WO2022152020A1 - 承托装置、等离子体增强化学气相沉积设备及其使用方法 - Google Patents

承托装置、等离子体增强化学气相沉积设备及其使用方法 Download PDF

Info

Publication number
WO2022152020A1
WO2022152020A1 PCT/CN2022/070314 CN2022070314W WO2022152020A1 WO 2022152020 A1 WO2022152020 A1 WO 2022152020A1 CN 2022070314 W CN2022070314 W CN 2022070314W WO 2022152020 A1 WO2022152020 A1 WO 2022152020A1
Authority
WO
WIPO (PCT)
Prior art keywords
tray
trays
electrode plates
supporting
support
Prior art date
Application number
PCT/CN2022/070314
Other languages
English (en)
French (fr)
Inventor
杨宝海
杨娜
潘家永
许伟伟
宋玉超
李轶军
李翔
李敦信
李义升
Original Assignee
营口金辰机械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 营口金辰机械股份有限公司 filed Critical 营口金辰机械股份有限公司
Publication of WO2022152020A1 publication Critical patent/WO2022152020A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Definitions

  • the present application relates to the technical field of solar cells, and in particular, to a supporting device, a plasma-enhanced chemical vapor deposition apparatus and a method for using the same.
  • PECVD Plasma Enhanced Chemical Vapor Deposition, plasma enhanced chemical vapor deposition
  • tubular PECVD the shape of the electrodes is flat, the tray supports the battery, and the battery is placed between the two flat electrodes together with the tray to form a discharge circuit.
  • the gas forms plasma under the action of the electric field, and finally completes the coating of the battery.
  • the tray supporting the battery slices may be greatly deformed, resulting in the tray's geometric tolerance and control accuracy exceeding the allowable range.
  • embodiments of the present application are expected to provide a supporting device, a plasma-enhanced chemical vapor deposition apparatus and a method for using the same, so as to alleviate the deformation of the tray.
  • an embodiment of the present application provides, on the one hand, a supporting device, including:
  • a tray configured to support battery sheets, the battery sheets and the tray are stacked along the thickness direction of the tray;
  • the skeleton is formed with a plurality of accommodating cavities, each of the accommodating cavities is provided with a tray connected to the skeleton, and any two trays are staggered along the thickness direction of the trays.
  • the skeleton includes:
  • a dividing net is located in the area enclosed by the frame to divide the area enclosed by the frame into a plurality of the accommodating cavities, and the dividing net is connected to the frame.
  • the dividing net includes a first dividing bar and a second dividing bar that are connected to each other, the first dividing bar intersecting the second dividing bar.
  • the elastic modulus of the material of the skeleton is greater than the elastic modulus of the material of the tray.
  • the tray is formed with a support groove, the support groove is configured to support the battery sheet, and the depth of the support groove is 0.1 mm ⁇ 2 mm.
  • the shape of the tray is rectangular, a plurality of the trays are distributed in a matrix, and each tray is formed with a plurality of supporting grooves, the supporting grooves are configured to support the battery slices, so
  • the shape of the support groove is a rectangle, and a plurality of the support grooves are distributed in a matrix.
  • the accommodating cavity is a through hole
  • the frame is formed with a support hook
  • each of the through holes is correspondingly provided with the support hook
  • the tray is arranged on the support hook.
  • the accommodating cavity is a through hole
  • the tray is exposed through the through hole
  • the tray is formed with a support groove
  • the support groove is configured to support the battery sheet
  • the support groove is located at The side of the tray along the thickness direction of the tray and the side of the tray away from the support groove are isolated from the support groove.
  • a second aspect of the embodiments of the present application provides a plasma-enhanced chemical vapor deposition apparatus, including:
  • the supporting device is configured to be able to move in or out between two adjacent electrode plates; when the supporting device is located between two adjacent electrode plates, the adjacent two The electrode plates are respectively located on both sides of the tray along the thickness direction of the tray.
  • the accommodating cavity is a through hole
  • the skeleton is formed with a support hook
  • each of the through holes is correspondingly provided with the support hook
  • the tray is arranged on the support hook;
  • two adjacent pieces One of the electrode plates is a contact electrode plate, and when the contact electrode plate is in contact with the tray, the support hook is located on the side of the frame facing the contact electrode plate.
  • a third aspect of the embodiments of the present application provides a method for using a plasma-enhanced chemical vapor deposition apparatus, where the plasma-enhanced chemical vapor deposition apparatus is any of the above-mentioned plasma-enhanced chemical vapor deposition apparatuses, and the using method includes the following step:
  • Plasma-enhanced chemical vapor deposition coating is performed on the battery sheet between two adjacent electrode plates.
  • the plurality of trays on the skeleton are roughly distributed along the plane.
  • the two adjacent electrode plates are respectively located on both sides of the tray along the thickness direction of the tray, and the plurality of trays on the skeleton are roughly distributed along the plane between the two adjacent electrode plates , which is equivalent to dividing the whole tray between two adjacent electrode plates in the prior art into a skeleton and a plurality of relatively small trays arranged on the skeleton.
  • the area of the single tray in the embodiment of the present application is smaller, which can improve the deformation resistance of the tray to a certain extent, and alleviate or even eliminate the tray.
  • the deformation during the handling process enables the shape and position tolerance and control precision of the pallet to be basically within the allowable range.
  • the area of a single tray is reduced, the total area of the multiple trays on the skeleton is still large enough to place a sufficient number of cells, so that each PECVD coating on two adjacent electrode plates can complete a sufficient number of cells.
  • the coating process can ensure the production capacity of a single equipment.
  • the supporting device located between two adjacent electrode plates includes a skeleton and a plurality of trays arranged on the skeleton.
  • the skeleton and the tray are two separate parts, which are located at the same phase as in the prior art.
  • the materials of the skeleton and the tray can be selected separately, and the selection of the materials of the skeleton and the tray is more flexible, unlike the two adjacent electrodes in the prior art. Only one material can be used for the entire pallet between the plates. Due to the small area of the single pallet in the embodiment of the present application, the deformation resistance of the single pallet is improved. Even if the deformation resistance of the skeleton is average, the pallet will not be greatly deformed, and the shape and position tolerance and control accuracy of the pallet are basically It can still be within the allowable range, and it will not have much impact on the battery sheets on the tray, which allows more choices for the shape and material of the skeleton.
  • FIG. 1 is a schematic structural diagram of an electrode plate and a supporting device of a plasma-enhanced chemical vapor deposition apparatus according to an embodiment of the application;
  • FIG. 2 is a schematic structural diagram of a supporting device according to an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a skeleton according to an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a tray according to an embodiment of the application.
  • Fig. 5 is a sectional view at position A-A in Fig. 4;
  • electrode plate 1 supporting device 2; tray 21; supporting groove 211; skeleton 22; accommodating cavity 221; frame 222; dividing net 223; 224.
  • orientation or positional relationship are based on the orientation or positional relationship shown in FIG. 1 .
  • the thickness direction of the tray is the direction indicated by the arrow B in the figure.
  • PECVD For plate type PECVD, in the prior art, a whole tray is usually moved between two electrode plates, and PECVD coating is performed on all the cells on the whole tray together, each time PECVD coating is performed, two electrode plates are There is only one tray in between. After the coating is completed, the cells need to be removed from between the electrode plates together with the whole tray. With the development of technology, the area of the electrode plate is getting larger and larger.
  • the area of the entire tray placed between the two electrode plates is also Correspondingly, it becomes larger and larger, and the area of the whole pallet is so large that the pallet will be deformed greatly during the handling process, resulting in the shape and position tolerance and control accuracy of the pallet exceeding the allowable range.
  • an embodiment of the present application provides a plasma enhanced chemical vapor deposition apparatus, please refer to FIG. 1 , including a support device 2 and a plurality of electrode plates 1 .
  • the supporting device 2 is configured to be able to move in or out between two adjacent electrode plates 1 .
  • two adjacent electrode plates 1 are usually arranged in the up-down direction.
  • two adjacent electrode plates 1 may also be arranged in other directions than the up-down direction.
