WO2022151466A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2022151466A1
WO2022151466A1 PCT/CN2021/072434 CN2021072434W WO2022151466A1 WO 2022151466 A1 WO2022151466 A1 WO 2022151466A1 CN 2021072434 W CN2021072434 W CN 2021072434W WO 2022151466 A1 WO2022151466 A1 WO 2022151466A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
base substrate
wave plate
liquid crystal
angle
Prior art date
Application number
PCT/CN2021/072434
Other languages
English (en)
French (fr)
Inventor
刘浩
张瑞辰
王凯旋
陈延青
张昭
刘燕妮
田丽
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/606,581 priority Critical patent/US11927851B2/en
Priority to PCT/CN2021/072434 priority patent/WO2022151466A1/zh
Priority to DE112021001426.9T priority patent/DE112021001426T5/de
Priority to CN202180000042.3A priority patent/CN115362410B/zh
Publication of WO2022151466A1 publication Critical patent/WO2022151466A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133618Illuminating devices for ambient light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/66Normally white display, i.e. the off state being white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/06Two plates on one side of the LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation

Definitions

  • At least one embodiment of the present disclosure relates to a display panel and a display device.
  • a common reflective display device has a low contrast ratio, which affects the display effect and is not conducive to improving customer experience.
  • At least one embodiment of the present disclosure relates to a display panel and a display device.
  • At least one embodiment of the present disclosure provides a display panel, including: a first base substrate; a second base substrate disposed opposite to the first base substrate; a liquid crystal layer located on the first substrate between the substrate and the second substrate; the first alignment film is located on the side of the first substrate facing the liquid crystal layer; the second alignment film is located on the side of the second substrate facing the liquid crystal layer one side of the liquid crystal layer; a polarizer located on the side of the first base substrate away from the liquid crystal layer; and a quarter-wave plate located on the polarizer and the first base substrate between; the first alignment film has a first alignment direction, the second alignment film has a second alignment direction, the center line of the angle between the first alignment direction and the second alignment direction and the The included angle between the slow axes of the quarter-wave plate ranges from 75° to 105°.
  • the display panel provided by an embodiment of the present disclosure further includes a diffusing film configured to diffuse light incident thereon.
  • the display panel provided by an embodiment of the present disclosure further includes: a half-wave plate located between the polarizer and the quarter-wave plate, and light emitted from the half-wave plate
  • the angle between the polarization direction and the slow axis of the quarter-wave plate ranges from 40° to 50°.
  • the included angle between the transmission axis of the polarizer and the slow axis of the half-wave plate ranges from 5° to 25° or from 60° to 60° to 80°.
  • the liquid crystal layer is used as a quarter-wave plate, and the included angle between the slow axis of the liquid crystal layer and the slow axis of the quarter-wave plate is The range is 75° to 105°.
  • the included angle between the first alignment direction and the second alignment direction of the display panel is in the range of 48° to 58°, or 71° to 81°.
  • the scattering film is located on a side of the first base substrate away from the liquid crystal layer.
  • the scattering film is located between the quarter-wave plate and the first base substrate.
  • the scattering film includes a plurality of scattering units, the scattering units are rod-shaped, and the scattering units include a first part, and the first part is connected to the first base substrate.
  • the included angle between them is an acute angle, and the extending direction of the first part is the same as the direction in which the reflectivity of the display panel is the largest when the scattering film is not provided.
  • the scattering unit further includes a second part, and an included angle between the first part and the second part is greater than 90° and less than 180°.
  • the first part of the display panel is closer to the first base substrate than the second part, and the angle between the second part and the first base substrate greater than the included angle between the first portion and the first base substrate.
  • the included angle between the second portion of the display panel and the first base substrate is an acute angle or a right angle.
  • the acute angle of the display panel is greater than 0 and less than or equal to 15°.
  • the scattering film includes a scattering structure and a reflective element
  • the scattering structure and the reflective element are located on the second base substrate
  • the scattering structure includes a plurality of protrusions a protruding part and a concave part located between adjacent protruding parts
  • the scattering structure is located on the side of the second base substrate facing the first base substrate
  • the reflective element is located on the side of the scattering structure A side facing away from the second base substrate and formed conformally with a surface of the scattering structure facing away from the second base substrate.
  • the display panel provided by an embodiment of the present disclosure further includes a reflective element, the reflective element is located on a side of the second base substrate facing the liquid crystal layer, and the reflective element is configured to reflect incident thereon of light.
  • the display panel provided by an embodiment of the present disclosure further includes a first electrode on the first base substrate and a second electrode on the second base substrate, the first electrode and the second electrode The two electrodes are configured to form an electric field to drive the liquid crystal molecules in the liquid crystal layer to rotate.
  • the second electrode is multiplexed as the reflective element.
  • At least one embodiment of the present disclosure further provides a display device including any of the above-mentioned display panels.
  • FIG. 1 is a schematic diagram of a display panel provided by an embodiment of the present disclosure when no power is applied;
  • FIG. 2 is a schematic diagram of a display panel provided by an embodiment of the present disclosure under a power-on condition
  • FIG. 3 is a schematic diagram of the principle of displaying a white state of the display device shown in FIG. 1;
  • FIG. 4 is a schematic diagram of the principle of displaying a black state of the display device shown in FIG. 2;
  • FIG. 5 is a schematic diagram of a light deflection state of the display device shown in FIG. 1;
  • FIG. 6 is a schematic diagram of a light deflection state of the display device shown in FIG. 2;
  • Fig. 7 is the dispersion curve of one-half wave plate
  • 8A and 8B are schematic diagrams of simulation results of contrast when the transmission axis of the polarizer and the slow axis of the half-wave plate are at different angles;
  • FIG. 9 is a schematic diagram of the first alignment direction of the first alignment film of the display panel, the second alignment direction of the second alignment film, the angle between the two, and the center line of the angle between the two according to an embodiment of the present disclosure
  • Figure 10 shows the difference between the angle between the slow axis of the quarter-wave plate and the slow axis of the liquid crystal layer under different angles between the transmission axis of the polarizer and the slow axis of the half-wave plate. Contrast graph;
  • Fig. 11 is a schematic diagram showing the change of reflectivity and contrast with the angle between the slow axis of the half-wave plate and the transmission axis of the polarizer;
  • FIG. 12 is a schematic diagram of the first alignment direction of the first alignment film of the display panel, the second alignment direction of the second alignment film, the angle between the two, and the center line of the angle between the two according to an embodiment of the disclosure;
  • FIG. 13 is a schematic diagram of the first alignment direction of the first alignment film, the second alignment direction of the second alignment film, the angle between the two, and the center line of the angle between the two of the display panel according to another embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of a display panel according to an embodiment of the present disclosure.
  • 15 is a schematic diagram of scattering light by a scattering film of a display panel according to an embodiment of the disclosure.
  • 16A is a schematic diagram of a scattering film of a display panel provided by an embodiment of the disclosure.
  • 16B is a schematic diagram of a display panel provided with a scattering film according to an embodiment of the present disclosure
  • 16C is a schematic view of scattering of a display panel provided with a scattering film according to an embodiment of the present disclosure
  • 17A is a schematic diagram of a scattering film of a display panel provided by an embodiment of the disclosure.
  • 17B is a schematic diagram of a display panel provided with a scattering film according to an embodiment of the present disclosure
  • FIG. 18 is a schematic diagram of a simulation of a reflectance distribution of a display panel according to an embodiment of the present disclosure
  • FIG. 19 is a schematic diagram of the coordination of the scattering film and the direction of maximum reflectivity of the display panel.
  • FIG. 20 is a schematic diagram of a display panel according to an embodiment of the disclosure.
  • At least one embodiment of the present disclosure provides a display panel, the display panel includes: a first base substrate; a second base substrate disposed opposite to the first base substrate; a liquid crystal layer located on the first base substrate and the second base substrate between the substrates; the first alignment film is located on the side of the first substrate facing the liquid crystal layer; the second alignment film is located on the side of the second substrate facing the liquid crystal layer; the polarizer is located on the first side of the substrate a side of the base substrate facing away from the liquid crystal layer; and a quarter-wave plate, located between the polarizer and the first base substrate; the first alignment film has a first alignment direction, and the second alignment film has a second alignment direction , the range of the included angle between the center line of the included angle between the first alignment direction and the second alignment direction and the slow axis of the quarter-wave plate is 75° to 105°.
  • the range of the included angle between the center line of the included angle between the first alignment direction and the second alignment direction and the slow axis of the quarter-wave plate is set to 75° to 105° to improve the contrast ratio (CR) of the display panel.
  • the contrast ratio refers to the ratio of the reflectivity in the white state (maximum brightness) to the reflectivity in the black state (minimum brightness). The higher the contrast ratio, the better the display effect of the display panel.
  • FIG. 1 is a schematic diagram of a display panel provided by an embodiment of the present disclosure when no power is applied.
  • the display panel includes: a first base substrate 101, a second base substrate 201, a liquid crystal layer (LCL) 30, a first alignment film 102, a second alignment film 202, a polarizer ( Polarizer, POL) 40 and quarter wave plate ( ⁇ /4) 50.
  • the second base substrate 201 is disposed opposite to the first base substrate 101 .
  • the liquid crystal layer 30 is located between the first base substrate 101 and the second base substrate 201 .
  • the first alignment film 102 is located on the side of the first base substrate 101 facing the liquid crystal layer 30 .
  • the second alignment film 202 is located on the side of the second base substrate 201 facing the liquid crystal layer 30 .
  • the polarizer 40 is located on the side of the first base substrate 101 away from the liquid crystal layer 30 .
  • the quarter-wave plate 50 is located between the polarizer 40 and the first base substrate 101 .
  • the display panel further includes: a half-wave plate (half-wave plate, ⁇ /2) 60 located between the polarizer 40 and the quarter-wave plate 50 .
  • the half wave plate 60 can rotate the polarization direction of polarized light incident thereon.
  • the function of the half-wave plate 60 is to optimize the change of the polarization state, so that the light passing through the quarter-wave plate can be better transformed into circularly polarized light.
  • the half-wave plate 60 may not be provided, that is, compared with the display panel shown in FIG. 1 , in the display panel provided in other embodiments, the display panel shown in FIG. 1 is removed.
  • the half wave plate 60 shown The embodiments of the present disclosure are described by taking the display panel including the half-wave plate 60 as an example.
  • the material of at least one of the half-wave plate and the quarter-wave plate is polycarbonate (Polycarbonate, PC) or Cyclo Olefin Polymers (COP).
  • the display panel further includes a first electrode E1 on the first base substrate 101 and a second electrode E2 on the second base substrate 201; the first electrode E1 and the second electrode E2 are It is configured to form an electric field to drive the liquid crystal molecules 301 in the liquid crystal layer 30 to rotate.
