WO2024106741A1 - 개선된 냉각 구조를 갖는 전지 모듈 및 이를 포함하는 전지 팩 - Google Patents

개선된 냉각 구조를 갖는 전지 모듈 및 이를 포함하는 전지 팩 Download PDF

Info

Publication number
WO2024106741A1
WO2024106741A1 PCT/KR2023/014962 KR2023014962W WO2024106741A1 WO 2024106741 A1 WO2024106741 A1 WO 2024106741A1 KR 2023014962 W KR2023014962 W KR 2023014962W WO 2024106741 A1 WO2024106741 A1 WO 2024106741A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cell
paragraph
battery module
heat dissipation
Prior art date
Application number
PCT/KR2023/014962
Other languages
English (en)
French (fr)
Inventor
김두승
엄태기
이정훈
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2024106741A1 publication Critical patent/WO2024106741A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling

Definitions

  • the present invention relates to a battery module and a battery pack including the same, and more specifically, to a battery module with an improved cooling structure and a battery pack including the same.
  • secondary batteries are receiving much attention as an energy source for not only mobile devices such as mobile phones, digital cameras, laptops, and wearable devices, but also power devices such as electric bicycles, electric vehicles, and hybrid electric vehicles.
  • a battery module and/or a battery pack is constructed by connecting a plurality of battery cells in series/parallel
  • a battery module is composed of at least one battery cell, and other components are added using at least one battery module. This is a common method of constructing a battery pack.
  • the battery cells that make up these medium-to-large battery modules are composed of secondary batteries capable of charging and discharging, such high-output, large-capacity secondary batteries generate a large amount of heat during the charging and discharging process.
  • heat from multiple battery cells is added up in a small space, causing the temperature to rise quickly and severely.
  • high output can be obtained, but it is not easy to remove heat generated from the battery cells during charging and discharging. If the heat dissipation of the battery cell is not performed properly, the battery cell deteriorates faster, its lifespan is shortened, and the possibility of explosion or ignition increases.
  • battery modules included in vehicle battery packs are frequently exposed to direct sunlight and may be placed in high temperature conditions such as summer or desert areas. Additionally, because multiple battery modules are deployed intensively to increase the vehicle's driving range, flame or heat generated from one battery module can easily spread to neighboring battery modules, ultimately leading to ignition or explosion of the battery pack itself. You can.
  • FIG. 1 is a perspective view showing a battery cell assembly to which a conventional cooling fin is applied.
  • FIG. 2 is an exploded view showing a cooling fin structure disposed between battery cells included in the battery cell assembly of FIG. 1.
  • a conventional battery cell assembly 1 includes a plurality of battery cells 10 stacked side by side in one direction and a cooling fin interposed between neighboring battery cells 10. 20).
  • the cooling fin 20 includes a plate-shaped heat sink 21 shown in FIG. 2, a refrigerant pipe 22 formed on the edge of the heat sink 21, and an insulating sheet layer ( 25) may be included. At this time, the insulating sheet layer 25 may be omitted, and the surface of the heat sink 21 may be insulated.
  • the refrigerant pipe 22 may be hook-coupled with the heat sink 21, or the refrigerant pipe 22 and the heat sink 21 may be formed as one piece.
  • the refrigerant pipe 22 is formed to be disposed outside the battery cell 10.
  • the battery cell assembly 1 can be stored in a module frame (not shown) to form a battery module, and heat generated from the battery cell can be cooled by the cooling fins 20 included in the battery cell assembly 1. .
  • space utilization is low because a separate insulating sheet layer or coating layer is required to ensure the thickness and electrical insulation of the cooling fins 20.
  • Figure 3 is a diagram showing a heat discharge path in a conventional battery module.
  • a conventional battery module 30 includes a cell assembly 70 including battery cells 60 stacked in a preset direction, and a module frame 40 for housing the cell assembly 70,
  • the cell assembly 70 is fixed and positioned on the thermally conductive resin layer 50 located on the lower surface of the module frame 40.
  • a heat sink 90 is provided in contact with the bottom of the module frame 40 located in the -z-axis direction of FIG. 3, and the heat sink 90
  • a heat conduction pad 80 for heat transfer may be additionally installed between the bottom of the module frame 40 and the bottom of the module frame 40.
  • the heat sink 90 does not receive heat while being in direct contact with the cell assembly 70, the cooling efficiency is not very high, and the cooling path is directed in one direction (-z) of the width direction of the battery cell. axial direction), a temperature gradient may occur.
  • the thermally conductive resin layer 50 fixes the cell assembly 70 on one side, when large swelling occurs in high-capacity batteries such as all-solid-state batteries and silicon-based batteries, pouch cell cracking issues occur. It can happen.
  • the problem to be solved by the present invention is to provide a battery module and battery pack that can improve heat transfer performance by changing the conventional cooling fin structure.
  • battery modules and battery packs can be provided to increase space utilization while maintaining a uniform cell temperature.
  • the cell body cannot be directly cooled in the impregnation cooling structure, it is possible to provide a battery module and battery pack that increases cell lifespan by resolving spatial non-uniformity in cooling performance.
  • a battery module and a battery pack that reinforce structural stability in the z-axis direction can be provided.
  • a battery module includes a cell assembly in which a plurality of battery cells are stacked in one direction, a heat dissipation member in contact with the battery cells within the cell assembly, and a module frame for housing the cell assembly.
  • the heat dissipation member includes a plate-shaped member parallel to one side of the battery cell, and a reinforcing member extending from at least one of a first portion and a second portion of the plate-shaped member.
  • the cell unit including the battery cell and the heat dissipation member includes a first battery cell and a second battery cell, a first heat dissipation member located on one side of the first battery cell, and a first heat dissipation member located on one side of the second battery cell.
  • the first and second battery cells include a second heat dissipation member and are in contact with the first and second battery cells among the extension portions of the first and second reinforcing members included in each of the first and second heat dissipation members.
  • a first open portion may be formed exposing a portion of the .
  • a second open portion exposing a portion of the module frame may be formed between the extended portion of the first reinforcing member and the extended portion of the second reinforcing member.
  • a cooling passage is formed inside the first and second reinforcing members, and the cooling passage is impregnated with an insulating coolant, so that the insulating coolant and the battery cell can be in direct contact through the open portion.
  • a plurality of cell units are stacked within the cell assembly, and the battery module may further include compression pads positioned between neighboring cell units among the plurality of stacked cell units.
  • the cell unit may further include a compression pad positioned between the first battery cell and the second battery cell.
  • a plurality of cell units are stacked within the cell assembly, and the battery module may further include compression pads positioned between neighboring cell units among the plurality of stacked cell units.
  • the reinforcing member may include at least two extension parts parallel to each other, and a cooling passage may be formed between the two extension parts.
  • the cooling passage is impregnated with the insulating coolant, so that the insulating coolant and the reinforcing member can be in direct contact.
  • the reinforcing member may have an extrusion type structure.
  • the at least two extension parts may extend in the same direction from the plate-shaped member.
  • the reinforcing member may have a press molded type structure.
  • the reinforcing member may extend from the plate-shaped member in a zigzag shape and be formed in the space between the battery cell and the module frame.
  • the reinforcing member is formed on the upper and lower edges of the plate-shaped member, respectively, and the reinforcing member may contact the upper and lower portions of the module frame, respectively.
  • the plate-shaped member and the reinforcing member included in the heat dissipation member may be formed as one piece, and the reinforcing member may be formed by bending the plate-shaped member.
  • the heat dissipation member may include aluminum, stainless steel, copper, gold, graphite, graphene, CNT (carbon nanotube), or a composite material thereof.
  • the heat dissipation member may be a lamination of at least two of aluminum, stainless steel, copper, gold, graphite, graphene, and CNT (carbon nanotube).
  • the module frame may be impregnated with an insulating coolant.
  • a battery pack according to another embodiment of the present invention includes the battery module described above.
  • heat transfer performance can be improved by implementing a heat dissipation member using a lighter and thinner material than before.
  • the heat dissipation member interposed between the battery cells extends from the top and/or bottom of the cell assembly and directly contacts the insulating coolant, thereby increasing cooling efficiency.
  • the structural stability of the battery module can be improved by adding a shape to reinforce the rigidity of the cell unit in which the battery cell and the heat dissipation member are combined.
  • Figure 1 is a perspective view showing a battery cell assembly to which a conventional cooling fin is applied.
  • FIG. 2 is an exploded view showing a cooling fin structure disposed between battery cells included in the battery cell assembly of FIG. 1.
  • Figure 3 is a diagram showing a heat discharge path in a conventional battery module.
  • Figure 4 is a perspective view showing a battery module according to an embodiment of the present invention.
  • Figure 5 is a perspective view showing one battery cell included in the cell assembly of Figure 4.
  • FIG. 6 is a perspective view showing a cell unit included in the battery module of FIG. 4.
