WO2022149291A1 - コントローラ、設定装置、制御方法およびプログラム - Google Patents
コントローラ、設定装置、制御方法およびプログラム Download PDFInfo
- Publication number
- WO2022149291A1 WO2022149291A1 PCT/JP2021/008294 JP2021008294W WO2022149291A1 WO 2022149291 A1 WO2022149291 A1 WO 2022149291A1 JP 2021008294 W JP2021008294 W JP 2021008294W WO 2022149291 A1 WO2022149291 A1 WO 2022149291A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cable
- delay time
- propagation delay
- unit
- controller
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 60
- 238000004364 calculation method Methods 0.000 claims abstract description 54
- 238000004891 communication Methods 0.000 claims abstract description 19
- 230000005540 biological transmission Effects 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 206010027339 Menstruation irregular Diseases 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/05—Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/46—Monitoring; Testing
Definitions
- the present invention relates to a controller, a setting device, a control method, and a program for setting a signal propagation delay time in a field network.
- FA factory automation
- various types of devices that share work processes are controlled.
- remote I / O, and manufacturing equipment used for work in a certain area such as factory facilities in cooperation
- an industrial network called a field network that connects these equipment has been constructed.
- the devices constituting the system are connected by cables. Propagation delay occurs in the signals communicated between the devices in approximately proportion to the length of this cable.
- Japanese Patent Application Laid-Open No. 2013-137251 Japanese Patent Application Laid-Open No. 2018-19454 Japanese Patent Application Laid-Open No. 2017-102900 Japanese Patent Application Laid-Open No. 8-202759
- the fixed cycle task is completed within the control cycle in consideration of the propagation delay time corresponding to the assumed cable length. Was in control. Therefore, the propagation delay time is set longer than necessary, and the time that can be used for the actual processing of the fixed cycle task within the control cycle is squeezed.
- the user manually sets the propagation delay time based on the length of the cable actually used. However, it takes time and effort for the user, and it is difficult to set the propagation delay time to an accurate value.
- the technique for measuring the cable length is disclosed in the above patent document, but the point of considering the propagation delay time is not disclosed.
- the controller is a controller connected to a field network connecting a plurality of slave devices with a cable, and is measured in the physical layer communication circuit of each slave device.
- the cable length between the slave devices is calculated based on the SQI value acquisition unit that acquires the SQI (signal quality indicator) value to be obtained and the SQI value acquired by the SQI value acquisition unit, and the cable length is calculated in the field network. It is provided with a cable total length calculation unit for calculating the total cable extension of the above, and a propagation delay time setting unit for setting a signal propagation delay time in the field network based on the total cable extension.
- the total cable extension can be accurately calculated without the user's trouble, and the signal propagation delay time can be accurately calculated from the calculated total cable extension. Therefore, an appropriate propagation delay time can be set, and as a result, the time that can be used for the actual processing of the fixed cycle task within the control cycle can be increased.
- the control method is a control method of a controller connected to a field network in which a plurality of slave devices are connected by a cable, and the physical layer of each of the slave devices.
- the cable length between the slave devices is calculated based on the SQI value acquisition step for acquiring the SQI (signal quality indicator) value measured in the layer communication circuit and the SQI value acquired by the SQI value acquisition step.
- the cable total extension calculation step for calculating the total cable extension in the field network, and the propagation delay time setting step for setting the signal propagation delay time in the field network based on the cable total extension are included.
- the total cable length in a field network, can be calculated accurately without the user's trouble, and an appropriate propagation delay time can be set from the total cable length. As a result, it is possible to increase the time during which the user's program can be executed within the control cycle.
- FIG. 6 It is a figure which shows the structure of the apparatus group belonging to the field network to which the controller which concerns on embodiment of this invention is connected. It is a block diagram which shows the functional structure of the controller and the installation apparatus included in FIG. 6 is a graph showing the relationship between the SQI value and the cable length in the slave device included in FIG. 1. It is a flowchart which shows the flow of the propagation delay time setting process executed in the controller and the setting apparatus which concerns on embodiment of this invention. It is a figure which shows an example of the setting screen in the setting apparatus included in FIG. 1.
- FIG. 1 is a configuration diagram showing a system 100 connected by a field network including a controller according to the present embodiment.
- the configuration of the system 100 will be described with reference to FIG.
- the system 100 includes a plurality of devices connected by a field network. More specifically, the system 100 includes a controller (for example, PLC: programmable logic controller) 101, a plurality of slave devices 102a to 102f, a setting device 105, an HMI (Human Machine Interface) 104, and a hub device 103.
- the plurality of slave devices 102a to 102f are also collectively referred to as slave devices 102.
- the controller 101 and the plurality of slave devices 102a to 102f are connected via a communication network such as EtherNET (registered trademark) / IP or EtherCAT (registered trademark) via the hub device 103, and realize FA (factory automation) in cooperation with each other. do.
- the type of communication network is not limited to the above.
- the controller 101 controls the operation of the plurality of slave devices 102a to 102f included in the entire system 100.
- the HMI 104 is an interface that displays the operating state of the controller 101 and receives various operation instructions from the user to the controller 101.
- the setting device 105 is configured by a notebook PC or the like, and is connected to the controller 101 by a USB (Universal Serial Bus).
- the setting device 105 stores the configuration information of the system 100, and sets various setting information and programs used for control in the controller 101 according to the user's instruction.
- the controller 101 calculates the cable length connecting each device from the SQI values measured by the slave devices 102a to 102f. Subsequently, the controller 101 totals these cable lengths to calculate the total cable length of the entire system 100 based on the configuration information of the system 100, and accurately calculates the propagation delay time from the total cable length. The controller 101 schedules control so that each device operates within the control cycle based on the calculated propagation delay time.
- FIG. 2 is a block diagram showing a functional configuration of the controller 101 and the setting device 105.
- the controller 101 includes an SQI value acquisition unit 1011, a cable total extension calculation unit 1012, a propagation delay time setting unit 1013, a scheduling unit 1014, and an execution instruction unit 1015.
- the SQI value acquisition unit 1011, the cable total extension calculation unit 1012, and the propagation delay time setting unit 1013 are collectively referred to as an execution unit 1010.
- the execution unit 1010 of the controller 101 performs the propagation delay time setting process.
- the scheduling unit 1014 and the execution instruction unit 1015 indicate the timing at which the execution unit 1010 starts the propagation delay time setting process.
- the controller 101 may include at least one of a scheduling unit 1014 and an execution instruction unit 1015.
- the SQI value acquisition unit 1011 acquires the SQI (signal quality indicator) value measured in the physical layer communication circuit of each slave device 102.
- the total cable extension calculation unit 1012 calculates the cable length between the slave devices 102 based on the SQI value acquired by the SQI value acquisition unit 1011 and calculates the total cable extension in the field network.
- the propagation delay time setting unit 1013 sets the propagation delay time of the signal in the field network based on the total cable extension.
- the controller 101 controls the operation timing of each device within the control cycle based on the set propagation delay time.
- the scheduling unit 1014 executes the SQI value acquisition process in the SQI value acquisition unit 1011, the cable total extension calculation process in the cable total extension calculation unit 1012, and the propagation delay time setting process in the propagation delay time setting unit 1013 at a predetermined timing. Instruct. For example, the scheduling unit 1014 may instruct the execution unit 1010 to start the propagation delay time setting process at a fixed cycle (for example, at a fixed time every day, every predetermined number of days, a predetermined date and time of each month, etc.). Alternatively, the scheduling unit 1014 may detect when the controller 101 is started up, when the cable is replaced, or the like, and may instruct the execution unit 1010 to start the propagation delay time setting process at that timing.
