WO2022149768A1 - 전지 모듈 및 이를 포함하는 전지 팩 - Google Patents

전지 모듈 및 이를 포함하는 전지 팩 Download PDF

Info

Publication number
WO2022149768A1
WO2022149768A1 PCT/KR2021/019683 KR2021019683W WO2022149768A1 WO 2022149768 A1 WO2022149768 A1 WO 2022149768A1 KR 2021019683 W KR2021019683 W KR 2021019683W WO 2022149768 A1 WO2022149768 A1 WO 2022149768A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cell stack
battery cell
battery module
exterior member
Prior art date
Application number
PCT/KR2021/019683
Other languages
English (en)
French (fr)
Inventor
박수빈
성준엽
박원경
한홍구
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210066459A external-priority patent/KR20220101544A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2023503480A priority Critical patent/JP2023534979A/ja
Priority to CN202180050317.4A priority patent/CN115956318A/zh
Priority to EP21917930.6A priority patent/EP4199191A1/en
Priority to US18/019,132 priority patent/US20230275281A1/en
Publication of WO2022149768A1 publication Critical patent/WO2022149768A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module and a battery pack including the same, and more particularly, to a battery module that improves cooling performance of battery cells and reduces a cooling deviation between battery cells, and a battery pack including the same.
  • secondary batteries are of great interest not only as mobile devices such as mobile phones, digital cameras, notebooks, and wearable devices, but also as energy sources for power devices such as electric bicycles, electric vehicles, and hybrid electric vehicles.
  • the mid-to-large-sized battery module be manufactured as small as possible in size and weight, a prismatic battery, a pouch-type battery, etc. that can be stacked with a high degree of integration and have a small weight to capacity are mainly used as battery cells of the mid- to large-sized battery module.
  • the battery module in order to protect the battery cell stack from external impact, heat, or vibration, the front and back of the open front and rear may include a module frame for accommodating the battery cell stack in an internal space.
  • the temperature of the battery cell is one of the factors limiting the output of the battery, the local temperature rise occurring in the battery cell is likely to limit the output of the battery early, and there is a need to improve it.
  • the number of battery cells stacked in the module increases, and the cooling deviation between the battery cells is further aggravated.
  • An object of the present invention is to provide a battery module and a battery pack including the same, which improve the cooling performance of battery cells and reduce the cooling deviation between the battery cells.
  • a battery module includes: a battery cell stack including a plurality of battery cells stacked in a first direction; a first heat sink positioned under the battery cell stack; a first thermally conductive resin layer positioned between the battery cell stack and the first heat sink; and an exterior member surrounding the outer surface of the battery cell stack, wherein the battery cell stack includes at least one cooling fin positioned between adjacent battery cells among the plurality of battery cells, the exterior member and The first thermally conductive resin layer and the first heat sink are positioned between the lower surface of the battery cell stack.
  • An outer surface of the exterior member of the battery module may be exposed.
  • the exterior member may press the upper and lower surfaces of the battery cell stack in a second direction, and the second direction may be perpendicular to the first direction.
  • the second direction may be a width direction of the plurality of battery cells.
  • the exterior member may be made of an elastic material.
  • the exterior member may be formed by wrapping the outer surface of the battery cell stack by the film of the elastic material.
  • the exterior member may be formed of a heat-shrinkable tube, and front and rear surfaces of the heat-shrinkable tube may be open.
  • a lower surface of the cooling fin may be in contact with the first thermally conductive resin layer.
  • a first adhesive layer may be positioned between the cooling fin and the battery cell.
  • It may further include compression pads positioned on both sides of the battery cell stack, and the compression pad may be positioned between the exterior member and the outer surface of the battery cell stack.
  • a second adhesive layer may be positioned between the compression pad and the battery cell.
  • the first heat sink may include a cooling passage through which a refrigerant flows, and the cooling passage and the first thermally conductive resin layer may be in contact with each other.
  • the second thermally conductive resin layer and the second heat sink may be positioned between the upper surfaces of the .
  • An upper surface of the cooling fin may be in contact with the second thermally conductive resin layer.
  • the battery module described above is mounted on the pack frame, and the outer surface of the exterior member and the pack frame are in contact.
  • the pack frame includes a lower pack frame on which the at least two battery modules are mounted and an upper pack frame covering the upper portions of the at least two battery modules, and includes a plurality of pack frames extending from one side of the lower pack frame toward the other side. It may include a first beam.
  • the battery module may be mounted between the first beams adjacent to each other among the plurality of first beams.
  • the lower pack frame may further include a plurality of second beams perpendicular to the first beam, and the plurality of second beams may be respectively positioned between one surface of the battery module and a side surface of the lower pack frame.
  • One surface of the second beam may be in contact with an electrode lead protruding from one surface of the battery module.
  • An insulating coating layer may be formed on one surface of the second beam.
  • the present invention includes an exterior member surrounding the outer surface of the structure in which the thermally conductive resin layer and the heat sink are positioned under the battery cell stack to improve the cooling performance of the battery cell, and cooling deviation between the battery cells It is possible to provide a battery module and a battery pack including the same to reduce the.
  • FIG. 1 is a perspective view of a battery module according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the battery module of FIG. 1 .
  • FIG. 3 is an exploded perspective view of a battery cell stack included in the battery module of FIG. 1 .
  • FIG. 4 is a view showing a cross-section taken along the cutting line A-A of FIG. 1 .
  • FIG. 5 is an enlarged view showing a lower portion of the cross section of FIG. 4 .
  • FIG. 6 is a perspective view of a battery pack in which the battery module of FIG. 1 is mounted.
  • FIG. 7 is an exploded perspective view of the battery pack of FIG. 6 ;
  • FIG. 8 is a top view of area A in a state in which the upper pack frame of FIG. 6 is removed.
  • FIG. 9 is a perspective view of a battery module according to another embodiment of the present invention.
  • FIG. 10 is an exploded perspective view of the battery module of FIG. 9 .
  • FIG. 11 is a view showing a cross-section taken along the cutting line B-B of FIG. 9 .
  • FIG. 12 is an exploded perspective view of the battery pack in which the battery module of FIG. 9 is mounted;
  • FIG. 13 is a perspective view of a battery module according to a comparative example.
  • FIG. 14 is an exploded perspective view of a battery pack in which the battery module of FIG. 13 is mounted;
  • FIG. 15 is a perspective view illustrating a state in which the components of the battery pack of FIG. 14 are assembled
  • FIG. 16 is a view showing a part of a cross section taken along the cutting line a-a of FIG. 15 .
  • planar view it means when the target part is viewed from above
  • cross-sectional view means when viewed from the side when a cross-section of the target part is vertically cut.
  • FIG. 1 is a perspective view of a battery module according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the battery module of FIG. 1 .
  • the battery module 100 includes a battery cell stack 120 in which a plurality of battery cells 110 stacked in a first direction are stacked; a heat sink 160 positioned under the battery cell stack 120 ; a thermally conductive resin layer 140 positioned between the battery cell stack 120 and the heat sink 160 ; and an exterior member 150 surrounding the outer surface of the battery cell stack 120 .
  • the battery module 100 includes a sensing member (not shown) that covers the front and rear surfaces of the battery cell stack 120 .
  • the thermally conductive resin layer 140 and the heat sink 160 are positioned between the exterior member 150 and the lower surface of the battery cell stack 120 .
  • the lower surface of the battery cell stack 120 may be in direct contact with the thermally conductive resin layer 140
  • the thermally conductive resin layer 140 may be in contact with the heat sink 160 . That is, the heat generated in the battery cell stack 120 may be directly transferred to the thermal conductive resin layer 140 , and the transferred heat may be transferred to the heat sink 160 to be cooled.
  • the heat generated in the battery cell 110 is transferred to the thermal conductive resin layer 140 in direct contact with the lower surface of the battery cell stack 120 , and is cooled by the heat sink 160 , and the battery module 100 .
  • the cooling performance of the battery cell 110 may be improved, and the cooling deviation between the battery cells 110 may also be reduced.
  • the lifespan of the battery module 100 may be further improved.
  • the heat sink 160 includes a cooling passage through which a refrigerant flows, and the cooling passage includes outlets and inlets formed on one side of the heat sink 160 , and a depression that connects the outlet and the inlet and is a path through which the refrigerant flows. may include wealth.
  • the outlet may allow the refrigerant included in the cooling passage to be discharged to the outside, and the inlet may supply the refrigerant into the cooling passage.
  • the battery module 100 since the battery module 100 according to the present embodiment includes the heat sink 160 , the weight of the heat sink 160 may be reduced, and a temperature deviation between the battery modules 100 may also be reduced. In addition, structural rigidity of the battery module 100 may be increased, and a handling function of the battery module 100 may be improved before being mounted in pack frames 1200 and 1300 to be described later.
  • the thermally conductive resin layer 140 may be formed by coating a thermally conductive resin on the lower surface of the battery cell stack 120 or the upper surface of the heat sink 160 . That is, as the previously applied thermally conductive resin is cured, the thermally conductive resin layer 140 may be formed. Accordingly, as the thermal conductive resin is cured, the lower surface of the battery cell stack 120 and the heat sink 160 may be stably fixed to each other.
  • the thermally conductive resin layer 140 may be formed of a heat transfer member including a thermally conductive material, and the thermally conductive resin layer 140 may be formed of an upper cover of the heat sink 160 . Accordingly, in the heat sink 160 , the cooling passage through which the refrigerant flows and the thermal conductive resin layer 140 may be in direct contact with each other.
  • the heat generated in the battery cell 110 is directly cooled by the thermally conductive resin layer 140 and the heat sink 160 , the cooling performance of the battery module 100 is further improved, and the battery cell 110 . ) can also be further reduced.
  • the exterior member 150 may surround the outer surface of the battery cell stack 120 together with the thermally conductive resin layer 140 and the heat sink 160 .
  • the exterior member 150 is a member composed of both sides and upper and lower surfaces, and the front and rear surfaces may be open. Accordingly, both sides and upper and lower surfaces of the battery cell stack 120 may be covered by the exterior member 150 , and the front and rear surfaces may be open.
  • both side surfaces and upper and lower surfaces of the exterior member 150 may have a size corresponding to the size of the outer surface of the battery cell stack, respectively.
  • both side surfaces of the exterior member 150 may have the same size as the side surface of the battery cell stack 120 or have a size smaller than this.
  • the upper and lower surfaces of the exterior member 150 may have the same size as the upper and lower surfaces of the battery cell stack 120 or have a size smaller than this.
  • the exterior member 150 may press the battery cell stack 120 in a predetermined direction and surround the battery cell stack 120 . That is, the exterior member 150 may press the battery cells 110 included in the battery cell stack 120 in a direction toward the inside of the battery module 100 . More specifically, the exterior member 150 presses the battery cell stack 120 in a first direction, and the first direction may be the width direction of the battery module 100 , which is the battery cell stack 120 . It may be the same as the stacking direction of the plurality of battery cells 110 . In addition, the exterior member 300 presses the upper and lower surfaces of the battery cell stack in a second direction, and the second direction may be perpendicular to the first direction, which is the same as the width direction of the plurality of battery cells 110 . can do.
  • the outer surface of the exterior member 150 may be exposed while the battery cell stack 120 is wrapped around the exterior member 150 . That is, when the battery module 100 is mounted on the pack frames 1200 and 1300 of the battery pack in a process to be described later, the exterior member 150 may contact the pack frames 1200 and 1300 .
  • the exterior member 150 may be made of an elastic material.
  • the elastic material may be made of at least one of a material such as polyethylene (PE, Polyethylene) and polytetrafluoroethylene (PTFE, Polytetrafluoroethylene).
  • the exterior member 150 may be formed by wrapping the outer surface of the battery cell stack by the film of the elastic material or the heat-shrinkable tube.
  • the front and rear surfaces of the heat-shrinkable tube may be open.
  • the present invention is not limited thereto, and any material having elasticity capable of sufficiently pressing the battery cells 110 included in the battery cell stack 120 while effectively absorbing external shocks may be applied without limitation.
  • the exterior member 150 may prevent swelling of the battery cell and improve dimensional stability of the battery module.
  • the exterior member 150 since the exterior member 150 has elasticity by itself, there is an advantage that deformation according to a change in the volume of the battery cell 110 can be minimized.
  • the outer surface of the battery cell stack 120 may be attached to the inner surface of the exterior member 150, respectively.
  • the elastic material included in the exterior member 150 may have an adhesive force by itself.
  • the exterior member 150 and the battery cell stack 120 may be fixed through a frictional force between the inner surface of the exterior member 150 and the outer surface of the battery cell stack 120 .
  • each of the adhesive layers may be formed of a tape or coated with an adhesive binder. More preferably, the adhesive layer is coated with an adhesive binder or made of a double-sided tape, so that the battery cell stack 120 and the exterior member 150 can be easily fixed.
  • the present invention is not limited thereto, and any material having adhesive performance capable of fixing the battery cells 110 or between the battery cells 110 and the exterior member 150 to each other may be applied without limitation. Accordingly, the battery cell stack 120 may be stably accommodated in the exterior member 150 .
  • FIG. 3 is an exploded perspective view of a battery cell stack included in the battery module of FIG. 1 .
  • FIG. 4 is a view showing a cross-section taken along the cutting line A-A of FIG. 1 .
  • the battery cell stack 120 includes a plurality of battery cells 110 stacked in a first direction.
  • the battery cell 110 is preferably a pouch-type battery cell.
