WO2022151610A1 - 一种彩色微晶玻璃及其制备方法 - Google Patents

一种彩色微晶玻璃及其制备方法 Download PDF

Info

Publication number
WO2022151610A1
WO2022151610A1 PCT/CN2021/088651 CN2021088651W WO2022151610A1 WO 2022151610 A1 WO2022151610 A1 WO 2022151610A1 CN 2021088651 W CN2021088651 W CN 2021088651W WO 2022151610 A1 WO2022151610 A1 WO 2022151610A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ceramic
colored
temperature
molten salt
Prior art date
Application number
PCT/CN2021/088651
Other languages
English (en)
French (fr)
Inventor
黄小杰
王键
谢祯瀛
罗云侠
洪立昕
Original Assignee
科立视材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科立视材料科技有限公司 filed Critical 科立视材料科技有限公司
Publication of WO2022151610A1 publication Critical patent/WO2022151610A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/10Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce uniformly-coloured transparent products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to the field of glass products, in particular to a colored glass-ceramic and a preparation method thereof.
  • the high-end mobile phone protective screen mainly composed of glass back covers has become a hot spot for major manufacturers to study color or multi-color glass.
  • the common preparation methods of colored glass are the coloring of the glass formulation body and the coloring of the glass surface.
  • the coloring of the glass formulation body requires adding coloring ions during the glass melting process. This method is suitable for mass production of a single color. For the manufacture of products with different color requirements, it lacks mass production.
  • the glass surface is colored, usually by surface coating (such as inkjet printing, screen printing, etc.), and the colorant is adhered to the glass surface and then sintered at high temperature to color the glass. This method has higher requirements on the particle size of the colorant and the uniformity of the coating, and also has higher requirements on the temperature control of the sintering, and the process is more complicated.
  • Another kind of surface coloring is high temperature ion coloring, which realizes the mutual replacement of ions by placing glass in high temperature coloring molten salt to realize glass surface coloring.
  • the process is simple and very suitable for mass production, and at the same time, different color effects can be achieved by changing the type or proportion of molten salt, or different process systems.
  • the coloring of the glass surface has a limited amount of ions entering, the color is lighter, and lacks softness and saturation. its use.
  • the thickness of the glass material used for the glass cover plate is about 0.5-1 mm, and the melting point of the ion-colored molten salt to be liquefied is relatively high, which is easy to cause the glass to warp.
  • Glass-ceramic not only has the basic properties of glass, but also has the polycrystalline characteristics of ceramics. It concentrates the characteristics of glass and ceramics. It can be controlled by specific formula and heat treatment process to achieve transparent and translucent effects. It has the luster of glass and the texture and beauty of ceramics. At the same time, it has high mechanical strength, high hardness, and good fracture toughness, which can meet the mechanical performance requirements of glass cover plates.
  • the Chinese patent with application number 202010527172.X “An ionic colorant for aluminosilicate glass and its coloring aluminosilicate glass” discloses a mixture of silver salt and copper salt as an ionic colorant, but it is only applicable to aluminum silicate glass Methods of ionic coloring of glass.
  • the Chinese patent with the application number of 202010952323.6 “An antibacterial molten salt, glass and preparation method” discloses a ternary composite sulfate antibacterial molten salt, but its copper ions are implanted into the glass in an ionic state, which does not cause coloration of the glass.
  • the inventor provides a method for preparing colored glass-ceramic, comprising the following steps: subjecting a lithium-aluminosilicate glass precursor to micro-crystallizing heat treatment to obtain glass-ceramic; After preheating, the glass is put into colored molten salt for coloring treatment, the coloring temperature is controlled at 500-650 ° C, and the coloring time is 10-120 min to obtain the colored glass-ceramic; the colored molten salt is sulfuric acid containing Cu 2+ Salt;
  • the glass base composition of the glass-ceramic in terms of mass percentage, is: SiO 2 68%-75%, Al 2 O 3 7%-12%, P 2 O 5 1.5%-4%, Li 2 O 7%- 12%, Na 2 O 0%-1%, ZrO 2 4%-6%, BaO 0-1.2%, SnO 2 0.05%-0.1%;
  • microcrystallization heat treatment includes the following three-stage stepped heating treatment steps:
  • the first step heating at room temperature, the temperature is raised to the first step temperature of 530°C-560°C at 5-10°C/min, and heat treatment is performed for 150min-240min;
  • the second step temperature rise the temperature is then increased to the second step temperature of 650-710°C at 2-4°C/min, and the heat treatment is performed for 20-60min;
  • the third step of heating up the temperature of the third step is then raised to a temperature of 760-810° C. in the third step at 3-5° C./min, heat-treated for 60-120 minutes, and cooled with the furnace to obtain the glass-ceramic.
  • SiO 2 It belongs to the main structure constituting the base glass and the glass-ceramic, and is also the main component constituting the crystal phase. Too low content is not conducive to the sufficient formation of the silicic acid-like crystal phase.
  • the SiO 2 content should not be lower than 68wt%. However, higher SiO 2 content will lead to excessive viscosity and unsatisfactory melting process. In the present invention, the content of SiO 2 is controlled between 68wt%-75wt%.
  • Al 2 O 3 It belongs to the network intermediate oxide, which can improve the mechanical properties and chemical durability of glass, can refine the crystal grains and reduce the haze of glass-ceramics, and its larger volume structure is beneficial to glass-ceramics and melting Ion exchange between salts. Therefore, the Al 2 O 3 content should not be less than 7 wt %. However, high Al 2 O 3 content can significantly increase the crystallization temperature and hinder crystal growth. Therefore, the Al 2 O 3 content in the base glass should not be higher than 12wt%;
  • P 2 O 5 It belongs to one of the network former components. Its P 5+ ion field is stronger than that of Si 4+ ions, and it is easy to combine with alkali metal ions to separate from the network to form crystal nuclei, thereby promoting the phase separation of the base glass. Lowering the nucleation activation energy is beneficial to the crystallization of the glass; at the same time, it can improve the melting degree of ZrO 2 in the glass. If the content of P 2 O 5 is too low, the glass is difficult to crystallize and is not conducive to the melting of ZrO 2 . The P2O5 content is at least 1.5 wt%. However, if the content of P 2 O 5 is too high, the phase separation of the glass will be serious and the permeability of the glass-ceramic will be affected. The content of P 2 O 5 is at most 4wt%.
  • Li 2 O and Na 2 O belong to the external components of the network, which can significantly reduce the viscosity of the base glass, promote the melting of the base glass, and improve the low-temperature melting and formability of the glass . Its strong accumulation ability can significantly reduce the crystallization temperature of glass and promote the crystallization of glass.