- the controller 101 automatically calculates the total cable extension and sets the propagation delay time at the set timing even if there is no external trigger. According to the above configuration, even when the cable is replaced or the configuration of the system 100 is changed, the optimum propagation delay time for the configuration can be automatically set. In addition, it is possible to cope with the deterioration of the cable over time.
- the execution instruction unit 1015 externally performs the SQI value acquisition process in the SQI value acquisition unit 1011, the cable total extension calculation process in the cable total extension calculation unit 1012, and the propagation delay time setting process in the propagation delay time setting unit 1013.
- the user may send a predetermined message from the setting device 105 to instruct the controller 101 to start the propagation delay time setting process.
- the execution unit 1010 of the controller 101 may start the propagation delay time setting process by using the reception of the above message as a trigger.
- the user sends a trigger for starting processing to the controller 101, for example, when the system 100 is started up or the cable is replaced, the user sends a predetermined message to the controller 101 using the setting device 105, and the controller The 101 may start the execution of the propagation delay time calculation process using this as a trigger.
- the setting device 105 is instructed to execute the SQI value acquisition process in the SQI value acquisition unit 1011 of the controller 101, the cable total extension calculation process in the cable total extension calculation unit 1012, and the propagation delay time setting process in the propagation delay time setting unit 1013. May be provided with an execution instruction transmission unit 1051 that transmits the above to the execution instruction unit 1015 of the controller 101 in response to an instruction from the user. As described above, the execution unit 1010 of the controller 101 may start the propagation delay time setting process by using an instruction from the user as a trigger. With the above configuration, the user can instruct the controller 101 to execute the propagation delay time setting process when necessary, such as when exchanging cables.
- the setting device 105 acquires the propagation delay time set by the propagation delay time setting unit 1013 of the controller 101, and transmits the setting information transmission unit 1052 for transmitting the propagation delay time to the controller 101 together with various setting information for the controller 101. You may also prepare further.
- the controller 101 controls each device based on the acquired propagation delay time and setting information.
- the SQI value acquisition unit 1011 of the controller 101 acquires the SQI value.
- the SQI value is measured in the physical layer communication circuit of the slave device 102.
- the SQI value may be measured in the physical layer communication circuit of the controller 101.
- Each slave device 102 stores the measurement result of the SQI (signal quality indicator) value in the signal communication with the device directly connected by the cable.
- the SQI value is a numerical value indicating signal quality and is calculated from the ratio of noise to a normal signal.
- the SQI value can be measured at all times without interrupting communication between the devices.
- the physical layer communication circuit of any of the two devices connected by the cable may be provided with the SQI value measuring function. However, it is more desirable to have this function in the controller 101 connected to more devices.
- the total cable extension calculation unit 1012 of the controller 101 calculates the cable length between the slave devices 102 based on the SQI value acquired by the SQI value acquisition unit 1011.
- the SQI value is related to the cable length.
- the data sheet stored in the PHY communication circuit of each device stores a table showing the relationship between the SQI value and the cable length for a standard standard cable. For example, the data sheet table shows that the cable length is 50 m when the SQI value is 2.0 to 2.5, and the cable length is 100 m when the SQI value is 3.0 to 3.5. Has been done.
- the total cable extension calculation unit 1012 of the controller 101 receives the SQI value from each device and calculates the cable length.
- the SQI value acquisition unit 1011 acquires the SQI value from each slave device 102 a plurality of times, and the cable total extension calculation unit obtains the cable length between the slave devices 102 as the average value of the SQI values acquired a plurality of times. It may be calculated based on. Since the SQI value varies due to the influence of noise during measurement and the like, when calculating the cable length, it is possible to improve the accuracy by averaging the data of tens of thousands of SQI values.
- FIG. 3 shows an example thereof.
- the horizontal axis is the cable length and the vertical axis is the SQI value. From FIG. 3, it can be seen that the SQI value increases almost linearly as the cable length increases.
- the following equation may be derived in advance by performing regression analysis from the relationship between the cable length and the SQI value based on the measured value of the cable of a predetermined standard.
- Cable length (SQI value-a) / b
- the above conversion formula may be calculated in advance for each type of cable in order to set a more accurate propagation delay time.
- the total cable extension calculation unit 1012 of the controller 101 calculates the total cable extension in the field network. That is, the controller 101 acquires the SQI value from each slave device 102, calculates each cable length based on the above table, graph, or conversion formula, totals these cable lengths, and totals the cable length. calculate.
- the propagation delay time setting unit 1013 of the controller 101 sets the propagation delay time of the signal in the field network based on the calculated total cable extension. Propagation delay time increases approximately in proportion to the total length of the cable.
- the total cable length is set to 1000 m by default, and the propagation delay time is set.
- An appropriate propagation delay time can be set by changing the setting using the value calculated based on the measurement result from the SQI value.
- FIG. 4 is a flowchart showing a flow of processing for setting the propagation delay time in the embodiment of the present invention.
- the flow of the process for setting the propagation delay time will be described with reference to FIG.
- Step S110 First, the total cable extension calculation unit 1012 of the controller 101 sets (calculates) the total cable extension in the field network. If the user manually instructs the start of the total cable extension calculation process, the process proceeds to step S120, and if the controller 101 automatically starts the total cable extension calculation process, the process proceeds to step S220.
- steps S120 to S170 show a flow when the user manually instructs the start of the above process.
- Step S120 An instruction from the user to execute the above processing is transmitted from the execution instruction transmission unit 1051 of the setting device 105 to the execution instruction unit 1015 of the controller 101.
- the user may send a predetermined message from the execution instruction transmission unit 1051 of the setting device 105 to the execution instruction unit 1015 of the controller 101.
- the execution instruction unit 1015 of the controller 101 uses this as a trigger to issue an instruction to start the propagation delay time setting process.
- Step S130 The execution instruction unit 1015 of the controller 101 issues an instruction to measure the cable length to the execution unit 1010 (SQI value acquisition unit 1011) (instructs to measure the SQI value).
- Step S140 Upon receiving the instruction, the SQI value acquisition unit 1011 acquires the SQI value measured by the function of the PHY communication circuit from each slave device 102. That is, each device returns the measured SQI value to the SQI value acquisition unit 1011 of the controller 101. As described above, since the SQI value varies, it is possible to improve the accuracy by averaging tens of thousands of data.
- Step S150 The total cable extension calculation unit 1012 of the controller 101 calculates the cable length based on the SQI value received from the SQI value acquisition unit 1011. The total cable extension calculation unit 1012 further totals the cable lengths to calculate the total cable extension in the system 100.
- Step S160 The controller 101 transmits the calculated total cable extension to the setting device 105.
- the setting device 105 it is stored in the item of [total cable extension].
- FIG. 5 shows an example of a display / input screen of setting information for the controller 101 in the setting device 105.
- 1000 m is set as the default value of the total cable extension, but this value is rewritten to the value of the total cable extension calculated by the controller 101.
- Step S170 Based on the user's instruction, the setting device 105 transmits the value of the total cable extension set together with the setting information for the controller 101 to the controller 101.
- the propagation delay time setting unit 1013 of the controller 101 sets the propagation delay time of the signal in the field network based on the calculated total cable extension.
- the calculation result of the total cable extension by the cable total extension calculation unit 1012 may be sent to the propagation delay time setting unit 1013 as it is to set the propagation delay time.
- the setting device transmits a trigger instruction in step S120, and the controller 101 (execution unit 1010) performs from S130 to S170. Execute the process and reset the propagation delay time.
- Step S220 The scheduling unit 1014 of the controller 101 instructs the execution unit 1010 of the controller 101 to execute at a predetermined timing. That is, the calculation process of the total cable extension is executed (started) inside the controller 101. Unlike the case of the manual process (step S120), the controller 101 starts the setting process without a trigger.
- Steps S230 to S250 Since the processes of steps S230 to S250 are the same as those of steps S130 to S150 described above, the description thereof will not be repeated here.
