WO2022149267A1 - Radio base station and terminal - Google Patents

Radio base station and terminal Download PDF

Info

Publication number
WO2022149267A1
WO2022149267A1 PCT/JP2021/000526 JP2021000526W WO2022149267A1 WO 2022149267 A1 WO2022149267 A1 WO 2022149267A1 JP 2021000526 W JP2021000526 W JP 2021000526W WO 2022149267 A1 WO2022149267 A1 WO 2022149267A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
density
reference signal
type
configuration
Prior art date
Application number
PCT/JP2021/000526
Other languages
French (fr)
Japanese (ja)
Inventor
春陽 越後
大輔 栗田
浩樹 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/000526 priority Critical patent/WO2022149267A1/en
Publication of WO2022149267A1 publication Critical patent/WO2022149267A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to radio base stations and terminals that transmit or receive demodulation reference signals.
  • the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
  • 5G New Radio
  • NG Next Generation
  • Non-Patent Document 1 coverage enhancement (CE: Coverage Enhancement) in NR (Non-Patent Document 1).
  • DMRS demodulation reference signal
  • the existing DMRS supports Type 1 (up to 8 ports can be set) and Type 2 (up to 12 ports can be set) configurations, but from the viewpoint of improving the performance of coverage expansion, the estimation accuracy of DMRS has been improved. There seems to be room.
  • the following disclosure is made in view of such a situation, and an object thereof is to provide a radio base station and a terminal capable of improving the estimation accuracy of the demodulation reference signal (DMRS).
  • DMRS demodulation reference signal
  • One aspect of the present disclosure includes a transmission unit (control signal / reference signal processing unit 140) for transmitting a demodulation reference signal and a control unit (control unit 170) for setting the configuration of the demodulation reference signal.
  • the control unit is a radio base station (gNB100) that sets the arrangement of the demodulation reference signal in the frequency resource to the first density or a second density different from the first density.
  • the arrangement of the transmission unit (control signal / reference signal processing unit 140) for transmitting the demodulation reference signal and the (control unit 170) demodulation reference signal in the frequency resource is the first density, or the above. It is a terminal (UE200) provided with a control unit for setting a second density different from the first density.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • FIG. 3 is a functional block configuration diagram of gNB100 and UE200.
  • FIG. 4 is a diagram showing an example of the basic configuration of DMRS.
  • FIG. 5 is a diagram showing a schematic communication sequence regarding transmission / reception of DMRS.
  • FIG. 6 is a diagram showing an example of arrangement of Type 1 and Type 2 DMRS on the RE.
  • FIG. 7 is a diagram showing a configuration example of DMRS having different densities.
  • FIG. 8 is a diagram showing examples of high density and low density DMRS types.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • FIG. 3 is a functional
  • FIG. 9 is a diagram showing an example of High DM-RS Density Configuration type.
  • FIG. 10 is a diagram showing an example of Low DM-RS Density Configuration type.
  • FIG. 11 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200).
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network
  • UE200 terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
  • NG-RAN20 includes a wireless base station 100 (hereinafter, gNB100).
  • gNB100 wireless base station 100
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as "network”.
  • GNB100 is a wireless base station that complies with NR, and executes wireless communication according to UE200 and NR.
  • gNB100 and UE200 are Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, carrier aggregation (CA) that uses multiple component carriers (CC) in a bundle, and It can also support dual connectivity (DC) that communicates simultaneously between the UE and multiple NG-RAN Nodes.
  • Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Wireless communication system 10 corresponds to FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410 MHz to 7.125 GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 has a higher frequency than FR1, and SCS of 60 or 120 kHz (240 kHz may be included) is used, and a bandwidth (BW) of 50 to 400 MHz may be used.
  • the wireless communication system 10 may support a higher frequency band than the frequency band of FR2. Specifically, the wireless communication system 10 can support a frequency band exceeding 52.6 GHz and up to 114.25 GHz.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT-S-OFDM Discrete Fourier Transform-Spread
  • SCS Sub-Carrier Spacing
  • DFT-S-OFDM may be applied not only to the uplink (UL) but also to the downlink (DL).
  • FIG. 2 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols).
  • the number of slots per subframe may differ depending on the SCS.
  • the SCS may be wider than 240 kHz (for example, 480 kHz, 960 kHz as shown in FIG. 2).
  • the time direction (t) shown in FIG. 2 may be referred to as a time domain, a symbol period, a symbol time, or the like.
  • the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a BWP (Bandwidth part), or the like.
  • the wireless communication system 10 can support coverage enhancement (CE: Coverage Enhancement) that expands the coverage of cells (or physical channels) formed by gNB100.
  • CE Coverage Enhancement
  • Coverage extension may provide a mechanism for increasing the reception success rate of various physical channels.
  • the wireless communication system 10 can support repeated transmission of PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • DMRS which may be read as density
  • the arrangement of DMRS can be changed according to the frequency band to be used (may be FR), whether coverage extension is applied, and the like.
  • FIG. 3 is a functional block configuration diagram of gNB100 and UE200.
  • the gNB 100 includes a radio signal transmission / reception unit 110, an amplifier unit 120, a modulation / demodulation unit 130, a control signal / reference signal processing unit 140, a coding / decoding unit 150, a data transmission / reception unit 160, and a control unit 170. ..
  • FIG. 3 shows only the main functional blocks related to the description of the embodiment, and that the gNB100 (UE200) has other functional blocks (for example, a power supply unit). Further, FIG. 3 shows the functional block configuration of the gNB 100, and refer to FIG. 11 for the hardware configuration.
  • the radio signal transmission / reception unit 110 transmits / receives a radio signal according to NR.
  • the radio signal transmission / reception unit 110 uses Massive MIMO that generates a beam with higher directivity by controlling radio frequency (RF) signals transmitted from a plurality of antenna elements, and a carrier that bundles and uses a plurality of component carriers (CC). It can support aggregation (CA) and dual connectivity (DC) that communicates between the UE and each of the two NG-RAN Nodes at the same time.
  • Massive MIMO that generates a beam with higher directivity by controlling radio frequency (RF) signals transmitted from a plurality of antenna elements, and a carrier that bundles and uses a plurality of component carriers (CC). It can support aggregation (CA) and dual connectivity (DC) that communicates between the UE and each of the two NG-RAN Nodes at the same time.
  • CA aggregation
  • DC dual connectivity
  • the amplifier unit 120 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like.
  • the amplifier unit 120 amplifies the signal output from the modulation / demodulation unit 130 to a predetermined power level. Further, the amplifier unit 120 amplifies the RF signal output from the radio signal transmission / reception unit 110.
  • the modulation / demodulation unit 130 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each specific communication destination (UE200).
  • the control signal / reference signal processing unit 140 executes processing related to various control signals transmitted / received by the gNB 100. Specifically, the control signal / reference signal processing unit 140 receives various control signals transmitted from the UE 200 via the control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 140 transmits various control signals to the UE 200 via the control channel.
  • RRC radio resource control layer
  • control signal / reference signal processing unit 140 can execute processing using a reference signal (RS) such as DMRS and Phase Tracking Reference Signal (PTRS).
  • RS reference signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a reference signal (pilot signal) known between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation.
  • the PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
  • the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), PositioningReferenceSignal (PRS) for position information, and the like. ..
  • CSI-RS ChannelStateInformation-ReferenceSignal
  • SRS SoundingReferenceSignal
  • PRS PositioningReferenceSignal
  • the Channels include control channels and data channels.
  • the control channel includes PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), PBCH (Physical Broadcast Channel) and the like.
  • the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • the signal may include a channel and a reference signal.
  • control signal / reference signal processing unit 140 can transmit DMRS.
  • control signal / reference signal processing unit 140 constitutes a transmission unit.
  • control signal / reference signal processing unit 140 can transmit DMRS used for PDSCH channel estimation toward UE200.
  • the DMRS used for PDSCH (or PUSCH) channel estimation will be described below.
  • the coding / decoding unit 150 executes data division / concatenation and channel coding / decoding for each specific communication destination (UE200).
  • the coding / decoding unit 150 divides the data output from the data transmission / reception unit 160 into a predetermined size, and executes channel coding for the divided data. Further, the coding / decoding unit 150 decodes the data output from the modulation / demodulation unit 130 and concatenates the decoded data.
  • the data transmission / reception unit 160 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU).
  • PDU Protocol Data Unit
  • SDU Service Data Unit
  • the data transmission / reception unit 160 is a PDU / SDU in a plurality of layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble / disassemble the.
  • MAC medium access control layer
  • RLC radio link control layer
  • PDCP packet data convergence protocol layer
  • the control unit 170 controls each functional block constituting the gNB 100.
  • the control unit 170 can set the configuration of the DMRS.
  • the control unit 170 can control the allocation of DMRS to radio resources.
  • Radio resources may include frequency and time resources.
  • the radio resource may include a spatial resource (which may be referred to as a spatial direction).
  • control unit 170 can change the density of DMRS in the frequency direction.
  • the density of DMRS in the frequency direction is interpreted as the amount of DMRS allocated (arranged) in the reference unit (resource block (RB), subcarrier, ResourceElement (RE) or RE group (REG), etc.) in the frequency direction. May be done.
  • the control unit 170 may set the DMRS arrangement in the frequency resource to the first density or a second density different from the first density.
  • the first density may be, for example, low density, and the second density may be high density, which is higher than the first density.
  • the first density and the second density are names for convenience, and the second density may be low density and the first density may be high density.
  • control unit 170 may set the type of DMRS having the first density or the type of DMRS having the second density.
  • 3GPP defines DMRS of Type 1 and Type 2, but DMRS having different densities in the frequency direction described above may be referred to as Type 3 and 4.
  • control unit 170 may set the density of DMRS in the frequency direction to the first density or the second density by using a parameter that changes the density of DMRS. Specifically, the control unit 170 may change only the density of DMRS.
  • control unit 170 does not specifically set a new type of DMRS as described above, and uses a parameter (which may be called a scaling factor) that can change the density of DMRS in the frequency direction.
  • the density may be varied. That is, the density of DMRS according to the existing Type 1 or Type 2 may be changed by applying the scaling factor to the existing Type 1 or Type 2 DMRS.
  • a parameter or the like that directly specifies the density of DMRS may be used instead of the scaling factor.