  • FIG. 7 is a front view of the cell unit of FIG. 6 viewed along the x-axis direction.
  • Figure 8 is a perspective view showing a cell unit according to another embodiment of the present invention.
  • FIG. 9 is a front view of the cell unit of FIG. 8 viewed along the x-axis direction.
  • FIG. 10 is a diagram showing a portion of a cell assembly including the cell unit of FIG. 6.
  • FIGS. 11 and 12 are diagrams showing modified examples of the cell assembly of FIG. 10.
  • FIG. 13 is a diagram showing a portion of a cell assembly including the cell unit of FIG. 8.
  • FIGS. 14 and 15 are diagrams showing modified examples of the cell assembly of FIG. 13.
  • FIG. 4 is a perspective view showing a battery module according to an embodiment of the present invention.
  • FIG. 5 is a perspective view showing one battery cell included in the cell assembly of FIG. 4.
  • the battery module includes a cell assembly 120 formed by stacking a plurality of battery cells 110 in one direction, and a module frame (which is open at the front and back to accommodate the cell assembly 120). 200), and an end plate 150 that covers the front and rear of the module frame 200.
  • the end plate 150 may be formed to cover the cell assembly 120 by being positioned on the open first side (x-axis direction) and second side (-x-side direction) of the module frame 200. This end plate 150 can physically protect the cell assembly 120 and other electrical components from external shock.
  • the battery module according to this embodiment includes a bus bar frame (not shown) located between the cell assembly 120 and the end plate 150, and an insulating cover located between the bus bar frame and the end plate 150. (not shown) may further be included. On the bus bar frame, an electrode lead protruding from the battery cell 110 and a bus bar for electrical connection between neighboring cells may be coupled. The insulating cover may serve for electrical insulation between the end plate 150 and electrical components on the cell assembly 120 and/or the busbar frame.
  • the module frame 200 is shown as a mono frame surrounding the top, bottom, left, and right sides of the cell assembly 120, but it is not limited to this and is formed on the left and right sides of the cell assembly 120 by a U-shaped lower frame. And it may be a structure in which the lower surface is covered, the upper surface of the cell assembly 120 is covered by the upper plate, and then the U-shaped lower frame and the upper plate are coupled.
  • the cell assembly 120 includes a plurality of battery cells 110 stacked in one direction, and the plurality of battery cells 110 are stacked in the y-axis direction as shown in Figure 4.
  • the battery cell 110 is preferably a pouch-type battery cell.
  • the battery cell 110 according to this embodiment has two electrode leads 111 and 112 facing in opposite directions, one end 114a of the cell body 113, and the other end 114a. Each may have a structure protruding from (114b).
  • the battery cell 110 is manufactured by storing the electrode assembly (not shown) in the cell case 114 and adhering both ends 114a and 114b of the cell case 114 and both sides 114c connecting them. It can be.
  • the battery cell 110 has a total of three sealing portions 114sa, 114sb, and 114sc, and the sealing portions 114sa, 114sb, and 114sc have a structure that is sealed by a method such as heat fusion.
  • the other side may be made of a connection portion 115.
  • a space between both ends 114a and 114b of the cell case 114 is defined in the longitudinal direction of the battery cell 110, and one side portion 114c and a connection portion connect both ends 114a and 114b of the battery case 114.
  • the space between (115) can be defined as the width direction of the battery cell (110).
  • connection portion 115 is a region extending long along one edge of the battery cell 110, and a protrusion 110p of the battery cell 110 may be formed at an end of the connection portion 115.
  • the protruding portion 110p may be formed on at least one of both ends of the connecting portion 115 and may protrude in a direction perpendicular to the direction in which the connecting portion 115 extends.
  • the protrusion 110p may be located between the connection portion 115 and one of the sealing portions 114sa and 114sb of both ends 114a and 114b of the cell case 114.
  • the cell case 114 generally has a laminate structure of a resin layer/metal thin film layer/resin layer.
  • a resin layer/metal thin film layer/resin layer For example, when the cell case surface is made of an O (oriented)-nylon layer, when multiple battery cells are stacked to form a medium to large-sized battery module, it tends to slip easily due to external shock. Therefore, in order to prevent this and maintain a stable stacked structure of the battery cells, an adhesive member such as an adhesive such as a double-sided tape or a chemical adhesive bonded by a chemical reaction during adhesion is attached to the surface of the cell case to form a cell assembly (120). ) can be formed. According to one embodiment of the present invention, a heat dissipation member is formed in contact with the battery cell 110, as will be described later.
  • the heat dissipation member is formed between neighboring battery cells 110, and the heat dissipation member and the battery cells 110 are fixed with an adhesive member to form the cell assembly 120, or even if the adhesive member is not used.
  • the cell assembly 120 may be formed using other fixing members.
  • the cell assembly 120 may be accommodated inside the module frame 200 and cooled by an insulating coolant impregnated within the module frame 200.
  • the insulating coolant may be an insulating coolant or insulating oil that has electrically insulating properties.
  • the battery cell 110 and the coolant come into direct contact, thereby increasing cooling efficiency.
  • the portion corresponding to the cell body 113 of the battery cell 110 shown in FIG. 5 is not directly exposed to the insulating coolant, spatial non-uniformity in cooling performance may occur. This results in a local temperature increase of the battery cell 110, which may cause battery cell deterioration.
  • a heat dissipation member which will be described later, is formed to be interposed between the first battery cell and the second battery cell within the cell assembly 120.
  • the heat dissipation member may be disposed between neighboring battery cells 110.
  • the heat dissipation member may be formed once for every two battery cells 110, or may be formed once for every four battery cells 110.
  • FIG. 6 is a perspective view showing a cell unit included in the battery module of FIG. 4.
  • FIG. 7 is a front view of the cell unit of FIG. 6 viewed along the x-axis direction.
  • the cell unit 125 includes a battery cell 110 and a heat dissipation member 130.
  • the heat dissipation member 130 includes a plate-shaped member 131 parallel to one side of the battery cell 110, and a reinforcing member 132 extending from at least one of the first portion and the second portion of the plate-shaped member 131. do.
  • the first part of the plate-shaped member 131 may be an upper edge
  • the second part may be a lower edge.
  • the reinforcing member 132 according to the embodiment of FIG. 7 has a structure extending from the upper and lower edges of the plate-shaped member 131.
  • the reinforcing member 132 includes a first reinforcing member 132a and a second reinforcing member 132b.
  • the first and second reinforcement members 132a and 132b each include at least two extension parts 133 and 134 arranged parallel to each other. At this time, at least two extension parts 133 and 134 may extend from the plate-shaped member 131 in the same direction.
  • Each of the first and second reinforcing members 132a and 132b includes a first extension portion 133 that is bent from one edge of the plate-shaped member 131 and covers the upper and lower surfaces of the battery cell 110, and the plate-shaped member 131 ) includes a connecting portion 135 extending at regular intervals from one edge of the plate-shaped member 131 along the same direction as the extending direction, and a second extension portion 134 bent from an end of the connecting portion 135.
  • the reinforcing member 132 may have an extrusion molding type structure.
  • a portion of the upper and/or lower surface of the battery cell 110 is exposed between the first extension 133 of the first reinforcing member 132a and the first extension 133 of the second reinforcing member 132b.
  • a first open portion 136 may be formed. The first extension 133 may contact the battery cell 110.
  • a second open portion exposing a portion of the module frame 200 is provided between the second extension portion 134 of the first reinforcing member 132a and the second extension portion 134 of the second reinforcing member 132b. (137) can be formed.
  • a cooling passage (CP) is formed inside the first and second reinforcing members 132a and 132b, and the cooling passage (CP) is impregnated with an insulating coolant, and the insulating coolant and the battery cell ( 110) can be contacted directly.
  • the insulating coolant and the module frame 200 may be in direct contact through the second open portion 137.
  • the insulating coolant can improve cooling performance by directly contacting the battery cell 110 and/or the module frame 200 (FIG. 10).
  • structural stability can be improved because vertical vibration can be absorbed through the reinforcing members 132 located at the top and bottom of the battery cell 110.
  • Heat generated in the battery cell 110 is transmitted along the plate-shaped members 131a and 131b, and a cooling effect can be exerted by the reinforcing members 132a and 132b coming into direct contact with the insulating coolant through the cooling passage CP.
  • the heat dissipation member 130 interposed between the battery cells 110 is located on the top and/or of the cell assembly 120 (FIG. 4).
  • cooling efficiency can be increased by extending from the bottom and directly contacting the insulating coolant.
  • the temperature difference does not appear large, so the temperature difference does not appear large. You can extend your lifespan.
  • the heat dissipation member 130 may be formed of a material with high thermal conductivity.
  • the heat dissipation member 130 according to this embodiment includes aluminum, stainless steel, copper, gold, graphite, graphene, CNT (carbon nanotube), or a composite material thereof.
  • thermal conductivity and weight can be adjusted by using aluminum-graphite composite material.
  • the heat dissipation member 130 may be a lamination of at least two of aluminum, stainless steel, copper, gold, graphite, graphene, and carbon nanotubes (CNTs).