  • the battery cell 110 may be manufactured by accommodating the electrode assembly in a pouch case of a laminate sheet including a resin layer and a metal layer, and then thermally sealing a sealing part of the pouch case.
  • the battery cells 110 may be configured in plurality, and the plurality of battery cells 110 form a stacked battery cell stack 120 to be electrically connected to each other.
  • the battery cell stack 120 includes at least one cooling fin 117 positioned between adjacent battery cells among the plurality of battery cells 110 , and a lower surface of the cooling fin 117 is thermally conductive. It may be in contact with the resin layer 140 .
  • the heat generated in the battery cell 110 is directly transferred to the cooling fin 117 , and the heat of the cooling fin 117 and/or the battery cell 110 is immediately transferred to the thermal conductive resin layer 140 .
  • the battery module 100 in this embodiment can more efficiently transfer the heat generated in the battery cell 110 to the outside quickly.
  • a cooling deviation according to the position of the battery cell 110 may be reduced.
  • the cooling fins 117 are located between the battery cells 110 adjacent to each other among the plurality of battery cells 110 , and the swelling phenomenon of the battery cells 110 is generated in the thickness direction of the battery cells 110 . , and the dimensional stability of the battery module 100 can be improved.
  • the exterior member 150 is attached to the battery cell stack 120 in the second direction, the battery cell 110 . is pressed in the width direction of
  • the cooling fin 117 can support the pressure applied to the battery cell stack 120 in the second direction, and can minimize damage to the battery cell 110 by the exterior member 150 . There is this. That is, damage occurring in the width direction of the battery cells 110 included in the battery module 100 according to the present embodiment can be prevented.
  • cooling fins 117 and the neighboring battery cells 110 may be fixed to each other by the surface pressure applied from the exterior member 150 . Accordingly, the cooling fins 117 and the adjacent battery cells 110 may be stably fixed to each other without a separate adhesive layer.
  • a first adhesive layer may be further included between the cooling fins 117 and the battery cells 110 adjacent to each other. Accordingly, both side surfaces of the cooling fins 117 may be more stably fixed between at least two battery cells 110 adjacent to each other.
  • the first adhesive layer may be formed by an adhesive member such as a double-sided tape or an adhesive.
  • the adhesive member includes a thermally conductive material.
  • the first adhesive layer is not limited to the above, and is not limited as long as it is a material having adhesive performance capable of fixing the battery cells 110 and the cooling fins 117 to each other.
  • the battery cell stack 120 is rigid in the first direction (stacking direction). and energy density may be improved.
  • the compression pad 115 may be positioned between the exterior member 150 and the outer surface of the battery cell stack 120 .
  • the compression pad 115 may extend along the outer surface of the battery cell stack 120 .
  • the compression pad 115 may have the same or smaller size than the outer surface of the battery cell stack 120 .
  • the compression pad 115 may be a pad made of a polyurethane material.
  • the present invention is not limited thereto, and any material capable of absorbing a change in volume during expansion of the battery cell 110 may be applied.
  • the compression pad 115 easily absorbs the expansion generated in the battery cells 110 included in the battery cell stack 120 , so that the exterior member 150 protects the outer surface of the battery cell stack 120 . It can help pressurize.
  • the compression pad 115 and the battery cell 110 may be fixed to each other by a surface pressure applied from the exterior member 150 . Accordingly, the compression pad 115 and the battery cell 110 may be stably fixed to each other without a separate adhesive layer.
  • a second adhesive layer may be positioned between the compression pad 115 and the battery cell 110 .
  • the second adhesive layer may be formed by an adhesive member such as a double-sided tape or an adhesive.
  • the second adhesive layer is not limited to the above, and is not limited as long as it is a material having adhesive performance capable of fixing the battery cell 110 and the compression pad 115 to each other.
  • the battery cell stack 120 is rigid in the first direction (stacking direction). and energy density may be further improved.
  • FIG. 5 is an enlarged view showing a lower portion of the cross section of FIG. 4 .
  • the heat generated in the battery cell 110 is directly transferred to the thermal conductive resin layer 140 in contact with the lower portion of the battery cell 110 .
  • the heat transferred to the thermal conductive resin layer 140 may be directly transferred to the heat sink 160 in contact with the lower portion of the thermal conductive resin layer 140 , and the heat transferred to the heat sink 160 is transferred to the outside.
  • the heat transfer path is reduced compared to the conventional one, and the exterior member 150 is not included in the heat transfer path, so that the cooling performance may be improved.
  • the cooling fins 117 are located in the battery cells 110 , so that the heat generated in the battery cells 110 is in contact with one surface of the battery cells 110 . It is transferred to 170 , and may be transferred to the thermally conductive resin layer 140 . Accordingly, the battery module 100 according to the present embodiment can more efficiently transfer the heat generated in the battery cell 110 to the outside quickly, and the cooling performance can be further improved.
  • FIG. 6 is a perspective view of a battery pack according to an embodiment of the present invention.
  • 7 is an exploded perspective view of the battery pack of FIG. 6 ;
  • the battery pack 1000 according to another embodiment of the present invention includes the battery module 100 described above. Meanwhile, one or more of the battery modules 100 may be packaged in the pack frames 1200 and 1300 to form the battery pack 1000 .
  • the battery module 100 is mounted on the pack frames 1200 and 1300 , and the outer surface of the exterior member 150 and the pack frames 1200 and 1300 are in contact with each other.
  • the pack frames 1200 and 1300 include a lower pack frame 1200 in which at least two battery modules 100 are mounted and an upper pack frame 1200 covering the upper portions of the at least two battery modules 100 .
  • the battery pack 1000 since the battery pack 1000 according to the present embodiment does not include a separate thermally conductive resin layer and a heat sink, the weight of the battery pack 1000 may be reduced.
  • the battery module 100 included in the battery pack 1000 can be individually cooled, there is an advantage that the temperature distribution can be centralized.
  • FIG. 8 is a top view of area A in a state in which the upper pack frame of FIG. 6 is removed.
  • the battery pack 1000 may include a plurality of first beams 1310 extending from one side of the lower pack frame 1300 toward the other side.
  • the battery module 100 mounted on the lower pack frame 1300 may be mounted between the first beams 1310 adjacent to each other among the plurality of first beams 1310 .
  • the battery module 100 may have both sides of the battery module 100 in contact with the first beam 1310 in the lower pack frame 1300 .
  • the battery pack 1000 prevents the swelling of the battery cells occurring in the width direction of the battery module 100 by the first beam 1310 on both sides of the battery module 100 and , it is possible to improve the dimensional stability of the battery module.
  • the lower pack frame 1300 further includes a plurality of second beams 1350 perpendicular to the first beam 1310 , and the plurality of second beams 1350 includes one surface of the battery module 100 and the lower pack.
  • Each of the side surfaces of the frame 1300 may be located.
  • the second beam 1350 may be less than or equal to the distance d between one surface of the battery module 100 and the side surface of the lower pack frame 1300 .
  • one surface of the battery module 100 adjacent to the second beam 1350 may be a surface opposite to the surface from which the inlet and the outlet of the heat sink 160 protrude.
  • one surface of the second beam 1350 may be in contact with an electrode lead protruding from one surface of the battery module 100 .
  • the second beam 1350 may be made of an insulating material, but may be made of a plastic material having a predetermined rigidity.
  • the second beam 1350 may be made of the same material as the first beam 1310 , but an insulating coating layer may be formed on one surface of the second beam 1350 .
  • the insulating coating layer may be formed by powder coating an insulating material on at least one surface of the second beam 1350 .
  • the coating method of the insulating coating layer is not limited thereto, and various methods may be applied.
  • the insulating material may be made of a material such as rubber or urethane foam. However, the insulating material is not limited thereto, and any material having a predetermined insulating property may be applied.
  • external insulation of the electrode leads of the battery module 100 may be performed through the second beam 1350 . That is, in the battery module 100 , the electrode lead may be sufficiently insulated from the outside by the second beam 1350 without a separate end plate coupled to the front and rear surfaces of the battery cell stack.
  • the battery module 100 may omit the end plate, thereby preventing damage occurring between the end plate and the electrode lead when assembling the exterior member 150 . That is, the battery pack 1000 according to the present embodiment can prevent damage occurring in the longitudinal direction of the battery cells 110 included in the battery module 100 .
  • FIG. 9 is a perspective view of a battery module according to another embodiment of the present invention. 10 is an exploded perspective view of the battery module of FIG. 9 . 11 is a view showing a cross-section taken along the cutting line B-B of FIG. 9 .
  • the battery module 200 includes a battery cell stack 220 in which a plurality of battery cells 210 stacked in a first direction are stacked. ; a heat sink 260 positioned on the upper and lower portions of the battery cell stack 220 , respectively; a thermally conductive resin layer 240 positioned between the battery cell stack 220 and the heat sink 260 ; and an exterior member 250 surrounding the outer surface of the battery cell stack 220 .
  • the battery module 200 includes a sensing member (not shown) that covers the front and rear surfaces of the battery cell stack 220 .
  • each component of the battery module 200 may be described in the same manner as the battery module 100 described above as in FIGS. 1 to 8 , and only the heat sink 260 and the thermally conductive resin layer 240 are additionally I would like to explain
  • the heat sink 260 may include a first heat sink 261 and a second heat sink 265 .
  • the first heat sink 261 may be positioned above the battery cell stack 220
  • the second heat sink 265 may be positioned under the battery cell stack 220 .
  • the heat sink 260 is located not only on the lower portion of the battery cell stack 220 but also on the upper portion of the battery cell stack 220 ,
  • the cooling performance may be further improved, and the temperature deviation between the battery modules 200 may also be further reduced.
  • the thermally conductive resin layer 240 may include a first thermally conductive resin layer 241 and a second thermally conductive resin layer 245 .
  • the first thermally conductive resin layer 241 may be positioned between the first heat sink 261 and the upper part of the battery cell stack 120
  • the second thermally conductive resin layer 245 is the second heat
  • the sink 265 may be located under the battery cell stack 120 .
  • the heat generated in the battery cell stack 220 is transferred to the first thermally conductive resin layer 241 and the first heat sink 261 to be cooled, It may be transferred to the second heat conductive resin layer 245 and the second heat sink 265 to be cooled.
  • the heat generated in the battery cell stack 220 may be cooled upward by the first thermally conductive resin layer 241 and the first heat sink 261 , and the second thermally conductive resin layer 245 . ) and the second heat sink 265 may be cooled in a downward direction.
  • the heat generated in the battery cell 110 is cooled in the upper and lower directions of the battery cell stack 120 , the cooling performance of the battery module 100 is further improved, and the battery cell 110 . ) can also be further reduced.
  • the lifespan of the battery module 100 may be further improved.
  • FIG. 12 is an exploded perspective view of the battery pack in which the battery module of FIG. 9 is mounted;
  • the battery pack 2000 includes the battery module 200 described above, and the battery module 200 includes one or more pack frames 2200 and 2300 . ) may be packaged to form the battery pack 2000 .
  • other parts other than the mounting of the battery module 200 may be described in the same manner as the battery pack 1000 described above with reference to FIGS. 6 to 8 .
  • FIG. 13 is a perspective view of a battery module according to a comparative example.
  • 14 is an exploded perspective view of a battery pack in which the battery module of FIG. 13 is mounted;
  • 15 is a perspective view illustrating a state in which the components of the battery pack of FIG. 14 are assembled;
  • the battery module 10 includes a battery cell stack 12 in which a plurality of battery cells are stacked in one direction, and an exterior member for accommodating the battery cell stack 12 . 15).
  • the front and rear surfaces of the exterior member 15 are open, and the front and rear surfaces of the battery cell stack 12 accommodated in the exterior member 15 are open.
  • the battery module 10 is mounted on the pack frame member 21 .
  • the pack frame member 21 includes an upper pack frame 22 and a lower pack frame 23 having an open upper surface, and a thermally conductive resin layer 24 and a heat sink 26 on the lower pack frame 23 . ) is attached.
  • the battery module 10 is mounted on the thermally conductive resin layer 24 .
  • FIG. 16 is a view showing a part of a cross-section taken along the cutting line A-A of FIG. 15 .
  • the exterior member 15 is positioned between the battery cell stack 12 and the thermally conductive resin layer 24 . That is, the battery module 10 has a structure that indirectly cools the lower portion of the battery cell stack 12 through the thermal conductive resin layer 24 and the heat sink 26, and the heat generated from the battery cell is transferred to the exterior member ( 15) to the thermal conductive resin layer 14 and the heat sink 26.
  • heat transfer is inhibited due to an air layer formed between the exterior member 15 and the battery cell stack 12 or between the exterior member 15 and the thermally conductive resin layer 24 .
  • the battery modules 100 and 200 when the heat generated in the battery cells 110 and 210 is generated by the battery cell stacks 120 and 220 , the lower surface Alternatively, while being transferred to the thermal conductive resin layers 140 and 240 in direct contact with the upper surface, it is cooled by the heat sinks 160 and 260, so that the cooling performance of the battery modules 100 and 200 is improved, and the battery cells 110 and 210 ) can also be reduced. In addition, the lifespan of the battery modules 100 and 200 may be further improved.
  • the above-described battery module and battery pack including the same may be applied to various devices.
  • a device may be applied to transportation means such as an electric bicycle, an electric vehicle, and a hybrid vehicle, but the present invention is not limited thereto and is applicable to various devices that can use a battery module and a battery pack including the same, and this belong to the scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명의 일 실시예에 따른 전지 모듈은, 제1 방향을 따라 적층된 복수의 전지셀을 포함하는 전지셀 적층체; 상기 전지셀 적층체의 하부에 위치하는 제1 히트 싱크; 상기 전지셀 적층체와 상기 제1 히트 싱크 사이에 위치하는 제1 열전도성 수지층; 및 상기 전지셀 적층체의 외면을 감싸는 외장 부재를 포함하고, 상기 전지셀 적층체는 상기 복수의 전지셀 중 서로 이웃하는 전지셀 사이에 위치하는 적어도 하나의 냉각핀을 포함하고, 상기 외장 부재와 상기 전지셀 적층체의 하면 사이에 상기 제1 열전도성 수지층 및 상기 제1 히트 싱크가 위치한다.

