WO2022045596A1 - 전지팩 및 이를 포함하는 디바이스 - Google Patents

전지팩 및 이를 포함하는 디바이스 Download PDF

Info

Publication number
WO2022045596A1
WO2022045596A1 PCT/KR2021/009644 KR2021009644W WO2022045596A1 WO 2022045596 A1 WO2022045596 A1 WO 2022045596A1 KR 2021009644 W KR2021009644 W KR 2021009644W WO 2022045596 A1 WO2022045596 A1 WO 2022045596A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
opening
pack
frame
battery
Prior art date
Application number
PCT/KR2021/009644
Other languages
English (en)
French (fr)
Inventor
박원경
성준엽
한홍구
윤현섭
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202180030497.XA priority Critical patent/CN115428232A/zh
Priority to EP21861895.7A priority patent/EP4120440A4/en
Priority to US17/919,716 priority patent/US20230163376A1/en
Priority to JP2022552223A priority patent/JP7384532B2/ja
Publication of WO2022045596A1 publication Critical patent/WO2022045596A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack and a device including the same, and more particularly, to a battery pack with improved cooling performance and safety, and a device including the same.
  • a rechargeable battery capable of charging and discharging is a measure to solve air pollution such as conventional gasoline vehicles using fossil fuels, and electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles ( P-HEV) is being used as a power source, and the need for the development of secondary batteries is increasing.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • P-HEV plug-in hybrid electric vehicles
  • lithium secondary batteries do not have much memory effect compared to nickel-based secondary batteries, so charging and discharging are possible freely. , the self-discharge rate is very low and the energy density is high.
  • Such a lithium secondary battery mainly uses a lithium-based oxide and a carbon material as a positive electrode active material and a negative electrode active material, respectively.
  • the lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate to which the positive electrode active material and the negative electrode active material are respectively applied with a separator interposed therebetween, and a battery case for sealingly accommodating the electrode assembly together with an electrolyte.
  • a lithium secondary battery may be classified into a can-type secondary battery in which an electrode assembly is embedded in a metal can and a pouch-type secondary battery in which an electrode assembly is embedded in a pouch of an aluminum laminate sheet, depending on the shape of the exterior material.
  • a battery module in which a plurality of battery cells are electrically connected this is used In such a battery module, a plurality of battery cells are connected in series or parallel to each other to form a battery cell stack, thereby improving capacity and output.
  • one or more battery modules may be mounted together with various control and protection systems, such as a battery management system (BMS) and a cooling system, to form a battery pack.
  • BMS battery management system
  • a secondary battery when the temperature is higher than an appropriate temperature, the performance of the secondary battery may be deteriorated, and in severe cases, there is a risk of explosion or ignition.
  • a battery module or battery pack having a plurality of secondary batteries that is, a battery cell
  • heat emitted from the plurality of battery cells is added up in a narrow space, so that the temperature may rise more rapidly and severely.
  • high output can be obtained, but it is not easy to remove heat generated from the battery cells during charging and discharging. If the heat dissipation of the battery cell is not performed properly, the deterioration of the battery cell is accelerated, the lifespan is shortened, and the possibility of explosion or ignition increases.
  • a battery module included in a vehicle battery pack it may be frequently exposed to direct sunlight, and may be subjected to high temperature conditions such as summer or desert areas.
  • FIG. 1 is a partial perspective view of a conventional battery pack
  • FIG. 2 is a partial perspective view illustrating a mounting method of a battery module included in the battery pack of FIG. 1 .
  • a conventional battery pack may include a plurality of battery modules 10 and a pack frame 11 in which the plurality of battery modules are accommodated. For convenience of explanation, only one battery module is shown in FIG. 1 .
  • a refrigerant pipe is provided for cooling the battery module 10 , and the refrigerant is supplied through the refrigerant pipe connector 13 connected to the refrigerant pipe.
  • This refrigerant is usually a coolant, and a fluid indirect cooling structure in which the temperature is lowered by flowing such coolant inside the battery pack is applied.
  • mounting holes are provided at four corners, and the mounting bolts 12 pass through the mounting holes to be fastened to the pack frame 11. .
  • Such a mounting coupling may be made for each battery module 10 .
  • the cooling configuration such as the coolant tube connector 13 for cooling the battery module 10 and the mounting configuration such as the mounting bolt 12 for mounting the battery module 10 are separate configurations, for each configuration There is a problem that there are many parts and it is complicated.
  • An object of the present invention is to provide a battery pack capable of preventing damage due to refrigerant leakage while improving cooling performance and a device including the same.
  • a battery pack includes a battery cell stack in which a plurality of battery cells are stacked, a module frame for accommodating the battery cell stack, and a heat sink located under the bottom of the module frame a plurality of battery modules; a pack frame accommodating the plurality of battery modules; and a bolt for transferring refrigerant for fastening the bottom of the module frame, the heat sink, and the pack frame.
  • the pack frame includes a pack refrigerant pipe for supplying and discharging refrigerant, and a connection pipe connecting the pack refrigerant pipe and the heat sink to the refrigerant transfer bolt is formed.
  • the bolt for transferring the refrigerant includes an opening/closing member for opening or blocking the connection pipe in response to the temperature of the refrigerant.
  • the opening/closing member may include a shape memory alloy to respond to the temperature of the refrigerant.
  • the refrigerant transfer bolt may include a first opening and a second opening connected to the connection pipe, the first opening may be disposed inside the pack refrigerant pipe, and the second opening may be of the module frame. It may be disposed between the bottom and the heat sink.
  • the opening/closing member may control opening and closing of the second opening in response to the temperature of the refrigerant.
  • the opening/closing member may include a blocking part for opening or blocking the connection pipe and a spring part connected to the blocking part and including a shape memory alloy.
  • the spring part may be deformed in shape in response to the temperature of the refrigerant, and the blocking part may move up and down according to the shape change of the spring part to open or block the connection pipe.
  • the spring unit may be a coil-type spring or a plate-shaped spring.
  • An opening for the refrigerant may be formed in the pack frame, and the opening for the refrigerant may include a step portion supporting one end of the spring unit.
  • the module frame may include a module frame extension formed by extending a portion of a bottom portion of the module frame, and the heat sink may include a heat sink extending from one side of the heat sink to a portion where the module frame extension is located. It may include a part, and the refrigerant transfer bolt may fasten the module frame extension part, the heat sink extension part, and the pack frame.
  • An opening for a refrigerant may be formed in the pack frame, a first mounting hole may be formed in the module frame extension portion, and a second mounting hole may be formed in the heat sink extension portion.
  • the refrigerant transfer bolt may pass through the first mounting hole, the second mounting hole, and the refrigerant opening.
  • the refrigerant transfer bolt may include a first opening and a second opening connected to the connection pipe, the first opening may be disposed inside the pack refrigerant pipe, and the second opening may be of the module frame. It may be disposed between the bottom and the heat sink.
  • An opening direction of the first opening may be parallel to a penetrating direction of the connector tube, and an opening direction of the second opening may be perpendicular to a penetrating direction of the connector tube.
  • the bolt for transferring the refrigerant may include a body portion in which the connection pipe is formed and a head portion located at an upper end of the body portion.
  • the battery pack may further include a gasket enclosing the main body, wherein the gasket is formed between the head portion and a module frame extension formed by extending a portion of a bottom portion of the module frame and between the heat sink and the pack frame. It may be located in at least one of
  • Protrusions may be formed on the front and rear surfaces of the battery module, respectively, and the battery pack may further include fixing brackets positioned on the front and rear surfaces of the battery module, respectively, and coupled to the pack frame while enclosing the protrusions. .
  • the pack frame may include a support frame for supporting the battery module and a lower frame positioned below the support frame, and the pack refrigerant pipe may be positioned between the support frame and the lower frame.
  • the mounting fixation and the pressure sealing are possible at the same time, so that it is possible to reduce the number of parts and simplify the structure.
  • the opening and closing member is disposed, so that the opening and closing of the connection pipe formed in the refrigerant transfer bolt can be actively controlled according to the temperature of the refrigerant.
  • FIG. 1 is a partial perspective view of a conventional battery pack.
  • FIG. 2 is a partial perspective view illustrating a method of mounting a battery module included in the battery pack of FIG. 1 .
  • FIG. 3 is a perspective view illustrating a battery module and a pack frame included in a battery pack according to an embodiment of the present invention.
  • FIG. 4 is a disassembled perspective view of the fixing bracket for fixing the battery module of FIG. 3 to the pack frame.
  • FIG. 5 is an exploded perspective view of the battery module of FIG. 3 .
  • FIG. 6 is a partial perspective view showing an enlarged portion “A” of FIG. 3 .
  • FIG. 7 is a partial cross-sectional view of a cross-section taken along line B-B' of FIG. 6 .
  • FIG. 8 and 9 are partial perspective views showing an enlarged portion "E" of FIG.
  • 10A to 10C are views viewed from various angles of a bolt for transferring a refrigerant according to an embodiment of the present invention.
  • 11A and 11B are views viewed from various angles of a bolt for transferring a refrigerant and an opening/closing member according to an embodiment of the present invention.
  • 12A and 12B are views viewed from various angles of a refrigerant transfer bolt and an opening/closing member according to a modified embodiment of the present invention.
  • FIG. 13 is a partial cross-sectional view taken along the cut line C-C' of FIG. 6 .
  • FIG. 14 is a partial cross-sectional view taken along the cutting line D-D′ of FIG. 6 .
  • a part of a layer, film, region, plate, etc. when a part of a layer, film, region, plate, etc. is said to be “on” or “on” another part, it includes not only cases where it is “directly on” another part, but also cases where there is another part in between. . Conversely, when we say that a part is “just above” another part, we mean that there is no other part in the middle.
  • the reference part means to be located above or below the reference part, and to necessarily mean to be located “on” or “on” in the direction opposite to gravity not.
  • planar it means when the target part is viewed from above, and "cross-sectional” means when viewed from the side when a cross-section of the target part is vertically cut.
  • FIG. 3 is a perspective view illustrating a battery module and a pack frame included in a battery pack according to an embodiment of the present invention.
  • 4 is a disassembled perspective view of the fixing bracket for fixing the battery module of FIG. 3 to the pack frame.
  • 5 is an exploded perspective view of the battery module of FIG. 3 .
  • the battery pack includes a plurality of battery modules 100 , a pack frame 1100 accommodating the plurality of battery modules 100 , and a bolt for refrigerant delivery. do.
  • the battery module 100 includes a battery cell stack 120 in which a plurality of battery cells 110 are stacked, a module frame 200 accommodating the battery cell stack 120 , and a bottom portion 210a of the module frame 200 .