  • the new type of DMRS described above, or the change in DMRS density using a scaling factor, may be applied to at least one of the downlink (DL) and uplink (UL). That is, the DMRS used for at least one of the PDSCH or PUSCH channel estimates may be subject to the new types of DMRS described above, or DMRS density changes using scaling factors. Examples of new types of DMRS and scaling factors will be described later.
  • the above-mentioned DMRS transmission / reception and control functions may be provided in the UE200.
  • the UE 200 may include a control signal / reference signal processing unit 140 (transmission unit) that transmits DMRS used for channel estimation of PUSCH, and a control unit 170 that sets the configuration of DMRS.
  • control unit 170 of the UE200 may set the DMRS arrangement in the frequency resource to the first density or the second density different from the first density.
  • control signal / reference signal processing unit 140 of the UE 200 may transmit DMRS, specifically, UE 200 capability information (UE Capability Information) regarding the type and / or density of the DMRS.
  • UE Capability Information UE Capability Information
  • FIG. 4 shows an example of the basic configuration of DMRS. Specifically, FIG. 4 shows a configuration example of Type 1 and Type 2 of DMRS.
  • DMRS is used for PDSCH / PUSCH channel estimation.
  • the coverage performance affects the estimation accuracy of DMRS.
  • the DMRS may have a plurality of types. Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in the maximum number of mapping and orthogonal reference signals in the frequency domain. Type 1 can be set up to 8 ports (2 FD-OCC (Orthogonal Cover Code) ⁇ 2 Combs ⁇ 2 TD-OCC), and Type 2 can be set up to 12 ports (2 FD-OCC ⁇ 3 frequency offsets ⁇ 2 TD). -OCC) can be set.
  • FD-OCC Orthogonal Cover Code
  • Type 1 and Type 2 DMRS may support single-symbol DMRS or double-symbol.
  • Type 1 and Type 2 are so-called front load DMRSs in which the DMRS sequence is placed on the front symbol in the slot.
  • the sequence is multiplexed in the spatial direction, specifically, using a plurality of ports.
  • the port may mean a gNB port, specifically, an antenna port.
  • FIG. 5 shows a schematic communication sequence relating to transmission / reception of DMRS.
  • the UE 200 may transmit UE Capability Information indicating the type or density of DMRS that can be supported to the network.
  • the network may set the type or density of DMRS to be applied based on the received UE Capability Information, and notify the UE 200 of the setting contents. Specifically, the network may notify the UE 200 of the setting contents by signaling of downlink control information (DCI: Downlink Control Information) or an upper layer (RRC or the like).
  • DCI Downlink Control Information
  • RRC upper layer
  • the network (gNB100) and UE200 transmit DMRS used for PDSCH / PUSCH channel estimation. Specifically, gNB100 transmits DMRS used for PDSCH channel estimation, and UE200 transmits DMRS used for PUSCH channel estimation.
  • FIG. 6 shows an example of placement of Type 1 and Type 2 DMRS on the RE.
  • the DMRS series length may be expressed as follows.
  • DMRS may be expressed as DM-RS.
  • DMRS configuration type 1 DMRS is arranged in 6RE in 1RB.
  • DMRS configuration type 2 DMRS is placed in 4RE in 1RB.
  • the estimation accuracy of DMRS can be improved by changing the DMRS Density and changing the transmission power or series length of DMRS.
  • the estimation accuracy of DMRS depends on the density of DMRS (Density) of the DMRS series length and the received power of DMRS, which determine the estimation accuracy.
  • the estimation accuracy of DMRS can be improved by changing the density of DMRS and changing the transmission power or series length of DMRS.
  • FIG. 7 shows a configuration example of DMRS having different densities. Specifically, FIG. 7 shows a configuration example of high-density (High DM-RS) and low-density (Low DM-RS) DMRS.
  • High DM-RS high-density
  • Low DM-RS low-density
  • High DMRS Density can improve the estimation accuracy of DMRS because it can respond to the channel change in the frequency direction in the RB by securing the DMRS series length.
  • Low DMRS Density is expected to improve the estimation accuracy of DMRS by improving the transmission power.
  • DMRS configuration type 1 High DMRS density / DMRS configuration type -(Operation example 2): Low DMRS Density / DMRS configuration type ⁇ DMRS configuration type of comb 4 ⁇ DMRS configuration type of comb 6 -Support for low PAPR (Peak-to-Average Power Ratio) sequence with short sequence length- (Operation example 3): Notification of DMRS configuration type- (Operation example 4): Change only DMRS Density- (Operation example 5): UE Notification of capability (3.4.0) Outline of operation examples 1 and 2 As described above, a plurality of DMRS types having different DMRS densities may be set. Specifically, high density and low density DMRS types may be set.
  • FIG. 8 shows examples of high density and low density DMRS types.
  • the DMRS configuration type of High DMRS density may be DMRS configuration type 3
  • the DMRS configuration type of Low DMRS density may be DMRS configuration type 4.
  • High DMRS Density may have a higher DMRS Density than Configuration type 1.
  • DMRS RE may be arranged by 1 comb.
  • DMRS is transmitted for each Nth subcarrier, and N can take a value of 2, for example (comb2 structure).
  • Low DMRS Density may have a lower DMRS Density than Configuration type 2.
  • DMRS RE may be arranged by 4 combs or 6 combs.
  • the number of DMRS ports is determined by (number of FD-OCCs) ⁇ (number of combs) ⁇ (number of TD-OCCs), but the number of FD-OCCs may be determined in consideration of the following points.
  • Frequency band (band) Channel characteristics at frequency
  • FR1 or FR2 Channel characteristics at frequency 9 shows an example of High DM-RS Density Configuration type.
  • High DM-RS Density Configuration type is an example of continuous resource mapping of DM-RS Configuration type 1 in the frequency direction.
  • the DMRS position of the High DM-RS Density Configuration type may be the same as the existing placement method, or is determined according to TDD, FDD, SCS, frequency band (band), and frequency range (FR1, FR2). May be good.
  • FIG. 10 shows an example of Low DM-RS Density Configuration type. Specifically, FIG. 10 shows a mapping example of 4 comb and 6 comb Low DM-RS configuration type.
  • the DMRS position (arrangement) of the High DM-RS Density Configuration type may be the same as the existing arrangement method as in the operation example 1, TDD, FDD, SCS, frequency band (band), frequency range (FR1, FR2). ) May be decided according to.
  • a Low PAPR sequence with a short sequence length may be supported.
  • the DMRS base sequence is specified by the 3GPP specification and is generated based on the Low PAPR sequence.
  • a Low PAPR sequence with a sequence length of 3 or 2 may be supported so that the Low DM-RS Density Configuration type can be supported.
  • the dmrs-Type of the DMRS-DownlinkConfig information element or DMRS-UplinkConfig information element, which is the information element of the RRC layer, may be changed and ENUMERATED ⁇ type2, type3, type4 ⁇ may be added. ..
  • DMRS configuration type may be specified by DCI.
  • a plurality of DMRS configuration types may be set in the upper layer, and any one of the plurality of DMRS configuration types set by the upper layer may be specified by DCI.
  • the network may notify the UE200 of information about Density and change only the DMRS density of the set DMRS configuration type (Type 1, 2). For example, the network can notify the UE200 of "0.5" as the density scale.
  • the UE200 may use a DMRS configuration in which the Density of DMRS is halved.
  • Information on DMRS density may be notified to UE200 by signaling or DCI of the upper layer as in the operation example 3.
  • the DMRS-DownlinkConfig information element or DMRS-UplinkConfig information element it may be notified that the DMRS density is increased (or decreased).
  • DCI may notify that the DMRS density is increased (or decreased).
  • DMRS density scaling factor (tentative name) may be added and a bit sequence as shown in Table 1 may be assigned.
  • UE200 sets the DMRS of comb1 and if "1/3" is notified as the Scaling factor, comb. You may set 6 DMRS.
  • the UE 200 may report to the network the following content as UE Capability Information regarding DMRS support with the new DMRS types or densities described above.
  • the UE200 may report, for example, the following Capability for DMRS configurations with different DMRS Densities.
  • Applicability of new DMRS configuration type (Type 3, 4) ⁇ Applicability of High DMRS density configuration type ⁇ Applicability of Low DMRS density configuration type ⁇ Applicability of DMRS position (location) ⁇ Applicability of DMRS density change ⁇ DMRS Applicability of increase in density ⁇ Applicability of decrease in DMRS density UE200 may report the supported (supported) frequency (FR or band) by any of the following methods.
  • UE200 may report the corresponding duplex method by any of the following methods.
  • the UE200 may report the DMRS settings by any of the following methods.
  • the gNB100 and UE200 can set the DMRS arrangement in the frequency resource to the first density or a second density different from the first density. Therefore, it is possible to flexibly set the DMRS configuration that contributes to the improvement of the coverage performance. As a result, the estimation accuracy of DMRS can be improved, and the performance of coverage expansion can be improved.
  • the type of DMRS having the first density or the type of DMRS having the second density (Types 3 and 4) can be set. Therefore, it is possible to quickly and surely set the DMRS configuration that can achieve the performance of coverage expansion.
  • the density of DMRS can be changed by using a parameter (scaling factor) that can change the density of DMRS in the frequency direction. Therefore, the appropriate DMRS configuration can be set more flexibly.
  • the UE200 can transmit the UE200's ability information (UECapability Information) regarding DMRS. Therefore, the DMRS configuration can be set according to the capabilities of the UE200.
  • UECapability Information UECapability Information
  • the demodulation reference signal (DMRS) used for channel estimation of PDSCH / PUSCH has been described, but any reference signal used for channel estimation of a physical channel such as PDSCH / PUSCH can be used. It may be a reference signal.
  • DMRS density may be replaced by other synonymous terms such as placement interval, placement cycle, occupancy rate, allocation frequency, etc.
  • each functional block is realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the realization method is not particularly limited.
  • FIG. 11 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIG. 3) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)
  • RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobileBroadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand
  • Bluetooth® Ultra-WideBand
  • other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information may be overwritten, updated, or added.
  • the output information may be deleted.
  • the entered information may be transmitted to other devices.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software may use at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to create a website.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
  • RRH Remote Radio Head
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS Mobile Station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time area. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-coded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (Sub-Carrier Group: SCG), resource element groups (Resource Element Group: REG), PRB pairs, RB pairs, etc. May be called.
  • Physical RB Physical RB: PRB
  • sub-carrier groups Sub-Carrier Group: SCG
  • resource element groups Resource Element Group: REG
  • PRB pairs RB pairs, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “joined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency region.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as “judgment” or “decision”.
  • judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Wireless communication system 20 NG-RAN 100 gNB 110 Wireless signal transmission / reception unit 120 Amplifier unit 130 Modulation / demodulation unit 140 Control signal / reference signal processing unit 150 Coding / decoding unit 160 Data transmission / reception unit 170 Control unit 200 UE 1001 Processor 1002 Memory 1003 Storage 1004 Communication Device 1005 Input Device 1006 Output Device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This radio base station transmits a demodulation reference signal and sets the configuration of the demodulation reference signal. The radio base station sets the arrangement of the demodulation reference signal in a frequency resource to a first density or a second density different from the first density.