  • the first electrode E1 can be made of a transparent conductive material
  • the second electrode E2 can be made of a metal material.
  • the transparent conductive material includes, but is not limited to, indium tin oxide (ITO).
  • ITO indium tin oxide
  • the first electrode E1 is made of a transparent conductive material, so as to improve the light transmittance and the display effect.
  • the display panel includes reflective elements 203 to form a reflective display panel.
  • the second electrode E2 is multiplexed into the reflective element 203 . That is, the first electrode E1 has the function of reflecting light incident thereon, and the first electrode E1 and the reflecting element 203 are integrated into one element, so as to reduce the manufacturing process and reduce the thickness of the display panel.
  • the polarizer 40 can be a common polarizer, for example, the polarizer 40 can be processed from a polymer material.
  • the polarizer 40 includes a polyethylene (PVA) polarizing film, but not limited thereto, the polarizer 40 can also use a wire grid polarizing film (WGP), as long as the natural light incident on the polarizer 40 can be converted into a polarizing direction parallel to The polarized light in the transmission axis direction of the polarizer 40 may be sufficient.
  • PVA polyethylene
  • WGP wire grid polarizing film
  • the polarizer has a transmission axis.
  • a beam of natural light shines on the polarizer, the light whose polarization direction is parallel to the transmission axis of the polarizer can pass through the polarizer, while the light whose polarization direction is perpendicular to the transmission axis of the polarizer cannot. through a polarizer.
  • the wave plate is used as a phase retarder, and its function is to delay the phase of two lights whose vibration directions are perpendicular to each other.
  • the direction of the light vector with fast propagation speed in the wave plate is the fast axis
  • the direction of the light vector with slow propagation speed in the wave plate is the slow axis.
  • the outgoing light is still linearly polarized;
  • the outgoing light is circularly polarized light;
  • the outgoing light is elliptically polarized light; after the circularly polarized light passes through the quarter-wave plate , becomes linearly polarized light; in the case of incident elliptically polarized light, if the long axis or short axis direction of the elliptically polarized light is consistent with the fast and slow axis directions of the wave plate, the outgoing light is linearly polarized light, if it is in other directions , the outgoing light is still elliptically polarized light.
  • the outgoing light when circular (elliptically) polarized light is incident, the outgoing light is still circular (elliptic) polarized light, but the direction of rotation is opposite; when linearly polarized light is incident, the outgoing light is still linearly polarized light.
  • the angle between the polarization direction of the incident linearly polarized light and the fast (slow) axis is A, the vibration direction of the outgoing light rotates 2A toward the fast (slow) axis.
  • FIG. 2 is a schematic diagram of a display panel under a power-on condition according to an embodiment of the present disclosure.
  • the display panel shown in FIG. 1 is in a white state when it is not powered on, and the display panel shown in FIG. 2 is in a black state when it is powered on.
  • the liquid crystal layer adopts twisted nematic (TN) phase liquid crystal, but is not limited thereto.
  • the reflective element 203 is located on the side of the second base substrate 201 facing the liquid crystal layer 30, and the reflective element 203 is configured to reflect light incident thereon.
  • a reflective display panel is formed.
  • the display panel provided by the embodiments of the present disclosure is a reflective display panel in a TN normally white mode.
  • the display panel includes a plurality of sub-pixels, and FIG. 1 shows the structure of one sub-pixel.
  • the first electrodes E1 of different sub-pixels can be connected together to form a plate-shaped common electrode, and the different sub-pixels can be connected together to form a plate-shaped common electrode.
  • the second electrodes E2 of the pixels are independent of each other and can be respectively applied with signals to realize independent control of the sub-pixels and realize image display.
  • the light source unsunlight/light, etc.
  • the human eye often cannot be exactly at the entrance and exit ends of the same reflected light path, which brings inconvenience to use. Therefore, it is necessary to increase the optical structure to increase the visible range of the outgoing light.
  • the display panel in order to increase the viewing angle, includes a scattering film M, which includes a scattering structure 204 and a reflective element 203 located on a side of the scattering structure 204 away from the second base substrate 201 .
  • the scattering structure 204 includes a plurality of protruding parts 2041 and a concave part 2040 between adjacent protruding parts 2041 , and the scattering structure 204 is located on the side of the second base substrate 201 facing the first base substrate 101 .
  • the protruding parts 2041 and the concave parts 2040 between adjacent protruding parts 2041 can make the reflective element 203 conformally formed on the scattering structure 204 have the effect of diffuse reflection, thereby expanding the viewing angle of the display panel.
  • the display panel may not include the scattering structure 204, but a scattering film may be provided, and the provided scattering film may be located between the liquid crystal cell and the polarizer. This case will be described later.
  • the reflectivity of the reflective display panel is currently the method of vertical incidence of the collimated light source and reception at a 30° angle. If the scattering structure or scattering film is not used, the reflectivity in this direction will be extremely low; increase the scattering The reflectivity in this direction can be increased after a structure or a diffuser film.
  • the liquid crystal cell 12 includes a first substrate 10 , a second substrate 20 and a liquid crystal layer 30 therebetween.
  • the display panel shown in FIG. 1 and FIG. 2 may further include a color filter layer to realize color display, and the color filter layer may be disposed on the first base substrate 101, and the first substrate 10 constitutes a color filter substrate.
  • the color filter layer is located between the first electrode E1 and the first base substrate 101 , or the color filter layer is located between the first electrode E1 and the first alignment film 102 .
  • the embodiment of the present disclosure does not limit the setting position of the color filter layer.
  • FIG. 3 is a schematic diagram of the principle of displaying a white state of the display device shown in FIG. 1 .
  • FIG. 4 is a schematic diagram showing the principle of displaying a black state of the display device shown in FIG. 2 .
  • FIG. 5 is a schematic diagram of a light deflection state of the display device shown in FIG. 1 .
  • FIG. 6 is a schematic diagram of a light deflection state of the display device shown in FIG. 2 .
  • the optical structure and basic principle of the display panel of the reflective TN normally white mode are described below with reference to FIGS. 1 to 6 .
  • the display panel displays a white state when no power is applied.
  • 60, quarter wave plate ( ⁇ /4) 50, liquid crystal layer (LCL) 30 reach the reflective element 203, and are reflected by the reflective element 203 to obtain reflected light L2, and the emitted light L2 passes through the liquid crystal layer (LCL) 30,
  • the quarter wave plate ( ⁇ /4) 50, the half wave plate ( ⁇ /2) 60 and the polarizer (POL) 40 exit, and the display panel displays a white state.
  • the display panel when power is applied, the display panel displays a black state, because under the action of the electric field, the liquid crystal molecules 301 of the liquid crystal layer 30 stand up, and the reflected light L2 cannot pass through the polarizer (POL) 40, The display panel shows a black state.
  • the incident light L1 enters the display panel, passes through the polarizer (POL) 40 , the half-wave plate ( ⁇ /2) 60 , the quarter-wave plate ( ⁇ /4) 50 , and the liquid crystal layer (LCL) 30 Reaching the reflective element 203, and being reflected by the reflective element 203 to obtain the reflected light L2, the emitted light L2 passes through the liquid crystal layer (LCL) 30, the quarter-wave plate ( ⁇ /4) 50, and the half-wave plate ( ⁇ /2 ) 60, but cannot pass through the polarizer 40, showing a black state.
  • POL polarizer
  • the case of being powered on means that the liquid crystal layer is under the action of an electric field
  • the case of not being powered up means that the liquid crystal layer is not under the action of the electric field.
  • the case of power-on there is a voltage difference between the first electrode E1 and the second electrode E2, forming an electric field, and the electric field drives the liquid crystal molecules to rotate. There is no voltage difference, no electric field is formed, and the liquid crystal molecules do not rotate.
  • the liquid crystal molecules do not rotate, that is, the liquid crystal molecules have no effect on light, and the display panel displays a white state (reflecting incident light). light).
  • the incident light L1 generates linearly polarized light after passing through the polarizer 40, and the polarization direction of the linearly polarized light is the same as the extension direction of the transmission axis AS1 of the polarizer 40.
  • a reference line LN is introduced, and the reference line LN is introduced as a reference. , is a dummy line and may not exist in the actual product.
  • the angle between the transmission axis AS1 and the reference line LN is a; the linearly polarized light passes through the half-wave plate 60, and the polarization direction of the linearly polarized light is deflected by a certain angle; The polarization direction of the polarized light (linearly polarized light after passing through the half-wave plate 60 ) and the slow axis of the quarter-wave plate 50 need to be at 45°.
  • the linearly polarized light passes through the quarter-wave plate 50 , converted into circularly polarized light; by adjusting the cell thickness of the liquid crystal layer 30, the retardation of the liquid crystal layer is adjusted to 1/4 of the wavelength of the incident light (that is, the liquid crystal layer 30 is equivalent to a quarter-wave plate) , after passing through the liquid crystal layer 30, the circularly polarized light is converted into linearly polarized light, and the polarization direction is changed compared with the previous linearly polarized light.
  • the reflected light L2 after passing through the reflective layer 203 is linearly polarized light, and half-wave loss occurs, and the polarization direction of the linearly polarized light is "mirror-reversed"; after passing through the liquid crystal layer 30, it is converted into circularly polarized light.
  • the direction is the same as the rotation direction of the incident circularly polarized light (the rotation direction of the circularly polarized light should always be observed against the propagation direction of the light); the reflected light is converted into linearly polarized light through the quarter-wave plate 50, and then divided In the deflection modulation of the first wave plate 60, the polarization direction of the linearly polarized light is the same as the transmission axis direction of the polarizer, and the reflected light is emitted from the polarizer 40 to realize a normally white state. As shown in FIG. 2, FIG. 4 and FIG.
  • the liquid crystal molecules 301 rotate under the action of the electric field, the liquid crystal molecules 301 stand up, the light passes through the liquid crystal layer without changing the polarization state and rotation direction, and the reflected light L2 reaches the
  • the polarizer is linearly polarized light, and the polarization direction of the linearly polarized light is 90° with the direction of the transmission axis of the polarizer 40 , and cannot pass through the polarizer 40 to achieve a black state.
  • the "mirror inversion" of the polarization direction of the linearly polarized light refers to the mirror symmetry of the polarization direction of the linearly polarized light with respect to an observer outside the display panel in FIG. 5 .
  • the transmission axis AS1 of the polarizer 40 , the slow axis AS2 of the half-wave plate 60 , and the slow axis AS0 of the quarter-wave plate 50 are shown in FIG. 6 .
  • FIG. 6 shows the incident light ray L10 and the outgoing light ray L20 for the same element.
  • the transmission axis AS1 of the polarizer 40, the slow axis AS2 of the half-wave plate 60, the slow axis AS0 of the quarter-wave plate 50, and the slow axis of the liquid crystal layer are parallel to the first a surface of a base substrate.
  • the surface of the first base substrate may be a surface close to the second base substrate or a surface far away from the second substrate, but is not limited thereto.
  • Figure 7 is the dispersion curve of the half-wave plate.
  • FIG. 7 shows the dispersion curves of two half-wave plates, one of which is the dispersion curve of the half-wave plate 601 , and the other is the dispersion curve of the half-wave plate 602 .
  • the material of the half-wave plate 601 is PC
  • the retardation is 270 nanometers, which can be recorded as PC-270
  • the material of the half-wave plate 602 is COP
  • the retardation is 270 nanometers, which can be recorded as COP- 270.
  • the actual half-wave plate is not a perfect half-wave plate.