  • ) includes a heat sink 300 positioned below. The refrigerant transfer bolt will be described later.
  • the battery cell 110 may be a pouch-type battery cell.
  • a pouch-type battery cell may be formed by accommodating an electrode assembly in a pouch case of a laminate city including a resin layer and a metal layer, and then thermally sealing the outer periphery of the pouch case.
  • the battery cell 110 may be formed in a rectangular sheet-like structure.
  • the battery cells 110 may be configured in plurality, and the plurality of battery cells 110 are stacked to be electrically connected to each other to form the battery cell stack 120 .
  • a plurality of battery cells 110 may be stacked in a direction parallel to the x-axis.
  • the battery cell stack 120 may be a large-area module in which the number of battery cells 110 is greater than that of the prior art. Specifically, 32 to 48 battery cells 110 per battery module 100 may be included. In the case of such a large-area module, the horizontal length of the battery module is increased.
  • the horizontal length may mean a length in the direction in which the battery cells 110 are stacked, that is, in a direction parallel to the x-axis.
  • the module frame 200 accommodating the battery cell stack 120 may include an upper cover 220 and a U-shaped frame 210 .
  • the U-shaped frame 210 may include a bottom portion 210a and two side portions 210b extending upward from both ends of the bottom portion 210a.
  • the bottom part 210a may cover the lower surface (-z-axis direction) of the battery cell stack 120
  • the side part 210b is both side surfaces (x-axis direction and -x-axis direction) of the battery cell stack 120 . direction) can be covered.
  • the upper cover 220 may be formed in a plate-shaped structure that covers the lower surface covered by the U-shaped frame 210 and the upper surface (z-axis direction) other than the both sides.
  • the upper cover 220 and the U-shaped frame 210 may form a structure that covers the battery cell stack 120 up, down, left, and right by being coupled by welding or the like in a state in which corresponding corner portions are in contact with each other.
  • the battery cell stack 120 may be physically protected through the upper cover 220 and the U-shaped frame 210 .
  • the upper cover 220 and the U-shaped frame 210 may include a metal material having a predetermined strength.
  • the module frame 200 according to the modified example may be a mono frame in the form of a metal plate in which an upper surface, a lower surface, and both sides are integrated. That is, not the structure in which the U-shaped frame 210 and the upper cover 220 are coupled to each other, but may be manufactured by extrusion molding to have a structure in which the upper surface, the lower surface, and both sides are integrated.
  • the end plate 400 may be positioned on the front and rear surfaces (y-axis and -y-axis directions) of the battery cell stack 120 to cover the battery cell stack 120 .
  • the end plate 400 may physically protect the battery cell stack 120 and other electrical components from external impact.
  • a bus bar frame on which a bus bar is mounted and an insulating cover for electrical insulation may be positioned between the battery cell stack 120 and the end plate 400 .
  • the battery module 100 includes a heat sink 300 positioned below the bottom portion 210a of the module frame 200 .
  • the bottom part 210a of the module frame 200 may constitute an upper plate of the heat sink 300 , and the recessed part 340 of the heat sink 300 and the bottom part 210a of the module frame 200 may be formed.
  • a flow path of the refrigerant may be formed.
  • the heat sink 300 forms the skeleton of the heat sink 300 and is a lower plate 310 directly connected to the bottom 210a of the module frame 200 by welding, etc. and a path through which the refrigerant flows. It may include a depression 340 .
  • the recessed portion 340 of the heat sink 300 corresponds to a portion in which the lower plate 310 is recessed downward.
  • the recessed part 340 may be a U-shaped tube with a cross-section cut in the xz plane perpendicular to the direction in which the coolant flow path extends, and the bottom portion 210a may be located on the open upper side of the U-shaped tube.
  • the space between the recessed portion 340 and the bottom portion 210a becomes a region through which the coolant flows, that is, a flow path of the coolant. Accordingly, the bottom portion 210a of the module frame 200 may be in contact with the refrigerant.
  • the recessed part 340 of the heat sink 300 there is no particular limitation on the manufacturing method of the recessed part 340 of the heat sink 300, but by providing a structure recessed with respect to the plate-shaped heat sink 300, the U-shaped recessed part 340 with an open upper side may be formed.
  • a thermally conductive resin layer including a thermally conductive resin may be positioned between the bottom 210a of the module frame 200 of FIG. 5 and the battery cell stack 120 .
  • the thermal conductive resin layer may be formed by applying a thermal resin to the bottom portion 210a, and curing the applied thermal conductive resin.
  • the thermally conductive resin may include a thermally conductive adhesive material, and specifically, may include at least one of a silicone material, a urethane material, and an acrylic material.
  • the thermally conductive resin may serve to fix one or more battery cells 110 constituting the battery cell stack 120 by being in a liquid phase during application or by curing after application. In addition, heat generated in the battery cell 110 can be quickly transferred to the lower side of the battery module due to its excellent thermal conductivity.
  • the battery module 100 implements a cooling integrated structure of the module frame 200 and the heat sink 300 to further improve cooling performance. Since the bottom portion 210a of the module frame 200 serves to correspond to the top plate of the heat sink 300 , a cooling integrated structure may be implemented. Cooling efficiency is increased due to direct cooling, and the heat sink 300 is integrated with the bottom part 210a of the module frame 200 through a structure in which the battery module 100 and the battery module 100 are mounted on the battery pack. Space utilization can be further improved.
  • the heat generated in the battery cell 110 is a thermally conductive resin layer (not shown) positioned between the battery cell stack 120 and the bottom part 210a, the bottom part 210a of the module frame 200, It may be transferred to the outside of the battery module 100 through the refrigerant.
  • the heat transfer path is simplified and the air gap between each layer can be reduced, so that the cooling efficiency or performance can be increased.
  • the bottom portion 210a is constituted by the upper plate of the heat sink 300 and the bottom portion 210a directly contacts the coolant, there is an advantage that more direct cooling is possible through the coolant.
  • the height of the battery module 100 is reduced through the removal of the unnecessary cooling structure, so that it is possible to reduce the cost and increase the space utilization. Furthermore, since the battery module 100 can be arranged compactly, the capacity or output of the battery pack including a plurality of the battery modules 100 can be increased.
  • the bottom portion 210a of the module frame 200 may be joined to a portion of the lower plate 310 in which the recessed portion 340 is not formed in the heat sink 300 by welding.
  • the above-described cooling performance is improved as well as the battery cell stack 120 accommodated in the module frame 200 . It may have the effect of supporting the load of the battery module 100 and reinforcing the rigidity of the battery module 100 .
  • the lower plate 310 and the bottom portion 210a of the module frame 200 are sealed through welding, etc., so that the refrigerant can flow without leakage in the depression 340 formed inside the lower plate 310 . there is.
  • the recessed portion 340 is formed over the entire area corresponding to the bottom portion 210a of the module frame 200 .
  • the recessed portion 340 may be bent at least once to lead from one side to the other.
  • the depression 340 is preferably bent several times. As the refrigerant moves from the start point to the end point of the refrigerant flow path formed over the entire area corresponding to the bottom portion 210a of the module frame 200, efficient cooling of the entire area of the battery cell stack 120 can be achieved. .
  • the refrigerant is a medium for cooling, and there is no particular limitation, but may be cooling water.
  • a protrusion pattern 340D may be formed in the recessed portion 340 of the heat sink 300 according to the present exemplary embodiment.
  • the width of the refrigerant passage may be formed to be wider, so that the temperature deviation may be more severe.
  • a large-area battery module unlike the case in which about 12 to 24 battery cells are stacked in one battery module, it may include a case in which about 32 to 48 battery cells are stacked in one battery module. there is.
  • the protrusion pattern 340D according to the present exemplary embodiment has the effect of substantially reducing the width of the cooling passage, thereby minimizing the pressure drop and reducing the temperature deviation between the widths of the refrigerant passage. Therefore, it is possible to implement a uniform cooling effect.
  • FIG. 6 is a partial perspective view showing an enlarged portion “A” of FIG. 3 .
  • FIG. 7 is a partial cross-sectional view of a cross-section taken along line B-B' of FIG. 6 .
  • the battery pack according to the present embodiment includes a bolt 700 for transferring refrigerant that fastens the bottom portion 210a of the module frame 200 , the heat sink 300 , and the pack frame 1100 . ) is included.
  • the pack frame 1100 may include the refrigerant openings 1150 and 1160 formed in the pack refrigerant pipes 1130 and 1140 and the pack refrigerant pipes 1130 and 1140 for supply and discharge of refrigerant.
  • the pack refrigerant pipes 1130 and 1140 may include a pack refrigerant supply pipe 1130 for supplying a refrigerant and a pack refrigerant discharge pipe 1140 for discharging the refrigerant.
  • the refrigerant openings 1150 and 1160 may include an opening 1150 for supplying refrigerant connected to the pack refrigerant supply pipe 1130 and an opening 1160 for discharging the refrigerant connected to the pack refrigerant discharge pipe 1140 .
  • the pack frame 1100 may include a support frame 1110 for supporting the battery module 100 and a lower frame 1120 positioned below the support frame 1110 .
  • the pack refrigerant supply pipe 1130 and the pack refrigerant discharge pipe 1140 may be located between the support frame 1110 and the lower frame 1120, and more specifically, the pack refrigerant supply pipe 1130 and the pack refrigerant discharge pipe 1140. is positioned directly below the support frame 1110 and may have a configuration integrated with the support frame 1110 .
  • the module frame 200 may include a module frame extension part 211 formed by extending a part of the bottom part 210a of the module frame 200 .
  • the heat sink 300 may include a heat sink extension 311 extending from one side of the heat sink 300 to a portion where the module frame extension 211 is located.
  • the module frame extension 211 and the heat sink extension 311 may have shapes corresponding to each other, and may be formed to extend past the end plate 400 .
  • a first mounting hole 211H may be formed in the module frame extension 211
  • a second mounting hole 311H may be formed in the heat sink extension 311 .
  • the refrigerant transfer bolt 700 fastens the module frame extension part 211, the heat sink extension part 311, and the pack frame 1100. Specifically, the refrigerant transfer bolt 700 is the first The first mounting hole 211H, the second mounting hole 311H, and the refrigerant supply opening 1150 of the pack frame 1100 are sequentially passed through and fastened.
  • the refrigerant transfer structure through the refrigerant transfer bolt 700 may also be applied to the pack refrigerant discharge pipe 1140 .
  • FIG. 8 and 9 are partial perspective views showing an enlarged portion "E" of FIG. 10A to 10C are views viewed from various angles of a bolt for transferring a refrigerant according to an embodiment of the present invention.
  • 11A and 11B are views viewed from various angles of a bolt for transferring a refrigerant and an opening/closing member according to an embodiment of the present invention.
  • FIG. 8 shows a state in which the refrigerant flow path is opened by the opening/closing member 900a
  • FIG. 9 shows a state in which the refrigerant flow path is blocked by the opening/closing member 900a.
  • FIGS. 10A to 10C show the refrigerant transfer bolt 700 with the opening/closing member 900a removed for convenience of explanation
  • FIG. 10A is a perspective view of the refrigerant transfer bolt 700
  • FIG. 10B is a plan view of the refrigerant transfer bolt 700 of FIG. 10A viewed from below