  • the support device 2 is usually in a vacuum state.
  • the vacuum state is also the negative pressure state.
  • the negative pressure is relatively large and the air is relatively thin.
  • the plasma enhanced chemical vapor deposition apparatus further includes a plurality of process chambers, and at least one of the process chambers is provided with an electrode plate 1 .
  • the electrode plate 1 coats the cells on the support device 2, the process chamber is evacuated to make the support device 2 in a vacuum state.
  • the plasma-enhanced chemical vapor deposition apparatus further includes a clamp, and the clamp picks up the support device 2 and moves the support device 2 into or out between two adjacent electrode plates 1 .
  • the gripper picks up the holder 2 and transfers the holder 2 from one of the process chambers to the other.
  • one of the process chambers here may be a process chamber with an electrode plate 1 , or a process chamber without an electrode plate 1 for conveying the supporting device 2 .
  • the other process chamber may be a process chamber with an electrode plate 1 or a process chamber without an electrode plate 1 for conveying the support device 2 .
  • the fixture may be a manipulator, a suction cup, or a link mechanism, or the like.
  • the supporting device 2 of the embodiment of the present application includes a tray 21 and a frame 22 .
  • the tray 21 is configured to support the battery sheets, and the battery sheets and the tray 21 are stacked along the thickness direction of the tray.
  • the skeleton 22 is formed with a plurality of accommodating cavities 221 , each accommodating cavity 221 is provided with a tray 21 connected to the skeleton 22 , and any two trays 21 are staggered along the thickness direction of the trays.
  • the two adjacent electrode plates 1 are respectively located on both sides of the tray 21 along the thickness direction of the tray.
  • the plurality of trays 21 on the frame 22 are generally distributed along a plane.
  • the supporting device 2 is located between two adjacent electrode plates 1
  • the two adjacent electrode plates 1 are respectively located on both sides of the tray 21 along the thickness direction of the tray, and the plurality of trays 21 on the skeleton 22 are on the adjacent two electrode plates. 1 is roughly distributed along a plane, which is equivalent to dividing the whole tray 21 between two adjacent electrode plates 1 in the prior art into a frame 22 and a plurality of relatively small trays 21 arranged on the frame 22 .
  • the area of the single tray 21 in the embodiment of the present application is smaller, which can improve the deformation resistance of the tray 21 to a certain extent.
  • the deformation of the pallet 21 during the transportation process is alleviated or even eliminated, so that the shape and position tolerance and control precision of the pallet 21 can be basically within the allowable range.
  • the area of the single tray 21 is reduced, the total area of the multiple trays 21 on the skeleton 22 is still large enough to place a sufficient number of cells, so that each PECVD coating on the adjacent two electrode plates 1 can be completed.
  • the coating treatment of a large number of cells can ensure the production capacity of a single device.
  • the scattered trays 21 are arranged on the skeleton 22, and all the trays 21 on the skeleton 22 can be transported through the transportation of the skeleton 22, so that the plurality of trays 21 and the batteries on the trays 21 can be moved into or out of the adjacent ones along with the skeleton 22.
  • the two electrode plates 1 can carry out the transportation of the plurality of trays 21 and the battery slices on the trays 21 relatively quickly, thereby improving the production efficiency.
  • the supporting device 2 located between two adjacent electrode plates 1 includes a frame 22 and a plurality of trays 21 arranged on the frame 22.
  • the frame 22 and the tray 21 are two separate parts, opposite to each other.
  • the materials of the skeleton 22 and the tray 21 can be selected separately, and the selection of the materials of the skeleton 22 and the tray 21 is more flexible. , unlike in the prior art, only one material can be selected for the entire tray 21 between two adjacent electrode plates 1 . Due to the small area of the single-piece tray 21 in the embodiment of the present application, the deformation resistance of the single-piece tray 21 is improved.
  • the tray 21 Even if the deformation resistance of the skeleton 22 is average, the tray 21 will not be greatly deformed, and the shape and position tolerance of the tray 21 And the control accuracy can basically still be within the allowable range, and it will not have much influence on the battery sheets on the tray 21 , which makes the shape and material of the skeleton 22 more selectable.
  • the tray 21 by reducing the area of the single-piece tray 21 to improve the deformation resistance of the tray 21, it is not necessary to increase the thickness of the tray 21 in order to improve the deformation resistance of the tray 21, and the tray can even be reduced to a certain extent.
  • the thickness of 21 reduces the consumption of heat on the tray 21 , which is beneficial for the electrode plate 1 to transfer heat to the battery slices relatively quickly through the tray 21 , so that the battery slices are heated quickly and production efficiency is improved.
  • the area of the single tray 21 is small and the thickness of the tray 21 does not need to be increased, which makes the tray 21 more convenient to manufacture and can reduce the process cost of the tray 21 , and the thinner tray 21 can reduce the material cost of the tray 21 .
  • the pallet 21 is arranged on the frame 22 and moves together with the frame 22 , and the pallet 21 is usually conveyed by conveying the frame 22 .
  • the handling process of the tray 21 includes the process of moving the frame 22 and the tray 21 into or out of two adjacent electrode plates 1 together.
  • the conveying process of the tray 21 also includes the process of transferring the frame 22 and the tray 21 together from one of the process chambers to the other process chamber.
  • any two trays 21 are staggered along the tray thickness direction, that is, any two trays 21 do not overlap in the tray thickness direction.
  • the battery slices are placed on the tray 21, and the purpose of transporting the battery slices is achieved by the transportation of the tray 21.
  • the tray 21 can play a role in protecting the battery slices, avoiding damage to the battery slices caused by direct handling of the battery slices, and improving the performance of the battery slices. equipment yield.
  • the cells of the solar photovoltaic cell may be silicon wafers.
  • the size of the battery sheet is 125mm ⁇ 300mm.
  • the jig picks up the frame 22 and moves the frame 22 and all the trays 21 on the frame 22 into or out between two adjacent electrode plates 1 .
  • the jig picks up the skeleton 22 and transfers the skeleton 22 and all trays 21 on the skeleton 22 from one of the process chambers to the other.
  • the material of the tray 21 may be aluminum alloy, carbon-carbon composite material, graphite, titanium alloy, carbon fiber, stainless steel, glass, or the like.
  • the material of the skeleton 22 may be aluminum alloy, carbon-carbon composite material, graphite, titanium alloy, carbon fiber, stainless steel, glass, or the like.
  • the elastic modulus of the material of the frame 22 is greater than the elastic modulus of the material of the tray 21 .
  • the elastic modulus of the material of the skeleton 22 is large, so that the skeleton 22 has a large anti-deformation ability.
  • the load acting on the tray 21 is relatively small, so even if the tray 21 is made of a material with a relatively small elastic modulus, the deformation resistance of the tray 21 can still roughly meet the requirements, and the shape and position tolerance and control accuracy of the tray 21 can be basically within the within the allowable range.
  • a material with a larger elastic modulus is usually more expensive than a material with a smaller elastic modulus.
  • this structure can ensure the tray 21 on the one hand. No large deformation occurs, so that the shape and position tolerance and control accuracy of the tray 21 can be basically within the allowable range. On the other hand, the elastic modulus of the material of the tray 21 is small, which can reduce the material cost.
  • the material of the frame 22 is carbon-carbon composite material
  • the material of the tray 21 is aluminum alloy.
  • the accommodating cavity 221 may be a through hole.
  • the tray 21 can be exposed to the electrode plate 1 through the through hole, the electrode plate 1 can be in direct contact with the tray 21, and the electrode plate 1 can transfer heat to the battery sheets placed on the tray 21 through the tray 21, which is beneficial to improve heat transfer. efficiency. It is avoided that the heat of the electrode plate 1 is first transferred to the frame 22 , then transferred to the tray 21 through the frame 22 , and then transferred to the battery slices on the tray 21 .
  • the accommodating cavity 221 is a through hole, so that the skeleton 22 uses relatively less material, which can save costs to a certain extent.
  • the accommodating cavity 221 may be located on one side of the skeleton 22 , and the side of the skeleton 22 facing away from the accommodating cavity 221 is isolated from the accommodating cavity 221 . That is, one side of the accommodating cavity 221 has an opening for entering and exiting the cell, and the other side is closed.
