WO2022151479A1 - 镜片、镜头及模具 - Google Patents

镜片、镜头及模具 Download PDF

Info

Publication number
WO2022151479A1
WO2022151479A1 PCT/CN2021/072511 CN2021072511W WO2022151479A1 WO 2022151479 A1 WO2022151479 A1 WO 2022151479A1 CN 2021072511 W CN2021072511 W CN 2021072511W WO 2022151479 A1 WO2022151479 A1 WO 2022151479A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
bearing area
optical axis
optical
zone
Prior art date
Application number
PCT/CN2021/072511
Other languages
English (en)
French (fr)
Inventor
王丽青
Original Assignee
欧菲光集团股份有限公司
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 江西晶超光学有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2021/072511 priority Critical patent/WO2022151479A1/zh
Publication of WO2022151479A1 publication Critical patent/WO2022151479A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present application relates to the technical field of optical imaging, and in particular, to a lens, a lens and a mold.
  • Lenses are basic and indispensable optical components in optical systems, and they play an extremely critical and important role in optical imaging lenses.
  • the imaging quality of an optical imaging lens is directly related to the quality of the lens used, so how to manufacture a lens with good quality has become one of the important issues in the manufacture of optical systems.
  • the embodiments of the present application provide a lens, including:
  • a bearing area arranged around the optical area and away from the optical axis of the lens relative to the optical area, the bearing area includes a plurality of concave structures, and a plurality of the concave structures are symmetrically arranged relative to the symmetry plane , the optical axis is located in the symmetry plane, the bearing area further includes an outer peripheral surface, and the outer peripheral surface is formed between the object side surface of the bearing area and the image side surface of the bearing area, the One side of the recessed structure penetrates through the outer peripheral surface.
  • the above-mentioned lens can ensure that the average thickness of each area of the molten resin in the flow direction is relatively uniform during the injection molding process by setting a plurality of concave structures symmetrical to the symmetrical plane in the bearing area, and the average flow rate is close, which can avoid welding lines.
  • one side of the concave structure penetrates the outer peripheral surface of the bearing area, which can ensure that the light entering from a specific position outside can directly reach the imaging surface, avoiding the light being reflected multiple times in the bearing area and reaching the imaging surface. As a result, the image quality is affected, and the performance and quality of the lens are higher.
  • the embodiment of the present application also provides a lens, including:
  • the above-mentioned lens includes a lens, and the lens can ensure that the average thickness of each area of the molten resin in the flow direction during the injection molding process is relatively uniform, and the average flow rate is close to , which can avoid the generation of welding lines; and, one side of the recessed structure penetrates the outer peripheral surface of the bearing area, which can ensure that the light entering from a specific position outside can directly reach the imaging surface, avoiding the light passing through the bearing area for many times. It reflects and reaches the imaging surface, thus affecting the imaging quality. The performance and quality of the lens are higher.
  • the embodiment of the present application also provides a mold, including:
  • a mold core set in the male mold and/or the female mold, the mold core has a cavity for forming a lens, the lens includes an optical area and a bearing area, and the bearing area surrounds the optical lens
  • the bearing area is disposed relative to the optical area and is far from the optical axis of the lens
  • the bearing area includes a plurality of concave structures, a plurality of the concave structures are symmetrically arranged relative to the symmetry plane, and the optical axis is located in the In the symmetry plane
  • the bearing area further includes an outer peripheral surface, and the outer peripheral surface is formed between the object side surface of the bearing area and the image side surface of the bearing area, and one side of the recessed structure penetrates through the surface. the outer peripheral surface.
  • the above-mentioned mold can form the lens, the lens can ensure that the average thickness of the molten resin in each area in the flow direction during the injection molding process is relatively uniform, and the average flow rate is relatively uniform by setting a plurality of concave structures symmetrical with respect to the symmetrical plane in the bearing area. It can avoid the generation of welding lines; and, one side of the concave structure penetrates the outer peripheral surface of the bearing area, which can ensure that the light entering from a specific position outside can directly reach the imaging surface, avoiding the light passing through the bearing area for a long time. The secondary reflection reaches the imaging surface, thus affecting the imaging quality. The performance and quality of the lens are higher.
  • FIG. 1 is a schematic cross-sectional view of a lens provided by a first embodiment of the present application.
  • FIG. 2 is a front view of a lens in the lens shown in FIG. 1 .
  • FIG. 3 is a schematic cross-sectional view of the lens shown in FIG. 2 along the line A-A.
  • FIG. 4 is a schematic cross-sectional structure diagram of the mold provided by the first embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional view of a lens provided by a second embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional view of the lens in the lens shown in FIG. 5 .
  • FIG. 7 is a schematic cross-sectional view of an injection molding mold according to a second embodiment of the present application.
  • FIG. 8 is a schematic cross-sectional view of a lens provided by a third embodiment of the present application.
  • FIG. 9 is a schematic cross-sectional view of the lens in the lens shown in FIG. 8 .
  • FIG. 10 is a schematic cross-sectional view of the injection molding mold provided by the third embodiment of the application.
  • FIG. 11 is a schematic cross-sectional view of a lens provided by a fourth embodiment of the present application.
  • FIG. 12 is a schematic cross-sectional view of the lens in the lens shown in FIG. 11 .