  • an effective heat dissipation structure can be formed using a light and thin material compared to the cooling fin structure as a conventional heat dissipation member.
  • the PET insulating layer can implement insulation between the battery cell 110 and the heat dissipation member 130.
  • the PET insulating layer may be laminated on the front and back surfaces of the aluminum-graphite composite material layer to be disposed between the heat dissipation member 130 and the battery cell 110.
  • adhesive can be applied between them or a heat fusion method can be used.
  • the coating liquid may collect in the insulated portion of the heat dissipation member 130, making it difficult to achieve a uniform coating thickness.
  • the heat dissipation member 130 can effectively transfer heat generated in the cell assembly 120 to the outside, thereby improving the cooling performance of the battery module 100.
  • the heat dissipation member 130 may be a thin film.
  • the thickness of the heat dissipation member 130 may be smaller than the thickness of the battery cell 110.
  • the thickness of the heat dissipation member 130 may be approximately 50% or less, or more preferably 20% or less, of the thickness of the battery cell 110.
  • the thickness of the battery cell 110 may be sized based on the y-axis direction of FIG. 6.
  • the thickness of the heat dissipation member 130 may be 0.1 mm to 0.2 mm. Therefore, even if the area where the heat dissipation member 130 covers the surface corresponding to the cell body 113 of each battery cell 110 constituting the cell assembly 120 and the top or bottom of the battery cell 110 is large, , it may not significantly affect the energy density of the battery module.
  • FIG. 8 is a perspective view showing a cell unit according to another embodiment of the present invention.
  • FIG. 9 is a front view of the cell unit of FIG. 8 viewed along the x-axis direction.
  • the cell unit 225 includes a battery cell 110 and a heat dissipation member 230.
  • the heat dissipation member 230 includes a plate-shaped member 231 parallel to one side of the battery cell 110, and a reinforcing member 232 extending from at least one of the first portion and the second portion of the plate-shaped member 231. do.
  • the first part of the plate-shaped member 231 may be an upper edge
  • the second part may be a lower edge.
  • the reinforcing member 232 according to the embodiment of FIG. 9 has a structure extending from the upper and lower edges of the plate-shaped member 231.
  • the reinforcing member 232 includes a first reinforcing member 232a and a second reinforcing member 232b.
  • the first and second reinforcing members 232a and 232b may be formed to extend in a zigzag shape from the plate-shaped member 231, respectively.
  • Each of the first and second reinforcing members 232a and 232b includes a first extension portion 233 that is bent from one edge of the plate-shaped member 231 and covers the upper and lower surfaces of the battery cell 110, and a first extension portion.
  • a connecting portion 235 bent from one edge of 233 and extending at regular intervals along the same direction as the direction in which the plate-shaped member 231 extends, a second extension portion 238 bent from an end of the connecting portion 235,
  • a connection part 235 extending at regular intervals along the same direction as the direction in which the plate-shaped member 231 is extended, which is bent from the end of the second extension part 238, and a third extension part is bent from the end of the connection part 235.
  • connection parts 235 may be arranged parallel to each other, and the first, second, and third extension parts 233, 238, and 234 may be arranged parallel to each other.
  • the reinforcing member 232 may have a press molding type structure.
  • a portion of the upper and/or lower surface of the battery cell 110 is exposed between the first extension 233 of the first reinforcing member 232a and the first extension 233 of the second reinforcing member 232b.
  • a first open portion 236 may be formed.
  • the first extension 233 may contact the battery cell 110.
  • a second open portion exposing a portion of the module frame 200 is provided between the third extension portion 234 of the first reinforcing member 232a and the third extension portion 234 of the second reinforcing member 232b. (237) can be formed.
  • a cooling passage (CP) is formed inside the first and second reinforcing members 232a and 232b, and the cooling passage (CP) is impregnated with an insulating coolant to allow the insulating coolant and the battery cell ( 110) can be contacted directly.
  • the insulating coolant and the module frame 200 may be in direct contact through the second open portion 237. In this way, according to this embodiment, the insulating coolant can improve cooling performance by directly contacting the battery cell 110 and/or the module frame 200 (FIG. 13).
  • the information regarding the material, structure, heat transfer path, etc. of the heat dissipation member 130 described in FIGS. 6 and 7 may be equally applied to the heat dissipation member 230 according to the present embodiment.
  • FIG. 10 is a diagram showing a portion of a cell assembly including the cell unit of FIG. 6.
  • a plurality of cell units 125 described in FIGS. 6 and 7 may be stacked to form a cell assembly 120.
  • the cell unit 125 includes a first battery cell 110a and a second battery cell 110b in contact with each other, a first heat dissipation member 131a located on one surface of the first battery cell 110a, and It may include a second heat dissipation member 131b located on one surface of the second battery cell 110b.
  • These cell units 125 may be repeatedly arranged to form a cell assembly.
  • the compression pad 161 may be located between neighboring cell units 125 among the plurality of stacked cell units 125.
  • the compression pad 161 may be formed in pairs with one cell unit 125 or may be formed one for each two cell units 125 .
  • the present invention is not limited to this and the number of compression pads 161 may be modified.
  • FIGS. 11 and 12 are diagrams showing modified examples of the cell assembly of FIG. 10.
  • FIGS. 11 and 12 The embodiment described in FIGS. 11 and 12 is mostly the same as the embodiment described in FIG. 10 , and differences will be described below.
  • a compression pad 161 may be formed between the first battery cell 110a and the second battery cell 110b included in one cell unit 125. At this time, neighboring cell units 125 may be in contact with each other. Cell units 125 in contact with each other may be fixed to each other with an adhesive member (not shown).
  • a compression pad 161 is formed between the first battery cell 110a and the second battery cell 110b included in one cell unit 125, and a plurality of additional cell units are stacked. Among the 125 , compression pads 161 may be located between neighboring cell units 125 .
  • Safety can be improved by reducing changes in the shape of the battery module during swelling of the battery cell 110 by the compression pad 161 described above.
  • the embodiment of FIG. 10 the embodiment of FIG. 11, and the embodiment of FIG. 12 are referred to as the first, second, and third embodiments, respectively, the third embodiment, the second embodiment, and the first embodiment are in order.
  • the degree of shock relief for the ring is high, and thus various designs are possible considering the level required for the user's battery module design.
  • FIG. 13 is a diagram showing a portion of a cell assembly including the cell unit of FIG. 8.
  • a plurality of cell units 225 described in FIGS. 8 and 9 may be stacked to form a cell assembly 120.
  • the cell unit 225 includes a first battery cell 110a and a second battery cell 110b in contact with each other, a first heat dissipation member 231a located on one surface of the first battery cell 110a, and It may include a second heat dissipation member 231b located on one surface of the second battery cell 110b.
  • These cell units 225 may be repeatedly arranged to form a cell assembly.
  • the compression pad 161 may be located between neighboring cell units 225 among the plurality of stacked cell units 225.
  • the compression pad 161 may be formed in pairs with one cell unit 225 or may be formed one for each two cell units 225 .
  • the present invention is not limited to this and the number of compression pads 161 may be modified.
  • FIGS. 14 and 15 are diagrams showing modified examples of the cell assembly of FIG. 13.
  • FIGS. 14 and 15 The embodiment described in FIGS. 14 and 15 is mostly the same as the embodiment described in FIG. 13, and differences will be described below.
  • a compression pad 161 may be formed between the first battery cell 110a and the second battery cell 110b included in one cell unit 225. At this time, neighboring cell units 225 may be in contact with each other. The cell units 225 that are in contact with each other may be fixed to each other with an adhesive member (not shown).
  • a compression pad 161 is formed between the first battery cell 110a and the second battery cell 110b included in one cell unit 225, and a plurality of additional cell units are stacked. Among the cell units 225 , compression pads 161 may be located between neighboring cell units 225 .
  • Safety can be improved by reducing changes in the shape of the battery module during swelling of the battery cell 110 by the compression pad 161 described above.
  • the embodiment of FIG. 13, the embodiment of FIG. 14, and the embodiment of FIG. 15 are the fourth, fifth, and sixth embodiments, respectively, the swell in the order of the sixth embodiment, the fifth embodiment, and the fourth embodiment
  • the degree of shock relief for the ring is high, and thus various designs are possible considering the level required for the user's battery module design.
  • a battery pack according to another embodiment of the present invention includes the battery module described above.
  • the battery pack according to this embodiment may have a structure in which one or more battery modules are packed together and a battery management system (BMS) that manages the temperature or voltage of the battery, a cooling device, etc. are added and packed.
  • BMS battery management system
  • the battery pack can be applied to various devices. These devices can be applied to transportation means such as electric bicycles, electric cars, and hybrid cars, but the present invention is not limited thereto and can be applied to various devices that can use battery modules, and this also falls within the scope of the present invention. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명의 일 실시예에 따른 전지 모듈은, 복수의 전지 셀이 일 방향을 따라 적층되어 있는 셀 어셈블리, 상기 셀 어셈블리에서 내에서 상기 전지 셀과 접하는 방열 부재, 및 상기 셀 어셈블리를 수납하는 모듈 프레임을 포함하고, 상기 방열 부재는 상기 전지 셀의 일 면과 평행한 판상 부재와, 상기 판상 부재의 상부 가장자리와 하부 가장자리 중 적어도 하나로부터 연장된 보강 부재를 포함한다.