- Step S260 The propagation delay time setting unit 1013 of the controller 101 sets the propagation delay time based on the calculated total cable extension.
- the controller 101 schedules control based on the set propagation delay time.
- Step S270 In response to the preset timer, the controller 101 returns to step S220 and repeats a series of propagation delay time setting processes.
- the timing may be a fixed period or an irregular period.
- the propagation delay time setting process in a field network using a standard standard cable has been described as an example.
- the present invention is not limited to the above example, and can be applied to the case where the propagation delay time is set in a field network using a cable of a non-standard standard. In this case, a more appropriate propagation delay time can be calculated by performing calibration according to a cable of a non-standard standard.
- the SQI value is measured, and the relationship between the measured SQI value and each cable length is acquired.
- the relationship between the total cable length obtained from the cable length and the propagation delay time is confirmed by experiments.
- a graph as shown in FIG. 3 may be created, or a conversion formula or a table showing the relationship between the SQI value and the cable length may be created.
- the total cable length can be calculated from the SQI value, and an appropriate propagation delay time can be set from the total cable length.
- the controller is a controller connected to a field network connecting a plurality of slave devices with a cable, and is measured in the physical layer communication circuit of each slave device.
- the cable length between the slave devices is calculated based on the SQI value acquisition unit that acquires the SQI (signal quality indicator) value and the SQI value acquired by the SQI value acquisition unit, and the cable length is calculated in the field network. It is provided with a cable total length calculation unit for calculating the total cable extension of the above, and a propagation delay time setting unit for setting a signal propagation delay time in the field network based on the total cable extension.
- the total cable extension can be accurately calculated without the user's trouble, and the signal propagation delay time can be accurately calculated from the calculated total cable extension. Therefore, an appropriate propagation delay time can be set, and as a result, the time that can be used for the actual processing of the fixed cycle task within the control cycle can be increased.
- controller performs predetermined SQI value acquisition processing in the SQI value acquisition unit, cable total extension calculation processing in the cable total extension calculation unit, and propagation delay time setting processing in the propagation delay time setting unit. It may further include a scheduling unit instructing execution at the timing.
- the controller sets the propagation delay time at a predetermined timing, so that the propagation delay time can be set at an appropriate timing without imposing a burden on the user. ..
- controller externally performs the SQI value acquisition process in the SQI value acquisition unit, the cable total extension calculation process in the cable total extension calculation unit, and the propagation delay time setting process in the propagation delay time setting unit. It may be further provided with an execution instruction unit instructing execution in response to an instruction input from.
- the user can reset the propagation delay time when a need arises such as when the system is started up or when the cable is replaced.
- the SQI value acquisition unit acquires the SQI value from each of the slave devices a plurality of times
- the cable total extension calculation unit obtains the cable length between the slave devices. It may be calculated based on the average value of the SQI values acquired a plurality of times.
- the SQI value may temporarily increase due to the influence of noise or the like, but as described above, the cable length is calculated based on the average value of the values acquired multiple times. By doing so, the propagation delay time can be set more accurately.
- the setting device is a setting device that communicates with a controller, and is an SQI value acquisition process in the SQI value acquisition unit and a cable in the cable total extension calculation unit.
- An execution instruction transmission unit may be provided that transmits an instruction to execute the total extension calculation process and the propagation delay time setting process in the propagation delay time setting unit to the execution instruction unit in response to an instruction from the user.