Description

無線基地局及び端末Wireless base stations and terminals
 本開示は、復調用参照信号を送信または受信する無線基地局及び端末に関する。 The present disclosure relates to radio base stations and terminals that transmit or receive demodulation reference signals.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
 例えば、3GPP Release-17では、NRにおけるカバレッジ拡張(CE: Coverage Enhancement)について検討することが合意されている(非特許文献1)。 For example, in 3GPP Release-17, it has been agreed to consider coverage enhancement (CE: Coverage Enhancement) in NR (Non-Patent Document 1).
 カバレッジ拡張の性能(Coverage performance)は、PDSCH(Physical Downlink Shared Channel)/PUSCH(Physical Uplink Shared Channel)のチャネル推定に用いられる復調用参照信号(DMRS)の推定精度に影響する。 Coverage performance affects the estimation accuracy of the demodulation reference signal (DMRS) used for channel estimation of PDSCH (Physical Downlink Shared Channel) / PUSCH (Physical Uplink Shared Channel).
 既存のDMRSでは、Type 1(8ポートまで設定可)及びType 2(12ポートまで設定可)の構成がサポートされているが、カバレッジ拡張の性能向上の観点からは、DMRSの推定精度に改善の余地があると考えられる。 The existing DMRS supports Type 1 (up to 8 ports can be set) and Type 2 (up to 12 ports can be set) configurations, but from the viewpoint of improving the performance of coverage expansion, the estimation accuracy of DMRS has been improved. There seems to be room.
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、復調用参照信号(DMRS)の推定精度を高めることが可能な無線基地局及び端末の提供を目的とする。 Therefore, the following disclosure is made in view of such a situation, and an object thereof is to provide a radio base station and a terminal capable of improving the estimation accuracy of the demodulation reference signal (DMRS).
 本開示の一態様は、復調用参照信号を送信する送信部(制御信号・参照信号処理部140)と、前記復調用参照信号の構成を設定する制御部(制御部170)とを備え、前記制御部は、周波数リソースにおける前記復調用参照信号の配置を第1密度、または前記第1密度と異なる第2密度に設定する無線基地局(gNB100)である。 One aspect of the present disclosure includes a transmission unit (control signal / reference signal processing unit 140) for transmitting a demodulation reference signal and a control unit (control unit 170) for setting the configuration of the demodulation reference signal. The control unit is a radio base station (gNB100) that sets the arrangement of the demodulation reference signal in the frequency resource to the first density or a second density different from the first density.
 本開示の一態様は、復調用参照信号を送信する送信部(制御信号・参照信号処理部140)と、周波数リソースにおける前記(制御部170)復調用参照信号の配置を第1密度、または前記第1密度と異なる第2密度に設定する制御部とを備える端末(UE200)である。 In one aspect of the present disclosure, the arrangement of the transmission unit (control signal / reference signal processing unit 140) for transmitting the demodulation reference signal and the (control unit 170) demodulation reference signal in the frequency resource is the first density, or the above. It is a terminal (UE200) provided with a control unit for setting a second density different from the first density.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10. 図2は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 2 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10. 図3は、gNB100及びUE200の機能ブロック構成図である。FIG. 3 is a functional block configuration diagram of gNB100 and UE200. 図4は、DMRSの基本構成の例を示す図である。FIG. 4 is a diagram showing an example of the basic configuration of DMRS. 図5は、DMRSの送受信に関する概略通信シーケンスを示す図である。FIG. 5 is a diagram showing a schematic communication sequence regarding transmission / reception of DMRS. 図6は、Type 1及びType 2 DMRSのRE上への配置例を示す図である。FIG. 6 is a diagram showing an example of arrangement of Type 1 and Type 2 DMRS on the RE. 図7は、密度の異なるDMRSの構成例を示す図である。FIG. 7 is a diagram showing a configuration example of DMRS having different densities. 図8は、高密度及び低密度のDMRSのタイプの例を示す図である。FIG. 8 is a diagram showing examples of high density and low density DMRS types. 図9は、High DM-RS Density Configuration typeの例を示す図である。FIG. 9 is a diagram showing an example of High DM-RS Density Configuration type. 図10は、Low DM-RS Density Configuration typeの例を示す図である。FIG. 10 is a diagram showing an example of Low DM-RS Density Configuration type. 図11は、gNB100及びUE200のハードウェア構成の一例を示す図である。FIG. 11 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(User Equipment 200、以下、UE200)を含む。
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment. The wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200).
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。 The wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
 NG-RAN20は、無線基地局100(以下、gNB100)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN20 includes a wireless base station 100 (hereinafter, gNB100). The specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G. In addition, NG-RAN20 and 5GC may be simply expressed as "network".
 gNB100は、NRに従った無線基地局であり、UE200とNRに従った無線通信を実行する。gNB100及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと複数のNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。 GNB100 is a wireless base station that complies with NR, and executes wireless communication according to UE200 and NR. gNB100 and UE200 are Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, carrier aggregation (CA) that uses multiple component carriers (CC) in a bundle, and It can also support dual connectivity (DC) that communicates simultaneously between the UE and multiple NG-RAN Nodes.
 無線通信システム10は、FR1及びFR2に対応する。各FR(Frequency Range)の周波数帯は、次のとおりである。 Wireless communication system 10 corresponds to FR1 and FR2. The frequency bands of each FR (Frequency Range) are as follows.
  ・FR1:410 MHz~7.125 GHz
  ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
・ FR1: 410 MHz to 7.125 GHz
・ FR2: 24.25 GHz to 52.6 GHz
In FR1, Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz is used, and a bandwidth (BW) of 5 to 100 MHz may be used. FR2 has a higher frequency than FR1, and SCS of 60 or 120 kHz (240 kHz may be included) is used, and a bandwidth (BW) of 50 to 400 MHz may be used.
 さらに、無線通信システム10は、FR2の周波数帯域よりも高周波数帯域にも対応してもよい。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯域に対応し得る。 Further, the wireless communication system 10 may support a higher frequency band than the frequency band of FR2. Specifically, the wireless communication system 10 can support a frequency band exceeding 52.6 GHz and up to 114.25 GHz.
 また、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。さらに、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも適用されてもよい。 Further, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) having a larger Sub-Carrier Spacing (SCS) may be applied. Further, DFT-S-OFDM may be applied not only to the uplink (UL) but also to the downlink (DL).
 図2は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。 FIG. 2 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
 図2に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。なお、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。また、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。さらに、SCSは、240kHzよりも広くてもよい(例えば、図2に示すように、480kHz, 960kHz)。 As shown in FIG. 2, one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). The number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols). Further, the number of slots per subframe may differ depending on the SCS. Further, the SCS may be wider than 240 kHz (for example, 480 kHz, 960 kHz as shown in FIG. 2).
 なお、図2に示す時間方向(t)は、時間領域、シンボル期間またはシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、BWP (Bandwidth part)などと呼ばれてもよい。 The time direction (t) shown in FIG. 2 may be referred to as a time domain, a symbol period, a symbol time, or the like. Further, the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a BWP (Bandwidth part), or the like.
 無線通信システム10は、gNB100が形成するセル(或いは物理チャネルでもよい)のカバレッジを広げるカバレッジ拡張(CE: Coverage Enhancement)をサポートできる。カバレッジ拡張では、各種の物理チャネルの受信成功率を高めるための仕組みが提供されてよい。 The wireless communication system 10 can support coverage enhancement (CE: Coverage Enhancement) that expands the coverage of cells (or physical channels) formed by gNB100. Coverage extension may provide a mechanism for increasing the reception success rate of various physical channels.
 例えば、無線通信システム10(gNB100)は、PDSCH(Physical Downlink Shared Channel)の繰り返し送信に対応できる。 For example, the wireless communication system 10 (gNB100) can support repeated transmission of PDSCH (Physical Downlink Shared Channel).
 また、無線通信システム10では、PDSCH/PUSCH(Physical Uplink Shared Channel)のチャネル推定に用いられる復調用参照信号(DMRS)構成(configuration type)或いは無線リソース、特に、周波数リソース(周波数方向でもよい)におけるDMRSの配置(密度と読み替えてもよい)を、利用する周波数帯域(FRでもよい)、カバレッジ拡張の適用有無などに応じて変更できる。 Further, in the wireless communication system 10, the demodulation reference signal (DMRS) configuration type used for channel estimation of PDSCH / PUSCH (Physical Uplink Shared Channel) or wireless resources, particularly frequency resources (may be in the frequency direction). The arrangement of DMRS (which may be read as density) can be changed according to the frequency band to be used (may be FR), whether coverage extension is applied, and the like.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、gNB100の機能ブロック構成について説明する。図3は、gNB100及びUE200の機能ブロック構成図である。
(2) Functional block configuration of the wireless communication system Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of gNB100 will be described. FIG. 3 is a functional block configuration diagram of gNB100 and UE200.
 図3に示すように、gNB100は、無線信号送受信部110、アンプ部120、変復調部130、制御信号・参照信号処理部140、符号化/復号部150、データ送受信部160及び制御部170を備える。 As shown in FIG. 3, the gNB 100 includes a radio signal transmission / reception unit 110, an amplifier unit 120, a modulation / demodulation unit 130, a control signal / reference signal processing unit 140, a coding / decoding unit 150, a data transmission / reception unit 160, and a control unit 170. ..
 なお、図3では、実施形態の説明に関連する主な機能ブロックのみが示されており、gNB100(UE200)は、他の機能ブロック(例えば、電源部など)を有することに留意されたい。また、図3は、gNB100の機能的なブロック構成について示しており、ハードウェア構成については、図11を参照されたい。 It should be noted that FIG. 3 shows only the main functional blocks related to the description of the embodiment, and that the gNB100 (UE200) has other functional blocks (for example, a power supply unit). Further, FIG. 3 shows the functional block configuration of the gNB 100, and refer to FIG. 11 for the hardware configuration.
 無線信号送受信部110は、NRに従った無線信号を送受信する。無線信号送受信部110は、複数のアンテナ素子から送信される無線(RF)信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。 The radio signal transmission / reception unit 110 transmits / receives a radio signal according to NR. The radio signal transmission / reception unit 110 uses Massive MIMO that generates a beam with higher directivity by controlling radio frequency (RF) signals transmitted from a plurality of antenna elements, and a carrier that bundles and uses a plurality of component carriers (CC). It can support aggregation (CA) and dual connectivity (DC) that communicates between the UE and each of the two NG-RAN Nodes at the same time.
 アンプ部120は、PA(Power Amplifier)/LNA(Low Noise Amplifier)などによって構成される。アンプ部120は、変復調部130から出力された信号を所定の電力レベルに増幅する。また、アンプ部120は、無線信号送受信部110から出力されたRF信号を増幅する。 The amplifier unit 120 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like. The amplifier unit 120 amplifies the signal output from the modulation / demodulation unit 130 to a predetermined power level. Further, the amplifier unit 120 amplifies the RF signal output from the radio signal transmission / reception unit 110.
 変復調部130は、特定の通信先(UE200)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。 The modulation / demodulation unit 130 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each specific communication destination (UE200).