  • FIG. 13 is a schematic cross-sectional view of an injection molding mold according to a fourth embodiment of the present application.
  • FIG. 14 is a schematic cross-sectional view of a lens provided by a fifth embodiment of the present application.
  • FIG. 15 is a schematic cross-sectional structural diagram of the lens in the lens shown in FIG. 14 .
  • FIG. 16 is a front view of the lens in the lens shown in FIG. 14 .
  • FIG. 17 is a schematic cross-sectional view of an injection molding mold according to a fifth embodiment of the present application.
  • a component when referred to as being “electrically connected” to another component, it may be directly on the other component or there may also be an intervening component.
  • a component when a component is considered to be “electrically connected” to another component, it can be a contact connection, eg, by means of a wire connection, or a contactless connection, eg, by a contactless coupling.
  • a first embodiment of the present application provides a lens 100 including a lens barrel 10 and a lens 20 .
  • the lens barrel 10 has a light-passing hole 12 , and the light entering from the outside can reach the lens 20 through the light-passing hole 12 .
  • the lens 20 is disposed in the light-passing hole 12 of the lens barrel 10 , and the edge of the lens 20 is supported on the hole wall of the light-passing hole 12 . Understandably, in some embodiments, the edge of the lens 20 and the hole wall of the light-passing hole 12 are fixedly connected together by optical glue.
  • the number of lenses 20 may be one or multiple, and when the number of lenses 20 is multiple, the multiple lenses 20 are arranged at intervals along the optical axis.
  • the lens 20 includes an optical zone 22 and a bearing zone 24 .
  • the main function of the optical zone 22 is to allow light incident from the outside to pass through for imaging.
  • the bearing area 24 is disposed around the optical area 22 and is away from the optical axis passing through the lens 20 relative to the optical area 22 .
  • the bearing area 24 includes a plurality of recessed structures 241 .
  • the multiple recessed structures 241 are symmetrically arranged with respect to the symmetry plane, and the optical axis is located in the symmetry plane.
  • the bearing area 24 further includes an outer peripheral surface 240 , and the outer peripheral surface 240 is formed in the bearing area 24 . Between the object side surface and the image side surface of the bearing area 24 , one side of the concave structure 241 runs through the outer peripheral surface 240 .
  • the object side surface 26 of the lens 20 is jointly formed by the object side surface of the bearing area 24 and the object side surface of the optical area 22, and the image side surface 27 of the lens 20 is formed by the image side surface of the bearing area 24 and the image side surface of the optical area 22.
  • the object side 26 in this embodiment only represents the object side of the lens 20
  • the image side 27 only represents the image side of the lens 20 .
  • the concave structure 241 includes a first concave portion 242 , the first concave portion 242 is formed by the concavity of the object side of the bearing area 24 toward the image side surface of the bearing area 24 , and the first concave portion 242 includes a first bottom surface 2421 , a first side surface 2422 and second side 2423.
  • the first bottom surface 2421 is a planar structure. Along the direction from the object side surface 26 of the lens 20 to the image side surface 27 of the lens 20, the distance between the first bottom surface 2421 and the optical axis gradually increases.
  • first bottom surface 2421 penetrates the junction of the object side surface of the bearing area 24 and the object side surface of the optical zone 22 , and the opposite side of the first bottom surface 2421 penetrates the outer peripheral surface 240 of the bearing area 24 .
  • the light when entering the corresponding position of the first concave portion 242 from a specific position in the outside world, due to the existence of the first concave portion 242 , the light can be directly reflected to the imaging surface through the first bottom surface 2421 , preventing the light from entering the imaging surface.
  • the bearing area 24 undergoes multiple reflections and reaches the imaging surface, thereby affecting the imaging quality.
  • the opposite side of the first bottom surface 2421 penetrates through the image side surface of the bearing area 24 .
  • the opposite side of the first bottom surface 2421 penetrates through the junction of the image side surface of the bearing area 24 and the image side surface of the optical area 22; it may also penetrate the image side surface of the bearing area 24 and the image side surface of the optical area 22 The junction of , and the position between the outer peripheral surface 240 of the bearing area 24 .
  • the first side surface 2422 and the second side surface 2423 are disposed on opposite sides of the first bottom surface 2421.
  • the first side surface 2422 and the first bottom surface 2421 are connected to form a first intersection line 2424
  • the second side surface 2423 is connected to the first bottom surface 2421 to form a first intersection line 2424.
  • the second intersection line 2425, the first intersection line 2424 and the second intersection line 2425 all pass through the optical axis after extending the projection lines of the plane perpendicular to the optical axis.
  • the first side surface 2422 further includes a first contour line 2426.
  • the first contour line 2426 is located on the object side surface 26 of the lens 20, and two ends of the first contour line 2426 are respectively connected with two ends of the first intersection line 2424, that is, the first intersection line. 2424 and the first contour line 2426 form a first side surface 2422;
  • the second side surface 2423 includes a second contour line 2427, the second contour line 2427 is located on the object side surface 26 of the lens 20, and its two ends are respectively connected with the two sides of the second intersection line 2425.
  • the end connection, that is, the second intersection line 2425 and the second contour line 2427 form the second side surface 2423 .
  • the projection lines of the first intersection line 2424 and the second intersection line 2425 on the plane perpendicular to the optical axis are located between the projection lines of the first contour line 2426 and the second contour line 2427 on the plane perpendicular to the optical axis, that is,
  • the first side surface 2422 and the second side surface 2423 may both be curved surfaces, or may be inclined relative to the first bottom surface 2421 .
