WO2022149337A1 - 光トランシーバー - Google Patents

光トランシーバー Download PDF

Info

Publication number
WO2022149337A1
WO2022149337A1 PCT/JP2021/039431 JP2021039431W WO2022149337A1 WO 2022149337 A1 WO2022149337 A1 WO 2022149337A1 JP 2021039431 W JP2021039431 W JP 2021039431W WO 2022149337 A1 WO2022149337 A1 WO 2022149337A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
case
heat pipe
optical transceiver
wall surface
Prior art date
Application number
PCT/JP2021/039431
Other languages
English (en)
French (fr)
Inventor
モハマド シャヘッド アハメド
祐士 齋藤
明弘 高宮
剛 小川
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to US18/266,095 priority Critical patent/US20230389232A1/en
Priority to CN202180074940.3A priority patent/CN116420228A/zh
Priority to JP2022573927A priority patent/JP7525660B2/ja
Publication of WO2022149337A1 publication Critical patent/WO2022149337A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
    • H05K7/20418Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing the radiating structures being additional and fastened onto the housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4269Cooling with heat sinks or radiation fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements

Definitions

  • the present invention relates to an optical transceiver.
  • This application claims priority based on Japanese Patent Application No. 2021-000705 filed in Japan on January 6, 2021, and the contents thereof are incorporated herein by reference.
  • TOSA light emitting element subassembly, Transmitter Optical Sub-Assembly
  • a sheet-shaped heat pipe in contact with a housing are used as heat dissipation means, and the heat pipe and TOSA are pressed by a press-fitting component.
  • An optical transceiver is disclosed in which the contact is maintained and the heat pipe and the housing are thermally connected to each other by maintaining the contact between the heat pipe and the housing by the pressing force of the pressing spring.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optical transceiver capable of efficiently cooling a heating element housed in a case such as a receiving circuit or a transmitting circuit.
  • the optical transceiver includes a case provided with a heat sink, a heating element housed in the case, and a heat conductive portion that protrudes from the inner wall surface of the case and is in thermal contact with the heating element.
  • a heat pipe is provided, wherein the heat conductive portion transfers heat received from the heating element to the heat sink.
  • the heat conductive portion protruding from the inner wall surface of the case is in thermal contact with the heating element housed in the case, so that the heat of the heating element is transferred to the heat conductive portion.
  • the heat pipe efficiently transfers the heat received from the heating element by the heat conductive portion to the heat sink, and promotes heat dissipation of the heating element. Therefore, the heating element housed in the case such as the receiving circuit and the transmitting circuit can be efficiently cooled.
  • the heat pipe may be housed in a groove formed in the case.
  • the heat pipe is housed in the groove formed in the outer wall surface of the case and is arranged below the surface of the outer wall surface of the case, and the heat sink is the heat pipe in which the heat pipe is housed. It may be attached to the surface of the outer wall surface of the case so as to close the groove.
  • a plurality of heating elements including the heating element are provided, a plurality of heat conductive portions including the heat conductive portion are provided for each of the plurality of heating elements, and the heat pipe is provided with a plurality of the heat conductive portions. It may be arranged so as to pass through the section.
  • the heat pipe protrudes from the accommodating portion accommodated in the groove formed on the inner wall surface of the case and the groove formed on the inner wall surface of the case to form the heat conductive portion. It may have a protruding portion.
  • the protruding portion may be bent at an obtuse angle with respect to the accommodating portion.
  • an optical transceiver capable of efficiently cooling a heating element housed in a case such as a receiving circuit or a transmitting circuit.
  • FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG.
  • FIG. 2 is a top view of the upper case which shows the arrangement of the heat pipe with respect to the heating element which concerns on 1st Embodiment.
  • It is a figure which compared the performance of the optical transceiver with a heat pipe which concerns on 1st Embodiment, and the conventional optical transceiver without a heat pipe.
  • It is a top view of the upper case which shows the arrangement of the heat pipe with respect to the heating element which concerns on 2nd Embodiment.
  • It is sectional drawing of the optical transceiver which concerns on 3rd Embodiment.
  • It is a bottom view of the upper case which shows the arrangement of the heat pipe with respect to the heating element which concerns on 3rd Embodiment.
  • FIG. 1 is a plan view of the optical transceiver 1 according to the first embodiment.
  • the optical transceiver 1 is a device for converting an electric signal and an optical signal into each other.
  • the optical transceiver 1 is used in a data network connecting devices such as a data center, and the speed is increasing with the increasing bandwidth in recent years.
  • the optical transceiver 1 includes a case 10, a circuit board 20 housed in the case 10, and optical modules 21 and 22.
  • the case 10 is formed in the shape of a rectangular box in a plan view, and an optical fiber insertion port 10a is formed at the first end portion 10A in the longitudinal direction thereof.
  • the second end 10B in the longitudinal direction of the case 10 is provided with an external terminal (not shown) that allows the external device and the circuit board 20 to be connected so as to project outside the case 10.
  • the case 10 is provided with a heat sink 13.
  • the X direction is the longitudinal direction in which the case 10 extends.
  • the Y direction is the thickness direction in which the case 10 and the heat sink 13 are laminated.
  • the direction orthogonal to both the X direction and the Y direction is defined as the Z direction.
  • the X direction is referred to as a longitudinal direction
  • the Y direction is referred to as a thickness direction
  • the Z direction is referred to as a width direction.
  • the case 10 is provided with a partition wall 10b that partitions the internal space.