Description

전지 모듈 및 이를 포함하는 전지 팩
관련 출원(들)과의 상호 인용
본 출원은 2021년 01월 11일자 한국 특허 출원 제10-2021-0003181호 및 2021년 05월 24일자 한국 특허 출원 제10-2021-0066459호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지 모듈 및 이를 포함하는 전지 팩에 관한 것으로, 보다 구체적으로는 전지셀의 냉각 성능을 향상시키고, 전지셀 간의 냉각 편차를 감소시키는 전지 모듈 및 이를 포함하는 전지 팩에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 특히, 이차전지는 휴대폰, 디지털 카메라, 노트북, 웨어러블 디바이스 등의 모바일 기기뿐만 아니라, 전기 자전거, 전기 자동차, 하이브리드 전기 자동차 등의 동력 장치에 대한 에너지원으로도 많은 관심을 가지고 있다.
소형 모바일 기기들에는 디바이스 1대당 하나 또는 두서너 개의 전지셀들이 사용됨에 반해, 자동차 등과 같이 중대형 디바이스들에는 고출력 대용량이 필요하다. 따라서, 다수의 전지셀을 전기적으로 연결한 중대형 전지 모듈이 사용된다.
중대형 전지 모듈은 가능하면 작은 크기와 중량으로 제조되는 것일 바람직하므로, 높은 집적도로 적층될 수 있고 용량 대비 중량이 작은 각형 전지, 파우치형 전지 등이 중대형 전지 모듈의 전지셀로서 주로 사용되고 있다. 한편, 전지 모듈은, 전지셀 적층체를 외부 충격, 열 또는 진동으로부터 보호하기 위해, 전면과 후면이 개방되어 전지셀 적층체를 내부 공간에 수납하는 모듈 프레임을 포함할 수 있다.
전지셀의 온도는 배터리의 출력을 제한하는 요인 중 하나인 점을 고려할 때, 전지셀 내에서 발생되는 국부적인 온도 상승은 배터리의 출력을 조기에 제한할 가능성이 높아, 이를 개선할 필요성이 있다. 이와 더불어, 최근에 들어 전지 모듈이 대형화됨에 따라, 모듈 내 적층되는 전지셀의 개수가 증가되어, 전지셀 간의 냉각 편차가 더욱 심화되고 있다.
이에 따라, 전지셀 적층체 내에서 발생되는 열에 대한 냉각 성능을 향상시키고, 전지셀 간의 냉각 편차를 감소시키는 전지 모듈 및 이를 포함하는 전지 팩을 개발할 필요성이 있다.
본 발명의 해결하고자 하는 과제는, 전지셀의 냉각 성능을 향상시키고, 전지셀 간의 냉각 편차를 감소시키는 전지 모듈 및 이를 포함하는 전지 팩을 제공하는 것이다.
본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 전지 모듈은, 제1 방향을 따라 적층된 복수의 전지셀을 포함하는 전지셀 적층체; 상기 전지셀 적층체의 하부에 위치하는 제1 히트 싱크; 상기 전지셀 적층체와 상기 제1 히트 싱크 사이에 위치하는 제1 열전도성 수지층; 및 상기 전지셀 적층체의 외면을 감싸는 외장 부재를 포함하고, 상기 전지셀 적층체는 상기 복수의 전지셀 중 서로 이웃하는 전지셀 사이에 위치하는 적어도 하나의 냉각핀을 포함하고, 상기 외장 부재와 상기 전지셀 적층체의 하면 사이에 상기 제1 열전도성 수지층 및 상기 제1 히트 싱크가 위치한다.
상기 전지 모듈의 상기 외장 부재의 외면이 노출되어 있을 수 있다.
상기 외장 부재는 상기 전지셀 적층체의 상하면을 제2 방향으로 가압하고, 상기 제2 방향은 상기 제1 방향에 수직일 수 있다.
상기 제2 방향은 상기 복수의 전지셀의 폭 방향일 수 있다.
상기 외장 부재는 탄성 소재로 이루어질 수 있다.
상기 외장 부재는 상기 탄성 소재의 필름이 상기 전지셀 적층체의 외면을 랩핑하여 형성될 수 있다.
상기 외장 부재는 열수축 튜브로 이루어지고, 상기 열수축 튜브의 전후면이 개방되어 있을 수 있다.
상기 냉각핀의 하측면은 상기 제1 열전도성 수지층과 접할 수 있다.
상기 냉각핀과 상기 전지셀 사이에 제1 접착층이 위치할 수 있다.
상기 전지셀 적층체의 양측면에 위치하는 압축 패드를 더 포함하고, 상기 외장 부재와 상기 전지셀 적층체의 외측면 사이에 상기 압축 패드가 위치할 수 있다.
상기 압축 패드와 상기 전지셀 사이에 제2 접착층이 위치할 수 있다.
상기 제1 히트 싱크는 냉매가 유동하는 냉각 유로를 포함하고, 상기 냉각 유로와 상기 제1 열전도성 수지층이 서로 접할 수 있다.
상기 전지셀 적층체의 상부에 위치하는 제2 히트 싱크 및 상기 전지셀 적층체와 상기 제2 히트 싱크 사이에 위치하는 제2 열전도성 수지층을 더 포함하고, 상기 외장 부재와 상기 전지셀 적층체의 상면 사이에 상기 제2 열전도성 수지층 및 상기 제2 히트 싱크가 위치할 수 있다.
상기 냉각핀의 상측면은 상기 제2 열전도성 수지층과 접할 수 있다.
본 발명의 다른 일 실시예에 따른 전지 팩에서 상기에서 설명한 전지 모듈이 팩 프레임에 장착되고, 상기 외장 부재의 외면과 상기 팩 프레임이 접한다.
상기 팩 프레임은 적어도 두 개의 상기 전지 모듈이 장착되는 하부 팩프레임 및 상기 적어도 두 개의 전지 모듈의 상부를 덮는 상부 팩 프레임을 포함하고, 상기 하부 팩 프레임의 일측면에서 타측면을 향해 연장되는 복수의 제1 빔을 포함할 수 있다.
상기 전지 모듈은 상기 복수의 제1 빔 중 서로 이웃하는 제1 빔 사이에 장착될 수 있다.
상기 하부 팩 프레임은 상기 제1 빔에 수직인 복수의 제2 빔을 더 포함하고, 상기 복수의 제2 빔은 상기 전지 모듈의 일면과 상기 하부 팩 프레임의 측면 사이에 각각 위치할 수 있다.
상기 제2 빔의 일면은 상기 전지 모듈의 일면에 돌출되어 있는 전극 리드와 접할 수 있다.
상기 제2 빔의 일면에 절연 코팅층이 형성되어 있을 수 있다.
실시예들에 따르면, 본 발명은 전지셀 적층체의 하부에 열전도성 수지층 및 히트 싱크가 위치한 구조의 외면을 감싸는 외장 부재를 포함하여, 전지셀의 냉각 성능을 향상시키고, 전지셀 간의 냉각 편차를 감소시키는 전지 모듈 및 이를 포함하는 전지 팩을 제공할 수 있다.
본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 전지 모듈의 사시도이다.
도 2는 도 1의 전지 모듈의 분해 사시도이다.
도 3은 도 1의 전지 모듈에 포함된 전지셀 적층체의 분해 사시도이다.
도 4는 도 1의 절단선 A-A를 따라 자른 단면을 나타내는 도면이다.
도 5는 도 4의 단면의 하측부를 확대하여 나타내는 도면이다.
도 6은 도 1의 전지 모듈이 장착되어 있는 전지 팩의 사시도이다.
도 7은 도 6의 전지 팩의 분해 사시도이다.
도 8은 도 6의 상부 팩 프레임이 제거된 상태의 A 영역에 대한 상면도이다.
도 9는 본 발명의 다른 일 실시예에 따른 전지 모듈의 사시도이다.
도 10은 도 9의 전지 모듈의 분해 사시도이다.
도 11은 도 9의 절단선 B-B를 따라 자른 단면을 나타내는 도면이다.
도 12는 도 9의 전지 모듈이 장착되어 있는 전지 팩의 분해 사시도이다.
도 13은 비교예에 따른 전지 모듈의 사시도이다.
도 14는 도 13의 전지 모듈이 장착되는 전지 팩의 분해 사시도이다.
도 15는 도 14의 전지 팩의 구성 요소가 조립된 상태를 나타내는 사시도이다.
도 16은 도 15의 절단선 a-a를 따라 자른 단면의 일부를 나타내는 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
이하에서는, 본 발명의 실시예에 따른 전지 모듈에 대해 설명하고자 한다. 다만, 여기서 전지 모듈의 전후면 중 전면을 기준으로 설명될 것이나, 반드시 이에 한정되는 것은 아니고 후면인 경우에도 동일하거나 유사한 내용으로 설명될 수 있다.
도 1은 본 발명의 일 실시예에 따른 전지 모듈의 사시도이다. 도 2는 도 1의 전지 모듈의 분해 사시도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 전지 모듈(100)은, 제1 방향을 따라 적층된 복수의 전지셀(110)이 적층되어 있는 전지셀 적층체(120); 전지셀 적층체(120)의 하부에 위치하는 히트 싱크(160); 전지셀 적층체(120)와 히트 싱크(160) 사이에 위치하는 열전도성 수지층(140); 및 전지셀 적층체(120)의 외면을 감싸는 외장 부재(150)를 포함한다. 또한, 전지 모듈(100)은 전지셀 적층체(120)의 전후면을 커버하는 센싱 부재(미도시됨)를 포함한다.