  • the projection lines of the first contour line 2426 and the second contour line 2427 on the plane perpendicular to the optical axis are respectively the same as the first intersection line and the second intersection line on the plane perpendicular to the optical axis.
  • the projection lines coincide, that is to say, the first side surface 2422 and the second side surface 2423 are both perpendicular to the first bottom surface 2421 .
  • the lens 20 satisfies the following relationship:
  • T1 is the maximum thickness of the object side of the optical zone 22 and the image side of the optical zone 22 in the direction of the optical axis
  • T2 is the minimum thickness of the object side of the optical zone 22 and the image side of the optical zone 22 in the direction of the optical axis
  • the ratio of T1 and T2 is the thickness ratio. In this way, the molding stability and performance requirements of the lens 20 can be guaranteed.
  • the bearing area 24 also includes a plurality of bearing parts 243 , which are alternately connected with a plurality of recessed structures 241 and surround the peripheral side of the optical zone 22 .
  • the above-mentioned lens 20 is provided with a plurality of concave structures 241 symmetrical with respect to the symmetrical plane in the bearing area 24, which can ensure that the average thickness of each area of the molten resin in the flow direction is relatively uniform during the injection molding process, and the average flow rate is close to avoid welding.
  • one side of the recessed structure 241 runs through the outer peripheral surface 240 of the bearing area 24, which can ensure that the light entering from a specific position outside can directly reach the imaging surface, and avoid the light passing through the bearing area 24 for many times. It reflects and reaches the imaging surface, thereby affecting the imaging quality.
  • the performance and quality of the lens 20 are relatively high.
  • the first embodiment of the present application further provides a mold 200 , which includes a male mold 210 , a female mold 220 and a mold core 230 .
  • the male mold 210 and the female mold 220 are matched.
  • a cavity 232 can be formed.
  • the shape of the cavity 232 is the same as that of the lens 20 in the first embodiment. shape to match.
  • a gate 212 is opened at the junction of the male mold 210 and the female mold 220, and a flow channel 214 is also opened at the junction of the male mold 210 and the female mold 220.
  • One end of the flow channel 214 is communicated with the gate 212, and the other One end communicates with the cavity 232 .
  • the molten resin can enter the cavity 232 through the gate 212 and the runner 214 for molding, and after cooling, the lens 20 that matches the shape of the cavity 232 can be obtained.
  • the plurality of concave structures 241 that are symmetrical with respect to the symmetrical plane can ensure that the flow rate of the molten resin in the optical zone 22 and the bearing zone 24 is consistent during the injection molding process, which can avoid the generation of welding lines; and one side of the concave structures 241 Running through the outer peripheral surface 240 of the bearing area 24 can ensure that the light entering from a specific position outside can directly reach the imaging surface, preventing the light from being repeatedly reflected in the bearing area 24 and reaching the imaging surface, thereby affecting the imaging quality.
  • the lens 20 high performance and quality.
  • the two mold cores 230 may be an integral structure.
  • the gate 212 and the runner 214 may both be located in the female mold 220 or in the male mold 210, which are specifically set according to actual needs.
  • a second embodiment of the present application proposes a lens 100 , including a lens barrel 10 and a lens 20 , the lens 20 includes an optical zone 22 and a bearing zone 24 , the lens 100 proposed by the second embodiment
  • the structure is substantially the same as that of the lens 100 in the first embodiment, except that:
  • the concave structure 241 further includes a second concave portion 244 .
  • the second concave portion 244 is formed by the concave formation of the image side surface of the bearing area 24 toward the object side surface of the bearing area 24 .
  • the second concave portion 244 includes a second bottom surface 2441 and the second bottom surface 2441 One side of the second bottom surface 2441 penetrates through the first bottom surface 2421 of the first recessed portion 242 , and the opposite side of the second bottom surface 2441 penetrates the image side surface of the bearing area 24 .
  • the opposite side of the second bottom surface 2441 may penetrate through the junction between the image side surface of the bearing area 24 and the image side surface of the optical area 22; it may also penetrate the image side surface of the bearing area 24 and the image side surface of the optical area 22.
  • the junction of the side surfaces is the position between the outer peripheral surface 240 of the bearing area 24 .
  • the above-mentioned lens 20 is provided with a plurality of concave structures 241 symmetrical with respect to the symmetrical plane in the bearing area 24, which can ensure that the average thickness of each area of the molten resin in the flow direction is relatively uniform during the injection molding process, and the average flow rate is close to avoid welding.
  • one side of the recessed structure 241 penetrates the outer peripheral surface 240 of the bearing area 24, as shown in FIG. , due to the existence of the first concave portion 242 and the second concave portion 244 , the light can be directly reflected to the imaging surface through the first bottom surface 2421 and the second bottom surface 2441 , and the performance and quality of the lens 20 are high.
  • a second embodiment of the present application proposes a mold 200 , which includes a male mold 210 , a female mold 220 and a mold core 230 .
  • the mold 200 in the second embodiment is different from the mold 200 in the first embodiment.
  • the structure is roughly the same, except that:
  • the mold core 230 has a cavity 232, and the shape of the cavity 232 is adapted to the shape of the lens 20 in the second embodiment.
  • a third embodiment of the present application proposes a lens 100, including a lens barrel 10 and a lens 20.
  • the lens 20 includes an optical zone 22 and a bearing zone 24.
  • the lens 100 proposed in the third embodiment is the same as the The structure of the lens 100 in the first embodiment is substantially the same, except that:
  • the concave structure 241 includes a third concave portion 245 .
  • the third concave portion 245 is formed by concave the outer peripheral surface 240 of the bearing area 24 toward the optical axis of the lens 20 .
  • the third concave portion 245 includes an opposite third side surface 2451 and a fourth side surface 2452 , the third side 2451 is set close to the object side of the bearing area 24, the minimum distance between the third side 2451 and the object side of the bearing area 24 in the direction of the optical axis is greater than zero, and the fourth side 2452 is set close to the image side of the bearing area 24 , the minimum distance between the fourth side surface 2452 and the image side surface of the bearing area 24 in the optical axis direction is greater than zero.
  • the third recessed portion 245 may be a cylindrical structure or a prismatic structure.
  • the above-mentioned lens 20 is provided with a plurality of concave structures 241 symmetrical with respect to the symmetrical plane in the bearing area 24, which can ensure that the average thickness of the molten resin in each area in the flow direction is relatively uniform during the injection molding process, and the average flow rate is close to avoid welding.
  • one side of the concave structure 241 penetrates the outer peripheral surface 240 of the bearing area 24, as shown in FIG. With the existence of the fourth side 2452 of the 245, light can be reflected multiple times between the fourth side 2452 and the image side of the bearing area 24, so as to achieve the purpose of eliminating stray light, and the performance and quality of the lens 20 are high.
  • the third embodiment of the present application proposes an injection molding mold 200 , which includes a male mold 210 , a female mold 220 and a mold core 230 .
  • the mold 200 in the fourth embodiment is the same as the mold in the first embodiment.
  • the 200 has roughly the same structure, except that:
  • the mold core 230 has a cavity 232, and the shape of the cavity 232 is adapted to the shape of the lens 20 in the third embodiment.
  • a fourth embodiment of the present application proposes a lens 100, including a lens barrel 10 and a lens 20, the lens 20 includes an optical zone 22 and a bearing zone 24, the lens 100 proposed in the fourth embodiment is the same as
  • the structure of the lens 100 in the first embodiment is substantially the same, except that:
  • the concave structure 241 includes a third concave portion 245 .
  • the third concave portion 245 is formed by concave the outer peripheral surface 240 of the bearing area 24 toward the optical axis of the lens 20 .
  • the third concave portion 245 includes an opposite third side surface 2451 and a fourth side surface 2452 , the third side 2451 is set close to the object side of the bearing area 24, the minimum distance between the third side 2451 and the object side of the bearing area 24 in the direction of the optical axis is greater than zero, and the fourth side 2452 is set close to the image side of the bearing area 24 , the minimum distance between the fourth side surface 2452 and the image side surface of the bearing area 24 in the optical axis direction is greater than zero.
  • the third concave portion 245 may be an inverted cone-shaped structure or an inverted pyramid-shaped structure.
  • the third concave portion 245 may also have other shapes, which are not limited to the above-mentioned shapes, as long as the light is prevented from being repeatedly reflected in the bearing area 24 and reaching the imaging surface.
  • the above-mentioned lens 20 can ensure that the flow rate of the molten resin in the optical zone 22 and the bearing zone 24 is consistent during the injection molding process by setting a plurality of recessed structures 241 in the bearing area 24, which can avoid the generation of welding lines and, one side of the recessed structure 241 runs through the outer peripheral surface 240 of the bearing area 24, as shown in FIG. With the existence of the four side surfaces 2452, the light can be reflected multiple times between the fourth side surface 2452 and the image side surface of the bearing area 24, so as to achieve the purpose of eliminating stray light, and the performance and quality of the lens 20 are high.
  • the fourth embodiment of the present application proposes a mold 200 , which includes a male mold 210 , a female mold 220 and a mold core 230 .
  • the mold 200 in the fourth embodiment is different from the mold 200 in the first embodiment.
  • the structure is roughly the same, except that:
  • the mold core 230 has a cavity 232, and the shape of the cavity 232 is adapted to the shape of the lens 20 in the fourth embodiment.
  • a fifth embodiment of the present application provides a lens 100 , including a lens barrel 10 and a lens 20 , the lens 20 includes an optical zone 22 and a bearing zone 24 , the lens 100 proposed by the fifth embodiment
  • the structure is substantially the same as that of the lens 100 in the first embodiment, except that:
  • the concave structure 241 includes a fourth concave portion 246 .
  • the fourth concave portion 246 is formed by the concave of the outer peripheral surface 240 of the bearing area 24 toward the optical axis of the lens 20 .
  • the above-mentioned lens 20 is provided with a plurality of concave structures 241 symmetrical with respect to the symmetrical plane in the bearing area 24, which can ensure that the average thickness of each area of the molten resin in the flow direction is relatively uniform during the injection molding process, and the average flow rate is close to avoid welding.
  • one side of the recessed structure 241 runs through the outer peripheral surface 240 of the bearing area 24, which can ensure that the light entering from a specific position outside can directly reach the imaging surface, and avoid the light passing through the bearing area 24 for many times. It reflects and reaches the imaging surface, thereby affecting the imaging quality.
  • the performance and quality of the lens 20 are relatively high.
  • a fifth embodiment of the present application proposes a mold 200 , including a male mold 210 , a female mold 220 and a mold core 230 .
  • the mold 200 in the fifth embodiment is different from the mold 200 in the first embodiment.
  • the structure is roughly the same, except that:
  • the mold core 230 has a cavity 232, and the shape of the cavity 232 is adapted to the shape of the lens 20 in the fifth embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