  • Optical modules 21 and 22 are held in the partition wall 10b.
  • One of the optical modules 21 and 22 is provided with a receiving receptacle to which a receiving optical fiber inserted from the insertion slot 10a can be connected.
  • the other of the optical modules 21 and 22 is provided with a transmission receptacle to which a transmission side optical fiber inserted from the insertion port 10a can be connected.
  • the internal space S is formed on the second end portion 10B side of the partition wall 10b.
  • the circuit board 20 is housed in the internal space S.
  • the circuit board 20 is connected to the optical modules 21 and 22, and includes a plurality of heating elements 23A, 23B, and 23C.
  • the heating elements 23A, 23B, and 23C include a receiving circuit or a transmitting circuit, which is a mounting component of the circuit board 20 and has a relatively large amount of heat generation.
  • one of the heating elements 23A, 23B, and 23C may include a CPU, a clock data recovery chip (CDR chip), and a transimpedance amplifier chip (TIA chip).
  • FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG.
  • the case 10 is configured by combining the upper case 11 and the lower case 12.
  • the lower case 12 has an open upper portion and is formed in a box shape for accommodating the circuit board 20.
  • the upper case 11 is formed in a lid shape that closes the upper opening of the lower case 12.
  • the upper case 11 has an inner wall surface 11a facing the inner space S and an outer wall surface 11b facing the side opposite to the inner wall surface 11a.
  • a heat sink 13 is attached to the outer wall surface 11b (upper surface) of the upper case 11.
  • the heat sink 13 is arranged directly above the circuit board 20.
  • the heat sink 13 may be arranged so as to cover the circuit board 20 when viewed from the thickness direction. Further, the heat sink 13 may be arranged so as to overlap with the plurality of heating elements 23A, 23B, 23C when viewed from the thickness direction.
  • the heat sink 13 includes a flat plate-shaped base plate 13a and a plurality of fins 13b erected on the base plate 13a.
  • the heat sink 13 is preferably made of a material having high heat dissipation, and is preferably made of a metal material such as copper, aluminum, or stainless steel.
  • a heat conductive portion 30 is provided on the inner wall surface 11a (lower surface) of the upper case 11.
  • the heat conductive portion 30 is a convex portion provided on the inner wall surface 11a of the upper case 11.
  • the heat conductive portion 30 protrudes from the inner wall surface 11a of the case 10 and is in thermal contact with the upper surface of the heating element 23A.
  • the heat conductive portion 30 is in thermal contact with the heating element 23A via a TIM (Thermal Interface Material) such as a heat radiating sheet 31.
  • the heat conductive portion 30 (upper case 11) is preferably made of a material having high heat conductivity, and is preferably made of a metal material such as copper, aluminum, or stainless steel.
  • the upper case 11 is provided with a heat pipe 40 that transfers the heat received from the heating element 23A by the heat conductive portion 30 to the heat sink 13.
  • the heat pipe 40 is a heat transport element that utilizes the latent heat of the working fluid.
  • the heat pipe 40 includes a flat container in which a working fluid is sealed, and a wick (not shown) provided inside the container.
  • the working fluid is a heat transport medium made of a well-known phase-changing substance, and undergoes a phase change between a liquid phase and a gas phase in a container. For example, water (pure water), alcohol, ammonia, or the like can be adopted as the working fluid.
  • the heat pipe 40 is housed in the groove 11b1 formed in the case 10.
  • the heat pipe 40 of the first embodiment is housed in a groove 11b1 formed in the outer wall surface 11b of the case 10 and is arranged below the surface of the outer wall surface 11b of the case 10. That is, the depth of the groove 11b1 is equal to or greater than the thickness of the heat pipe 40 so that the heat pipe 40 does not protrude from the outer wall surface 11b.
  • the heat sink 13 is attached to the outer wall surface 11b of the case 10 so as to close the groove 11b1 in which the heat pipe 40 is housed.
  • the heat sink 13 is attached to the outer wall surface 11b of the case 10 via a TIM such as a heat dissipation sheet 41 so as to close the groove 11b1 in which the heat sink 13 is housed. That is, a part of the heat sink 13 may be housed in the groove 11b1.
  • the heat sink 13 and the heat pipe 40 may be arranged so as to be in thermal contact with each other via a TIM such as a heat dissipation sheet 41.
  • FIG. 3 is a plan view of the upper case 11 showing the arrangement of the heat pipe 40 with respect to the heating element 23A according to the first embodiment.
  • the heat pipe 40 extends linearly so as to pass directly above the heating element 23A.
  • the total length of the heat pipe 40 extends in the longitudinal direction of the heat sink 13 below the total length of the heat sink 13, and is long enough not to protrude from the base plate 13a.
  • the width of the heat pipe 40 may be smaller than the width of the heating element 23A.
  • the heating element 23A is arranged on the first end portion 40a side of the heat pipe 40, and the heating element is not arranged on the second end portion 40b side.
  • the heat conductive portion 30 protruding from the inner wall surface 11a of the case 10 is in thermal contact with the heating element 23A housed in the case 10.
  • the heat of the heating element 23A is transferred to the heat conductive portion 30.
  • the heat pipe 40 efficiently transfers the heat received from the heating element 23A by the heat conductive portion 30 to the heat sink 13, and promotes heat dissipation of the heating element 23A.
  • the heat of the heating element 23A is transported to the second end portion 40b side, and the heat transported along the longitudinal direction is also dissipated by the heat sink 13.
  • the optical transceiver 1 of the present embodiment can efficiently dissipate heat because the heat is transported over a wider area by the heat pipe 40. Therefore, the heating element 23A housed in the case 10 such as the receiving circuit and the transmitting circuit can be efficiently cooled.
  • FIG. 4 is a diagram comparing the performance of the optical transceiver 1 with the heat pipe 40 according to the first embodiment and the conventional optical transceiver without the heat pipe 40.