  • FIG. 10C is a side view viewed from the side after the refrigerant transfer bolt 700 of FIG. 10A is turned over.
  • FIGS. 11A and 11B show a state in which the opening/closing member 900a is disposed on the refrigerant transfer bolt 700 .
  • connection pipe 713 connecting the pack refrigerant pipes 1130 and 1140 and the heat sink 300 to the refrigerant transfer bolt 700 according to the present embodiment is formed, and the refrigerant
  • the transmission bolt 700 includes an opening/closing member (900a, opening-closing member) for opening or blocking the connection pipe 713 in response to the temperature of the refrigerant.
  • 8 shows a connection pipe 713 of the refrigerant transfer bolt 700 connecting the pack refrigerant supply pipe 1130 and the heat sink 300 .
  • the bolt 700 for refrigerant delivery may include a body portion 710 in which a connection pipe 713 is formed, and a head portion 720 located at an upper end of the body portion 710 .
  • a screw thread may be formed on the outer circumferential surface of the main body 710 in the form of a column having diameters corresponding to the inner diameters of the first and second mounting holes 211H and 311H.
  • a thread may also be formed on the inner surface of the refrigerant supply opening 1150 , so that the main body 710 may be fastened to the pack frame 1100 .
  • the head unit 720 is configured to have a larger diameter than the body unit 710 , and the module frame extension unit 211 and the heat sink extension unit 311 may be in close contact with each other.
  • the refrigerant transfer bolt 700 may include a first opening 711 and a second opening 712 connected to the connection pipe 713 and formed in the body portion 710 .
  • the first opening 711 may be disposed inside the pack refrigerant supply pipe 1130
  • the second opening 712 may be disposed between the bottom part 210a of the module frame 200 and the heat sink 300 .
  • the opening direction of the first opening 711 may be parallel to the penetration direction of the connection pipe 713
  • the opening direction of the second opening 712 may be perpendicular to the penetration direction of the connection pipe 713 .
  • the first opening 711 may be located at one end of the main body 710 while being connected to the connecting pipe 713 , and the second opening 712 is formed in plurality along the outer circumferential surface of the main body 710 to form a connecting pipe. (713) can be followed.
  • the refrigerant that has moved through the pack refrigerant supply pipe 1130 passes through the first opening 711, the connecting pipe 713, and the second opening 712 in sequence to be introduced between the bottom part 210a and the heat sink 300. there is. As described above, the introduced refrigerant may move along the recessed portion 340 of the heat sink 300 to cool the battery module 100 .
  • the refrigerant transfer bolt 700 not only serves to mount and fix the module frame 200 and the heat sink 300 to the pack frame 1100, but also provides a refrigerant at the bottom of the battery module 100. It can function as a supply route.
  • the bottom portion 210a, the heat sink 300, and the pack refrigerant supply pipe 1130 are strongly adhered to each other by the fastening force of the bolt 700 for refrigerant delivery, the sealing property is improved, and there is a possibility of refrigerant leakage therebetween. can reduce That is, it is possible to simultaneously perform mounting fixation, pressure sealing, and refrigerant transfer, thereby reducing the number of parts and simplifying the structure.
  • the opening/closing member 900a opens or blocks the connection pipe 713 in response to the temperature of the refrigerant.
  • the opening/closing member 900a may respond to the temperature of the refrigerant, including the shape memory alloy, and may control the opening and closing of the second opening 712 .
  • the degree of opening and closing the flow rate of the refrigerant flowing through the heat sink 300 may be adjusted.
  • the shape memory alloy may be an alloy having a property of being deformed below the transition temperature, and returning to the previous deformation when the transition temperature is higher.
  • the opening and closing member 900a may include a blocking portion 910a for opening or blocking the connection pipe 713 and a spring portion 920a connected to the blocking portion 910a and including a shape memory alloy.
  • the blocking part 910a may have a shape surrounding the outer circumferential surface of the main body 710 in which the second opening 712 is formed, and a spring-shaped spring part 920a may be connected under the blocking part 910a.
  • the spring portion 920a may include a shape memory alloy, and may be deformed in shape in response to the temperature of the coolant.
  • the shape of the spring may increase or decrease in the vertical direction according to the temperature of the refrigerant.
  • the blocking part 910a may move up and down to open or block the connection pipe 713 , in particular, the second opening 712 .
  • FIG. 8 shows a state in which the spring part 920a is reduced in the vertical direction and the blocking part 910a moves downward, and the second opening 712 is opened.
  • FIG. 9 shows a state in which the spring part 920a is extended in the vertical direction to move the blocking part 910a upward, and the second opening 712 is blocked.
  • the pack frame 1100 may include the refrigerant openings 1150 and 1160 formed in the pack refrigerant pipes 1130 and 1140 and the pack refrigerant pipes 1130 and 1140.
  • the refrigerant openings 1150 and 1160 may include a step portion 1150S supporting one end of the spring portion 920a.
  • the refrigerant supply opening 1150 through which the refrigerant transfer bolt 700 passes may include a stepped portion 1150S having a stepped structure.
  • a spring portion 920a may be disposed on the upper surface of the stepped portion 1150S.
  • the battery pack according to this embodiment applies an opening/closing member 900a using a shape memory alloy that responds to a predetermined temperature to the refrigerant transfer bolt 700, thereby actively controlling the supply and blocking of the refrigerant according to the temperature of the refrigerant. Also, the flow rate of the refrigerant can be adjusted according to the degree of opening and closing. It is possible to form a refrigerant circulation system in which the flow rate is easily controlled according to the temperature of the battery module without a separate complicated control device.
  • the battery pack according to the present embodiment may further include a gasket 600 surrounding the body portion 710 of the bolt 700 for transferring the refrigerant.
  • the gasket 600 may be positioned at least one of between the head unit 720 and the module frame extension unit 211 and between the heat sink 300 and the pack frame 1100 . Leakage of the refrigerant may be prevented through the gasket 600 .
  • the first mounting hole 211H, the second mounting hole 311H, and the refrigerant discharge opening 1160 of the pack frame 1100 are also the refrigerant transfer bolt 700 according to the present embodiment.
  • all of the pack refrigerant pipes 1130 and 1140 may be connected to the heat sink 300 through the refrigerant transfer bolt 700 , the first mounting hole 211H, and the second mounting hole. (311H) and the refrigerant transfer bolt 700 may be composed of a plurality.
  • the other second mounting hole ( 311H) and the refrigerant transfer bolt 700 may be discharged to the pack refrigerant discharge pipe 1140 .
  • the spring part 920a may be a coil-type spring.
  • the coil-type spring may be deformed such as by compression in the vertical direction in response to the temperature of the refrigerant while surrounding the outer circumferential surface of the body portion 710 of the bolt 700 for transferring the refrigerant.
  • FIGS. 12A and 12B are views viewed from various angles of a refrigerant transfer bolt and an opening/closing member according to a modified embodiment of the present invention.
  • the opening/closing member 900b may include a blocking part 910b and a spring part 920b.
  • the blocking part 910b may be similar to or the same as the configuration described above, but the spring part 920b may be a plate-shaped spring.
  • the plurality of plate-shaped springs may be disposed to be spaced apart at regular intervals along the blocking portion 910b, and may be deformed such as by compression in the vertical direction in response to the temperature of the refrigerant.
  • the spring parts 920a and 920b according to the present embodiments as described above may have an exemplary structure, and if the blocking parts 910a and 910b can be moved in the vertical direction, there is no particular limitation in the form thereof.
  • FIG. 13 is a partial cross-sectional view taken along the cutting line C-C' of FIG. 6, and FIG. 14 is a partial cross-sectional view of the cross-section taken along the cutting line D-D' of FIG. 6 .
  • protrusions 410 are formed on the front and rear surfaces of the battery module 100 according to the present embodiment, respectively.
  • the front and rear end plates 400 of the battery module 100 may be positioned, and the protrusion 410 may be formed on the end plate 400 .
  • the protrusion 410 may have a structure that protrudes in a direction perpendicular to the stacking direction of the battery cells 110 (a direction parallel to the y-axis). That is, the protrusion 410 formed on the front surface of the battery module 100 may protrude in the y-axis direction, and the protrusion 410 formed on the rear surface of the battery module 100 may protrude in the -y-axis direction. .
  • the protrusion 410 may be formed at a lower edge of the front surface of the battery module 100 and a lower edge of the rear surface of the battery module 100 , respectively.
  • two protrusions 410 spaced apart from each other may be formed for each of the front and rear surfaces of the battery module 100 .
  • the fixing bracket 500 may be coupled to the pack frame 1100 while surrounding the protrusion 410 .
  • the protrusion 410 is formed to protrude from the end plate 400 and has an upper surface and three side surfaces, and the fixing bracket 500 includes a fixing portion 510 surrounding the upper surface and one side of the protrusion 410 .
  • the fixing part 510 may further wrap the other two sides of the protrusion 410 .
  • the battery pack according to the present embodiment may include a bracket bolt B1 passing through the pack frame hole 1111H and the bracket hole 500H, and a bracket nut N1 coupled to the bracket bolt B1.
  • the bracket hole 500H and the pack frame hole 1111H may be positioned to correspond to each other, and the bracket bolt B1 may pass through the pack frame hole 1111H and the bracket hole 500H to be upright. After that, the bracket bolt B1 may be coupled to the bracket nut N1 to fix the fixing bracket 500 to the pack frame 1100 .
  • the pack frame hole 1111H, the bracket hole 500H, the bracket bolt B1, and the bracket nut N1 are each configured in plurality. appearance is shown
  • Two fixing brackets 500 disposed to face each other with the battery module 100 interposed therebetween surround the protrusion 410 of the battery module 100, and pack through the bracket bolt B1 and the bracket nut N1. Since it is coupled to the frame 1100 , the battery module 100 may be accommodated and fixed to the pack frame 1100 .
  • the battery pack according to the present embodiment may further include an insulating member 800 positioned between the protrusion 410 and the pack frame 1100 .
  • the insulating member 800 may be a pad-shaped member exhibiting electrical insulation. Galvanic corrosion may occur between the end plate 400 and the pack frame 1100 due to contact of dissimilar materials. By disposing the insulating member 800 therebetween, the occurrence of galvanic corrosion may be prevented.
  • the fixing bracket 500 may include a cover part 520 covering the module frame extension part 211 .
  • the fastening structure of the bracket bolt B1 and the bracket nut N1 may be respectively located on the left and right sides of the cover part 520 .
  • the head portion 720 of the bolt 700 for transferring the refrigerant may be sealed while being surrounded by the end plate 400 , the module frame extension portion 211 , and the cover portion 520 .
  • the cover part 520 By sealing it through the cover part 520 , it is possible to block the leaked refrigerant from penetrating into surrounding parts. That is, the cover part 520 itself may perform a function of preventing leakage of the refrigerant.
  • One or more battery modules according to the present embodiment described above may be mounted together with various control and protection systems such as a battery management system (BMS) and a cooling system to form a battery pack.
  • BMS battery management system
  • a cooling system to form a battery pack.
  • the battery module or battery pack may be applied to various devices. Specifically, it may be applied to transportation means such as electric bicycles, electric vehicles, hybrids, etc., but is not limited thereto, and may be applied to various devices capable of using a secondary battery.