一种镜片(20)、镜头(100)及注塑成型模具(200)。镜片(20)包括:光学区(22);及承靠区(24),环绕光学区(22)设置,且相对于光学区(22)远离镜片(20)的光轴,承靠区(24)包括多个凹陷结构(241),多个凹陷结构(241)相对于对称面对称设置,光轴位于对称面内,承靠区(24)还包括外周面(240),外周面(240)形成于承靠区(24)的物侧面(26)和承靠区(24)的像侧面(27)之间,凹陷结构(241)的其中一侧贯穿外周面(240)。这样的镜片(20)能够保证注塑成型过程中熔融树脂在光学区(22)和承靠区(24)流速的一致,可避免熔接线的产生;并且可保证从外界特定位置射入的光线可直接到达成像面,避免了光线在承靠区(24)经过多次反射并到达成像面,从而影响成像质量,镜片(20)的性能及品质较高。

Description

镜片、镜头及模具 技术领域
本申请涉及光学成像技术领域,尤其涉及一种镜片、镜头及模具。
背景技术
镜片在光学系统中为基本且不可或缺的光学元件,且其在光学成像镜头中更是扮演着极为关键且重要的角色。光学成像镜头的成像品质与其采用的镜片的品质直接相关,因此如何制造出品质良好的镜片便成为制造光学系统的其中一个重要的课题。
为了因应现今对光学成像镜头的性能需求不断地提升,便有需要在镜头中采用大厚薄比的镜片。在实现本申请的过程中,发明人发现现有技术中至少存在如下问题:对于大厚薄比的镜片,在注塑成型过程中,高温状态的熔融树脂从浇道被供给到模具的型腔后,熔融树脂在薄处较慢,在厚处流速较快,光学区的熔融树脂和承靠区的熔融树脂在汇合时会由于空气积存而产生熔接线,从而影响镜片的性能及品质;并且从外界射入的光线可在承靠区经过多次反射并到达成像面,从而影响成像质量。
发明内容
有鉴于此,有必要提供一种镜片、镜头及模具,以解决上述问题。
本申请实施例提供一种镜片,包括:
光学区;及
承靠区,环绕所述光学区设置,且相对于所述光学区远离所述镜片的光轴,所述承靠区包括多个凹陷结构,多个所述凹陷结构相对于对称面对称设置,所述光轴位于所述对称面内,所述承靠区还包括外周面,所述外周面形成于所述承靠区的物侧面和所述承靠区的像侧面之间,所述凹陷结构的其中一侧贯穿所述外周面。
上述的镜片通过在承靠区设置多个相对于对称面对称的凹陷结构,能够保证注塑成型过程中熔融树脂在流动方向上各区域的平均厚度相对均匀,平均流速接近,可避免熔接线的产生;并且,凹陷结构的其中一侧贯穿承靠区的外周 面,可保证从外界特定位置射入的光线可直接到达成像面,避免了光线在承靠区经过多次反射并到达成像面,从而影响成像质量,镜片的性能及品质较高。
本申请实施例还提供了一种镜头,包括:
镜筒;及
如上述的镜片。
上述的镜头包括镜片,所述镜片通过在承靠区设置多个相对于对称面对称的凹陷结构,能够保证注塑成型过程中熔融树脂在流动方向上各区域的平均厚度相对均匀,平均流速接近,可避免熔接线的产生;并且,凹陷结构的其中一侧贯穿承靠区的外周面,可保证从外界特定位置射入的光线可直接到达成像面,避免了光线在承靠区经过多次反射并到达成像面,从而影响成像质量,镜片的性能及品质较高。
本申请实施例还提供了一种模具,包括:
公模;
母模,与所述公模相适配;及
模仁,设于所述公模和/或所述母模内,所述模仁具有一成型镜片的型腔,所述镜片包括光学区和承靠区,所述承靠区环绕所述光学区设置,且相对于所述光学区远离所述镜片的光轴,所述承靠区包括多个凹陷结构,多个所述凹陷结构相对于对称面对称设置,所述光轴位于所述对称面内,所述承靠区还包括外周面,所述外周面形成于所述承靠区的物侧面和所述承靠区的像侧面之间,所述凹陷结构的其中一侧贯穿所述外周面。
上述的模具可成型镜片,所述镜片通过在承靠区设置多个相对于对称面对称的凹陷结构,能够保证注塑成型过程中熔融树脂在流动方向上各区域的平均厚度相对均匀,平均流速接近,可避免熔接线的产生;并且,凹陷结构的其中一侧贯穿承靠区的外周面,可保证从外界特定位置射入的光线可直接到达成像面,避免了光线在承靠区经过多次反射并到达成像面,从而影响成像质量,镜片的性能及品质较高。
附图说明
图1为本申请第一实施例提供的镜头的剖面示意图。
图2为图1所示的镜头中镜片的主视图。
图3为图2所示的镜片沿A-A线的剖视示意图。
图4为本申请第一实施例提供的模具的剖面结构示意图。
图5为本申请第二实施例提供的镜头的剖面示意图。
图6为图5所示的镜头中镜片的剖视示意图。
图7为本申请第二实施例提供的注塑成型模具剖面示意图。
图8为本申请第三实施例提供的镜头的剖面示意图。
图9为图8所示的镜头中镜片的剖视示意图。
图10为本申请第三实施例提供的注塑成型模具剖面示意图。
图11为本申请第四实施例提供的镜头的剖面示意图。
图12为图11所示的镜头中镜片的剖视示意图。
图13为本申请第四实施例提供的注塑成型模具剖面示意图。
图14为本申请第五实施例提供的镜头的剖面示意图。
图15为图14所示的镜头中镜片的剖视结构示意图。
图16为图14所示的镜头中镜片的主视图。
图17为本申请第五实施例提供的注塑成型模具剖面示意图。
主要元件符号说明
镜头                       100
镜筒                       10
通光孔                     12
镜片                       20
光学区                     22
承靠区                     24
外周面                     240
凹陷结构                   241
第一凹陷部                 242
第一底面                   2421
第一侧面                   2422
第二侧面                   2423
第一交汇线                 2424
第二交汇线                 2425
第一轮廓线                 2426
第二轮廓线                 2427
承靠部                     243
第二凹陷部                 244
第二底面                   2441
第三凹陷部                 245
第三侧面                   2451
第四侧面                   2452
第四凹陷部                 246
物侧面                     26
像侧面                     27
模具                       200
公模                       210