  • the horizontal axis of the graph of FIG. 4 is the power consumption of the heating element 23A
  • the vertical axis is the temperature of the heating element 23A.
  • the optical transceiver 1 with the heat pipe 40 can effectively lower the temperature of the heating element 23A as compared with the conventional optical transceiver without the heat pipe 40. For example, when the power consumption of the heating element 23A is 12 W, the temperature can be lowered by 13 ° C. or more.
  • the optical transceiver 1 protrudes from the case 10 provided with the heat sink 13, the heating element 23A housed in the case 10, and the inner wall surface 11a of the case 10 to generate heat. It includes a heat conductive portion 30 that is in thermal contact with the body 23A, and a heat pipe 40 that transfers the heat received by the heat conductive portion 30 from the heating element 23A to the heat sink 13.
  • an optical transceiver 1 capable of efficiently dissipating heat of the heating element 23A housed in the case 10 such as a receiving circuit and a transmitting circuit.
  • the heat pipe 40 is housed in the groove 11b1 formed in the case 10. According to this configuration, the contact area between the heat pipe 40 and the case 10 becomes large, and the heat obtained by the heat conductive portion 30 can be efficiently transferred to the heat pipe 40 via the case 10.
  • the heat pipe 40 is housed in the groove 11b1 formed in the outer wall surface 11b of the case 10 and is arranged below the surface of the outer wall surface 11b of the case 10, and the heat sink 13 is provided.
  • the heat pipe 40 is attached to the surface of the outer wall surface 11b of the case 10 so as to close the groove 11b1 in which the heat pipe 40 is housed. According to this configuration, since the heat pipe 40 does not protrude from the outer wall surface 11b of the case 10, the heat sink 13 easily adheres to the outer wall surface 11b of the case 10, and the heat dissipation is improved.
  • FIG. 5 is a cross-sectional view of the optical transceiver 1 according to the second embodiment.
  • FIG. 6 is a plan view of the upper case 11 showing the arrangement of the heat pipe 40 with respect to the heating elements 23A and 23B according to the second embodiment.
  • the optical transceiver 1 of the second embodiment includes a plurality of heat conductive portions 30A and 30B that are in thermal contact with the plurality of heating elements 23A and 23B. That is, a plurality of convex portions that come into contact with the heating elements 23A and 23B are formed on the inner wall surface 11a of the upper case 11.
  • the heat pipe 40 is bent at an angle ⁇ in a plan view, and is arranged so as to pass directly above the heating elements 23A and 23B. That is, the heat pipe 40 passes through the plurality of heat conductive portions 30A and 30B, and can receive heat from the respective heat conductive portions 30A and 30B.
  • the angle ⁇ is preferably an obtuse angle so as not to crush the internal space of the heat pipe 40.
  • the second end 40b on the opposite side of the first end 40a of the heat pipe 40 arranged directly above the heating element 23A is a condensing part of the working fluid, and therefore does not receive heat from the heating elements 23A and 23B. It is good to do so.
  • the heat conduction portions 30A and 30B are provided for each of the heating elements 23A and 23B, and the heat pipe 40 passes through the plurality of heat conduction portions 30A and 30B. Since they are arranged, the heat of each of the heating elements 23A and 23B can be efficiently transferred to the heat sink 13, and the heat dissipation of the heating elements 23A and 23B can be promoted. Therefore, the heating elements 23A and 23B (for example, both the receiving circuit and the transmitting circuit) housed in the case 10 can be efficiently cooled.
  • FIG. 7 is a cross-sectional view of the optical transceiver 1 according to the third embodiment.
  • FIG. 8 is a bottom view of the upper case 11 showing the arrangement of the heat pipe 40 with respect to the heating element 23A according to the third embodiment.
  • the heat pipe 40 is housed in the groove 11a1 formed in the inner wall surface 11a of the case 10.
  • the heat pipe 40 protrudes from the accommodating portion 40A accommodated in the groove 11a1 formed in the inner wall surface 11a of the case 10 and the groove 11a1 formed in the inner wall surface 11a of the case 10 to form the heat conductive portion 30. It has 40B and.
  • the protruding portion 40B is bent at an obtuse angle ⁇ 1 with respect to the accommodating portion 40A. Further, the tip portion of the protruding portion 40B is further bent at an obtuse angle ⁇ 2 and is joined to the metal plate 42.
  • the metal plate 42 is in thermal contact with the upper surface of the heating element 23A via a TIM such as a heat dissipation sheet 31.
  • the heat pipe 40 is formed in the accommodating portion 40A accommodated in the groove 11a1 formed in the inner wall surface 11a of the case 10 and in the inner wall surface 11a of the case 10.
  • the heat pipe 40 can receive heat directly from the heating element 23A because it has a protruding portion 40B that protrudes from the groove 11a1 and forms a heat conductive portion 30. Therefore, heat can be efficiently transferred to the heat sink 13 and heat dissipation of the heating element 23A can be promoted.
  • the protruding portion 40B since the protruding portion 40B is bent at an obtuse angle ⁇ 1 with respect to the accommodating portion 40A, the protruding portion 40B can be formed so as not to crush the internal space of the heat pipe 40. The reason why the tip of the protruding portion 40B is also bent at the obtuse angle ⁇ 2 is the same.
  • the heat pipe 40 may extend in the longitudinal direction while bending.
  • the bending angle at this time may be an obtuse angle.
  • the second end portion 40b side of the heat pipe 40 may be arranged so as to extend the central portion of the heat sink 13 in the width direction.
  • a plurality of heat conductive portions 30 and a plurality of heat pipes 40 may be arranged according to the number of heating elements.
  • optical transceiver 1 A part or all of the optical transceiver 1 according to the third embodiment described above can be added as follows.
  • An optical transceiver comprising a heat pipe that partially protrudes from the inner wall surface of the case, thermally contacts the heating element, and transfers heat received from the heating element to the heat sink.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Telephone Function (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