Description

개선된 냉각 구조를 갖는 전지 모듈 및 이를 포함하는 전지 팩
관련 출원(들)과의 상호 인용
본 출원은 2022년 11월 16일자 한국 특허 출원 제10-2022-0154007호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지 모듈 및 이를 포함하는 전지 팩에 관한 것으로, 보다 구체적으로는 개선된 냉각 구조를 갖는 전지 모듈 및 이를 포함하는 전지 팩에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 특히, 이차전지는 휴대폰, 디지털 카메라, 노트북, 웨어러블 디바이스 등의 모바일 기기뿐만 아니라, 전기 자전거, 전기 자동차, 하이브리드 전기 자동차 등의 동력 장치에 대한 에너지원으로도 많은 관심을 가지고 있다.
소형 모바일 기기들에는 디바이스 1대당 하나 또는 두서너 개의 전지 셀들이 사용됨에 반해, 자동차 등과 같이 중대형 디바이스들에는 고출력 대용량이 필요하다. 따라서, 다수의 전지 셀을 전기적으로 연결한 중대형 전지 모듈이 사용된다.
한편, 복수개의 전지 셀을 직렬/병렬로 연결하여 전지 모듈 및/또는 전지 팩을 구성하는 경우, 적어도 하나의 전지 셀로 이루어지는 전지 모듈을 구성하고, 적어도 하나의 전지 모듈을 이용하여 기타 구성 요소를 추가하여 전지 팩을 구성하는 방법이 일반적이다.
이러한 중대형 전지 모듈을 구성하는 전지 셀들은 충방전이 가능한 이차 전지로 구성되어 있으므로, 이와 같은 고출력 대용량 이차 전지는 충방전 과정에서 다량의 열을 발생시킨다. 이 경우, 다수의 전지 셀로부터 나오는 열이 좁은 공간에서 합산되어 온도가 빠르고 심하게 올라갈 수 있다. 다시 말해서, 다수의 전지 셀이 적층된 전지 모듈들과 이러한 전지 모듈들이 장착된 전지 팩의 경우, 높은 출력을 얻을 수 있지만, 충전 및 방전 시 전지 셀에서 발생하는 열을 제거하는 것이 용이하지 않다. 전지 셀의 방열이 제대로 이루어지지 않을 경우 전지셀의 열화가 빨라지면서 수명이 짧아지게 되고, 폭발이나 발화의 가능성이 커지게 된다.
더욱이, 차량용 전지 팩에 포함되는 전지 모듈의 경우, 직사광선에 자주 노출되고, 여름철이나 사막 지역과 같은 고온 조건에 놓일 수 있다. 또한, 차량의 주행거리를 늘리기 위해 다수의 전지 모듈들을 집약적으로 배치하기 때문에 어느 하나의 전지 모듈에서 발생한 화염이나 열이 이웃한 전지 모듈로 쉽게 전파되어, 종국적으로 전지 팩 자체의 발화나 폭발로 이어질 수 있다.
도 1은 종래의 냉각 핀이 적용된 전지 셀 어셈블리를 나타내는 사시도이다. 도 2는 도 1의 전지 셀 어셈블리에 포함된 전지셀 사이에 배치된 냉각 핀 구조를 나타내는 분해도이다.
도 1 및 도 2를 참고하면, 종래의 전지 셀 어셈블리(1)는 일 방향으로 나란히 적층되어 형성되는 다수개의 전지 셀(10) 및 서로 이웃하는 전지 셀(10) 사이에 개재되어 있는 냉각 핀(20)을 포함한다. 냉각 핀(20)은 도 2에 도시한 판상형의 방열판(21)과 방열판(21)의 테두리에 형성된 냉매 파이프(22), 및 방열판(21)의 상하부면 또는 좌우면 각각에 형성된 절연 시트층(25)을 포함할 수 있다. 이때, 절연 시트층(25)은 생략될 수 있고, 방열판(21) 표면이 절연 코팅될 수도 있다.
냉매 파이프(22)는 방열판(21)과 후크 결합하거나, 냉매 파이프(22)와 방열판(21)이 일체형으로 형성될 수 있다. 냉매 파이프(22)는 전지 셀(10)의 외측에 배치되도록 형성된다.
전지 셀 어셈블리(1)는 모듈 프레임(미도시)에 수납되어 전지 모듈을 형성할 수 있고, 전지 셀 어셈블리(1)에 포함된 냉각 핀(20)에 의해 전지 셀에서 발생한 열을 냉각시킬 수 있다. 하지만, 냉각 핀(20)의 두께와 전기적 절연성 확보를 위한 별도의 절연 시트층 또는 코팅층이 필요하여 공간 활용률이 낮은 편이다.
도 3은 종래의 전지 모듈에서 열 배출 경로를 나타내는 도면이다.
도 3을 참조하면, 종래의 전지 모듈(30)은 기설정된 방향으로 적층되는 전지셀(60)을 포함한 셀 어셈블리(70), 셀 어셈블리(70)를 수납하는 모듈 프레임(40)을 포함하고, 셀 어셈블리(70)는 모듈 프레임(40)의 하면에 위치하는 열전도성 수지층(50) 상에 고정되어 위치한다. 이 경우, 셀 어셈블리(70)에서 발생되는 열을 냉각하기 위해, 도 3의 -z축 방향에 위치한 모듈 프레임(40)의 바닥부와 접하는 히트 싱크(90)가 구비되고, 히트 싱크(90)와 모듈 프레임(40) 바닥부 사이에는 열 전달을 위한 열전도 패드(80)가 추가로 설치될 수 있다.
다만, 히트 싱크(90)는 셀 어셈블리(70)와 직접적으로 접하면서 열을 전달받는 것이 아니므로 냉각 효율이 별로 높지 않고, 냉각 경로(cooling path)가 전지 셀의 폭 방향 중 한쪽 방향(-z축 방향)으로 형성되어 온도 구배가 발생할 수 있다. 또한, 도 3의 구조는 열전도성 수지층(50)이 셀 어셈블리(70)를 한쪽에서 고정하는 형태이기 때문에 전고체 전지, 실리콘계 전지 등 고용량 전지에서 큰 스웰링이 발생하는 경우 파우치 셀 크랙 이슈가 발생할 수 있다.
따라서, 전지 모듈 및/또는 전지 팩의 수명을 늘리기 위해서는 전지 셀의 온도가 높아지지 않도록 전지 모듈/전지 팩의 냉각 효율을 향상시키고, 구조적 안정성을 보강시킬 필요가 있다.
본 발명의 해결하고자 하는 과제는, 종래의 냉각 핀 구조를 변경하여 열전달 성능을 향상시킬 수 있는 전지 모듈 및 전지 팩을 제공하는 것이다.
또한, 고속 충전 및 고용량 셀을 구현하기 위해 대형화되는 셀에서, 셀 온도를 균일하게 유지하면서 공간 활용률을 높이기 위한 전지 모듈 및 전지 팩을 제공할 수 있다.
또한, 함침 냉각 구조에서 셀 바디가 직접 냉각되지 못하여 냉각 성능의 공간적 불균일성을 해소하여 셀 수명을 늘리는 전지 모듈 및 전지 팩을 제공할 수 있다.
또한, z축 방향의 구조적 안정성을 보강하는 전지 모듈 및 전지 팩을 제공할 수 있다.
본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 전지 모듈은, 복수의 전지 셀이 일 방향을 따라 적층되어 있는 셀 어셈블리, 상기 셀 어셈블리 내에서 상기 전지 셀과 접하는 방열 부재, 및 상기 셀 어셈블리를 수납하는 모듈 프레임을 포함하고, 상기 방열 부재는 상기 전지 셀의 일 면과 평행한 판상 부재와, 상기 판상 부재의 제1 부분과 제2 부분 중 적어도 하나로부터 연장된 보강 부재를 포함한다.
상기 전지 셀과 상기 방열 부재를 포함하는 셀 유닛은, 제1 전지 셀과 제2 전지 셀, 상기 제1 전지 셀의 일면에 위치하는 제1 방열 부재, 및 상기 제2 전지 셀의 일면에 위치하는 제2 방열 부재를 포함하고, 상기 제1, 2 방열 부재 각각에 포함되는 제1, 2 보강 부재의 연장부 중에서 상기 제1, 2 전지 셀과 접촉하는 연장부들 사이에 상기 제1, 2 전지 셀의 일부를 노출하는 제1 오픈부가 형성될 수 있다.
상기 제1 보강 부재의 연장부와 상기 제2 보강 부재의 연장부 사이에 상기 모듈 프레임의 일부를 노출하는 제2 오픈부가 형성될 수 있다.
상기 제1, 2 보강 부재 내부에 냉각 유로가 형성되고, 상기 냉각 유로에 절연 냉각제가 함침되어 상기 오픈부를 통해 상기 절연 냉각제와 상기 전지 셀이 직접 접촉할 수 있다.
상기 셀 유닛은 상기 셀 어셈블리 내에서 복수 개 적층되고, 상기 전지 모듈은 상기 복수 개 적층된 셀 유닛들 중에서 서로 이웃하는 셀 유닛들 사이에 위치하는 압축 패드를 더 포함할 수 있다.
상기 셀 유닛은 상기 제1 전지 셀과 상기 제2 전지 셀 사이에 위치하는 압축 패드를 더 포함할 수 있다.
상기 셀 유닛은 상기 셀 어셈블리 내에서 복수 개 적층되고, 상기 전지 모듈은 상기 복수 개 적층된 셀 유닛들 중에서 서로 이웃하는 셀 유닛들 사이에 위치하는 압축 패드를 더 포함할 수 있다.
상기 보강 부재는 서로 평행한 적어도 2개의 연장부를 포함하고, 상기 2개의 연장부 사이에 냉각 유로가 형성될 수 있다.
상기 냉각 유로에 상기 절연 냉각제가 함침되어, 상기 절연 냉각제와 상기보강 부재가 직접 접촉할 수 있다.
상기 보강 부재는 압출 성형 타입의 구조를 가질 수 있다.
상기 적어도 2개의 연장부는 상기 판상 부재로부터 동일한 방향으로 연장될 수 있다.