 制御信号・参照信号処理部140は、gNB100が送受信する各種の制御信号に関する処理を実行する。具体的には、制御信号・参照信号処理部140は、UE200から制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部140は、UE200に向けて、制御チャネルを介して各種の制御信号を送信する。 The control signal / reference signal processing unit 140 executes processing related to various control signals transmitted / received by the gNB 100. Specifically, the control signal / reference signal processing unit 140 receives various control signals transmitted from the UE 200 via the control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 140 transmits various control signals to the UE 200 via the control channel.
 さらに、制御信号・参照信号処理部140は、DMRS、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行できる。 Further, the control signal / reference signal processing unit 140 can execute processing using a reference signal (RS) such as DMRS and Phase Tracking Reference Signal (PTRS).
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 DMRS is a reference signal (pilot signal) known between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation. The PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)などが含まれてもよい。 In addition to DMRS and PTRS, the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), PositioningReferenceSignal (PRS) for position information, and the like. ..
 チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、PRACH(Physical Random Access Channel)、及びPBCH(Physical Broadcast Channel)などが含まれる。 Channels include control channels and data channels. The control channel includes PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), PBCH (Physical Broadcast Channel) and the like.
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。信号には、チャネル及び参照信号が含まれてよい。 The data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). The signal may include a channel and a reference signal.
 上述したように、制御信号・参照信号処理部140は、DMRSを送信することができる。本実施形態において、制御信号・参照信号処理部140は、送信部を構成する。 As described above, the control signal / reference signal processing unit 140 can transmit DMRS. In the present embodiment, the control signal / reference signal processing unit 140 constitutes a transmission unit.
 具体的には、制御信号・参照信号処理部140は、PDSCHのチャネル推定に用いられるDMRSをUE200に向けて送信できる。なお、以下では、PDSCH(またはPUSCH)のチャネル推定に用いられるDMRSについて説明する。 Specifically, the control signal / reference signal processing unit 140 can transmit DMRS used for PDSCH channel estimation toward UE200. The DMRS used for PDSCH (or PUSCH) channel estimation will be described below.
 符号化/復号部150は、特定の通信先(UE200)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The coding / decoding unit 150 executes data division / concatenation and channel coding / decoding for each specific communication destination (UE200).
 具体的には、符号化/復号部150は、データ送受信部160から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部150は、変復調部130から出力されたデータを復号し、復号したデータを連結する。 Specifically, the coding / decoding unit 150 divides the data output from the data transmission / reception unit 160 into a predetermined size, and executes channel coding for the divided data. Further, the coding / decoding unit 150 decodes the data output from the modulation / demodulation unit 130 and concatenates the decoded data.
 データ送受信部160は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部160は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。 The data transmission / reception unit 160 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmission / reception unit 160 is a PDU / SDU in a plurality of layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble / disassemble the.
 制御部170は、gNB100を構成する各機能ブロックを制御する。特に、本実施形態では、制御部170は、DMRSの構成を設定できる。具体的には、制御部170は、無線リソースへのDMRSの割り当てを制御できる。無線リソースには、周波数リソース及び時間リソースが含まれてよい。さらに、無線リソースには、空間リソース(空間方向と呼ばれてもよい)が含まれてもよい。 The control unit 170 controls each functional block constituting the gNB 100. In particular, in the present embodiment, the control unit 170 can set the configuration of the DMRS. Specifically, the control unit 170 can control the allocation of DMRS to radio resources. Radio resources may include frequency and time resources. Further, the radio resource may include a spatial resource (which may be referred to as a spatial direction).
 特に、本実施形態では、制御部170は、周波数方向におけるDMRSの密度を変更できる。周波数方向におけるDMRSの密度とは、周波数方向における基準となる単位(リソースブロック(RB)、サブキャリア、Resource Element(RE)またはREグループ(REG)など)に占めるDMRSの割り当て(配置)量と解釈されてもよい。 In particular, in the present embodiment, the control unit 170 can change the density of DMRS in the frequency direction. The density of DMRS in the frequency direction is interpreted as the amount of DMRS allocated (arranged) in the reference unit (resource block (RB), subcarrier, ResourceElement (RE) or RE group (REG), etc.) in the frequency direction. May be done.
 制御部170は、周波数リソースにおけるDMRSの配置を第1密度、または第1密度と異なる第2密度に設定してよい。第1密度は、例えば、低密度(Low density)とし、第2密度は、第1密度よりも密度が高い高密度(High density)としてもよい。なお、第1密度及び第2密度は、便宜上の名称であり、第2密度が低密度、第1密度が高密度であってもよい。 The control unit 170 may set the DMRS arrangement in the frequency resource to the first density or a second density different from the first density. The first density may be, for example, low density, and the second density may be high density, which is higher than the first density. The first density and the second density are names for convenience, and the second density may be low density and the first density may be high density.
 より具体的には、制御部170は、第1密度を有するDMRSのタイプ、または第2密度を有するDMRSのタイプを設定してよい。後述するように、3GPPでは、Type 1及びType 2のDMRSが規定されているが、上述した周波数方向における密度の異なるDMRSは、Type 3, 4と呼ばれてもよい。 More specifically, the control unit 170 may set the type of DMRS having the first density or the type of DMRS having the second density. As will be described later, 3GPP defines DMRS of Type 1 and Type 2, but DMRS having different densities in the frequency direction described above may be referred to as Type 3 and 4.
 或いは、制御部170は、DMRSの密度を変化させるパラメータを用いて、周波数方向におけるDMRSの密度を第1密度または第2密度に設定してもよい。具体的には、制御部170は、DMRSの密度のみを変化させてよい。 Alternatively, the control unit 170 may set the density of DMRS in the frequency direction to the first density or the second density by using a parameter that changes the density of DMRS. Specifically, the control unit 170 may change only the density of DMRS.
 例えば、制御部170は、上述したような新たなタイプのDMRSを特に設定せず、周波数方向におけるDMRSの密度を変化させることができるパラメータ(スケーリングファクタと呼ばれてもよい)を用いてDMRSの密度を変化させてよい。つまり、既存のType 1またはType 2のDMRSに対して当該スケーリングファクタを適用することによって、既存のType 1またはType 2に従ったDMRSの密度を変化させてよい。なお、スケーリングファクタではなく、DMRSの密度を直接指定するパラメータなどが用いられてもよい。 For example, the control unit 170 does not specifically set a new type of DMRS as described above, and uses a parameter (which may be called a scaling factor) that can change the density of DMRS in the frequency direction. The density may be varied. That is, the density of DMRS according to the existing Type 1 or Type 2 may be changed by applying the scaling factor to the existing Type 1 or Type 2 DMRS. A parameter or the like that directly specifies the density of DMRS may be used instead of the scaling factor.
 上述した新たなタイプのDMRS、或いはスケーリングファクタを用いたDMRSの密度の変更は、下りリンク(DL)及び上りリンク(UL)の少なくとも何れかに適用されてよい。つまり、PDSCHまたはPUSCHの少なくとも何れかのチャネル推定に用いられるDMRSに上述した新たなタイプのDMRS、或いはスケーリングファクタを用いたDMRSの密度の変更が適用されてよい。なお、新たなタイプのDMRS及びスケーリングファクタの例については、さらに後述する。 The new type of DMRS described above, or the change in DMRS density using a scaling factor, may be applied to at least one of the downlink (DL) and uplink (UL). That is, the DMRS used for at least one of the PDSCH or PUSCH channel estimates may be subject to the new types of DMRS described above, or DMRS density changes using scaling factors. Examples of new types of DMRS and scaling factors will be described later.
 また、上述したDMRSの送受信及び制御に関する機能は、UE200にも備えられてよい。例えば、UE200は、PUSCHのチャネル推定に用いられるDMRSを送信する制御信号・参照信号処理部140(送信部)、及びDMRSの構成を設定する制御部170を備えてよい。 In addition, the above-mentioned DMRS transmission / reception and control functions may be provided in the UE200. For example, the UE 200 may include a control signal / reference signal processing unit 140 (transmission unit) that transmits DMRS used for channel estimation of PUSCH, and a control unit 170 that sets the configuration of DMRS.
 UE200の制御部170は、gNB100と同様に、周波数リソースにおけるDMRSの配置を第1密度、または第1密度と異なる第2密度に設定してよい。 Like the gNB100, the control unit 170 of the UE200 may set the DMRS arrangement in the frequency resource to the first density or the second density different from the first density.
 また、UE200の制御信号・参照信号処理部140は、DMRS、具体的にはDMRSのタイプ及び/または密度に関するUE200の能力情報(UE Capability Information)を送信してよい。 Further, the control signal / reference signal processing unit 140 of the UE 200 may transmit DMRS, specifically, UE 200 capability information (UE Capability Information) regarding the type and / or density of the DMRS.
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、PDSCH/PUSCHのチャネル推定に用いられるDMRSの設定に関する動作について説明する。
(3) Operation of wireless communication system Next, the operation of the wireless communication system 10 will be described. Specifically, the operation related to the setting of DMRS used for channel estimation of PDSCH / PUSCH will be described.
 (3.1)DMRSの基本構成
 図4は、DMRSの基本構成の例を示す。具体的には、図4は、DMRSのType 1及びType 2の構成例を示す。
(3.1) Basic configuration of DMRS Figure 4 shows an example of the basic configuration of DMRS. Specifically, FIG. 4 shows a configuration example of Type 1 and Type 2 of DMRS.
 上述したように、DMRSはPDSCH/PUSCHのチャネル推定に用いられる。カバレッジ拡張の性能(coverage performance)は、DMRSの推定精度に影響する。 As mentioned above, DMRS is used for PDSCH / PUSCH channel estimation. The coverage performance affects the estimation accuracy of DMRS.
 図4に示すように、DMRSは、複数の種類(Type)を有してよい。具体的には、DMRSは、Type 1及びType 2を有する。Type 1とType 2とは、周波数領域におけるマッピング及び直交参照信号(orthogonal reference signals)の最大数が異なる。Type 1は、で最大8ポート(2 FD-OCC (Orthogonal Cover Code) × 2 Combs × 2 TD-OCC)まで設定でき、Type 2は、最大12ポート(2 FD-OCC × 3 frequency offsets × 2 TD-OCC)まで設定できる。 As shown in FIG. 4, the DMRS may have a plurality of types. Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in the maximum number of mapping and orthogonal reference signals in the frequency domain. Type 1 can be set up to 8 ports (2 FD-OCC (Orthogonal Cover Code) × 2 Combs × 2 TD-OCC), and Type 2 can be set up to 12 ports (2 FD-OCC × 3 frequency offsets × 2 TD). -OCC) can be set.
 なお、Type 1及びType 2のDMRSでは、単一シンボル(single-symbol)DMRSまたは二重シンボル(double-symbol)がサポートされてよい。 Note that Type 1 and Type 2 DMRS may support single-symbol DMRS or double-symbol.
 Type 1及びType 2は、DMRSのシーケンスがスロット内の前方のシンボルに配置された、いわゆるフロントロードDMRSである。Type 1及びType 2では、シーケンスが空間方向において、具体的には、複数のポートを用いて多重される。なお、ポートとは、gNBのポート、具体的には、アンテナポートを意味してよい。 Type 1 and Type 2 are so-called front load DMRSs in which the DMRS sequence is placed on the front symbol in the slot. In Type 1 and Type 2, the sequence is multiplexed in the spatial direction, specifically, using a plurality of ports. The port may mean a gNB port, specifically, an antenna port.
 (3.2)概略通信シーケンス
 図5は、DMRSの送受信に関する概略通信シーケンスを示す。図5に示すように、UE200は、サポート可能なDMRSのタイプ或いは密度(DMRS configuration type / density)を示す能力情報(UE Capability Information)をネットワークに送信してよい。
(3.2) Schematic communication sequence FIG. 5 shows a schematic communication sequence relating to transmission / reception of DMRS. As shown in FIG. 5, the UE 200 may transmit UE Capability Information indicating the type or density of DMRS that can be supported to the network.