光トランシーバーは、ヒートシンクが設けられたケースと、ケースに収容された発熱体と、ケースの内壁面から突出し、発熱体と熱的に接触する熱伝導部と、熱伝導部が発熱体から受けた熱をヒートシンクに伝えるヒートパイプと、を備える。

Description

光トランシーバー
 本発明は、光トランシーバーに関する。
 本願は、2021年1月6日に日本に出願された特願2021-000705号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1には、放熱手段として、TOSA(発光素子サブアセンブリ、Transmitter Optical Sub-Assembly)および筐体に接触したシート状のヒートパイプを用い、前記ヒートパイプとTOSAとは圧入部品の押圧力により接触が保持され、前記ヒートパイプと筐体とは押さえバネの押圧力によって接触が保持されることによって、それぞれ熱的に接続される光トランシーバーが開示されている。
日本国特開2008-118357号公報
 ところで、近年の光トランシーバーの伝送速度の高速化に伴い、TOSAだけでなく、受信回路や送信回路などのケースに収容された発熱体の発熱量が増加しており、その冷却が課題となっている。
 本発明は、上記事情に鑑みてなされたものであり、受信回路や送信回路などのケースに収容された発熱体を効率よく冷却できる光トランシーバーの提供を目的とする。
 本発明の一態様に係る光トランシーバーは、ヒートシンクが設けられたケースと、前記ケースに収容された発熱体と、前記ケースの内壁面から突出し、前記発熱体と熱的に接触する熱伝導部と、前記熱伝導部が前記発熱体から受けた熱を前記ヒートシンクに伝えるヒートパイプと、を備える。
 この構成によれば、ケースに収容された発熱体に対し、ケースの内壁面から突出した熱伝導部が熱的に接触するため、発熱体の熱は熱伝導部に伝わる。ヒートパイプは、熱伝導部が発熱体から受けた熱をヒートシンクに効率よく伝え、発熱体の放熱を促進させる。このため、受信回路や送信回路などのケースに収容された発熱体を効率よく冷却できる。
 上記光トランシーバーにおいて、前記ヒートパイプは、前記ケースに形成された溝に収容されていてもよい。
 上記光トランシーバーにおいて、前記ヒートパイプは、前記ケースの外壁面に形成された前記溝に収容されて、前記ケースの外壁面の表面以下に配置され、前記ヒートシンクは、前記ヒートパイプが収容された前記溝を閉塞するように、前記ケースの外壁面の表面に取り付けられていてもよい。
 上記光トランシーバーにおいて、前記発熱体を含む複数の発熱体が設けられ、前記熱伝導部を含む複数の熱伝導部が複数の前記発熱体ごとに設けられ、前記ヒートパイプは、複数の前記熱伝導部を通過するように配置されていてもよい。
 上記光トランシーバーにおいて、前記ヒートパイプは、前記ケースの内壁面に形成された前記溝に収容された収容部分と、前記ケースの内壁面に形成された前記溝から突出し、前記熱伝導部を形成する突出部分と、を有してもよい。
 上記光トランシーバーにおいて、前記突出部分は、前記収容部分に対して鈍角で曲がっていてもよい。
 上記本発明の一態様によれば、受信回路や送信回路などのケースに収容された発熱体を効率よく冷却できる光トランシーバーを提供できる。
第1実施形態に係る光トランシーバーの平面図である。 図1に示す矢視II-II断面図である。 第1実施形態に係る発熱体に対するヒートパイプの配置を示すアッパーケースの平面図である。 第1実施形態に係るヒートパイプ有りの光トランシーバーと、ヒートパイプ無しの従来の光トランシーバーの性能を比較した図である。 第2実施形態に係る光トランシーバーの断面図である。 第2実施形態に係る発熱体に対するヒートパイプの配置を示すアッパーケースの平面図である。 第3実施形態に係る光トランシーバーの断面図である。 第3実施形態に係る発熱体に対するヒートパイプの配置を示すアッパーケースの底面図である。
 以下、本発明の一実施形態について図面を参照して説明する。
 (第1実施形態)
 図1は、第1実施形態に係る光トランシーバー1の平面図である。
 光トランシーバー1は、電気信号と光信号を相互に変換するためのデバイスである。光トランシーバー1は、データセンターなどの機器間を繋ぐデータネットワークで用いられ、近年の増加する帯域幅に伴い、高速化が進んでいる。