- the user can reset the propagation delay time when a need arises such as when the system is started up or when the cable is replaced.
- the setting device obtains the propagation delay time set by the propagation delay time setting unit, and transmits the setting information transmission unit for transmitting the propagation delay time to the controller together with the setting information for the controller. You may also prepare further.
- the user can send the propagation delay time to the controller together with the setting information of the controller.
- the control method is a control method of a controller connected to a field network in which a plurality of slave devices are connected by a cable, and the physical layer of each of the slave devices.
- the cable length between the slave devices is calculated based on the SQI value acquisition step for acquiring the SQI (signal quality indicator) value measured in the layer communication circuit and the SQI value acquired by the SQI value acquisition step.
- the cable total extension calculation step for calculating the total cable extension in the field network, and the propagation delay time setting step for setting the signal propagation delay time in the field network based on the cable total extension are included.
- the controller program according to one aspect of the present invention may be a controller program for operating a computer as the controller, and may be a program for operating the computer as each of the above parts. .. According to the above configuration, the same effect as that of the above controller can be obtained.
- control program may be a setting program for operating the computer and may be a setting program for operating the computer as each of the above parts.
- Control blocks of the controller 101 and the setting device 105 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software.
- the controller 101 and the setting device 105 include a computer that executes a program instruction, which is software that realizes each function.
- the computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes it, thereby achieving the object of the present invention.
- a processor for example, a CPU (Central Processing Unit) can be used.
- the recording medium a “non-temporary tangible medium”, for example, a ROM (Read Only Memory) or the like, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
- a RAM RandomAccessMemory
- the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. It should be noted that one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Programmable Controllers (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
適切な伝搬遅延時間を設定することのできるコントローラを提供する。複数のスレーブ装置間をケーブルで接続するフィールドネットワークに接続されたコントローラ(101)は、各スレーブ装置の物理層通信回路において計測されるSQI値を取得するSQI値取得部(1011)と、SQI値取得部によって取得された前記SQI値に基づいて、各スレーブ装置間のケーブル長さを算出し、フィールドネットワーク内のケーブル総延長を算出するケーブル総延長算出部(1012)と、ケーブル総延長に基づいて、フィールドネットワークにおける信号の伝播遅延時間を設定する伝搬遅延時間設定部(1013)と、を備える。
Description
本発明は、フィールドネットワークにおいて信号の伝搬遅延時間を設定するコントローラ、設定装置、制御方法、およびプログラムに関する。
ファクトリーオートメーション(Factory Automation:FA)の分野においては、作業の工程を分担する様々な種類の装置の制御が行われる。工場施設等一定の領域において作業に用いられる各種のコントローラ、リモートI/O、および製造装置を連携して動作させるために、これらの装置を接続する、フィールドネットワークとも呼ばれる産業用ネットワークが構築されている。
フィールドネットワークにおいては、システムを構成する装置間がケーブルによって接続される。このケーブルの長さにほぼ比例して、装置間で通信する信号に伝搬遅延が発生する。一方で、各装置で実行すべき処理の中には、所定の制御周期内に完了させる必要のある定周期タスクが存在する。
フィールドネットワークにおいては、システムを構成する装置間がケーブルによって接続される。このケーブルの長さにほぼ比例して、装置間で通信する信号に伝搬遅延が発生する。一方で、各装置で実行すべき処理の中には、所定の制御周期内に完了させる必要のある定周期タスクが存在する。
従来は、デフォルトで余裕をもったケーブル長さ(例えば、1000メートル)を想定して、想定されたケーブル長さに対応する伝播遅延時間を考慮して制御周期内で定周期タスクが完了するように制御していた。よって、必要以上に伝播遅延時間が長く設定されることになり、制御周期内で定周期タスクの実際の処理に使用できる時間が圧迫されていた。また、これを解消するために、実際に使っているケーブルの長さに基づいてユーザが手動で伝播遅延時間を設定することも行われていた。しかし、ユーザの手間がかかるとともに、伝播遅延時間を正確な値に設定することも困難であった。
なお、ケーブル長さを測定する技術に関しては、上記の特許文献に開示があるが、伝播遅延時間を考慮する点については開示されていない。
なお、ケーブル長さを測定する技術に関しては、上記の特許文献に開示があるが、伝播遅延時間を考慮する点については開示されていない。
上記に鑑み、本発明では、フィールドネットワークにおいて、ユーザの手間がかからずに正確に、適切な伝搬遅延時間を設定できる技術を提供することを目的とする。
上記の課題を解決するために、本発明の一態様に係るコントローラは、複数のスレーブ装置間をケーブルで接続するフィールドネットワークに接続されたコントローラであって、各スレーブ装置の物理層通信回路において計測されるSQI(signal quality indicator)値を取得するSQI値取得部と、SQI値取得部によって取得された前記SQI値に基づいて、前記各スレーブ装置間のケーブル長さを算出し、前記フィールドネットワーク内のケーブル総延長を算出するケーブル総延長算出部と、ケーブル総延長に基づいて、前記フィールドネットワークにおける信号の伝播遅延時間を設定する伝搬遅延時間設定部と、を備える。
上記構成によれば、ユーザの手間がかからずに正確にケーブル総延長を算出でき、算出されたケーブル総延長から信号の伝搬遅延時間を正確に算出できる。このため、適切な伝搬遅延時間を設定することができ、結果として、制御周期内での定周期タスクの実際の処理に使用できる時間を増加させることができる。
上記の課題を解決するために、本発明の一態様に係る制御方法は、複数のスレーブ装置間をケーブルで接続するフィールドネットワークに接続されたコントローラの制御方法であって、前記各スレーブ装置の物理層通信回路において計測されるSQI(signal quality indicator)値を取得するSQI値取得ステップと、前記SQI値取得ステップによって取得された前記SQI値に基づいて、前記各スレーブ装置間のケーブル長さを算出し、前記フィールドネットワーク内のケーブル総延長を算出するケーブル総延長算出ステップと、前記ケーブル総延長に基づいて、前記フィールドネットワークにおける信号の伝播遅延時間を設定する伝搬遅延時間設定ステップと、を含む。