  • the transmission axis of the polarizer 40 and the slow axis of the half-wave plate 60 can form any angle, but considering the actual situation, the The cooperation between the liquid crystal layer and the wave plate is not perfect (as shown in Figure 7, the dispersion curve of the actual half wave plate is very different from the ideal situation, and the same is true for the quarter wave plate).
  • FIGS. 8A and 8B are schematic diagrams illustrating simulation results of contrast when the transmission axis of the polarizer and the slow axis of the half-wave plate are at different angles.
  • the contrast ratio of the display panel is different.
  • the transmission axis AS1 of the polarizer 40 and the half-wave plate 60 The angle between the slow axes AS2 has a significant effect on the contrast ratio of the reflective LCD display.
  • the results shown in FIGS. 8A and 8B are graphs of contrast ratios when the transmission axis of the polarizer and the slow axis of the half-wave plate are angled clockwise and counterclockwise, respectively.
  • the angle between the transmission axis AS1 of the polarizer 40 and the slow axis AS2 of the half-wave plate 60 is 15° ⁇ 10° or 70° ⁇ 10°. That is, the range of the included angle between the transmission axis of the polarizer 40 and the slow axis of the half-wave plate 60 is 5° to 25° or 60° to 80°.
  • the included angle between the transmission axis of the polarizer 40 and the slow axis of the half-wave plate 60 is within the above angle range, the contrast ratio of the display panel is high.
  • the angle between the light emitted from the half wave plate 60 and the slow axis of the quarter wave plate 50 is in the range of 45° ⁇ At 5°, the display panel has a higher contrast ratio.
  • the light emitted from the half-wave plate 60 is linearly polarized light, and the polarization direction of the linearly polarized light can be controlled by the angle between the transmission axis of the half-wave plate 60 and the polarizer 40 . As shown in FIG.
  • the angle of the slow axis AS0 of the quarter-wave plate 50 is ⁇ , the long axis of the outgoing elliptically polarized light is parallel to the slow axis AS0 of the quarter-wave plate 50, and it is left-handed elliptically polarized light (or right-handed elliptically polarized light before reflection).
  • the outgoing light of the half-wave plate 60 and the slow axis of the quarter-wave plate 50 should form an angle of 45°, and the outgoing light passing through the quarter-wave plate 50 is circularly polarized light.
  • the reflective optical path The polarization direction of the outgoing light is orthogonal to the transmission axis of the polarizer to achieve the lowest L0 brightness.
  • the optical properties and wavelengths of each layer are not perfectly matched, so the angle between the polarization direction of the linearly polarized light emitted from the half-wave plate 60 and the slow axis AS0 of the quarter-wave plate 50 into 45° ⁇ 5°.
  • the range of the angle between the polarization direction of the light emitted from the half-wave plate 60 and the slow axis of the quarter-wave plate 50 is 40° to 50°.
  • the angles between the light emitted from the half-wave plate 60 and the slow axis of the quarter-wave plate 50 are 46° and 44°.
  • the first alignment film 102 has a first alignment direction D1
  • the second alignment film 202 has a second alignment direction D2
  • the included angle between the center line LN0 of the included angle A0 and the slow axis AS0 of the quarter-wave plate 50 ranges from 75° to 105°. That is, the range of the included angle between the slow axis of the quarter wave plate 50 and the center line LN of the included angle A0 between the first alignment direction D1 and the second alignment direction D2 is 90° ⁇ 15°.
  • the range of the included angle between the slow axis of the quarter-wave plate 50 and the center line LN0 of the included angle A0 between the first alignment direction D1 and the second alignment direction D2 Setting it to 90° ⁇ 15° can reduce the reflectivity of the black state, thereby improving the contrast ratio of the display panel and improving the display effect.
  • the liquid crystal molecules are completely erected when power is applied.
  • the liquid crystal molecules may not be completely erected, or the liquid crystal layer has a certain birefringence (although it is small) due to the setting of the pre-tilt angle.
  • a certain phase retardation makes the liquid crystal layer have a certain optical axis (slow axis).
  • the angle between the first alignment direction D1 and the second alignment direction D2 The center line LN0 of A0 serves as the slow axis of the liquid crystal layer 30 , so the included angle between the slow axis of the liquid crystal layer 30 and the slow axis of the quarter-wave plate 50 ranges from 75° to 105°.
  • the included angle A0 between the first alignment direction D1 and the second alignment direction D2 ranges from 48° to 58°, or from 71° to 81°.
  • the included angle between the first alignment direction D1 and the second alignment direction D2 is 53° ⁇ 5° or 76° ⁇ 5°, but not limited thereto.
  • the liquid crystal molecules of the liquid crystal layer have a twist angle.
  • the twist angle is the angle between the first alignment direction D1 and the second alignment direction D2.
  • the long axis direction of the liquid crystal molecules near the first alignment film 102 can be parallel to the first alignment direction D1
  • the long axis direction of the liquid crystal molecules near the second alignment film 202 can be parallel to the second alignment direction Direction D2.
  • the liquid crystal molecules of the liquid crystal layer can be rotated, so that the extension direction of the long axis of the liquid crystal molecules is perpendicular to the first base substrate 101 or the second base substrate 201 .
  • the twist angle (Twist Angle) is the above-mentioned included angle A0, and the twist angle ranges from 48° to 58°, or 71° to 81°.
  • the range of the twist angle (Twist Angle) is 53° ⁇ 5° or 76° ⁇ 5°.
  • the first alignment direction D1 may refer to the direction of the orthographic projection of the long axes of the liquid crystal molecules close to the first alignment film 102 on the first base substrate when no power is applied.
  • the second alignment direction D2 may refer to the direction of the orthographic projection of the long axis of the liquid crystal molecules close to the second alignment film 202 on the first base substrate when no power is applied.
  • the first alignment direction D1 may be the rubbing direction for forming the first alignment film
  • the second alignment direction D2 may be the rubbing direction for forming the second alignment film
  • the first alignment film and the second alignment film may also be fabricated in other manners, which are not limited in the embodiments of the present disclosure.
  • the liquid crystal molecules of the liquid crystal layer have a pretilt angle.
  • the pretilt angle may refer to the included angle between the long axis of the liquid crystal molecules and the surface of the first base substrate or the second base substrate.
  • some embodiments of the present disclosure have a The combination of the angles of the centerlines (LN0) is defined.
  • the range of the included angle between the slow axis of the quarter-wave plate 50 and the center line LN of the included angle A0 between the first alignment direction D1 and the second alignment direction D2 is 90° ⁇ 15°
  • the angle between the polarization direction of the light emitted from the half-wave plate 60 and the slow axis of the quarter-wave plate 50 ranges from 40° to 50°
  • the transmission of the polarizer 40 The angle between the axis AS1 and the slow axis AS2 of the half-wave plate 60 is 15° ⁇ 10° or 70° ⁇ 10°
  • the display panel using the combination of the above parameters has a higher contrast ratio.
  • some embodiments of the present disclosure have a The combination of the centerline of the included angle (LN0), the twist angle (Twist Angle), and the cell thickness (Cell Gap) is defined.
  • the cell thickness refers to the thickness of the liquid crystal cell.
  • the cell thickness may refer to the thickness of the space of the liquid crystal cell that can accommodate the liquid crystal layer, but is not limited thereto. Refer to Figure 1 for the cell thickness H.
  • the range of the included angle between the slow axis of the quarter-wave plate 50 and the center line LN of the included angle A0 between the first alignment direction D1 and the second alignment direction D2 is 90° ⁇ 15°
  • the angle between the polarization direction of the light emitted from the half-wave plate 60 and the slow axis of the quarter-wave plate 50 ranges from 40° to 50°
  • the transmission of the polarizer 40 The angle between the axis AS1 and the slow axis AS2 of the half-wave plate 60 is 15° ⁇ 10° or 70° ⁇ 10°
  • the range of the twist angle (Twist Angle) is 53° ⁇ 5°, or 76° ⁇ 5°
  • the twist angle of the liquid crystal layer is related to the retardation/material of the quarter-wave plate.
  • Figure 10 shows the difference between the angle between the slow axis of the quarter-wave plate and the slow axis of the liquid crystal layer under different angles between the transmission axis of the polarizer and the slow axis of the half-wave plate. Contrast graph. For example, quarter-wave plates in practical use are imperfect quarter-wave plates for most wavelengths of color light. Simulate the optimal angle formed by the slow axis of the quarter-wave plate and the center line of the angle between the first alignment direction D1 and the second alignment direction D2, for example, the torsion angle is unchanged, half wave The angle between the slow axis of the plate and the transmission axis of the polarizer varies.
  • the slow axis of the quarter-wave plate, the slow axis of the liquid crystal layer, and the slow axis of the half-wave plate are based on the angle relationship described earlier. At the same time, the angle between the slow axis of the quarter-wave plate and the slow axis of the liquid crystal layer changes within 0-180°.
  • the simulation results are shown in Figure 10. When the angle between the slow axis of the quarter-wave plate and the slow axis of the LC is in the range of 75° to 105°, the overall contrast is relatively high, and the contrast is attenuated significantly under other angle relationships.
  • the angle simulation range of the optimized design is determined, and the optimal design scheme is given, so that the contrast ratio of the reflective display panel is greatly improved, and the Reflectivity.
  • FIG. 11 is a schematic diagram showing the change of reflectivity and contrast with the angle between the slow axis of the half-wave plate and the transmission axis of the polarizer.
  • the slow axis of the quarter-wave plate and the liquid crystal layer changes with the change of the angle between the transmission axis of the half-wave plate and the polarizer according to the above-mentioned parameter range.
  • the optimal angle between the transmission axis of the polarizer and the slow axis of the half-wave plate is 15° ⁇ 10° or 70° ⁇ 10°, (No.
  • the range of the included angle between the center line LN0 of the included angle A0 between the first alignment direction D1 and the second alignment direction D2 and the slow axis AS0 of the quarter-wave plate 50 is 90° ⁇ 15°), which can be greatly reduced
  • Figure 11 lists the half-wave plate and The combined results of the quarter-wave plate of the two materials (PC160/COP140), it can be seen that for COP140, the angle between the slow axis of the half-wave plate and the polarizer is 79°-10° ⁇ 79°+ 9°, i.e. around 69° to 88°, wave simulation, the angle between the slow axis of the half-wave plate and the polarizer is 79° or 76° to obtain higher contrast; for PC160, the slow axis of the half-wave plate is slow The angle between the axis and the transmission axis of the polarizer is 79°-10° ⁇ 79°+9°, that is, around 69° ⁇ 88°. 70° or 75° for higher contrast.
  • the value on the abscissa in Figure 11 represents the difference from 79°.
  • a position where the abscissa is 0 represents 79°.
  • -X represents an angle of 79° minus 79° X°
  • X represents the angle of 79° plus X°.
  • the half-wave plate uses COP270
  • the quarter-wave plate uses COP140.
  • the half-wave plate is used
  • the case of CS3 the half wave plate adopts PC270
  • the quarter wave plate adopts PC140.
  • the half wave plate adopts COP270
  • the quarter wave plate adopts COP270.
  • One-wave plate adopts PC160.
  • CS5 case half-wave plate adopts PC270
  • quarter-wave plate adopts PC160.
  • CS6 half-wave plate adopts COP270
  • quarter-wave plate adopts COP160 .
  • Table 1 presents the parameters and performance data of several display panels provided by the embodiments of the present disclosure.
  • Table 1 shows the display panels under six conditions: CS1, CS2, CS3, CS4, CS5, and CS6.
  • CS1 COP270 is used for the half-wave plate
  • COP140 is used for the quarter-wave plate.
  • PC270 is used for the half-wave plate
  • COP140 is used for the quarter-wave plate.
  • CS3 PC270 is used for the half-wave plate and PC140 is used for the quarter-wave plate.
  • CS4 COP270 is used for the half-wave plate and PC160 is used for the quarter-wave plate.
  • CS5 PC270 is used for the half-wave plate and PC160 is used for the quarter-wave plate.
  • CS6 COP270 is used for the half-wave plate
  • COP160 is used for the quarter-wave plate.
  • the half-wave plate and the quarter-wave plate are described in the manner of material plus retardation, and the unit of retardation is nanometers.
  • Vop represents the black state voltage in volts.
  • POL means polarizer
  • ⁇ /2 means half wave plate
  • ⁇ /4 means quarter wave plate
  • LCL means liquid crystal layer
  • Re. means retardation
  • the unit is nanometer.