상기 보강 부재는 프레스 성형 타입의 구조를 가질 수 있다.
상기 보강 부재는 상기 판상 부재로부터 지그재그 형태로 연장되어 상기 전지 셀과 상기 모듈 프레임 사이의 공간에 형성될 수 있다.
상기 보강 부재는 상기 판상 부재의 상부 가장자리와 하부 가장자리에 각각 형성되고, 상기 보강 부재는 상기 모듈 프레임의 상부와 하부 각각에 접촉할 수 있다.
상기 방열 부재에 포함되는 상기 판상 부재와 상기 보강 부재는 일체형으로 형성되고, 상기 보강 부재는 상기 판상 부재가 벤딩되어 형성될 수 있다.
상기 방열 부재는 알루미늄, 스테인리스, 구리, 금, 그라파이트, 그래핀, CNT(탄소나노튜브) 또는 이들의 복합 소재를 포함할 수 있다.
상기 방열 부재는 알루미늄, 스테인리스, 구리, 금, 그라파이트, 그래핀, 및 CNT(탄소나노튜브) 중 적어도 2 이상이 합지(lamination)된 형태를 가질 수 있다.
상기 모듈 프레임 안에 절연 냉각제가 함침될 수 있다.
본 발명의 다른 일 실시예에 따른 전지 팩은, 앞에서 설명한 전지 모듈을 포함한다.
실시예들에 따르면, 기존 대비하여 가볍고 얇은 소재로 방열 부재를 구현함으로써 열 전달 성능을 높일 수 있다.
또한, 함침 냉각 구조에서 전지 셀 사이에 개재된 방열 부재가 셀 어셈블리 상부 및/또는 하부에서 연장되어 절연 냉각제에 직접 접촉함으로써 냉각 효율을 높일 수 있다.
또한, 전지 셀과 방열 부재가 결합된 셀 유닛의 강성을 보강하기 위한 형상이 추가됨으로써 전지 모듈의 구조적 안정성이 향상될 수 있다.
본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 종래의 냉각 핀이 적용된 전지 셀 어셈블리를 나타내는 사시도이다.
도 2는 도 1의 전지 셀 어셈블리에 포함된 전지셀 사이에 배치된 냉각 핀 구조를 나타내는 분해도이다.
도 3은 종래의 전지 모듈에서 열 배출 경로를 나타내는 도면이다.
도 4는 본 발명의 일 실시예에 따른 전지 모듈을 나타내는 사시도이다.
도 5는 도 4의 셀 어셈블리에 포함된 하나의 전지 셀을 나타내는 사시도이다.
도 6은 도 4의 전지 모듈에 포함되어 있는 셀 유닛을 나타내는 사시도이다.
도 7은 도 6의 셀 유닛을 x축 방향을 따라 바라본 정면도이다.
도 8은 본 발명의 다른 일 실시예에 따른 셀 유닛을 나타내는 사시도이다.
도 9는 도 8의 셀 유닛을 x축 방향을 따라 바라본 정면도이다.
도 10은 도 6의 셀 유닛을 포함하는 셀 어셈블리 일부를 나타내는 도면이다.
도 11 및 도 12는 도 10의 셀 어셈블리의 변형예를 나타내는 도면이다.
도 13은 도 8의 셀 유닛을 포함하는 셀 어셈블리 일부를 나타내는 도면이다.
도 14 및 도 15는 도 13의 셀 어셈블리의 변형예를 나타내는 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
도 4는 본 발명의 일 실시예에 따른 전지 모듈을 나타내는 사시도이다. 도 5는 도 4의 셀 어셈블리에 포함된 하나의 전지 셀을 나타내는 사시도이다.
도 4를 참고하면, 본 실시예에 따른 전지 모듈은 복수의 전지 셀(110)이 일 방향으로 적층되어 형성된 셀 어셈블리(120), 셀 어셈블리(120)를 수납하도록 전후면이 개방된 모듈 프레임(200), 및 모듈 프레임(200)의 전면과 후면을 덮는 엔드 플레이트(150)를 포함한다.
엔드 플레이트(150)는 모듈 프레임(200)의 개방된 제1 측(x축 방향)과 제2 측(-x측 방향)에 위치하여 셀 어셈블리(120)를 덮도록 형성될 수 있다. 이러한 엔드 플레이트(150)는 외부의 충격으로부터 셀 어셈블리(120) 및 기타 전장품을 물리적으로 보호할 수 있다. 추가적으로, 본 실시예에 따른 전지 모듈은, 셀 어셈블리(120)와 엔드 플레이트(150) 사이에 위치하는 버스 바 프레임(미도시) 및 상기 버스 바 프레임과 엔드 플레이트(150) 사이에 위치하는 절연 커버(미도시)를 더 포함할 수 있다. 상기 버스 바 프레임 상에서, 전지 셀(110)로부터 돌출된 전극 리드와 이웃하는 셀 간 전기적 연결을 위한 버스 바가 결합할 수 있다. 상기 절연 커버는 셀 어셈블리(120) 및/또는 버스바 프레임 상의 전기적 부품들과 엔드 플레이트(150) 사이의 전기적 절연을 위한 역할을 할 수 있다.
본 실시예에서 모듈 프레임(200)은 셀 어셈블리(120)의 상하좌우 4면을 둘러싸는 형태의 모노 프레임으로 도시하였으나, 이에 한정되지 않고 U자형의 하부 프레임에 의해 셀 어셈블리(120)의 좌우면 및 하부면이 커버되고, 상부 플레이트에 의해 셀 어셈블리(120)의 상부면이 커버된 후, 상기 U자형의 하부 프레임과 상기 상부 플레이트가 결합되는 구조일 수도 있다.
도 4 및 5를 참고하면, 셀 어셈블리(120)는 일방향으로 적층된 복수의 전지셀(110)을 포함하고, 복수의 전지셀(110)은 도 4에 도시한 바와 같이 y축 방향으로 적층될 수 있다. 전지 셀(110)은 파우치형 전지셀인 것이 바람직하다. 예를 들어, 도 5를 참고하면 본 실시예에 따른 전지 셀(110)은 두 개의 전극 리드(111, 112)가 서로 반대 방향을 향해 셀 바디(113)의 일 단부(114a)와 다른 일 단부(114b)로부터 각각 돌출되어 있는 구조를 가질 수 있다. 전지 셀(110)은, 셀 케이스(114)에 전극 조립체(미도시)를 수납한 상태로 셀 케이스(114)의 양 단부(114a, 114b)와 이들을 연결하는 양 측면(114c)을 접착함으로써 제조될 수 있다. 다시 말해, 본 실시예에 따른 전지 셀(110)은 총 3군데의 실링부(114sa, 114sb, 114sc)를 갖고, 실링부(114sa, 114sb, 114sc)는 열융착 등의 방법으로 실링되는 구조이며, 나머지 다른 일측부는 연결부(115)로 이루어질 수 있다. 셀 케이스(114)의 양 단부(114a, 114b) 사이를 전지 셀(110)의 길이 방향으로 정의하고, 전지 케이스(114)의 양 단부(114a, 114b)를 연결하는 일측부(114c)와 연결부(115) 사이를 전지셀(110)의 폭 방향으로 정의할 수 있다.
연결부(115)는 전지 셀(110)의 일 테두리를 따라 길게 뻗어 있는 영역이며, 연결부(115)의 단부에 전지 셀(110)의 돌출부(110p)가 형성될 수 있다. 돌출부(110p)는 연결부(115)의 양 단부 중 적어도 하나에 형성될 수 있고, 연결부(115)가 뻗는 방향에 수직한 방향으로 돌출될 수 있다. 돌출부(110p)는 셀 케이스(114)의 양 단부(114a, 114b)의 실링부(114sa, 114sb) 중 하나와 연결부(115) 사이에 위치할 수 있다.
셀 케이스(114)는 일반적으로 수지층/금속 박막층/수지층의 라미네이트 구조로 이루어져 있다. 예를 들어, 셀 케이스 표면이 O(oriented)-나일론 층으로 이루어져 있는 경우에는, 중대형 전지 모듈을 형성하기 위하여 다수의 전지셀들을 적층할 때, 외부 충격에 의해 쉽게 미끄러지는 경향이 있다. 따라서, 이를 방지하고 전지셀들의 안정적인 적층 구조를 유지하기 위해, 셀 케이스의 표면에 양면 테이프 등의 점착식 접착제 또는 접착시 화학 반응에 의해 결합되는 화학 접착제 등의 접착 부재를 부착하여 셀 어셈블리(120)를 형성할 수 있다. 본 발명의 일 실시예에 따르면 후술하는 바와 같이 전지 셀(110)과 접하는 방열 부재가 형성된다. 예를 들어, 서로 이웃하는 전지 셀(110) 사이에 상기 방열 부재가 형성되고, 방열 부재와 전지 셀(110)이 접착 부재 등으로 고정되어 셀 어셈블리(120)를 형성하거나 접착 부재를 사용하지 않더라도 다른 고정 부재를 사용하여 셀 어셈블리(120)를 형성할 수도 있다.
본 실시예에서 셀 어셈블리(120)는 모듈 프레임(200) 내부에 수용되어 모듈 프레임(200) 안에 함침(impregnation)되어 있는 절연 냉각제에 의해 냉각이 진행될 수 있다. 절연 냉각제는 전기적으로 절연 성질을 갖는 절연 냉각수 또는 절연유일 수 있다. 모듈 프레임(200) 안에 절연 냉각제가 함침되어 냉각이 진행되면, 전지 셀(110)과 냉각제가 직접 접촉하여 냉각 효율을 높일 수 있다. 하지만, 도 5에 도시한 전지 셀(110)의 셀 바디(113)에 해당하는 부분은 절연 냉각제에 직접 노출되지 않기 때문에 냉각 성능의 공간적 뷸균일성을 일으킬 수 있다. 이렇게 되면, 전지 셀(110)의 국소적인 온도 상승을 야기하는 결과를 낳게 되고, 이에 따라 전지 셀 퇴화의 원인이 될 수 있다.