  • the frame 22 includes a frame 222 and a partition net 223 .
  • the dividing net 223 is located in the area enclosed by the frame 222 to divide the area enclosed by the frame 222 into a plurality of accommodating cavities 221 , and the dividing net 223 is connected to the frame 222 .
  • the frame 222 and the dividing net 223 are connected to form the frame 22 for placing the tray 21, and the space in the frame 222 is divided into a plurality of accommodating cavities 221 by the dividing net 223, so as to facilitate the placing of the tray 21.
  • the dividing net 223 includes a first dividing bar 2231 and a second dividing bar 2232 which are connected to each other, and the first dividing bar 2231 and the second dividing bar 2232 intersect.
  • the first dividing strips 2231 and the second dividing strips 2232 are crisscrossed, dividing the area surrounded by the frame 222 into a plurality of accommodating cavities 221 .
  • the dividing net 223 is located in the area enclosed by the frame 222, that is to say, the frame 222 is enclosed around the dividing net 223, the area enclosed by the frame 222 is separated by the first dividing bar 2231 and the second dividing bar 223.
  • the bar 2232 is divided into a plurality of accommodating cavities 221, and the accommodating cavities 221 are actually through holes.
  • a part of the accommodating cavity 221 is surrounded by a frame 222 , a first dividing bar 2231 and a second dividing bar 2232 .
  • the number of the first dividing bars 2231 is multiple, and the plurality of first dividing bars 2231 are arranged in parallel and spaced apart.
  • the number of the second dividing bars 2232 is multiple, and the plurality of second dividing bars 2232 are arranged in parallel and spaced apart.
  • part of the accommodating cavity 221 passes through two adjacent first dividing bars 2231 and two adjacent second dividing bars 2231 .
  • Two dividing strips 2232 are surrounded.
  • the first separating bar 2231 and the second separating bar 2232 are perpendicular to each other. In this way, the tray 21 in a rectangular shape can be better adapted.
  • the accommodating cavity 221 is a through hole
  • the frame 22 is formed with a support hook 224
  • each through hole is correspondingly provided with a support hook 224
  • the tray 21 is disposed on the support hook 224 .
  • the tray 21 located in the accommodating cavity 221 is supported by the hooks 224, so that the tray 21 can be supported on the frame 22, and the tray 21 can be prevented from passing through the through hole.
  • the first separating strip 2231 and the frame 222 are both formed with hooks 224 .
  • brackets 224 in each accommodating cavity 221 are disposed opposite to each other.
  • the hooks 224 in each accommodating cavity 221 are arranged along the circumferential direction of the accommodating cavity 221 .
  • one electrode plate 1 of the two adjacent electrode plates 1 is the contact electrode plate 1 .
  • the position of the tray 21 on the frame 22 is relatively close to the side of the frame 22 facing the contact electrode plate 1 , which is beneficial for the tray 21 to contact the contact electrode plate 1 .
  • the electrode plate 1 located below is in contact with the electrode plate 1
  • the hook 224 is located on the lower side of the frame 22 .
  • the tray 21 is formed with a support groove 211 , and the support groove 211 is configured to support the battery slices. In this way, the battery pieces are placed in the supporting groove 211 , so that the battery pieces are arranged in an orderly manner on the tray 21 .
  • the depth H of the support grooves 211 should not be too deep or too shallow. If too shallow, it will be unfavorable for the support grooves 211 to limit the battery slices, and the battery slices may slide out of the support grooves 211. A plasma film is deposited on the cell surface.
  • the depth H of the support groove 211 is 0.1 mm ⁇ 0.2 mm. In this way, the depth H of the support grooves 211 is appropriate, which can not only achieve the purpose of limiting the position of the cell, but also better perform PECVD coating on the cell.
  • the shape of the cells of the solar photovoltaic cell is generally rectangular.
  • the shape of the support groove 211 is a rectangle. In this way, the shape of the supporting groove 211 can be adapted to the shape of the battery sheet it supports.
  • the shape of the tray 21 is rectangular. In this way, it is possible to make full use of the space of the tray 21 to tile more support grooves 211 , so as to avoid wasting the space of the tray 21 .
  • the shape of the tray 21 is rectangular, and the plurality of trays 21 are distributed in a matrix.
  • the shape of the supporting grooves 211 is rectangular, and the plurality of supporting grooves 211 on each tray 21 are distributed in a matrix.
  • Such a structure makes the distribution of the supporting grooves 211 and the distribution of the trays 21 relatively compact, the edges of the adjacent supporting grooves 211 can be well matched, and the edges of the adjacent trays 21 can be well matched, which is conducive to making full use of The space between two adjacent electrode plates 1 is laid with more battery sheets, so as to avoid wasting the space between the two adjacent electrode plates 1 .
  • the shape of the tray 21 is rectangular, and the ten trays 21 are distributed in a matrix of 5 rows and 2 columns.
  • the shape of the supporting grooves 211 is rectangular, and each tray 21 has 10 supporting grooves 211 , and the 10 supporting grooves 211 are distributed in a matrix of 2 rows and 5 columns.
  • the matrix distribution of the plurality of trays 21 on the skeleton 22 can have various forms.
  • the plurality of trays 21 on the skeleton 22 may be in a matrix distribution of 1 row and 2 columns, a matrix distribution of 1 row and 3 columns, a matrix distribution of 2 rows and 2 columns, a matrix distribution of 2 rows and 3 columns, and a matrix distribution of 2 rows and 4 columns.
  • the matrix distribution of the plurality of supporting grooves 211 on each tray 21 may have various forms.
  • the plurality of supporting grooves 211 on each tray 21 may be in a matrix distribution of 1 row and 1 column, a matrix distribution of 1 row and 2 columns, a matrix distribution of 1 row and 3 columns, a matrix distribution of 2 rows and 2 columns, Matrix distribution with 2 rows and 3 columns, matrix distribution with 2 rows and 4 columns, matrix distribution with 3 rows and 3 columns, matrix distribution with 3 rows and 4 columns, matrix distribution with 3 rows and 5 columns, or matrix distribution with 10 rows and 10 columns, etc.
  • all the supporting grooves 211 between two adjacent electrode plates 1 may be in a matrix distribution of 8 rows and 8 columns, a matrix distribution of 9 rows and 9 columns, or a matrix distribution of 10 rows and 10 columns.
  • the cell needs to be heated. Since the electrode plate 1 and the supporting device 2 are both in a vacuum state during the PECVD coating process, even if the accommodating cavity 221 is a through hole, the flat electrode plate 1 is difficult to achieve. In direct contact with the battery sheet, the electrode plate 1 is in contact with the tray 21 exposed from the through hole so that the electrode plate 1 transfers heat to the battery sheet through the tray 21 .
  • the accommodating cavity 221 is a through hole
  • the tray 21 is exposed through the through hole
  • the bracket slot 211 is located on one side of the tray 21 along the thickness direction of the tray, and the side of the tray 21 away from the bracket slot 211 is opposite to The support groove 211 is isolated.
  • Such a structure increases the contact area between the tray 21 and the electrode plate 1 , and the battery slices located in the supporting groove 211 can be in contact with the tray 21 on the entire surface, which increases the contact area between the battery slice and the tray 21 , so that the electrode plate 1 can be The heat is transferred to the cells relatively quickly, so that the cells are heated quickly and the production efficiency is improved.
  • the electrode plate 1 usually located below is in contact with the bottom of the tray 21 exposed from the through hole.
  • the single-piece tray 21 improves the deformation resistance, it does not need to increase the thickness of the tray 21, and even can reduce the thickness of the tray 21.
  • the thinner tray 21 is beneficial for the electrode plate 1 to pass through the tray 21. The heat is transferred, the heat loss of the tray 21 is reduced, the cells are heated rapidly, and the production efficiency is improved.
  • a single process chamber performs PECVD coating once, and can complete the coating process for 100-400 cells.
  • An embodiment of the present application provides a method for using a plasma-enhanced chemical vapor deposition apparatus, where the plasma-enhanced chemical vapor deposition apparatus is any of the above-mentioned plasma-enhanced chemical vapor deposition apparatus, and the using method includes the following steps:
  • Plasma-enhanced chemical vapor deposition coating is performed on the battery sheets between two adjacent electrode plates 1 .
  • the plurality of trays 21 on the frame 22 are moved together between two adjacent electrode plates 1, so that the plurality of trays 21 can be quickly moved into the two adjacent electrode plates 1, thereby improving production efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种承托装置、等离子体增强化学气相沉积设备及其使用方法,由于任意两块托盘沿托盘厚度方向相互错开,骨架上的多块托盘大致沿平面分布。当承托装置位于相邻两块电极板之间,相邻两块电极板分别位于托盘沿托盘厚度方向的两侧,骨架上的多块托盘在相邻两块电极板之间大致沿平面分布,相当于将相邻两块电极板之间的整块托盘分割成了骨架和设置在骨架上的多块较小的托盘。本申请实施例的单块托盘的面积较小,缓解甚至消除托盘在搬运过程中的变形。骨架上的多块托盘的总面积仍然足够大,能够确保单台设备的产能。可以通过对骨架的搬运实现对骨架上的所有托盘的搬运,提高生产效率。骨架和托盘是分离的零部件,材料选择更为灵活。

