a又は中継ポート12bを開放する。管理部19は、各中継ポート12a,12bの状態が閉塞か開放かを管理する。
 (通信経路切替処理)
 図4A及び図4Bは、第1実施形態における通信経路切替を説明する図である。本実施形態では、ネットワーク装置X10aと監視制御装置20との接続関係の態様は問わないため、図4A及び図4Bは、ネットワーク装置X10aと監視制御装置20との接続関係を示していない。
 図4Aは、通信経路の切替がなされる前の状態を示している。図4Aでは、お客様ネットワーク31の通信装置と、ネットワーク装置X10aがONU38を介して接続する他のネットワーク内の通信装置との間で、通信経路A39aを用いたデータの送受信が行われている。ここでは通信経路B39bは用いられていないため、ネットワーク装置X10aは、中継ポート12bを閉塞している(51)。
 監視制御装置20が経路切替信号をネットワーク装置X10aに送信すると、ネットワーク装置X10aは、データの送受信に用いる通信経路を通信経路A39aから通信経路B39bへ切り替えるための通信経路切替処理を行う。ネットワーク装置X10aは、通信経路A39a側の中継ポート12aを閉塞するとともに(図4Bの52)、通信経路B39b側の中継ポート12bを開放する。
 さらに、ネットワーク装置X10aは、送信元アドレス(SA)を偽装したパケットを中継ポート12bから通信経路B39b経由でネットワーク装置Y32へ送信する。すなわち、ネットワーク装置X10aは、ネットワーク装置Y32のFDBにおいて、ONU-A33aに接続するポートと対応付けて管理されていると考えられるMACアドレスを送信元アドレスに含むパケットを中継ポート12bから送信する。ネットワーク装置Y32のFDBにおいて、ONU-A33aに接続するポートと対応付けられていると考えられるMACアドレスは、例えば、アクセスポート11を介して受信したパケットに含まれる送信元アドレスから取得することができる。具体的には、ネットワーク装置X10aもアクセスポート11とアクセスポート側の他のネットワークの通信装置のMACアドレスとの対応関係を示すFDBを有しており、このFDBを参照してこのような送信元アドレスを取得してもよい。
 図5Aは、ネットワーク装置X10aが有するFDBの一例を示す図である。図5Aにおいて、「アクセスポート1」は、ネットワーク装置X10aのアクセスポート11を識別する情報である。図5Aの例では、「アクセスポート1」には、4つのMACアドレス「AA-AA-AA-AA-AA-AA」「BB-BB-BB-BB-BB-BB」「CC-CC-CC-CC-CC-CC」「DD-DD-DD-DD-DD-DD」が対応付けられている。これらのMACアドレスは、通信経路A39aを経由したデータ伝送の際に 記録されたものであるため、ネットワーク装置Y32のFDBにおいても、ONU-A33aに接続するポートと対応付けて記録されていると考えられる。そこで、ネットワーク装置X10aは、これらの「アクセスポート1」に対応付けられたMACアドレスの各々(例えば、「AA-AA-AA-AA-AA-AA」)について、送信元アドレスを偽装したパケットを中継ポート12bから通信経路B39b経由でネットワーク装置Y32へ向けて送信する。
 図5Bは、イーサネット(Ethernet II)フレームの構造を示す図である。図5Bに示すように、イーサネットフレームは、プリアンブル、DA(Destination Address)、SA(Source Address)、タイプ、データ、及びFCS(Frame Check Sequence)からなる。ネットワーク装置X10aは、イーサネットフレームによりパケットを送信する場合は、フレーム内のSAを「アクセスポート1」に対応付けられたMACアドレスに設定したパケットを中継ポート12bから送信する。なお、送信元アドレスを偽装したパケットは、ネットワーク装置Y32のFDBを更新するために用いられるため、ペイロード部分はダミーのデータ(例えば、「0」)としてもよい(パディング)。
 ネットワーク装置Y32は、通信経路B39bを介して送信元アドレスが偽装されたパケットを受信すると、その送信元アドレスとONU-B33bに接続されたポートとを対応付けるように、FDBを更新する。したがって、図4Bのように、FDBの更新以後、お客様ネットワーク31の通信装置と、ネットワーク装置X10aのアクセスポート11側に存在する他のネットワーク内の通信装置との間で、通信経路B39bを用いたデータの送受信が開始される。このように、本実施形態においては、送信元アドレスのみを偽装するため、パケット自体の形式は変わらず、ネットワーク装置X10a以外の装置は、設定変更や装置交換等を行う必要なく、通信経路を切り替えることができる。
 図6は、本開示の第1実施形態に係る通信システム1の動作手順を示すフローチャートである。図6を参照して説明する通信システム1の動作は本実施形態に係る転送方法に相当する。
 ステップS1において、ネットワーク装置X10aの制御部101は、制御ポート14により、監視制御装置20から経路切替信号を受信する。ネットワーク装置X10aは、図1Aの構成では、直接接続された監視制御装置20から経路切替信号を受信し、図1Bの構成では、DCN40を介して経路切替信号を受信する。
 ステップS2において、ネットワーク装置X10aの制御部101は、経路切替部15が閉塞部17により、通信経路A39a側の中継ポート12aを閉塞するように制御する。
 ステップS3において、ネットワーク装置X10aの制御部101は、経路切替部15が開放部18により、通信経路B39bの中継ポート12bを開放するように制御する。
 ステップS4において、ネットワーク装置X10aの制御部101は、SA偽装部16により、パケットのSA偽装処理を行う。すなわち、制御部101は、SA偽装部16が、ネットワーク装置X10aのFDBにおいてアクセスポート11に対応付けられた各MACアドレスを送信元アドレスとするパケットを生成するように制御する。
 ステップS5において、ネットワーク装置X13aの制御部101は、転送部13により、開放した中継ポート12bからSA偽装処理を行った各パケットを通信経路B39b経由でネットワーク装置Y32へ送信する。
 ステップS6において、ネットワーク装置Y32は、SA偽装処理したパケットを受信し、FDBの再学習を行う。すなわち、ネットワーク装置Y32は、SA偽装処理したパケットの送信元アドレス(MACアドレス)とONU-B33bに接続するポートとを対応付けてFDBを更新する。これにより、そのMACアドレスを宛先とするパケットは、ONU-B33bに接続するポートから送信されることになる。
 ステップS7において、ネットワーク装置X13a及びネットワーク装置Y32の間で、通信経路B39b上のデータ通信を開始する。そして、フローチャートの処理を終了する。
 <第2実施形態>
 第1実施形態においては、遠隔からネットワーク装置Y32のFDBを更新するための制御として、ネットワーク装置X10aがSA偽装処理したパケットを切替先の通信経路(通信経路B39b)を経由してネットワーク装置Y32へ送信する例を説明した。しかし、ネットワーク装置Y32のFDBを更新するための制御はこれに限られない。本実施形態では、ネットワーク装置X10a又は監視制御装置20が、ONU-A33aをリンクダウン又はポート閉塞させるための信号をONU-A33aへ送信して、ONU-A33aにリンクダウン又はポート閉塞を行わせる例を説明する。ONU-A33aがリンクダウン等を行うと、ネットワーク装置Y32はそのことを検知して、ONU-A33aに接続されたポートを使用しないようにFDBを更新する。これにより、通信経路B39bを介した通信が可能となる。以下、第1実施形態と同一の構成については同じ符号を付し、詳細な説明を省略する。
 (通信システム)
 図7A及び図7Bは、第2実施形態に係る転送システムとしての通信システム2(2a,2b)の構成例を示す図である。通信システム2(2a,2b)は、図1Bに示す通信システム1bと同様に、監視制御装置20及びネットワーク装置X10bがDCN40に接続する。ただし、通信システム2(2a,2b)は、通信システム1bと異なり、ONU-A33aもDCN40に接続する。通信システム2bではさらに、ONU-B33bもDCN40に接続する。通信システム2(2a,2b)に含まれるその他の構成要素は、通信システム1と同様である。本実施形態においても、お客様ネットワーク31の通信装置と、ネットワーク装置10aがONU38を介して接続する他のネットワーク内の通信装置とがデータを送受信する状況において、その通信経路を通信経路A39aから通信経路B39bへ切り替える処理を説明する。
 (ネットワーク装置X)
 図8は、本開示の第2実施形態に係るネットワーク装置X10bの機能構成例を示す図である。ネットワーク装置X10bは、図3のネットワーク装置X10aと同様に、アクセスポート11、2つの中継ポート12(12a,12b)、転送部13、制御ポート14、経路切替部15、閉塞部17、開放部18、及び管理部19を備える。ただし、ネットワーク装置X10bは、SA(Source Address)偽装部16を備えず、リンクダウン部22を備える点がネットワーク装置X10aと相異する。これらの各機能要素は、図2に例示されるネットワーク装置X10の各構成要素を制御部101が制御することにより実現される。本実施形態では、経路切替部15は、通信経路の切替の際に、監視制御装置20から経路切替信号を受信したことに応じて、ONU-A33aを強制的にリンクダウンさせるリンクダウン信号の送信命令信号をリンクダウン部22へ送信する。さらに、経路切替部15は、ネットワーク装置X10aと同様に、中継ポート12の閉塞処理信号を閉塞部17へ、中継ポート12の開放処理信号を開放部18へ送信する。リンクダウン部22は、リンクダウン信号の送信命令信号を受信すると、ネットワーク装置Y32と接続しているONU-A33aのリンクを強制的にダウンさせるためのリンクダウン信号をONU-A33aを宛先として送信する。
 なお、リンクダウン部22は、リンクダウン信号に代えて、ONU-A33aがネットワーク装置Y32と接続するためのポートを閉塞するための閉塞信号をONU-A33aを宛先として送信してもよい。以下、ONU-A33aのリンクをダウンさせるリンクダウン信号が送信される場合の例を説明する。また、リンクダウン信号が監視制御装置20から送信される場合は、リンクダウン部22からリンクダウン信号は送信されない。ネットワーク装置X10bのその他の構成要素は、ネットワーク装置X10aと同様である。
 (通信経路切替処理1)
 図9A及び図9Bは、通信システム2aにおける通信経路切替を説明する図である。図9Aは通信経路切替前の状態を示し、図9Bは通信経路切替後の状態を示す。図9Aにおいて、ネットワーク装置X10bは、通信経路B39b側の中継ポート12bを事前に閉塞しておく(51)。通信経路の切替の際に、ネットワーク装置X10bが、通信経路A39a側の中継ポート12aを閉塞する(図9Bの52)。また、監視制御装置20又はネットワーク装置X10bが、ネットワーク装置Y32と接続しているONU-A33aのリンクをダウンさせるためのリンクダウン信号を送信する。ここで、中継ポート12aの閉塞と、リンクダウン信号の送信は前後を問わない。中継ポート12aの閉塞の前にネットワーク装置X10bがリンクダウン信号を送信する場合、ネットワーク装置X10bは、通信経路A39aを経由してリンクダウン信号を送信してもよいし、DCN40を介して送信してもよい。中継ポート12aの閉塞の前にネットワーク装置X10bがリンクダウン信号を送信する場合、又は、監視制御装置20がリンクダウン信号を送信する場合は、リンクダウン信号は、DCN40を介して送信される。
 リンクダウン信号の受信に応じて、ONU-A33aはネットワーク装置Y32とのリンクをダウンさせる(図9Bの53)。ネットワーク装置Y32はONU-A33aとのリンクダウンを検知すると、FDBをフラッシュして、ONU-A33aと接続するポートを使用しないようにし、通信を行う際はONU-B33bと接続するポートを使用することになる。ネットワーク装置X10bは、通信経路B39b側の中継ポート12bを開放する。これにより通信経路B39bを用いた双方向の通信が可能になる(図9B)。
 図10は、本実施形態に係る通信システム2aの動作手順を示すフローチャートである。図10は、通信システム2aにおいて、ネットワーク装置X10bがリンクダウン信号を送信する場合の動作例を示している。図10を参照して説明する通信システム2aの動作は本実施形態に係る転送方法に相当する。
 ステップS11において、ネットワーク装置X10bの制御部101は、制御ポート14により、監視制御装置20からDCN40を介して経路切替信号を受信する。
 ステップS12において、ネットワーク装置X10bの制御部101は、経路切替部15が、閉塞部17により、通信経路A39a側の中継ポート12aを閉塞するように制御する。
 ステップS13において、ネットワーク装置X10bの制御部101は、リンクダウン部22により、リンクダウン信号をONU-A33aへ送信する。なお、ステップS12とステップS13は順序を入れ替えても構わない。前述のように、中継ポート12aを閉塞する前にリンクダウン信号を送信する場合、ネットワーク装置X10bはリンクダウン信号を、通信経路A39aとDCN40のいずれかを経由して送信する。中継ポート12aを閉塞した後にリンクダウン信号を送信する場合、ネットワーク装置X10bはリンクダウン信号を、DCN40を経由して送信する。
 ステップS14において、ONU-A33aはリンクダウン信号を受信し、ネットワーク装置Y32とのリンクをダウンする。
 ステップS15において、ネットワーク装置Y32は、ONU-A33aとのリンクがダウンしたことを検知して、FDBをフラッシュする。これにより、ONU-A33aに接続されたポートを使用しないようにFDBが更新され、通信経路B39bと接続するためのポートを介した通信が可能になる。
 ステップS16において、ネットワーク装置X10bの制御部101は、経路切替部15が、開放部18により、通信経路B39bの中継ポート12bを開放するように制御する。ステップS16の処理は、ステップS14及びステップS15の処理と並行して行われる。
 ステップS17において、ネットワーク装置X13b及びネットワーク装置Y32の間で、通信経路B39b上のデータ通信を開始する。そして、フローチャートの処理を終了する。
 図11は、本実施形態に係る通信システム2aの動作手順を示すフローチャートである。図11は、通信システム2aにおいて、監視制御装置20がリンクダウン信号を送信する場合の動作例を示している。図11を参照して説明する通信システム2aの動作は本実施形態に係る転送方法に相当する。
 ステップS21において、監視制御装置20は、DCN40を介して、ONU-A33aへリンクダウン信号を送信する。さらに、監視制御装置20は、DCN40を介して、ネットワーク装置X10bへ経路切替信号を送信する。
 ステップS22において、ONU-A33aは、リンクダウン信号を受信し、ネットワーク装置Y32とのリンクをダウンする。
 ステップS23において、ネットワーク装置Y32の制御部101は、ONU-A33aとのリンクがダウンしたことを検知して、FDBをフラッシュする。これにより、ONU-A33aに接続されたポートを使用しないようにFDBが更新され、通信経路B39bと接続するためのポートを介した通信が可能になる。
 一方、ステップS24において、ネットワーク装置X10bの制御部101は、制御ポート14が、監視制御装置20からDCN40を介して経路切替信号を受信するように制御する。
 ステップS25において、ネットワーク装置X10bの制御部101は、経路切替部15が、閉塞部17により、通信経路A39a側の中継ポート12aを閉塞するように制御する。
 ステップS26において、ネットワーク装置X10bの制御部101は、経路切替部15が、開放部18により、通信経路B39bの中継ポート12bを開放するように制御する。ステップS24~ステップS26の処理は、ステップS22及びステップS23の処理と並行して行われる。
 ステップS27において、ネットワーク装置X13b及びネットワーク装置Y32の間で、通信経路B39b上のデータ通信を開始する。そして、フローチャートの処理を終了する。
 (通信経路切替処理2)
 図12A及び図12Bは、通信システム2bにおける通信経路切替を説明する図である。図12Aは通信経路切替前の状態を示し、図12Bは通信経路切替後の状態を示す。図12Aにおいて、ネットワーク装置X10bは、通信経路B39b側の中継ポート12bを事前に閉塞しておく(51)。さらに、ONU-B32bは、ネットワーク装置Y32と接続するためのポートを事前に閉塞しておく(54)。通信経路の切替の際に、ネットワーク装置X10bが、通信経路A39a側の中継ポート12aを閉塞する(図12Bの52)。また、監視制御装置20又はネットワーク装置X10bが、ネットワーク装置Y32と接続しているONU-A33aのリンクをダウンさせるためのリンクダウン信号を送信する。ここで、中継ポート12aの閉塞と、リンクダウン信号の送信は前後を問わない点は通信経路切替処理1と同様である。
 リンクダウン信号の受信に応じて、ONU-A33aはネットワーク装置Y32とのリンクをダウンさせる(図12Bの53)。ネットワーク装置Y32はONU-A33aとのリンクダウンを検知すると、FDBをフラッシュして、ONU-A33aと接続するポートを使用しないようにし、通信を行う際はONU-B33bと接続するポートを使用することになる。ネットワーク装置X10bは、通信経路B39b側の中継ポート12bを開放する。さらに、監視制御装置20又はネットワーク装置X10bは、ONU-B32bがネットワーク装置Y32と接続するためのポートを開放するための信号を、DCN40を介してONU-B32bへ送信する。この信号の受信に応じて、ONU-B32bは、ネットワーク装置Y32と接続するためのポートを開放する。これにより通信経路B39bを用いた双方向の通信が可能になる(図12B)。
 図13は、本実施形態に係る通信システム2bの動作手順を示すフローチャートである。図13は、通信システム2bにおいて、ネットワーク装置X10bがリンクダウン信号を送信する場合の動作例を示している。図13を参照して説明する通信システム2bの動作は本実施形態に係る転送方法に相当する。
 図13のステップS31~ステップS36は、図10のステップS11~ステップS16の処理と同じである。
 ステップS37において、監視制御装置20又はネットワーク装置X10bは、ONU-B32bがネットワーク装置Y32と接続するためのポートを開放するための信号を、DCN40を介してONU-B32bへ送信する。この信号の受信に応じて、ONU-B32bは、ネットワーク装置Y32と接続するためのポートを開放する。ステップS36及びステップ37の処理は、ステップS34及びステップS35の処理と並行して行われる。
 ステップS38において、ネットワーク装置X13b及びネットワーク装置Y32の間で、通信経路B39b上のデータ通信を開始する。そして、フローチャートの処理を終了する。
 図14は、本実施形態に係る通信システム2bの動作手順を示すフローチャートである。図14は、通信システム2bにおいて、監視制御装置20がリンクダウン信号を送信する場合の動作例を示している。図14を参照して説明する通信システム2bの動作は本実施形態に係る転送方法に相当する。
 図14のステップS41~ステップS46は、図11のステップS21~ステップS26の処理と同じである。
 ステップS47において、監視制御装置20又はネットワーク装置X10bは、ONU-B32bがネットワーク装置Y32と接続するためのポートを開放するための信号を、DCN40を介してONU-B32bへ送信する。この信号の受信に応じて、ONU-B32bは、ネットワーク装置Y32と接続するためのポートを開放する。ステップS44~ステップS47の処理は、ステップS42及びステップS43の処理と並行して行われる。
 ステップS48において、ネットワーク装置X13b及びネットワーク装置Y32の間で、通信経路B39b上のデータ通信を開始する。そして、フローチャートの処理を終了する。
 <第3実施形態>
 第1及び第2実施形態では、お客様ネットワーク31及びネットワーク装置Y32が一つずつ存在する例を説明した。本実施形態では、お客様ネットワーク31及びネットワーク装置Y32が複数の存在する場合において、通信経路の切替を行う例を説明する。以下、第1実施形態及び第2実施形態と同一の構成については同じ符号を付し、詳細な説明を省略する。
 (通信経路切替処理)
 図15A及び図15Bは、第3実施形態における通信経路切替を説明する図である。本実施形態に係る転送システムとしての通信システム3は、お客様ネットワーク(NW)31-1~31-3、ネットワーク装置Y-1~Y-3(32-1~32-3)、ネットワーク装置X10a、及び監視制御装置20を備える。ネットワーク装置Y-1~Y-3(32-1~32-3)は、お客様ネットワーク(NW)31-1~31-3に対応して設けられている。本実施形態では、お客様ネットワーク31及びネットワーク装置Y32が複数の存在する構成の一例として、これらが3つずつ存在する場合を説明するが、お客様ネットワーク31及びネットワーク装置Y32は任意の個数でも存在してよい。