 光トランシーバー1は、ケース10と、ケース10に収容された回路基板20及び光モジュール21,22と、を備えている。ケース10は、平面視長方形の箱状に形成され、その長手方向の第1端部10Aに光ファイバーの挿入口10aが形成されている。なお、ケース10の長手方向の第2端部10Bには、外部装置と回路基板20とを接続可能とする外部端子(不図示)がケース10外に突出して設けられている。ケース10には、ヒートシンク13が設けられている。
 <方向定義>
 ここで、本実施形態ではXYZ直交座標系を設定して各構成の位置関係を説明する。X方向は、ケース10の延びる長手方向である。Y方向は、ケース10およびヒートシンク13が積層された厚さ方向である。X方向およびY方向の双方に直交する方向をZ方向とする。以下、X方向を長手方向といい、Y方向を厚さ方向といい、Z方向を幅方向という。
 ケース10には、内部空間を仕切る仕切壁10bが設けられている。仕切壁10bには、光モジュール21,22が保持されている。光モジュール21,22のいずれか一方は、挿入口10aから挿入された受信側の光ファイバーを接続可能な受信レセプタクルを備えている。光モジュール21,22の他方は、挿入口10aから挿入された送信側の光ファイバーを接続可能な送信レセプタクルを備えている。
 ケース10の内部空間における、仕切壁10bより第2端部10B側には内部空間Sが形成されている。内部空間Sには回路基板20が収容されている。
 回路基板20は、光モジュール21,22と接続されると共に、複数の発熱体23A,23B,23Cを備えている。発熱体23A,23B,23Cは、回路基板20の実装部品で比較的発熱量の多い受信回路または送信回路を含む。また、発熱体23A,23B,23Cの一つには、CPUや、クロックデータリカバリーチップ(CDRチップ)、トランスインピーダンスアンプチップ(TIAチップ)が含まれていてもよい。
 図2は、図1に示す矢視II-II断面図である。
 ケース10は、図2に示すように、アッパーケース11と、ロアケース12を組み合わせて構成されている。ロアケース12は、上部が開口し、回路基板20を収容する箱状に形成されている。アッパーケース11は、ロアケース12の上部開口を閉塞する蓋状に形成されている。アッパーケース11は、内部空間Sを向く内壁面11aと、内壁面11aとは反対側を向く外壁面11bと、を有する。
 アッパーケース11の外壁面11b(上面)には、ヒートシンク13が取り付けられている。ヒートシンク13は、回路基板20の直上に配置されている。厚さ方向から見て、ヒートシンク13は回路基板20を覆うように配置されていてもよい。また、厚さ方向から見て、ヒートシンク13は、複数の発熱体23A,23B,23Cと重なるように配置されていてもよい。
 ヒートシンク13は、平板状のベースプレート13aと、ベースプレート13aに立設する複数のフィン13bと、を備えている。ヒートシンク13は、放熱性の高い素材で構成されることが好ましく、例えば銅、アルミニウム、ステンレスなどの金属材で構成されていることが好ましい。
 アッパーケース11の内壁面11a(下面)には、熱伝導部30が設けられている。熱伝導部30は、アッパーケース11の内壁面11aに設けられた凸部である。熱伝導部30は、ケース10の内壁面11aから突出し、発熱体23Aの上面と熱的に接触している。熱伝導部30は、放熱シート31などのTIM(Thermal Interface Material)を介して発熱体23Aと熱的に接触している。熱伝導部30(アッパーケース11)は、熱伝導性の高い素材で構成されることが好ましく、例えば銅、アルミニウム、ステンレスなどの金属材で構成されていることが好ましい。
 アッパーケース11には、熱伝導部30が発熱体23Aから受けた熱をヒートシンク13に伝えるヒートパイプ40が設けられている。ヒートパイプ40は、作動流体の潜熱を利用する熱輸送素子である。このヒートパイプ40は、作動流体が内部に封入された扁平状のコンテナと、コンテナの内部に設けられた図示しないウイックと、を備えている。作動流体は、周知の相変化物質からなる熱輸送媒体であって、コンテナ内で液相と気相とに相変化する。例えば、作動流体として、水(純水)やアルコールやアンモニア等を採用できる。
 ヒートパイプ40は、ケース10に形成された溝11b1に収容されている。第1実施形態のヒートパイプ40は、ケース10の外壁面11bに形成された溝11b1に収容されて、ケース10の外壁面11bの表面以下に配置されている。すなわち、ヒートパイプ40が外壁面11bから突出しないよう、溝11b1の深さはヒートパイプ40の厚さと同等以上となっている。ヒートシンク13は、ヒートパイプ40が収容された溝11b1を閉塞するように、ケース10の外壁面11bに取り付けられる。