上記の構成によれば、上記コントローラと同様の効果を奏することができる。
本発明の一態様によれば、フィールドネットワークにおいて、ユーザの手間がかからずに正確にケーブル総延長を算出でき、ケーブル総延長から適切な伝搬遅延時間を設定できる。その結果として、制御周期内でユーザのプログラムを実行できる時間を増加させることができる。
以下では、本発明の実施形態について図面を参照して説明する。
§1 適用例
<システムの構成>
図1には、本実施形態に係るコントローラが含まれるフィールドネットワークで接続されるシステム100を示す構成図である。以下では、図1を参照して、システム100の構成について説明する。
<システムの構成>
図1には、本実施形態に係るコントローラが含まれるフィールドネットワークで接続されるシステム100を示す構成図である。以下では、図1を参照して、システム100の構成について説明する。
図1に示すように、システム100は、フィールドネットワークで接続される複数の装置を備える。より詳細には、システム100は、コントローラ(例えば、PLC:programmable logic controller)101、複数のスレーブ装置102a~102f、設定装置105、HMI(Human Machine Interface)104、および、ハブ装置103を備える。複数のスレーブ装置102a~102fは、総称してスレーブ装置102とも呼ぶ。コントローラ101および複数のスレーブ装置102a~102fは、ハブ装置103を介してEtherNET(登録商標)/IPまたはEtherCAT(登録商標)等の通信ネットワークで接続され、互いに連携してFA(factory automation)を実現する。なお、通信ネットワークの種類は上述のものに限定されるものではない。
コントローラ101は、システム100全体に含まれる複数のスレーブ装置102a~102fの動作を制御する。HMI104は、コントローラ101の動作状態を表示するとともに、コントローラ101に対するユーザによる各種動作指示を受け付けるインターフェースである。
設定装置105は、ノートPCなどによって構成され、コントローラ101とUSB(Universal Serial Bus)によって接続される。設定装置105はシステム100の構成情報を格納するとともに、コントローラ101における制御に用いられる各種設定情報およびプログラムなどをユーザの指示に応じて設定する。
設定装置105は、ノートPCなどによって構成され、コントローラ101とUSB(Universal Serial Bus)によって接続される。設定装置105はシステム100の構成情報を格納するとともに、コントローラ101における制御に用いられる各種設定情報およびプログラムなどをユーザの指示に応じて設定する。
上記システム100に含まれる各装置で実行するプログラムの中には、一定の制御周期で実行する必要のあるものがある。一方、各装置間でケーブルを通じて送受信される信号は、ケーブルの長さに応じて伝搬遅延が生じてしまう。従って、制御周期から伝搬遅延時間を差し引いた時間内で、プログラムの実行が完了するようにタイミングを制御する必要がある。本実施形態では、コントローラ101が各スレーブ装置102a~102fで測定されるSQI値から各装置間を接続するケーブル長さを算出する。続いて、コントローラ101はシステム100の構成情報に基づいて、これらケーブル長さを合計してシステム100全体のケーブル総延長を算出し、ケーブル総延長から伝搬遅延時間を正確に算出する。コントローラ101は、算出された伝搬遅延時間に基づいて、制御周期内で各装置が動作するように制御のスケジューリングを行う。
§2 構成例
以下では、図2を参照して、コントローラ101および設定装置105の機能構成について説明する。
以下では、図2を参照して、コントローラ101および設定装置105の機能構成について説明する。
<コントローラおよび設定装置の機能構成>
図2は、コントローラ101および設定装置105の機能構成を示すブロック図である。図2に示すように、コントローラ101は、SQI値取得部1011、ケーブル総延長算出部1012、および伝搬遅延時間設定部1013、スケジューリング部1014および実行指示部1015を備える。SQI値取得部1011、ケーブル総延長算出部1012、および伝搬遅延時間設定部1013を総称して実行部1010とも呼ぶ。
図2は、コントローラ101および設定装置105の機能構成を示すブロック図である。図2に示すように、コントローラ101は、SQI値取得部1011、ケーブル総延長算出部1012、および伝搬遅延時間設定部1013、スケジューリング部1014および実行指示部1015を備える。SQI値取得部1011、ケーブル総延長算出部1012、および伝搬遅延時間設定部1013を総称して実行部1010とも呼ぶ。
コントローラ101の実行部1010が伝搬遅延時間の設定処理を行う。スケジューリング部1014および実行指示部1015は、実行部1010が伝搬遅延時間の設定処理を開始するタイミングを指示する。なお、コントローラ101は、スケジューリング部1014および実行指示部1015の少なくともいずれか一方を備えていればよい。
SQI値取得部1011は、各スレーブ装置102の物理層通信回路において計測されるSQI(signal quality indicator)値を取得する。ケーブル総延長算出部1012はSQI値取得部1011によって取得されたSQI値に基づいて、各スレーブ装置102間のケーブル長さを算出し、フィールドネットワーク内のケーブル総延長を算出する。伝搬遅延時間設定部1013は、ケーブル総延長に基づいて、フィールドネットワークにおける信号の伝播遅延時間を設定する。コントローラ101は、設定された伝搬遅延時間に基づいて、制御周期内での各装置の動作タイミングを制御する。
スケジューリング部1014は、SQI値取得部1011におけるSQI値取得処理、ケーブル総延長算出部1012におけるケーブル総延長算出処理、および、伝搬遅延時間設定部1013における伝搬遅延時間設定処理を所定のタイミングで実行するように指示する。例えば、スケジューリング部1014は、一定の周期(例えば、毎日定時、所定日数毎、毎月の所定の日時等)で、実行部1010が上記伝搬遅延時間設定処理を開始するように指示してもよい。あるいは、スケジューリング部1014は、コントローラ101の立ち上げ時、ケーブル交換時等を検出し、そのタイミングで実行部1010が上記伝搬遅延時間設定処理を開始するように指示してもよい。即ち、コントローラ101が、外部からのトリガがなくても、設定されたタイミングで、自動的に、ケーブル総延長の算出および伝搬遅延時間の設定処理を実行する。上記のような構成によれば、ケーブルの交換やシステム100の構成の変更が発生した場合にも、その構成に最適な伝搬遅延時間を自動で設定することができる。また、ケーブルの経時劣化にも対応することができる。
または、実行指示部1015が、SQI値取得部1011におけるSQI値取得処理、ケーブル総延長算出部1012におけるケーブル総延長算出処理、および、伝搬遅延時間設定部1013における伝搬遅延時間設定処理を、外部からの指示入力に応じて実行するように指示してもよい。例えば、ユーザが、設定装置105から、コントローラ101に伝搬遅延時間設定処理の開始を指示するための所定のメッセージを送ってもよい。コントローラ101の実行部1010は、上記メッセージの受信をトリガとして伝搬遅延時間設定処理を開始してもよい。
ユーザが処理開始のトリガをコントローラ101に送る場合には、例えば、システム100の立ち上げ時またはケーブルの交換時などに、ユーザが設定装置105を用いて所定のメッセージをコントローラ101に送信し、コントローラ101は、これをトリガとして伝搬遅延時間算出処理の実行を開始してもよい。
設定装置105は、コントローラ101のSQI値取得部1011におけるSQI値取得処理、ケーブル総延長算出部1012におけるケーブル総延長算出処理、および、伝搬遅延時間設定部1013における伝搬遅延時間設定処理を実行させる指示をユーザからの指示に応じてコントローラ101の実行指示部1015に送信する実行指示送信部1051を備えてもよい。上述したように、コントローラ101の実行部1010は、ユーザからの指示をトリガとして伝搬遅延時間設定処理を開始してもよい。上記構成により、ユーザは、ケーブル交換時など必要な場合に、伝搬遅延時間設定処理の実行をコントローラ101に指示することができる。
また、設定装置105は、コントローラ101の伝搬遅延時間設定部1013によって設定された伝播遅延時間を取得し、コントローラ101に対する各種設定情報とともに、伝播遅延時間をコントローラ101に送信する設定情報送信部1052をさらに備えてもよい。コントローラ101では、取得した伝搬遅延時間および設定情報に基づいて、各装置の制御を実行する。
以下では、コントローラ101の実行部1010が行うSQI値の算出、ケーブル長さの算出、ケーブル総延長の算出、および伝搬遅延時間の設定について順に説明する。
<SQI値の算出>
コントローラ101のSQI値取得部1011は、SQI値を取得する。SQI値はスレーブ装置102の物理層通信回路おいて計測される。なお、コントローラ101の物理層通信回路においてSQI値が計測されるようになっていてもよい。各スレーブ装置102には、直接、ケーブルにより接続される装置との間の信号通信におけるSQI(signal quality indicator)値の測定結果が保存される。SQI値は信号品質を示す数値であり、ノイズと正常な信号との割合から算出される。SQI値は装置間の通信を止めずに、常時、測定することができる。ここで、ケーブルで接続される2つの装置のうちいずれかの装置の物理層通信回路に、SQI値の測定機能を持たせればよい。しかし、より多くの装置に接続されているコントローラ101にこの機能を持たせることがより望ましい。
コントローラ101のSQI値取得部1011は、SQI値を取得する。SQI値はスレーブ装置102の物理層通信回路おいて計測される。なお、コントローラ101の物理層通信回路においてSQI値が計測されるようになっていてもよい。各スレーブ装置102には、直接、ケーブルにより接続される装置との間の信号通信におけるSQI(signal quality indicator)値の測定結果が保存される。SQI値は信号品質を示す数値であり、ノイズと正常な信号との割合から算出される。SQI値は装置間の通信を止めずに、常時、測定することができる。ここで、ケーブルで接続される2つの装置のうちいずれかの装置の物理層通信回路に、SQI値の測定機能を持たせればよい。しかし、より多くの装置に接続されているコントローラ101にこの機能を持たせることがより望ましい。
<ケーブル長さの算出>
コントローラ101のケーブル総延長算出部1012は、SQI値取得部1011によって取得されたSQI値に基づいて、各スレーブ装置102間のケーブル長さを算出する。SQI値は、ケーブル長さと関係する。各装置のPHY通信回路に格納されているデータシートには、標準的な規格のケーブルについて、SQI値とケーブル長さとの関係を示すテーブルが格納されている。例えば、SQI値が2.0~2.5の場合はケーブル長さ50m、SQI値が3.0~3.5の場合はケーブル長さが100mに相当するといった関係がデータシートのテーブルに示されている。コントローラ101のケーブル総延長算出部1012は、各装置からSQI値を受信して、ケーブル長さを算出する。
コントローラ101のケーブル総延長算出部1012は、SQI値取得部1011によって取得されたSQI値に基づいて、各スレーブ装置102間のケーブル長さを算出する。SQI値は、ケーブル長さと関係する。各装置のPHY通信回路に格納されているデータシートには、標準的な規格のケーブルについて、SQI値とケーブル長さとの関係を示すテーブルが格納されている。例えば、SQI値が2.0~2.5の場合はケーブル長さ50m、SQI値が3.0~3.5の場合はケーブル長さが100mに相当するといった関係がデータシートのテーブルに示されている。コントローラ101のケーブル総延長算出部1012は、各装置からSQI値を受信して、ケーブル長さを算出する。
ケーブル長さが長いほど、SQI値はほぼ線形的に上昇する。SQI値取得部1011は、SQI値を各スレーブ装置102から複数回取得するとともに、ケーブル総延長算出部は、各スレーブ装置102間のケーブル長さを、複数回取得した前記SQI値の平均値に基づいて算出してもよい。SQI値は計測時のノイズの影響などによりバラつきがあるので、ケーブル長さを算出する場合には、数万個のSQI値のデータを平均した方が精度を上げることができる。
また、ケーブル総延長算出部1012がSQI値からケーブル長さを算出するには、SQI値とケーブル長さの関係を示すグラフを用いてもよい。図3はその一例を示す。図3のグラフでは、横軸にケーブル長さ、縦軸にSQI値を取っている。図3から、ケーブル長さが長くなれば、ほぼ線形的にSQI値が上昇することがわかる。所定の規格のケーブルにおける実測値に基づいて、ケーブル長さとSQI値の関係とから回帰分析を行って、事前に以下の式を導いてもよい。
ケーブル長さ=(SQI値-a)/b
上記変換式においては、aおよびbの値は、ケーブルの種類により異なる。標準的な規格のケーブルにおいては、それぞれ、a=1.1216、b=0.0109であった。非標準的な規格のケーブルを使用する場合には、より正確な伝搬遅延時間を設定するためには、予めケーブルの種類ごとに上記変換式を算出してもよい。
ケーブル長さ=(SQI値-a)/b
上記変換式においては、aおよびbの値は、ケーブルの種類により異なる。標準的な規格のケーブルにおいては、それぞれ、a=1.1216、b=0.0109であった。非標準的な規格のケーブルを使用する場合には、より正確な伝搬遅延時間を設定するためには、予めケーブルの種類ごとに上記変換式を算出してもよい。
コントローラ101のケーブル総延長算出部1012は、フィールドネットワーク内のケーブル総延長を算出する。即ち、コントローラ101は、各スレーブ装置102からSQI値を取得し、上記テーブル、グラフまたは変換式に基づいて、各ケーブル長さを算出し、これらのケーブル長さを合計して、ケーブル総延長を算出する。
<伝搬遅延時間の算出>
コントローラ101の伝搬遅延時間設定部1013は、算出されたケーブル総延長に基づいて、フィールドネットワークにおける信号の伝播遅延時間を設定する。伝搬遅延時間はケーブルの総延長にほぼ比例して増加する。
コントローラ101の伝搬遅延時間設定部1013は、算出されたケーブル総延長に基づいて、フィールドネットワークにおける信号の伝播遅延時間を設定する。伝搬遅延時間はケーブルの総延長にほぼ比例して増加する。
設定装置105では、一例として、デフォルトでケーブル総延長を1000mとして、伝搬遅延時間が設定されている。上記SQI値からの測定結果に基づいて算出された値を用いて設定を変更すれば、適切な伝搬遅延時間を設定することができる。
<処理の流れの説明>
図4は、本発明の実施形態における伝搬遅延時間を設定する処理の流れを示すフローチャートである。以下では、図4を参照して、伝搬遅延時間を設定する処理の流れについて説明する。
図4は、本発明の実施形態における伝搬遅延時間を設定する処理の流れを示すフローチャートである。以下では、図4を参照して、伝搬遅延時間を設定する処理の流れについて説明する。
(ステップS110)
まず、コントローラ101のケーブル総延長算出部1012が、フィールドネットワーク内のケーブル総延長を設定(算出)する。ユーザが手動でケーブル総延長算出処理の開始を指示する場合にはステップS120へ、コントローラ101が自動でケーブル総延長算出処理開始する場合にはステップS220に進む。
以下、ステップS120からS170までは、ユーザが手動で上記処理の開始を指示する場合の流れを示す。
まず、コントローラ101のケーブル総延長算出部1012が、フィールドネットワーク内のケーブル総延長を設定(算出)する。ユーザが手動でケーブル総延長算出処理の開始を指示する場合にはステップS120へ、コントローラ101が自動でケーブル総延長算出処理開始する場合にはステップS220に進む。
以下、ステップS120からS170までは、ユーザが手動で上記処理の開始を指示する場合の流れを示す。
(ステップS120)
ユーザからの上記処理を実行させる指示を、設定装置105の実行指示送信部1051からコントローラ101の実行指示部1015に送信する。例えば、ユーザが、所定のメッセージを、設定装置105の実行指示送信部1051からコントローラ101の実行指示部1015に送信してもよい。コントローラ101の実行指示部1015は、これをトリガとして、伝搬遅延時間設定処理を開始する指示を出す。
ユーザからの上記処理を実行させる指示を、設定装置105の実行指示送信部1051からコントローラ101の実行指示部1015に送信する。例えば、ユーザが、所定のメッセージを、設定装置105の実行指示送信部1051からコントローラ101の実行指示部1015に送信してもよい。コントローラ101の実行指示部1015は、これをトリガとして、伝搬遅延時間設定処理を開始する指示を出す。
(ステップS130)
コントローラ101の実行指示部1015は、実行部1010(SQI値取得部1011)に対して、ケーブル長さを測定する指示を出す(SQI値を測定する指示を出す)。
コントローラ101の実行指示部1015は、実行部1010(SQI値取得部1011)に対して、ケーブル長さを測定する指示を出す(SQI値を測定する指示を出す)。
(ステップS140)
指示を受けたSQI値取得部1011は、各スレーブ装置102から、PHY通信回路の機能で測定されたSQI値を取得する。即ち、各装置は測定されたSQI値をコントローラ101のSQI値取得部1011に返信する。上述したように、SQI値はバラつきがあるので、数万個のデータを平均したほうが精度を上げることができる。
指示を受けたSQI値取得部1011は、各スレーブ装置102から、PHY通信回路の機能で測定されたSQI値を取得する。即ち、各装置は測定されたSQI値をコントローラ101のSQI値取得部1011に返信する。上述したように、SQI値はバラつきがあるので、数万個のデータを平均したほうが精度を上げることができる。
(ステップS150)
コントローラ101のケーブル総延長算出部1012は、SQI値取得部1011から受信したSQI値に基づいて、ケーブル長さを算出する。ケーブル総延長算出部1012は、更に、各ケーブル長を合算してシステム100内のケーブル総延長を算出する。
コントローラ101のケーブル総延長算出部1012は、SQI値取得部1011から受信したSQI値に基づいて、ケーブル長さを算出する。ケーブル総延長算出部1012は、更に、各ケーブル長を合算してシステム100内のケーブル総延長を算出する。
(ステップS160)
コントローラ101は、算出したケーブル総延長を、設定装置105に送信する。設定装置105では、〔ケーブル総延長〕の項目に格納する。図5には、設定装置105における、コントローラ101に対する設定情報の表示・入力画面の一例を示す。この例では、ケーブル総延長のデフォルト値として1000mが設定されているが、この値が、コントローラ101にて算出されたケーブル総延長の値に書き換えられる。
コントローラ101は、算出したケーブル総延長を、設定装置105に送信する。設定装置105では、〔ケーブル総延長〕の項目に格納する。図5には、設定装置105における、コントローラ101に対する設定情報の表示・入力画面の一例を示す。この例では、ケーブル総延長のデフォルト値として1000mが設定されているが、この値が、コントローラ101にて算出されたケーブル総延長の値に書き換えられる。
(ステップS170)
設定装置105は、ユーザの指示に基づき、コントローラ101に対する設定情報とともに設定されたケーブル総延長の値をコントローラ101に送信する。コントローラ101の伝搬遅延時間設定部1013は、算出されたケーブル総延長に基づいて、フィールドネットワークにおける信号の伝搬遅延時間を設定する。なお、コントローラ101において、ケーブル総延長算出部1012によるケーブル総延長の算出結果が、そのまま伝搬遅延時間設定部1013に送られて伝搬遅延時間の設定が行われても良い。
設定装置105は、ユーザの指示に基づき、コントローラ101に対する設定情報とともに設定されたケーブル総延長の値をコントローラ101に送信する。コントローラ101の伝搬遅延時間設定部1013は、算出されたケーブル総延長に基づいて、フィールドネットワークにおける信号の伝搬遅延時間を設定する。なお、コントローラ101において、ケーブル総延長算出部1012によるケーブル総延長の算出結果が、そのまま伝搬遅延時間設定部1013に送られて伝搬遅延時間の設定が行われても良い。
ユーザはケーブルを交換したとき、システムの変更をしたときなど、必要な場合に、上記ステップS120において設定装置からトリガとなる指示を送信し、コントローラ101(実行部1010)が、S130からS170までの処理を実行して、伝搬遅延時間を再設定する。