Abstract

본 발명의 일 실시예에 따른 전지팩은, 복수의 전지셀이 적층된 전지셀 적층체, 상기 전지셀 적층체를 수납하는 모듈 프레임 및 상기 모듈 프레임의 바닥부 아래에 위치하는 히트 싱크를 포함하는 복수의 전지 모듈; 상기 복수의 전지 모듈을 수납하는 팩 프레임; 및 상기 모듈 프레임의 바닥부, 상기 히트 싱크 및 상기 팩 프레임을 체결하는 냉매전달용 볼트를 포함한다. 상기 팩 프레임은, 냉매의 공급과 배출을 위한 팩 냉매관을 포함하며, 상기 냉매전달용 볼트에 상기 팩 냉매관 및 상기 히트 싱크를 연결하는 연결관이 형성된다. 상기 냉매전달용 볼트는, 냉매의 온도에 반응하여 상기 연결관을 개방하거나 차단하는 개폐 부재를 포함한다.

Description

전지팩 및 이를 포함하는 디바이스
관련 출원(들)과의 상호 인용
본 출원은 2020년 8월 24일자 한국 특허 출원 제10-2020-0106097호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지팩 및 이를 포함하는 디바이스에 관한 것으로서, 보다 구체적으로는 냉각 성능과 안전성이 향상된 전지팩 및 이를 포함하는 디바이스에 관한 것이다.
현대 사회에서는 휴대폰, 노트북, 캠코더, 디지털 카메라 등의 휴대형 기기의 사용이 일상화되면서, 상기와 같은 모바일 기기와 관련된 분야의 기술에 대한 개발이 활발해지고 있다. 또한, 충방전이 가능한 이차 전지는 화석 연료를 사용하는 기존의 가솔린 차량 등의 대기 오염 등을 해결하기 위한 방안으로, 전기 자동차(EV), 하이브리드 전기자동차(HEV), 플러그-인 하이브리드 전기자동차(P-HEV) 등의 동력원으로 이용되고 있는바, 이차 전지에 대한 개발의 필요성이 높아지고 있다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충, 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차 전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체 및 전극 조립체를 전해액과 함께 밀봉 수납하는 전지 케이스를 구비한다.
일반적으로 리튬 이차 전지는 외장재의 형상에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차 전지와 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차 전지로 분류될 수 있다.
소형 기기들에 이용되는 이차 전지의 경우, 2-3개의 전지셀들이 배치되나, 자동차 등과 같은 중대형 디바이스에 이용되는 이차 전지의 경우는, 다수의 전지셀을 전기적으로 연결한 전지 모듈(Battery module)이 이용된다. 이러한 전지 모듈은 다수의 전지셀이 서로 직렬 또는 병렬로 연결되어 전지셀 적층체를 형성함으로써 용량 및 출력이 향상된다. 또한, 하나 이상의 전지 모듈은 BMS(Battery Management System), 냉각 시스템 등의 각종 제어 및 보호 시스템과 함께 장착되어 전지 팩을 형성할 수 있다.
이차 전지는, 적정 온도보다 높아지는 경우 이차 전지의 성능이 저하될 수 있고, 심한 경우 폭발이나 발화의 위험도 있다. 특히, 다수의 이차 전지, 즉 전지 셀을 구비한 전지 모듈이나 전지팩은 좁은 공간에서 다수의 전지 셀로부터 나오는 열이 합산되어 온도가 더욱 빠르고 심하게 올라갈 수 있다. 다시 말해서, 다수의 전지 셀이 적층된 전지 모듈과 이러한 전지 모듈이 장착된 전지팩의 경우, 높은 출력을 얻을 수 있지만, 충전 및 방전 시 전지 셀에서 발생하는 열을 제거하는 것이 용이하지 않다. 전지 셀의 방열이 제대로 이루어지지 않을 경우 전지 셀의 열화가 빨라지면서 수명이 짧아지게 되고, 폭발이나 발화의 가능성이 커지게 된다.
더욱이, 차량용 배터리 팩에 포함되는 배터리 모듈의 경우, 직사광선에 자주 노출되고, 여름철이나 사막 지역과 같은 고온 조건에 놓여질 수 있다.
따라서, 전지 모듈이나 전지팩을 구성하는 경우, 안정적이면서도 효과적인 냉각 성능을 확보하는 것은 매우 중요하다고 할 수 있다.
도 1은 종래의 전지팩에 대한 부분 사시도이고, 도 2는 도 1의 전지팩에 포함된 전지 모듈의 마운팅 방법을 나타내는 부분 사시도이다.
도 1 및 도 2를 참고하면, 종래의 전지팩은 복수의 전지 모듈(10) 및 복수의 전지 모듈이 수납되는 팩 프레임(11)을 포함할 수 있다. 설명의 편의를 위해 도 1은 하나의 전지 모듈만을 나타내었다.
종래의 전지팩은 전지 모듈(10)의 냉각을 위해 냉매관을 마련하였고, 냉매관과 연결된 냉매관 커넥터(13)를 통해 냉매를 공급하였다. 이러한 냉매는 보통 냉각수로써, 전지팩 내부에 이러한 냉각수를 흘려 온도를 낮추는 유체 간접 냉각 구조를 적용하였다.
한편, 전지 모듈(10)을 팩 프레임(11)에 수납할 때, 4개의 모서리에 마운팅 홀을 마련하고, 마운팅 볼트(12)가 상기 마운팅 홀을 통과하여 팩 프레임(11)과 체결될 수 있다. 각 전지 모듈(10) 마다 이러한 마운팅 결합이 이루어질 수 있다.
이 때, 전지 모듈(10)의 냉각을 위한 냉매관 커넥터(13) 등의 냉각 구성과 전지 모듈(10)의 마운팅을 위한 마운팅 볼트(12) 등의 마운팅 구성을 별개의 구성으로, 각 구성마다 부품이 많고 복잡하다는 문제가 있다.
또한, 조립 불량이나 운행 중 사고 등의 원인으로, 냉매관이나 냉매관 커넥터(13) 등으로부터 냉매가 누설되는 상황이 발생할 수 있는데, 이렇게 누설된 냉매는 전지팩 내부로 침투하여 화재나 폭발의 원인이 될 수 있다.
따라서, 냉각 성능은 높이면서, 냉매의 누설로 인한 피해를 최소화할 수 있는 전지팩을 개발하는 것이 요구되고 있다.
본 발명이 해결하고자 하는 과제는, 냉각 성능의 향상과 함께, 냉매 누설로 인한 피해를 차단할 수 있는 전지팩 및 이를 포함하는 디바이스를 제공하는 것이다.
그러나, 본 발명의 실시예들이 해결하고자 하는 과제는 상술한 과제에 한정되지 않고 본 발명에 포함된 기술적 사상의 범위에서 다양하게 확장될 수 있다.
본 발명의 일 실시예에 따른 전지팩은, 복수의 전지셀이 적층된 전지셀 적층체, 상기 전지셀 적층체를 수납하는 모듈 프레임 및 상기 모듈 프레임의 바닥부 아래에 위치하는 히트 싱크를 포함하는 복수의 전지 모듈; 상기 복수의 전지 모듈을 수납하는 팩 프레임; 및 상기 모듈 프레임의 바닥부, 상기 히트 싱크 및 상기 팩 프레임을 체결하는 냉매전달용 볼트를 포함한다. 상기 팩 프레임은, 냉매의 공급과 배출을 위한 팩 냉매관을 포함하며, 상기 냉매전달용 볼트에 상기 팩 냉매관 및 상기 히트 싱크를 연결하는 연결관이 형성된다. 상기 냉매전달용 볼트는, 냉매의 온도에 반응하여 상기 연결관을 개방하거나 차단하는 개폐 부재를 포함한다.
상기 개폐 부재는 형상기억합금을 포함하여 상기 냉매의 온도에 반응할 수 있다.
상기 냉매전달용 볼트는, 상기 연결관과 이어지는 제1 개구 및 제2 개구를 포함할 수 있고, 상기 제1 개구는 상기 팩 냉매관 내부에 배치될 수 있으며, 상기 제2 개구는 상기 모듈 프레임의 바닥부와 상기 히트 싱크 사이에 배치될 수 있다. 상기 개폐 부재는 상기 냉매의 온도에 반응하여, 상기 제2 개구의 개폐를 조절할 수 있다.
상기 개폐 부재는, 상기 연결관을 개방하거나 차단하는 차단부 및 상기 차단부와 연결되고 형상기억합금을 포함하는 스프링부를 포함할 수 있다.
상기 스프링부는 상기 냉매의 온도에 반응하여 형상이 변형될 수 있고, 상기 스프링부의 형상 변형에 따라 상기 차단부가 상하로 움직여, 상기 연결관을 개방하거나 차단할 수 있다.
상기 스프링부는 코일형 스프링 또는 판상형 스프링일 수 있다.
상기 팩 프레임에 냉매용 개구가 형성될 수 있고, 상기 냉매용 개구는 상기 스프링부의 일 단부를 받치는 단차부를 포함할 수 있다.
상기 모듈 프레임은, 상기 모듈 프레임의 바닥부 일부가 연장되어 형성된 모듈 프레임 연장부를 포함할 수 있고, 상기 히트 싱크는, 상기 히트 싱크의 일 변으로부터 상기 모듈 프레임 연장부가 위치한 부분으로 연장된 히트 싱크 연장부를 포함할 수 있으며, 상기 냉매전달용 볼트는 상기 모듈 프레임 연장부, 상기 히트 싱크 연장부 및 상기 팩 프레임을 체결할 수 있다.
상기 팩 프레임에 냉매용 개구가 형성될 수 있고, 상기 모듈 프레임 연장부에 제1 마운팅 홀이 형성될 수 있으며, 상기 히트 싱크 연장부에 제2 마운팅 홀이 형성될 수 있다. 상기 냉매전달용 볼트가 상기 제1 마운팅 홀, 상기 제2 마운팅 홀 및 상기 냉매용 개구를 통과할 수 있다.
상기 냉매전달용 볼트는, 상기 연결관과 이어지는 제1 개구 및 제2 개구를 포함할 수 있고, 상기 제1 개구는 상기 팩 냉매관 내부에 배치될 수 있으며, 상기 제2 개구는 상기 모듈 프레임의 바닥부와 상기 히트 싱크 사이에 배치될 수 있다. 상기 제1 개구의 개구 방향은 상기 연결관의 관통 방향과 평행할 수 있고, 상기 제2 개구의 개구 방향은 상기 연결관의 관통 방향과 수직할 수 있다.
상기 냉매전달용 볼트는 상기 연결관이 형성된 본체부 및 상기 본체부의 상단에 위치한 헤드부를 포함할 수 있다.
상기 전지팩은 상기 본체부를 둘러싸는 가스켓을 더 포함할 수 있고, 상기 가스켓은, 상기 헤드부와 상기 모듈 프레임의 바닥부 일부가 연장되어 형성된 모듈 프레임 연장부 사이 및 상기 히트 싱크와 상기 팩 프레임 사이 중 적어도 한 곳에 위치할 수 있다.
상기 전지 모듈의 전면 및 후면에 각각 돌출부가 형성될 수 있고, 상기 전지팩은, 상기 전지 모듈의 전면 및 후면에 각각 위치하고 상기 돌출부를 감싸면서 상기 팩 프레임에 결합되는 고정 브라켓을 더 포함할 수 있다.
상기 팩 프레임은, 상기 전지 모듈을 받치는 받침 프레임 및 상기 받침 프레임의 아래에 위치한 하부 프레임를 포함할 수 있고, 상기 팩 냉매관은 상기 받침 프레임과 상기 하부 프레임 사이에 위치할 수 있다.
본 발명의 실시예들에 따르면, 냉매 유로가 형성된 냉매전달용 볼트를 통해, 마운팅 고정과 가압 실링이 동시에 가능하여, 부품수 절감 및 구조의 단순화가 가능하다.
또한, 냉매를 공급하기 위해 필요한 관통홀 간의 정렬에 대한 영향을 최소화할 수 있어, 냉매 누설의 가능성을 줄일 수 있다.
또한, 개폐 부재가 배치되어, 냉매전달용 볼트에 형성된 연결관의 개폐가 냉매의 온도에 따라 능동적으로 조절될 수 있다.