  • the Li 2 O content should not be less than 7 wt%. But too high Li 2 O will make the glass crystallization uncontrolled, resulting in devitrification or non-uniformity of the glass. Therefore, the Li 2 O content in the base glass is not higher than 12 wt %.
  • Na 2 O content will reduce the chemical durability of the glass and increase the glass phase, so that the undesired glass phase remains in the glass-ceramic, which affects the performance and crystallization uniformity.
  • the Na 2 O content was controlled to be at most 1 wt %.
  • ZrO 2 contributes to the refinement of the grain size and the uniformity of distribution, thereby improving the chemical stability of the glass.
  • the minimum component content of ZrO 2 is not less than 4wt%.
  • ZrO 2 is a kind of refractory component, which can rapidly increase the viscosity of the base glass. Excessive ZrO 2 content will lead to the existence of unmelted ZrO 2 in the glass.
  • the content of ZrO 2 is controlled at 4wt%-6wt%.
  • BaO It is an optional component of the composition. It can reduce viscosity, improve melting properties, and improve the gloss and transmittance of glass. However, when the content of BaO is high, the glass density is relatively high, and its content is controlled at 0-1.2 %.
  • This component can promote the elimination or dissolution and absorption of bubbles in the glass liquid, and its content is controlled at 0.15wt%-0.1wt% in the present invention.
  • the first stage is the formation of nuclei.
  • appropriate processing parameters are required. If the temperature is too high or the time is too long, it is easy to make the nuclei small and large, and it is difficult to form a tighter structure, thereby affecting the subsequent grain size. and crystallinity; if the temperature is too low or the time is too short, the overall efficiency will be affected. Therefore, the temperature of the first step is 530°C-560°C, and the heat treatment is 150min-240min; the second and third stages are crystal growth. Since it is composed of two phases, glass phase and crystal phase, different proportions will lead to the appearance of glass. The gloss varies. Too much glass phase will affect the saturation of the glass, and too much crystal phase will lead to serious ceramicization and lack of gloss. In order to ensure the brightness of the glass and facilitate the subsequent melting and coloring treatment of glass-ceramic, it is necessary to precisely control the heat treatment process.
  • the first phase crystal (the crystal phase is LiAlSi 4 O 10 ) will rapidly coarsen at high temperature, resulting in dissimilar internal structure and external appearance of glass over-ceramic , lack of glass luster.
  • the second phase crystal (the crystal phase is Li 2 Si 2 O 5 ) will not be formed, which will grow in the subsequent melting and coloring process, resulting in unevenness of the glass or cracking of the glass. Therefore, the temperature of the second step of the present invention is 650-710°C, and the heat preservation heat treatment is 20-60min; the temperature of the third step is 760-810°C, and the heat preservation heat treatment is 60-120min.
  • the coloring ions in the coloring molten salt can be selected from Cu ions and Ag ions. Since Ag is expensive, the coloring ions in the present invention are mainly Cu ions.
  • the coloring ions introduced into the molten salt can be CuSO 4 and Cucl 2 , but due to the high vapor pressure of chloride, it is easy to volatilize irritating gas, which is not suitable for industrial mass production.
  • the molten salt of the present invention is a sulfate.
  • copper ions as coloring metal ions under the influence of different set temperatures, times, different structures and different formulations, copper ions can undergo implantation ion valence transitions, resulting in different coloring of the glass. And Cu 2+ , Cu + and Cu 0 will also have different colors.
  • the coloring is also related to the content of the implanted copper ions that undergo transition.
  • the appearance of the glass-ceramic is milky white, and the L* value is 20-75.
  • CIE color channel L* value a* value and b* value are an optical parameter defined by the International Institute of Illumination (CIE) in the L*a*b* color space.
  • the L*a*b* color space includes all sensible colors in the three-dimensional real space.
  • the transmittance of the glass-ceramic in the visible light range of 380nm-780nm is 6%-45%.
  • the crystallite diameter of the glass-ceramic is 300nm-600nm.
  • the crystallinity of the glass-ceramic is >86%.
  • the transition point temperature of the glass-ceramic is >710°C.
  • the transition point temperature is higher than that of pure glass material, and its high temperature stability is greatly improved.
  • the colored molten salt is 100% CuSO 4 molten salt.
  • the colored molten salt is mixed molten salt, and the mass percentage of the mixed molten salt is composed of CuSO 4 is 45-70%, Na 2 SO 4 is 30-50%, K 2 SO 4 is 5-15% , so that the melting point of the ternary composition is lower than 650 °C.
  • the second aspect of the present invention provides a colored glass-ceramic, which is prepared by the preparation method described in the first aspect of the present invention.
  • the L* value of the colored glass-ceramic is 18-68.
  • a method for preparing colored glass-ceramic is provided. Milky white glass-ceramic with a degree of >86% and an L* value of 20-75, and then use copper ion sulfate to color the molten salt to color the milky white glass-ceramic to achieve light green, green, yellow, brown-green, red And colored glass-ceramics with multi-color luster and various color patterns, the L* value is between 18-68, and has good color saturation and aesthetics.
  • Figure 1 The transmittance diagram of the glass-ceramic samples at the wavelength of 200nm-1400nm before coloring in Examples 1-5, the average transmittance at the wavelength of 380-780nm of visible light is 6.33%, 16.06%, 13.11%, 22.61%, 21.13%.
  • Figure 2 The scanning electron microscope (SEM) image of the glass-ceramic sample in Example 1 before coloration, the average size of the crystal grains is ⁇ 600 nm.
  • Figure 3 The scanning electron microscope (SEM) image of the glass-ceramic sample in Example 6 when it is not colored. It can be seen from Figure 3 that the glass produces different crystal phase structures due to the existence of temperature difference.
  • the glass on the left has more glass and smaller crystal grains. , the average grain size is 300nm; the glass phase on the right is relatively small, the grain size is larger, and the grain size is about 300-500nm.
  • the glass precursors of Examples 1-5 of the present invention were prepared by the following method: the mass percentages of SiO 2 73.5%, Al 2 O 3 10.2%, P 2 O 5 1.5%, Li 2 O 9.7%, Na 2 O 0.25% , ZrO 2 4.8%, SnO 2 0.05% oxide, select the corresponding introduction raw materials, weigh and mix evenly according to their purity, moisture and proportion range, put the meltable mixture into the furnace, according to the composition of the glass Difficulty of melting, melt into glass liquid in the temperature range of 1450-1550 °C, and then cut into a basic glass plate with a thickness of 0.7mm by overflow method, slot down-draw method, float method or casting.
  • the basic glass plates are all prepared by casting and re-cutting method.
  • Example 1 Put the basic glass plate into the crystallization furnace, heat up to 550°C at 10°C/min, and keep the temperature for 180min; heat up to 710°C at 3°C/min, keep the temperature for 60min; heat up to 800°C at 5°C/min , After holding for 120min, cool down to below 100°C with the furnace, take out the room temperature to cool; the transmittance (visible light range) is 6.33%, the L* value is 20.2, the crystallinity is >90%, and the grain size is 500-600nm. Its scanning electron microscope (SEM) image is shown in FIG. 2 .
  • SEM scanning electron microscope
  • the prepared glass-ceramic samples were preheated and placed in colored molten salt.
  • the molten salt composition was CuSO 4 60%, Na 2 SO 4 30%, K 2 SO 4 10%, and the coloring temperature was 560°C , the coloring time is 100min; the coloring sample is taken out, placed in a preheating furnace for annealing, and after the sample is cooled, the surface residue of the colored glass-ceramic is washed with hot water; the test shows red, and the L* value is 18.83.
  • Example 2 Put the basic glass plate into the crystallization furnace, heat up to 545°C at 5°C/min, and keep the temperature for 180min; heat up to 690°C at 3°C/min, keep the temperature for 30min; heat up to 780°C at 5°C/min , After 90min of heat preservation, it was cooled to below 100 °C with the furnace, and cooled at room temperature; the transmittance (visible light range) of the test was 16.06%, the L* value was 41.2, the crystallinity was >90%, and the grain size was about 480nm.
  • the prepared glass-ceramic samples were preheated and placed in colored molten salt.
  • the molten salt composition was CuSO 4 57%, Na 2 SO 4 30%, K 2 SO 4 13%, and the coloring temperature was 540°C , the coloring time is 60min; the coloring sample is taken out, placed in a preheating furnace for annealing, and after the sample is cooled, the surface residue of the colored glass-ceramic is washed with hot water; the test shows yellow, and the L* value is 27.32.
  • Example 3 Put the basic glass plate into the crystallization furnace, heat up to 540°C at 7°C/min, and keep the temperature for 240min; heat up to 670°C at 2°C/min, keep the temperature for 60min; heat up to 810°C at 3°C/min , After 60min of heat preservation, it was cooled to below 100 °C with the furnace, and cooled at room temperature; the transmittance (visible light range) of the test was 13.11%, the L* value was 35.95, the crystallinity was >90%, and the grain size was about 511nm.
  • the prepared glass-ceramic samples were preheated and placed in colored molten salt.
  • the molten salt composition was CuSO 4 65%, Na 2 SO 4 30%, K 2 SO 4 5%, and the coloring temperature was 600°C , the coloring time is 120min; the coloring sample is taken out, placed in a preheated furnace for annealing, and after the sample is cooled, the surface residue of the colored glass-ceramic is washed with hot water; the test shows brownish green, and the L* value is 22.12.
  • Example 4 Put the basic glass plate into the crystallization furnace, heat up to 540°C at 5°C/min, and hold for 150 minutes; heat up to 650°C at 2°C/min, hold for 30 minutes; heat up to 760°C at 3°C/min , after holding for 60min, cool down to below 100 °C with the furnace, take out room temperature cooling; test its transmittance (visible light range) is 22.61%, L* value is 56.75, crystallinity> 86%, grain size 372nm.
  • the prepared glass-ceramic samples were preheated and placed in colored molten salt.
  • the molten salt composition was CuSO 4 55%, Na 2 SO 4 30%, K 2 SO 4 15%, and the coloring temperature was 540°C , the coloring time is 20min; the colored sample is taken out, placed in a preheated furnace for annealing, and after the sample is cooled, the surface residue of the colored glass-ceramic is washed with hot water; the test shows light green, and the L* value is 33.65.
  • Example 5 Put the basic glass plate into the crystallization furnace, heat up to 540°C at 5°C/min, and hold for 150 minutes; heat up to 650°C at 2°C/min, hold for 50 minutes; heat up to 760°C at 3°C/min , After 60min of heat preservation, it was cooled to below 100 °C with the furnace, and cooled at room temperature; the transmittance (visible light range) of the test was 21.13%, the L* value was 54.33, the crystallinity was >86%, and the grain size was 377nm.
  • the prepared glass-ceramic samples were preheated and placed in colored molten salt, the molten salt composition was CuSO4 55%, Na 2 SO 4 30%, K 2 SO 4 15%, and the coloring temperature was 540°C, The coloring time was 90min; the colored sample was taken out, placed in a preheated furnace for annealing, and after the sample was cooled, the surface residue of the colored glass-ceramic was washed with hot water; the test showed green, and the L* value was 30.23.
  • the transmittances of the glass-ceramic samples at the wavelengths of 200nm-1400nm before coloring in Examples 1-5 are shown in Figure 1, and the average transmittances at the wavelengths of 380-780nm of visible light are 6.33%, 16.06%, and 13.11%, respectively. , 22.61%, 21.13%.
  • Example 6 Place a small piece of refractory plate on a part of the base glass plate, put it into a crystallization furnace, heat up to 540°C at 5°C/min, and keep the temperature for 150min; heat up to 650°C at 2°C/min, Heat preservation for 20min; raise the temperature to 760°C at 3°C/min, after heat preservation for 60min, cool down to below 100°C with the furnace, take out room temperature to cool;
  • the prepared glass-ceramic samples were preheated and placed in colored molten salt.
  • the molten salt composition was CuSO 4 55%, Na 2 SO 4 30%, K 2 SO 4 15%, and the coloring temperature was 540°C , the coloring time is 60min; the coloring sample is taken out, placed in the preheating furnace for annealing, and after the sample is cooled, the surface residue of the colored glass-ceramic is washed with hot water; the color of the position covered by the refractory plate is green, not covered The location color is light green.
  • the scanning electron microscope (SEM) of the uncolored glass-ceramic sample in Example 6 is shown in Figure 3. It can be seen from Figure 3 that the glass produces different crystal phase structures due to the existence of temperature difference. Small, the average grain is 300nm; the right glass phase is relatively small, the grain is larger, and the grain is about 300-500nm.
  • the existence of temperature difference causes the glass to produce different crystal phase structures, which manifest as different transmittances on the macroscopic scale, resulting in differences in color rendering. It shows that the temperature control of the microcrystallization heat treatment is of great significance to the realization of the present invention.
  • Average grain size Measured by SEM scanning electron microscope, the glass-ceramic is subjected to surface treatment in HF acid, and then the surface of the glass-ceramic is sprayed with chrome coating, and the surface is scanned under the SEM scanning electron microscope, and the particles are observed. , and divide by the number of grains in the SEM image by summing the average diameter size of all grain profiles;
  • Crystallinity the XRD diffraction peaks are compared with the database pattern to determine the crystal phase, and the crystallinity and amorphous content are obtained by calculating the proportion of the crystal phase diffraction intensity in the overall pattern intensity by the Rietveld method;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种彩色微晶玻璃的制备方法,包括以下步骤:将锂铝硅玻璃前驱体进行微晶化热处理得到微晶玻璃;将微晶玻璃经预热后放入着色熔盐中进行着色处理,着色温度控制为500-650℃,着色时间10min-120min,得到彩色微晶玻璃;着色熔盐为含Cu 2+的硫酸盐;微晶玻璃的玻璃基础组成,按质量百分数计为:SiO 2 68%-75%、Al 2O 3 7%-12%、P 2O 5 1.5%-4%,Li 2O 7%-12%、Na 2O 0%-1%、ZrO 2 4%-6%、BaO 0-1.2%、SnO 2 0.05%-0.1%;微晶化热处理包括三段式阶梯升温处理步骤。

Description

一种彩色微晶玻璃及其制备方法 技术领域
本发明涉及玻璃制品领域,特别涉及一种彩色微晶玻璃及其制备方法。
背景技术
随着人们生活水平的不断提高,越来越爱追求个性化的产品。对于大众消费品的智能手机来说,人们倾向于手机外观的差异化。以玻璃后盖为主的高端手机保护屏由于没有透明度的要求,以及降成本的诉求,成为各大厂商研究彩色或多色玻璃的热点。
目前,常见的彩色玻璃制备方法为玻璃配方本体着色和玻璃表面着色。玻璃配方本体着色需在玻璃熔制过程中加入着色离子,此方法适宜于单一颜色的量产,对于有不同颜色需求的产品制造来说,缺乏量产性。玻璃表面着色,常见的为表面涂覆(如喷墨打印、丝网印刷等),将着色剂黏附在玻璃表面再通过高温烧结,使其玻璃着色。此方法对着色剂的颗粒度及涂覆的均匀性要求较高,对烧结的温控也有较高要求,工艺较为繁琐。另一种表面着色为高温离子着色,其通过将玻璃置入高温着色熔盐内,实现离子间的互相置换,实现玻璃表面着色。其工艺简单,非常适用量产化,同时,还可通过改变熔盐种类或比例,或不同的工艺制度,实现不同颜色效果。但是,玻璃表面着色与玻璃本体着色相比,其离子进入的含量有限,其色彩较浅,缺乏柔和度和饱和度,特别是对于用于玻璃盖板的透明高铝玻璃,廉价感十足,影响其运用。另一方面,用于玻璃盖板的玻璃材料其厚度介于0.5-1mm左右,而离子着色熔盐成液态化的熔点较高,容易使玻璃产生翘曲。
微晶玻璃既有玻璃的基本性能,又具有陶瓷的多晶特征,集中了玻璃和陶瓷的特点,其可通过特定配方及热处理工艺控制,实现透明、半透明的效果。其即有玻璃的亮泽度又有陶瓷温润如玉的质感及美观度。同时,其机械 强度高、硬度大,具有较好的断裂韧性,可实现玻璃盖板的力学性能要求,其良好的热稳定性,也可适应高温离子着色温度范围,不易翘曲。
申请号为202010527172.X的中国专利“一种硅酸铝玻璃离子着色剂及其着色硅酸铝玻璃”公开了一种银盐和铜盐混合作为离子着色剂,但其仅仅适用于硅酸铝玻璃的离子着色方法。另外,申请号为202010952323.6的中国专利“一种抗菌熔盐、玻璃及制备方法”公开三元复合硫酸盐抗菌熔盐,但其铜离子以离子状态植入玻璃中,没有引起玻璃的着色。
发明内容
为此,需要提供一种适用于锂铝硅玻璃的着色方法,实现浅绿色、绿色、黄色、棕绿色及红色的着色微晶玻璃,同时有较好的色彩饱和度及美观度。
为实现上述目的,本发明的第一方面,发明人提供了一种彩色微晶玻璃的制备方法,包括以下步骤:将锂铝硅玻璃前驱体进行微晶化热处理得到微晶玻璃;将微晶玻璃经预热后放入着色熔盐中进行着色处理,着色温度控制为500-650℃,着色时间10min-120min,得到所述彩色微晶玻璃;所述着色熔盐为含Cu 2+的硫酸盐;
所述微晶玻璃的玻璃基础组成,按质量百分数计为:SiO 2 68%-75%、Al 2O 3 7%-12%、P 2O 5 1.5%-4%,Li 2O 7%-12%、Na 2O 0%-1%、ZrO 2 4%-6%、BaO 0-1.2%、SnO 2 0.05%-0.1%;
所述微晶化热处理包括以下三段式阶梯升温处理步骤:
第一阶梯升温:常温下以5-10℃/min升温至第一阶梯温度530℃-560℃,保温热处理150min-240min;
第二阶梯升温:后以2-4℃/min升温至第二阶梯温度650-710℃之间,保温热处理20-60min;
第三阶梯升温:再以3-5℃/min升温至第三阶梯温度760-810℃之间,保温热处理60-120min,随炉冷却,得到所述微晶玻璃。
微晶玻璃的玻璃基础组成说明:
SiO 2:属于构成基础玻璃及微晶玻璃的主体结构,也是构成晶相的主要成分。其含量过低不利于硅酸类晶相的充分形成。SiO 2含量不应低于68wt%。但较高的SiO 2含量,又会导致黏度过大,熔制工艺不理想。本发明中,SiO 2的含量控制在68wt%-75wt%之间。
Al 2O 3:属于网络中间体氧化物,其可改善玻璃的机械性能和化学耐久性,可细化晶粒并降低微晶玻璃的雾度,其较大体积结构有利于微晶玻璃与熔盐间的离子交换。因此,Al 2O 3含量不应低于7wt%。但高Al 2O 3含量可明显提高晶化温度,阻碍晶体生长。因此,基础玻璃中Al 2O 3含量不应高于12wt%;
P 2O 5:属于网络形成体成分之一,其P 5+离子场强大于Si 4+离子,很容易结合碱金属离子从网络中分离出来,形成晶核,从而促使基础玻璃发生分相,降低成核活化能,利于玻璃的晶化;同时,其可提高ZrO 2在玻璃中的熔解度,P 2O 5含量过低,玻璃较难晶化且不利于ZrO 2的熔融。P 2O 5含量至少为1.5wt%。但P 2O 5含量过高,会使玻璃分相严重,影响微晶玻璃的透过性,P 2O 5含量至多为4wt%。
Li 2O与Na 2O;属于网络外体成分,能显著降低基础玻璃的粘度,促使基础玻璃的熔化,提高玻璃的低温熔融性与成形性,其中Li 2O是构成晶相的必需成分,其较强的积聚能力可显著降低玻璃的晶化温度,促进玻璃的晶化。Li 2O含量不应低于7wt%。但太高的Li 2O又会使得玻璃结晶不受控制,导致玻璃失透或不均匀。因此,基础玻璃中Li 2O含量不高于12wt%。过多的Na 2O含量,会导致玻璃化学耐久性降低及玻璃相的增加,使得微晶玻璃中,残存不期望的玻璃相,影响性能及晶化均匀性。控制Na 2O含量至多为1wt%。
ZrO 2:有助于晶粒尺寸的细化及分布均匀度,从而提高玻璃的化学稳定性。在本组合中,ZrO 2的组份含量最低不少于4wt%。但ZrO 2属于一种难熔成分,能快速提高基础玻璃粘度,过高的ZrO 2含量会导致玻璃中ZrO 2未熔物存在。本发明中,ZrO 2含量在控制在4wt%-6wt%。
BaO:是本组合物的可选成分,其能降低黏度,改善熔化性能,可改善玻璃的光泽度及透过率,但BaO含量高时,其玻璃密度较大,其含量控制在0-1.2%。
SnO 2:该组分可促使玻璃液中气泡消除或溶解吸收,本发明中其含量控制在0.15wt%-0.1wt%。
三段式阶梯升温处理说明:
第一阶段为晶核形成,为确保晶核多而小,须合适的处理参数,温度过高或时间过长,易使晶核少而大,难以形成较紧密结构,从而影响后续晶粒大小及结晶度;温度过低或时间过短,影响整体效率。因此,第一阶梯温度为530℃-560℃,保温热处理150min-240min;第二、三阶段为晶体生长,由于其为玻璃相和晶相两种物相组成,其不同比例会导致玻璃的外观亮泽不一,太多玻璃相会影响玻璃饱和度,太多晶相又会导致陶瓷化严重,缺乏亮泽感。为确保玻璃的亮泽度,方便后续微晶玻璃的熔制着色处理,需对其热处理工艺精确控制。
若跳过第二阶段,直接在第三阶段温度进行热处理,会导致第一相晶体(晶相为LiAlSi 4O 10)在高温下快速粗大化,导致内部结构异化,外部表观为玻璃过度陶瓷化,缺乏玻璃亮泽。
若不进行第三阶段,会导致第二相晶体(晶相为Li 2Si 2O 5)未生成,其会在后续熔制着色工艺中长晶,导致玻璃的不均匀,或玻璃的破裂。因此,本发明第二阶梯温度650-710℃,保温热处理20-60min;第三阶梯温度760-810℃,保温热处理60-120min。
着色熔盐中着色离子可选Cu离子、Ag离子,由于Ag价格较贵,本发明着色离子以Cu离子为主。着色离子引入熔盐可为CuSO 4与Cucl2,但由于氯化物有较高蒸汽压易挥发刺激性气体,不适宜工业量产。本发明熔盐为硫酸盐。以铜离子为着色金属离子,可在不同的设定温度、时间、不同结构及不同配方的影响下,铜离子发生植入离子价态的跃迁,引起玻璃的不同着色。而Cu 2+、 Cu +和Cu 0也会有不同显色。同时,着色也和发生跃迁的植入铜离子的含量有关。优选的,所述微晶玻璃的外观为乳白色,L*值为20-75。
CIE颜色通道L*值a*值和b*值为一种由国际照明协会(CIE)定义于L*a*b*颜色空间中的光学参数。L*a*b*颜色空间包括在三维实数空间中的所有可感颜色。亮度L*以L*=0来表示最深的黑色,以L*=100表示最明亮的白色。
优选的,所述微晶玻璃在380nm-780nm可见光范围内透过率为6%-45%。
优选的,所述微晶玻璃的晶粒直径为300nm-600nm。
优选的,所述微晶玻璃的结晶度为>86%。
优选的,所述的微晶玻璃的转变点温度>710℃。转变点温度高于纯玻璃材料,其高温稳定性大幅提高。
优选的,所述着色熔盐为100%CuSO 4熔盐。
优选的,所述着色熔盐为混合熔盐,所述混合熔盐的质量百分比构成为CuSO 4为45-70%、Na 2SO 4为30-50%、K 2SO 4为5-15%,使得该三元组合物熔点低于650℃。
本发明的第二方面提供了一种彩色微晶玻璃,所述彩色微晶玻璃采用本发明第一方面所述制备方法进行制备。
优选的,所述彩色微晶玻璃的L*值为18-68。
区别于现有技术,上述技术方案至少包括以下有益效果:提供一种彩色的微晶玻璃的制备方法,先制备可见光范围内透过率为6%-45%,晶粒尺寸300nm-600nm,结晶度为>86%,L*值介于20-75的乳白色微晶玻璃,再用铜离子硫酸盐着色熔盐,对乳白色微晶玻璃进行着色,实现浅绿色、绿色、黄色、棕绿色、红色及多彩色泽及各色图案的着色微晶玻璃,其L*值介于18-68,有较好的色彩饱和度及美观度。
附图说明
图1:实施例1-5中微晶玻璃样品未着色前在200nm-1400nm波长透过率图,其在可见光380-780nm光波段处平均透过率分别为6.33%、16.06%、13.11%、 22.61%、21.13%。
图2:实施例1中微晶玻璃样品未着色前的扫描电子显微镜(SEM)图,其晶粒平均尺寸<600nm。
图3:实施例6中微晶玻璃样品未着色时的扫描电子显微镜(SEM)图,由图3可见由于温差的存在玻璃产生不同的晶相结构,左边的玻璃相较多,晶粒较小,平均晶粒为300nm;右边玻璃相相对较少,晶粒较大,晶粒为300-500nm左右。
具体实施方式
为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下结合具体实施例并配合附图详予说明。
本发明实施例1‐5的玻璃前驱体通过如下方法制备:将质量百分比为SiO 2 73.5%、Al 2O 3 10.2%、P 2O 5 1.5%,Li 2O 9.7%、Na 2O 0.25%、ZrO 2 4.8%、SnO 2 0.05%的氧化物,选择相应的引入原料,按其纯度、水分及比例范围进行称量并混合均匀,将可熔制的混合料投入炉内,根据玻璃组成的熔化难易度,在1450‐1550℃的温度范围内熔为玻璃液,通过溢流法、狭缝下拉法、浮法或浇铸再切割制备成厚度为0.7mm的基础玻璃板。
本实施例中基础玻璃板均采用浇铸再切割法进行制备。
将基础玻璃板放入晶化炉进行三段式阶梯升温制度处理,待制备出微晶玻璃后放入着色熔盐内进行离子着色,其具体工艺参数如下:
实施例1:将基础玻璃板放入晶化炉内,以10℃/min升温至550℃,保温180min;以3℃/min升温至710℃,保温60min;以5℃/min升温至800℃,保温120min后,随炉降温至100℃以下,拿出室温冷却;测试其透过率(可见光范围)为6.33%,L*值为20.2,结晶度>90%,晶粒尺寸500‐600nm。其扫描电子显微镜(SEM)图如图2所示。
将制备好的微晶玻璃样品预热后置于着色熔盐内,其熔盐组成为CuSO 4 为60%、Na 2SO 4为30%、K 2SO 4为10%,着色温度为560℃,着色时间为100min;将着色样品取出,放置预热炉内随炉退火,待样品冷却后,热水清洗着色微晶玻璃的表面残留物;测试其显示红色,L*值为18.83。
实施例2:将基础玻璃板放入晶化炉内,以5℃/min升温至545℃,保温180min;以3℃/min升温至690℃,保温30min;以5℃/min升温至780℃,保温90min后,随炉降温至100℃以下,拿出室温冷却;测试其透过率(可见光范围)为16.06%,L*值为41.2,结晶度>90%,晶粒尺寸约480nm。
将制备好的微晶玻璃样品预热后置于着色熔盐内,其熔盐组成为CuSO 4为57%、Na 2SO 4为30%、K 2SO 4为13%,着色温度为540℃,着色时间为60min;将着色样品取出,放置预热炉内随炉退火,待样品冷却后,热水清洗着色微晶玻璃的表面残留物;测试其显示黄色,L*值为27.32。
实施例3:将基础玻璃板放入晶化炉内,以7℃/min升温至540℃,保温240min;以2℃/min升温至670℃,保温60min;以3℃/min升温至810℃,保温60min后,随炉降温至100℃以下,拿出室温冷却;测试其透过率(可见光范围)为13.11%,L*值为35.95,结晶度>90%,晶粒尺寸约511nm。
将制备好的微晶玻璃样品预热后置于着色熔盐内,其熔盐组成为CuSO 4为65%、Na 2SO 4为30%、K 2SO 4为5%,着色温度为600℃,着色时间为120min;将着色样品取出,放置预热炉内随炉退火,待样品冷却后,热水清洗着色微晶玻璃的表面残留物;测试其显示棕绿色,L*值为22.12。
实施例4:将基础玻璃板放入晶化炉内,以5℃/min升温至540℃,保温150min;以2℃/min升温至650℃,保温30min;以3℃/min升温至760℃,保温60min后,随炉降温至100℃以下,拿出室温冷却;测试其透过率(可见光范围)为22.61%,L*值为56.75,结晶度>86%,晶粒尺寸372nm。
将制备好的微晶玻璃样品预热后置于着色熔盐内,其熔盐组成为CuSO 4为55%、Na 2SO 4为30%、K 2SO 4为15%,着色温度为540℃,着色时间为20min;将着色样品取出,放置预热炉内随炉退火,待样品冷却后,热水清洗着色微晶玻璃的表面残留物;测试其显示浅绿色,L*值为33.65。
实施例5:将基础玻璃板放入晶化炉内,以5℃/min升温至540℃,保温150min;以2℃/min升温至650℃,保温50min;以3℃/min升温至760℃,保温60min后,随炉降温至100℃以下,拿出室温冷却;测试其透过率(可见光范围)为21.13%,L*值为54.33,结晶度>86%,晶粒尺寸377nm。
将制备好的微晶玻璃样品预热后置于着色熔盐内,其熔盐组成为CuSO4为55%、Na 2SO 4为30%、K 2SO 4为15%,着色温度为540℃,着色时间为90min;将着色样品取出,放置预热炉内随炉退火,待样品冷却后,热水清洗着色微晶玻璃的表面残留物;测试其显示绿色,L*值为30.23。
实施例1-5中微晶玻璃样品未着色前在200nm-1400nm波长透过率见图1所示,其在可见光380-780nm光波段处平均透过率分别为6.33%、16.06%、13.11%、22.61%、21.13%。
实施例6:将基础玻璃板上部分位置放置小片耐火板,将其一并放入晶化炉内,以5℃/min升温至540℃,保温150min;以2℃/min升温至650℃,保温20min;以3℃/min升温至760℃,保温60min后,随炉降温至100℃以下,拿出室温冷却;
将制备好的微晶玻璃样品预热后置于着色熔盐内,其熔盐组成为CuSO 4为55%、Na 2SO 4为30%、K 2SO 4为15%,着色温度为540℃,着色时间为60min;将着色样品取出,放置预热炉内随炉退火,待样品冷却后,热水清洗着色微晶玻璃的表面残留物;测试其有耐火板覆盖位置颜色为绿色,未覆盖位置颜色为浅绿色。
实施例6中微晶玻璃样品未着色时的扫描电子显微镜(SEM)如图3所示,由图3可见由于温差的存在玻璃产生不同的晶相结构,左边的玻璃相较多,晶粒较小,平均晶粒为300nm;右边玻璃相相对较少,晶粒较大,晶粒为300-500nm左右。温差的存在使得玻璃产生不同的晶相结构,其在宏观表现为不同透射率导致显色差异。说明微晶化热处理温度控制对本发明实现具有重要意义。
以上实施例可以看出,由于不同的微晶化热处理温度、时间或不同着色温度、时间、以及铜离子植入含量不同导致不同的晶相含量、晶相结构,铜离子离子价态的跃迁、不同的透过率,最终造成玻璃颜色的显色差异。
实施例1‐5物理性质其定义及解释如下所示:
(1)平均晶粒尺寸:利用SEM扫描电镜进行测定,微晶玻璃通过在HF酸中进行表面处理,再对微晶玻璃表面进行喷铬镀膜,在SEM扫描电镜下进行表面扫描,观察到颗粒的直径,并通过加总所有晶粒剖面的平均直径尺寸,除以SEM影像中的晶粒数;
(2)结晶度:将XRD衍射峰与数据库图谱进行对比确定晶相,通过Rietveld方法计算结晶相衍射强度在整体图谱强度中所占比例得出结晶度及非晶含量;
(3)透过率:采用可见分光光度计测试;
(4)L*a*b值:采用分光光度计测试。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系 列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括……”或“包含……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的要素。此外,在本文中,“大于”、“小于”、“超过”等理解为不包括本数;“以上”、“以下”、“以内”等理解为包括本数。
需要说明的是,尽管在本文中已经对上述各实施例进行了描述,但并非因此限制本发明的专利保护范围。因此,基于本发明的创新理念,对本文所述实施例进行的变更和修改,或利用本发明说明书及附图内容所作的等效结构或等效流程变换,直接或间接地将以上技术方案运用在其他相关的技术领域,均包括在本发明的专利保护范围之内。

Claims (10)

  1. 一种彩色微晶玻璃的制备方法,其特征在于,包括以下步骤:
    将锂铝硅玻璃前驱体进行微晶化热处理得到微晶玻璃;将微晶玻璃经预热后放入着色熔盐中进行着色处理,着色温度控制为500-650℃,着色时间10min-120min,得到所述彩色微晶玻璃;所述着色熔盐为含Cu 2+的硫酸盐;所述微晶玻璃的玻璃基础组成,按质量百分数计为:SiO 268%-75%、Al 2O 37%-12%、P 2O 51.5%-4%,Li 2O 7%-12%、Na 2O 0%-1%、ZrO 24%-6%、BaO 0-1.2%、SnO 20.05%-0.1%;
    所述微晶化热处理包括以下三段式阶梯升温处理步骤:
    第一阶梯升温:常温下以5-10℃/min升温至第一阶梯温度530℃-560℃,保温热处理150min-240min;
    第二阶梯升温:后以2-4℃/min升温至第二阶梯温度650-710℃之间,保温热处理20-60min;
    第三阶梯升温:再以3-5℃/min升温至第三阶梯温度760-810℃之间,保温热处理60-120min,随炉冷却,得到所述微晶玻璃。
  2. 根据权利要求1所述的制备方法,其特征在于,所述微晶玻璃的外观为乳白色,L*值为20-75。
  3. 根据权利要求1所述的制备方法,其特征在于,所述微晶玻璃在380nm-780nm可见光范围内透过率为6%-45%。
  4. 根据权利要求1所述的制备方法,其特征在于,所述微晶玻璃的晶粒直径为300nm-600nm。
  5. 根据权利要求1所述的制备方法,其特征在于,所述微晶玻璃的结晶度为>86%。
  6. 根据权利要求1所述的制备方法,其特征在于,所述的微晶玻璃的转变点温度>710℃。
  7. 根据权利要求1所述的制备方法,其特征在于,所述着色熔盐为100%CuSO 4熔盐。
  8. 根据权利要求1所述的制备方法,其特征在于,所述着色熔盐为混合熔盐,所述混合熔盐的质量百分比构成为CuSO 4为45-70%、Na 2SO 4为30-50%、K 2SO 4为5-15%。
  9. 一种彩色微晶玻璃,其特征在于,所述彩色微晶玻璃采用权利要求1-8任一所述制备方法进行制备。
  10. 根据权利要求9所述的彩色微晶玻璃,其特征在于,所述彩色微晶玻璃的L*值为18-68。
PCT/CN2021/088651 2021-01-12 2021-04-21 一种彩色微晶玻璃及其制备方法 WO2022151610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110033312.2A CN112624618B (zh) 2021-01-12 2021-01-12 一种彩色微晶玻璃及其制备方法
CN202110033312.2 2021-01-12

Publications (1)

Publication Number Publication Date
WO2022151610A1 true WO2022151610A1 (zh) 2022-07-21

Family

ID=75293921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088651 WO2022151610A1 (zh) 2021-01-12 2021-04-21 一种彩色微晶玻璃及其制备方法

Country Status (2)

Country Link
CN (1) CN112624618B (zh)
WO (1) WO2022151610A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116119929A (zh) * 2022-11-22 2023-05-16 安徽火凤凰新材料科技有限公司 一种彩色微晶玻璃及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624618B (zh) * 2021-01-12 2022-09-09 科立视材料科技有限公司 一种彩色微晶玻璃及其制备方法
CN115028363A (zh) * 2022-06-08 2022-09-09 常熟佳合显示科技有限公司 一种有色陶瓷材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193226A1 (en) * 2000-09-29 2002-04-03 Maeda Kogyo Co., Ltd. Colored glass for lighting, colored glass bulb and method for producing thereof
CN107793045A (zh) * 2016-08-30 2018-03-13 江苏杰龙晶瓷科技有限公司 乳白玻璃化学钢化时表面着色的方法
CN108715510A (zh) * 2018-06-06 2018-10-30 科立视材料科技有限公司 一种玻璃制品表面离子交换着色剂及其着色方法
CN109867447A (zh) * 2017-12-01 2019-06-11 成都光明光电股份有限公司 微晶玻璃及其基板
CN110255896A (zh) * 2019-05-31 2019-09-20 彩虹集团(邵阳)特种玻璃有限公司 一种3d成型可着色的离子交换玻璃及其制备方法
CN111099825A (zh) * 2018-10-26 2020-05-05 成都光明光电股份有限公司 微晶玻璃、微晶玻璃制品及其制造方法
CN112624618A (zh) * 2021-01-12 2021-04-09 科立视材料科技有限公司 一种彩色微晶玻璃及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967040A (en) * 1971-10-01 1976-06-29 Glaverbel-Mecaniver Production of colored glass bodies
TW201242923A (en) * 2011-03-17 2012-11-01 Asahi Glass Co Ltd Colored glass casing
CN111348835A (zh) * 2014-11-19 2020-06-30 成都光明光电股份有限公司 高硬度透明微晶玻璃及其制备方法
DE202018100558U1 (de) * 2017-08-30 2018-02-15 Schott Ag Eingefärbte transparente Lithiumaluminiumsilikat-Glaskeramik
CN108467205A (zh) * 2018-04-18 2018-08-31 福州大学 一种Ce、V、Er共掺的齿科微晶玻璃及其制备和应用
CN109502983B (zh) * 2018-12-27 2021-10-22 海南海控特玻科技有限公司 一种带星球状分布的天幕蓝色微晶玻璃的制备方法
CN110803866A (zh) * 2019-12-18 2020-02-18 中郡庄艺(泉州)新材料有限公司 一种淡粉色微晶玻璃及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193226A1 (en) * 2000-09-29 2002-04-03 Maeda Kogyo Co., Ltd. Colored glass for lighting, colored glass bulb and method for producing thereof
CN107793045A (zh) * 2016-08-30 2018-03-13 江苏杰龙晶瓷科技有限公司 乳白玻璃化学钢化时表面着色的方法
CN109867447A (zh) * 2017-12-01 2019-06-11 成都光明光电股份有限公司 微晶玻璃及其基板
CN108715510A (zh) * 2018-06-06 2018-10-30 科立视材料科技有限公司 一种玻璃制品表面离子交换着色剂及其着色方法
CN111099825A (zh) * 2018-10-26 2020-05-05 成都光明光电股份有限公司 微晶玻璃、微晶玻璃制品及其制造方法
CN110255896A (zh) * 2019-05-31 2019-09-20 彩虹集团(邵阳)特种玻璃有限公司 一种3d成型可着色的离子交换玻璃及其制备方法
CN112624618A (zh) * 2021-01-12 2021-04-09 科立视材料科技有限公司 一种彩色微晶玻璃及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116119929A (zh) * 2022-11-22 2023-05-16 安徽火凤凰新材料科技有限公司 一种彩色微晶玻璃及其制备方法和应用

Also Published As

Publication number Publication date
CN112624618B (zh) 2022-09-09
CN112624618A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2022151610A1 (zh) 一种彩色微晶玻璃及其制备方法
CN115286251B (zh) 强化玻璃、微晶玻璃及其制备方法与应用
CN108373267B (zh) 玻璃陶瓷板
EP1313675B1 (de) Transparente, mit vanadiumoxid-zusatz dunkel einfärbbare glaskeramik
US7825051B2 (en) Colored glass compositions
KR20170139005A (ko) 화학 템퍼링 가능한 유리판
KR20160138015A (ko) 화학 템퍼링 가능한 유리판
WO2022052847A1 (zh) 一种抗菌熔盐、玻璃及制备方法
DE19939787A1 (de) Transparente, mit Vanadiumoxid-Zusatz dunkel einfärbbare Glaskeramik mit Hochquarz-Mischkristallen als vorherrschende Kristallphase und Verfahren zu ihrer Herstellung
JP7545771B2 (ja) ガラス材料及びその製造方法並びにその製品
JP7138139B2 (ja) Li2O-Al2O3-SiO2系結晶化ガラス
WO2022262419A1 (zh) 一种牙科用硅酸锂玻璃陶瓷及其制备方法、硅酸锂玻璃陶瓷修复体
CN113321421A (zh) 锂铝硅酸盐玻璃、由其制的玻璃陶瓷、其制造方法及用途
WO2024131618A1 (zh) 一种彩色微晶玻璃及其制备方法以及应用
CN115772001A (zh) 一种颜色透明玻璃组合物、微晶玻璃及其制备方法
US10577276B2 (en) Ultraviolet-absorbent glass
LU504602B1 (en) Co doped luminescent colored microcrystalline glass and its preparation method
CN107759078A (zh) 一种防紫外线隔热有色玻璃及其生产工艺
CN108164134A (zh) 一种紫红色玻璃
CN114538780B (zh) 一种前牙饰面瓷材料及其制备方法
CN112408783B (zh) 一种乳浊孔雀绿色高铝玻璃及其制备方法
CN112266184B (zh) 一种抗菌熔盐、玻璃及制备方法
DE102020202600A1 (de) Kristallisierbares Lithiumaluminiumsilikat-Glas und daraus hergestellte Glaskeramik sowie Verfahren zur Herstellung des Glases und der Glaskeramik und Verwendung der Glaskeramik
CN118373600A (zh) 一种乳白玻璃及其制备方法
CN118754433A (zh) 蓝色调高强度电子玻璃及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918809

Country of ref document: EP

Kind code of ref document: A1