이러한 문제를 해소하기 위해 본 발명의 일 실시예에 따르면, 셀 어셈블리(120) 내에서 제1 전지 셀과 제2 전지 셀 사이에 개재되도록 후술하는 방열 부재가 형성되어 있다. 일례로 서로 이웃하는 전지 셀(110) 사이에 상기 방열 부재가 배치될 수 있다. 상기 방열 부재는 2개의 전지 셀(110)마다 하나씩 형성될 수 있고, 또는 4개의 전지 셀(110)마다 하나씩 형성될 수도 있다.
도 6은 도 4의 전지 모듈에 포함되어 있는 셀 유닛을 나타내는 사시도이다. 도 7은 도 6의 셀 유닛을 x축 방향을 따라 바라본 정면도이다.
도 6 및 도 7을 참고하면, 본 실시예에 따른 셀 유닛(125)은 전지 셀(110)과 방열 부재(130)를 포함한다. 방열 부재(130)는 전지 셀(110)의 일 면과 평행한 판상 부재(131)와, 판상 부재(131)의 제1 부분과 제2 부분 중 적어도 하나로부터 연장된 보강 부재(132)를 포함한다. 일례로, 판상 부재(131)의 상기 제1 부분은 상부 가장자리이고, 상기 제2 부분은 하부 가장자리일 수 있다. 도 7의 실시예에 따른 보강 부재(132)는 판상 부재(131)의 상부 가장자리 및 하부 가장자리로부터 연장된 구조이다.
구체적으로, 도 7을 참고하면, 본 실시예에 따른 보강 부재(132)는 제1 보강 부재(132a)와 제2 보강 부재(132b)를 포함한다. 제1, 2 보강 부재(132a, 132b)는 각각 서로 평행하게 배치되는 적어도 2개의 연장부(133, 134)를 포함한다. 이때, 적어도 2개의 연장부(133, 134)는 판상 부재(131)로부터 동일한 방향으로 연장될 수 있다.
제1, 2 보강 부재(132a, 132b) 각각은 판상 부재(131)의 일 가장자리로부터 벤딩되어 전지 셀(110)의 상부면과 하부면을 덮는 제1 연장부(133)와, 판상 부재(131)의 일 가장자리로부터 판상 부재(131)가 뻗어 있는 방향과 동일 방향을 따라 일정 간격으로 연장된 연결부(135), 및 연결부(135)의 단부로부터 벤딩되는 제2 연장부(134)를 포함한다.
본 실시예에 따른 보강 부재(132)는 압출 성형 타입의 구조를 가질 수 있다.
제1 보강 부재(132a)의 제1 연장부(133)와 제2 보강 부재(132b)의 제1 연장부(133) 사이에는 전지 셀(110)의 상부면 및/또는 하부면 중 일부를 노출하는 제1 오픈부(136)가 형성될 수 있다. 제1 연장부(133)는 전지 셀(110)과 접촉할 수 있다.
제1 보강 부재(132a)의 제2 연장부(134)와 제2 보강 부재(132b)의 제2 연장부(134) 사이에는 모듈 프레임(200; 도 10)의 일부를 노출하는 제2 오픈부(137)가 형성될 수 있다. 이때, 제1, 2 보강 부재(132a, 132b) 내부에 냉각 유로(CP)가 형성되고, 냉각 유로(CP)에는 절연 냉각제가 함침되어 제1 오픈부(136)를 통해 절연 냉각제와 전지 셀(110)이 직접 접촉할 수 있다.
또한, 제2 오픈부(137)를 통해 절연 냉각제와 모듈 프레임(200; 도 10)이 직접 접촉할 수 있다. 이처럼, 본 실시예에 따르면 절연 냉각제가 전지 셀(110) 및/또는 모듈 프레임(200; 도 10)과 직접 접촉하여 냉각 성능을 향상시킬 수 있다. 뿐만 아니라, 전지 셀(110) 상하부에 위치하는 보강 부재(132)를 통해 상하 진동을 흡수할 수 있기 때문에 구조적 안정성을 향상시킬 수 있다.
전지 셀(110)에서 발생한 열은 판상 부재(131a, 131b)을 따라 전달되고, 보강 부재(132a, 132b)가 냉각 유로(CP)를 통해 절연 냉각제와 직접 접촉함으로써 냉각 효과가 발휘될 수 있다.
이처럼 본 실시예에 따르면, 절연 냉각제가 모듈 프레임(200; 도 4) 내에 함침된 냉각 구조에서 전지 셀(110) 사이에 개재된 방열 부재(130)가 셀 어셈블리(120; 도 4) 상부 및/또는 하부에서 연장되어 절연 냉각제에 직접 접촉함으로써 냉각 효율을 높일 수 있다. 뿐만 아니라, 전지 셀(110)의 셀 바디와 접촉하는 방열 부재(130)의 판상 부재(131)로부터 열이 전지 모듈의 상하부로 모두 전달되기 때문에 온도 편차가 크게 나타나지 않기 때문에 전지 셀(110)의 수명을 늘릴 수 있다.
방열 부재(130)는 열전도율이 높은 소재로 형성될 수 있다. 예를 들어, 본실시예에 따른 방열 부재(130)는 알루미늄, 스테인리스, 구리, 금, 그라파이트, 그래핀, CNT(탄소나노튜브) 또는 이들의 복합 소재를 포함한다. 일례로, 알루미늄-그라파이트 복합 소재를 사용하여 열전도도와 무게를 조절할 수 있다. 방열 부재(130)는 알루미늄, 스테인리스, 구리, 금, 그라파이트, 그래핀, 및 CNT(탄소나노튜브) 중 적어도 2 이상이 합지(lamination)된 형태를 가질 수 있다. 추가로 PET(polyethylene terephthalate) 절연층과 상기 복합 소재를 합지(lamination)함으로써 종래의 방열 부재로서 냉각 핀 구조 대비하여, 가볍고 얇은 소재로 효과적인 방열 구조를 형성할 수 있다. PET 절연층은 전지 셀(110)과 방열 부재(130) 사이의 절연을 구현할 수 있다. PET 절연층은 방열 부재(130)와 전지 셀(110) 사이에 배치되도록 알루미늄-그라파이트 복합 소재층의 전후면에 합지될 수 있다. 알루미늄-그라파이트 복합 소재층과 PET 절연층을 합지하기 위해 이들 사이에 접착제를 도포하거나 열융착 방법을 사용할 수 있다. 비교예로서 방열 부재(130)에 절연 코팅을 하게 되면, 방열 부재(130)가 절연되는 부분에 코팅액이 모일 수 있어 균일한 코팅 두께를 구현하기 힘들 수 있다.
따라서, 본 실시예에 따른 방열 부재(130)는 셀 어셈블리(120)에서 발생하는 열을 외부로 효과적으로 전달할 수 있어, 전지 모듈(100)의 냉각 성능을 향상시킬 수 있다.
본 실시예에 따른 방열 부재(130)는 박막일 수 있다. 방열 부재(130)의 두께는 전지 셀(110)의 두께보다 작을 수 있다. 바람직하게는, 방열 부재(130)의 두께는, 전지 셀(110)의 두께 대비하여 대략 50%이하이거나, 더 바람직하게는 20%이하일 수 있다. 여기서, 전지 셀(110)의 두께는 도 6의 y축 방향을 기준으로 한 크기일 수 있다.
방열 부재(130)의 두께는 0.1mm 내지 0.2mm일 수 있다. 따라서, 방열 부재(130)가 셀 어셈블리(120)를 구성하는 각각의 전지 셀(110)의 셀 바디(113)에 대응하는 면과, 전지 셀(110)의 상부 또는 하부를 덮는 면적이 크더라도, 전지 모듈의 에너지 밀도에 크게 영향을 미치지 않을 수 있다.
도 8은 본 발명의 다른 일 실시예에 따른 셀 유닛을 나타내는 사시도이다. 도 9는 도 8의 셀 유닛을 x축 방향을 따라 바라본 정면도이다.
도 8 및 도 9를 참고하면, 본 실시예에 따른 셀 유닛(225)은 전지 셀(110)과 방열 부재(230)를 포함한다. 방열 부재(230)는 전지 셀(110)의 일 면과 평행한 판상 부재(231)와, 판상 부재(231)의 제1 부분과 제2 부분 중 적어도 하나로부터 연장된 보강 부재(232)를 포함한다. 일례로, 판상 부재(231)의 상기 제1 부분은 상부 가장자리이고, 상기 제2 부분은 하부 가장자리일 수 있다. 도 9의 실시예에 따른 보강 부재(232)는 판상 부재(231)의 상부 가장자리 및 하부 가장자리로부터 연장된 구조이다.
구체적으로, 도 9를 참고하면, 본 실시예에 따른 보강 부재(232)는 제1 보강 부재(232a)와 제2 보강 부재(232b)를 포함한다. 제1, 2 보강 부재(232a, 232b)는 각각 판상 부재(231)로부터 지그재그 형태로 연장되어 형성될 수 있다.
제1, 2 보강 부재(232a, 232b) 각각은 판상 부재(231)의 일 가장자리로부터 벤딩되어 전지 셀(110)의 상부면과 하부면을 덮는 제1 연장부(233)와, 제1 연장부(233)의 일 가장자리로부터 벤딩되어 판상 부재(231)가 뻗어 있는 방향과 동일 방향을 따라 일정 간격으로 연장된 연결부(235), 연결부(235)의 단부로부터 벤딩되는 제2 연장부(238), 제2 연장부(238)의 단부로부터 벤딩되는 판상 부재(231)가 뻗어 있는 방향과 동일 방향을 따라 일정 간격으로 연장된 연결부(235), 및 연결부(235)의 단부로부터 벤딩되는 제3 연장부(234)를 포함한다.