또한, 개선된 고정 브라켓 구조를 통해 전지 모듈의 견고한 고정과 동시에 냉매 누설로 인한 피해를 효과적으로 차단할 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래의 전지팩에 대한 부분 사시도이다.
도 2는 도 1의 전지팩에 포함된 전지 모듈의 마운팅 방법을 나타내는 부분 사시도이다.
도 3은 본 발명의 일 실시예에 따른 전지팩에 포함된 전지 모듈 및 팩 프레임을 나타내는 사시도이다.
도 4는 도 3의 전지 모듈을 팩 프레임에 고정하는 고정 브라켓을 분해하여 나타낸 사시도이다.
도 5는 도 3의 전지 모듈에 대한 분해 사시도이다.
도 6은 도 3의 “A” 부분을 확대하여 나타낸 부분 사시도이다.
도 7은 도 6의 절단선 B-B’를 따라 자른 단면에 대한 부분 단면도이다.
도 8 및 도 9는 도 7의 “E” 부분을 확대하여 나타낸 부분 사시도이다.
도 10a 내지 도 10c는 본 발명의 일 실시예에 따른 냉매전달용 볼트를 다양한 각도에서 바라본 도면들이다.
도 11a 및 도 11b는 본 발명의 일 실시예에 따른 냉매전달용 볼트 및 개폐 부재를 다양한 각도에서 바라본 도면들이다.
도 12a 및 도 12b는, 본 발명의 변형된 일 실시예에 따른 냉매전달용 볼트 및 개폐 부재를 다양한 각도에서 바라본 도면들이다.
도 13은 도 6의 절단선 C-C’를 따라 자른 단면에 대한 부분 단면도이다.
도 14는 도 6의 절단선 D-D’를 따라 자른 단면에 대한 부분 단면도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 “상에” 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 기준이 되는 부분 "위에" 또는 “상에” 있다고 하는 것은 기준이 되는 부분의 위 또는 아래에 위치하는 것이고, 반드시 중력 반대 방향을 향하여 “위에” 또는 “상에” 위치하는 것을 의미하는 것은 아니다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
도 3은 본 발명의 일 실시예에 따른 전지팩에 포함된 전지 모듈 및 팩 프레임을 나타내는 사시도이다. 도 4는 도 3의 전지 모듈을 팩 프레임에 고정하는 고정 브라켓을 분해하여 나타낸 사시도이다. 도 5는 도 3의 전지 모듈에 대한 분해 사시도이다.
도 3 내지 도 5를 참고하면, 본 발명의 일 실시예에 따른 전지팩은 복수의 전지 모듈(100), 복수의 전지 모듈(100)을 수납하는 팩 프레임(1100) 및 냉매전달용 볼트를 포함한다. 전지 모듈(100)은 복수의 전지셀(110)이 적층된 전지셀 적층체(120), 전지셀 적층체(120)를 수납하는 모듈 프레임(200) 및 모듈 프레임(200)의 바닥부(210a) 아래에 위치하는 히트 싱크(300)를 포함한다. 상기 냉매전달용 볼트에 대해서는 후술하도록 한다.
전지셀(110)은 파우치형 전지셀일 수 있다. 이러한 파우치형 전지셀은, 수지층과 금속층을 포함하는 라미네이트 시티의 파우치 케이스에 전극 조립체를 수납한 뒤, 상기 파우치 케이스의 외주부를 열융착하여 형성될 수 있다. 이때, 전지셀(110)은 장방형의 시트형 구조로 형성될 수 있다.
이러한 전지셀(110)은 복수개로 구성될 수 있으며, 복수의 전지셀(110)은 상호 전기적으로 연결될 수 있도록 적층되어 전지셀 적층체(120)를 형성한다. 특히, 도 5에 도시된 바와 같이 x축과 평행한 방향을 따라 복수의 전지셀(110)이 적층될 수 있다.
본 실시예에 따른 전지셀 적층체(120)는 전지셀(110)의 개수가 종래 보다 많아지는 대면적 모듈일 수 있다. 구체적으로, 전지 모듈(100) 당 32개 내지 48개의 전지셀(110)이 포함될 수 있다. 이러한 대면적 모듈의 경우, 전지 모듈의 수평 방향 길이가 길어지게 된다. 여기서, 수평 방향 길이란, 전지셀(110)이 적층된 방향, 즉 x축과 평행한 방향으로의 길이를 의미할 수 있다.
전지셀 적층체(120)를 수납하는 모듈 프레임(200)은 상부 커버(220) 및 U자형 프레임(210)을 포함할 수 있다.
U자형 프레임(210)은 바닥부(210a) 및 바닥부(210a)의 양 단부에서 상향 연장된 2개의 측면부(210b)를 포함할 수 있다. 바닥부(210a)는 전지셀 적층체(120)의 하면(-z축 방향)을 커버할 수 있고, 측면부(210b)는 전지셀 적층체(120)의 양 측면(x축 방향과 -x축 방향)을 커버할 수 있다.
상부 커버(220)는 U자형 프레임(210)에 의해 감싸지는 상기 하면 및 상기 양 측면을 제외한 나머지 상면(z축 방향)을 감싸는 하나의 판상형 구조로 형성될 수 있다. 상부 커버(220)와 U자형 프레임(210)은 서로 대응하는 모서리 부위들이 접촉된 상태에서, 용접 등에 의해 결합됨으로써, 전지셀 적층체(120)를 상하좌우로 커버하는 구조를 형성할 수 있다. 상부 커버(220)와 U자형 프레임(210)을 통해 전지셀 적층체(120)를 물리적으로 보호할 수 있다. 이를 위해 상부 커버(220)와 U자형 프레임(210)는 소정의 강도를 갖는 금속 재질을 포함할 수 있다.
한편, 구체적으로 도시하지 않았으나, 변형예에 따른 모듈 프레임(200)은 상면, 하면 및 양 측면이 일체화된 금속 판재 형태의 모노 프레임일 수 있다. 즉, U자형 프레임(210)과 상부 커버(220)가 상호 결합되는 구조가 아니라, 압출 성형으로 제조되어 상면, 하면 및 양 측면이 일체화된 구조일 수 있다.
엔드 플레이트(400)는 전지셀 적층체(120)의 전면과 후면(y축 방향과 -y축 방향)에 위치하여 전지셀 적층체(120)를 커버하도록 형성될 수 있다. 이러한 엔드 플레이트(400)는 외부의 충격으로부터 전지셀 적층체(120) 및 기타 전장품을 물리적으로 보호할 수 있다.
한편, 구체적으로 도시하지 않았으나, 전지셀 적층체(120)와 엔드 플레이트(400) 사이에는 버스바가 장착되는 버스바 프레임 및 전기적 절연을 위한 절연 커버 등의 위치할 수 있다.
한편, 본 실시예에 따른 전지 모듈(100)은 모듈 프레임(200)의 바닥부(210a) 아래에 위치하는 히트 싱크(300)를 포함한다. 모듈 프레임(200)의 바닥부(210a)는 히트 싱크(300)의 상부 플레이트를 구성할 수 있고, 히트 싱크(300)의 함몰부(340)와 모듈 프레임(200)의 바닥부(210a)가 냉매의 유로를 형성할 수 있다.
구체적으로, 히트 싱크(300)는, 히트 싱크(300)의 골격을 형성하고 모듈 프레임(200)의 바닥부(210a)와 용접 등으로 직접 접합되는 하부 플레이트(310) 및 냉매가 유동하는 경로인 함몰부(340)를 포함할 수 있다.
히트 싱크(300)의 함몰부(340)는, 하부 플레이트(310)가 하측으로 함몰 형성된 부분에 해당한다. 함몰부(340)는 냉매 유로가 뻗는 방향 기준으로 수직하게 xz평면으로 자른 단면이 U자형 관일 수 있으며, 상기 U자형 관의 개방된 상측에 바닥부(210a)가 위치할 수 있다. 히트 싱크(300)가 바닥부(210a)와 접하면서, 함몰부(340)과 바닥부(210a) 사이의 공간이 냉매가 유동하는 영역, 즉 냉매의 유로가 된다. 이에 따라, 모듈 프레임(200)의 바닥부(210a)가 상기 냉매와 접촉할 수 있다.
히트 싱크(300)의 함몰부(340)의 제조 방법에 특별한 제한은 없으나, 판상형의 히트 싱크(300)에 대해 함몰 형성된 구조를 마련함으로써, 상측이 개방된 U자형 함몰부(340)를 형성할 수 있다.
한편, 도시하지는 않았지만, 도 5의 모듈 프레임(200)의 바닥부(210a)와 전지셀 적층체(120) 사이에 열전도성 수지(Thermal resin)를 포함하는 열전도성 수지층이 위치할 수 있다. 상기 열전도성 수지층은 열전도성 수지(Thermal resin)를 바닥부(210a)에 도포하고, 도포된 열전도성 수지가 경화되어 형성될 수 있다.
상기 열전도성 수지는 열전도성 접착 물질을 포함할 수 있으며, 구체적으로 실리콘(Silicone) 소재, 우레탄(Urethan) 소재 및 아크릴(Acrylic) 소재 중 적어도 하나를 포함할 수 있다. 상기 열전도성 수지는, 도포 시에는 액상이나 도포 후에 경화되어 전지셀 적층체(120)를 구성하는 하나 이상의 전지셀(110)을 고정하는 역할을 수행할 수 있다. 또한, 열전도 특성이 뛰어나 전지셀(110)에서 발생한 열을 신속히 전지 모듈의 하측으로 전달할 수 있다.
본 실시예에 따른 전지 모듈(100)은 모듈 프레임(200)과 히트 싱크(300)의 냉각 일체형 구조를 구현하여, 냉각 성능을 보다 향상시킬 수 있다. 모듈 프레임(200)의 바닥부(210a)가 히트 싱크(300)의 상부 플레이트에 대응하는 역할을 함으로써 냉각 일체형 구조를 구현할 수 있다. 직접 냉각에 따른 냉각 효율이 상승하고, 히트 싱크(300)가 모듈 프레임(200)의 바닥부(210a)와 일체화된 구조를 통해 전지 모듈(100) 및 전지 모듈(100)이 장착된 전지팩 상의 공간 활용률을 보다 향상시킬 수 있다.
구체적으로, 전지셀(110)에서 발생한 열이 전지셀 적층체(120)와 바닥부(210a) 사이에 위치하는 열전도성 수지층(미도시), 모듈 프레임(200)의 바닥부(210a), 냉매를 거쳐 전지 모듈(100)의 외부로 전달될 수 있다. 종래의 불필요한 냉각 구조를 제거함으로써, 열전달 경로가 단순화되고, 각 층 사이의 에어 갭을 줄일 수 있기 때문에 냉각 효율이나 성능이 증대될 수 있다. 특히, 바닥부(210a)가 히트 싱크(300)의 상부 플레이트로 구성되어, 바닥부(210a)가 바로 냉매와 맞닿기 때문에 냉매를 통한 보다 직접적인 냉각이 가능한 장점이 있다.
또한, 불필요한 냉각 구조의 제거를 통해 전지 모듈(100)의 높이가 감소하여, 원가 절감이 가능하고, 공간 활용도를 높일 수 있다. 나아가, 전지 모듈(100)이 콤팩트하게 배치될 수 있으므로, 전지 모듈(100)을 다수 포함하는 전지팩의 용량이나 출력을 증대시킬 수 있다.