次に、コントローラ101により、自動で伝搬遅延時間が算出される場合の処理(ステップS220~S270)について説明する。
(ステップS220)
コントローラ101のスケジューリング部1014がコントローラ101の実行部1010に所定のタイミングで実行するように指示する。即ち、コントローラ101の内部でケーブル総延長の算出処理を実行(開始)する。上記手動による処理の場合(ステップS120)と異なり、コントローラ101はトリガなしで、設定処理を開始する。
コントローラ101のスケジューリング部1014がコントローラ101の実行部1010に所定のタイミングで実行するように指示する。即ち、コントローラ101の内部でケーブル総延長の算出処理を実行(開始)する。上記手動による処理の場合(ステップS120)と異なり、コントローラ101はトリガなしで、設定処理を開始する。
(ステップS230からS250)
ステップS230からS250の処理は、上述のステップS130~S150までと同じであるのでここでは説明を繰り返さない。
ステップS230からS250の処理は、上述のステップS130~S150までと同じであるのでここでは説明を繰り返さない。
(ステップS260)
コントローラ101の伝搬遅延時間設定部1013は、算出したケーブル総延長に基づいて、伝搬遅延時間を設定する。コントローラ101は、設定された伝搬遅延時間に基づいて制御のスケジューリングを行う。
コントローラ101の伝搬遅延時間設定部1013は、算出したケーブル総延長に基づいて、伝搬遅延時間を設定する。コントローラ101は、設定された伝搬遅延時間に基づいて制御のスケジューリングを行う。
(ステップS270)
予め設定されたタイマに応じて、コントローラ101は、ステップS220に戻って、一連の伝搬遅延時間設定処理を繰り返す。
予め設定されたタイマに応じて、コントローラ101は、ステップS220に戻って、一連の伝搬遅延時間設定処理を繰り返す。
上記のような構成によれば、ユーザがコントローラ101にトリガを送信しなくても、所定のタイミングで、適切な伝搬遅延時間を再設定することができる。タイミングは、一定周期であってもよいし、不定期であってもよい。
<キャリブレーション>
上記では、標準的な規格のケーブルを用いるフィールドネットワークにおける伝搬遅延時間設定処理を例にして説明した。しかし、本発明は上記例に限定されるものではなく、非標準的な規格のケーブルを用いたフィールドネットワークにおいて伝搬遅延時間を設定する場合にも適用することができる。この場合、非標準的な規格のケーブルに合わせて、キャリブレーションを行うことにより、より適切な伝搬遅延時間を算出することができる。
上記では、標準的な規格のケーブルを用いるフィールドネットワークにおける伝搬遅延時間設定処理を例にして説明した。しかし、本発明は上記例に限定されるものではなく、非標準的な規格のケーブルを用いたフィールドネットワークにおいて伝搬遅延時間を設定する場合にも適用することができる。この場合、非標準的な規格のケーブルに合わせて、キャリブレーションを行うことにより、より適切な伝搬遅延時間を算出することができる。
まず、非標準的な規格のケーブルについて、SQI値を測定し、測定されたSQI値と各ケーブル長さの関係を取得する。次に、ケーブル長さから求められるケーブル総延長と伝搬遅延時間の関係を実験によって確認する。SQI値とケーブル長さの関係については、図3に示すようなグラフを作成してもよいし、SQI値とケーブル長さの関係を示す変換式、あるいはテーブルを作成してもよい。上述のように、SQI値からケーブル総延長を算出し、ケーブル総延長から適切な伝搬遅延時間を設定することができる。
〔まとめ〕
上記の課題を解決するために、本発明の一態様に係るコントローラは、複数のスレーブ装置間をケーブルで接続するフィールドネットワークに接続されたコントローラであって、各スレーブ装置の物理層通信回路において計測されるSQI(signal quality indicator)値を取得するSQI値取得部と、SQI値取得部によって取得された前記SQI値に基づいて、前記各スレーブ装置間のケーブル長さを算出し、前記フィールドネットワーク内のケーブル総延長を算出するケーブル総延長算出部と、ケーブル総延長に基づいて、前記フィールドネットワークにおける信号の伝播遅延時間を設定する伝搬遅延時間設定部と、を備える。
〔まとめ〕
上記の課題を解決するために、本発明の一態様に係るコントローラは、複数のスレーブ装置間をケーブルで接続するフィールドネットワークに接続されたコントローラであって、各スレーブ装置の物理層通信回路において計測されるSQI(signal quality indicator)値を取得するSQI値取得部と、SQI値取得部によって取得された前記SQI値に基づいて、前記各スレーブ装置間のケーブル長さを算出し、前記フィールドネットワーク内のケーブル総延長を算出するケーブル総延長算出部と、ケーブル総延長に基づいて、前記フィールドネットワークにおける信号の伝播遅延時間を設定する伝搬遅延時間設定部と、を備える。
上記構成によれば、ユーザの手間がかからずに正確にケーブル総延長を算出でき、算出されたケーブル総延長から信号の伝搬遅延時間を正確に算出できる。このため、適切な伝搬遅延時間を設定することができ、結果として、制御周期内での定周期タスクの実際の処理に使用できる時間を増加させることができる。
また、上記一側面に係るコントローラは、SQI値取得部におけるSQI値取得処理、前記ケーブル総延長算出部におけるケーブル総延長算出処理、および、前記伝搬遅延時間設定部における伝搬遅延時間設定処理を所定のタイミングで実行するように指示するスケジューリング部をさらに備えてもよい。
上記の構成によれば、トリガがなくとも、コントローラが、所定のタイミングで伝搬遅延時間を設定するので、ユーザに負担をかけることなく、適切なタイミングで伝播遅延時間の設定を実行することができる。
また、上記一側面に係るコントローラは、SQI値取得部におけるSQI値取得処理、前記ケーブル総延長算出部におけるケーブル総延長算出処理、および、前記伝搬遅延時間設定部における伝搬遅延時間設定処理を、外部からの指示入力に応じて実行するように指示する実行指示部をさらに備えてもよい。
上記の構成によれば、ユーザは、システム立ち上げ時またはケーブル交換時など必要が生じたときに、伝搬遅延時間を再設定することができる。
また、上記一側面に係るコントローラは、SQI値取得部は、前記SQI値を前記各スレーブ装置から複数回取得するとともに、前記ケーブル総延長算出部は、前記各スレーブ装置間のケーブル長さを、複数回取得した前記SQI値の平均値に基づいて算出してもよい。
上記の構成によれば、SQI値は、ノイズなどの影響により一時的に値が大きくなることがありうるが、上記のように、複数回取得した値の平均値に基づいてケーブル長さを算出することにより、より正確に伝播遅延時間を設定することができる。
上記の課題を解決するために、本発明の一態様に係る設定装置は、コントローラと通信接続する設定装置であって、前記SQI値取得部におけるSQI値取得処理、前記ケーブル総延長算出部におけるケーブル総延長算出処理、および、前記伝搬遅延時間設定部における伝搬遅延時間設定処理を実行させる指示をユーザからの指示に応じて前記実行指示部に送信する実行指示送信部を備えてもよい。
上記の構成によれば、ユーザは、システム立ち上げ時またはケーブル交換時など必要が生じたときに、伝搬遅延時間を再設定することができる。
また、上記一側面に係る設定装置は、前記伝搬遅延時間設定部によって設定された伝播遅延時間を取得し、前記コントローラに対する設定情報とともに、前記伝播遅延時間を前記コントローラに送信する設定情報送信部をさらに備えてもよい。
上記の構成によれば、ユーザがコントローラの設定情報とともに伝搬遅延時間をコントローラに送信することができる。
上記の課題を解決するために、本発明の一態様に係る制御方法は、複数のスレーブ装置間をケーブルで接続するフィールドネットワークに接続されたコントローラの制御方法であって、前記各スレーブ装置の物理層通信回路において計測されるSQI(signal quality indicator)値を取得するSQI値取得ステップと、前記SQI値取得ステップによって取得された前記SQI値に基づいて、前記各スレーブ装置間のケーブル長さを算出し、前記フィールドネットワーク内のケーブル総延長を算出するケーブル総延長算出ステップと、前記ケーブル総延長に基づいて、前記フィールドネットワークにおける信号の伝播遅延時間を設定する伝搬遅延時間設定ステップと、を含む。
上記の構成によれば、上記コントローラと同様の効果を奏することができる。
上記の課題を解決するために、本発明の一態様に係るコントローラプログラムは、上記コントローラとしてコンピュータを機能させるためのコントローラプログラムであって、上記各部としてコンピュータを機能させるためのプログラムであってもよい。
上記構成によれば、上記コントローラと同様の効果を奏することができる。
上記構成によれば、上記コントローラと同様の効果を奏することができる。
上記の課題を解決するために、本発明の一態様に係る制御プログラムは、コンピュータを機能させるための設定プログラムであって、上記各部としてコンピュータを機能させるための設定プログラムであってもよい。
上記構成によれば、設定装置と同様の効果を奏することができる。
〔ソフトウェアによる実現例〕
コントローラ101および設定装置105の制御ブロック(特にSQI値取得部1011、ケーブル総延長算出部1012、伝搬遅延時間設定部1013、スケジューリング部1014、実行指示部1015、実行指示送信部1051、設定情報送信部1052)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
コントローラ101および設定装置105の制御ブロック(特にSQI値取得部1011、ケーブル総延長算出部1012、伝搬遅延時間設定部1013、スケジューリング部1014、実行指示部1015、実行指示送信部1051、設定情報送信部1052)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
後者の場合、コントローラ101および設定装置105は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
100 システム
101 コントローラ
102 スレーブ装置
103 ハブ装置
104 HMI
105 設定装置
1010 実行部
1011 SQI値取得部
1012 ケーブル総延長算出部
1013 伝搬遅延時間設定部