 ネットワークは、受信したUE Capability Informationに基づいて、適用するDMRSのタイプ或いは密度を設定し、設定内容をUE200に通知してよい。具体的には、ネットワークは、下りリンク制御情報(DCI:Downlink Control Information)或いは上位レイヤ(RRCなど)のシグナリングによって、設定内容をUE200に通知してよい。 The network may set the type or density of DMRS to be applied based on the received UE Capability Information, and notify the UE 200 of the setting contents. Specifically, the network may notify the UE 200 of the setting contents by signaling of downlink control information (DCI: Downlink Control Information) or an upper layer (RRC or the like).
 ネットワーク(gNB100)及びUE200は、PDSCH/PUSCHのチャネル推定に用いられるDMRSを送信する。具体的には、gNB100は、PDSCHのチャネル推定に用いられるDMRSを送信し、UE200は、PUSCHのチャネル推定に用いられるDMRSを送信する。 The network (gNB100) and UE200 transmit DMRS used for PDSCH / PUSCH channel estimation. Specifically, gNB100 transmits DMRS used for PDSCH channel estimation, and UE200 transmits DMRS used for PUSCH channel estimation.
 (3.3)DMRSの追加構成
 次に、PDSCH/PUSCHのカバレッジ拡張を目的としたDMRSの構成について説明する。DMRSの推定精度は、DMRS系列長の長さとDMRSの受信電力とに依存する。DMRSの送信電力は、次のような関係がある。
(3.3) Additional configuration of DMRS Next, the configuration of DMRS for the purpose of expanding the coverage of PDSCH / PUSCH will be described. The accuracy of DMRS estimation depends on the length of the DMRS sequence length and the received power of DMRS. The transmission power of DMRS has the following relationship.
  ・Data symbolとDMRS symbolとを周波数分割多重(FDM)する場合: Data symbolと同じ電力
  ・Data symbolとDMRS symbolとをFDMしない場合: Power boosting
 Power boostingの値は、以下の式に示すように、DMRSが配置されているRE数に依存する。
・ When data symbol and DMRS symbol are frequency division multiplexing (FDM): Same power as Data symbol ・ When Data symbol and DMRS symbol are not FDM: Power boosting
The value of Power boosting depends on the number of REs where DMRS is located, as shown in the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図6は、Type 1及びType 2 DMRSのRE上への配置例を示す。DMRS系列長は、次のように表現されてよい。なお、DMRSは、DM-RSと表記されてもよい。 FIG. 6 shows an example of placement of Type 1 and Type 2 DMRS on the RE. The DMRS series length may be expressed as follows. In addition, DMRS may be expressed as DM-RS.
  ・(リソースが割当られたRB 数) × (1 RB内においてDMRSが配置されたRE数)
 DMRS1ポートの1RBにおけるRE数は、DMRS configuration typeに依存する。具体的には、図6に示すように、DMRSconfiguration type 1の場合、1RBにおいて、6REにDMRSが配置される。また、DMRSconfiguration type 2の場合、1RBにおいて、4REにDMRSが配置される。
・ (Number of RBs to which resources are allocated) × (Number of REs to which DMRS is placed in 1 RB)
The number of REs in 1RB of DMRS1 port depends on DMRS configuration type. Specifically, as shown in FIG. 6, in the case of DMRS configuration type 1, DMRS is arranged in 6RE in 1RB. In the case of DMRS configuration type 2, DMRS is placed in 4RE in 1RB.
 つまり、DMRS Densityを変更し、DMRSの送信電力または系列長を変更することでDMRSの推定精度を向上し得る。 In other words, the estimation accuracy of DMRS can be improved by changing the DMRS Density and changing the transmission power or series length of DMRS.
 また、DMRSの推定精度は、推定精度を決定するDMRS系列長とDMRSの受信電力とは、DMRSの密度(Density)に依存する。 In addition, the estimation accuracy of DMRS depends on the density of DMRS (Density) of the DMRS series length and the received power of DMRS, which determine the estimation accuracy.
 DMRSの密度を変更し、DMRSの送信電力または系列長を変更することでDMRSの推定精度を向上し得る。 The estimation accuracy of DMRS can be improved by changing the density of DMRS and changing the transmission power or series length of DMRS.
 図7は、密度の異なるDMRSの構成例を示す。具体的には、図7は、高密度(High DM-RS)及び低密度(Low DM-RS)のDMRSの構成例を示す。 FIG. 7 shows a configuration example of DMRS having different densities. Specifically, FIG. 7 shows a configuration example of high-density (High DM-RS) and low-density (Low DM-RS) DMRS.
 High DMRS Densityは、DMRS系列長の確保によるRB内の周波数方向でのチャネル変化に対応可能なため、DMRSの推定精度が向上し得る。 High DMRS Density can improve the estimation accuracy of DMRS because it can respond to the channel change in the frequency direction in the RB by securing the DMRS series length.
 また、Low DMRS Densityは、送信電力の向上によるDMRSの推定精度の改善が見込まれる。 In addition, Low DMRS Density is expected to improve the estimation accuracy of DMRS by improving the transmission power.
 (3.4)動作例
 次に、上述した新たなDMRSのタイプ或いは密度を適用したDMRSの設定などに関する動作例について説明する。
(3.4) Operation example Next, an operation example relating to the DMRS setting to which the above-mentioned new DMRS type or density is applied will be described.
 具体的には、動作例1~5について説明する。 Specifically, operation examples 1 to 5 will be described.
  ・(動作例1):High DMRS density / DMRS configuration type
  ・(動作例2):Low DMRS Density / DMRS configuration type
    ・comb 4の DMRS configuration type
    ・comb 6の DMRS configuration type
    ・短い系列長のLow PAPR (Peak-to-Average Power Ratio) sequenceのサポート
  ・(動作例3):DMRS configuration typeの通知
  ・(動作例4):DMRS Densityのみ変更
  ・(動作例5):UE capabilityの通知
 (3.4.0)動作例1,2の概要
 上述したように、DMRSの密度が異なる複数のDMRSタイプが設定されてよい。具体的には、高密度及び低密度のDMRSのタイプが設定されてよい。
-(Operation example 1): High DMRS density / DMRS configuration type
-(Operation example 2): Low DMRS Density / DMRS configuration type
・ DMRS configuration type of comb 4
・ DMRS configuration type of comb 6
-Support for low PAPR (Peak-to-Average Power Ratio) sequence with short sequence length- (Operation example 3): Notification of DMRS configuration type- (Operation example 4): Change only DMRS Density- (Operation example 5): UE Notification of capability (3.4.0) Outline of operation examples 1 and 2 As described above, a plurality of DMRS types having different DMRS densities may be set. Specifically, high density and low density DMRS types may be set.
 図8は、高密度及び低密度のDMRSのタイプの例を示す。図8に示すように、例えば、High DMRS densityのDMRS configuration typeは、DMRS configuration type 3とし、Low DMRS densityのDMRS configuration typeは、DMRS configuration type 4としてもよい。 FIG. 8 shows examples of high density and low density DMRS types. As shown in FIG. 8, for example, the DMRS configuration type of High DMRS density may be DMRS configuration type 3, and the DMRS configuration type of Low DMRS density may be DMRS configuration type 4.
 High DMRS Densityは、Configuration type 1よりも高いDMRS Densityを有してよい。例えば、図8の左側に示すように、1 combによってDMRS REが配置されてよい。 High DMRS Density may have a higher DMRS Density than Configuration type 1. For example, as shown on the left side of FIG. 8, DMRS RE may be arranged by 1 comb.
 なお、comb(くし)構造とは、DMRSがN番目のサブキャリア毎に送信され、Nは、例えば、2の値をとることができる(comb 2構造)。 In the comb structure, DMRS is transmitted for each Nth subcarrier, and N can take a value of 2, for example (comb2 structure).
 Low DMRS Densityは、Configuration type 2よりも低いDMRS Densityを有してよい。例えば、図8の右側に示すように、4 combsまたは6 combsによってDMRS REが配置されてよい。 Low DMRS Density may have a lower DMRS Density than Configuration type 2. For example, as shown on the right side of FIG. 8, DMRS RE may be arranged by 4 combs or 6 combs.
 (3.4.1)動作例1
 DMRSポート数は、(FD-OCC数)×(comb数)×(TD-OCC数)によって定まるが、FD-OCC 数は、次のような点を考慮して決定されてもよい。
(3.4.1) Operation example 1
The number of DMRS ports is determined by (number of FD-OCCs) × (number of combs) × (number of TD-OCCs), but the number of FD-OCCs may be determined in consideration of the following points.
  ・Time Division Duplex(TDD)またはFrequency Division Duplex(FDD)の場合におけるチャネルのreciprocity(相互関係)
  ・SCSが大きい場合、チャネルコヒーレント帯域幅に占めるRE数が少なくなってしまうため、最適なDMRS Densityが変わる可能性
  ・周波数帯(バンド): 周波数におけるチャネル特性
  ・FR1またはFR2: 周波数におけるチャネル特性
 図9は、High DM-RS Density Configuration typeの例を示す。図9の左側は、Configuration type 1を示し、同右側は、Configuration type 1をベースにしたHigh DM-RS Density Configuration typeの例(2 FD-OCC x 1 Combs x 2 TD-OCC = 4ポート)を示す。
• Channel reciprocity in the case of Time Division Duplex (TDD) or Frequency Division Duplex (FDD)
・ If the SCS is large, the number of REs in the channel coherent bandwidth will be small, so the optimum DMRS Density may change. ・ Frequency band (band): Channel characteristics at frequency ・ FR1 or FR2: Channel characteristics at frequency 9 shows an example of High DM-RS Density Configuration type. The left side of Fig. 9 shows Configuration type 1, and the right side shows an example of High DM-RS Density Configuration type based on Configuration type 1 (2 FD-OCC x 1 Combs x 2 TD-OCC = 4 ports). show.
 具体的には、High DM-RS Density Configuration typeは、DM-RS Configuration type 1のリソースマッピングを周波数方向において連続させた例である。 Specifically, High DM-RS Density Configuration type is an example of continuous resource mapping of DM-RS Configuration type 1 in the frequency direction.
 High DM-RS Density Configuration typeのDMRS position(配置)は、既存の配置方法と同様でもよいし、TDD、FDD、SCS、周波数帯(バンド)、周波数レンジ(FR1, FR2)に応じて決定されてもよい。 The DMRS position of the High DM-RS Density Configuration type may be the same as the existing placement method, or is determined according to TDD, FDD, SCS, frequency band (band), and frequency range (FR1, FR2). May be good.
 (3.4.2)動作例2
 Low DMRS Density configuration typeの場合、DMRSポート数は、動作例1と同様の観点を考慮して決定されてもよい。
(3.4.2) Operation example 2
In the case of Low DMRS Density configuration type, the number of DMRS ports may be determined in consideration of the same viewpoint as in Operation Example 1.
 図10は、Low DM-RS Density Configuration typeの例を示す。具体的には、図10は、4 combと6 comb Low DM-RS configuration typeのマッピング例を示す。 FIG. 10 shows an example of Low DM-RS Density Configuration type. Specifically, FIG. 10 shows a mapping example of 4 comb and 6 comb Low DM-RS configuration type.
 High DM-RS Density Configuration typeのDMRS position(配置)は、動作例1と同様に、既存の配置方法と同様でもよいし、TDD、FDD、SCS、周波数帯(バンド)、周波数レンジ(FR1, FR2) に応じて決定されてもよい。 The DMRS position (arrangement) of the High DM-RS Density Configuration type may be the same as the existing arrangement method as in the operation example 1, TDD, FDD, SCS, frequency band (band), frequency range (FR1, FR2). ) May be decided according to.
 また、短い系列長を有するLow PAPR sequenceがサポートされてもよい。PUSCHのトランスフォーム・プリコーディングが用いられる場合、DMRSのbase sequenceは、3GPPの仕様によって規定されており、Low PAPR sequenceに基づいて生成される。 Also, a Low PAPR sequence with a short sequence length may be supported. When PUSCH's transform precoding is used, the DMRS base sequence is specified by the 3GPP specification and is generated based on the Low PAPR sequence.
 3GPPの仕様では、最短で系列長が6のLow PAPR sequenceまでしか規定されていないため、物理リソースブロック(PRB)数によっては、Low DMRS Density(comb 4, comb 6)のDMRS configuration typeを用いることができない。 Since the 3GPP specification only specifies a Low PAPR sequence with a sequence length of 6 at the shortest, use the DMRS configuration type of Low DMRS Density (comb 4, comb 6) depending on the number of physical resource blocks (PRB). I can't.
 そこで、Low DM-RS Density Configuration typeをサポートできるように、系列長が3または2のLow PAPR sequenceがサポートされてよい。 Therefore, a Low PAPR sequence with a sequence length of 3 or 2 may be supported so that the Low DM-RS Density Configuration type can be supported.
 (3.4.3)動作例3
 上述したDMRS configuration type(Type 3, 4)を用いることは、次の何れかの方法によって、ネットワーク(gNB100)からUE200に通知されてよい。
(3.4.3) Operation example 3
The use of the DMRS configuration type (Type 3, 4) described above may be notified to the UE 200 from the network (gNB100) by any of the following methods.
  ・上位レイヤのシグナリングによる通知
 例えば、RRCレイヤの情報要素であるDMRS-DownlinkConfig information element、またはDMRS-UplinkConfig information elementのdmrs-Typeを変更し、ENUMERATED {type2, type3, type4}を追加してもよい。
-Notification by signaling in the upper layer For example, the dmrs-Type of the DMRS-DownlinkConfig information element or DMRS-UplinkConfig information element, which is the information element of the RRC layer, may be changed and ENUMERATED {type2, type3, type4} may be added. ..
  ・DCIによる通知
 PDSCH/PUSCHリソースをUE200に通知する際、DCIによってDMRS configuration type を指定してもよい。この場合、複数のDMRS configuration typeを上位レイヤにおいて設定しておき、上位レイヤによって設定された複数のDMRS configuration typeの何れかをDCIによって指定するようにしてもよい。