 ヒートシンク13は、ヒートシンク13が収容された溝11b1を閉塞するように、ケース10の外壁面11bに放熱シート41などのTIMを介して取り付けられている。すなわち、ヒートシンク13の一部が溝11b1に収容されていてもよい。
 ヒートシンク13とヒートパイプ40とは、放熱シート41などのTIMを介して熱的に接触するように配置されていてもよい。
 図3は、第1実施形態に係る発熱体23Aに対するヒートパイプ40の配置を示すアッパーケース11の平面図である。
 図3に示すように、ヒートパイプ40は、発熱体23Aの直上を通るように直線状に延びている。ヒートパイプ40の全長は、図2に示すように、ヒートシンク13の全長以下でヒートシンク13の長手方向に延び、ベースプレート13aから飛び出さない程度の長さとなっている。ヒートパイプ40の幅は、発熱体23Aの幅よりも小さくてもよい。図3の例では、ヒートパイプ40の第1端部40a側に発熱体23Aは配置されており、第2端部40b側には発熱体は配置されていない。
 上記構成の光トランシーバー1によれば、図2に示すように、ケース10に収容された発熱体23Aに対し、ケース10の内壁面11aから突出した熱伝導部30が熱的に接触するため、発熱体23Aの熱は熱伝導部30に伝わる。ヒートパイプ40は、熱伝導部30が発熱体23Aから受けた熱をヒートシンク13に効率よく伝え、発熱体23Aの放熱を促進させる。特に、ヒートパイプ40において、発熱体23Aの熱が第2端部40b側へ輸送され、長手方向に沿って輸送された熱もヒートシンク13により放熱される。すなわち、ヒートパイプを有さない構成と比較し、本実施形態の光トランシーバー1は、ヒートパイプ40により熱がより広い面積にわたって輸送されるため、効率よく放熱させることができる。このため、受信回路や送信回路などのケース10に収容された発熱体23Aを効率よく冷却できる。
 図4は、第1実施形態に係るヒートパイプ40有りの光トランシーバー1と、ヒートパイプ40無しの従来の光トランシーバーの性能を比較した図である。図4のグラフの横軸は発熱体23Aにおける消費電力であり、縦軸は発熱体23Aの温度である。
 図4に示すように、ヒートパイプ40有りの光トランシーバー1は、ヒートパイプ40無しの従来の光トランシーバーに比べて、発熱体23Aの温度を効果的に下げることができる。例えば、発熱体23Aの消費電力が12Wの場合は、13℃以上温度を下げることができる。
 このように、上述した第1実施形態によれば、光トランシーバー1は、ヒートシンク13が設けられたケース10と、ケース10に収容された発熱体23Aと、ケース10の内壁面11aから突出し、発熱体23Aと熱的に接触する熱伝導部30と、熱伝導部30が発熱体23Aから受けた熱をヒートシンク13に伝えるヒートパイプ40と、を備える。この構成を採用することによって、受信回路や送信回路などのケース10に収容された発熱体23Aを効率よく放熱できる光トランシーバー1を提供できる。
 また、本実施形態の光トランシーバー1では、ヒートパイプ40は、ケース10に形成された溝11b1に収容されている。この構成によれば、ヒートパイプ40とケース10との接触面積が大きくなり、熱伝導部30が得た熱を、ケース10を介してヒートパイプ40に効率よく伝えることができる。
 また、本実施形態の光トランシーバー1では、ヒートパイプ40は、ケース10の外壁面11bに形成された溝11b1に収容されて、ケース10の外壁面11bの表面以下に配置され、ヒートシンク13は、ヒートパイプ40が収容された溝11b1を閉塞するように、ケース10の外壁面11bの表面に取り付けられている。この構成によれば、ヒートパイプ40がケース10の外壁面11bから突出しないため、ヒートシンク13がケース10の外壁面11bに密着し易くなり、放熱性が高まる。
 (第2実施形態)
 次に、本発明の第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成については同一の符号を付し、その説明を簡略若しくは省略する。
 図5は、第2実施形態に係る光トランシーバー1の断面図である。図6は、第2実施形態に係る発熱体23A,23Bに対するヒートパイプ40の配置を示すアッパーケース11の平面図である。
 図5に示すように、第2実施形態の光トランシーバー1は、複数の発熱体23A,23Bに対して熱的に接触する複数の熱伝導部30A,30Bを備えている。つまり、アッパーケース11の内壁面11aには、発熱体23A,23Bにそれぞれ接触する複数の凸部が形成されている。