1014 スケジューリング部
1015 実行指示部
1051 実行指示送信部
1052 設定情報送信部
101 コントローラ
102 スレーブ装置
103 ハブ装置
104 HMI
105 設定装置
1010 実行部
1011 SQI値取得部
1012 ケーブル総延長算出部
1013 伝搬遅延時間設定部
1014 スケジューリング部
1015 実行指示部
1051 実行指示送信部
1052 設定情報送信部
Claims (9)
- 複数のスレーブ装置間をケーブルで接続するフィールドネットワークに接続されたコントローラであって、
前記各スレーブ装置の物理層通信回路において計測されるSQI(signal quality indicator)値を取得するSQI値取得部と、
前記SQI値取得部によって取得された前記SQI値に基づいて、前記各スレーブ装置間のケーブル長さを算出し、前記フィールドネットワーク内のケーブル総延長を算出するケーブル総延長算出部と、
前記ケーブル総延長に基づいて、前記フィールドネットワークにおける信号の伝播遅延時間を設定する伝搬遅延時間設定部と、
を備えるコントローラ。 - 前記SQI値取得部におけるSQI値取得処理、前記ケーブル総延長算出部におけるケーブル総延長算出処理、および、前記伝搬遅延時間設定部における伝搬遅延時間設定処理を所定のタイミングで実行するように指示するスケジューリング部をさらに備える、請求項1に記載のコントローラ。
- 前記SQI値取得部におけるSQI値取得処理、前記ケーブル総延長算出部におけるケーブル総延長算出処理、および、前記伝搬遅延時間設定部における伝搬遅延時間設定処理を、外部からの指示入力に応じて実行するように指示する実行指示部をさらに備える、請求項1または2に記載のコントローラ。
- 前記SQI値取得部は、前記SQI値を前記各スレーブ装置から複数回取得するとともに、
前記ケーブル総延長算出部は、前記各スレーブ装置間のケーブル長さを、複数回取得した前記SQI値の平均値に基づいて算出する、請求項1~3のいずれか一項に記載のコントローラ。 - 請求項3に記載のコントローラと通信接続する設定装置であって、
前記SQI値取得部におけるSQI値取得処理、前記ケーブル総延長算出部におけるケーブル総延長算出処理、および、前記伝搬遅延時間設定部における伝搬遅延時間設定処理を実行させる指示をユーザからの指示に応じて前記実行指示部に送信する実行指示送信部を備える設定装置。 - 前記伝搬遅延時間設定部によって設定された伝播遅延時間を取得し、前記コントローラに対する設定情報とともに、前記伝播遅延時間を前記コントローラに送信する設定情報送信部をさらに備える、請求項5に記載の設定装置。
- 複数のスレーブ装置間をケーブルで接続するフィールドネットワークに接続されたコントローラの制御方法であって、
前記各スレーブ装置の物理層通信回路において計測されるSQI(signal quality indicator)値を取得するSQI値取得ステップと、
前記SQI値取得ステップによって取得された前記SQI値に基づいて、前記各スレーブ装置間のケーブル長さを算出し、前記フィールドネットワーク内のケーブル総延長を算出するケーブル総延長算出ステップと、
前記ケーブル総延長に基づいて、前記フィールドネットワークにおける信号の伝播遅延時間を設定する伝搬遅延時間設定ステップと、
を含む制御方法。 - 請求項1~4のいずれか一項に記載のコントローラとしてコンピュータを機能させるためのコントローラプログラムであって、上記各部としてコンピュータを機能させるためのコントローラプログラム。
- 請求項5または6に記載の設定装置としてコンピュータを機能させるための設定プログラムであって、上記各部としてコンピュータを機能させるための設定プログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021002385A JP2022107435A (ja) | 2021-01-08 | 2021-01-08 | コントローラ、設定装置、制御方法およびプログラム |
JP2021-002385 | 2021-01-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022149291A1 true WO2022149291A1 (ja) | 2022-07-14 |
Family
ID=82357908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/008294 WO2022149291A1 (ja) | 2021-01-08 | 2021-03-03 | コントローラ、設定装置、制御方法およびプログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022107435A (ja) |
WO (1) | WO2022149291A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013046195A (ja) * | 2011-08-24 | 2013-03-04 | Nec Corp | 伝送システム、ケーブル長算出方法、伝送装置、及びプログラム |
JP2019159754A (ja) * | 2018-03-13 | 2019-09-19 | オムロン株式会社 | 制御装置、制御システム、制御方法、および、制御プログラム |
JP2020065138A (ja) * | 2018-10-16 | 2020-04-23 | オムロン株式会社 | 情報処理装置 |
-
2021
- 2021-01-08 JP JP2021002385A patent/JP2022107435A/ja active Pending
- 2021-03-03 WO PCT/JP2021/008294 patent/WO2022149291A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013046195A (ja) * | 2011-08-24 | 2013-03-04 | Nec Corp | 伝送システム、ケーブル長算出方法、伝送装置、及びプログラム |
JP2019159754A (ja) * | 2018-03-13 | 2019-09-19 | オムロン株式会社 | 制御装置、制御システム、制御方法、および、制御プログラム |
JP2020065138A (ja) * | 2018-10-16 | 2020-04-23 | オムロン株式会社 | 情報処理装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2022107435A (ja) | 2022-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7945340B2 (en) | Programmable controller system | |
JP5697380B2 (ja) | プロセス制御システムの制御ループタイミングを調整する方法及び装置 | |
JP2017151936A (ja) | マスタ装置、スレーブ装置、情報処理装置、イベントログ収集システム、マスタ装置の制御方法、スレーブ装置の制御方法、および制御プログラム | |
US10007633B2 (en) | Field bus coupler for connecting input/output modules to a field bus, and method of operation for a field bus coupler | |
WO2022149291A1 (ja) | コントローラ、設定装置、制御方法およびプログラム | |
US20130186965A1 (en) | Integrated temperature and humidity control device | |
JP5591419B1 (ja) | 距離計測装置および距離計測方法 | |
TWI465737B (zh) | 老化測試系統 | |
JP7192608B2 (ja) | ネットワーク管理装置、管理方法、管理プログラムおよび記録媒体 | |
US11402244B2 (en) | Automatic calibration of a measuring circuit | |
JP6494586B2 (ja) | 通信端末及び通信システム | |
WO2021084771A1 (ja) | 制御システム、制御システムの通信制御方法、および制御装置 | |
WO2021199191A1 (ja) | 通信装置、通信システム、通信方法及びプログラム | |
WO2019176286A1 (ja) | 制御装置、制御方法、および、制御プログラム | |
JP6132097B2 (ja) | 測定システムおよび測定方法 | |
JP2007128436A (ja) | フィールド通信システム | |
US20180242055A1 (en) | Field device and information providing method | |
JP7039399B2 (ja) | データ処理装置、測定システムおよびデータ処理用プログラム | |
US11294421B2 (en) | Precision timing between systems | |
JP5810771B2 (ja) | フィールド機器 | |
Li et al. | Research and application on INTERBUS operator terminal | |
Ramos | IEEE Standard 1451 and a proposed time synchronization approach | |
CN113169757A (zh) | 缆线长度计算系统、控制器和缆线长度计算方法 | |
JP2021132324A (ja) | データ統合処理方法、プログラム、データ統合処理用サーバ、および、可視化データ処理システム | |
US8077625B1 (en) | Apparatus and method for using a communication resource for performing a timing operation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21917516 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21917516 Country of ref document: EP Kind code of ref document: A1 |