浇口                       212
流道                       214
母模                       220
模仁                       230
型腔                       232
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当一个组件被称为“电连接”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“电连接”另一个组件,它可以是接触连接,例如,可以是导线连接的方式,也可以是非接触式连接,例如,可以是非接触式耦合的方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术 语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,本申请第一实施例提供一种镜头100,包括镜筒10及镜片20。
镜筒10具有通光孔12,外界射入的光线可通过通光孔12到达镜片20。
镜片20设于镜筒10的通光孔12内,且镜片20的边缘承靠在通光孔12的孔壁。可以理解地,在一些实施例中,镜片20的边缘和通光孔12的孔壁通过光学胶固定连接在一起。
可以理解地,镜片20的数量可为一个,也可为多个,当镜片20的数量为多个时,多个镜片20沿光轴间隔设置。
请参见图2和图3,镜片20包括光学区22及承靠区24。
光学区22的主要作用是允许从外界射入的光线穿过以进行成像。
承靠区24环绕光学区22设置,且相对于光学区22远离经过镜片20的光轴。承靠区24包括多个凹陷结构241,多个凹陷结构241相对于对称面对称设置,光轴位于对称面内,承靠区24还包括外周面240,外周面240形成于承靠区24的物侧面和承靠区24的像侧面之间,凹陷结构241的其中一侧贯穿外周面240。
需要说明的是,镜片20的物侧面26由承靠区24的物侧面和光学区22的物侧面共同形成,镜片20的像侧面27由承靠区24的像侧面和光学区22的像侧面共同形成,为了便于区分,本实施例的物侧面26仅表示镜片20的物侧面,像侧面27仅表示镜片20的像侧面。
其中,凹陷结构241包括第一凹陷部242,第一凹陷部242由承靠区24的物侧面朝承靠区24的像侧面凹陷形成,第一凹陷部242包括第一底面2421、第一侧面2422和第二侧面2423。
第一底面2421为平面结构。沿着镜片20的物侧面26至镜片20的像侧面27的方向,第一底面2421与光轴之间的距离逐渐增加。
第一底面2421的一侧贯穿承靠区24的物侧面与光学区22的物侧面的相接处,第一底面2421的相对的另一侧贯穿承靠区24的外周面240。如此,如图1所示,从外界特定位置射入第一凹陷部242的对应位置时,由于第一凹陷部242的存在,光线可经第一底面2421直接反射至成像面,避免了光线在承靠区24 经过多次反射并到达成像面,从而影响成像质量。
可以理解地,在其他的实施例中,第一底面2421的相对的另一侧贯穿承靠区24的像侧面。具体地,第一底面2421的相对的另一侧贯穿承靠区24的像侧面与光学区22的像侧面的相接处;也可贯穿承靠区24的像侧面与光学区22的像侧面的相接处,同承靠区24的外周面240之间的位置。
第一侧面2422和第二侧面2423设于第一底面2421的相对两侧,第一侧面2422与第一底面2421相接形成第一交汇线2424,第二侧面2423与第一底面2421相接形成第二交汇线2425,第一交汇线2424和第二交汇线2425在垂直光轴的平面的投影线延伸后均穿过光轴。
第一侧面2422还包括第一轮廓线2426,第一轮廓线2426位于镜片20的物侧面26,且其两端分别与第一交汇线2424的两端连接,也即是说,第一交汇线2424和第一轮廓线2426形成第一侧面2422;第二侧面2423包括第二轮廓线2427,第二轮廓线2427位于镜片20的物侧面26,且其两端分别与第二交汇线2425的两端连接,也即是说,第二交汇线2425和第二轮廓线2427形成第二侧面2423。
第一交汇线2424和第二交汇线2425在垂直光轴的平面的投影线,位于第一轮廓线2426和第二轮廓线2427在垂直光轴的平面的投影线之间,也即是说,第一侧面2422和第二侧面2423可均为曲面,也可相对于第一底面2421倾斜设置。
可以理解地,在其他的实施例中,第一轮廓线2426和第二轮廓线2427在垂直光轴的平面的投影线,分别与第一交汇线和第二交汇线在垂直光轴的平面的投影线重合,也即是说,第一侧面2422和第二侧面2423均与第一底面2421垂直设置。
其中交汇于光轴,且分别经过第一轮廓线2426和第二轮廓线2427的两条直线之间存在最大夹角,多个第一凹陷部242的最大夹角之和小于180°,如此,保证了承靠区24的承靠强度。
在一些实施例中,镜片20满足以下关系式:
T1/T2>2.5;
其中,T1为光学区22的物侧面和光学区22的像侧面在光轴方向的最大厚度,T2为光学区22的物侧面和光学区22的像侧面在光轴方向的最小厚度,可以理解堤,T1和T2的比值即为厚薄比。如此,可保证镜片20的成型稳定性及 性能要求。
承靠区24还包括多个承靠部243,多个承靠部243与多个凹陷结构241交替连接且围绕在光学区22的周侧,承靠部243的主要作用是承靠在通光孔12的孔壁。
上述镜片20通过在承靠区24设置多个相对于对称面对称的凹陷结构241,能够保证注塑成型过程中熔融树脂在流动方向上各区域的平均厚度相对均匀,平均流速接近,可避免熔接线的产生;并且,凹陷结构241的其中一侧贯穿承靠区24的外周面240,可保证从外界特定位置射入的光线可直接到达成像面,避免了光线在承靠区24经过多次反射并到达成像面,从而影响成像质量,镜片20的性能及品质较高。
请参阅图4,本申请第一实施例还提供一种模具200,包括公模210、母模220及模仁230。
公模210和母模220相适配。
模仁230为两个,且分别设于公模210和母模220内,两个模仁230在对接后可形成一型腔232,型腔232的形状与第一实施例中的镜片20的形状相适配。其中,公模210和母模220的相接处开设一浇口212,且公模210和母模220的相接处还开设有一流道214,流道214的一端与浇口212连通,另一端与型腔232连通。
在注塑成型过程中,熔融树脂可通过浇口212及流道214进入型腔232内成型,待冷却后可获得与型腔232形状相适配的镜片20,由于镜片20在承靠区24设置多个相对于对称面对称的凹陷结构241,能够保证注塑成型过程中熔融树脂在光学区22和承靠区24流速的一致,可避免熔接线的产生;并且,凹陷结构241的其中一侧贯穿承靠区24的外周面240,可保证从外界特定位置射入的光线可直接到达成像面,避免了光线在承靠区24经过多次反射并到达成像面,从而影响成像质量,镜片20的性能及品质较高。