-Notification by DCI When notifying UE200 of PDSCH / PUSCH resources, DMRS configuration type may be specified by DCI. In this case, a plurality of DMRS configuration types may be set in the upper layer, and any one of the plurality of DMRS configuration types set by the upper layer may be specified by DCI.
 (3.4.4)動作例4
 上述したように、既存のDMRS configuration type(Type 1, 2)を用い、DMRS densityのみを変更してもよい。
(3.4.4) Operation example 4
As described above, the existing DMRS configuration type (Type 1, 2) may be used and only the DMRS density may be changed.
 具体的には、ネットワークは、Densityに関する情報をUE200に通知し、設定したDMRS configuration type(Type 1, 2)のDMRS densityのみを変更してもよい。例えば、ネットワークは、density scaleとして「0.5」をUE200に通知できる。UE200は、DMRSのDensityが半分となるDMRS configurationを用いればよい。 Specifically, the network may notify the UE200 of information about Density and change only the DMRS density of the set DMRS configuration type (Type 1, 2). For example, the network can notify the UE200 of "0.5" as the density scale. The UE200 may use a DMRS configuration in which the Density of DMRS is halved.
 DMRS densityに関する情報は、動作例3と同様に、上位レイヤのシグナリングまたはDCIによってUE200に通知されてよい。 Information on DMRS density may be notified to UE200 by signaling or DCI of the upper layer as in the operation example 3.
 上位レイヤのシグナリングの場合、例えば、DMRS-DownlinkConfig information element、またはDMRS-UplinkConfig information elementの中で、DMRS densityを高く(または低く)することが通知されてよい。 In the case of signaling in the upper layer, for example, in the DMRS-DownlinkConfig information element or DMRS-UplinkConfig information element, it may be notified that the DMRS density is increased (or decreased).
 或いは、PDSCH/PUSCHリソースをUE200に通知する際、DCIによってDMRS densityを高く(または低く)することが通知されてもよい。 Alternatively, when notifying the UE200 of the PDSCH / PUSCH resource, DCI may notify that the DMRS density is increased (or decreased).
 より具体的には、DMRS density scaling factor(仮称)と呼ばれる新しいパラメータを追加し、表1に示すようなビット系列が割り当てられてもよい。 More specifically, a new parameter called DMRS density scaling factor (tentative name) may be added and a bit sequence as shown in Table 1 may be assigned.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 例えば、DMRS configuration type 1が設定されており、Scaling factorとして「2」が通知された場合、UE200は、comb 1のDMRSを設定し、Scaling factorとして「1/3」が通知された場合、comb 6のDMRSを設定してよい。 For example, if DMRS configuration type 1 is set and "2" is notified as the Scaling factor, UE200 sets the DMRS of comb1 and if "1/3" is notified as the Scaling factor, comb. You may set 6 DMRS.
 (3.4.5)動作例5
 UE200は、上述した新たなDMRSのタイプ或いは密度を適用したDMRSのサポートに関して、次の内容をUE Capability Informationとしてネットワークに報告してよい。
(3.4.5) Operation example 5
The UE 200 may report to the network the following content as UE Capability Information regarding DMRS support with the new DMRS types or densities described above.
 具体的には、UE200は、DMRS Densityが異なるDMRS configurationに関して、例えば、次のような能力(Capability)を報告してよい。 Specifically, the UE200 may report, for example, the following Capability for DMRS configurations with different DMRS Densities.
  ・新しいDMRS configuration type(Type 3, 4)の適用可否
    ・High DMRS density configuration typeの適用可否
    ・Low DMRS density configuration typeの適用可否
    ・DMRS position(配置)の適用可否
  ・DMRS density変更の適用可否
    ・DMRS density増加の適用可否
    ・DMRS density減少の適用可否
 UE200は、対応(サポート)する周波数(FRまたはバンドでもいい)について、次の何れかの方法によって報告してよい。
・ Applicability of new DMRS configuration type (Type 3, 4) ・ Applicability of High DMRS density configuration type ・ Applicability of Low DMRS density configuration type ・ Applicability of DMRS position (location) ・ Applicability of DMRS density change ・ DMRS Applicability of increase in density ・ Applicability of decrease in DMRS density UE200 may report the supported (supported) frequency (FR or band) by any of the following methods.
  ・全周波数一括での対応可否(移動局としての対応可否)
  ・周波数毎の対応可否
  ・FR1/FR2毎の対応可否
  ・SCS毎の対応可否
 また、UE200は、対応する複信方式について、次の何れかの方法によって報告してよい。
・ Whether or not all frequencies can be handled at once (whether or not it can be used as a mobile station)
-Availability for each frequency-Availability for each FR1 / FR2-Availability for each SCS In addition, UE200 may report the corresponding duplex method by any of the following methods.
  ・UEとしての対応可否
  ・複信方式毎(TDD/FDD)の対応可否
 さらに、UE200は、DMRSの設定について、次の何れかの方法によって報告してよい。
-Whether or not it can be supported as a UE-Whether or not it can be supported for each duplex method (TDD / FDD) Furthermore, the UE200 may report the DMRS settings by any of the following methods.
  ・DMRS symbolの長さ毎の対応可否
  ・DMRS additional symbolの数毎の対応可否
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、gNB100及びUE200は、周波数リソースにおけるDMRSの配置を第1密度、または第1密度と異なる第2密度に設定できる。このため、カバレッジ拡張の性能(Coverage performance)の向上に寄与するDMRSの構成を柔軟に設定できる。これにより、DMRSの推定精度を高めることができ、カバレッジ拡張の性能向上を図り得る。
-Whether or not it is possible to correspond to each length of DMRS symbol-Whether or not it is possible to correspond to each number of DMRS additional symbols (4) Actions and effects According to the above-described embodiment, the following actions and effects can be obtained. Specifically, the gNB100 and UE200 can set the DMRS arrangement in the frequency resource to the first density or a second density different from the first density. Therefore, it is possible to flexibly set the DMRS configuration that contributes to the improvement of the coverage performance. As a result, the estimation accuracy of DMRS can be improved, and the performance of coverage expansion can be improved.
 本実施形態では、第1密度を有するDMRSのタイプ、または第2密度を有するDMRSのタイプ(Type 3, 4)を設定できる。このため、カバレッジ拡張の性能を図り得るDMRSの構成を迅速かつ確実に設定し得る。 In this embodiment, the type of DMRS having the first density or the type of DMRS having the second density (Types 3 and 4) can be set. Therefore, it is possible to quickly and surely set the DMRS configuration that can achieve the performance of coverage expansion.
 本実施形態では、周波数方向におけるDMRSの密度を変化させることができるパラメータ(スケーリングファクタ)を用いてDMRSの密度を変化させることもできる。このため、適切なDMRSの構成をより柔軟に設定し得る。 In this embodiment, the density of DMRS can be changed by using a parameter (scaling factor) that can change the density of DMRS in the frequency direction. Therefore, the appropriate DMRS configuration can be set more flexibly.
 本実施形態では、UE200は、DMRSに関するUE200の能力情報(UE Capability Information)を送信できる。このため、UE200の能力に応じたDMRSの構成を設定し得る。 In this embodiment, the UE200 can transmit the UE200's ability information (UECapability Information) regarding DMRS. Therefore, the DMRS configuration can be set according to the capabilities of the UE200.
 (5)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the embodiments have been described above, it is obvious to those skilled in the art that various modifications and improvements are possible without limitation to the description of the embodiments.
 例えば、上述した実施形態では、PDSCH/PUSCHのチャネル推定に用いられる復調用参照信号(DMRS)について説明したが、PDSCH/PUSCHなどの物理チャネルのチャネル推定に用いられる参照信号であれば、他の参照信号であってもよい。 For example, in the above-described embodiment, the demodulation reference signal (DMRS) used for channel estimation of PDSCH / PUSCH has been described, but any reference signal used for channel estimation of a physical channel such as PDSCH / PUSCH can be used. It may be a reference signal.
 DMRSの密度は、配置間隔、配置周期、占有率、割り当て頻度など、同義の他の用語で置き換えられてもよい。 DMRS density may be replaced by other synonymous terms such as placement interval, placement cycle, occupancy rate, allocation frequency, etc.
 また、上述した実施形態の説明に用いたブロック構成図(図3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Further, the block configuration diagram (FIG. 3) used in the description of the above-described embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't. For example, a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter). In each case, as described above, the realization method is not particularly limited.
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、当該装置のハードウェア構成の一例を示す図である。図11に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the above-mentioned gNB100 and UE200 (the device) may function as a computer for processing the wireless communication method of the present disclosure. FIG. 11 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 11, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
 当該装置の各機能ブロック(図3参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIG. 3) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor:DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)), other signals or combinations thereof. RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobileBroadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station, various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. The input / output information may be overwritten, updated, or added. The output information may be deleted. The entered information may be transmitted to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software may use at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to create a website. When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group", " Terms such as "carrier" and "component carrier" may be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "Mobile Station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the functions of the base station. Further, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the upstream channel, the downstream channel, and the like may be read as a side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
The radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time area. Slots may be unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-coded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (Sub-Carrier Group: SCG), resource element groups (Resource Element Group: REG), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks for a neurology in a carrier. good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB. The number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two "connected" or "joined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency region. , Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc., can be considered to be "connected" or "coupled" to each other.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The statement "based on" used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with a "part", a "circuit", a "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first" and "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as inclusive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended to be non-exclusive.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as "judgment" or "decision". In addition, "judgment" and "decision" are considered to be "judgment" and "decision" when the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as amendments and modifications without departing from the spirit and scope of the present disclosure as determined by the description of the scope of claims. Therefore, the description of this disclosure is for purposes of illustration and does not have any limiting meaning to this disclosure.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 110 無線信号送受信部
 120 アンプ部
 130 変復調部
 140 制御信号・参照信号処理部
 150 符号化/復号部
 160 データ送受信部
 170 制御部
 200 UE
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Wireless communication system 20 NG-RAN
100 gNB
110 Wireless signal transmission / reception unit 120 Amplifier unit 130 Modulation / demodulation unit 140 Control signal / reference signal processing unit 150 Coding / decoding unit 160 Data transmission / reception unit 170 Control unit 200 UE
1001 Processor 1002 Memory 1003 Storage 1004 Communication Device 1005 Input Device 1006 Output Device 1007 Bus