  • T/A is the twist angle in degrees.
  • D1 represents the first alignment direction
  • D2 represents the second alignment direction
  • Ref. represents reflectance
  • CR represents contrast
  • Wx represents the abscissa of the white point in the color coordinate
  • Wy represents the ordinate of the white point in the color coordinate.
  • the arrow pointing to the left indicates that the value is the same as the value to the left.
  • the row of POL represents the angle between the transmission axis of the polarizer and the reference line. The difference between the two angles is 90°.
  • Either the left or right angle of the oblique line can be used. The effect is the same, the reflectivity and CR are the same.
  • the line of ⁇ /2 represents the angle between the slow axis of the half-wave plate and the reference line, and the line of ⁇ /4 represents the angle between the slow axis of the quarter-wave plate and the reference line.
  • Table 1 Display panel parameters and performance data
  • FIG. 12 is a schematic diagram of the first alignment direction of the first alignment film, the second alignment direction of the second alignment film, the angle between the two, and the center line of the angle of the display panel according to an embodiment of the disclosure.
  • 13 is a schematic diagram of the first alignment direction of the first alignment film, the second alignment direction of the second alignment film, the angle between the two, and the center line of the angle of the display panel according to another embodiment of the present disclosure.
  • the first alignment direction D1 is -82°
  • the second alignment direction D2 is -6°
  • the angle A12 between the first alignment direction D1 and the second alignment direction D is 76°
  • the first alignment direction D2 is -6°.
  • the center line of the included angle A12 between the direction D1 and the second alignment direction D is -44°.
  • the first alignment direction D1 is 126°
  • the second alignment direction D2 is 179°
  • the angle A12 between the first alignment direction D1 and the second alignment direction D is 53°
  • the first alignment direction D1 The center line of the included angle A12 with the second alignment direction D is 152.5°.
  • the display panels shown in FIGS. 12 and 13 are parameters related to the liquid crystal layer in the cases of CS1 and CS4 described above, respectively.
  • FIG. 12 indicates the second electrode E2.
  • the second electrode E2 may be connected to a thin film transistor, and whether the thin film transistor is turned on determines whether a voltage is input to the second electrode E2.
  • One second electrode E2 corresponds to one sub-pixel SP.
  • FIG. 14 is a schematic diagram of a display panel according to an embodiment of the disclosure.
  • the display panel in order to increase the reflectivity in a certain direction or increase the viewing angle, the display panel further includes a scattering film 70 .
  • the scattering film 70 is provided between the polarizer 40 and the first base substrate 101 .
  • the scattering film 70 is located between the quarter-wave plate 50 and the first base substrate 101 .
  • the diffusion film 70 is configured to scatter light incident thereon.
  • the diffusing film 70 can diffusely reflect the light incident thereon, so as to increase the viewing angle.
  • the diffusing film 70 can be made into a diaphragm assembly together with the polarizer 40 , the half-wave plate 60 , and the quarter-wave plate 50 , and the diaphragm assembly is then attached to the liquid crystal cell.
  • the diaphragm assembly can be attached to the side of the first substrate of the liquid crystal cell away from the second substrate by OCA glue.
  • the diaphragm assembly may be a composite optical film.
  • FIG. 15 is a schematic diagram of scattering light by a scattering film of a display panel according to an embodiment of the disclosure. As shown in FIG. 15, a beam of incident light is incident on the display panel at the incident angle AG. If the light is not scattered, the outgoing light will be emitted at the same outgoing angle, so the viewing angle is smaller, and the setting of the scattering film 70 , so that the outgoing light can be emitted at multiple angles, so that the viewing angle can be increased.
  • FIG. 16A is a schematic diagram of a diffusion film of a display panel according to an embodiment of the present disclosure.
  • FIG. 16B is a schematic diagram of a display panel provided with a scattering film according to an embodiment of the present disclosure.
  • the diffusing film 70 includes a plurality of diffusing units 700 , the diffusing units 700 are rod-shaped, and the diffusing units 700 include a first part 701 and a second part 702 , between the first part 701 and the second part 702
  • the included angle A5 is greater than 90° and less than 180°.
  • the plurality of scattering units 700 are uniformly and repeatedly arranged in the entire two-dimensional plane.
  • the diffuser film can guide and scatter light.
  • the first part 701 is closer to the first base substrate 101 than the second part 702 , and the angle between the first part 701 and the first base substrate 101 is larger than that between the second part 702 and the first substrate The included angle between the substrates 101 .
  • the angle between the first portion 701 and the first base substrate 101 is an acute angle
  • the angle between the second portion 702 and the first base substrate 101 is an acute angle or a right angle.
  • the acute angle is greater than 0 and less than or equal to 15°.
  • the acute angle is greater than or equal to 5° and less than or equal to 15°.
  • the first part 701 is closer to the first base substrate 101 than the second part 702 , and the angle between the first part 701 and the first base substrate 101 is the same as or equal to the main viewing direction of the display panel. opposite side.
  • FIG. 16C is a schematic view of scattering of a display panel provided with a scattering film according to an embodiment of the present disclosure.
  • the light source is incident vertically on the display panel, and the reflectivity data is collected at a tilt angle of 30° in four horizontal/vertical directions.
  • One of the directions will be the main viewing direction of the display panel, and it is not necessary that the reflectivity in all four directions is very high.
  • FIG. 16C a schematic diagram of the divergence and deviation of the emitted light after the point light source is perpendicularly incident from the center C0 .
  • a light spot is formed, and the light spot is shifted to the direction in which the rod-shaped structure of the scattering film is bent.
  • the scattering film can increase the reflectivity in the main viewing direction by about 300%, greatly improving the reflectivity in the main viewing direction.
  • the scattering unit is inclined to the lower left direction, and when the main viewing direction is the lower left or upper right, the reflectivity and contrast can be improved to the greatest extent.
  • FIG. 17A is a schematic diagram of a diffusion film of a display panel according to an embodiment of the disclosure.
  • 17B is a schematic diagram of a display panel provided with a scattering film according to an embodiment of the present disclosure.
  • the scattering film 70 includes a plurality of scattering units 700, and the scattering units 700 are rod-shaped, that is, compared with the scattering unit 700 shown in FIG. 16A, the scattering unit 700 shown in FIG. 17A only includes the first part , the extending direction of the scattering unit 700 is the same as the main viewing direction of the display panel or is opposite to the main viewing direction.
  • the included angle between the scattering unit 700 and the first base substrate 101 is an acute angle.
  • the acute angle is greater than 0 and less than or equal to 15°.
  • the acute angle is greater than or equal to 5° and less than or equal to 15°.
  • the scattering film 70 is a directional diffusion film (IDF), and the scattering film 70 can be used to increase the reflectivity in a certain direction.
  • IDF directional diffusion film
  • the main viewing direction is the direction in which the reflectivity of the display panel is the largest when the scattering film is not provided.
  • the direction of maximum reflectivity can be measured experimentally.
  • FIG. 18 is a schematic diagram of a simulation of a reflectance distribution of a display panel according to an embodiment of the present disclosure.
  • FIG. 18 is a distribution diagram of reflectance in the case where the scattering film is not provided.
  • Figure 18 is a schematic diagram of the measured reflectance when light is incident from different directions and received vertically.
  • the numbers on the periphery represent the azimuth angle, and the concentric circles represent the polarization angle. Given a point, the reflectivity of the display panel at that position can be obtained from the figure.
  • the display panel has a direction of maximum reflectance. The darker the color in Figure 18, the greater the reflectivity.
  • FIG. 19 is a schematic diagram of the matching of the scattering film and the maximum reflectance direction of the display panel. As shown in FIG. 19 , the bending direction of the scattering units of the scattering film is the same as the maximum reflectance direction D0 of the display panel. When the scattering units of the scattering film have a single-layer structure, the extending direction of the scattering units of the scattering film is the same as the maximum reflectance direction D0 of the display panel.
  • FIG. 20 is a schematic diagram of a display panel according to an embodiment of the disclosure.
  • the display panel includes a first side 01 , a second side 02 , a third side 03 and a fourth side 04 .
  • the first side 01 is arranged opposite to the second side 02, and the third side 03 and the fourth side 04 are arranged opposite to each other.
  • the first side 01 is the side on which an integrated circuit (IC) is provided, ie, the IC side.
  • the second side 02 is the reverse side of the IC.
  • the main viewing direction is the IC side
  • the opposite side of the IC is the opposite side of the main viewing direction
  • the IC side and the IC opposite side may correspond to the directions of 0° and 180° in FIG. 18 , respectively.
  • the third side 03 and the first side 04 may be the left and right sides of the display panel, respectively.
  • the reflectivity distribution of the display panel is uneven in all directions, and the reflectivity has a maximum direction.
  • the first alignment direction and the first alignment direction can be adjusted synchronously while keeping the angular relationship of each layer fixed.
  • the scattering film can also improve the reflectivity of a certain viewing angle direction of the reflective display device.
  • the scattering film may be formed of a polymer material, but is not limited thereto.
  • GBA, GCA or HDA may be used for the scattering film, but not limited thereto.
  • GBA, GCA or HDA represent the structure of the scattering film.
  • the first letter represents: the type of rod, G represents a single continuous curved rod; H represents a single continuous straight rod; the second letter represents: the angle of the lower segment (the first part of the scattering unit), B represents The lower section is inclined by 5°, C represents the inclination of 10°, and D represents the inclination of 15°; the third letter represents: monolayer film, which means that the three kinds of scattering films are all monolayer films composed of rod-shaped structural units.
  • the scattering film adopts In the case of GBA110/GCA110/GCA090/HDA060, the reflectivity is improved the most and has better uniformity. Uniformity refers to the difference in reflectivity in different directions.
  • the above-mentioned scattering films are shown in the form of structure plus thickness, that is, the numbers following GBA, GCA or HDA represent thickness values, and the unit of thickness is micrometers.
  • the uniformity of the reflectance is 75%.
  • the reflectance is 40%, and the uniformity of the reflectance is 41%.
  • the reflectance is 56%, and the uniformity of the reflectance is 39%.
  • the reflectance is 70%, and the uniformity of the reflectance is 24%.
  • the scattering film provided by the embodiments of the present disclosure may be fabricated by using a crystal growth method, and may be formed by a conventional method.
  • the reflectivity in the main viewing direction can be increased as long as the first part of the scattering unit of the scattering film is affixed in the direction of the maximum reflectivity during sticking.
  • the display panel provided by the embodiments of the present disclosure uses at least ambient light as a light source, and can use a natural light source or an artificial light source as a light source to reflect ambient light to realize display.
  • the present disclosure further provides a display device including any of the above-mentioned display panels.
  • the display device includes a reflective liquid crystal display device, which can be applied to display devices such as tablet computers, notebooks, mobile phones, smart watches, electronic picture frames, and electronic paper.
  • the display device can be applied to 32FHD (full high definition), 4.95 inch (inch) reflective products, but not limited thereto.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种显示面板和显示装置。显示面板包括:第一衬底基板(101);第二衬底基板(201),与第一衬底基板(101)相对设置;液晶层(30),位于第一衬底基板(101)和第二衬底基板(201)之间;第一配向膜(102),位于第一衬底基板(101)的面向液晶层(30)的一侧;第二配向膜(202),位于第二衬底基板(201)的面向液晶层(30)的一侧;偏光片(40),位于第一衬底基板(101)的背离液晶层(30)的一侧;以及四分之一波片(50),位于偏光片(40)和第一衬底基板(101)之间;第一配向膜(102)具有第一配向方向(D1),第二配向膜(202)具有第二配向方向(D2),第一配向方向(D1)和第二配向方向(D2)之间的夹角(A0)的中心线(LN0)与四分之一波片(50)的慢轴(AS0)之间的夹角的范围为75°至105°。显示面板具有较高的对比度。