 通信システム3において、ネットワーク装置Y-1~Y-3(32-1~32-3)は、それぞれ2つの通信経路A及び通信経路Bでネットワーク装置X10bと接続されている。ただし、本実施形態では、通信経路Aを構成するネットワーク装置35a及び36a、並びに、通信経路Bを構成するネットワーク装置35b及び36bは、全てのネットワーク装置Y-1~Y-3(32-1~32-3)との関係で共通である。すなわち、通信経路Aには、ネットワーク装置Y-1~Y-3(32-1~32-3)に接続するONU-A-1~ONU-A-3(33a-1~33a-3)、OSU34a-1~34a-3、ネットワーク装置35a、及びネットワーク装置X10aに接続するネットワーク装置36aが存在する。通信経路Bには、ネットワーク装置Y-1~Y-3(32-1~32-3)に接続するONU-B-1~ONU-B-3(33b-1~33b-3)、OSU34b-1~34b-3、ネットワーク装置35b、及びネットワーク装置X10aに接続するネットワーク装置36bが存在する。以下、ネットワーク装置Y-1~Y-3(32-1~32-3)をY-*(32-*)と略記する場合がある。同様に、ONU-A-1~ONU-A-3(33a-1~33a-3)をONU-A-*(33a-*)、ONU-B-1~ONU-B-3(33b-1~33b-3)をONU-B-*(33b-*)と略記する場合がある。本実施形態では、監視制御装置20は、DCN40を介して、ONU-A-*(33a-*)及びONU-B-*(33b-*)と通信可能に接続する。
 本実施形態では、ネットワーク装置X10a又は監視制御装置20が、ONU-A-*(33a-*)をリンクダウン又はポート閉塞させるための信号をONU-A-*(33a-*)の各々へ送信して、ONU-A-*(33a-*)にリンクダウン又はポート閉塞を行わせる例を説明する。第2実施形態と同様に、ONU-A-*(33a-*)がリンクダウン等を行うと、ネットワーク装置Y32はそのことを検知して、ONU-A-*(33a-*)に接続されたポートを使用しないようにFDBを更新する。これにより、通信経路Bを介した通信が可能となる。
 図15Aは通信経路切替前の状態を示し、図15Bは通信経路切替後の状態を示す。図15Aにおいて、ネットワーク装置X10bは、通信経路B側の中継ポート12bを事前に閉塞しておく(51)。さらに、ONU-B-*(33b-*)は、ネットワーク装置Y-*(32-*)と接続するためのポートを事前に閉塞しておく(54-1~54-3)。通信経路の切替の際に、ネットワーク装置X10bが、通信経路A側の中継ポート12aを閉塞する(図15Bの52)。また、監視制御装置20又はネットワーク装置X10bが、Y-*(32-*)と接続しているONU-A-*(33a-*)の各々のリンクをダウンさせるためのリンクダウン信号を送信する。ここで、中継ポート12aの閉塞と、リンクダウン信号の送信は前後を問わない点は第2実施形態と同様である。
 リンクダウン信号の受信に応じて、ONU-A-*(33a-*)はネットワーク装置Y-*(32-*)とのリンクをダウンさせる(図15Bの53-1~53-3)。ネットワーク装置Y-*(32-*)はONU-A-*(33a-*)とのリンクダウンを検知すると、FDBをフラッシュして、ONU-A-*(33a-*)と接続するポートを使用しないようにし、通信を行う際はONU-B-*(33a-*)と接続するポートを使用することになる。ネットワーク装置X10bは、通信経路B側の中継ポート12bを開放する。これにより通信経路Bを用いた双方向の通信が可能になる(図15B)。
 図16は、本実施形態に係る通信システム3の動作手順を示すフローチャートである。図16は、通信システム3において、ネットワーク装置X10bがリンクダウン信号を送信する場合の動作例を示している。図16を参照して説明する通信システム3の動作は本実施形態に係る転送方法に相当する。
 ステップS51において、ネットワーク装置X10bの制御部101は、制御ポート14が、監視制御装置20からDCN40を介して経路切替信号を受信するように制御する。
 ステップS52において、ネットワーク装置X10bの制御部101は、経路切替部15が、閉塞部17により、通信経路A側の中継ポート12aを閉塞するように制御する。
 ステップS53において、ネットワーク装置X10bの制御部101は、リンクダウン部22により、リンクダウン信号をONU-A-*(33a-*)の各々へ送信する。なお、ステップS12とステップS13は順序を入れ替えても構わない点は前述のとおりである。
 ステップS54において、ONU-A-*(33a-*)の各々はリンクダウン信号を受信し、ネットワーク装置Y-*(32-*)とのリンクをダウンする。
 ステップS55において、ネットワーク装置Y-*(32-*)は、ONU-A-*(33a-*)とのリンクがダウンしたことをそれぞれ検知して、FDBをフラッシュする。これにより、ONU-A-*(33a-*)に接続されたポートを使用しないようにFDBが更新され、通信経路Bと接続するためのポートを介した通信が可能になる。
 ステップS56において、ネットワーク装置X10bの制御部101は、経路切替部15が、開放部18により、通信経路Bの中継ポート12bを開放するように制御する。
 ステップS57において、監視制御装置20又はネットワーク装置X10bは、ONU-B-*(33b-*)がネットワーク装置Y-*(32-*)と接続するためのポートを開放するための信号を、DCN40を介してONU-B-*(33b-*)の各々へ送信する。この信号の受信に応じて、ONU-B-*(33b-*)は、ネットワーク装置Y-*(32-*)と接続するためのポートをそれぞれ開放する。ステップS56及びステップ57の処理は、ステップS54及びステップS55の処理と並行して行われる。
 ステップS58において、ネットワーク装置X13b及びネットワーク装置Y-*(32-*)の間で、通信経路Bのデータ通信を開始する。そして、フローチャートの処理を終了する。
 図17は、本実施形態に係る通信システム3の動作手順を示すフローチャートである。図17は、通信システム3において、監視制御装置20がリンクダウン信号を送信する場合の動作例を示している。図17を参照して説明する通信システム3の動作は本実施形態に係る転送方法に相当する。
 ステップS61において、監視制御装置20は、DCN40を介して、ONU-A-*(33a-*)の各々へリンクダウン信号を送信する。さらに、監視制御装置20は、DCN40を介して、ネットワーク装置X10bへ経路切替信号を送信する。
 ステップS62において、ONU-A-*(33a-*)の各々は、リンクダウン信号を受信し、ネットワーク装置Y-*(32-*)とのリンクをダウンする。
 ステップS63において、ネットワーク装置Y-*(32-*)は、ONU-A-*(33a-*)とのリンクがダウンしたことを検知して、FDBをフラッシュする。これにより、ONU-A-*(33a-*)に接続されたポートを使用しないようにFDBが更新され、通信経路Bと接続するためのポートを介した通信が可能になる。
 一方、ステップS64において、ネットワーク装置X10bの制御部101は、制御ポート14が、監視制御装置20からDCN40を介して経路切替信号を受信するように制御する。
 ステップS65において、ネットワーク装置X10bの制御部101は、経路切替部15が、閉塞部17により、通信経路A側の中継ポート12aを閉塞するように制御する。
 ステップS66において、ネットワーク装置X10bの制御部101は、経路切替部15が、開放部18により、通信経路Bの中継ポート12bを開放するように制御する。
 ステップS67において、監視制御装置20又はネットワーク装置X10bは、ONU-B-*(33b-*)がネットワーク装置Y-*(32-*)と接続するためのポートを開放するための信号を、DCN40を介してONU-B-*(33b-*)の各々へ送信する。この信号の受信に応じて、ONU-B-*(33b-*)は、ネットワーク装置Y-*(32-*)と接続するためのポートを開放する。ステップS64~ステップS67の処理は、ステップS62及びステップS63の処理と並行して行われる。
 ステップS68において、ネットワーク装置X13b及びネットワーク装置Y-*(32-*)の各々の間で、通信経路B39b上のデータ通信を開始する。そして、フローチャートの処理を終了する。
 なお、本実施形態では、ONU-A-*(33a-*)の各々に対してリンクダウン信号を送信することで、ネットワーク装置Y-*(32-*)のFDBを更新する例を説明したが、ネットワーク装置Y-*(32-*)のFDBを更新する制御はこれに限られない。例えば、第1実施形態と同様に、ネットワーク装置Y-*(32-*)の各々に対して、通信経路Bを経由して、送信元アドレスを偽装したパケットを送信することで、ネットワーク装置Y-*(32-*)のFDBを更新してもよい。
 上述したネットワーク装置10(10a,10b)及び監視制御装置20の各部として機能させるためにコンピュータを好適に用いることが可能である。そのようなコンピュータは、ネットワーク装置10(10a,10b)の各部の機能を実現する処理内容を記述したプログラムをコンピュータの記憶部に格納しておき、コンピュータのCPU(Central Processing Unit)によってこのプログラムを読み出して実行させることで実現することができる。すなわち、そのようなプログラムは、コンピュータを、上述したネットワーク装置10(10a,10b)として機能させることができる。
 また、このプログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROMなどの記録媒体であってもよい。また、このプログラムは、ネットワークを介して提供することも可能である。
 本開示は上述の実施形態に限定されるものではない。例えば、ブロック図に記載の複数のブロックは統合されてもよいし、又は1つのブロックは分割されてもよい。フローチャートに記載の複数のステップは、記述に従って時系列に実行する代わりに、各ステップを実行する装置の処理能力に応じて、又は必要に応じて、並列的に又は異なる順序で実行されてもよい。その他、本開示の趣旨を逸脱しない範囲での変更が可能である。
  1,2,3         通信システム
  10            ネットワーク装置X
  11            アクセスポート
  12            中継ポート
  13            転送部
  14            制御ポート
  15            経路切替部
  16            SA偽装部
  17            閉塞部
  18            開放部
  19            管理部
  20            監視制御装置
  22            リンクダウン部
  31            お客様ネットワーク
  32            ネットワーク装置Y
  33,38         ONU
  34,37         OSU
  35,36         ネットワーク装置
  39a           通信経路A
  39b           通信経路B
  40            DCN
 

Claims (8)

  1.  第1のネットワークに接続するためのゲートウェイとして機能するネットワーク装置と第1の通信経路及び第2の通信経路で接続された、前記第1のネットワークと第2のネットワークとの間でパケットを転送する転送装置であって、
     前記ネットワーク装置は、前記第1の通信経路に接続するための第1の通信ポート、及び前記第2の通信経路に接続するための第2の通信ポートの各々と、パケットの宛先に関するアドレス情報との対応関係を示す対応情報を保持し、
     前記ネットワーク装置が、前記対応情報において、前記第1の通信ポートと対応付けられている前記アドレス情報を更新するための更新制御信号を、前記ネットワーク装置へ送信する、制御部を備える、転送装置。
  2.  前記制御部は、前記対応情報において、前記第1の通信ポートと対応付けられている前記アドレス情報を送信元アドレスとするパケットを前記更新制御信号として、前記第2の通信経路から前記ネットワーク装置へ送信する、請求項1に記載の転送装置。
  3.  前記ネットワーク装置は、前記第1の通信経路と終端装置を介して接続し、
     前記制御部は、前記終端装置に対し、前記ネットワーク装置へのリンクをダウンさせるための信号、又は、前記ネットワーク装置へのポートを閉塞するための信号を、前記更新制御信号として送信する、
     請求項1に記載の転送装置。
  4.  前記制御部は、通信経路の切替を指示する経路切替信号を監視制御装置から受信したことに応じて、前記更新制御信号を前記ネットワーク装置へ送信する、請求項1から3のいずれか一項に記載の転送装置。
  5.  前記制御部は、
     前記転送装置が前記第1の通信経路に接続するための第3の通信ポートを閉塞し、
     前記転送装置が前記第2の通信経路に接続するための第4の通信ポートを開放する、
     請求項1から4のいずれか一項に記載の転送装置。
  6.  第1のネットワークに接続するためのゲートウェイとして機能するネットワーク装置と第1の通信経路及び第2の通信経路で接続された、前記第1のネットワークと第2のネットワークとの間でパケットを転送する転送装置の転送方法であって、
     前記ネットワーク装置は、前記第1の通信経路に接続するための第1の通信ポート、及び前記第2の通信経路に接続するための第2の通信ポートの各々と、パケットの宛先に関するアドレス情報との対応関係を示す対応情報を保持し、
     前記ネットワーク装置が、前記対応情報において、前記第1の通信ポートと対応付けられている前記アドレス情報を更新するための更新制御信号を、前記ネットワーク装置へ送信する工程を有する、転送方法。
  7.  第1のネットワークに接続するためのゲートウェイとして機能するネットワーク装置と、
     前記ネットワーク装置と第1の通信経路及び第2の通信経路で接続された、前記第1のネットワークと第2のネットワークとの間でパケットを転送する転送装置と、
     前記転送装置の動作を制御するための監視制御装置と、
     を備える転送システムであって、
     前記ネットワーク装置は、前記第1の通信経路に接続するための第1の通信ポート、及び前記第2の通信経路に接続するための第2の通信ポートの各々と、パケットの宛先に関するアドレス情報との対応関係を示す対応情報を保持し、
     前記転送装置又は前記監視制御装置は、前記ネットワーク装置が、前記対応情報において、前記第1の通信ポートと対応付けられている前記アドレス情報を更新するための更新制御信号を、前記ネットワーク装置へ送信する、制御部を備える、
     転送システム。
  8.  コンピュータを請求項1から5のいずれか一項に記載の転送装置として機能させるプログラム。
     
PCT/JP2021/000788 2021-01-13 2021-01-13 転送装置、転送方法、転送システム、及びプログラム WO2022153381A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/000788 WO2022153381A1 (ja) 2021-01-13 2021-01-13 転送装置、転送方法、転送システム、及びプログラム
JP2022574898A JP7506334B2 (ja) 2021-01-13 2021-01-13 転送装置、転送方法、転送システム、及びプログラム
US18/271,438 US20240064097A1 (en) 2021-01-13 2021-01-13 Transfer device, transfer method, transfer system, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/000788 WO2022153381A1 (ja) 2021-01-13 2021-01-13 転送装置、転送方法、転送システム、及びプログラム

Publications (1)

Publication Number Publication Date
WO2022153381A1 true WO2022153381A1 (ja) 2022-07-21

Family

ID=82446977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000788 WO2022153381A1 (ja) 2021-01-13 2021-01-13 転送装置、転送方法、転送システム、及びプログラム

Country Status (3)

Country Link
US (1) US20240064097A1 (ja)
JP (1) JP7506334B2 (ja)
WO (1) WO2022153381A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175591A (ja) * 2003-12-08 2005-06-30 Hitachi Cable Ltd スイッチングハブ
JP2011259064A (ja) * 2010-06-07 2011-12-22 O F Networks Co Ltd 光通信ネットワークシステム、子局通信装置及び親局通信装置
JP2015226230A (ja) * 2014-05-28 2015-12-14 古河ネットワークソリューション株式会社 中継装置および中継方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175591A (ja) * 2003-12-08 2005-06-30 Hitachi Cable Ltd スイッチングハブ
JP2011259064A (ja) * 2010-06-07 2011-12-22 O F Networks Co Ltd 光通信ネットワークシステム、子局通信装置及び親局通信装置
JP2015226230A (ja) * 2014-05-28 2015-12-14 古河ネットワークソリューション株式会社 中継装置および中継方法

Also Published As

Publication number Publication date
US20240064097A1 (en) 2024-02-22
JPWO2022153381A1 (ja) 2022-07-21
JP7506334B2 (ja) 2024-06-26

Similar Documents

Publication Publication Date Title
US7907516B2 (en) Node setting apparatus, network system, node setting method, and computer product
US7167450B2 (en) Network management method and communications network system
JP3372455B2 (ja) パケット中継制御方法,パケット中継装置およびプログラム記憶媒体
JP3150624B2 (ja) 通信システム及び通信経路制御方法
US8837286B2 (en) Communication system, flow control device, flow table updating method, and program
US20090019130A1 (en) Network relay system and control method thereof
EP1925128B1 (en) Optimized synchronization of mac address tables in network interconnection apparatuses
US5859848A (en) Asynchronous transfer mode packet conversion to one of plural formats
US8270412B2 (en) Network relay device and ring network
JPH03250946A (ja) 通信装置
US20060209830A1 (en) Packet processing system including control device and packet forwarding device
JP4729117B2 (ja) エッジスイッチ及びフォワーディングテーブルの書き換え方法
CN101442429B (zh) 一种实现业务系统容灾的方法及系统
JP5387349B2 (ja) 中継装置
WO2022153381A1 (ja) 転送装置、転送方法、転送システム、及びプログラム
WO2013129207A1 (ja) 移動体通信システム、通信システム、ノード、フロー制御ネットワーク及び通信制御方法
WO2013141193A1 (ja) 通信システム、制御装置、通信装置、情報中継方法及びプログラム
JP5993353B2 (ja) 光ネットワークシステム
US7478150B2 (en) Network layer link program, network layer link apparatus, and network layer link method
US20080212587A1 (en) Relay apparatus and packet relay method
EP2677700B1 (en) Network system
JP2021069039A (ja) 通信装置、通信装置の制御方法および通信システム
WO2024029085A1 (ja) 通信中継装置、通信システム、通信中継方法及びプログラム
JP6362424B2 (ja) 中継装置および中継方法
JP6393586B2 (ja) 中継装置及び通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574898

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18271438

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919277

Country of ref document: EP

Kind code of ref document: A1