Claims (5)

  1.  復調用参照信号を送信する送信部と、
     前記復調用参照信号の構成を設定する制御部と
    を備え、
     前記制御部は、周波数リソースにおける前記復調用参照信号の配置を第1密度、または前記第1密度と異なる第2密度に設定する無線基地局。
    A transmitter that transmits a demodulation reference signal,
    A control unit for setting the configuration of the demodulation reference signal is provided.
    The control unit is a radio base station that sets the arrangement of the demodulation reference signal in the frequency resource to the first density or a second density different from the first density.
  2.  前記制御部は、前記第1密度を有する前記復調用参照信号のタイプ、または前記第2密度を有する前記復調用参照信号のタイプを設定する請求項1に記載の無線基地局。 The radio base station according to claim 1, wherein the control unit sets the type of the demodulation reference signal having the first density or the type of the demodulation reference signal having the second density.
  3.  前記制御部は、前記復調用参照信号の密度を変化させるパラメータを用いて、前記第1密度または前記第2密度に設定する請求項1に記載の無線基地局。 The radio base station according to claim 1, wherein the control unit sets the density to the first density or the second density by using a parameter for changing the density of the demodulation reference signal.
  4.  復調用参照信号を送信する送信部と、
     周波数リソースにおける前記復調用参照信号の配置を第1密度、または前記第1密度と異なる第2密度に設定する制御部と
    を備える端末。
    A transmitter that transmits a demodulation reference signal,
    A terminal including a control unit that sets the arrangement of the demodulation reference signal in the frequency resource to the first density or a second density different from the first density.
  5.  前記送信部は、前記復調用参照信号に関する前記端末の能力情報を送信する請求項4に記載の端末。
     