연결부(235)들은 서로 평행하게 배치될 수 있고, 제1, 2, 3 연장부(233, 238, 234)는 서로 평행하게 배치될 수 있다.
본 실시예에 따른 보강 부재(232)는 프레스 성형 타입의 구조를 가질 수 있다.
제1 보강 부재(232a)의 제1 연장부(233)와 제2 보강 부재(232b)의 제1 연장부(233) 사이에는 전지 셀(110)의 상부면 및/또는 하부면 중 일부를 노출하는 제1 오픈부(236)가 형성될 수 있다. 제1 연장부(233)는 전지 셀(110)과 접촉할 수 있다.
제1 보강 부재(232a)의 제3 연장부(234)와 제2 보강 부재(232b)의 제3 연장부(234) 사이에는 모듈 프레임(200; 도 13)의 일부를 노출하는 제2 오픈부(237)가 형성될 수 있다. 이때, 제1, 2 보강 부재(232a, 232b) 내부에 냉각 유로(CP)가 형성되고, 냉각 유로(CP)에는 절연 냉각제가 함침되어 제1 오픈부(236)를 통해 절연 냉각제와 전지 셀(110)이 직접 접촉할 수 있다. 또한, 제2 오픈부(237)를 통해 절연 냉각제와 모듈 프레임(200; 도 13)이 직접 접촉할 수 있다. 이처럼, 본 실시예에 따르면 절연 냉각제가 전지 셀(110) 및/또는 모듈 프레임(200; 도 13)과 직접 접촉하여 냉각 성능을 향상시킬 수 있다.
이상에서 설명한 내용에 따른 차이점 외에 도 6 및 도 7에서 설명한 방열 부재(130) 소재 및 구조, 열 전달 경로 등에 관한 내용은 본 실시예에 따른 방열 부재(230)에도 동일하게 적용될 수 있다.
도 10은 도 6의 셀 유닛을 포함하는 셀 어셈블리 일부를 나타내는 도면이다.
도 10을 참고하면, 도 6 및 도 7에서 설명한 셀 유닛(125)이 복수 개 적층되어 셀 어셈블리(120)를 형성할 수 있다. 본 실시예에 따른 셀 유닛(125)은 서로 접하는 제1 전지 셀(110a)과 제2 전지 셀(110b), 제1 전지 셀(110a)의 일면에 위치하는 제1 방열 부재(131a), 및 제2 전지 셀(110b)의 일면에 위치하는 제2 방열 부재(131b)를 포함할 수 있다. 이러한 셀 유닛(125)이 반복 배열되어 셀 어셈블리를 형성할 수 있다. 본 실시예에 따르면, 복수 개 적층된 셀 유닛(125)들 중에서 서로 이웃하는 셀 유닛들(125) 사이에 압축 패드(161)가 위치할 수 있다. 압축 패드(161)는 하나의 셀 유닛(125)과 쌍을 이루어 형성되거나 2개의 셀 유닛(125) 마다 하나씩 형성될 수도 있다. 다만, 이에 한정되지 않고 압축 패드(161)의 형성 개수는 변형 가능하다.
도 11 및 도 12는 도 10의 셀 어셈블리의 변형예를 나타내는 도면이다.
도 11 및 도 12에서 설명하는 실시예는 도 10에서 설명한 실시예와 대부분 동일하고, 이하에서는 차이가 있는 부분에 대해 설명하기로 한다.
도 11을 참고하면, 하나의 셀 유닛(125)에 포함되는 제1 전지 셀(110a)과 제2 전지 셀(110b) 사이에 압축 패드(161)가 형성될 수 있다. 이때, 서로 이웃하는 셀 유닛(125)은 서로 접할 수 있다. 서로 접하는 셀 유닛(125)들은 접착 부재(미도시) 등으로 서로 고정될 수 있다.
도 12를 참고하면, 하나의 셀 유닛(125)에 포함되는 제1 전지 셀(110a)과 제2 전지 셀(110b) 사이에 압축 패드(161)가 형성되고, 추가로 복수 개 적층된 셀 유닛(125)들 중에서 서로 이웃하는 셀 유닛들(125) 사이에 압축 패드(161)가 위치할 수 있다.
이상에서 설명한 차이점 외에 도 10에서 설명한 내용은 도 11 및 도 12의 실시예에 모두 적용할 수 있다.
앞에서 설명한 압축 패드(161)에 의해 전지 셀(110)의 스웰링 시 전지 모듈 형상이 변경되는 것을 감소시켜 안전성을 높일 수 있다. 도 10의 실시예, 도 11의 실시예, 및 도 12의 실시예를 각각 제1, 2, 3 실시예라고 할 때, 제3 실시예, 제2 실시예, 및 제1 실시예 순서로 스웰링에 대한 충격 완화 정도가 높고, 이에 따라 사용자의 전지 모듈 설계에 필요한 수준을 고려하여 다양한 설계가 가능하다.
도 13은 도 8의 셀 유닛을 포함하는 셀 어셈블리 일부를 나타내는 도면이다.
도 13을 참고하면, 도 8 및 도 9에서 설명한 셀 유닛(225)이 복수 개 적층되어 셀 어셈블리(120)를 형성할 수 있다. 본 실시예에 따른 셀 유닛(225)은 서로 접하는 제1 전지 셀(110a)과 제2 전지 셀(110b), 제1 전지 셀(110a)의 일면에 위치하는 제1 방열 부재(231a), 및 제2 전지 셀(110b)의 일면에 위치하는 제2 방열 부재(231b)를 포함할 수 있다. 이러한 셀 유닛(225)이 반복 배열되어 셀 어셈블리를 형성할 수 있다. 본 실시예에 따르면, 복수 개 적층된 셀 유닛(225)들 중에서 서로 이웃하는 셀 유닛들(225) 사이에 압축 패드(161)가 위치할 수 있다. 압축 패드(161)는 하나의 셀 유닛(225)과 쌍을 이루어 형성되거나 2개의 셀 유닛(225) 마다 하나씩 형성될 수도 있다. 다만, 이에 한정되지 않고 압축 패드(161)의 형성 개수는 변형 가능하다.
도 14 및 도 15는 도 13의 셀 어셈블리의 변형예를 나타내는 도면이다.
도 14 및 도 15에서 설명하는 실시예는 도 13에서 설명한 실시예와 대부분 동일하고, 이하에서는 차이가 있는 부분에 대해 설명하기로 한다.
도 14를 참고하면, 하나의 셀 유닛(225)에 포함되는 제1 전지 셀(110a)과 제2 전지 셀(110b) 사이에 압축 패드(161)가 형성될 수 있다. 이때, 서로 이웃하는 셀 유닛(225)은 서로 접할 수 있다. 서로 접하는 셀 유닛(225)들은 접착 부재(미도시) 등으로 서로 고정될 수 있다.
도 15를 참고하면, 하나의 셀 유닛(225)에 포함되는 제1 전지 셀(110a)과 제2 전지 셀(110b) 사이에 압축 패드(161)가 형성되고, 추가로 복수 개 적층된 셀 유닛(225)들 중에서 서로 이웃하는 셀 유닛들(225) 사이에 압축 패드(161)가 위치할 수 있다.
이상에서 설명한 차이점 외에 도 13에서 설명한 내용은 도 14 및 도 15의 실시예에 모두 적용할 수 있다.
앞에서 설명한 압축 패드(161)에 의해 전지 셀(110)의 스웰링 시 전지 모듈 형상이 변경되는 것을 감소시켜 안전성을 높일 수 있다. 도 13의 실시예, 도 14의 실시예, 및 도 15의 실시예를 각각 제4, 5, 6 실시예라고 할 때, 제6 실시예, 제5 실시예, 및 제4 실시예 순서로 스웰링에 대한 충격 완화 정도가 높고, 이에 따라 사용자의 전지 모듈 설계에 필요한 수준을 고려하여 다양한 설계가 가능하다.
본 발명의 다른 일 실시예에 따른 전지 팩은 앞에서 설명한 전지 모듈을 포함한다. 더불어, 본 실시예에 따른 전지 팩은 전지 모듈을 하나 이상 모아서 전지의 온도나 전압 등을 관리해주는 전지 관리시스템(Battery Management System; BMS)과 냉각 장치 등을 추가하여 패킹한 구조일 수 있다.
상기 전지 팩은 다양한 디바이스에 적용될 수 있다. 이러한 디바이스에는, 전기 자전거, 전기 자동차, 하이브리드 자동차 등의 운송 수단에 적용될 수 있으나, 본 발명은 이에 제한되지 않고 전지 모듈을 사용할 수 있는 다양한 디바이스에 적용 가능하며, 이 또한 본 발명의 권리범위에 속한다.
이상에서 본 발명의 바람직한 실시 예에 대하여 상세하게 설명하였으나, 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.
[부호의 설명]
100: 전지 모듈
110: 전지 셀
113: 셀 바디
120: 셀 어셈블리
130, 230: 방열 부재
131, 231: 판상 부재
132, 232: 보강 부재
132a, 232a: 제1 보강 부재
132b, 232b: 제2 보강 부재
133, 134, 233, 234, 238: 연장부
135, 235: 연결부
136, 236: 제1 오픈부
137, 237: 제2 오픈부
161: 압축 패드
200: 모듈 프레임
125, 225: 셀 유닛
CP: 냉각 유로

Claims (19)

  1. 복수의 전지 셀이 일 방향을 따라 적층되어 있는 셀 어셈블리,
    상기 셀 어셈블리 내에서 상기 전지 셀과 접하는 방열 부재, 및
    상기 셀 어셈블리를 수납하는 모듈 프레임을 포함하고,
    상기 방열 부재는 상기 전지 셀의 일 면과 평행한 판상 부재와, 상기 판상 부재의 제1 부분과 제2 부분 중 적어도 하나로부터 연장된 보강 부재를 포함하는 전지 모듈.
  2. 제1항에서,
    상기 전지 셀과 상기 방열 부재를 포함하는 셀 유닛은,
    제1 전지 셀과 제2 전지 셀,
    상기 제1 전지 셀의 일면에 위치하는 제1 방열 부재, 및
    상기 제2 전지 셀의 일면에 위치하는 제2 방열 부재를 포함하고,
    상기 제1, 2 방열 부재에 각각 포함되는 제1, 2 보강 부재의 연장부 중에서 상기 제1, 2 전지 셀과 접촉하는 연장부들 사이에 상기 제1, 2 전지 셀의 일부를 노출하는 제1 오픈부가 형성되어 있는 전지 모듈.
  3. 제2항에서,
    상기 제1 보강 부재의 연장부와 상기 제2 보강 부재의 연장부 사이에 상기 모듈 프레임의 일부를 노출하는 제2 오픈부가 형성되어 있는 전지 모듈.
  4. 제3항에서,
    상기 제1, 2 보강 부재 내부에 냉각 유로가 형성되고, 상기 냉각 유로에 절연 냉각제가 함침되어 상기 제1 오픈부를 통해 상기 절연 냉각제와 상기 전지 셀이 직접 접촉하는 전지 모듈.
  5. 제2항에서,
    상기 셀 유닛은 상기 셀 어셈블리 내에서 복수 개 적층되고,
    상기 복수 개 적층된 셀 유닛들 중에서 서로 이웃하는 셀 유닛들 사이에 위치하는 압축 패드를 더 포함하는 전지 모듈.
  6. 제2항에서,
    상기 셀 유닛은 상기 제1 전지 셀과 상기 제2 전지 셀 사이에 위치하는 압축 패드를 더 포함하는 전지 모듈.
  7. 제6항에서,
    상기 셀 유닛은 상기 셀 어셈블리 내에서 복수 개 적층되고,
    상기 복수 개 적층된 셀 유닛들 중에서 서로 이웃하는 셀 유닛들 사이에 위치하는 압축 패드를 더 포함하는 전지 모듈.
  8. 제1항에서,
    상기 보강 부재는 서로 평행한 적어도 2개의 연장부를 포함하고,
    상기 2개의 연장부 사이에 냉각 유로가 형성되는 전지 모듈.
  9. 제8항에서,
    상기 냉각 유로에 상기 절연 냉각제가 함침되어, 상기 절연 냉각제와 상기보강 부재가 직접 접촉하는 전지 모듈.
  10. 제1항에서,
    상기 보강 부재는 압출 성형 타입의 구조를 갖는 전지 모듈.
  11. 제10항에서,
    상기 적어도 2개의 연장부는 상기 판상 부재로부터 동일한 방향으로 연장되는 전지 모듈.
  12. 제1항에서,
    상기 보강 부재는 프레스 성형 타입의 구조를 갖는 전지 모듈.
  13. 제12항에서,
    상기 보강 부재는 상기 판상 부재로부터 지그재그 형태로 연장되어 상기 전지 셀과 상기 모듈 프레임 사이의 공간에 형성되는 전지 모듈.
  14. 제1항에서,
    상기 보강 부재는 상기 판상 부재의 상부 가장자리와 하부 가장자리에 각각 형성되고, 상기 보강 부재는 상기 모듈 프레임의 상부와 하부 각각에 접촉하는 전지 모듈.
  15. 제1항에서,
    상기 방열 부재에 포함되는 상기 판상 부재와 상기 보강 부재는 일체형으로 형성되고, 상기 보강 부재는 상기 판상 부재가 벤딩되어 형성되는 전지 모듈.
  16. 제1항에서,
    상기 방열 부재는 알루미늄, 스테인리스, 구리, 금, 그라파이트, 그래핀, CNT(탄소나노튜브) 또는 이들의 복합 소재를 포함하는 전지 모듈.
  17. 제16항에서,
    상기 방열 부재는 알루미늄, 스테인리스, 구리, 금, 그라파이트, 그래핀, 및 CNT(탄소나노튜브) 중 적어도 2 이상이 합지(lamination)된 형태를 갖는 전지 모듈.
  18. 제1항에서,
    상기 모듈 프레임 안에 절연 냉각제가 함침되어 있는 전지 모듈.
  19. 제1항에 따른 전지 모듈을 포함하는 전지 팩.
PCT/KR2023/014962 2022-11-16 2023-09-27 개선된 냉각 구조를 갖는 전지 모듈 및 이를 포함하는 전지 팩 WO2024106741A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220154007A KR20240071920A (ko) 2022-11-16 2022-11-16 개선된 냉각 구조를 갖는 전지 모듈 및 이를 포함하는 전지 팩
KR10-2022-0154007 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024106741A1 true WO2024106741A1 (ko) 2024-05-23

Family

ID=91084736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014962 WO2024106741A1 (ko) 2022-11-16 2023-09-27 개선된 냉각 구조를 갖는 전지 모듈 및 이를 포함하는 전지 팩

Country Status (2)

Country Link
KR (1) KR20240071920A (ko)
WO (1) WO2024106741A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170095040A (ko) * 2016-02-12 2017-08-22 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩
KR20170132514A (ko) * 2016-05-24 2017-12-04 주식회사 엘지화학 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR20200021609A (ko) * 2018-08-21 2020-03-02 에스케이이노베이션 주식회사 배터리 모듈 및 이의 제조방법
JP2021158025A (ja) * 2020-03-27 2021-10-07 積水化学工業株式会社 放熱シート、バッテリーセル、背面カバー材及び電子機器
KR20220066699A (ko) * 2020-11-16 2022-05-24 주식회사 엘지에너지솔루션 절연유를 이용한 냉각 구조를 갖는 배터리 모듈, 그리고 이를 포함하는 배터리 팩 및 자동차

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170095040A (ko) * 2016-02-12 2017-08-22 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩
KR20170132514A (ko) * 2016-05-24 2017-12-04 주식회사 엘지화학 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR20200021609A (ko) * 2018-08-21 2020-03-02 에스케이이노베이션 주식회사 배터리 모듈 및 이의 제조방법
JP2021158025A (ja) * 2020-03-27 2021-10-07 積水化学工業株式会社 放熱シート、バッテリーセル、背面カバー材及び電子機器
KR20220066699A (ko) * 2020-11-16 2022-05-24 주식회사 엘지에너지솔루션 절연유를 이용한 냉각 구조를 갖는 배터리 모듈, 그리고 이를 포함하는 배터리 팩 및 자동차

Also Published As

Publication number Publication date
KR20240071920A (ko) 2024-05-23

Similar Documents

Publication Publication Date Title
WO2010131852A2 (ko) 탄성 가압부재를 포함하는 전지 카트리지, 및 이를 포함하는 전지모듈
WO2021210771A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021206514A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021206383A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022149896A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022080754A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022149888A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2020111665A1 (ko) 파우치형 배터리 카트리지 및 이를 포함하는 파우치형 배터리 팩
WO2021246636A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2024106741A1 (ko) 개선된 냉각 구조를 갖는 전지 모듈 및 이를 포함하는 전지 팩
WO2022149897A1 (ko) 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
WO2022045619A1 (ko) 전지 모듈 및 이의 제조 방법
WO2021221296A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021221295A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021096023A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021071057A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022158855A1 (ko) 전지 셀, 전지 모듈, 및 이를 포함하는 전지 팩
WO2022270718A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2023287148A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2023033504A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2023022514A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2024043540A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2023140497A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2023075147A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2023140496A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