Description

承托装置、等离子体增强化学气相沉积设备及其使用方法
相关申请的交叉引用
本申请基于申请号为202110050701.6、申请日为2021年01月14日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及太阳能电池技术领域,尤其涉及一种承托装置、等离子体增强化学气相沉积设备及其使用方法。
背景技术
在太阳能电池制作过程中,需要对电池片镀膜,常用的镀膜方式为PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学气相沉积)镀膜,PECVD分为管式PECVD和板式PECVD,对于板式PECVD而言,其电极的形状呈平板状,托盘承托电池片,电池片随托盘一起放置到两块平板状的电极之间形成放电回路,气体在电场作用下形成等离子体,最终完成电池片的镀膜。在使用过程中,承托电池片的托盘可能发生较大的变形导致托盘的形位公差和控制精度超出了允许的范围。
发明内容
有鉴于此,本申请实施例期望提供一种承托装置、等离子体增强化学气相沉积设备及其使用方法,以缓解托盘的变形。
为达到上述目的,本申请实施例一方面提供一种承托装置,包括:
托盘,配置为承托电池片,所述电池片与所述托盘沿托盘厚度方向叠 置;以及
骨架,形成有多个容纳腔,每个所述容纳腔内设置有与所述骨架连接的托盘,任意两块托盘沿所述托盘厚度方向相互错开。
一实施例中,所述骨架包括:
边框;以及
分隔网,位于所述边框围设成的区域内以将所述边框围设成的区域分隔成多个所述容纳腔,所述分隔网与所述边框连接。
一实施例中,所述分隔网包括相互连接的第一分隔条和第二分隔条,所述第一分隔条与所述第二分隔条相交。
一实施例中,所述骨架的材质的弹性模量大于所述托盘的材质的弹性模量。
一实施例中,所述托盘形成有承托槽,所述承托槽配置为承托所述电池片,所述承托槽的深度为0.1mm~2mm。
一实施例中,所述托盘的形状呈矩形,多块所述托盘呈矩阵分布,每块所述托盘形成有多个承托槽,所述承托槽配置为承托所述电池片,所述承托槽的形状为矩形,多个所述承托槽呈矩阵分布。
一实施例中,所述容纳腔为通孔,所述骨架形成有托钩,每个所述通孔对应设置有所述托钩,所述托盘设置在所述托钩上。
一实施例中,所述容纳腔为通孔,所述托盘露出于所述通孔,所述托盘形成有承托槽,所述承托槽配置为承托所述电池片,承托槽位于托盘沿托盘厚度方向的一侧,托盘背离承托槽的一侧与承托槽隔离。
本申请实施例第二方面提供一种等离子体增强化学气相沉积设备,包括:
多块电极板;以及
上述对应的承托装置,所述承托装置配置为能够移入或移出相邻两块 所述电极板之间;当所述承托装置位于相邻两块所述电极板之间,相邻两块所述电极板分别位于所述托盘沿所述托盘厚度方向的两侧。
一实施例中,所述容纳腔为通孔,所述骨架形成有托钩,每个所述通孔对应设置有所述托钩,所述托盘设置在所述托钩上;相邻两块所述电极板的其中一块电极板为接触电极板,当所述接触电极板与所述托盘抵接,所述托钩位于所述骨架朝向接触电极板的一侧。
本申请实施例第三方面提供一种等离子体增强化学气相沉积设备的使用方法,所述等离子体增强化学气相沉积设备为上述任一种的等离子体增强化学气相沉积设备,所述使用方法包括以下步骤:
将电池片放置在所述托盘上;
移动所述骨架以使所述承托装置移入相邻两块所述电极板之间;
对相邻两块所述电极板之间的电池片进行等离子体增强化学气相沉积镀膜。
本申请实施例承托装置,由于任意两块托盘沿托盘厚度方向相互错开,骨架上的多块托盘大致沿平面分布。当承托装置位于相邻两块电极板之间,相邻两块电极板分别位于托盘沿托盘厚度方向的两侧,骨架上的多块托盘在相邻两块电极板之间大致沿平面分布,相当于将现有技术中的相邻两块电极板之间的整块托盘分割成了骨架和设置在骨架上的多块相对较小的托盘。相对于现有技术中相邻两块电极板之间的整块托盘而言,本申请实施例的单块托盘的面积较小,能够在一定程度上提高托盘的抗变形能力,缓解甚至消除托盘在搬运过程中的变形,使得托盘的形位公差和控制精度能够基本上处于允许的范围内。单块托盘的面积虽然减小,骨架上的多块托盘的总面积仍然足够大,能够放置足够数量的电池片,使得相邻两块电极板每进行一次PECVD镀膜能够完成对足够数量的电池片的镀膜处理,能够确保单台设备的产能。零散的托盘设置在骨架上,可以通过对骨架的搬运 实现对骨架上的所有托盘的搬运,从而使得多块托盘以及托盘上的电池随骨架一起移入或移出相邻两块电极板,能够较为快速地实现对多块托盘以及托盘上的电池片的搬运,提高生产效率。本申请实施例中,位于相邻两块电极板之间的承托装置包括骨架和设置在骨架上的多块托盘,骨架和托盘是两个分离的零部件,相对于现有技术中位于相邻两块电极板之间的整块托盘而言,骨架和托盘的材料可以分别进行针对性的选择,骨架和托盘的材料的选择更为灵活,不像现有技术中的相邻两块电极板之间的整块托盘只能选用一种材料。由于本申请实施例的单块托盘面积较小提高了单块托盘的抗变形能力,即使骨架的抗变形能力一般,托盘也不会发生较大的变形,托盘的形位公差和控制精度基本上仍能够处于允许的范围内,对托盘上的电池片也不会有太大的影响,这就使得骨架的形状和材料可以有较多的选择。
附图说明
图1为本申请一实施例的等离子体增强化学气相沉积设备的电极板和承托装置的结构示意图;
图2为本申请一实施例的承托装置的结构示意图;
图3为本申请一实施例的骨架的结构示意图;
图4为本申请一实施例的托盘的结构示意图;
图5为图4中的位置A-A处的剖视图;
附图标记说明:电极板1;承托装置2;托盘21;承托槽211;骨架22;容纳腔221;边框222;分隔网223;第一分隔条2231;第二分隔条2232;托钩224。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的 技术特征可以相互组合,具体实施方式中的详细描述应理解为本申请宗旨的解释说明,不应视为对本申请的不当限制。
在本申请实施例的描述中,“上”、“下”、“顶”、“底”、方位或位置关系为基于附图1所示的方位或位置关系。在本申请实施例的描述中,请参阅图5,托盘厚度方向为图中箭头B所示的方向。需要理解的是,这些方位术语仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
作为本申请创造性构思的一部分,在描述本申请的实施例之前,需对现有技术中,托盘发生变形的原因进行分析,通过合理分析得到本申请实施例的技术方案。
对于板式PECVD而言,现有技术中,通常将一整块托盘移入两块电极板之间,并对整块托盘上的所有电池片一起进行PECVD镀膜,每次进行PECVD镀膜,两块电极板之间仅有一块托盘,镀膜完成后,需要将电池片随整块托盘一起从电极板之间移出。随着技术的发展,电极板的面积越来越大,为了充分利用面积增大的电极板对更多数量的电池片进行PECVD镀膜,放入两块电极板之间的整块托盘的面积也相应地越来越大,整块托盘的面积大到一定程度使得托盘在搬运过程中会发生较大的变形导致托盘的形位公差和控制精度超出了允许的范围。
鉴于此,本申请实施例提供一种等离子体增强化学气相沉积设备,请参阅图1,包括承托装置2和多块电极板1。承托装置2配置为能够移入或移出相邻两块电极板1之间。
一实施例中,请参阅图1,相邻两块电极板1通常沿上下方向排列。
一实施例中,相邻两块电极板1还可以沿上下方向以外的其它方向排列。
需要解释的是,当电极板1对承托装置2上的电池片进行PECVD镀膜处理,承托装置2通常处于真空状态。
需要解释的是,真空状态也即为负压状态,在对电池片镀膜过程中,负压程度较大,空气较为稀薄。
一实施例中,等离子体增强化学气相沉积设备还包括多个工艺腔室,至少一个工艺腔室内设置有电极板1。当电极板1对承托装置2上的电池片镀膜,工艺腔室被抽成真空,以使承托装置2处于真空状态。
一实施例中,等离子体增强化学气相沉积设备还包括夹具,夹具拾取承托装置2并将承托装置2移入或移出相邻两块电极板1之间。
一实施例中,夹具拾取承托装置2并将承托装置2从其中一个工艺腔室传送到另一个工艺腔室。需要解释的是,此处其中一个工艺腔室可以是带电极板1的工艺腔室,也可以不带电极板1的用于传送承托装置2的工艺腔室。另一个工艺腔室可以是带有电极板1的工艺腔室,也可以是不带电极板1的用于传送承托装置2的工艺腔室。
一实施例中,夹具可以为机械手、吸盘或连杆机构等。
本申请实施例的承托装置2,请参阅图2,包括托盘21以及骨架22。托盘21配置为承托电池片,电池片与托盘21沿托盘厚度方向叠置。骨架22形成有多个容纳腔221,每个容纳腔221内设置有与骨架22连接的托盘21,任意两块托盘21沿托盘厚度方向相互错开。
当承托装置2位于相邻两块电极板1之间,相邻两块电极板1分别位于托盘21沿托盘厚度方向的两侧。
由于任意两块托盘21沿托盘厚度方向相互错开,骨架22上的多块托盘21大致沿平面分布。当承托装置2位于相邻两块电极板1之间,相邻两块电极板1分别位于托盘21沿托盘厚度方向的两侧,骨架22上的多块托盘21在相邻两块电极板1之间大致沿平面分布,相当于将现有技术中的相 邻两块电极板1之间的整块托盘21分割成了骨架22和设置在骨架22上的多块相对较小的托盘21。相对于现有技术中相邻两块电极板1之间的整块托盘21而言,本申请实施例的单块托盘21的面积较小,能够在一定程度上提高托盘21的抗变形能力,缓解甚至消除托盘21在搬运过程中的变形,使得托盘21的形位公差和控制精度能够基本上处于允许的范围内。单块托盘21的面积虽然减小,骨架22上的多块托盘21的总面积仍然足够大,能够放置足够数量的电池片,使得相邻两块电极板1每进行一次PECVD镀膜能够完成对足够数量的电池片的镀膜处理,能够确保单台设备的产能。零散的托盘21设置在骨架22上,可以通过对骨架22的搬运实现对骨架22上的所有托盘21的搬运,从而使得多块托盘21以及托盘21上的电池随骨架22一起移入或移出相邻两块电极板1,能够较为快速地实现对多块托盘21以及托盘21上的电池片的搬运,提高生产效率。本申请实施例中,位于相邻两块电极板1之间的承托装置2包括骨架22和设置在骨架22上的多块托盘21,骨架22和托盘21是两个分离的零部件,相对于现有技术中位于相邻两块电极板1之间的整块托盘21而言,骨架22和托盘21的材料可以分别进行针对性的选择,骨架22和托盘21的材料的选择更为灵活,不像现有技术中的相邻两块电极板1之间的整块托盘21只能选用一种材料。由于本申请实施例的单块托盘21面积较小提高了单块托盘21的抗变形能力,即使骨架22的抗变形能力一般,托盘21也不会发生较大的变形,托盘21的形位公差和控制精度基本上仍能够处于允许的范围内,对托盘21上的电池片也不会有太大的影响,这就使得骨架22的形状和材料可以有较多的选择。
可以理解的是,通过减小单块托盘21的面积以提高托盘21的抗变形能力,不需要为了提高托盘21的抗变形能力而增加托盘21的厚度,甚至还可以在一定程度上减小托盘21的厚度,减小了热量在托盘21上的消耗, 有利于电极板1通过托盘21较为快速地向电池片传递热量,使电池片快速加热,提高生产效率。单块托盘21的面积较小且不需要增加托盘21的厚度使得托盘21的制作较为方便,能够降低托盘21的工艺成本,托盘21较薄能够降低托盘21的材料成本。
需要解释的是,托盘21设置在骨架22上随骨架22一起移动,通常通过对骨架22的搬运以实现对托盘21的搬运。托盘21的搬运过程包括骨架22和托盘21一起移入或移出相邻两块电极板1的过程。
当承托装置2从其中一个工艺腔室传送到另一个工艺腔室,托盘21的搬运过程还包括骨架22和托盘21一起从其中一个工艺腔室传送到另一个工艺腔室的过程。
需要解释的是,任意两块托盘21沿托盘厚度方向相互错开,也就是任意两块托盘21沿托盘厚度方向不重叠。
可以理解的是,电池片放置在托盘21上,通过托盘21的搬运达到搬运电池片的目的,托盘21能够起到保护电池片的作用,避免直接对电池片进行搬运造成电池片的损伤,提高设备的良率。
一实施例中,太阳能光伏电池的电池片可以为硅片。
一实施例中,电池片的尺寸为125mm~300mm。
一实施例中,夹具拾取骨架22,并将骨架22及骨架22上的所有托盘21移入或移出相邻两块电极板1之间。
一实施例中,夹具拾取骨架22,并将骨架22及骨架22上的所有托盘21从其中一个工艺腔室传送至另一个工艺腔室。
一实施例中,托盘21的材质可以为铝合金、碳-碳复合材料、石墨、钛合金、碳纤维、不锈钢或玻璃等。
一实施例中,骨架22的材质可以为铝合金、碳-碳复合材料、石墨、钛合金、碳纤维、不锈钢或玻璃等。
一实施例中,骨架22的材质的弹性模量大于托盘21的材质的弹性模量。如此结构形式,骨架22的材质的弹性模量较大使得骨架22具有较大的抗变形能力,在通过骨架22搬运托盘21的过程中,骨架22不会发生较大的变形,骨架22因变形而作用在托盘21上的载荷较小,因而即使托盘21采用弹性模量相对较小的材质,托盘21的抗变形能力仍然能够大致满足要求,托盘21的形位公差和控制精度能够基本上处于允许的范围内。弹性模量较大的材质通常比弹性模量较小的材质贵,相对于相邻两块电极板1之间的整块托盘21采用同一种材质而言,这种结构一方面能够确保托盘21不发生较大的变形,使托盘21的形位公差和控制精度能够基本上处于允许的范围内,另一方面,托盘21的材质的弹性模量较小,能够降低材料成本。
一实施例中,骨架22的材质为碳-碳复合材料,托盘21的材质为铝合金。
一实施例中,请参阅图3,容纳腔221可以为通孔。如此,托盘21能够通过通孔向电极板1露出,电极板1能够与托盘21直接抵接,电极板1可通过托盘21将热量传递至放置在托盘21上的电池片,有利于提高传热效率。避免电极板1的热量先传递到骨架22,再通过骨架22传递到托盘21,然后再传递到托盘21上的电池片。容纳腔221为通孔,使得骨架22的用材相对较少,能够在一定程度上节约成本。
一实施例中,容纳腔221可以位于骨架22一侧,骨架22背离容纳腔221的一侧与容纳腔221隔离。即容纳腔221一侧具有供电池片进出的开口,另一侧是封闭的。
一实施例中,请参阅图3,骨架22包括边框222和分隔网223。分隔网223位于边框222围设成的区域内以将边框222围设成的区域分隔成多个容纳腔221,分隔网223与边框222连接。如此结构形式,通过边框222和分隔网223连接成放置托盘21的骨架22,通过分隔网223将边框222内 的空间分隔成多个容纳腔221,以便于放置托盘21。
一实施例中,请参阅图3,分隔网223包括相互连接的第一分隔条2231和第二分隔条2232,第一分隔条2231与第二分隔条2232相交。如此结构形式,第一分隔条2231和第二分隔条2232纵横交错,将边框222围设成的区域分隔成多个容纳腔221。
可以理解的是,由于分隔网223位于边框222围设成的区域内,也就是说边框222围设在分隔网223的周围,边框222围设成的区域被第一分隔条2231和第二分隔条2232分隔成多个容纳腔221,容纳腔221实际上为通孔。
一实施例中,请参阅图3,部分容纳腔221通过边框222、第一分隔条2231和第二分隔条2232围设而成。
一实施例中,第一分隔条2231的数量为多根,多根第一分隔条2231平行且间隔设置。
一实施例中,请参阅图3,第二分隔条2232的数量为多根,多根第二分隔条2232平行且间隔设置。
一实施例中,当多根第一分隔条2231平行且间隔设置,多根第二分隔条2232平行且间隔设置,部分容纳腔221通过相邻两根第一分隔条2231和相邻两根第二分隔条2232围设而成。
一实施例中,请参阅图3,第一分隔条2231和第二分隔条2232相互垂直。如此,能够较好地适应矩形形状的托盘21。
一实施例中,请参阅图3,容纳腔221为通孔,骨架22形成有托钩224,每个通孔对应设置有托钩224,托盘21设置在托钩224上。如此,位于容纳腔221内的托盘21被托钩224托住,使托盘21能够承托在骨架22上,避免托盘21从通孔穿过。
一实施例中,请参阅图3,第一分隔条2231和边框222均形成有托钩 224。
一实施例中,请参阅图3,每个容纳腔221内的托钩224相对设置。
一实施例中,请参阅图3,每个容纳腔221内的托钩224沿容纳腔221的周向设置。
一实施例中,相邻两块电极板1的其中一块电极板1为接触电极板1,当接触电极板1与托盘21抵接,托钩224位于骨架22朝向接触电极板1的一侧。如此结构形式,使得托盘21在骨架22上的位置较为靠近骨架22朝向接触电极板1的一侧,有利于托盘21与接触电极板1接触。
一实施例中,请参阅图1,当相邻两块电极板1沿上下方向设置,位于下方的电极板1为接触电极板1,托钩224位于骨架22的下侧。
一实施例中,请参阅图2、图4以及图5,托盘21形成有承托槽211,承托槽211配置为承托电池片。如此,将电池片放置在承托槽211内,使电池片在托盘21上有序排列摆放。
可以理解的是,承托槽211的深度H不宜过深或过浅,过浅则不利于承托槽211对电池片限位,电池片可能会滑出承托槽211,过深则不利于等离子体薄膜沉积到电池片表面。一实施例中,请参阅图5,承托槽211的深度H为0.1mm~0.2mm。如此,承托槽211的深度H较为合适,即能够达到对电池片限位的目的,又能够对电池片较好地进行PECVD镀膜。
可以理解的是,太阳能光伏电池的电池片的形状通常呈矩形。一实施例中,请参阅图2和图4,承托槽211的形状呈矩形。如此,承托槽211的形状能够与其承托的电池片的形状相适应。
一实施例中,请参阅图2和图4,当承托槽211的形状呈矩形,托盘21的形状呈矩形。如此,能够充分利用托盘21的空间平铺较多的承托槽211,避免浪费托盘21的空间。
一实施例中,请参阅图2和图4,托盘21的形状呈矩形,多块托盘21 呈矩阵分布。承托槽211的形状呈矩形,每块托盘21上的多块承托槽211呈矩阵分布。如此结构形式,使得承托槽211的分布和托盘21的分布均较为紧凑,相邻承托槽211的边缘能够较好地吻合,相邻托盘21的边缘能够较好地吻合,有利于充分利用相邻两块电极板1之间的空间铺设较多的电池片,避免相邻两块电极板1之间的空间浪费。
一实施例中,请参阅图2和图4,托盘21的形状呈矩形,10块托盘21呈5行2列的矩阵分布。承托槽211的形状呈矩形,每块托盘21上具有10个承托槽211,10个承托槽211呈2行5列的矩阵分布。
可以理解的是,骨架22上的多块托盘21的矩阵分布可以有多种形式。示例性地,骨架22上的多块托盘21可以呈1行2列的矩阵分布、1行3列的矩阵分布、2行2列的矩阵分布、2行3列的矩阵分布、2行4列的矩阵分布、3行3列的矩阵分布、3行4列的矩阵分布、3行5列的矩阵分布、或10行10列的矩阵分布等。
可以理解的是,每块托盘21上的多个承托槽211的矩阵分布可以有多种形式。示例性地,每块托盘21上的多个承托槽211可以呈1行1列的矩阵分布、1行2列的矩阵分布、1行3列的矩阵分布、2行2列的矩阵分布、2行3列的矩阵分布、2行4列的矩阵分布、3行3列的矩阵分布、3行4列的矩阵分布、3行5列的矩阵分布、或10行10列的矩阵分布等。
一实施例中,相邻两块电极板1之间的所有承托槽211可以呈8行8列的矩阵分布、9行9列的矩阵分布、或10行10列的矩阵分布等。
需要解释的是,当相邻两块电极板1对位于相邻两块电极板1之间的电池片进行PECVD镀膜,电极板1以及承托装置2均处于真空状态。
可以理解的是,在PECVD镀膜过程中需要对电池片加热,由于PECVD镀膜过程中,电极板1和承托装置2均处于真空状态,即使容纳腔221为通孔,平板状的电极板1难以直接与电池片接触,电极板1与从通孔露出 的托盘21接触以便于电极板1通过托盘21向电池片传递热量。一实施例中,请参阅图5,容纳腔221为通孔,托盘21露出于通孔,承托槽211位于托盘21沿托盘厚度方向的一侧,托盘21背离承托槽211的一侧与承托槽211隔离。如此结构形式,增加了托盘21与电极板1的接触面积,位于承托槽211内的电池片能够整面与托盘21接触,增加了电池片与托盘21的接触面积,因而使得电极板1能够较为快速地向电池片传递热量,使电池片快速加热,提高生产效率。
一实施例中,请参阅图1,当相邻两块电极板1沿上下方向设置,通常位于下方的电极板1与从通孔露出的托盘21底部抵接。
可以理解的是,由于单块托盘21提高抗变形能力不需要增加托盘21的厚度,甚至能够减小托盘21的厚度,较薄的托盘21有利于电极板1通过托盘21较为快速地向电池片传递热量,减少托盘21的热量损耗,使电池片快速加热,提高生产效率。
本申请实施例的等离子体增强化学气相沉积设备,单工艺腔室进行一次PECVD镀膜,可完成对100~400片的电池片镀膜处理。
本申请实施例提供一种等离子体增强化学气相沉积设备的使用方法,等离子体增强化学气相沉积设备为上述任一种的等离子体增强化学气相沉积设备,使用方法包括以下步骤:
将电池片放置在所述托盘21上;
移动所述骨架22以使所述承托装置2移入相邻两块所述电极板1之间;
对相邻两块所述电极板1之间的电池片进行等离子体增强化学气相沉积镀膜。
通过移动骨架22,使骨架22上的多块托盘21一起移入相邻两块电极板1之间,使得多块托盘21能够快速地移入相邻两块电极板1提高了生产效率。
本申请提供的各个实施例/实施方式在不产生矛盾的情况下可以相互组合。
以上仅为本申请的较佳实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种承托装置,包括:
    托盘,配置为承托电池片,所述电池片与所述托盘沿托盘厚度方向叠置;以及
    骨架,形成有多个容纳腔,每个所述容纳腔内设置有与所述骨架连接的托盘,任意两块托盘沿所述托盘厚度方向相互错开。
  2. 根据权利要求1所述的承托装置,所述骨架包括:
    边框;以及
    分隔网,位于所述边框围设成的区域内以将所述边框围设成的区域分隔成多个所述容纳腔,所述分隔网与所述边框连接。
  3. 根据权利要求2所述的承托装置,所述分隔网包括相互连接的第一分隔条和第二分隔条,所述第一分隔条与所述第二分隔条相交。
  4. 根据权利要求1~3任一项所述的承托装置,所述骨架的材质的弹性模量大于所述托盘的材质的弹性模量。
  5. 根据权利要求1~3任一项所述的承托装置,所述托盘形成有承托槽,所述承托槽配置为承托所述电池片,所述承托槽的深度为0.1mm~2mm。
  6. 根据权利要求1~3任一项所述的承托装置,所述托盘的形状呈矩形,多块所述托盘呈矩阵分布,每块所述托盘形成有多个承托槽,所述承托槽配置为承托所述电池片,所述承托槽的形状为矩形,多个所述承托槽呈矩阵分布。
  7. 根据权利要求1~3任一项所述的承托装置,所述容纳腔为通孔,所述骨架形成有托钩,每个所述通孔对应设置有所述托钩,所述托盘设置在所述托钩上。
  8. 根据权利要求1~3任一项所述的承托装置,所述容纳腔为通孔, 所述托盘露出于所述通孔,所述托盘形成有承托槽,所述承托槽配置为承托所述电池片,承托槽位于托盘沿托盘厚度方向的一侧,托盘背离承托槽的一侧与承托槽隔离。
  9. 一种等离子体增强化学气相沉积设备,包括:
    多块电极板;以及
    根据权利要求1~6任一项或权利要求8所述的承托装置,所述承托装置配置为能够移入或移出相邻两块所述电极板之间;当所述承托装置位于相邻两块所述电极板之间,相邻两块所述电极板分别位于所述托盘沿所述托盘厚度方向的两侧。
  10. 根据权利要求9所述的等离子体增强化学气相沉积设备,所述容纳腔为通孔,所述骨架形成有托钩,每个所述通孔对应设置有所述托钩,所述托盘设置在所述托钩上;相邻两块所述电极板的其中一块电极板为接触电极板,当所述接触电极板与所述托盘抵接,所述托钩位于所述骨架朝向接触电极板的一侧。
  11. 一种等离子体增强化学气相沉积设备的使用方法,所述等离子体增强化学气相沉积设备为权利要求9或10所述的等离子体增强化学气相沉积设备,所述使用方法包括以下步骤:
    将电池片放置在所述托盘上;
    移动所述骨架以使所述承托装置移入相邻两块所述电极板之间;
    对相邻两块所述电极板之间的电池片进行等离子体增强化学气相沉积镀膜。
PCT/CN2022/070314 2021-01-14 2022-01-05 承托装置、等离子体增强化学气相沉积设备及其使用方法 WO2022152020A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110050701.6 2021-01-14
CN202110050701.6A CN114763607A (zh) 2021-01-14 2021-01-14 承托装置和等离子体增强化学气相沉积设备

Publications (1)

Publication Number Publication Date
WO2022152020A1 true WO2022152020A1 (zh) 2022-07-21

Family

ID=82363582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070314 WO2022152020A1 (zh) 2021-01-14 2022-01-05 承托装置、等离子体增强化学气相沉积设备及其使用方法

Country Status (2)

Country Link
CN (1) CN114763607A (zh)
WO (1) WO2022152020A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040466A (ja) * 2007-08-09 2009-02-26 Panasonic Corp トレイ及び電子部品収納方法
CN102154630A (zh) * 2010-09-30 2011-08-17 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体反应腔室及其设备、部件的制造方法和处理基片的方法
CN203582970U (zh) * 2013-07-18 2014-05-07 新奥光伏能源有限公司 一种承载治具及等离子体增强化学气相沉积设备
WO2020229529A1 (fr) * 2019-05-15 2020-11-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de depôt chimique en phase vapeur presentant des zones de depôt reconfigurables
CN112226746A (zh) * 2020-10-29 2021-01-15 常州捷佳创精密机械有限公司 硅片载板、载板电极装置和镀膜设备
CN215103541U (zh) * 2021-01-14 2021-12-10 营口金辰机械股份有限公司 一种等离子体增强化学气相沉积设备
CN215163110U (zh) * 2021-01-14 2021-12-14 营口金辰机械股份有限公司 承托装置和等离子体增强化学气相沉积设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040466A (ja) * 2007-08-09 2009-02-26 Panasonic Corp トレイ及び電子部品収納方法
CN102154630A (zh) * 2010-09-30 2011-08-17 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体反应腔室及其设备、部件的制造方法和处理基片的方法
CN203582970U (zh) * 2013-07-18 2014-05-07 新奥光伏能源有限公司 一种承载治具及等离子体增强化学气相沉积设备
WO2020229529A1 (fr) * 2019-05-15 2020-11-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de depôt chimique en phase vapeur presentant des zones de depôt reconfigurables
CN112226746A (zh) * 2020-10-29 2021-01-15 常州捷佳创精密机械有限公司 硅片载板、载板电极装置和镀膜设备
CN215103541U (zh) * 2021-01-14 2021-12-10 营口金辰机械股份有限公司 一种等离子体增强化学气相沉积设备
CN215163110U (zh) * 2021-01-14 2021-12-14 营口金辰机械股份有限公司 承托装置和等离子体增强化学气相沉积设备

Also Published As

Publication number Publication date
CN114763607A (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
TWI518832B (zh) 真空處理系統架構
KR20150060086A (ko) 클러스터형 배치식 기판처리 시스템
WO2021218760A1 (zh) 传送载板、真空镀膜设备及真空镀膜方法
CN215163110U (zh) 承托装置和等离子体增强化学气相沉积设备
TW201038023A (en) Substrate treatment device and method for manufacturing semiconductor device
CN215103541U (zh) 一种等离子体增强化学气相沉积设备
KR101157192B1 (ko) 배치식 기판 처리 장치
JP2020526040A (ja) 基板を搬送するための装置、このような装置の基板キャリアに適合された収容板を有する処理装置、及び当該基板を搬送するための装置を使用して基板を処理するための方法、並びに処理システム
WO2022152020A1 (zh) 承托装置、等离子体增强化学气相沉积设备及其使用方法
WO2022152023A1 (zh) 一种等离子体增强化学气相沉积设备及其使用方法
KR20070015759A (ko) 평판표시소자 제조장치
JP2013187318A (ja) インライン型プラズマcvd装置
CN212270220U (zh) 传送载板及真空镀膜设备
TW201839887A (zh) 基板處理系統、基板傳送裝置和傳送方法
KR20110059227A (ko) 트레이 및 이를 사용하는 기판처리장치
JP4613089B2 (ja) インライン式処理装置におけるガラス基板のハンドリング機構
JP2015137415A (ja) 大面積原子層蒸着装置
KR101167989B1 (ko) 기판 처리 장치
CN218404371U (zh) 一种加热腔
CN212894947U (zh) 一种溅射工艺托盘装置
KR100920420B1 (ko) 평판표시소자 제조장치
KR102647837B1 (ko) 기판처리 장치의 반응기 및 이를 포함하는 기판처리 장치
CN210085576U (zh) 一种水平载片舟及其托架结构
KR101512329B1 (ko) 배치식 기판처리 장치
CN216288341U (zh) 半导体制造装置用隔离件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22738901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22738901

Country of ref document: EP

Kind code of ref document: A1