可以理解地,在其他的实施例中,两个模仁230可为一体结构。
可以理解地,在其他的实施例中,浇口212及流道214可均位于母模220内,也可均位于公模210内,具体根据实际需要设置。
请参见图5和图6,本申请的第二实施例提出了一种镜头100,包括镜筒10及镜片20,镜片20包括光学区22和承靠区24,第二实施例提出的镜头100与第一实施例中的镜头100的结构大致相同,不同之处在于:
凹陷结构241还包括第二凹陷部244,第二凹陷部244由承靠区24的像侧面朝承靠区24的物侧面凹陷形成,第二凹陷部244包括第二底面2441,第二底面2441的一侧贯穿第一凹陷部242的第一底面2421,第二底面2441的相对的另一侧贯穿承靠区24的像侧面。
具体地,第二底面2441的相对的另一侧可贯穿承靠区24的像侧面与光学区22的像侧面的相接处;也可贯穿承靠区24的像侧面与光学区22的像侧面的相接处,同承靠区24的外周面240之间的位置。
上述镜片20通过在承靠区24设置多个相对于对称面对称的凹陷结构241,能够保证注塑成型过程中熔融树脂在流动方向上各区域的平均厚度相对均匀,平均流速接近,可避免熔接线的产生;并且,凹陷结构241的其中一侧贯穿承靠区24的外周面240,如图5所示,从外界特定位置射入第一凹陷部242和第二凹陷部244的对应位置时,由于第一凹陷部242和第二凹陷部244的存在,光线可经第一底面2421和第二底面2441直接反射至成像面,镜片20的性能及品质较高。
请参阅图7,本申请的第二实施例提出了一种模具200,包括公模210、母模220及模仁230,第二实施例中的模具200与第一实施例中的模具200的结构大致相同,不同之处在于:
模仁230具有一型腔232,型腔232的形状与第二实施例中的镜片20的形状相适配。
请参阅图8和图9,本申请第三实施例提出了一种镜头100,包括镜筒10及镜片20,镜片20包括光学区22和承靠区24,第三实施例提出的镜头100与第一实施例中的镜头100的结构大致相同,不同之处在于:
凹陷结构241包括第三凹陷部245,第三凹陷部245由承靠区24的外周面240朝镜片20的光轴凹陷形成,第三凹陷部245包括相对的第三侧面2451和第四侧面2452,第三侧面2451靠近承靠区24的物侧面设置,第三侧面2451与承靠区24的物侧面在光轴方向的最小距离大于零,第四侧面2452靠近承靠区24的像侧面设置,第四侧面2452与承靠区24的像侧面在光轴方向的最小距离大于零。
在本实施例中,第三凹陷部245可为圆柱状结构或棱柱状结构。
上述镜片20通过在承靠区24设置多个相对于对称面对称的凹陷结构241,能够保证注塑成型过程中熔融树脂在流动方向上各区域的平均厚度相对均匀, 平均流速接近,可避免熔接线的产生;并且,凹陷结构241的其中一侧贯穿承靠区24的外周面240,如图8所示,从外界特定位置射入第三凹陷部245的对应位置时,由于第三凹陷部245的第四侧面2452的存在,光线可在第四侧面2452和承靠区24的像侧面之间进行多次反射,从而达到消除杂光的目的,镜片20的性能及品质较高。
请参阅图10,本申请的第三实施例提出了一种注塑成型模具200,包括公模210、母模220及模仁230,第四实施例中的模具200与第一实施例中的模具200的结构大致相同,不同之处在于:
模仁230具有一型腔232,型腔232的形状与第三实施例中的镜片20的形状相适配。
请参阅图11和图12,本申请第四实施例提出了一种镜头100,包括镜筒10及镜片20,镜片20包括光学区22和承靠区24,第四实施例提出的镜头100与第一实施例中的镜头100的结构大致相同,不同之处在于:
凹陷结构241包括第三凹陷部245,第三凹陷部245由承靠区24的外周面240朝镜片20的光轴凹陷形成,第三凹陷部245包括相对的第三侧面2451和第四侧面2452,第三侧面2451靠近承靠区24的物侧面设置,第三侧面2451与承靠区24的物侧面在光轴方向的最小距离大于零,第四侧面2452靠近承靠区24的像侧面设置,第四侧面2452与承靠区24的像侧面在光轴方向的最小距离大于零。
在本实施例中,第三凹陷部245可为倒圆锥状结构或倒棱锥状结构。
可以理解地,在其他的实施例中,第三凹陷部245也可为其他形状,不局限于上述的形状,只要是避免了光线在承靠区24经过多次反射并到达成像面即可。
上述镜片20通过在承靠区24设置多个相对于对称面对称的凹陷结构241,能够保证注塑成型过程中熔融树脂在光学区22和承靠区24流速的一致,可避免熔接线的产生;并且,凹陷结构241的其中一侧贯穿承靠区24的外周面240,如图11所示,从外界特定位置射入第三凹陷部245的对应位置时,由于第三凹陷部245的第四侧面2452的存在,光线可在第四侧面2452和承靠区24的像侧面之间进行多次反射,从而达到消除杂光的目的,镜片20的性能及品质较高。
请参阅图13,本申请的第四实施例提出了一种模具200,包括公模210、母模220及模仁230,第四实施例中的模具200与第一实施例中的模具200的结构 大致相同,不同之处在于:
模仁230具有一型腔232,型腔232的形状与第四实施例中的镜片20的形状相适配。
请参见图14至图16,本申请的第五实施例提出了一种镜头100,包括镜筒10及镜片20,镜片20包括光学区22和承靠区24,第五实施例提出的镜头100与第一实施例中的镜头100的结构大致相同,不同之处在于:
凹陷结构241包括第四凹陷部246,第四凹陷部246由承靠区24的外周面240朝镜片20的光轴凹陷形成,第四凹陷部246分别贯穿承靠区24的物侧面和承靠区24的像侧面。
上述镜片20通过在承靠区24设置多个相对于对称面对称的凹陷结构241,能够保证注塑成型过程中熔融树脂在流动方向上各区域的平均厚度相对均匀,平均流速接近,可避免熔接线的产生;并且,凹陷结构241的其中一侧贯穿承靠区24的外周面240,可保证从外界特定位置射入的光线可直接到达成像面,避免了光线在承靠区24经过多次反射并到达成像面,从而影响成像质量,镜片20的性能及品质较高。
请参见图17,本申请的第五实施例提出了一种模具200,包括公模210、母模220及模仁230,第五实施例中的模具200与第一实施例中的模具200的结构大致相同,不同之处在于:
模仁230具有一型腔232,型腔232的形状与第五实施例中的镜片20的形状相适配。
以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。本领域技术人员还可在本申请精神内做其它变化等用在本申请的设计,只要其不偏离本申请的技术效果均可。这些依据本申请精神所做的变化,都应包含在本申请所要求保护的范围之内。

Claims (13)

  1. 一种镜片,其特征在于,包括:
    光学区;及
    承靠区,环绕所述光学区设置,且相对于所述光学区远离所述镜片的光轴,所述承靠区包括多个凹陷结构,多个所述凹陷结构相对于对称面对称设置,所述光轴位于所述对称面内,所述承靠区还包括外周面,所述外周面形成于所述承靠区的物侧面和所述承靠区的像侧面之间,所述凹陷结构的其中一侧贯穿所述外周面。
  2. 如权利要求1所述的镜片,其特征在于,所述凹陷结构包括第一凹陷部,所述第一凹陷部由所述承靠区的物侧面朝所述承靠区的像侧面凹陷形成,所述第一凹陷部包括第一底面,所述第一底面的一侧贯穿所述承靠区的物侧面与所述光学区的物侧面的相接处;
    所述第一底面的相对的另一侧贯穿所述承靠区的像侧面,或者所述第一底面的相对的另一侧贯穿所述承靠区的外周面。
  3. 如权利要求2所述的镜片,其特征在于,沿着所述镜片的物侧面至所述镜片的像侧面的方向,所述第一底面与所述光轴之间的距离逐渐增加。
  4. 如权利要求2所述的镜片,其特征在于,所述第一凹陷部还包括设于所述第一底面两侧的第一侧面和第二侧面,所述第一侧面与所述第一底面相接形成第一交汇线,所述第二侧面与所述第一底面相接形成第二交汇线,所述第一交汇线和所述第二交汇线在垂直所述光轴的平面的投影线延伸后均穿过所述光轴。
  5. 如权利要求4所述的镜片,其特征在于,所述第一侧面还包括第一轮廓线,所述第一轮廓线位于所述镜片的物侧面,且其两端分别与所述第一交汇线的两端连接,所述第二侧面包括第二轮廓线,所述第二轮廓线位于所述镜片的物侧面,且其两端分别与所述第二交汇线的两端连接;
    所述第一轮廓线和所述第二轮廓线在垂直所述光轴的平面的投影线分别与所述第一交汇线和所述第二交汇线在垂直所述光轴的平面的投影线重合,或者所述第一交汇线和所述第二交汇线在垂直所述光轴的平面的投影线位于所述第一轮廓线和所述第二轮廓线在垂直所述光轴的平面的投影线之间。
  6. 如权利要求5所述的镜片,其特征在于,所述第一侧面和所述第二侧面均为曲面,或者所述第一侧面和所述第二侧面均相对于所述第一底面倾斜设置。
  7. 如权利要求5所述的镜片,其特征在于,交汇于所述光轴,且分别经过所述第一轮廓线和所述第二轮廓线的两条直线之间存在最大夹角,多个所述第一凹陷部的所述最大夹角之和小于180°。
  8. 如权利要求2-7任意一项所述的镜片,其特征在于,所述凹陷结构还包括第二凹陷部,所述第二凹陷部由所述承靠区的像侧面朝所述承靠区的物侧面凹陷形成,所述第二凹陷部包括第二底面,所述第二底面的一侧贯穿所述第一底面,所述第二底面的相对的另一侧贯穿所述承靠区的像侧面。
  9. 如权利要求1所述的镜片,其特征在于,所述凹陷结构包括第三凹陷部,所述第三凹陷部由所述承靠区的外周面朝所述镜片的光轴凹陷形成,所述第三凹陷部包括相对的第三侧面和第四侧面,所述第三侧面靠近所述承靠区的物侧面设置,所述第三侧面与所述承靠区的物侧面在所述光轴方向的最小距离大于零,所述第四侧面靠近所述承靠区的像侧面设置,所述第四侧面与所述承靠区的像侧面在所述光轴方向的最小距离大于零。
  10. 如权利要求1所述的镜片,其特征在于,所述凹陷结构包括第四凹陷部,所述第四凹陷部由所述承靠区的外周面朝所述镜片的光轴凹陷形成,所述第四凹陷部分别贯穿所述承靠区的物侧面和承靠区的像侧面。
  11. 如权利要求1所述的镜片,其特征在于,所述镜片满足以下关系式:
    T1/T2>2.5;
    其中,T1为所述光学区的物侧面和所述光学区的像侧面在所述光轴方向的最大厚度,T2为所述光学区的物侧面和所述光学区的像侧面在所述光轴方向的最小厚度。
  12. 一种镜头,其特征在于,包括:
    镜筒;及
    如权利要求1-11任意一项所述的镜片。
  13. 一种模具,其特征在于,包括:
    公模;
    母模,与所述公模相适配;及
    模仁,设于所述公模和/或所述母模内,所述模仁具有型腔以成型一种镜片,所述镜片包括光学区和承靠区,所述承靠区环绕所述光学区设置,且相对于所述光学区远离所述镜片的光轴,所述承靠区包括多个凹陷结构,多个所述凹陷结构相对于对称面对称设置,所述光轴位于所述对称面内,所述承靠区还包括 外周面,所述外周面形成于所述承靠区的物侧面和所述承靠区的像侧面之间,所述凹陷结构的其中一侧贯穿所述外周面。
PCT/CN2021/072511 2021-01-18 2021-01-18 镜片、镜头及模具 WO2022151479A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072511 WO2022151479A1 (zh) 2021-01-18 2021-01-18 镜片、镜头及模具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072511 WO2022151479A1 (zh) 2021-01-18 2021-01-18 镜片、镜头及模具

Publications (1)

Publication Number Publication Date
WO2022151479A1 true WO2022151479A1 (zh) 2022-07-21

Family

ID=82446830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072511 WO2022151479A1 (zh) 2021-01-18 2021-01-18 镜片、镜头及模具

Country Status (1)

Country Link
WO (1) WO2022151479A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070008629A1 (en) * 2005-07-10 2007-01-11 Asia Optical Co., Inc. Optical elements
CN106104314A (zh) * 2014-03-18 2016-11-09 富士胶片株式会社 光学透镜、透镜单元、摄像模块、电子设备、注射成型模具及注射成型方法
CN206523675U (zh) * 2017-01-17 2017-09-26 瑞声科技(新加坡)有限公司 镜头模组
CN107765351A (zh) * 2016-08-15 2018-03-06 扬明光学股份有限公司 透镜
CN209387981U (zh) * 2018-12-31 2019-09-13 瑞声科技(新加坡)有限公司 一种镜头模组
CN214151115U (zh) * 2021-01-18 2021-09-07 江西晶超光学有限公司 镜片、镜头及模具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070008629A1 (en) * 2005-07-10 2007-01-11 Asia Optical Co., Inc. Optical elements
CN106104314A (zh) * 2014-03-18 2016-11-09 富士胶片株式会社 光学透镜、透镜单元、摄像模块、电子设备、注射成型模具及注射成型方法
CN107765351A (zh) * 2016-08-15 2018-03-06 扬明光学股份有限公司 透镜
CN206523675U (zh) * 2017-01-17 2017-09-26 瑞声科技(新加坡)有限公司 镜头模组
CN209387981U (zh) * 2018-12-31 2019-09-13 瑞声科技(新加坡)有限公司 一种镜头模组
CN214151115U (zh) * 2021-01-18 2021-09-07 江西晶超光学有限公司 镜片、镜头及模具

Similar Documents

Publication Publication Date Title
TWI682207B (zh) 塑膠鏡筒
US8964313B2 (en) Plastic optical element and method of making the same
TWI476453B (zh) 光學塑膠透鏡
TWI261539B (en) Optical elements
JP2012183703A (ja) プラスチック光学部材及びその製造方法
US8619371B2 (en) Plastic lens
WO2022151479A1 (zh) 镜片、镜头及模具
CN214151115U (zh) 镜片、镜头及模具
JP2015203844A (ja) 光コネクタフェルール
CN114815005A (zh) 镜片、镜头及模具
JP7061648B2 (ja) ウェハレンズを成型するための金型
JP2023026594A5 (zh)
JP2004341048A (ja) 光学反射ミラー
JP2591723Y2 (ja) 光導波路と光デバイスの接続構造
TWI741315B (zh) 墊圈及採用該墊圈的鏡頭
WO2022110198A1 (zh) 消光结构、镜筒、取像装置及电子设备
US20220099911A1 (en) Lens element
CN111624832A (zh) 镜筒、摄像模组及电子装置
TWI552852B (zh) 鏡筒成型模具
JP6775107B2 (ja) 反射型表示装置、射出成形金型、及び反射型表示装置の製造方法
JP4168705B2 (ja) 光学素子及びこれを成形するための金型
CN107765351B (zh) 透镜
TWI823385B (zh) 鏡頭模組及用於鏡頭模組之元件
JP2007196399A (ja) 成形用金型
CN212302177U (zh) 镜筒、摄像模组及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918679

Country of ref document: EP

Kind code of ref document: A1