    The terminal according to claim 4, wherein the transmission unit transmits the capability information of the terminal regarding the demodulation reference signal.
PCT/JP2021/000526 2021-01-08 2021-01-08 Radio base station and terminal WO2022149267A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/000526 WO2022149267A1 (en) 2021-01-08 2021-01-08 Radio base station and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/000526 WO2022149267A1 (en) 2021-01-08 2021-01-08 Radio base station and terminal

Publications (1)

Publication Number Publication Date
WO2022149267A1 true WO2022149267A1 (en) 2022-07-14

Family

ID=82357854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000526 WO2022149267A1 (en) 2021-01-08 2021-01-08 Radio base station and terminal

Country Status (1)

Country Link
WO (1) WO2022149267A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024033531A1 (en) * 2022-08-11 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic switching between different number of additional dmrs symbols for pdsch or pusch

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018182515A (en) * 2017-04-12 2018-11-15 ソフトバンク株式会社 Base station device
JP2019537331A (en) * 2016-10-11 2019-12-19 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Method for adapting the density of a demodulation reference signal
JP2020516155A (en) * 2017-03-25 2020-05-28 エルジー エレクトロニクス インコーポレイティド Method and apparatus for transmitting and receiving reference signals in a wireless communication system
WO2020157966A1 (en) * 2019-02-01 2020-08-06 株式会社Nttドコモ User terminal and wireless communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019537331A (en) * 2016-10-11 2019-12-19 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Method for adapting the density of a demodulation reference signal
JP2020516155A (en) * 2017-03-25 2020-05-28 エルジー エレクトロニクス インコーポレイティド Method and apparatus for transmitting and receiving reference signals in a wireless communication system
JP2018182515A (en) * 2017-04-12 2018-11-15 ソフトバンク株式会社 Base station device
WO2020157966A1 (en) * 2019-02-01 2020-08-06 株式会社Nttドコモ User terminal and wireless communication method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024033531A1 (en) * 2022-08-11 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic switching between different number of additional dmrs symbols for pdsch or pusch

Similar Documents

Publication Publication Date Title
WO2021005663A1 (en) Terminal
WO2022029965A1 (en) Wireless communication node
WO2020261463A1 (en) Terminal
WO2022079876A1 (en) Terminal
WO2022149267A1 (en) Radio base station and terminal
WO2021009817A1 (en) Terminal
WO2021214920A1 (en) Terminal
WO2021166044A1 (en) Communication device
WO2021029002A1 (en) Terminal
WO2022149268A1 (en) Radio base station and terminal
WO2022149287A1 (en) Terminal and radio base station
WO2022074842A1 (en) Terminal
WO2022079872A1 (en) Terminal
WO2022102669A1 (en) Terminal
WO2021214919A1 (en) Terminal
WO2022085156A1 (en) Terminal
WO2022153505A1 (en) Terminal and radio base station
WO2022097724A1 (en) Terminal
WO2022079861A1 (en) Terminal
WO2022029972A1 (en) Terminal
WO2021199388A1 (en) Terminal
WO2021192064A1 (en) Terminal
WO2021191982A1 (en) Terminal
WO2021261199A1 (en) Communication device
WO2022190289A1 (en) Terminal, wireless communication system, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP