WO2022151901A1 - 加热组件及加热雾化装置 - Google Patents

加热组件及加热雾化装置 Download PDF

Info

Publication number
WO2022151901A1
WO2022151901A1 PCT/CN2021/138382 CN2021138382W WO2022151901A1 WO 2022151901 A1 WO2022151901 A1 WO 2022151901A1 CN 2021138382 W CN2021138382 W CN 2021138382W WO 2022151901 A1 WO2022151901 A1 WO 2022151901A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
heating assembly
groove
grooves
surface energy
Prior art date
Application number
PCT/CN2021/138382
Other languages
English (en)
French (fr)
Inventor
周宏明
金鹤
肖俊杰
刘华
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to EP21919089.9A priority Critical patent/EP4278910A1/en
Publication of WO2022151901A1 publication Critical patent/WO2022151901A1/zh
Priority to US18/349,886 priority patent/US20230347445A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/04Waterproof or air-tight seals for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Definitions

  • the present application relates to the technical field of heating atomization, and in particular, to a heating element and a heating atomization device including the heating element.
  • the heated atomizing device can heat the solid-state aerosol-generating substrate in a heat-not-combustion manner, thereby generating an aerosol that can be inhaled by a user.
  • the heating atomization device usually includes a heating component and a power source, the power source supplies power to the heating component, the heating component converts the electrical energy into heat energy, and the aerosol generating substrate absorbs the heat and atomizes to form an aerosol.
  • the heating element When the heating atomizing device is in operation, the heating element penetrates into the aerosol generating matrix to form a central heating mode from the inside to the outside.
  • soot is easily formed on the surface of the heating assembly, which not only affects the appearance of the heating assembly, but also can absorb the heat of the heating assembly to generate odor or harmful gas, thus affecting the aerosol suction. Consistency of taste.
  • the formation of soot has an important relationship with the contact surface between the heating element and the aerosol-generating substrate. By reducing the surface energy of the contact surface, the soot formed on the contact surface can be reduced.
  • the temperature resistance of the material generally does not exceed 300 °C, and the working temperature of the heating component can reach up to 350 °C. °C, so that the low surface energy film cannot be used in the high temperature environment of the heating element, so it is urgent to reduce the surface energy of the contact surface by other means to reduce the generation of soot.
  • a heating assembly and a heating atomization device including the heating assembly are provided.
  • the heating assembly includes a base body, a heating layer and an insulating and heat-conducting layer, the heating layer is stacked between the base body and the insulating and heat-conducting layer, and the insulating and heat-conducting layer is far from the heating layer.
  • the surface of the side forms the outer surface.
  • the low surface energy structure includes a plurality of first grooves formed by the outer surface depressions, each of the first depressions The grooves extend as a whole along the first direction, and the plurality of first grooves are arranged at intervals along the second direction.
  • the width occupied by the first groove in the second direction is 0.01 ⁇ m to 500 ⁇ m, and the distance between two adjacent first grooves is 0.02 ⁇ m to 500 ⁇ m, so The recessed depth of the first groove is 0.01 ⁇ m to 100 ⁇ m.
  • the first groove is a linear groove or a curved shape.
  • the low surface energy structure further includes a plurality of second grooves formed by the outer surface depressions, each of the second grooves extends along the second direction as a whole, and the plurality of second grooves extend along the second direction as a whole.
  • the second grooves are arranged at intervals along the first direction, and the first grooves and the second grooves are intersected and communicated with each other.
  • the width occupied by the second grooves in the first direction is 0.01 ⁇ m to 500 ⁇ m, and the distance between two adjacent second grooves is 0.02 ⁇ m to 500 ⁇ m, so The recessed depth of the second groove is 0.01 ⁇ m to 100 ⁇ m.
  • the second groove is a linear groove or a curved groove.
  • the insulating and heat-conducting layer includes a plurality of protruding pillars arranged in a matrix, and the cross-sections of the protruding pillars are circular, oval, rectangular, rhombus or regular polygon.
  • the orthographic projections of the two rows of the convex pillars in the first direction completely overlap, partially overlap or do not overlapping.
  • the low surface energy structure includes a plurality of counterbore formed by the depression on the outer surface, all the counterbore are arranged in a matrix, and the cross-sectional size of the counterbore is 0.01 ⁇ m to 500 ⁇ m , the distance between two adjacent counter holes is 0.02 ⁇ m to 500 ⁇ m, and the concave depth of the counter holes is 0.01 ⁇ m to 100 ⁇ m.
  • the cross section of the counterbore is a circle, an ellipse, a rhombus or a regular polygon.
  • the low surface energy structure includes a groove or a counterbore
  • the insulating and heat-conducting layer has a laminated surface stacked on the heating layer
  • the groove or the counterbore is connected to the The set spacing is maintained between the stacked faces.
  • the low surface energy structure is formed by at least one of chemical etching process, laser etching process, plasma etching process and mechanical processing process.
  • a heating atomization device comprising the heating assembly described in any one of the above embodiments.
  • a technical effect of one embodiment of the present application is that the surface energy of the outer surface can be reduced due to the low surface energy structure of the heating element.
  • the remaining unrecessed portion of the outer surface forms the contact surface that is in direct contact with the aerosol-generating substrate.
  • the contact surface can be made to have strong hydrophobic and oleophobic properties, and the moisture and viscous oil generated by the decomposition of the aerosol-generating matrix during the heating process will be difficult to adhere to the contact surface.
  • FIG. 1 is a schematic diagram of a longitudinal cross-sectional structure of a heating assembly provided by an embodiment
  • FIG. 2 is a schematic cross-sectional structural diagram of the heating assembly provided by the first embodiment
  • FIG. 3 is a schematic cross-sectional structural diagram of a heating assembly provided by a second embodiment
  • FIG. 4 is a schematic cross-sectional structural diagram of a heating assembly provided by a third embodiment
  • FIG. 5 is a schematic cross-sectional structural diagram of a heating assembly provided by a fourth embodiment
  • FIG. 6 is a schematic cross-sectional structural diagram of a heating assembly provided by a fifth embodiment
  • FIG. 7 is a schematic cross-sectional structural diagram of a heating assembly provided by a sixth embodiment
  • FIG. 8 is a schematic cross-sectional structural diagram of a heating assembly provided by a seventh embodiment
  • FIG. 9 is a schematic cross-sectional structural diagram of a heating assembly provided in an eighth embodiment.
  • Figure 10a is a schematic structural diagram of water droplets attached to a traditional heating assembly
  • Figure 10b is a schematic structural diagram of water droplets attached to the heating assembly shown in Figure 1;
  • Fig. 11a is a schematic structural diagram of the attachment of diiodomethane droplets on a conventional heating element.
  • Fig. 11b is a schematic structural diagram of a diiodomethane droplet attached to the heating assembly shown in Fig. 1;
  • Figure 12a is a schematic plan view of a conventional heating assembly in an initial state
  • Figure 12b is a schematic plan view of the conventional heating assembly after suctioning six hundred atomized medium carriers
  • Fig. 13a is a schematic plan view of the heating assembly shown in Fig. 1 in an initial state
  • Fig. 13b is a schematic plan view of the heating assembly shown in Fig. 1 after suctioning six hundred atomized medium carriers.
  • a heating assembly 10 provided by an embodiment of the present application includes a base body 100 , a heating layer 200 and an insulating and thermally conductive layer 300 .
  • the base body 100, the heating layer 200 and the insulating and heat-conducting layer 300 are stacked on each other, the heating layer 200 is stacked on the base body 100, and the insulating and heat-conducting layer 300 is stacked on the heating layer 200, that is, the heating layer 200 is stacked on the base body 100 and the heating layer 200. between the insulating and thermally conductive layers 300 .
  • the heating layer 200 When the heating layer 200 is energized, the heating layer 200 can generate heat.
  • the insulating and heat-conducting layer 300 has an outer surface 310 and a stacking surface 320.
  • the outer surface 310 and the stacking surface 320 are opposite to each other in the thickness direction of the insulating and heat-conducting layer 300, and the stacking surface 320 is stacked on the heating layer 200.
  • the outer surface 310 will be located on the side of the insulating and thermally conductive layer 300 away from the heating layer 200 .
  • the heating assembly 10 is inserted into the aerosol-generating substrate, so that the outer surface 310 is in direct contact with the aerosol-generating substrate. When the heating layer 200 generates heat, the heat will be transferred to the aerosol-generating substrate through the insulating and heat-conducting layer 300, so that the aerosol is generated.
  • the sol-generating substrate generates an aerosol that can be inhaled by the user through a heat-not-burn method.
  • a portion of the outer surface 310 is relatively concave so that the entire heating assembly 10 has a low surface energy structure 11 , and the low surface energy structure 11 is a microstructure and/or a nanostructure.
  • a first direction and a second direction that are perpendicular to each other are used as reference, for example, the first direction is a longitudinal direction, and the second direction is a transverse direction.
  • the low surface energy structure 11 includes a first groove 311.
  • the first groove 311 is formed by a part of the outer surface 310 that is recessed to a set depth.
  • the number of the first grooves 311 is multiple. extending in the second direction, all the first grooves 311 are arranged at intervals along the second direction.
  • the width A occupied by the first groove 311 in the second direction is 0.01 ⁇ m to 500 ⁇ m, and the specific value of the width A may be 5 ⁇ m, and may also be 0.01 ⁇ m, 100 ⁇ m, or 500 ⁇ m.
  • the distance B between two adjacent first grooves 311 is 0.02 ⁇ m to 500 ⁇ m, and the specific value of the distance B may be 10 ⁇ m, and may also be 0.02 ⁇ m, 150 ⁇ m, or 500 ⁇ m.
  • the recessed depth C of the first groove 311 is 0.01 ⁇ m to 100 ⁇ m.
  • the specific value of the depth C may be 1 ⁇ m, and may also be 0.01 ⁇ m, 60 ⁇ m, or 100 ⁇ m.
  • the first groove 311 does not continue to be recessed but extends to the stacking surface 320 , that is, a predetermined distance is maintained between the first groove 311 and the stacking surface 320 .
  • the first groove 311 may be a straight groove (as shown in FIG. 2 ) or a curved groove (as shown in FIG. 3 ).
  • the first direction may be transverse
  • the second direction may be longitudinal, that is, the first groove 311 extends in the transverse direction as a whole.
  • the first groove 311 may be formed by at least one of chemical etching process, laser etching process, plasma etching process and mechanical processing process. By arranging the first grooves 311 , the low surface energy structure 11 can be formed into a line microstructure.
  • the low surface energy structure 11 may further include a second groove 312 .
  • the grooves 312 are formed by a part of the outer surface 310 that is recessed to a predetermined depth.
  • the number of the second grooves 312 is multiple, and each second groove 312 extends along the second direction as a whole, and all the second grooves 312 are spaced along the first direction. arrangement.
  • the first grooves 311 and the second grooves 312 are arranged to cross each other and communicate with each other.
  • the width occupied by the second groove 312 in the first direction is 0.01 ⁇ m to 500 ⁇ m.
  • the distance between two adjacent second grooves 312 is 0.02 ⁇ m to 500 ⁇ m, and the specific value of the distance may be 10 ⁇ m, and may also be 0.02 ⁇ m, 150 ⁇ m, or 500 ⁇ m.
  • the recessed depth of the second groove 312 is 0.01 ⁇ m to 100 ⁇ m.
  • the specific value of the depth may be 1 ⁇ m, and may also be 0.01 ⁇ m, 60 ⁇ m, or 100 ⁇ m.
  • the second groove 312 does not continue to be recessed but extends to the stacking surface 320 , that is, a predetermined distance is maintained between the second groove 312 and the stacking surface 320 .
  • the second groove 312 may be a straight groove or a curved groove.
  • the second groove 312 may be formed by at least one of chemical etching process, laser etching process, plasma etching process and mechanical processing process.
  • the insulating and thermally conductive layer 300 may be divided to form a plurality of protrusions 330 , that is, the insulating and thermally conductive layer 300 includes the protrusions 330 . All the protruding pillars 330 are arranged in a matrix to form multiple rows and multiple columns. At this time, the cross-section of the protruding pillars 330 may be rectangular or square (as shown in FIG. 6 ). When at least one of the first groove 311 and the second groove 312 is a curved groove, the cross section of the protruding post 330 may be circular (as shown in FIG.
  • any two adjacent rows of protruding pillars 330 arranged at intervals along the first direction for example, referring to FIG. 6 and FIG. 7 , the orthographic projections of the two rows of protruding pillars 330 in the first direction completely overlap, at this time, the two rows of protruding pillars 330 In "Aligned" arrangement mode.
  • the orthographic projections of the two rows of protruding posts 330 in the first direction do not overlap at all or partially overlap, and at this time, the two rows of protruding posts 330 are arranged in a "displaced" arrangement.
  • the low surface energy structure 11 includes a counterbore 313 , the counterbore 313 is formed by a part of the outer surface 310 with a set depth, the number of the counterbore 313 is multiple, and all the counterbore 313 are in a matrix
  • the cross-section of the counterbore 313 may be circular, or may be an ellipse, a diamond, or other regular polygons and other structures. For any two adjacent rows of counterbore 313 spaced along the first direction, for example, the orthographic projections of the two rows of counterbore 313 in the first direction completely overlap.
  • the orthographic projections of the two rows of counterbore 313 in the first direction do not overlap at all or partially overlap, and at this time, the two rows of counterbore 313 are arranged in a "displacement" arrangement pattern.
  • the counterbore 313 may be formed by at least one process such as chemical etching process, laser etching process, plasma etching process and mechanical processing process.
  • the low surface energy structure 11 can be formed into a lattice microstructure.
  • the cross-sectional size of the counterbore 313 may be 0.01 ⁇ m to 500 ⁇ m, and the specific value of the cross-sectional size may be 5 ⁇ m, or 0.01 ⁇ m, 100 ⁇ m, or 500 ⁇ m.
  • the distance between two adjacent countersink holes 313 is 0.02 ⁇ m to 500 ⁇ m, and the specific value of the distance may be 10 ⁇ m, and may also be 0.02 ⁇ m, 150 ⁇ m, or 500 ⁇ m.
  • the recessed depth of the counterbore 313 is 0.01 ⁇ m to 100 ⁇ m.
  • the specific value of the depth may be 1 ⁇ m, and may also be 0.01 ⁇ m, 60 ⁇ m, or 100 ⁇ m.
  • the counterbore 313 does not continue to be recessed but extends to the stacking surface 320 , that is, a predetermined distance is maintained between the counterbore 313 and the stacking surface 320 .
  • the entire heating assembly 10 can have the low surface energy structure 11 , thereby reducing the surface energy of the outer surface 310 .
  • the recessed portion on the outer surface 310 will not be able to contact the aerosol-generating substrate, while the remaining unrecessed portion on the outer surface 310 forms a direct contact with the aerosol-generating substrate.
  • a contact surface 314 for substrate contact is created.
  • the contact surface 314 can be made to have strong hydrophobic and oleophobic properties, and the moisture and viscous oil generated by the decomposition of the aerosol-generating substrate during the heating process will be difficult to adhere to the contact surface 314, thereby preventing the moisture and viscous oil adhering to the contact surface 314 from producing various physical and chemical reactions at high temperatures to generate soot, preventing soot from adhering to the contact surface 314, and preventing soot from adhering to the heating assembly 10.
  • odor or harmful gas is generated to ensure the consistency and health of the aerosol suction.
  • the heating element 10 in the above-mentioned embodiment is experimentally compared with the conventional heating element that does not have a low surface energy structure through the outer surface depression.
  • the contact angles and surface energies of water droplets and diiodomethane droplets are compared in Table 1 below.
  • the contact angle is positioned as the angle between the portion of the outer surface 310 that is covered by the droplet and the tangent where the droplet contacts the outer surface 310 .
  • the heating element 10 in the above-mentioned embodiment is compared with the conventional heating element without the low surface energy structure 11 through the heating experiment, for example, when six hundred atomized medium carriers are pumped, referring to FIG. 12a and FIG. 12b, the conventional heating element There is obvious soot, and referring to Figures 13a and 13b, the heating assembly 10 of the above-described embodiment does not form soot.
  • the present application also provides a heating atomization device, the heating atomization device includes a power source and the above-mentioned heating assembly 10, the power source provides electrical energy to the heating layer 200 of the heating assembly 10, so that the heating layer 200 converts the electrical energy into thermal energy, thereby making the aerosol
  • the generating substrate generates an aerosol that can be inhaled by the user through a heat-not-burn method. By arranging the heating assembly 10, the generation of soot can be avoided, thereby improving the consistency and health safety of the suction taste of the aerosol generated by the heating atomization device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Heating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种加热组件(10)和加热雾化装置。加热组件(10)具有能够与气溶胶生成基质接触的外表面(310),外表面(310)的一部分相对凹陷而使加热组件(10)具有低表面能结构(11),低表面能结构(11)为微米结构和/或纳米结构。

Description

加热组件及加热雾化装置
相关申请的交叉引用
本申请要求于2021年01月18日提交中国专利局、申请号为202120125622.2、发明名称为“加热组件及加热雾化装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及加热雾化技术领域,特别是涉及一种加热组件及包含该加热组件的加热雾化装置。
技术背景
加热雾化装置可以通过加热不燃烧的方式对固态状气溶胶生成基质进行加热,从而生成可供用户抽吸的气溶胶。加热雾化装置通常包括加热组件和电源,电源对加热组件供电,加热组件将电能转化为热能,气溶胶生成基质吸收热量而雾化形成气溶胶。
加热雾化装置在工作时,加热组件穿刺在气溶胶生成基质内而形成由内往外的中心加热方式。在长时间的使用过程中,加热组件的表面上容易形成烟垢,该烟垢不仅影响加热组件的外观,而且烟垢能够吸收加热组件的热量而产生异味或有害气体,从而影响气溶胶抽吸口感的一致性。事实上,烟垢的形成跟加热组件与气溶胶生成基质相抵接的接触面有重要关联性,通过降低该接触面的表面能即可减少接触面上所形成的烟垢。假如直接采用低表面能膜覆盖接触面时,由于低表面能膜通常采用铁氟龙等有机材料制成,该材料的耐受温度一般不超过300℃,而加热组件的工作温度最高可达350℃,导致该低表面能膜无法适用加热组件的高温环境,故亟待通过其他方式降低接触面的表面能以减少烟垢的生成。
发明内容
根据本申请的各种示意性实施例,提供一种加热组件及包含该加热组件的加热雾化装置。
一种加热组件,具有能够与气溶胶生成基质接触的外表面,所述外表面的一部分相对凹陷而使所述加热组件形成低表面能结构,所述低表面能结构为微米结构和/或纳米结构。
在其中一个实施例中,所述加热组件包括基体、加热层和绝缘导热层,所述加热层叠置在所述基体和所述绝缘导热层之间,所述绝缘导热层远离所述加热层一侧的表面形成所述外表面。
在其中一个实施例中,以相互垂直的第一方向和第二方向为参考,所述低表面能结构包括由所述外表面凹陷形成的多个第一凹槽,每个所述第一凹槽整体沿所述第一方向延伸,所述多个第一凹槽沿所述第二方向间隔排列。
在其中一个实施例中,所述第一凹槽在所述第二方向所占据的宽度为0.01μm至500μm,相邻两个所述第一凹槽之间的间距为0.02μm至500μm,所述第一凹槽的凹陷深度为0.01μm至100μm。
在其中一个实施例中,所述第一凹槽为直线形槽或曲线形。
在其中一个实施例中,所述低表面能结构还包括由所述外表面凹陷形成的多个第二凹槽,每个所述第二凹槽整体沿所述第二方向延伸,所述多个第二凹槽沿所述第一方向间隔排列,所述第一凹槽和所述第二凹槽相互交叉设置而连通。
在其中一个实施例中,所述第二凹槽在所述第一方向所占据的宽度为0.01μm至500μm,相邻两个所述第二凹槽之间的间距为0.02μm至500μm,所述第二凹槽的凹陷深度为0.01μm至100μm。
在其中一个实施例中,所述第二凹槽为直线形槽或曲线形槽。
在其中一个实施例中,所述绝缘导热层包括呈矩阵式排列的多个凸柱,所述凸柱的横截面为圆形、椭圆形、矩形、菱形或正多边形。
在其中一个实施例中,对于在所述第一方向间隔设置的任意相邻两行所 述凸柱,两行所述凸柱在所述第一方向上的正投影完全重叠、部分重叠或者不重叠。
在其中一个实施例中,所述低表面能结构包括由所述外表面凹陷形成的多个沉孔,全部所述沉孔呈矩阵式排列,所述沉孔的横截面尺寸为0.01μm至500μm,相邻两个所述沉孔之间的间距为0.02μm至500μm,所述沉孔的凹陷深度为0.01μm至100μm。
在其中一个实施例中,所述沉孔的横截面为圆形、椭圆形、菱形或正多边形。
在其中一个实施例中,所述低表面能结构包括凹槽或沉孔,所述绝缘导热层具有叠置在所述加热层上的层叠面,所述凹槽或所述沉孔与所述层叠面之间保持设定间距。
在其中一个实施例中,所述低表面能结构通过化学蚀刻工艺、激光蚀刻工艺、等离子蚀刻工艺和机械加工工艺四者中的至少一种加工形成。
一种加热雾化装置,包括上述实施例中任一项所述的加热组件。
本申请的一个实施例的一个技术效果是:由于加热组件具有低表面能结构,可以降低该外表面的表面能。事实上,外表面上剩余未凹陷的部分则形成直接与气溶胶生成基质接触的接触面。鉴于接触面的表面能降低,可以使得该接触面具有较强的疏水疏油性能,气溶胶生成基质在加热过程中分解所产生的水分和粘稠状油液将难以附着在该接触面上,从而防止附着在接触面上的水分和粘稠状油液在高温下产生各种物理化学反应以生成烟垢,避免烟垢附着在接触面上,防止烟垢在加热组件后续加热过程中产生异味或有害气体,确保气溶胶抽吸口感的一致性和健康性。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例提供的加热组件的纵向剖面结构示意图;
图2为第一实施例提供的加热组件的横向剖面结构示意图;
图3为第二实施例提供的加热组件的横向剖面结构示意图;
图4为第三实施例提供的加热组件的横向剖面结构示意图;
图5为第四实施例提供的加热组件的横向剖面结构示意图;
图6为第五实施例提供的加热组件的横向剖面结构示意图;
图7为第六实施例提供的加热组件的横向剖面结构示意图;
图8为第七实施例提供的加热组件的横向剖面结构示意图;
图9为第八实施例提供的加热组件的横向剖面结构示意图;
图10a为水滴附着在传统加热组件上的结构示意图;
图10b为水滴附着在图1所示加热组件上的结构示意图;
图11a为二碘甲烷液滴附着在传统加热组件上的结构示意图。
图11b为二碘甲烷液滴附着在图1所示加热组件上的结构示意图;
图12a为传统加热组件在初始状态时的平面结构示意图;
图12b为传统加热组件在抽吸六百雾化介质载体后的平面结构示意图;
图13a为图1所示加热组件在初始状态时的平面结构示意图;及
图13b为图1所示加热组件在抽吸六百雾化介质载体后的平面结构示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一 个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参阅图1和图2,本申请一实施例提供的加热组件10包括基体100、加热层200和绝缘导热层300。基体100、加热层200和绝缘导热层300三者相互层叠设置,加热层200叠置在基体100上,绝缘导热层300叠置在加热层200上,即加热层200被叠置在基体100和绝缘导热层300之间。当对加热层200通电时,加热层200能够产生热量。绝缘导热层300具有外表面310和层叠面320,外表面310和层叠面320为绝缘导热层300厚度方向上相对设置而朝向相反的两个表面,层叠面320叠置在加热层200上,该外表面310将位于绝缘导热层300远离加热层200的一侧。加热组件10插置在气溶胶生成基质中,使得该外表面310与气溶胶生成基质直接接触,当加热层200产生热量时,热量将通过绝缘导热层300传递至气溶胶生成基质,从而使得气溶胶生成基质通过加热不燃烧的方式产生可供用户抽吸的气溶胶。
该外表面310的一部分相对凹陷使得整个加热组件10具有低表面能结构11,该低表面能结构11为微米结构和/或纳米结构。
参阅图2和图3,在一些实施例中,以相互垂直的第一方向和第二方向为参考,例如第一方向为纵向,第二方向为横向。低表面能结构11包括第一凹槽311,第一凹槽311由外表面310的一部分凹陷设定深度形成,第一凹槽311的数量为多个,各个第一凹槽311整体沿第一方向延伸,全部第一凹槽311沿第二方向间隔排列。第一凹槽311在第二方向所占据的宽度A为0.01μm至500μm,该宽度A的具体取值可以为5μm,还可以为0.01μm、100μm或500μm等。相邻两个第一凹槽311之间的间距B为0.02μm至500μm,该间距B的具体取值可以为10μm,还可以为0.02μm、150μm或500μm等。第一凹槽311的凹陷深度C为0.01μm至100μm。该深度C的具体取值可以为1μm,还可以为0.01μm、60μm或100μm等。该第一凹槽311并未继续凹陷而延伸至层叠面320,即第一凹槽311与层叠面320之间保持设定间距。第一凹槽 311可以为直线形槽(如图2),也可以为曲线形槽(如图3)。其他实施例中,参阅图4和图5,第一方向可以横向,第二方向可以为纵向,即第一凹槽311整体沿横向延伸。第一凹槽311可以通过化学蚀刻工艺、激光蚀刻工艺、等离子蚀刻工艺和机械加工工艺等至少一种工艺加工形成。通过设置第一凹槽311,可以使得低表面能结构11形成线条微结构。
参阅图6、图7和图8,在一些实施例中,在包括整体沿第一方向延伸的第一凹槽311的基础上,低表面能结构11还可以包括第二凹槽312,第二凹槽312由外表面310的一部分凹陷设定深度形成,第二凹槽312的数量为多个,各个第二凹槽312整体沿第二方向延伸,全部第二凹槽312沿第一方向间隔排列。第一凹槽311和第二凹槽312相互交叉设置而连通。与第一凹槽311相类似,第二凹槽312在第一方向所占据的宽度为0.01μm至500μm,该宽度的具体取值可以为5μm,还可以为0.01μm、100μm或500μm等。相邻两个第二凹槽312之间的间距为0.02μm至500μm,该间距的具体取值可以为10μm,还可以为0.02μm、150μm或500μm等。第二凹槽312的凹陷深度为0.01μm至100μm。该深度的具体取值可以为1μm,还可以为0.01μm、60μm或100μm等。该第二凹槽312并未继续凹陷而延伸至层叠面320,即第二凹槽312与层叠面320之间保持设定间距。第二凹槽312可以为直线形槽,也可以为曲线形槽。第二凹槽312可以通过化学蚀刻工艺、激光蚀刻工艺、等离子蚀刻工艺和机械加工工艺等至少一种工艺加工形成。通过同时设置第一凹槽311和第二凹槽312,可以使得低表面能结构11形成阵列微结构。
当第一凹槽311和第二凹槽312两者均为直线形槽时,可以将绝缘导热层300分割形成多个凸柱330,即绝缘导热层300包括该凸柱330。全部凸柱330呈矩阵式而排序形成多行和多列,此时,凸柱330的横截面可以为矩形或正方形(如图6)。当第一凹槽311和第二凹槽312两者中的至少一个为曲线形槽时,可以使得凸柱330的横截面为圆形(如图7)、椭圆形、菱形(如图8)或其他正多边形等结构。对于沿第一方向间隔设置的任意相邻两行凸柱330,例如,参阅图6和图7,两行凸柱330在第一方向上的正投影完全重 叠,此时,两行凸柱330呈“对齐”排列模式。又如,参阅图8,两行凸柱330在第一方向上的正投影完全不重叠或者部分重叠,此时,两行凸柱330呈“错位”排列模式。
参阅图9,在一些实施例中,低表面能结构11包括沉孔313,沉孔313由外表面310的一部分凹陷设定深度形成,沉孔313的数量为多个,全部沉孔313呈矩阵式而排序形成多行和多列,沉孔313的横截面可以圆形,或者可以为椭圆形、菱形或其他正多边形等结构。对于沿第一方向间隔设置的任意相邻两行沉孔313,例如,两行沉孔313在第一方向上的正投影完全重叠,此时,两行沉孔313呈“对齐”排列模式。又如,两行沉孔313在第一方向上的正投影完全不重叠或者部分重叠,此时,两行沉孔313呈“错位”排列模式。沉孔313可以通过化学蚀刻工艺、激光蚀刻工艺、等离子蚀刻工艺和机械加工工艺等至少一种工艺加工形成。通过设置沉孔313,可以使得低表面能结构11形成点阵微结构。
沉孔313的横截面尺寸可以为0.01μm至500μm,该横截面尺寸的具体取值可以为5μm,还可以为0.01μm、100μm或500μm等。相邻两个沉孔313之间的间距为0.02μm至500μm,该间距的具体取值可以为10μm,还可以为0.02μm、150μm或500μm等。沉孔313的凹陷深度为0.01μm至100μm。该深度的具体取值可以为1μm,还可以为0.01μm、60μm或100μm等。该沉孔313并未继续凹陷而延伸至层叠面320,即沉孔313与层叠面320之间保持设定间距。
通过在绝缘导热层300的外表面310设置上述第一凹槽311、第二凹槽312或沉孔313,可以使得整个加热组件10具有低表面能结构11,从而降低该外表面310的表面能。事实上,当加热组件10插置在气溶胶生成基质内时,外表面310上已凹陷的部分将无法与气溶胶生成基质接触,而外表面310上剩余未凹陷的部分则形成直接与气溶胶生成基质接触的接触面314。鉴于外表面310的表面能降低,可以使得该接触面314具有较强的疏水疏油性能,气溶胶生成基质在加热过程中分解所产生的水分和粘稠状油液将难以附着在 该接触面314上,从而防止附着在接触面314上的水分和粘稠状油液在高温下产生各种物理化学反应以生成烟垢,避免烟垢附着在接触面314上,防止烟垢在加热组件10后续加热过程中产生异味或有害气体,确保气溶胶抽吸口感的一致性和健康性。
参阅图10a至图11b,上述实施例中的加热组件10与传统未通过外表面凹陷以设置低表面能结构的加热组件进行实验比较,当采用水和二碘甲烷附着在加热组件10的外表面310时,水滴和二碘甲烷液滴的接触角以及表面能的对比如下表1所示。该接触角定位为外表面310被液滴覆盖的部分跟液滴与外表面310接触处的切线之间的夹角。
表1传统加热组件与上述实施例加热组件对比
类型 水接触角 二碘甲烷接触角 表面能mN/m
传统加热组件 59.02°(θ1) 51.78°(β1) 48.87
上述实施例加热组件 114.36°(θ2) 72.73°(β2) 21.36
从该表1可以得出,与传统加热组件相比较,上述实施例的加热组件10的表面能显著降低,且对于水滴和二碘甲烷液滴的接触角都有显著提升,使得水滴和二碘甲烷液滴难以附着在外表面310上而形成烟垢。
当上述实施例中的加热组件10与传统未设置低表面能结构11的加热组件通过加热实验比较时,例如,当抽吸六百雾化介质载体后,参阅图12a和图12b,传统加热组件存在明显的烟垢,而参阅图13a和图13b,上述实施例的加热组件10并未形成烟垢。
本申请还提供一种加热雾化装置,该加热雾化装置包括电源和上述加热组件10,电源对加热组件10的加热层200提供电能,使得加热层200将电能转化为热能,从而使得气溶胶生成基质通过加热不燃烧的方式产生可供用户抽吸的气溶胶。通过设置该加热组件10,可以避免烟垢的产生,从而提高加热雾化装置所产生的气溶胶的抽吸口感的一致性和健康安全性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这 些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种加热组件,具有能够与气溶胶生成基质接触的外表面,所述外表面的一部分相对凹陷而使所述加热组件具有低表面能结构,所述低表面能结构为微米结构和/或纳米结构。
  2. 根据权利要求1所述的加热组件,其中,所述加热组件包括基体、加热层和绝缘导热层,所述加热层叠置在所述基体和所述绝缘导热层之间,所述绝缘导热层远离所述加热层一侧的表面形成所述外表面。
  3. 根据权利要求2所述的加热组件,其中,以相互垂直的第一方向和第二方向为参考,所述低表面能结构包括由所述外表面凹陷形成的多个第一凹槽,每个所述第一凹槽整体沿所述第一方向延伸,所述多个第一凹槽沿所述第二方向间隔排列。
  4. 根据权利要求3所述的加热组件,其中,所述第一凹槽在所述第二方向所占据的宽度为0.01μm至500μm,相邻两个所述第一凹槽之间的间距为0.02μm至500μm,所述第一凹槽的凹陷深度为0.01μm至100μm。
  5. 根据权利要求3所述的加热组件,其中,所述第一凹槽为直线形槽或曲线形槽。
  6. 根据权利要求3所述的加热组件,其中,所述低表面能结构还包括由所述外表面凹陷形成的多个第二凹槽,每个所述第二凹槽整体沿所述第二方向延伸,所述多个第二凹槽沿所述第一方向间隔排列,所述第一凹槽和所述第二凹槽相互交叉设置而连通。
  7. 根据权利要求6所述的加热组件,其中,所述第二凹槽在所述第一方向所占据的宽度为0.01μm至500μm,相邻两个所述第二凹槽之间的间距为0.02μm至500μm,所述第二凹槽的凹陷深度为0.01μm至100μm。
  8. 根据权利要求6所述的加热组件,其中,所述第二凹槽为直线形槽或曲线形槽。
  9. 根据权利要求6所述的加热组件,其中,所述绝缘导热层包括呈矩阵式排列的多个凸柱,所述凸柱的横截面为圆形、椭圆形、矩形、菱形或正多 边形。
  10. 根据权利要求9所述的加热组件,其中,对于在所述第一方向间隔设置的任意相邻两行所述凸柱,两行所述凸柱在所述第一方向上的正投影完全重叠、部分重叠或者不重叠。
  11. 根据权利要求2所述的加热组件,其中,所述低表面能结构包括由所述外表面凹陷形成的多个沉孔,全部所述沉孔呈矩阵式排列,所述沉孔的横截面尺寸为0.01μm至500μm,相邻两个所述沉孔之间的间距为0.02μm至500μm,所述沉孔的凹陷深度为0.01μm至100μm。
  12. 根据权利要求11所述的加热组件,其中,所述沉孔的横截面为圆形、椭圆形、菱形或正多边形。
  13. 根据权利要求2所述的加热组件,其中,所述低表面能结构包括凹槽或沉孔,所述绝缘导热层具有叠置在所述加热层上的层叠面,所述凹槽或所述沉孔与所述层叠面之间保持设定间距。
  14. 根据权利要求1至13中任一项所述的加热组件,其中,所述低表面能结构通过化学蚀刻工艺、激光蚀刻工艺、等离子蚀刻工艺和机械加工工艺四者中的至少一种加工形成。
  15. 一种加热雾化装置,其中,包括权利要求1至14中任一项所述的加热组件。
PCT/CN2021/138382 2021-01-18 2021-12-15 加热组件及加热雾化装置 WO2022151901A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21919089.9A EP4278910A1 (en) 2021-01-18 2021-12-15 Heating assembly and heating atomization device
US18/349,886 US20230347445A1 (en) 2021-01-18 2023-07-10 Heating assembly and heating and vaporization device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202120125622.2 2021-01-18
CN202120125622.2U CN215455414U (zh) 2021-01-18 2021-01-18 加热组件及加热雾化装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/349,886 Continuation US20230347445A1 (en) 2021-01-18 2023-07-10 Heating assembly and heating and vaporization device

Publications (1)

Publication Number Publication Date
WO2022151901A1 true WO2022151901A1 (zh) 2022-07-21

Family

ID=79761118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138382 WO2022151901A1 (zh) 2021-01-18 2021-12-15 加热组件及加热雾化装置

Country Status (4)

Country Link
US (1) US20230347445A1 (zh)
EP (1) EP4278910A1 (zh)
CN (1) CN215455414U (zh)
WO (1) WO2022151901A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215455414U (zh) * 2021-01-18 2022-01-11 深圳麦克韦尔科技有限公司 加热组件及加热雾化装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016033732A1 (zh) * 2014-09-02 2016-03-10 深圳麦克韦尔股份有限公司 加热体及其制造方法和采用该加热体的烟具
US20190281891A1 (en) * 2018-03-16 2019-09-19 R.J. Reynolds Tobacco Company Smoking article with heat transfer component
CN111567893A (zh) * 2020-04-08 2020-08-25 深圳麦克韦尔科技有限公司 发热体及其制备方法、加热不燃烧气雾形成装置
CN111743205A (zh) * 2020-05-27 2020-10-09 深圳麦克韦尔科技有限公司 发热体和加热装置
CN111770593A (zh) * 2020-05-26 2020-10-13 深圳麦克韦尔科技有限公司 发热体及其制备方法和加热装置
WO2021001268A1 (en) * 2019-07-04 2021-01-07 Philip Morris Products S.A. Inductive heating arrangement with gas permeable segmented inductive heating element
CN215455414U (zh) * 2021-01-18 2022-01-11 深圳麦克韦尔科技有限公司 加热组件及加热雾化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016033732A1 (zh) * 2014-09-02 2016-03-10 深圳麦克韦尔股份有限公司 加热体及其制造方法和采用该加热体的烟具
US20190281891A1 (en) * 2018-03-16 2019-09-19 R.J. Reynolds Tobacco Company Smoking article with heat transfer component
WO2021001268A1 (en) * 2019-07-04 2021-01-07 Philip Morris Products S.A. Inductive heating arrangement with gas permeable segmented inductive heating element
CN111567893A (zh) * 2020-04-08 2020-08-25 深圳麦克韦尔科技有限公司 发热体及其制备方法、加热不燃烧气雾形成装置
CN111770593A (zh) * 2020-05-26 2020-10-13 深圳麦克韦尔科技有限公司 发热体及其制备方法和加热装置
CN111743205A (zh) * 2020-05-27 2020-10-09 深圳麦克韦尔科技有限公司 发热体和加热装置
CN215455414U (zh) * 2021-01-18 2022-01-11 深圳麦克韦尔科技有限公司 加热组件及加热雾化装置

Also Published As

Publication number Publication date
US20230347445A1 (en) 2023-11-02
CN215455414U (zh) 2022-01-11
EP4278910A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
WO2022151901A1 (zh) 加热组件及加热雾化装置
KR20220023972A (ko) 메쉬 시트형 다공 가열식 무화 어셈블리 및 이의 가열 무화기
CN211407651U (zh) 雾化组件及电子雾化装置
JP6799503B2 (ja) ヒートパイプ及びその製造方法
JP2009088425A5 (zh)
JP2008066567A5 (zh)
WO2017100568A3 (en) Vapor chamber heat spreaders and methods of manufacturing thereof
CN216875043U (zh) 加热组件、气溶胶生成装置及流体加热装置
JP2014166728A5 (ja) 圧電素子、液体噴射ヘッド、液体噴射装置及び超音波センサー
US20220202085A1 (en) Atomization assembly and electronic atomization device
CN206251928U (zh) 电子烟具及其烟油雾化组件
JPWO2021229961A5 (zh)
TWM596329U (zh) 強化沸騰裝置
JP5260937B2 (ja) 燃料電池セルスタックおよび燃料電池
CN217065415U (zh) 电子雾化装置及其发热组件和发热体
JP7266364B2 (ja) 燃料電池システム
CN114190606A (zh) 电子雾化装置及其发热组件和发热体
CN215075567U (zh) 进液面积增大的雾化加热组件
KR101428035B1 (ko) 면상 발열체
CN205943774U (zh) 一种用于锂离子电容器的集流体
JP2015005595A (ja) 熱電変換モジュール、及び、熱電変換モジュールの製造方法
TW201822386A (zh) 熱電模組
CN212464913U (zh) 多层发热体及气溶胶产生装置
TW201607578A (zh) 紅外線面光源產生裝置及其製造方法
CN218921698U (zh) 发热体、雾化器及电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021919089

Country of ref document: EP

Effective date: 20230818