Description

显示面板和显示装置 技术领域
本公开至少一实施例涉及一种显示面板和显示装置。
背景技术
通常的反射式显示装置,对比度较低,影响显示效果,不利于提升客户体验。
发明内容
本公开的至少一实施例涉及一种显示面板和显示装置。
本公开的至少一实施例提供一种一种显示面板,包括:第一衬底基板;第二衬底基板,与所述第一衬底基板相对设置;液晶层,位于所述第一衬底基板和所述第二衬底基板之间;第一配向膜,位于所述第一衬底基板的面向所述液晶层的一侧;第二配向膜,位于所述第二衬底基板的面向所述液晶层的一侧;偏光片,位于所述第一衬底基板的背离所述液晶层的一侧;以及四分之一波片,位于所述偏光片和所述第一衬底基板之间;所述第一配向膜具有第一配向方向,所述第二配向膜具有第二配向方向,所述第一配向方向和所述第二配向方向之间的夹角的中心线与所述四分之一波片的慢轴之间的夹角的范围为75°至105°。
例如,本公开一实施例提供的显示面板还包括散射膜,所述散射膜被配置为散射入射到其上的光。
例如,本公开一实施例提供的显示面板还包括:位于所述偏光片和所述四分之一波片之间的二分之一波片,从所述二分之一波片出射的光的偏振方向和所述四分之一波片的所述慢轴之间的夹角的范围为40°至50°。
例如,根据本公开一实施例提供的显示面板所述偏光片的透过轴与所述二分之一波片的慢轴之间的夹角的范围为5°至25°或者为60°至80°。
例如,根据本公开一实施例提供的显示面板所述液晶层作为四分之一波片,所述液晶层的慢轴与所述四分之一波片的所述慢轴之间的夹角的范围为75°至105°。
例如,根据本公开一实施例提供的显示面板所述第一配向方向和所述第二配向方向之间的所述夹角的范围为48°至58°,或者71°至81°。
例如,根据本公开一实施例提供的显示面板所述散射膜位于所述第一衬底基板的背离所述液晶层的一侧。
例如,根据本公开一实施例提供的显示面板所述散射膜位于所述四分之一波片和所述第一衬底基板之间。
例如,根据本公开一实施例提供的显示面板所述散射膜包括多个散射单元,所述散射单元呈棒状,所述散射单元包括第一部分,所述第一部分与所述第一衬底基板之间的夹角为锐角,所述第一部分的延伸方向与所述显示面板在不设置所述散射膜的情况下的反射率最大的方向相同。
例如,根据本公开一实施例提供的显示面板所述散射单元还包括第二部分,所述第一部分和所述第二部分之间的夹角大于90°并且小于180°。
例如,根据本公开一实施例提供的显示面板所述第一部分比所述第二部分更靠近所述第一衬底基板,所述第二部分与所述第一衬底基板之间的夹角大于所述第一部分与所述第一衬底基板之间的夹角。
例如,根据本公开一实施例提供的显示面板所述第二部分与所述第一衬底基板之间的所述夹角为锐角或直角。
例如,根据本公开一实施例提供的显示面板所述锐角大于0且小于或等于15°。
例如,根据本公开一实施例提供的显示面板所述散射膜包括散射结构和反射元件,所述散射结构和所述反射元件位于所述第二衬底基板上,所述散射结构包括多个凸出部和位于相邻凸出部之间的凹陷部,所述散射结构位于所述第二衬底基板的面向所述第一衬底基板的一侧,所述反射元件位于所述散射结构的背离所述第二衬底基板的一侧,且与所述散射结构的背离所述第二衬底基板的表面共形地形成。
例如,本公开一实施例提供的显示面板还包括反射元件,所述反射元件位于所述第二衬底基板的面向所述液晶层的一侧,所述反射元件被配置为反射入射到其上的光。
例如,本公开一实施例提供的显示面板还包括位于所述第一衬底基板上的第一电极和位于所述第二衬底基板上的第二电极,所述第一电极和所述第二电极被配置为形成电场以驱动所述液晶层中的液晶分子旋转。
例如,根据本公开一实施例提供的显示面板,所述第二电极复用为所述反射元件。
本公开至少一实施例还提供一种显示装置,包括上述任一显示面板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一实施例提供的一种显示面板在不加电的情况下的示意图;
图2为本公开一实施例提供的一种显示面板在加电情况下的示意图;
图3为图1所示的显示装置的显示白态的原理示意图;
图4为图2所示的显示装置的显示黑态的原理示意图;
图5为图1所示的显示装置的光线偏转状态的示意图;
图6为图2所示的显示装置的光线偏转状态的示意图;
图7为二分之一波片的色散曲线;
图8A和图8B为偏光片的透过轴与二分之一波片的慢轴成不同角度时的对比度的模拟结果示意图;
图9为本公开一实施例提供的显示面板的第一配向膜的第一配向方向、第二配向膜的第二配向方向、二者夹角、以及二者夹角的中心线的示意图;
图10为偏光片的透过轴与二分之一波片的慢轴的不同夹角情况下,不同的情况下的四 分之一波片的慢轴与液晶层的慢轴的夹角与对比度的关系图;
图11为反射率和对比度随二分之一波片的慢轴与偏光片的透过轴的夹角变化的示意图;
图12为本公开一实施例提供的显示面板的第一配向膜的第一配向方向、第二配向膜的第二配向方向、二者夹角、以及二者夹角的中心线的示意图;
图13为本公开另一实施例提供的显示面板的第一配向膜的第一配向方向、第二配向膜的第二配向方向、二者夹角、以及二者夹角的中心线的示意图;
图14为本公开一实施例提供的显示面板的示意图;
图15为本公开一实施例提供的显示面板的散射膜对光进行散射示意图;
图16A为本公开一实施例提供的显示面板的散射膜的示意图;
图16B为本公开一实施例提供的具有散射膜的显示面板的示意图;
图16C为本公开一实施例提供的具有散射膜的显示面板的散射示意图;
图17A为本公开一实施例提供的显示面板的散射膜的示意图;
图17B为本公开一实施例提供的具有散射膜的显示面板的示意图;
图18为本公开一实施例提供的显示面板的反射率分布的模拟示意图;
图19为散射膜与显示面板的反射率最大方向配合的示意图;以及
图20为本公开一实施例提供的显示面板的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开至少一实施例提供一种显示面板,该显示面板包括:第一衬底基板;第二衬底基板,与第一衬底基板相对设置;液晶层,位于第一衬底基板和第二衬底基板之间;第一配向膜,位于第一衬底基板的面向液晶层的一侧;第二配向膜,位于第二衬底基板的面向液晶层的一侧;偏光片,位于第一衬底基板的背离液晶层的一侧;以及四分之一波片,位于偏光片和第一衬底基板之间;第一配向膜具有第一配向方向,第二配向膜具有第二配向 方向,第一配向方向和第二配向方向之间的夹角的中心线与四分之一波片的慢轴之间的夹角的范围为75°至105°。
本公开至少一实施例的显示面板,通过将第一配向方向和第二配向方向之间的夹角的中心线与四分之一波片的慢轴之间的夹角的范围设置为75°至105°,提高显示面板的对比度(Contrast Ratio,CR)。例如,在本公开的实施例中,对比度是指白态(亮度最大)时的反射率与黑态(亮度最小)时的反射率的比值。对比度越高,显示面板的显示效果越好。
图1为本公开一实施例提供的一种显示面板在不加电的情况下的示意图。如图1所示,显示面板包括:第一衬底基板101、第二衬底基板201、液晶层(Liquid Crystal Layer,LCL)30、第一配向膜102、第二配向膜202、偏光片(Polarizer,POL)40以及四分之一波片(λ/4)50。第二衬底基板201与第一衬底基板101相对设置。液晶层30位于第一衬底基板101和第二衬底基板201之间。第一配向膜102位于第一衬底基板101的面向液晶层30的一侧。第二配向膜202位于第二衬底基板201的面向液晶层30的一侧。偏光片40位于第一衬底基板101的背离液晶层30的一侧。四分之一波片50位于偏光片40和第一衬底基板101之间。
例如,如图1所示,显示面板还包括:位于偏光片40和四分之一波片50之间的二分之一波片(半波片,λ/2)60。例如,二分之一波片60可以使得入射到其上的偏振光的偏振方向发生旋转。二分之一波片60的作用在于优化偏振态的变化,可以使得经过四分之一波片的光更好地变成圆偏振光。当然,在另外的一些实施例中,也可以不设置二分之一波片60,即,与图1所示的显示面板相比,另一些实施例提供的显示面板中,去除了图1所示的二分之一波片60。本公开的实施例以显示面板包括二分之一波片60为例进行说明。
例如,在本公开的实施例中,二分之一波片和四分之一波片至少之一的材料为聚碳酸酯(Polycarbonate,PC)或环烯烃共聚物(Cyclo Olefin Polymers,COP)。
例如,如图1所示,显示面板还包括位于第一衬底基板101上的第一电极E1和位于第二衬底基板201上的第二电极E2;第一电极E1和第二电极E2被配置为形成电场以驱动液晶层30中的液晶分子301旋转。例如,第一电极E1可以采用透明导电材料制作,第二电极E2可采用金属材料制作。透明导电材料包括氧化铟锡(ITO),但不限于此。第一电极E1采用透明导电材料制作,以提高透光率,提升显示效果。
例如,如图1所示,显示面板包括反射元件203,以形成反射式显示面板。例如,如图1所示,第二电极E2复用为反射元件203。即,第一电极E1具有反射入射到其上的光的作用,第一电极E1和反射元件203整合为一个元件,以减少制作工艺,减小显示面板的厚度。
例如,偏光片40可采用通常的偏光片,例如,偏光片40可由高分子材料加工而成。例如,偏光片40包括聚乙烯(PVA)偏光膜,但不限于此,偏光片40还可以采用线栅偏光膜(WGP),只要能使入射到偏光片40上的自然光转变为偏振方向平行于偏光片40的透过轴方向的偏振光即可。
偏光片具有透过轴,当一束自然光照射到偏光片上时,偏振方向与偏光片的透过轴方 向平行的光可以通过偏光片,而偏振方向与偏光片的透过轴方向垂直的光不能通过偏光片。
例如,在本公开的实施例中,波片作为相位延迟器,作用在于使两个振动方向相互垂直的光产生相位延迟。波片中传播速度快的光矢量(light vector)方向为快轴,波片中传播速度慢的光矢量(light vector)方向为慢轴。理想状态下,对于四分之一波片,若入射线偏振光光矢量方向与快、慢轴方向一致时,出射光仍为线偏振光;若入射线偏振光光矢量方向与快、慢轴都成45°时,出射光为圆偏振光;若入射线偏振光光矢量方向与快、慢轴都成其他角度时,出射光为椭圆偏振光;圆偏振光通过四分之一波片后,变为线偏振光;在椭圆偏振光入射的情况下,若椭圆偏振光的长轴或短轴方向与波片的快、慢轴方向一致时,出射光为线偏振光,若为其他方向时,出射光仍为椭圆偏振光。理想状态下,对于二分之一波片,圆(椭圆)偏振光入射时,出射光仍为圆(椭圆)偏振光,只是旋向相反;线偏振光入射时,出射光仍为线偏振光,若入射的线偏振光的偏振方向与快(慢)轴夹角为A,出射光的振动方向向着快(慢)轴转动2A。
图2为本公开一实施例提供的一种显示面板在加电情况下的示意图。图1所示的显示面板为不加电的情况,处于白态,图2所示的显示面板为加电的情况,处于黑态。在本公开的实施例提供的显示面板中,液晶层采用扭曲向列(TN)相液晶,但不限于此。例如,反射元件203位于第二衬底基板201的面向液晶层30的一侧,反射元件203被配置为反射入射到其上的光。从而,形成反射式的显示面板。例如,本公开的实施例提供的显示面板为TN常白模式的反射式显示面板。
例如,在本公开的实施例中,显示面板包括多个子像素,图1所示为一个子像素的结构,不同子像素的第一电极E1可以连接在一起形成板状的公共电极,而不同子像素的第二电极E2彼此独立,可被分别施加信号,以实现子像素的独立控制,实现图像显示。
例如,对于智能手表、平板电脑等反射式显示产品,光源(阳光/灯光等)和人眼往往不能够恰好处于同一个反射光路的入射端和出射端,这样就为使用带来了不便。所以,需要增加光学结构使出射光线的可视范围增大。
例如,如图1和图2所示,为了增大视角,显示面板包括散射膜M,散射膜M包括散射结构204和位于散射结构204的背离第二衬底基板201的一侧的反射元件203,散射结构204包括多个凸出部2041和位于相邻凸出部2041之间的凹陷部2040,散射结构204位于第二衬底基板201的面向第一衬底基板101的一侧。凸出部2041和位于相邻凸出部2041之间的凹陷部2040可以使得散射结构204上的共形的形成的反射元件203具有漫反射的效果,扩大显示面板的视角。当然,在其他的实施例中,显示面板可以不包括散射结构204,而是设置散射膜,设置的散射膜可以位于液晶盒和偏光片之间。该情况将在后续进行描述。
在规格测试和应用中,反射式显示面板的反射率目前是采用准直光源垂直入射,倾斜30°接收的方法,如果不用散射结构或散射膜,此方向上的反射率会极低;增加散射结构或散射膜后,可增大此方向上的反射率。
如图1和图2所示,液晶盒12包括第一基板10、第二基板20和其间的液晶层30。图 1和图2所示的显示面板还可以包括彩膜层以实现彩色显示,彩膜层可设置在第一衬底基板101上,第一基板10构成彩膜基板。例如,彩膜层位于第一电极E1和第一衬底基板101之间,或者彩膜层位于第一电极E1和第一配向膜102之间。本公开的实施例对于彩膜层的设置位置不做限定。
图3为图1所示的显示装置的显示白态的原理示意图。图4为图2所示的显示装置的显示黑态的原理示意图。图5为图1所示的显示装置的光线偏转状态的示意图。图6为图2所示的显示装置的光线偏转状态的示意图。以下参考图1至图6介绍反射式TN常白模式的显示面板的光学结构及基本原理。
参考图1、图3和图5,不加电的情况下,显示面板显示白态,例如,入射光L1入射至显示面板,经过偏光片(POL)40、二分之一波片(λ/2)60、四分之一波片(λ/4)50、液晶层(LCL)30到达反射元件203,并被反射元件203反射得到反射光L2,发射光L2经过液晶层(LCL)30、四分之一波片(λ/4)50、二分之一波片(λ/2)60以及偏光片(POL)40出射,显示面板显示白态。
参考图2、图4和图6,加电的情况下,显示面板显示黑态,因在电场作用下,液晶层30的液晶分子301竖起,反射光L2不能通过偏光片(POL)40,显示面板显示黑态。例如,入射光L1入射至显示面板,经过偏光片(POL)40、二分之一波片(λ/2)60、四分之一波片(λ/4)50、液晶层(LCL)30到达反射元件203,并被反射元件203反射得到反射光L2,发射光L2经过液晶层(LCL)30、四分之一波片(λ/4)50、二分之一波片(λ/2)60,而不能通过偏光片40,显示黑态。
例如,在本公开的实施例中,加电的情况是指液晶层在电场的作用下,不加电的情况是指液晶层不在电场的作用下。例如,加电的情况下,第一电极E1和第二电极E2之间具有电压差,形成电场,电场驱动液晶分子旋转,不加电的情况下,第一电极E1和第二电极E2之间不具有电压差,不形成电场,液晶分子不发生旋转。