한편, 모듈 프레임(200)의 바닥부(210a)는 히트 싱크(300) 중 함몰부(340)가 형성되지 않은 하부 플레이트(310) 부분과 용접을 통해 접합될 수 있다. 본 실시예는, 모듈 프레임(200)의 바닥부(210a)와 히트 싱크(300)의 냉각 일체형 구조를 통해, 상술한 냉각 성능 향상뿐만 아니라 모듈 프레임(200)에 수용된 전지셀 적층체(120)의 하중을 지지하고 전지 모듈(100)의 강성을 보강하는 효과를 가질 수 있다. 뿐만 아니라, 하부 플레이트(310)와 모듈 프레임(200)의 바닥부(210a)는 용접 결합 등을 통해 밀봉됨으로써, 하부 플레이트(310) 내측에 형성된 함몰부(340)에서 냉매가 누설 없이 유동할 수 있다.
효과적인 냉각을 위해, 도 5에 도시된 바와 같이, 모듈 프레임(200)의 바닥부(210a)에 대응하는 전 영역에 걸쳐 함몰부(340)가 형성되는 것이 바람직하다. 이를 위해, 함몰부(340)는 적어도 한번 구부러져 일측에서 타측으로 이어질 수 있다. 특히, 모듈 프레임(200)의 바닥부(210a)에 대응하는 전 영역에 걸쳐 함몰부(340)가 형성되기 위해 함몰부(340)는 수차례 구부러지는 것이 바람직하다. 모듈 프레임(200)의 바닥부(210a)에 대응하는 전 영역에 걸쳐 형성된 냉매 유로의 시작점에서 종료점까지 냉매가 이동함에 따라, 전지셀 적층체(120)의 전 영역에 대한 효율적인 냉각이 이루어질 수 있다.
한편, 상기 냉매는 냉각을 위한 매개물로써, 특별한 제한은 없으나, 냉각수일 수 있다.
한편, 본 실시예에 따른 히트 싱크(300)의 함몰부(340)에는 돌출 패턴(340D)이 형성될 수 있다. 본 실시예에 따른 전지셀 적층체(120)와 같이 적층되는 전지셀의 개수가 종래 대비 많이 늘어나는 대면적 전지 모듈의 경우, 냉매 유로의 폭이 더 넓게 형성될 수 있어 온도 편차가 더 심할 수 있다. 대면적 전지 모듈에서는, 기존에 하나의 전지 모듈 내에 대략 12개 내지 24개의 전지셀이 적층된 경우와 달리, 대략 32개 내지 48개의 전지셀이 하나의 전지 모듈 내에 적층되어 있는 경우를 포함할 수 있다. 이러한 경우, 본 실시예에 따른 돌출 패턴(340D)은 냉각 유로의 폭을 실질적으로 축소시키는 효과를 발생시켜 압력 강하를 최소화하고 동시에 냉매 유로 폭 간의 온도 편차를 줄일 수 있다. 따라서, 균일한 냉각 효과를 구현할 수 있다.
이하에서는, 도 6 및 도 7 등을 참고하여, 냉매전달용 볼트를 통한 체결에 대해 구체적으로 설명하도록 한다.
도 6은 도 3의 “A” 부분을 확대하여 나타낸 부분 사시도이다. 도 7은 도 6의 절단선 B-B’를 따라 자른 단면에 대한 부분 단면도이다.
도 4 내지 도 7을 참고하면, 본 실시예에 따른 전지팩은, 모듈 프레임(200)의 바닥부(210a), 히트 싱크(300) 및 팩 프레임(1100)을 체결하는 냉매전달용 볼트(700)를 포함한다.
본 실시예에 따른 팩 프레임(1100)은, 냉매의 공급과 배출을 위한 팩 냉매관(1130, 1140) 및 팩 냉매관(1130, 1140)에 형성된 냉매용 개구(1150, 1160)를 포함할 수 있다. 구체적으로, 팩 냉매관(1130, 1140)은 냉매의 공급을 위한 팩 냉매 공급관(1130) 및 냉매의 배출을 위한 팩 냉매 배출관(1140)을 포함할 수 있다. 또한, 냉매용 개구(1150, 1160)은 팩 냉매 공급관(1130)과 연결된 냉매 공급용 개구(1150) 및 팩 냉매 배출관(1140)과 연결된 냉매 배출용 개구(1160)을 포함할 수 있다.
팩 프레임(1100)은, 전지 모듈(100)을 받치는 받침 프레임(1110) 및 받침 프레임(1110)의 아래에 위치한 하부 프레임(1120)를 포함할 수 있다. 팩 냉매 공급관(1130)과 팩 냉매 배출관(1140)은 받침 프레임(1110)과 하부 프레임(1120) 사이에 위치할 수 있으며, 보다 상세하게는, 팩 냉매 공급관(1130)과 팩 냉매 배출관(1140)은 받침 프레임(1110) 바로 아래에 위치하여 받침 프레임(1110)과 일체화된 구성일 수 있다.
본 실시예에 따른 모듈 프레임(200)은 모듈 프레임(200)의 바닥부(210a) 일부가 연장되어 형성된 모듈 프레임 연장부(211)를 포함할 수 있다. 또한, 본 실시예에 따른 히트 싱크(300)는, 히트 싱크(300)의 일 변으로부터 모듈 프레임 연장부(211)가 위치한 부분으로 연장된 히트 싱크 연장부(311)를 포함할 수 있다. 모듈 프레임 연장부(211)와 히트 싱크 연장부(311)는 서로 대응하는 형태를 갖고, 엔드 플레이트(400)를 지나도록 연장 형성될 수 있다.
모듈 프레임 연장부(211)에 제1 마운팅 홀(211H)이 형성될 수 있으며, 히트 싱크 연장부(311)에 제2 마운팅 홀(311H)이 형성될 수 있다.
본 실시예에 따른 냉매전달용 볼트(700)는 모듈 프레임 연장부(211), 히트 싱크 연장부(311) 및 팩 프레임(1100)을 체결하는데, 구체적으로, 냉매전달용 볼트(700)가 제1 마운팅 홀(211H), 제2 마운팅 홀(311H) 및 팩 프레임(1100)의 냉매 공급용 개구(1150)를 차례로 통과하여 체결된다.
이하에서는, 도 8 내지 도 11 등을 참고하여, 냉매전달용 볼트를 통한 냉매 전달 구조에 대해 구체적으로 설명하도록 한다. 팩 냉매관(1130, 1140) 중 팩 냉매 공급관(1130)을 기준으로 설명하도록 하겠으나, 팩 냉매 배출관(1140)에도 냉매전달용 볼트(700)를 통한 냉매 전달 구조가 마찬가지로 적용될 수 있다.
도 8 및 도 9는 도 7의 “E” 부분을 확대하여 나타낸 부분 사시도이이다. 도 10a 내지 도 10c는 본 발명의 일 실시예에 따른 냉매전달용 볼트를 다양한 각도에서 바라본 도면들이다. 도 11a 및 도 11b는 본 발명의 일 실시예에 따른 냉매전달용 볼트 및 개폐 부재를 다양한 각도에서 바라본 도면들이다.
구체적으로, 도 8은 개폐 부재(900a)에 의해 냉매 유로가 개방된 상태를 나타내고, 도 9는 개폐 부재(900a)에 의해 냉매 유로가 차단된 상태를 나타낸다. 한편, 도 10a 내지 도 10c는 설명의 편의를 위해 개폐 부재(900a)를 제거한 모습의 냉매전달용 볼트(700)를 나타낸 것으로, 도 10a는 냉매전달용 볼트(700)에 대한 사시도이고, 도 10b는 도 10a의 냉매전달용 볼트(700)를 아래에서 바라본 평면도이며, 도 10c는 도 10a의 냉매전달용 볼트(700)를 뒤집은 다음 측면에서 바라본 측면도이다. 한편, 도 11a 및 도 11b는 냉매전달용 볼트(700)에 개폐 부재(900a)가 배치된 모습을 나타낸다.
도 8 내지 도 11을 참고하면, 본 실시예에 따른 냉매전달용 볼트(700)에는, 팩 냉매관(1130, 1140) 및 히트 싱크(300)를 연결하는 연결관(713)이 형성되고, 냉매전달용 볼트(700)는, 냉매의 온도에 반응하여 연결관(713)을 개방하거나 차단하는 개폐 부재(900a, opening-closing member)를 포함한다. 도 8에는 팩 냉매 공급관(1130)과 히트 싱크(300)를 연결하는 냉매전달용 볼트(700)의 연결관(713)이 도시되어 있다.
구체적으로, 냉매전달용 볼트(700)는 연결관(713)이 형성된 본체부(710) 및 본체부(710)의 상단에 위치한 헤드부(720)를 포함할 수 있다. 본체부(710)의 제1 마운팅 홀(211H) 및 제2 마운팅 홀(311H)의 내경과 대응하는 지름을 갖는 기둥형태의 구성으로, 구체적으로 도시하지 않았으나, 외주면에 나사산이 형성될 수 있다. 냉매 공급용 개구(1150)의 내측면에도 나사산이 형성될 수 있어, 본체부(710)가 팩 프레임(1100)에 체결될 수 있다. 헤드부(720)는 본체부(710)보다 직경이 큰 구성으로, 모듈 프레임 연장부(211)와 히트 싱크 연장부(311)를 밀착시킬 수 있다.
냉매전달용 볼트(700)는, 연결관(713)과 이어지고 본체부(710)에 형성된 제1 개구(711) 및 제2 개구(712)를 포함할 수 있다. 제1 개구(711)는 팩 냉매 공급관(1130) 내부에 배치될 수 있고, 제2 개구(712)는 모듈 프레임(200)의 바닥부(210a)와 히트 싱크(300) 사이에 배치될 수 있다. 제1 개구(711)의 개구 방향은 연결관(713)의 관통 방향과 평행할 수 있고, 제2 개구(712)의 개구 방향은 연결관(713)의 관통 방향과 수직할 수 있다. 제1 개구(711)는 연결관(713)과 이어지면서 본체부(710)의 일단에 위치할 수 있고, 제2 개구(712)는 본체부(710)의 외주면을 따라 복수개로 형성되어 연결관(713)과 이어질 수 있다.
팩 냉매 공급관(1130)을 통해 이동한 냉매가 제1 개구(711), 연결관(713) 및 제2 개구(712)를 차례로 통과하여 바닥부(210a)와 히트 싱크(300) 사이로 유입될 수 있다. 유입된 냉매는 상술한 바 대로, 히트 싱크(300)의 함몰부(340)를 따라 이동하여 전지 모듈(100)을 냉각할 수 있다.
본 실시예에 따른 냉매전달용 볼트(700)는, 모듈 프레임(200)과 히트 싱크(300)를 팩 프레임(1100)에 마운팅 고정하는 기능을 담당할 뿐만 아니라 전지 모듈(100) 하단에 냉매를 공급하는 경로로써 기능할 수 있다. 또한, 냉매전달용 볼트(700)의 체결력에 의해 바닥부(210a), 히트 싱크(300) 및 팩 냉매 공급관(1130)이 서로 강하게 밀착되기 때문에 밀봉성이 향상되어 그 사이에서의 냉매 누설의 가능성을 줄일 수 있다. 즉, 마운팅 고정, 가압 실링 및 냉매 전달을 동시에 수행할 수 있어, 부품수 절감 및 구조의 단순화가 가능하다. 또한, 냉매전달용 볼트(700)에 의해 냉매 공급용 개구(1150)와 제2 마운팅 홀(311H)이 정렬될 수 밖에 없으므로, 냉매를 공급하기 위해 필요한 관통홀 간의 정렬에 대한 영향을 최소화할 수 있어, 냉매 누설의 가능성을 줄일 수 있다.
한편, 본 실시예에 따른 개폐 부재(900a)는, 냉매의 온도에 반응하여 연결관(713)을 개방하거나 차단한다. 구체적으로, 개폐 부재(900a)는 형상기억합금을 포함하여 냉매의 온도에 반응할 수 있고, 제2 개구(712)의 개폐를 조절할 수 있다. 또한, 개폐의 정도를 조절하여, 히트 싱크(300)를 흐르는 냉매의 유량이 조절될 수 있다. 이때, 형상기억합금은 전이온도 이하에서 변형되고, 전이온도 이상이 되면 변형이전으로 되돌아가는 성질을 가지는 합금일 수 있다.
구체적으로, 개폐 부재(900a)는 연결관(713)을 개방하거나 차단하는 차단부(910a) 및 차단부(910a)와 연결되고 형상기억합금을 포함하는 스프링부(920a)를 포함할 수 있다. 차단부(910a)는 제2 개구(712)가 형성된 본체부(710)의 외주면을 둘러싸는 형태일 수 있고, 이러한 차단부(910a) 아래에 스프링 형태의 스프링부(920a)가 연결될 수 있다.
스프링부(920a)는, 형상기억합금을 포함할 수 있고, 상기 냉매의 온도에 반응하여 형상이 변형될 수 있다. 특히, 냉매의 온도에 따라 스프링 형태가 상하 방향으로 늘어나거나 줄어들 수 있다. 이러한 스프링부(920a)의 형상 변형에 따라 차단부(910a)가 상하로 움직여, 연결관(713), 특히 제2 개구(712)를 개방하거나 차단할 수 있다. 일례로, 도 8은 스프링부(920a)가 상하 방향으로 줄어들어 차단부(910a)가 아래로 움직여, 제2 개구(712)가 개방된 상태를 보여준다. 반면, 도 9는 스프링부(920a)가 상하 방향으로 늘어나 차단부(910a)가 위로 움직여, 제2 개구(712)가 차단된 상태를 보여준다.
한편, 상술한 바 대로, 본 실시예에 따른 팩 프레임(1100)은, 팩 냉매관(1130, 1140) 및 팩 냉매관(1130, 1140)에 형성된 냉매용 개구(1150, 1160)를 포함할 수 있다. 이 때, 냉매용 개구(1150, 1160)는 스프링부(920a)의 일 단부를 받치는 단차부(1150S)를 포함할 수 있다. 도 8 및 도 9를 기준으로 설명하자면, 냉매전달용 볼트(700)가 통과하는 냉매 공급용 개구(1150)는 단차 구조를 갖는 단차부(1150S)를 포함할 수 있다. 이러한 단차부(1150S)의 상면에 스프링부(920a)가 배치될 수 있다. 스프링부(920a)가 냉매의 온도에 따라 상하 방향으로 늘어나거나 줄어들 때, 단차부(1150S)에 의해 지지되기 때문에 차단부(910a)를 상하로 이동시킬 수 있다.
본 실시예에 따른 전지팩은, 일정 온도에 반응하는 형상기억합금을 이용한 개폐 부재(900a)를 냉매전달용 볼트(700)에 적용함으로써, 냉매의 온도에 따라 능동적으로 냉매의 공급과 차단을 조절할 수 있으며, 개폐의 정도에 따라 냉매의 유량도 조절할 수 있다. 별도의 복잡한 조절 장치 없이도, 간편하게 전지 모듈의 온도에 따라 유량이 조절되는 냉매 순환 시스템을 형성할 수 있다.
한편, 본 실시예에 따른 전지팩은 냉매전달용 볼트(700)의 본체부(710)를 둘러싸는 가스켓(600)을 더 포함할 수 있다. 가스켓(600)은, 헤드부(720)와 모듈 프레임 연장부(211) 사이 및 히트 싱크(300)와 팩 프레임(1100) 사이 중 적어도 한 곳에 위치할 수 있다. 이러한 가스켓(600)을 통해 냉매의 누설을 방지할 수 있다.
한편, 구체적으로 도시하지 않았으나, 제1 마운팅 홀(211H), 제2 마운팅 홀(311H) 및 팩 프레임(1100)의 냉매 배출용 개구(1160)도 본 실시예에 따른 냉매전달용 볼트(700)에 의해 체결될 수 있다. 다시 말해, 본 실시예에 따르면, 팩 냉매관(1130, 1140)은 모두 냉매전달용 볼트(700)를 통해 히트 싱크(300)와 연결될 수 있으며, 제1 마운팅 홀(211H), 제2 마운팅 홀(311H) 및 냉매전달용 볼트(700)는 복수개로 구성될 수 있다. 팩 냉매 공급관(1130)으로부터 어느 하나의 제2 마운팅 홀(311H)과 냉매전달용 볼트(700)를 통해 유입된 냉매가 함몰부(340)를 따라 이동한 후, 다른 하나의 제2 마운팅 홀(311H)과 냉매전달용 볼트(700)를 통해 팩 냉매 배출관(1140)으로 배출될 수 있다.
한편, 11a 및 도 11b를 다시 참고하면, 본 실시예에 따른 스프링부(920a)는 코일형 스프링일 수 있다. 구체적으로, 이러한 코일형 스프링은 냉매전달용 볼트(700)의 본체부(710)의 외주면을 둘러싸면서, 냉매의 온도에 반응하여 상하 방향으로 압축 등의 변형이 가능할 수 있다.
한편, 도 12a 및 도 12b는, 본 발명의 변형된 일 실시예에 따른 냉매전달용 볼트 및 개폐 부재를 다양한 각도에서 바라본 도면들이다.
도 12a 및 도 12b를 참고하면, 본 실시예 따른 개폐 부재(900b)는, 차단부(910b) 및 스프링부(920b)를 포함할 수 있다. 이 때, 차단부(910b)는 앞서 설명한 구성과 유사 내지 동일할 수 있으나, 스프링부(920b)는 판상형 스프링일 수 있다. 구체적으로, 복수의 판상형 스프링은 차단부(910b)를 따라 일정 간격으로 이격되어 배치될 수 있고, 냉매의 온도에 반응하여 상하 방향으로 압축 등의 변형이 가능할 수 있다.
상기와 같은 본 실시예들에 따른 스프링부(920a, 920b)는 하나의 예시적 구조일 수 있으며, 차단부(910a, 910b)를 상하 방향으로 이동시킬 수 있다면, 그 형태의 특별한 제한은 없다.
이하에서는, 도 13 및 도 14 등을 참고하여, 고정 브라켓을 통한 고정 방식에 대해 구체적으로 설명하도록 한다.
도 13은 도 6의 절단선 C-C’를 따라 자른 단면에 대한 부분 단면도이고, 도 14는 도 6의 절단선 D-D’를 따라 자른 단면에 대한 부분 단면도이다.
도 4, 도 5, 도 13 및 도 14를 참고하면, 본 실시예에 따른 전지 모듈(100)의 전면 및 후면에 각각 돌출부(410)가 형성된다. 전지 모듈(100)의 전면 및 후면 엔드 플레이트(400)가 위치할 수 있는데, 돌출부(410)는 엔드 플레이트(400)에 형성될 수 있다. 구체적으로, 돌출부(410)는 전지셀(110)의 적층 방향과 수직한 방향(y축과 평행한 방향)을 향해 돌출된 구조일 수 있다. 즉, 전지 모듈(100)의 전면에 형성된 돌출부(410)는 y축 방향을 향해 돌출될 수 있고, 전지 모듈(100)의 후면에 형성된 돌출부(410)는 -y축 방향을 향해 돌출될 수 있다.
또한, 돌출부(410)는 전지 모듈(100)의 전면의 하측 모서리와 전지 모듈(100)의 후면의 하측 모서리에 각각 형성될 수 있다. 아울러, 전지 모듈(100)의 전면과 후면 각각에 대해 서로 이격된 2개의 돌출부(410)가 형성될 수 있다.
고정 브라켓(500)은, 돌출부(410)를 감싸면서 팩 프레임(1100)에 결합될 수 있다. 구체적으로, 돌출부(410)는 엔드 플레이트(400)로부터 돌출되어 형성됨에 따라 상면과 3개의 측면을 갖는데, 고정 브라켓(500)은 돌출부(410)의 상면과 일 측면을 감싸는 고정부(510)를 포함할 수 있다. 나아가, 고정부(510)는 돌출부(410)의 다른 두 측면을 더 감쌀 수 있다.
한편, 고정 브라켓(500)에 브라켓 홀(500H)이 형성되고, 팩 프레임(1100)에 팩 프레임 홀(1111H)이 형성된다. 본 실시예에 따른 전지팩은 팩 프레임 홀(1111H)과 브라켓 홀(500H)을 통과하는 브라켓 볼트(B1) 및 브라켓 볼트(B1)와 결합되는 브라켓 너트(N1)를 포함할 수 있다.
구체적으로, 브라켓 홀(500H)과 팩 프레임 홀(1111H)이 서로 대응하도록 위치하고, 브라켓 볼트(B1)가 팩 프레임 홀(1111H)과 브라켓 홀(500H)을 통과하여 상향 직립될 수 있다. 그 후 브라켓 볼트(B1)가 브라켓 너트(N1)와 결합되어 고정 브라켓(500)이 팩 프레임(1100)에 고정될 수 있다. 효과적인 고정을 위해 팩 프레임 홀(1111H), 브라켓 홀(500H), 브라켓 볼트(B1) 및 브라켓 너트(N1)는 각각 복수로 구성되는 것이 바람직하며, 도 4에는 일 실시예로써, 각각 4개씩 구성된 모습이 나타나있다.
전지 모듈(100)을 사이에 두고 서로 대향하여 배치되는 2개의 고정 브라켓(500)이 전지 모듈(100)의 돌출부(410)를 감싸면서, 브라켓 볼트(B1)와 브라켓 너트(N1)를 통해 팩 프레임(1100)에 결합되기 때문에 전지 모듈(100)이 팩 프레임(1100)에 수납 및 고정될 수 있다.
한편, 도 13에 도시된 바와 같이, 본 실시예에 따른 전지팩은, 돌출부(410)와 팩 프레임(1100) 사이에 위치하는 절연 부재(800)를 더 포함할 수 있다. 절연 부재(800)는 전기적 절연을 띄는 패드 형태의 부재일 수 있다. 엔드 플레이트(400)와 팩 프레임(1100) 사이에 이종 재질 접촉으로 인한 갈바닉 부식(Galvanic Corrosion) 발생할 수 있는데, 그 사이에 절연 부재(800)를 배치함으로써, 갈바닉 부식의 발생을 예방할 수 있다.
한편, 도 6을 다시 참고하면, 본 실시예에 따른 고정 브라켓(500)은 모듈 프레임 연장부(211)를 덮는 덮개부(520)를 포함할 수 있다. 또한, 덮개부(520)의 좌, 우에는 브라켓 볼트(B1)와 브라켓 너트(N1)의 체결구조가 각각 위치할 수 있다. 브라켓 볼트(B1)와 브라켓 너트(N1)로 고정되는 고정 브라켓(500)에 덮개부(520)를 형성함으로써, 모듈 프레임 연장부(211)를 가압할 수 있다. 따라서, 모듈 프레임 연장부(211) 및 히트 싱크 연장부(311)가 밀착되어 그 사이에서의 냉매 누설의 가능성을 줄일 수 있다. 또한, 냉매전달용 볼트(700)의 헤드부(720)가 엔드 플레이트(400), 모듈 프레임 연장부(211) 및 덮개부(520)에 둘러 쌓인 채 밀폐될 수 있다. 덮개부(520)를 통해 밀폐함으로써, 누설된 냉매가 주변의 부품들로 침투하는 것을 차단할 수 있다. 즉, 덮개부(520) 자체가 냉매의 누설 방지 기능을 수행할 수 있다.
본 실시예에서 전, 후, 좌, 우, 상, 하와 같은 방향을 나타내는 용어가 사용되었으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있다.
앞에서 설명한 본 실시예에 따른 하나 또는 그 이상의 전지 모듈은, BMS(Battery Management System), 냉각 시스템 등의 각종 제어 및 보호 시스템과 함께 장착되어 전지 팩을 형성할 수 있다.
상기 전지 모듈이나 전지 팩은 다양한 디바이스에 적용될 수 있다. 구체적으로는, 전기 자전거, 전기 자동차, 하이브리드 등의 운송 수단에 적용될 수 있으나 이에 제한되지 않고 이차 전지를 사용할 수 있는 다양한 디바이스에 적용 가능하다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
부호의 설명
100: 전지 모듈
200: 모듈 프레임
211: 모듈 프레임 연장부
300: 히트 싱크
311: 히트 싱크 연장부
700: 냉매전달용 볼트
713: 연결관
900a, 900b: 개폐 부재
1100: 팩 프레임

Claims (15)

  1. 복수의 전지셀이 적층된 전지셀 적층체, 상기 전지셀 적층체를 수납하는 모듈 프레임 및 상기 모듈 프레임의 바닥부 아래에 위치하는 히트 싱크를 포함하는 복수의 전지 모듈;
    상기 복수의 전지 모듈을 수납하는 팩 프레임; 및
    상기 모듈 프레임의 바닥부, 상기 히트 싱크 및 상기 팩 프레임을 체결하는 냉매전달용 볼트를 포함하고,
    상기 팩 프레임은, 냉매의 공급과 배출을 위한 팩 냉매관을 포함하며,
    상기 냉매전달용 볼트에 상기 팩 냉매관 및 상기 히트 싱크를 연결하는 연결관이 형성되고,
    상기 냉매전달용 볼트는, 냉매의 온도에 반응하여 상기 연결관을 개방하거나 차단하는 개폐 부재를 포함하는 전지팩.
  2. 제1항에서,
    상기 개폐 부재는 형상기억합금을 포함하여 상기 냉매의 온도에 반응하는 전지팩.
  3. 제1항에서,
    상기 냉매전달용 볼트는, 상기 연결관과 이어지는 제1 개구 및 제2 개구를 포함하고,
    상기 제1 개구는 상기 팩 냉매관 내부에 배치되며,
    상기 제2 개구는 상기 모듈 프레임의 바닥부와 상기 히트 싱크 사이에 배치되고,
    상기 개폐 부재는 상기 냉매의 온도에 반응하여, 상기 제2 개구의 개폐를 조절하는 전지팩.
  4. 제1항에서,
    상기 개폐 부재는, 상기 연결관을 개방하거나 차단하는 차단부 및 상기 차단부와 연결되고 형상기억합금을 포함하는 스프링부를 포함하는 전지팩.
  5. 제4항에서,
    상기 스프링부는 상기 냉매의 온도에 반응하여 형상이 변형되고,
    상기 스프링부의 형상 변형에 따라 상기 차단부가 상하로 움직여, 상기 연결관을 개방하거나 차단하는 전지팩.
  6. 제4항에서,
    상기 스프링부는 코일형 스프링 또는 판상형 스프링인 전지팩.
  7. 제4항에서,
    상기 팩 프레임에 냉매용 개구가 형성되고,
    상기 냉매용 개구는 상기 스프링부의 일 단부를 받치는 단차부를 포함하는 전지팩.
  8. 제1항에서,
    상기 모듈 프레임은, 상기 모듈 프레임의 바닥부 일부가 연장되어 형성된 모듈 프레임 연장부를 포함하고,
    상기 히트 싱크는, 상기 히트 싱크의 일 변으로부터 상기 모듈 프레임 연장부가 위치한 부분으로 연장된 히트 싱크 연장부를 포함하며,
    상기 냉매전달용 볼트는 상기 모듈 프레임 연장부, 상기 히트 싱크 연장부 및 상기 팩 프레임을 체결하는 전지팩.
  9. 제8항에서,
    상기 팩 프레임에 냉매용 개구가 형성되고,
    상기 모듈 프레임 연장부에 제1 마운팅 홀이 형성되며,
    상기 히트 싱크 연장부에 제2 마운팅 홀이 형성되고,
    상기 냉매전달용 볼트가 상기 제1 마운팅 홀, 상기 제2 마운팅 홀 및 상기 냉매용 개구를 통과하는 전지팩.
  10. 제1항에서,
    상기 냉매전달용 볼트는, 상기 연결관과 이어지는 제1 개구 및 제2 개구를 포함하고,
    상기 제1 개구는 상기 팩 냉매관 내부에 배치되며,
    상기 제2 개구는 상기 모듈 프레임의 바닥부와 상기 히트 싱크 사이에 배치되고,
    상기 제1 개구의 개구 방향은 상기 연결관의 관통 방향과 평행하고,
    상기 제2 개구의 개구 방향은 상기 연결관의 관통 방향과 수직한 전지팩.
  11. 제1항에서,
    상기 냉매전달용 볼트는 상기 연결관이 형성된 본체부 및 상기 본체부의 상단에 위치한 헤드부를 포함하는 전지팩.
  12. 제11항에서,
    상기 본체부를 둘러싸는 가스켓을 더 포함하고,
    상기 가스켓은, 상기 헤드부와 상기 모듈 프레임의 바닥부 일부가 연장되어 형성된 모듈 프레임 연장부 사이 및 상기 히트 싱크와 상기 팩 프레임 사이 중 적어도 한 곳에 위치하는 전지팩.
  13. 제1항에서,
    상기 전지 모듈의 전면 및 후면에 각각 돌출부가 형성되며,
    상기 전지 모듈의 전면 및 후면에 각각 위치하고, 상기 돌출부를 감싸면서 상기 팩 프레임에 결합되는 고정 브라켓을 더 포함하는 전지팩.
  14. 제1항에서,
    상기 팩 프레임은, 상기 전지 모듈을 받치는 받침 프레임 및 상기 받침 프레임의 아래에 위치한 하부 프레임를 포함하고,
    상기 팩 냉매관은 상기 받침 프레임과 상기 하부 프레임 사이에 위치하는 전지팩.
  15. 제1항에 따른 전지팩을 더 포함하는 디바이스.
PCT/KR2021/009644 2020-08-24 2021-07-26 전지팩 및 이를 포함하는 디바이스 WO2022045596A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180030497.XA CN115428232A (zh) 2020-08-24 2021-07-26 电池组和包括该电池组的装置
EP21861895.7A EP4120440A4 (en) 2020-08-24 2021-07-26 BATTERY PACK AND DEVICE COMPRISING IT
US17/919,716 US20230163376A1 (en) 2020-08-24 2021-07-26 Battery pack and device including the same
JP2022552223A JP7384532B2 (ja) 2020-08-24 2021-07-26 電池パックおよびこれを含むデバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200106097A KR20220025420A (ko) 2020-08-24 2020-08-24 전지팩 및 이를 포함하는 디바이스
KR10-2020-0106097 2020-08-24

Publications (1)

Publication Number Publication Date
WO2022045596A1 true WO2022045596A1 (ko) 2022-03-03

Family

ID=80355344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009644 WO2022045596A1 (ko) 2020-08-24 2021-07-26 전지팩 및 이를 포함하는 디바이스

Country Status (6)

Country Link
US (1) US20230163376A1 (ko)
EP (1) EP4120440A4 (ko)
JP (1) JP7384532B2 (ko)
KR (1) KR20220025420A (ko)
CN (1) CN115428232A (ko)
WO (1) WO2022045596A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016301A (ja) * 2011-07-01 2013-01-24 Hitachi Vehicle Energy Ltd 蓄電モジュール
KR101634947B1 (ko) * 2006-10-13 2016-07-01 에네르델, 인코포레이티드 온도 제어 장치를 구비한 배터리 조립체
JP2019516225A (ja) * 2016-10-31 2019-06-13 エルジー・ケム・リミテッド バッテリーのエッジ面に直接冷却方式を適用したバッテリーパック
KR20200021608A (ko) * 2018-08-21 2020-03-02 에스케이이노베이션 주식회사 배터리 모듈 및 이를 포함하는 배터리 팩
JP2020043004A (ja) * 2018-09-12 2020-03-19 株式会社デンソー 電池スタック

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015391A (ja) 2010-07-02 2012-01-19 Panasonic Corp 冷却装置およびこれを用いた電子機器
PL3327821T3 (pl) * 2016-01-12 2020-05-18 Lg Chem, Ltd. Zespół modułu akumulatora mający stabilne środki mocujące dla modułów jednostkowych
KR102101906B1 (ko) * 2016-10-21 2020-04-17 주식회사 엘지화학 조립 가이드 기능의 체결 부재를 포함하는 전지팩
JP6767962B2 (ja) 2017-12-25 2020-10-14 本田技研工業株式会社 回転電機のステータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101634947B1 (ko) * 2006-10-13 2016-07-01 에네르델, 인코포레이티드 온도 제어 장치를 구비한 배터리 조립체
JP2013016301A (ja) * 2011-07-01 2013-01-24 Hitachi Vehicle Energy Ltd 蓄電モジュール
JP2019516225A (ja) * 2016-10-31 2019-06-13 エルジー・ケム・リミテッド バッテリーのエッジ面に直接冷却方式を適用したバッテリーパック
KR20200021608A (ko) * 2018-08-21 2020-03-02 에스케이이노베이션 주식회사 배터리 모듈 및 이를 포함하는 배터리 팩
JP2020043004A (ja) * 2018-09-12 2020-03-19 株式会社デンソー 電池スタック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4120440A4 *

Also Published As

Publication number Publication date
JP2023516316A (ja) 2023-04-19
JP7384532B2 (ja) 2023-11-21
EP4120440A1 (en) 2023-01-18
US20230163376A1 (en) 2023-05-25
KR20220025420A (ko) 2022-03-03
EP4120440A4 (en) 2024-02-21
CN115428232A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2019027150A1 (ko) 배터리 셀용 카트리지 및 이를 포함하는 배터리 모듈
WO2021118028A1 (ko) 인근 모듈로의 가스 이동을 방지할 수 있는 전지 모듈
WO2021206514A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221478A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021206383A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021210771A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221307A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021246636A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022149896A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022080754A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221340A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021251670A1 (ko) 배터리 모듈이 다단으로 적층된 전지 팩
WO2021221295A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021215837A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022149897A1 (ko) 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
WO2022045596A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022154431A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022059936A1 (ko) 냉각성능이 향상된 전지 모듈 및 이를 포함하는 전지 팩
WO2021221310A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021221297A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022234943A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022182036A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022149884A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221324A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2023282604A1 (ko) 전지 모듈 및 이를 포함하는 전지팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552223

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021861895

Country of ref document: EP

Effective date: 20221011

NENP Non-entry into the national phase

Ref country code: DE