또한, 열전도성 수지층(140) 및 히트 싱크(160)는 외장 부재(150)와 전지셀 적층체(120)의 하면 사이에 위치한다. 여기서, 전지셀 적층체(120)의 하면은 열전도성 수지층(140)과 직접 접하면서, 열전도성 수지층(140)은 히트 싱크(160)와 접할 수 있다. 즉, 전지셀 적층체(120)에서 발생된 열은 열전도성 수지층(140)으로 직접 전달될 수 있고, 전달된 열은 히트 싱크(160)로 전달되어 냉각될 수 있다.
이에 따라, 전지셀(110)에서 발생되는 열은 전지셀 적층체(120) 하면과 직접 접하는 열전도성 수지층(140)에 전달되면서, 히트 싱크(160)에 의해 냉각되어, 전지 모듈(100)의 냉각 성능이 향상되고, 전지셀(110) 간의 냉각편차 또한 감소될 수 있다. 또한, 전지 모듈(100)의 수명도 더욱 개선될 수 있다.
히트 싱크(160)는 냉매가 유동하는 냉각 유로를 포함하고, 냉각 유로는 히트 싱크(160)의 일측에 형성되어 있는 아웃렛, 인렛, 및 상기 아웃렛과 상기 인렛을 연결하고 냉매가 유동하는 경로인 함몰부를 포함할 수 있다. 상기 아웃렛은 상기 냉각 유로에 포함된 냉매가 외부로 배출되도록 하고, 상기 인렛은 상기 냉각 유로 내에 냉매를 공급할 수 있다.
이에 따라, 본 실시예에 따른 전지 모듈(100)은 히트 싱크(160)를 포함하여, 히트 싱크(160)의 무게가 절감될 수 있고, 전지 모듈(100) 간의 온도 편차도 감소될 수 있다. 또한, 전지 모듈(100)의 구조적 강성이 높아지고, 후술될 팩 프레임(1200, 1300) 내에 장착되기 전 전지 모듈(100)의 핸들링 기능이 향상될 수 있다.
일 예로, 열전도성 수지층(140)은 전지셀 적층체(120)의 하면 또는 히트 싱크(160)의 상면에 열전도성 수지가 도포되어 형성될 수 있다. 즉, 미리 도포되어 있는 상기 열전도성 수지가 경화됨에 따라 열전도성 수지층(140)이 형성될 수 있다. 이에 따라, 열전도성 수지가 경화됨에 따라, 전지셀 적층체(120)의 하면과 히트 싱크(160)가 서로 안정적으로 고정될 수 있다.
일 예로, 열전도성 수지층(140)은 열전도성 물질을 포함하는 열전달 부재로 이루어지고, 열전도성 수지층(140)은 히트 싱크(160)의 상부 커버로 구성될 수 있다. 이에 따라, 히트 싱크(160)는 냉매가 유동하는 상기 냉각 유로와 열전도성 수지층(140)이 서로 직접 접할 수 있다.
이에 따라, 전지셀(110)에서 발생되는 열은 열전도성 수지층(140) 및 히트 싱크(160)에 의해 직접적으로 냉각되어, 전지 모듈(100)의 냉각 성능이 더욱 향상되고, 전지셀(110) 간의 냉각편차도 더욱 감소될 수 있다.
도 5 및 도 6을 참조하면, 외장 부재(150)는 열전도성 수지층(140) 및 히트 싱크(160)와 함께 전지셀 적층체(120)의 외면을 감쌀 수 있다. 여기서, 외장 부재(150)는 양측면 및 상하면으로 이루어지는 부재로서, 전후면이 개방되어 있을 수 있다. 이에 따라, 전지셀 적층체(120)는 외장 부재(150)에 의해 양측면 및 상하면이 감싸지고, 전후면이 개방되어 있을 수 있다.
또한, 외장 부재(150)의 양측면 및 상하면은 각각 전지셀 적층체의 외면의 크기와 대응되는 크기를 가질 수 있다. 일 예로, 외장 부재(150)의 양측면은 전지셀 적층체(120)의 측면과 동일한 크기를 가지거나 이보다 작은 크기를 가질 수 있다. 또한, 외장 부재(150)의 상하면은 전지셀 적층체(120)의 상하면과 동일한 크기를 가지거나 이보다 작은 크기를 가질 수 있다.
또한, 외장 부재(150)는 전지셀 적층체(120)를 일정한 방향으로 가압하며, 전지셀 적층체(120)를 감쌀 수 있다. 즉, 외장 부재(150)는 전지셀 적층체(120)에 포함된 전지셀(110)을 전지 모듈(100) 내부를 향하는 방향으로 가압할 수 있다. 보다 구체적으로, 외장 부재(150)는 전지셀 적층체(120)를 제1 방향으로 가압하되, 상기 제1 방향은 전지 모듈(100)의 폭 방향일 수 있고, 이는 전지셀 적층체(120)에서 복수의 전지셀(110)의 적층 방향과 동일할 수 있다. 또한, 외장 부재(300)는 전지셀 적층체의 상하면을 제2 방향으로 가압하고, 상기 제2 방향은 상기 제1 방향에 수직일 수 있고, 이는 복수의 전지셀(110)의 폭 방향과 동일할 수 있다.
이에 따라, 전지셀의 스웰링 현상을 방지하고, 전지 모듈의 치수 안정성을 향상시킬 수 있다. 또한, 전지셀 적층체(120)가 외장 부재(150)에 감싸지는 공정을 통해, 전지셀 적층체(120)가 동시에 가압되어, 별도로 전지셀 적층체(120)를 가압하는 공정이 필요하지 않아, 공정 및 생산 라인이 간이해질 수 있다.
또한, 외장 부재(150)는 전지셀 적층체(120)를 감싼 상태에서, 외장 부재(150)의 외면이 노출되어 있을 수 있다. 즉, 후술될 공정에서 전지 모듈(100)이 전지 팩의 팩 프레임(1200, 1300)에 장착되는 경우, 외장 부재(150)가 팩 프레임(1200, 1300)과 접할 수 있다.
일 예로, 외장 부재(150)는 탄성 소재로 이루어질 수 있다. 상기 탄성 소재는 폴리에틸렌(PE, Polyethylene), 폴리테트라플루오로에틸렌(PTFE, Polytetrafluoroethylene)와 같은 물질 중 적어도 어느 하나로 이루어질 수 있다. 여기서, 외장 부재(150)는 상기 탄성 소재의 필름 혹은 열수축 튜브가 상기 전지셀 적층체의 외면을 랩핑(wrapping)하여 형성될 수 있다. 여기서, 상기 열수축 튜브는 전후면이 개방되어 있을 수 있다. 다만, 이에 한정되는 것은 아니며, 외부 충격을 효과적으로 흡수하면서도, 전지셀 적층체(120)에 포함된 전지셀(110)을 충분히 가압할 수 있는 탄성을 가지는 물질이라면 제한되지 않고 적용될 수 있다.
이에 따라, 본 실시예에서, 외장 부재(150)는 전지셀의 스웰링 현상을 방지하고, 전지 모듈의 치수 안정성을 향상시킬 수 있다. 이와 더불어, 외장 부재(150)는 자체적으로 탄성을 가지고 있어, 전지셀(110)의 부피 변화에 따라 변형되는 것이 최소화될 수 있는 이점이 있다.
또한, 외장 부재(150)의 내면에 전지셀 적층체(120)의 외면이 각각 부착되어 있을 수 있다. 여기서, 외장 부재(150)에 포함된 탄성 소재가 자체적으로 접착력을 가질 수 있다. 또한, 외장 부재(150)와 전지셀 적층체(120)는 외장 부재(150)의 내면과 전지셀 적층체(120)의 외면 사이의 마찰력을 통해 고정되어 있을 수 있다.
또한, 외장 부재(150)와 전지셀 적층체(120) 사이에 별도의 접착층이 형성되어 있을 수 있다. 일 예로, 상기 접착층은 각각 테이프로 이루어지거나, 접착성 바인더가 코팅되어 형성될 수 있다. 보다 바람직하게는, 상기 접착층은 접착성 바인더로 코팅되거나 양면 테이프로 이루어져, 전지셀 적층체(120)와 외장 부재(150)가 용이하게 고정될 수 있다. 다만, 이에 한정되는 것은 아니며, 전지셀(110) 간 혹은 전지셀(110)과 외장 부재(150) 사이를 서로 고정시킬 수 있는 접착 성능을 가진 물질이라면 제한되지 않고 적용될 수 있다. 이에 따라, 전지셀 적층체(120)는 외장 부재(150) 내에 안정적으로 수용되어 있을 수 있다.
도 3은 도 1의 전지 모듈에 포함된 전지셀 적층체의 분해 사시도이다.
도 4는 도 1의 절단선 A-A를 따라 자른 단면을 나타내는 도면이다.
도 3 및 도 4를 참조하면, 전지셀 적층체(120)는 제1 방향을 따라 적층된 복수의 전지셀(110)이 적층되어 있다. 여기서, 전지셀(110)은 파우치형 전지셀인 것이 바람직하다. 전지셀(110)은 전극 조립체를 수지층과 금속층을 포함하는 라미네이트 시트의 파우치 케이스에 수납한 뒤 상기 파우치 케이스의 실링부를 열융착하여 제조될 수 있다. 이러한 전지셀(110)은 복수개로 구성될 수 있고, 복수의 전지셀(110)은 상호 전기적으로 연결될 수 있도록 적층된 전지셀 적층체(120)를 형성한다.
또한, 전지셀 적층체(120)는 복수의 전지셀(110) 중 서로 이웃하는 전지셀 사이에 위치하는 적어도 하나의 냉각핀(117)을 포함하고, 냉각핀(117)의 하측면은 열전도성 수지층(140)과 접할 수 있다.
여기서, 전지셀(110)에서 발생된 열은 냉각핀(117)으로 바로 전달되고, 열전도성 수지층(140)으로 냉각핀(117) 및/또는 전지셀(110)의 열이 즉각적으로 전달될 수 있다. 이에 따라, 본 실시예에서의 전지 모듈(100)은 보다 효율적으로 전지셀(110)에서 발생된 열을 빠르게 외부로 전달할 수 있다. 또한, 전지셀(110)의 위치에 따른 냉각 편차가 감소될 수 있다.
이와 더불어, 냉각핀(117)은 복수의 전지셀(110) 중 서로 이웃하는 전지셀(110) 사이에 위치하여, 전지셀(110)의 두께 방향에서 발생되는 전지셀(110)의 스웰링 현상을 방지하고, 전지 모듈(100)의 치수 안정성을 향상시킬 수 있다.
또한, 외장 부재(150)로 전지셀 적층체(120)의 외면을 랩핑(wrapping)하는 과정에서, 외장 부재(150)는 전지셀 적층체(120)에 상기 제2 방향인 전지셀(110)의 폭 방향으로 가압하게 된다. 여기서, 냉각핀(117)은 전지셀 적층체(120)에 상기 제2 방향으로 가해지는 압력을 지지할 수 있고, 외장 부재(150)에 의한 전지셀(110)의 손상을 최소화할 수 있는 이점이 있다. 즉, 본 실시예에 따른 전지 모듈(100)에 포함된 전지셀(110)의 폭 방향에서 발생되는 손상을 방지할 수 있다.
또한, 냉각핀(117)과 서로 이웃하는 전지셀(110)은 외장 부재(150)으로부터 가해지는 면압에 의해 서로 고정될 수 있다. 이에 따라, 냉각핀(117)과 서로 이웃하는 전지셀(110)은 별도의 접착층 없이도 서로 안정적으로 고정되어 있을 수 있다.
또한, 냉각핀(117)과 서로 이웃하는 전지셀(110) 사이에 제1 접착층이 더 포함될 수 있다. 이에 따라, 냉각핀(117)의 양측면은 서로 이웃하는 적어도 두 개의 전지셀(110) 사이에 더욱 안정적으로 고정될 수 있다.
일 예로, 상기 제1 접착층은 양면 테이프 또는 접착제와 같은 접착 부재에 의해 형성될 수 있다. 여기서, 상기 접착 부재는 열전도성 물질을 포함하는 것이 보다 바람직하다. 다만, 상기 제1 접착층은 상술한 내용에 한정되지 아니하고, 전지셀(110) 및 냉각핀(117)을 서로 고정시킬 수 있는 접착 성능을 가진 물질이라면 제한되지 않는다.
이에 따라, 본 실시예의 전지 모듈(100)은 전지셀(110)과 냉각핀(117) 사이가 상호 접착될 수 있어, 전지셀 적층체(120)의 상기 제1 방향(적층 방향)으로의 강성 및 에너지 밀도가 향상될 수 있다.
도 2 내지 도 4를 참조하면, 본 실시예예 따른 전지 모듈(100)은, 외장 부재(150)와 전지셀 적층체(120)의 외측면 사이에 압축 패드(115)가 위치할 수 있다. 여기서, 압축 패드(115)는 전지셀 적층체(120)의 외측면을 따라 연장되어 있을 수 있다. 또한, 압축 패드(115)는 전지셀 적층체(120)의 외측면에 비해 동일하거나 작은 크기를 가질 수 있다.
일 예로, 압축 패드(115)는 폴리우레탄 소재의 패드일 수 있다. 다만, 이에 한정되는 것은 아니며, 전지셀(110)의 팽창 시 부피 변화를 흡수할 수 있을 정도의 소재라면 적용 가능하다.
이에 따라, 압축 패드(115)는 전지셀 적층체(120)에 포함된 전지셀(110)에서 발생되는 팽창을 용이하게 흡수하여, 외장 부재(150)가 전지셀 적층체(120)의 외면을 가압하는 것을 보조할 수 있다.
또한, 압축 패드(115)와 전지셀(110)은 외장 부재(150)으로부터 가해지는 면압에 의해 서로 고정될 수 있다. 이에 따라, 압축 패드(115)와 전지셀(110)은 별도의 접착층 없이도 서로 안정적으로 고정되어 있을 수 있다.
또한, 압축 패드(115)와 전지셀(110) 사이에 제2 접착층이 위치할 수 있다. 일 예로, 상기 제2 접착층은 양면 테이프 또는 접착제와 같은 접착 부재에 의해 형성될 수 있다. 다만, 상기 제2 접착층은 상술한 내용에 한정되지 아니하고, 전지셀(110) 및 압축 패드(115)를 서로 고정시킬 수 있는 접착 성능을 가진 물질이라면 제한되지 않는다.
이에 따라, 본 실시예의 전지 모듈(100)은 전지셀(110)과 압축 패드(115) 사이가 상호 접착될 수 있어, 전지셀 적층체(120)의 상기 제1 방향(적층 방향)으로의 강성 및 에너지 밀도가 더욱 향상될 수 있다.
도 5는 도 4의 단면의 하측부를 확대하여 나타내는 도면이다.
도 4 및 도 5를 참조하면, 본 실시예에 따른 전지 모듈(100)은 전지셀(110)에서 발생된 열이 전지셀(110)의 하부와 접하는 열전도성 수지층(140)에 직접 전달될 수 있다. 또한, 열전도성 수지층(140)에 전달된 열은 열전도성 수지층(140)의 하부와 접하는 히트 싱크(160)에 직접 전달될 수 있고, 히트 싱크(160)에 전달된 열은 외부로 전달될 수 있다. 이에 따라, 본 실시예에 따른 전지 모듈(100)은 종래에 비해 열전달 경로가 축소되고, 외장 부재(150)가 열전달 경로에 포함되지 않아 냉각 성능이 향상될 수 있다.
이와 더불어, 본 실시예에서, 전지 모듈(100)은 전지셀(110) 내에 냉각핀(117)이 위치하여, 전지셀(110)에서 발생된 열이 전지셀(110)의 일면과 접하는 냉각핀(170)으로 전달되되, 열전도성 수지층(140)으로 전달될 수 있다. 이에 따라, 본 실시예에 따른 전지 모듈(100)은 보다 효율적으로 전지셀(110)에서 발생된 열을 빠르게 외부로 전달할 수 있고, 냉각 성능이 보다 향상될 수 있다.
도 6은 본 발명의 일 실시예에 따른 전지 팩의 사시도이다. 도 7은 도 6의 전지 팩의 분해 사시도이다.
도 6 및 도 7을 참조하면, 본 발명의 다른 일 실시예에 따른 전지 팩(1000)은 상기에서 설명한 전지 모듈(100)을 포함한다. 한편, 전지 모듈(100)은 하나 또는 그 이상이 팩 프레임(1200, 1300) 내에 패키징되어, 전지 팩(1000)을 형성할 수 있다.
보다 구체적으로, 본 실시예의 전지 팩(1000)은 전지 모듈(100)이 팩 프레임(1200, 1300)에 장착되고, 외장 부재(150)의 외면과 팩 프레임(1200, 1300)이 접한다. 여기서, 팩 프레임(1200, 1300)은 적어도 두 개의 전지 모듈(100)이 장착되는 하부 팩 프레임(1200) 및 적어도 두 개의 전지 모듈(100)의 상부를 덮는 상부 팩 프레임(1200)을 포함한다.
이에 따라, 본 실시예의 전지 팩(1000)은 별도의 열전도성 수지층 및 히트 싱크가 포함되어 있지 않아, 전지 팩(1000)의 무게가 절감될 수 있다. 또한, 전지 팩(1000)에 포함된 전지 모듈(100)이 개별적으로 냉각 시스템이 수행될 수 있어, 온도 분산이 집약화될 수 있는 이점이 있다.
도 8는 도 6의 상부 팩 프레임이 제거된 상태의 A 영역에 대한 상면도이다.
도 8을 참조하면, 본 발명의 다른 실시예에 따른 전지 팩(1000)은 하부 팩 프레임(1300)의 일측면에서 타측면을 향해 연장되는 복수의 제1 빔(1310)을 포함할 수 있다. 또한, 하부 팩 프레임(1300)에 장착되는 전지 모듈(100)은 복수의 제1 빔(1310) 중 서로 이웃하는 제1 빔(1310) 사이에 장착될 수 있다. 이 때, 전지 모듈(100)은 하부 팩 프레임(1300)에서 전지 모듈(100)의 양측면이 제1 빔(1310)과 접할 수 있다.
이에 따라, 본 실시예에 따른 전지 팩(1000)은 전지 모듈(100)의 양측면을 제1 빔(1310)에 의해 전지 모듈(100)의 폭 방향으로 발생되는 전지셀의 스웰링 현상을 방지하고, 전지 모듈의 치수 안정성을 향상시킬 수 있다.
또한, 하부 팩 프레임(1300)은 제1 빔(1310)에 수직인 복수의 제2 빔(1350)을 더 포함하고, 복수의 제2 빔(1350)은 전지 모듈(100)의 일면과 하부 팩 프레임(1300)의 측면 사이에 각각 위치할 수 있다. 여기서, 제2 빔(1350)은 전지 모듈(100)의 일면과 하부 팩 프레임(1300)의 측면 사이의 거리(d)보다 작거나, 이와 동일할 수 있다. 여기서, 제2 빔(1350)과 인접한 전지 모듈(100)의 일면은 히트 싱크(160)의 상기 인렛 및 상기 아웃렛이 돌출되어 있는 면의 반대면일 수 있다.
또한, 제2 빔(1350)의 일면은 전지 모듈(100)의 일면에 돌출되어 있는 전극 리드와 접할 수 있다.
일 예로, 제2 빔(1350)은 절연성 재질로 이루어지되, 소정의 강성을 가지는 플라스틱 소재일 수 있다.
다른 예로, 제2 빔(1350)은 제1 빔(1310)과 동일한 소재이되, 제2 빔(1350)의 일면에 절연 코팅층이 형성되어 있을 수 있다. 여기서, 상기 절연 코팅층은 절연성 물질을 제2 빔(1350)의 적어도 일면에 분체 도장(Powder coating)하여 형성될 수 있다. 다만, 상기 절연 코팅층의 코팅 방식은 이에 한정되지 않고, 다양한 방식이 적용될 수 있다. 또한, 상기 절연성 물질은 고무나 우레탄 폼과 같은 물질로 이루어질 수 있다. 다만, 상기 절연성 물질은 이에 한정되지 않고, 소정의 절연성을 가지는 물질이라면 적용될 수 있다.
이에 따라, 본 실시예에 따른 전지 팩(1000)은 제2 빔(1350)을 통해 전지 모듈(100)의 전극 리드에 대한 외부 절연이 수행될 수 있다. 즉, 전지 모듈(100)은 전지셀 적층체의 전후면에 결합되는 별도의 엔드 플레이트 없이도, 제2 빔(1350)에 의해 상기 전극 리드가 충분히 외부로부터 절연될 수 있다.
이에 따라, 전지 모듈(100)은 엔드 플레이트를 생략할 수 있어, 외장 부재(150) 조립 시 엔드 플레이트와 전극 리드 간에 발생되는 손상을 방지할 수 있다. 즉, 본 실시예에 따른 전지 팩(1000)은 전지 모듈(100)에 포함된 전지셀(110)의 길이 방향에서 발생되는 손상을 방지할 수 있다.
이하에서는, 본 발명의 다른 일 실시예에 따른 전지 모듈 및 이를 포함하는 전지 팩에 대해 설명한다.
도 9는 본 발명의 다른 일 실시예에 따른 전지 모듈의 사시도이다. 도 10은 도 9의 전지 모듈의 분해 사시도이다. 도 11은 도 9의 절단선 B-B를 따라 자른 단면을 나타내는 도면이다.
도 9 내지 도 11을 참조하면, 본 발명의 다른 일 실시예에 따른 전지 모듈(200)은, 제1 방향을 따라 적층된 복수의 전지셀(210)이 적층되어 있는 전지셀 적층체(220); 전지셀 적층체(220)의 상부 및 하부에 각각 위치하는 히트 싱크(260); 전지셀 적층체(220)와 히트 싱크(260) 사이에 각각 위치하는 열전도성 수지층(240); 및 전지셀 적층체(220)의 외면을 감싸는 외장 부재(250)를 포함한다. 또한, 전지 모듈(200)은 전지셀 적층체(220)의 전후면을 커버하는 센싱 부재(미도시됨)를 포함한다.
여기서, 전지 모듈(200)의 각 구성 요소는 도 1 내지 도 8와 같이 상술한 전지 모듈(100)과 동일하게 설명될 수 있고, 히트 싱크(260) 및 열전도성 수지층(240)에 대해서만 추가적으로 설명하고자 한다.
본 실시예의 전지 모듈(200)에서, 히트 싱크(260)는 제1 히트 싱크(261) 및 제2 히트 싱크(265)를 포함할 수 있다. 여기서, 제1 히트 싱크(261)는 전지셀 적층체(220)의 상부에 위치할 수 있고, 제2 히트 싱크(265)는 전지셀 적층체(220)의 하부에 위치할 수 있다.
이에 따라, 본 실시예에 따른 전지 모듈(200)은 전지셀 적층체(220)의 하부 뿐 아니라 전지셀 적층체(220)의 상부에도 히트 싱크(260)가 위치하여, 전지 모듈(200)의 냉각 성능이 더욱 향상될 수 있고, 전지 모듈(200) 간의 온도 편차 또한 더욱 감소될 수 있다.
또한, 본 실시예의 전지 모듈(200)에서, 열전도성 수지층(240)은 제1 열전도성 수지층(241) 및 제2 열전도성 수지층(245)을 포함할 수 있다. 여기서, 제1 열전도성 수지층(241)은 제1 히트 싱크(261)와 전지셀 적층체(120)의 상부 사이에ㅐ 위치할 수 있고, 제2 열전도성 수지층(245)은 제2 히트 싱크(265)는 전지셀 적층체(120)의 하부에 위치할 수 있다.
즉, 본 실시예의 전지 모듈(200)에서, 전지셀 적층체(220)에서 발생된 열은 제1 열전도성 수지층(241) 및 제1 히트 싱크(261)로 전달되어 냉각될 수 있으면서, 제2 열전도성 수지층(245) 및 제2 히트 싱크(265)로 전달되어 냉각될 수 있다. 다르게 말하면, 전지셀 적층체(220)에서 발생된 열은 제1 열전도성 수지층(241) 및 제1 히트 싱크(261)에 의해 상부 방향으로 냉각될 수 있고, 제2 열전도성 수지층(245) 및 제2 히트 싱크(265)에 의해 하부 방향으로 냉각될 수 있다.
이에 따라, 본 실시예에 따르면, 전지셀(110)에서 발생되는 열은 전지셀 적층체(120)의 상하부 방향으로 냉각되어, 전지 모듈(100)의 냉각 성능이 더욱 향상되고, 전지셀(110) 간의 냉각편차 또한 더욱 감소될 수 있다. 또한, 전지 모듈(100)의 수명도 더욱 개선될 수 있다.
도 12는 도 9의 전지 모듈이 장착되어 있는 전지 팩의 분해 사시도이다.
도 12를 참조하면, 본 발명의 다른 일 실시예에 따른 전지 팩(2000)은 상기에서 설명한 전지 모듈(200)을 포함하고, 전지 모듈(200)은 하나 또는 그 이상이 팩 프레임(2200, 2300) 내에 패키징되어, 전지 팩(2000)을 형성할 수 있다. 다만, 본 실시예의 경우, 전지 모듈(200)이 장착되는 것 이외에 다른 부분은 도 6 내지 도 8과 같이 상술한 전지 팩(1000)과 동일하게 설명될 수 있다.
도 13은 비교예에 따른 전지 모듈의 사시도이다. 도 14는 도 13의 전지 모듈이 장착되는 전지 팩의 분해 사시도이다. 도 15는 도 14의 전지 팩의 구성 요소가 조립된 상태를 나타내는 사시도이다.
도 13을 참조하면, 비교예에 따른 전지 모듈(10)은 복수의 전지셀이 일방향으로 적층된 적층되어 있는 전지셀 적층체(12), 및 전지셀 적층체(12)를 수용하는 외장 부재(15)를 포함한다. 여기서, 외장 부재(15)는 전후면이 개방되어 있어, 외장 부재(15)에 수용된 전지셀 적층체(12)의 전후면이 개방되어 있다.
도 14 및 도 15를 참조하면, 전지 모듈(10)은 팩 프레임 부재(21)에 장착된다. 여기서, 팩 프레임 부재(21)는 상부 팩 프레임(22)과 상면이 개방되어 있는 하부 팩 프레임(23)을 포함하고, 하부 팩 프레임(23) 상에는 열전도성 수지층(24) 및 히트 싱크(26)가 부착되어 있다. 또한, 전지 모듈(10)은 열전도성 수지층(24) 상에 장착된다.
도 16은 도 15의 절단선 A-A를 따라 자른 단면의 일부를 나타내는 도면이다.
도 16을 참조하면, 종래의 전지 모듈(10)은 전지셀 적층체(12)와 열전도성 수지층(24) 사이에 외장 부재(15)가 위치하게 된다. 즉, 전지 모듈(10)은 열전도성 수지층(24) 및 히트 싱크(26)를 통해 전지셀 적층체(12)의 하부를 간접적으로 냉각해주는 구조로, 전지셀에서 발생된 열은 외장 부재(15)를 거쳐 열전도성 수지층(14), 그리고 히트 싱크(26)로 흐르는 구조이다. 여기서, 비교예에 따른 전지 모듈(10)은 외장 부재(15)와 전지셀 적층체(12) 사이 혹은 외장 부재(15)와 열전도성 수지층(24) 사이에 형성되는 공기층으로 인해 열전달이 저해되는 문제가 있다.
이와 달리, 도 1 내지 도 12를 참조하면, 본 발명의 일 실시예에 따른 전지 모듈(100, 200)은 전지셀(110, 210)에서 발생되는 열이 전지셀 적층체(120. 220) 하면 또는 상면과 직접 접하는 열전도성 수지층(140, 240)에 전달되면서, 히트 싱크(160, 260)에 의해 냉각되어, 전지 모듈(100, 200)의 냉각 성능이 향상되고, 전지셀(110, 210) 간의 냉각편차 또한 감소될 수 있다. 또한, 전지 모듈(100, 200)의 수명도 더욱 개선될 수 있다.
앞에서 설명한 전지 모듈 및 이를 포함하는 전지 팩은 다양한 디바이스에 적용될 수 있다. 이러한 디바이스에는, 전기 자전거, 전기 자동차, 하이브리드 자동차 등의 운송 수단에 적용될 수 있으나, 본 발명은 이에 제한되지 않고 전지 모듈 및 이를 포함하는 전지 팩을 사용할 수 있는 다양한 디바이스에 적용 가능하며, 이 또한 본 발명의 권리 범위에 속한다.
이상에서 본 발명의 바람직한 실시 예에 대하여 상세하게 설명하였으나, 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.
[부호의 설명]
100, 200: 전지 모듈
110, 210: 전지셀
115, 215: 압축 패드
117, 217: 냉각핀
120, 220: 전지셀 적층체
140, 240: 열전도성 수지층
160, 260: 히트 싱크
1000, 2000: 전지 팩
1200, 2200: 상부 팩 프레임
1300, 2300: 하부 팩 프레임
1310, 2310: 제1 빔
1350, 2350: 제2 빔

Claims (20)

  1. 제1 방향을 따라 적층된 복수의 전지셀을 포함하는 전지셀 적층체;
    상기 전지셀 적층체의 하부에 위치하는 제1 히트 싱크;
    상기 전지셀 적층체와 상기 제1 히트 싱크 사이에 위치하는 제1 열전도성 수지층; 및
    상기 전지셀 적층체의 외면을 감싸는 외장 부재를 포함하고,
    상기 전지셀 적층체는 상기 복수의 전지셀 중 서로 이웃하는 전지셀 사이에 위치하는 적어도 하나의 냉각핀을 포함하고,
    상기 외장 부재와 상기 전지셀 적층체의 하면 사이에 상기 제1 열전도성 수지층 및 상기 제1 히트 싱크가 위치하는 전지 모듈.
  2. 제1항에서,
    상기 전지 모듈의 상기 외장 부재의 외면이 노출되어 있는 전지 모듈.
  3. 제2항에서,
    상기 외장 부재는 상기 전지셀 적층체의 상하면을 제2 방향으로 가압하고,
    상기 제2 방향은 상기 제1 방향에 수직인 전지 모듈.
  4. 제3항에서,
    상기 제2 방향은 상기 복수의 전지셀의 폭 방향인 전지 모듈.
  5. 제4항에서,
    상기 외장 부재는 탄성 소재로 이루어지는 전지 모듈.
  6. 제5항에서,
    상기 외장 부재는 상기 탄성 소재의 필름이 상기 전지셀 적층체의 외면을 랩핑하여 형성되는 전지 모듈.
  7. 제5항에서,
    상기 외장 부재는 열수축 튜브로 이루어지고,
    상기 열수축 튜브의 전후면이 개방되어 있는 전지 모듈.
  8. 제4항에서,
    상기 냉각핀의 하측면은 상기 제1 열전도성 수지층과 접하는 전지 모듈.
  9. 제8항에서,
    상기 냉각핀과 상기 전지셀 사이에 제1 접착층이 위치하는 전지 모듈.
  10. 제4항에서,
    상기 전지셀 적층체의 양측면에 위치하는 압축 패드를 더 포함하고,
    상기 외장 부재와 상기 전지셀 적층체의 외측면 사이에 상기 압축 패드가 위치하는 전지 모듈.
  11. 제10항에서,
    상기 압축 패드와 상기 전지셀 사이에 제2 접착층이 위치하는 전지 모듈.
  12. 제1항에서,
    상기 제1 히트 싱크는 냉매가 유동하는 냉각 유로를 포함하고,
    상기 제1 냉각 유로와 상기 제1 열전도성 수지층이 서로 접하는 전지 모듈.
  13. 제1항에서,
    상기 전지셀 적층체의 상부에 위치하는 제2 히트 싱크 및 상기 전지셀 적층체와 상기 제2 히트 싱크 사이에 위치하는 제2 열전도성 수지층을 더 포함하고,
    상기 외장 부재와 상기 전지셀 적층체의 상면 사이에 상기 제2 열전도성 수지층 및 상기 제2 히트 싱크가 위치하는 전지 모듈.
  14. 제13항에서,
    상기 냉각핀의 상측면은 상기 제2 열전도성 수지층과 접하는 전지 모듈.
  15. 제1항의 전지 모듈이 팩 프레임에 장착되고,
    상기 외장 부재의 외면과 상기 팩 프레임이 접하는 전지 팩.
  16. 제15항에서,
    상기 팩 프레임은 적어도 두 개의 상기 전지 모듈이 장착되는 하부 팩프레임 및 상기 적어도 두 개의 전지 모듈의 상부를 덮는 상부 팩 프레임을 포함하고,
    상기 하부 팩 프레임의 일측면에서 타측면을 향해 연장되는 복수의 제1 빔을 포함하는 전지 팩.
  17. 제16항에서,
    상기 전지 모듈은 상기 복수의 제1 빔 중 서로 이웃하는 제1 빔 사이에 장착되는 전지 팩.
  18. 제17항에서,
    상기 하부 팩 프레임은 상기 제1 빔에 수직인 복수의 제2 빔을 더 포함하고,
    상기 복수의 제2 빔은 상기 전지 모듈의 일면과 상기 하부 팩 프레임의 측면 사이에 각각 위치하는 전지 팩.
  19. 제18항에서,
    상기 제2 빔의 일면은 상기 전지 모듈의 일면에 돌출되어 있는 전극 리드와 접하는 전지 팩.
  20. 제19항에서,
    상기 제2 빔의 일면에 절연 코팅층이 형성되어 있는 전지 팩.
PCT/KR2021/019683 2021-01-11 2021-12-23 전지 모듈 및 이를 포함하는 전지 팩 WO2022149768A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023503480A JP2023534979A (ja) 2021-01-11 2021-12-23 電池モジュールおよびそれを含む電池パック
CN202180050317.4A CN115956318A (zh) 2021-01-11 2021-12-23 电池模块以及包括该电池模块的电池组
EP21917930.6A EP4199191A1 (en) 2021-01-11 2021-12-23 Battery module and battery pack comprising same
US18/019,132 US20230275281A1 (en) 2021-01-11 2021-12-23 Battery module and battery pack including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210003181 2021-01-11
KR10-2021-0003181 2021-01-11
KR1020210066459A KR20220101544A (ko) 2021-01-11 2021-05-24 전지 모듈 및 이를 포함하는 전지 팩
KR10-2021-0066459 2021-05-24

Publications (1)

Publication Number Publication Date
WO2022149768A1 true WO2022149768A1 (ko) 2022-07-14

Family

ID=82357198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019683 WO2022149768A1 (ko) 2021-01-11 2021-12-23 전지 모듈 및 이를 포함하는 전지 팩

Country Status (5)

Country Link
US (1) US20230275281A1 (ko)
EP (1) EP4199191A1 (ko)
JP (1) JP2023534979A (ko)
CN (1) CN115956318A (ko)
WO (1) WO2022149768A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170019041A (ko) * 2015-08-11 2017-02-21 주식회사 엘지화학 금속 팩 케이스와 열전도 부재를 포함하는 전지팩
KR20180113419A (ko) * 2017-04-06 2018-10-16 주식회사 엘지화학 루버 핀 형상의 열전도 매개체를 구비한 배터리 팩
KR101902447B1 (ko) * 2014-01-17 2018-11-13 주식회사 엘지화학 탄성 외장 부재를 포함하는 유닛모듈
KR20190129555A (ko) * 2018-05-11 2019-11-20 주식회사 엘지화학 열 전달부를 포함하는 전지 모듈
KR20200021609A (ko) * 2018-08-21 2020-03-02 에스케이이노베이션 주식회사 배터리 모듈 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101902447B1 (ko) * 2014-01-17 2018-11-13 주식회사 엘지화학 탄성 외장 부재를 포함하는 유닛모듈
KR20170019041A (ko) * 2015-08-11 2017-02-21 주식회사 엘지화학 금속 팩 케이스와 열전도 부재를 포함하는 전지팩
KR20180113419A (ko) * 2017-04-06 2018-10-16 주식회사 엘지화학 루버 핀 형상의 열전도 매개체를 구비한 배터리 팩
KR20190129555A (ko) * 2018-05-11 2019-11-20 주식회사 엘지화학 열 전달부를 포함하는 전지 모듈
KR20200021609A (ko) * 2018-08-21 2020-03-02 에스케이이노베이션 주식회사 배터리 모듈 및 이의 제조방법

Also Published As

Publication number Publication date
US20230275281A1 (en) 2023-08-31
EP4199191A1 (en) 2023-06-21
CN115956318A (zh) 2023-04-11
JP2023534979A (ja) 2023-08-15

Similar Documents

Publication Publication Date Title
WO2018106026A1 (ko) 이차 전지 모듈
WO2022149896A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2017209423A1 (ko) 방열 카트리지 및 이를 이용한 전기자동차용 전지팩
WO2022149768A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022045619A1 (ko) 전지 모듈 및 이의 제조 방법
WO2022065700A1 (ko) 전지셀의 수명이 향상된 전지 팩 및 이를 포함하는 디바이스
WO2022240021A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022149897A1 (ko) 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
WO2022039396A1 (ko) 전지 모듈 제조 장치 및 전지 모듈 제조 방법
WO2021251623A1 (ko) 배터리 모듈 및 그의 제조방법
WO2022045594A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221295A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021256661A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022124584A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022149884A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2023136593A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2023090710A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022149899A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2024106741A1 (ko) 개선된 냉각 구조를 갖는 전지 모듈 및 이를 포함하는 전지 팩
WO2023075147A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022045596A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2024043540A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022065699A1 (ko) 전지셀의 수명이 향상된 전지 팩 및 이를 포함하는 디바이스
WO2023136545A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022030821A1 (ko) 전지 모듈, 이를 포함하는 전지 팩 및 전지 모듈 운반 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503480

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021917930

Country of ref document: EP

Effective date: 20230314

NENP Non-entry into the national phase

Ref country code: DE