参考图1、图3和图5,在不对液晶层施加电场(不加电)的情况下,液晶分子不发生旋转,即,液晶分子对光线不起作用,显示面板显示白态(反射入射的光线)。例如,入射光L1经过偏光片40后产生线偏振光,线偏振光的偏振方向与偏光片40的透过轴AS1的延伸方向相同,为了便于描述,引入基准线LN,基准线LN作为基准引入,为虚设的线,在实际产品中可能并不存在。透过轴AS1与基准线LN的夹角为a;线偏振光经过二分之一波片60,线偏振光的偏振方向偏转一定角度;通常,入射到四分之一波片50上的线偏振光(经过二分之一波片60后的线偏振光)的偏振方向与四分之一波片50的慢轴需成45°,此时线偏振光经过四分之一波片50后,转变成圆偏振光;通过调整液晶层30的盒厚,将液晶层的延迟量(Retardation)调整为入射光的波长的1/4(即,液晶层30相当于四分之一波片),经过液晶层30后圆偏振光转变为线偏振光,偏振方向较之前的线偏振光有所改变。经过反射层203后的反射光L2为线偏振光,并产生半波损失,线偏振光的偏振方向“镜像翻转”;再经过液晶层30后转变为圆偏振光,此时圆偏振光的旋向与入射的圆偏振光的旋向相同(判断圆偏振光的旋向应始终迎着光的传播方向观察);反射光经过四分之一波 片50转变成线偏振光,再经过二分之一波片60的偏转调制,线偏振光的偏振方向与偏光片的透过轴方向相同,反射光从偏光片40出射,实现常白状态。如图2、图4和图6所示,加电状态下,液晶分子301在电场的作用下发生旋转,液晶分子301竖起,光通过液晶层不改变偏振状态及旋转方向,反射光L2到达偏光片处为线偏振光,线偏振光的偏振方向与偏光片40的透过轴的方向成90°,不能通过偏光片40,实现黑态。例如,线偏振光的偏振方向“镜像翻转”是指图5中相对显示面板外的观察者,线偏振光的偏振方向镜像对称。
例如,偏光片40的透过轴AS1、二分之一波片60的慢轴AS2、四分之一波片50的慢轴AS0如图6所示。图6示出了对于同一元件来说的入射光线L10和出射光线L20。例如,本公开的实施例中,偏光片40的透过轴AS1、二分之一波片60的慢轴AS2、四分之一波片50的慢轴AS0,液晶层的慢轴平行于第一衬底基板的表面。第一衬底基板的表面可为靠近第二衬底基板的表面或者远离第二基板的表面,但不限于此。
图7为二分之一波片的色散曲线。图7示出了两个二分之一波片的色散曲线,其中一个是二分之一波片601的色散曲线,另一个是二分之一波片602的色散曲线。例如,二分之一波片601的材料为PC,延迟量为270纳米,可记作PC-270,二分之一波片602的材料为COP,延迟量为270纳米,可记作COP-270。从图7可以看出,实际的二分之一波片并非完美的二分之一波片。
理想光路模型下(波片均与波长完美配合),偏光片40的透过轴与二分之一波片60的慢轴可成任意角度,但考虑到实际情况下,各波片之间、液晶层与波片之间配合不完美(如图7,实际二分之一波片的色散曲线与理想情况差别很大,四分之一波片同理)。
图8A和图8B为偏光片的透过轴与二分之一波片的慢轴成不同角度时的对比度的模拟结果示意图。从图中可以看出,偏光片的透过轴与二分之一波片的慢轴成不同角度时,显示面板的对比度不同,偏光片40的透过轴AS1与二分之一波片60的慢轴AS2之间的夹角对反射式LCD显示的对比度的影响很明显。图8A和图8B所示的结果分别是以偏光片的透过轴与二分之一波片的慢轴顺时针成角和逆时针成角时的对比度的曲线。
例如,为了提高对比度,偏光片40的透过轴AS1与二分之一波片60的慢轴AS2之间的角度是15°±10°或70°±10°。即,偏光片40的透过轴与二分之一波片60的慢轴之间的夹角的范围为5°至25°或者为60°至80°。偏光片40的透过轴与二分之一波片60的慢轴之间的夹角在上述角度范围内时,显示面板的对比度较高。
例如,因各波片之间、液晶层与波片之间配合不完美,二分之一波片60的出射光与四分之一波片50的慢轴的夹角的范围为45°±5°时,显示面板具有较高的对比度。需要注意的是,二分之一波片60的出射光为线偏振光,线偏振光的偏振方向可由二分之一波片60与偏光片40的透过轴的夹角控制。如图6所示,例如,二分之一波片60的出射光L21的偏振方向与基准线LN之间的角度A1=a+2(b-a)=2b-a,线偏振光的偏振方向与四分之一波片50的慢轴AS0的角度为θ,出射椭圆偏振光的长轴与四分之一波片50的慢轴AS0平行,反射前为左旋椭圆偏振光(或右旋椭圆偏振光),由于半波损失,反射后为右旋椭圆偏振光(或左旋椭圆偏振光),再次经过四分之一波片50后,线偏振光的偏振方向与基准 线LN之间的夹角A2=(2b-a)+2θ=(2b-a)+2(c-2b+a)=2c-2b+a,再次经过二分之一波片60后,线偏振光的偏振方向与基准线LN之间的夹角A3=(2c-2b+a)-2(2c-2b+a-b)=-a+4b-2c,零灰阶(L0)实现最小亮度,经过偏光片40的线偏振光的偏振方向与偏光片的透过轴正交,则,-a+4b-2c-a=90°→2b-a-c=45°。二分之一波片60的出射光与四分之一波片50的慢轴方向应成角度为45°,经过四分之一波片50的出射光为圆偏振光,此时反射式光路出射光的偏振方向与偏光片的透过轴正交,实现L0亮度最低。考虑到实际情况,各层的光学特性与波长并未完美配合,所以,从二分之一波片60出射的线偏振光的偏振方向与四分之一波片50的慢轴AS0的夹角成45°±5°。即,从二分之一波片60出射的光的偏振方向和四分之一波片50的慢轴的夹角的范围为40°至50°。例如,二分之一波片60的出射光与四分之一波片50的慢轴的夹角为46°,44°。
图9为本公开一实施例提供的显示面板的第一配向膜的第一配向方向、第二配向膜的第二配向方向、二者夹角、以及二者夹角的中心线的示意图。参考图1、图2、图6和图9,第一配向膜102具有第一配向方向D1,第二配向膜202具有第二配向方向D2,第一配向方向D1和第二配向方向D2之间的夹角A0的中心线LN0与四分之一波片50的慢轴AS0之间的夹角的范围为75°至105°。即,四分之一波片50的慢轴与第一配向方向D1和第二配向方向D2之间的夹角A0的中心线LN之间的夹角的范围为90°±15°。
本公开的实施例提供的显示面板,将四分之一波片50的慢轴与第一配向方向D1和第二配向方向D2之间的夹角A0的中心线LN0之间的夹角的范围设置为90°±15°,可以降低黑态的反射率,进而提高显示面板的对比度,提升显示效果。
理想状态下,加电时液晶分子完全竖起,然而,因加电情况下,可能液晶分子并非完全竖起,或因预倾角的设置,液晶层具有一定的双折射(虽然较小),形成一定的相位延迟,使得液晶层具有一定的光轴(慢轴)。通过设置四分之一波片50的慢轴AS0与液晶层的慢轴的夹角,来使得黑态更黑,黑态的反射率更低,降低黑态的反射率。
例如,通过调整液晶层30的厚度来调整液晶层30对于入射光的延迟量,使得液晶层30作为四分之一波片,上述第一配向方向D1和第二配向方向D2之间的夹角A0的中心线LN0作为液晶层30的慢轴,从而,液晶层30的慢轴与四分之一波片50的慢轴之间的夹角的范围为75°至105°。例如,第一配向方向D1和第二配向方向D2之间的夹角A0的范围为48°至58°,或者71°至81°。例如,第一配向方向D1和第二配向方向D2的夹角为53°±5°或76°±5°,但不限于此。
例如,液晶层的液晶分子具有扭转角(Twist Angle)。例如,扭转角为第一配向方向D1和第二配向方向D2之间的夹角。例如,不加电的情况下,靠近第一配向膜102的液晶分子的长轴方向可平行于第一配向方向D1,靠近第二配向膜202的液晶分子的长轴方向可平行于第二配向方向D2。在电场作用下,液晶层的液晶分子可以旋转,使得液晶分子的长轴的延伸方向垂直于第一衬底基板101或第二衬底基板201。例如,在本公开的一些实施例中,扭转角(Twist Angle)即为上述的夹角A0,扭转角的范围为48°至58°,或者71°至81°。例如,在本公开的一些实施例中,扭转角(Twist Angle)的范围为53°±5°或76°±5°。
例如,在本公开的实施例中,第一配向方向D1可指不加电的情况下,靠近第一配向膜102的液晶分子的长轴在第一衬底基板上的正投影的方向,第二配向方向D2可指不加电的情况下,靠近第二配向膜202的液晶分子的长轴在第一衬底基板上的正投影的方向。例如,采用摩擦方式形成第一配向膜和第二配向膜的情况下,第一配向方向D1可为形成第一配向膜的摩擦方向,第二配向方向D2可为形成第二配向膜的摩擦方向;当然,第一配向膜和第二配向膜也可以采用其他方式制作,本公开的实施例对此不作限定。
例如,在本公开的实施例中,为了提高液晶分子的响应速度,液晶层的液晶分子具有预倾角。例如,预倾角可指液晶分子的长轴与第一衬底基板或第二衬底基板的表面的夹角。
基于反射式TN常白模式的基本原理,本公开的一些实施例对偏光片、二分之一波片、四分之一波片、第一配向膜的配向方向和第二配向膜的配向方向的夹角的中心线(LN0)的组合进行了限定。
例如,在本公开的一些实施例中,四分之一波片50的慢轴与第一配向方向D1和第二配向方向D2之间的夹角A0的中心线LN之间的夹角的范围为90°±15°,从二分之一波片60出射的光的偏振方向和四分之一波片50的慢轴的夹角的范围为40°至50°,偏光片40的透过轴AS1与二分之一波片60的慢轴AS2之间的角度是15°±10°或70°±10°,采用上述参数组合的显示面板具有较高的对比度。
基于反射式TN常白模式的基本原理,本公开的一些实施例对偏光片、二分之一波片、四分之一波片、第一配向膜的配向方向和第二配向膜的配向方向的夹角的中心线(LN0)、扭转角(Twist Angle)、盒厚(Cell Gap)的组合进行了限定。例如,盒厚是指液晶盒的厚度。盒厚可指液晶盒的可容纳液晶层的空间的厚度,但不限于此。指图1示出了盒厚H。例如,在本公开的一些实施例中,四分之一波片50的慢轴与第一配向方向D1和第二配向方向D2之间的夹角A0的中心线LN之间的夹角的范围为90°±15°,从二分之一波片60出射的光的偏振方向和四分之一波片50的慢轴的夹角的范围为40°至50°,偏光片40的透过轴AS1与二分之一波片60的慢轴AS2之间的角度是15°±10°或70°±10°,扭转角(Twist Angle)的范围为53°±5°,或者为76°±5°,通过调整液晶层30的厚度使得液晶层30作为四分之一波片,采用上述参数组合的显示面板具有较高的对比度。液晶层的扭转角与四分之一波片的延迟量(Retardation)/材质相关。
图10为偏光片的透过轴与二分之一波片的慢轴的不同夹角情况下,不同的情况下的四分之一波片的慢轴与液晶层的慢轴的夹角与对比度的关系图。例如,实际使用的四分之一波片对于大部分波长的色光为不完美的四分之一波片。对四分之一波片的慢轴与第一配向方向D1和第二配向方向D2之间的夹角的中心线所成最佳角度进行模拟,例如,扭转角不变,二分之一波片的慢轴与偏光片的透过轴之间的夹角变化,四分之一波片的慢轴、液晶层的慢轴与二分之一波片的慢轴根据之前所说明的角度关系联动,同时四分之一波片的慢轴与液晶层的慢轴之间的夹角在0~180°内变化。模拟结果如图10所示。四分之一波片的慢轴与LC慢轴夹角成75°~105°范围内,对比度整体较高,其余角度关系下对比度衰减明显。
例如,本公开的实施例,通过限定各层之间的角度设计关系,确定优化设计的角度模拟范围,并给出了最佳的设计方案,使反射式显示面板的对比度大幅度提升,同时提升反射率。
图11为反射率和对比度随二分之一波片的慢轴与偏光片的透过轴的夹角变化的示意图。图11中,四分之一波片、以及液晶层的慢轴随着二分之一波片与偏光片的透过轴的夹角变化根据上述参数范围联动。
根据前述的各光学膜层之间的角度关系(偏光片的透过轴与二分之一波片的慢轴之间成最佳角度是15°±10°或70°±10°,(第一配向方向D1和第二配向方向D2之间的夹角A0的中心线LN0与四分之一波片50的慢轴AS0之间的夹角的范围为90°±15°),可以大幅缩减角度方案的模拟工作量;并可以根据这些夹角关系,在这些角度附近进行模拟,找到合适的角度配合方案。图11中列举了两种材料(COP270/PC270)的二分之一波片和两种材料(PC160/COP140)的四分之一波片的组合结果,可以看出,对于COP140,二分之一波片慢轴与偏光片的夹角在79°-10°~79°+9°即69°~88°附近波动模拟,二分之一波片的慢轴与偏光片的夹角为79°或76°以获得较高的对比度;对于PC160,二分之一波片慢轴与偏光片的透过轴的夹角在79°-10°~79°+9°即,69°~88°附近波动模拟,二分之一波片的慢轴与偏光片的夹角采用70°或75°以获得较高的对比度。图11中横坐标的数值表示与79°的差值。例如,横坐标为0的位置处表示79°。-X处表示角度为79°减去X°,X处表示角度为79°加上X°。图11中,CS1情况下,二分之一波片采用COP270,四分之一波片采用COP140。CS2情况下,二分之一波片采用PC270,四分之一波片采用COP140。CS3情况下,二分之一波片采用PC270,四分之一波片采用PC140。CS4情况下,二分之一波片采用COP270,四分之一波片采用PC160。CS5情况下,二分之一波片采用PC270,四分之一波片采用PC160。CS6情况下,二分之一波片采用COP270,四分之一波片采用COP160。
表一给出了本公开的实施例提供的几种显示面板的参数以及性能数据。表一给出了CS1、CS2、CS3、CS4、CS5、CS6六种情况下的显示面板。CS1情况下,二分之一波片采用COP270,四分之一波片采用COP140。CS2情况下,二分之一波片采用PC270,四分之一波片采用COP140。CS3情况下,二分之一波片采用PC270,四分之一波片采用PC140。CS4情况下,二分之一波片采用COP270,四分之一波片采用PC160。CS5情况下,二分之一波片采用PC270,四分之一波片采用PC160。CS6情况下,二分之一波片采用COP270,四分之一波片采用COP160。
本公开的实施例中,二分之一波片和四分之一波片采用材料加延迟量的描述方式,延迟量的单位为纳米。
在表一中,Vop表示黑态电压,单位为伏特。POL表示偏光片,λ/2表示二分之一波片,λ/4表示四分之一波片,LCL表示液晶层,Re.表示延迟量,单位为纳米。T/A表示扭转角,单位为度。D1表示第一配向方向,D2表示第二配向方向,Ref.表示反射率,CR表示对比度,Wx表示白点在色坐标中的横坐标,Wy表示白点在色坐标中的纵坐标。向左的 箭头表示其数值与左侧的数值相同。表一中,POL一行表示偏光片的透过轴与基准线之间的夹角,两个夹角相差90°,采用斜线左侧或右侧的夹角均可以,两个角度下,显示效果一致,反射率、CR相同。λ/2一行表示二分之一波片的慢轴与基准线的夹角,λ/4一行表示四分之一波片的慢轴与基准线的夹角。
如图10、图11和表一所示,在上述给出数值范围内,显示面板的反射率变化不大,对比度较高。从而,通过将显示面板的相关参数设置为上述的参数范围内,可以获得具有较高对比度的显示面板。
如表一所示,CS1、CS3、CS4、CS6的情况下的显示面板均较好,CS4的显示面板的CR提升明显。并且由CS1-CS4的对比可以得出结论,二分之一波片、四分之一波片采用COP材料比PC材料效果更好,CR提升明显。
表一:显示面板的参数以及性能数据
Figure PCTCN2021072434-appb-000001
图12为本公开一实施例提供的显示面板的第一配向膜的第一配向方向、第二配向膜的 第二配向方向、二者夹角、以及二者夹角的中心线的示意图。图13为本公开另一实施例提供的显示面板的第一配向膜的第一配向方向、第二配向膜的第二配向方向、二者夹角、以及二者夹角的中心线的示意图。如图12所示,第一配向方向D1为-82°,第二配向方向D2为-6°,第一配向方向D1和第二配向方向D之间的夹角A12为76°,第一配向方向D1和第二配向方向D之间的夹角A12的中心线为-44°。如图13所示,第一配向方向D1为126°,第二配向方向D2为179°,第一配向方向D1和第二配向方向D之间的夹角A12为53°,第一配向方向D1和第二配向方向D之间的夹角A12的中心线为152.5°。图12和图13所示的显示面板分别为上述CS1和CS4的情况下的有关液晶层的参数。图12标示出了第二电极E2。第二电极E2可与一个薄膜晶体管相连,薄膜晶体管是否开启决定第二电极E2是否被输入电压。一个第二电极E2对应一个子像素SP。
图14为本公开一实施例提供的显示面板的示意图。如图14所示,为增加某一方向的反射率或增大视角,显示面板还包括散射膜70。例如,散射膜70设置在偏光片40与第一衬底基板101之间。例如,如图14所示,散射膜70位于四分之一波片50和第一衬底基板101之间。例如,如图14所示,散射膜70被配置为散射入射到其上的光。散射膜70可以对入射到其上的光进行漫反射,起到增大视角的作用。
例如,散射膜70可以与偏光片40、二分之一波片60、四分之一波片50一起制作成膜片组件,膜片组件再与液晶盒贴合。膜片组件可通过OCA胶贴附在液晶盒的第一基板的背离第二基板的一侧。膜片组件可为复合光学膜。
图15为本公开一实施例提供的显示面板的散射膜对光进行散射示意图。如图15所示,一束入射光以入射角AG入射到显示面板上,若不对光进行散射,则出射光将以相同的出射角进行出射,从而,视角较小,而散射膜70的设置,使得出射光可以多角度出射,从而,可以增大视角。
图16A为本公开一实施例提供的显示面板的散射膜的示意图。图16B为本公开一实施例提供的具有散射膜的显示面板的示意图。例如,如图16A和图16B所示,散射膜70包括多个散射单元700,散射单元700为棒状,散射单元700包括第一部分701和第二部分702,第一部分701和第二部分702之间的夹角A5大于90°并且小于180°。例如,多个散射单元700在整个二维面内均匀重复排列。散射膜对光可以起到引导和散射的作用。
例如,如图16B所示,第一部分701比第二部分702更靠近第一衬底基板101,第一部分701与第一衬底基板101之间的夹角大于第二部分702与第一衬底基板101之间的夹角。
例如,如图16B所示,第一部分701与第一衬底基板101之间的夹角为锐角,第二部分702与第一衬底基板101之间的夹角为锐角或直角。例如,锐角大于0且小于或等于15°。进一步例如,锐角大于或等于5°且小于或等于15°。
例如,第一部分701比第二部分702更靠近第一衬底基板101,第一部分701与第一衬底基板101之间的夹角与显示面板的主视方向相同或为所述主视方向的对侧。
图16C为本公开一实施例提供的具有散射膜的显示面板的散射示意图。反射式显示面 板在反射率测试中,光源垂直显示面板入射,采集水平/垂直四个方向上30°倾斜角度的反射率数据。其中一个方向会是显示面板的主要观看方向,而不需要四个方向反射率均非常高。
如图16C所示,点光源从中心C0处垂直入射后出射光线发散及偏移的示意图。对于垂直入射的光线,形成光斑,且光斑偏移向散射膜棒状结构弯曲的方向,散射膜可以将主视角方向的反射率提升300%左右,大幅提升主视方向的反射率。例如,如图16A所示,散射单元向左下方向倾斜,则主视方向为左下或者右上时,可以最大程度提升反射率和对比度。
图17A为本公开一实施例提供的显示面板的散射膜的示意图。图17B为本公开一实施例提供的具有散射膜的显示面板的示意图。例如,如图17A所示,散射膜70包括多个散射单元700,散射单元700为棒状,即,与图16A所示的散射单元700相比,图17A所示的散射单元700仅包括第一部分,散射单元700的延伸方向与显示面板的主视方向相同或为所述主视方向的对侧。如图17B所示,散射单元700与第一衬底基板101之间的夹角为锐角。例如,锐角大于0且小于或等于15°。进一步例如,锐角大于或等于5°且小于或等于15°。
例如,散射膜70为指向性扩散膜(IDF),散射膜70可用来增大某一方向的反射率。
例如,在本公开的实施例中,主视方向为不设置散射膜的情况下,显示面板的反射率最大的方向。反射率最大的方向可通过实验测出。
图18为本公开一实施例提供的显示面板的反射率分布的模拟示意图。图18为在不设置散射膜的情况下的反射率的分布图。图18为光从不同方向上入射,垂直接收的情况下,测得的反射率的示意图。图18中,外围的数字表示方位角,同心圆为极化角,给定一个点,从图中即可得到显示面板在该位置上的反射率。如图18所示,显示面板具有反射率最大方向。图18中颜色越深的地方,反射率越大。
图19为散射膜与显示面板的反射率最大方向配合的示意图。如图19所示,散射膜的散射单元的弯折方向与显示面板的反射率最大方向D0相同。当散射膜的散射单元为单层结构时,散射膜的散射单元的延伸方向与显示面板的反射率最大方向D0相同。
图20为本公开一实施例提供的显示面板的示意图。显示面板包括第一侧01、第二侧02、第三侧03和第四侧04。第一侧01与第二侧02相对设置,第三侧03和第四侧04相对设置。例如,第一侧01为设置集成电路(IC)的一侧,即,IC侧。第二侧02为IC反侧。若主视方向为IC侧,IC反侧为主视方向的对侧,从而,IC侧和IC反侧可分别对应图18中的0°和180°的方向处。例如,从显示面板的一侧观看,则该侧即为主视方向。第三侧03和第一侧04可分别为显示面板的左侧和右侧。
例如,显示面板在各个方向上反射率分布是不均匀的,反射率存在最大方向,如果主视方向需求出现变化,可以在保持各层角度关系固定的情况下,同步调整第一配向方向和第二配向方向之间的夹角的中心线、二分之一波片,四分之一波片、以及偏光片,使得相关夹角固定到上述参数范围内,使反射率最大方向转向主视方向。
散射膜的使用同样可以提升反射式显示装置的某一视角方向的反射率。例如,散射膜可采用高分子材料形成,但不限于此。例如,散射膜可采用GBA、GCA或HDA,但不限于此。GBA、GCA或HDA表示散射膜的结构。GBA、GCA或HDA中,第一个字母代表:棒的类型,G表示单条连贯弯曲棒;H代表单条连贯直棒;第二个字母代表:下段(散射单元的第一部分)的角度,B代表下段倾斜5°,C代表倾斜10°,D代表倾斜15°;第三个字母代表:单层膜,也就代表三种散射膜均为棒状结构单元组成的单层膜例如,当散射膜采用GBA110/GCA110/GCA090/HDA060的情况下,反射率提升最多,且具有较好的均一性。均一性是指在不同方向上的反射率的差异。均一性的数值越大,均一性越好。上述散射膜以结构加厚度的方式示出,即,GBA、GCA或HDA后面的数字代表厚度值,厚度的单位为微米。例如,散射膜采用GBA110的情况下,反射率的均一性为75%。例如,散射膜采用GCA110的情况下,反射率为40%,反射率的均一性为41%。例如,散射膜采用GCA090的情况下,反射率为56%,反射率的均一性为39%。例如,散射膜采用HDA060的情况下,反射率为70%,反射率的均一性为24%。
例如,本公开的实施例提供的散射膜,可以采用晶体生长的方式制作,可采用通常的方式形成。只要在贴附时,将散射膜的散射单元的第一部分朝向反射率最大的方向贴附,即可增大主视方向的反射率。
本公开的实施例提供的显示面板,至少以环境光作为光源,可利用自然光源或者人工光源作为光源,反射环境光实现显示。
本公开至少一实施例还提供一种显示装置,包括上述任一显示面板。例如,显示装置包括反射式液晶显示装置,可应用于平板电脑、笔记本、手机、智能手表、电子画框、电子纸等显示装置。例如,显示装置可应用于32FHD(全高清)、4.95英寸(inch)反射式产品中,但不限于此。
为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种显示面板,包括:
    第一衬底基板;
    第二衬底基板,与所述第一衬底基板相对设置;
    液晶层,位于所述第一衬底基板和所述第二衬底基板之间;
    第一配向膜,位于所述第一衬底基板的面向所述液晶层的一侧;
    第二配向膜,位于所述第二衬底基板的面向所述液晶层的一侧;
    偏光片,位于所述第一衬底基板的背离所述液晶层的一侧;以及
    四分之一波片,位于所述偏光片和所述第一衬底基板之间,
    所述第一配向膜具有第一配向方向,所述第二配向膜具有第二配向方向,
    所述第一配向方向和所述第二配向方向之间的夹角的中心线与所述四分之一波片的慢轴之间的夹角的范围为75°至105°。
  2. 根据权利要求1所述的显示面板,还包括散射膜,其中,所述散射膜被配置为散射入射到其上的光。
  3. 根据权利要求1或2所述的显示面板,还包括:位于所述偏光片和所述四分之一波片之间的二分之一波片,其中,从所述二分之一波片出射的光的偏振方向和所述四分之一波片的所述慢轴之间的夹角的范围为40°至50°。
  4. 根据权利要求3所述的显示面板,其中,所述偏光片的透过轴与所述二分之一波片的慢轴之间的夹角的范围为5°至25°或者为60°至80°。
  5. 根据权利要求1-4任一项所述的显示面板,其中,所述液晶层作为四分之一波片,所述液晶层的慢轴与所述四分之一波片的所述慢轴之间的夹角的范围为75°至105°。
  6. 根据权利要求1-5任一项所述的显示面板,其中,所述第一配向方向和所述第二配向方向之间的所述夹角的范围为48°至58°,或者71°至81°。
  7. 根据权利要求2所述的显示面板,其中,所述散射膜位于所述第一衬底基板的背离所述液晶层的一侧。
  8. 根据权利要求7所述的显示面板,其中,所述散射膜位于所述四分之一波片和所述第一衬底基板之间。
  9. 根据权利要求2、7-8任一项所述的显示面板,其中,所述散射膜包括多个散射单元,所述散射单元呈棒状,所述散射单元包括第一部分,所述第一部分与所述第一衬底基板之间的夹角为锐角,所述第一部分的延伸方向与所述显示面板在不设置所述散射膜的情况下的反射率最大的方向相同。
  10. 根据权利要求9所述的显示面板,其中,所述散射单元还包括第二部分,所述第一部分和所述第二部分之间的夹角大于90°并且小于180°。
  11. 根据权利要求10所述的显示面板,其中,所述第一部分比所述第二部分更靠近所述第一衬底基板,所述第二部分与所述第一衬底基板之间的夹角大于所述第一部分与所述第一衬底基板之间的夹角。
  12. 根据权利要求10所述的显示面板,其中,所述第二部分与所述第一衬底基板之间的所述夹角为锐角或直角。
  13. 根据权利要求12所述的显示面板,其中,所述锐角大于0且小于或等于15°。
  14. 根据权利要求2所述的显示面板,其中,所述散射膜包括散射结构和反射元件,所述散射结构和所述反射元件位于所述第二衬底基板上,所述散射结构包括多个凸出部和位于相邻凸出部之间的凹陷部,所述散射结构位于所述第二衬底基板的面向所述第一衬底基板的一侧,所述反射元件位于所述散射结构的背离所述第二衬底基板的一侧,且与所述散射结构的背离所述第二衬底基板的表面共形地形成。
  15. 根据权利要求1-14任一项所述的显示面板,还包括反射元件,其中,所述反射元件位于所述第二衬底基板的面向所述液晶层的一侧,所述反射元件被配置为反射入射到其上的光。
  16. 根据权利要求15所述的显示面板,还包括位于所述第一衬底基板上的第一电极和位于所述第二衬底基板上的第二电极,其中,所述第一电极和所述第二电极被配置为形成电场以驱动所述液晶层中的液晶分子旋转。
  17. 根据权利要求16所述的显示面板,其中,所述第二电极复用为所述反射元件。
  18. 一种显示装置,包括根据权利要求1-17任一项所述的显示面板。
PCT/CN2021/072434 2021-01-18 2021-01-18 显示面板和显示装置 WO2022151466A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/606,581 US11927851B2 (en) 2021-01-18 2021-01-18 Display panel and display device
PCT/CN2021/072434 WO2022151466A1 (zh) 2021-01-18 2021-01-18 显示面板和显示装置
DE112021001426.9T DE112021001426T5 (de) 2021-01-18 2021-01-18 Anzeigefeld und anzeigevorrichtung
CN202180000042.3A CN115362410B (zh) 2021-01-18 2021-01-18 显示面板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072434 WO2022151466A1 (zh) 2021-01-18 2021-01-18 显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2022151466A1 true WO2022151466A1 (zh) 2022-07-21