 図6に示すように、ヒートパイプ40は、平面視において角度θで曲がっており、発熱体23A,23Bの直上を通るように配置されている。つまり、ヒートパイプ40は、複数の熱伝導部30A,30Bを通過し、それぞれの熱伝導部30A,30Bから熱を受けることができるようになっている。なお、角度θは、ヒートパイプ40の内部空間を潰さないように鈍角であることが好ましい。なお、発熱体23Aの直上に配置されたヒートパイプ40の第1端部40aと反対側の第2端部40bは、作動流体の凝縮部となるため、発熱体23A,23Bから熱を受けないようにするとよい。
 上記構成の第2実施形態の光トランシーバー1によれば、発熱体23A,23Bごとに熱伝導部30A,30Bが設けられ、ヒートパイプ40は、複数の熱伝導部30A,30Bを通過するように配置されているため、発熱体23A,23Bのそれぞれの熱をヒートシンク13に効率よく伝え、発熱体23A,23Bの放熱を促進させることができる。このため、ケース10に収容された発熱体23A,23B(例えば受信回路及び送信回路の両方)を効率よく冷却できる。
 (第3実施形態)
 次に、本発明の第3実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成については同一の符号を付し、その説明を簡略若しくは省略する。
 図7は、第3実施形態に係る光トランシーバー1の断面図である。図8は、第3実施形態に係る発熱体23Aに対するヒートパイプ40の配置を示すアッパーケース11の底面図である。
 図7に示すように、第3実施形態の光トランシーバー1では、ヒートパイプ40が、ケース10の内壁面11aに形成された溝11a1に収容されている。
 ヒートパイプ40は、ケース10の内壁面11aに形成された溝11a1に収容された収容部分40Aと、ケース10の内壁面11aに形成された溝11a1から突出し、熱伝導部30を形成する突出部分40Bと、を有している。突出部分40Bは、収容部分40Aに対して鈍角θ1で曲がっている。また、突出部分40Bの先端部は、さらに鈍角θ2で曲がって、金属プレート42に接合されている。金属プレート42は、発熱体23Aの上面と放熱シート31などのTIMを介して熱的に接触している。
 上記構成の第3実施形態の光トランシーバー1によれば、ヒートパイプ40は、ケース10の内壁面11aに形成された溝11a1に収容された収容部分40Aと、ケース10の内壁面11aに形成された溝11a1から突出し、熱伝導部30を形成する突出部分40Bと、を有するため、ヒートパイプ40は、発熱体23Aから直接熱を受けることができる。このため、ヒートシンク13に効率よく熱を伝え、発熱体23Aの放熱を促進させることができる。
 また、第3実施形態の光トランシーバー1では、突出部分40Bは、収容部分40Aに対して鈍角θ1で曲がっているため、ヒートパイプ40の内部空間を潰さないように突出部分40Bを形成できる。なお、突出部分40Bの先端部も鈍角θ2で曲がっている理由は、同じである。
 なお、本発明の技術的範囲は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、図8に示すように、平面視において、ヒートパイプ40は曲がりながら長手方向に延びていてもよい。この際の曲がり角度は、鈍角としてもよい。また、ヒートパイプ40の第2端部40b側は、幅方向においてヒートシンク13の中央部分を延びるように配置されていてもよい。
 また、第1および第3実施形態において、1つの熱伝導部30がケース10に形成されている例を説明したが、この例に限定されない。例えば、複数の発熱体を効率よく冷却するために、発熱体の数に応じて複数の熱伝導部30や複数のヒートパイプ40が配置されていてもよい。
 上述した第3実施形態に係る光トランシーバー1の一部又は全部は、以下のように付記することができる。
(付記)
 ヒートシンクが設けられたケースと、
 前記ケースに収容され、受信回路及び送信回路の少なくともいずれか一方を含む発熱体と、
 一部が前記ケースの内壁面から突出し、前記発熱体と熱的に接触すると共に、前記発熱体から受けた熱を前記ヒートシンクに伝えるヒートパイプと、を備える、光トランシーバー。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
1…光トランシーバー、10…ケース、11a…内壁面、11a1…溝、11b…外壁面、11b1…溝、13…ヒートシンク、23A…発熱体、30…熱伝導部、40…ヒートパイプ、40A…収容部分、40B…突出部分、θ1…鈍角

Claims (6)

  1.  ヒートシンクが設けられたケースと、
     前記ケースに収容された発熱体と、
     前記ケースの内壁面から突出し、前記発熱体と熱的に接触する熱伝導部と、
     前記熱伝導部が前記発熱体から受けた熱を前記ヒートシンクに伝えるヒートパイプと、を備える、光トランシーバー。
  2.  前記ヒートパイプは、前記ケースに形成された溝に収容されている、請求項1に記載の光トランシーバー。
  3.  前記ヒートパイプは、前記ケースの外壁面に形成された前記溝に収容されて、前記ケースの外壁面の表面以下に配置され、
     前記ヒートシンクは、前記ヒートパイプが収容された前記溝を閉塞するように、前記ケースの外壁面の表面に取り付けられている、請求項2に記載の光トランシーバー。
  4.  前記発熱体を含む複数の発熱体が設けられ、
     前記熱伝導部を含む複数の熱伝導部が、複数の前記発熱体ごとに設けられ、
     前記ヒートパイプは、複数の前記熱伝導部を通過するように配置されている、請求項1~3のいずれか一項に記載の光トランシーバー。
  5.  前記ヒートパイプは、
      前記ケースの内壁面に形成された前記溝に収容された収容部分と、
      前記ケースの内壁面に形成された前記溝から突出し、前記熱伝導部を形成する突出部分と、を有する、請求項2に記載の光トランシーバー。
  6.  前記突出部分は、前記収容部分に対して鈍角で曲がっている、請求項5に記載の光トランシーバー。
PCT/JP2021/039431 2021-01-06 2021-10-26 光トランシーバー WO2022149337A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/266,095 US20230389232A1 (en) 2021-01-06 2021-10-26 Optical transceiver
CN202180074940.3A CN116420228A (zh) 2021-01-06 2021-10-26 光收发器
JP2022573927A JP7525660B2 (ja) 2021-01-06 2021-10-26 光トランシーバー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-000705 2021-01-06
JP2021000705 2021-01-06

Publications (1)

Publication Number Publication Date
WO2022149337A1 true WO2022149337A1 (ja) 2022-07-14

Family

ID=82357397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039431 WO2022149337A1 (ja) 2021-01-06 2021-10-26 光トランシーバー

Country Status (5)

Country Link
US (1) US20230389232A1 (ja)
JP (1) JP7525660B2 (ja)
CN (1) CN116420228A (ja)
TW (1) TWI805097B (ja)
WO (1) WO2022149337A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240237266A1 (en) * 2023-01-06 2024-07-11 Dell Products L.P. Transceiver handle heat dissipation airflow channeling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245356A (ja) * 2005-03-04 2006-09-14 Hitachi Ltd 電子デバイスの冷却装置
JP2008118357A (ja) * 2006-11-02 2008-05-22 Sumitomo Electric Ind Ltd ヒートパイプ内蔵光トランシーバ
JP2011119564A (ja) * 2009-12-07 2011-06-16 Seiko Epson Corp データ記憶装置、および、それを備えた印刷装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9846287B2 (en) * 2013-07-11 2017-12-19 Ciena Corporation Method of cooling stacked, pluggable optical transceivers
US11051431B2 (en) * 2018-06-29 2021-06-29 Juniper Networks, Inc. Thermal management with variable conductance heat pipe
TWM605286U (zh) * 2020-08-31 2020-12-11 同德有限公司 散熱器之熱導管改良結構

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245356A (ja) * 2005-03-04 2006-09-14 Hitachi Ltd 電子デバイスの冷却装置
JP2008118357A (ja) * 2006-11-02 2008-05-22 Sumitomo Electric Ind Ltd ヒートパイプ内蔵光トランシーバ
JP2011119564A (ja) * 2009-12-07 2011-06-16 Seiko Epson Corp データ記憶装置、および、それを備えた印刷装置

Also Published As

Publication number Publication date
JPWO2022149337A1 (ja) 2022-07-14
JP7525660B2 (ja) 2024-07-30
US20230389232A1 (en) 2023-11-30
TW202228411A (zh) 2022-07-16
CN116420228A (zh) 2023-07-11
TWI805097B (zh) 2023-06-11

Similar Documents

Publication Publication Date Title
US9882646B2 (en) System and method for reduced power consumption and heat removal in optical and optoelectronic devices and subassemblies
JP4929400B2 (ja) 自由空間光学素子を有する電子システム
KR100769497B1 (ko) 히트 싱크
US20050162761A1 (en) Heat sink tab for optical sub-assembly
JP5533431B2 (ja) 光モジュール
WO2011147208A1 (zh) 光模块和光通信系统
WO2022149337A1 (ja) 光トランシーバー
US6791150B2 (en) Optical module and optical transceiver apparatus
CN110060966B (zh) 光模块
US7881059B2 (en) Heat management in an electronic module
JP2019113784A (ja) 光トランシーバ
CN218216098U (zh) 激光发射装置和激光雷达
US20220294478A1 (en) Device for transferring heat between a first module and a second module
CN115084683A (zh) 电池包及电源
CN212164066U (zh) 一种便于散热的光模块
TW202238315A (zh) 具散熱結構的光通訊模組
KR100736814B1 (ko) 써멀싸이폰 일체형 히트싱크 제조방법
JP5901258B2 (ja) 光モジュール、光送受信器及び光送受信器製造方法
JP2010232391A (ja) 電気回路装置
CN212723467U (zh) 一种光模块
JP2007274565A (ja) 撮像装置
CN115826155A (zh) 具散热结构的光通讯模块
CN219123225U (zh) 光模块散热装置
JPH07263601A (ja) 空冷式のヒートシンク
CN219225149U (zh) 光收发器的散热结构及光收发器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573927

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18266095

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917562

Country of ref document: EP

Kind code of ref document: A1