Family

ID=82446813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072434 WO2022151466A1 (zh) 2021-01-18 2021-01-18 显示面板和显示装置

Country Status (4)

Country Link
US (1) US11927851B2 (zh)
CN (1) CN115362410B (zh)
DE (1) DE112021001426T5 (zh)
WO (1) WO2022151466A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114478A (ja) * 2005-10-20 2007-05-10 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
CN104614891A (zh) * 2015-02-17 2015-05-13 深圳市华星光电技术有限公司 反射式柔性液晶显示器
TWM545991U (zh) * 2017-03-28 2017-07-21 凌巨科技股份有限公司 顯示裝置
CN111474777A (zh) * 2020-05-13 2020-07-31 昆山龙腾光电股份有限公司 反射式液晶显示面板及显示装置
TWM600855U (zh) * 2020-06-01 2020-09-01 凌巨科技股份有限公司 顯示面板
JP2020170147A (ja) * 2019-03-05 2020-10-15 富士フイルム株式会社 液晶表示装置
CN212276162U (zh) * 2020-06-10 2021-01-01 苏州润博希电子科技有限公司 圆偏振光液晶显示机构

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183723A (ja) 1997-12-22 1999-07-09 Sumitomo Chem Co Ltd 複合偏光板およびこれを用いた反射防止フィルターおよび反射防止機能付きタッチパネル
JP3095005B2 (ja) 1998-12-04 2000-10-03 日本電気株式会社 反射型液晶表示装置
US6433845B1 (en) 1998-04-10 2002-08-13 Nec Corporation Reflection type liquid crystal display with particular angle between polarization axis and quarter wavelength plate optical axis
JP2001027755A (ja) 1999-07-14 2001-01-30 Sumitomo Chem Co Ltd 液晶表示装置
US7719646B2 (en) 2002-11-15 2010-05-18 Sharp Kabushiki Kaisha Liquid crystal display device
JP4059883B2 (ja) 2002-12-20 2008-03-12 帝人株式会社 透明導電性積層体、タッチパネル及びタッチパネル付液晶表示装置
US7405787B2 (en) 2003-03-25 2008-07-29 Nitto Denko Corporation Liquid crystal display with offset viewing cone
CN1777837A (zh) 2003-03-25 2006-05-24 日东电工株式会社 具有偏向视锥的液晶显示器
CN1924666A (zh) 2005-08-30 2007-03-07 胜华科技股份有限公司 半反射式液晶显示装置
CN101576685B (zh) 2008-05-05 2013-08-14 群创光电股份有限公司 液晶显示面板及包括其的液晶显示装置
JP5745686B2 (ja) 2012-03-15 2015-07-08 富士フイルム株式会社 光学積層体を有する有機elディスプレイ素子
CN102890362B (zh) 2012-09-27 2015-04-15 京东方科技集团股份有限公司 一种显示装置
JP2014142502A (ja) * 2013-01-24 2014-08-07 Japan Display Inc 反射型液晶表示装置及び電子機器
CN105629580A (zh) 2016-03-11 2016-06-01 武汉华星光电技术有限公司 一种液晶显示面板及装置
CN109212843A (zh) 2018-09-30 2019-01-15 北京航空航天大学 一种基于双边IPS电极结构的LCoS微显示器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114478A (ja) * 2005-10-20 2007-05-10 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
CN104614891A (zh) * 2015-02-17 2015-05-13 深圳市华星光电技术有限公司 反射式柔性液晶显示器
TWM545991U (zh) * 2017-03-28 2017-07-21 凌巨科技股份有限公司 顯示裝置
JP2020170147A (ja) * 2019-03-05 2020-10-15 富士フイルム株式会社 液晶表示装置
CN111474777A (zh) * 2020-05-13 2020-07-31 昆山龙腾光电股份有限公司 反射式液晶显示面板及显示装置
TWM600855U (zh) * 2020-06-01 2020-09-01 凌巨科技股份有限公司 顯示面板
CN212276162U (zh) * 2020-06-10 2021-01-01 苏州润博希电子科技有限公司 圆偏振光液晶显示机构

Also Published As

Publication number Publication date
US20230138896A1 (en) 2023-05-04
US11927851B2 (en) 2024-03-12
CN115362410A (zh) 2022-11-18
CN115362410B (zh) 2024-05-28
DE112021001426T5 (de) 2023-01-12

Similar Documents

Publication Publication Date Title
TWI699596B (zh) 背光模組及顯示裝置
TWI238275B (en) Transflective liquid-crystal display device
US20100277660A1 (en) Wire grid polarizer with combined functionality for liquid crystal displays
TWI386736B (zh) 一種半穿反顯示裝置、其操作方法及其製造方法
TWI724808B (zh) 顯示裝置
JP6245572B2 (ja) 表示パネル及び表示装置
US20100208176A1 (en) Wide Viewing Angle Transflective Liquid Crystal Displays
WO2014176886A1 (zh) 半透半反式液晶显示面板、显示装置及阵列基板
JP5252335B2 (ja) 液晶表示装置、および端末装置
JP2728059B2 (ja) 反射型液晶表示装置
WO2019103012A1 (ja) 表示装置
US7502091B2 (en) Optical sheet, electric-field-controlled panel, lighting apparatus, liquid crystal display, and method of manufacturing an optical sheet
US20070076157A1 (en) Structure of liquid crystal display with a wide viewing angle
CN111474777A (zh) 反射式液晶显示面板及显示装置
US6836309B2 (en) High contrast reflective light valve
US11333931B2 (en) Liquid crystal display panel and display device
JP2004094230A (ja) 液晶表示装置
WO2018176601A1 (zh) 透反式液晶显示装置
KR100713885B1 (ko) 반투과형 액정표시장치
WO2022151466A1 (zh) 显示面板和显示装置
WO2023240712A1 (zh) 防窥膜及显示装置
CN108287423B (zh) 一种曲面液晶显示屏
JP2020046667A (ja) 反射型液晶表示装置
JP2004302174A (ja) 液晶表示装置及びその製造方法
TWM545991U (zh) 顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918668

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/11/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21918668

Country of ref document: EP

Kind code of ref document: A1